Home | History | Annotate | Download | only in Target
      1 //===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file describes how to lower LLVM code to machine code.  This has two
     11 // main components:
     12 //
     13 //  1. Which ValueTypes are natively supported by the target.
     14 //  2. Which operations are supported for supported ValueTypes.
     15 //  3. Cost thresholds for alternative implementations of certain operations.
     16 //
     17 // In addition it has a few other components, like information about FP
     18 // immediates.
     19 //
     20 //===----------------------------------------------------------------------===//
     21 
     22 #ifndef LLVM_TARGET_TARGETLOWERING_H
     23 #define LLVM_TARGET_TARGETLOWERING_H
     24 
     25 #include "llvm/CallingConv.h"
     26 #include "llvm/InlineAsm.h"
     27 #include "llvm/Attributes.h"
     28 #include "llvm/CodeGen/SelectionDAGNodes.h"
     29 #include "llvm/CodeGen/RuntimeLibcalls.h"
     30 #include "llvm/Support/DebugLoc.h"
     31 #include "llvm/Target/TargetCallingConv.h"
     32 #include "llvm/Target/TargetMachine.h"
     33 #include <climits>
     34 #include <map>
     35 #include <vector>
     36 
     37 namespace llvm {
     38   class CallInst;
     39   class CCState;
     40   class FastISel;
     41   class FunctionLoweringInfo;
     42   class ImmutableCallSite;
     43   class IntrinsicInst;
     44   class MachineBasicBlock;
     45   class MachineFunction;
     46   class MachineInstr;
     47   class MachineJumpTableInfo;
     48   class MCContext;
     49   class MCExpr;
     50   template<typename T> class SmallVectorImpl;
     51   class TargetData;
     52   class TargetRegisterClass;
     53   class TargetLoweringObjectFile;
     54   class Value;
     55 
     56   namespace Sched {
     57     enum Preference {
     58       None,             // No preference
     59       Source,           // Follow source order.
     60       RegPressure,      // Scheduling for lowest register pressure.
     61       Hybrid,           // Scheduling for both latency and register pressure.
     62       ILP,              // Scheduling for ILP in low register pressure mode.
     63       VLIW              // Scheduling for VLIW targets.
     64     };
     65   }
     66 
     67 
     68 //===----------------------------------------------------------------------===//
     69 /// TargetLowering - This class defines information used to lower LLVM code to
     70 /// legal SelectionDAG operators that the target instruction selector can accept
     71 /// natively.
     72 ///
     73 /// This class also defines callbacks that targets must implement to lower
     74 /// target-specific constructs to SelectionDAG operators.
     75 ///
     76 class TargetLowering {
     77   TargetLowering(const TargetLowering&);  // DO NOT IMPLEMENT
     78   void operator=(const TargetLowering&);  // DO NOT IMPLEMENT
     79 public:
     80   /// LegalizeAction - This enum indicates whether operations are valid for a
     81   /// target, and if not, what action should be used to make them valid.
     82   enum LegalizeAction {
     83     Legal,      // The target natively supports this operation.
     84     Promote,    // This operation should be executed in a larger type.
     85     Expand,     // Try to expand this to other ops, otherwise use a libcall.
     86     Custom      // Use the LowerOperation hook to implement custom lowering.
     87   };
     88 
     89   /// LegalizeTypeAction - This enum indicates whether a types are legal for a
     90   /// target, and if not, what action should be used to make them valid.
     91   enum LegalizeTypeAction {
     92     TypeLegal,           // The target natively supports this type.
     93     TypePromoteInteger,  // Replace this integer with a larger one.
     94     TypeExpandInteger,   // Split this integer into two of half the size.
     95     TypeSoftenFloat,     // Convert this float to a same size integer type.
     96     TypeExpandFloat,     // Split this float into two of half the size.
     97     TypeScalarizeVector, // Replace this one-element vector with its element.
     98     TypeSplitVector,     // Split this vector into two of half the size.
     99     TypeWidenVector      // This vector should be widened into a larger vector.
    100   };
    101 
    102   enum BooleanContent { // How the target represents true/false values.
    103     UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
    104     ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
    105     ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
    106   };
    107 
    108   static ISD::NodeType getExtendForContent(BooleanContent Content) {
    109     switch (Content) {
    110     case UndefinedBooleanContent:
    111       // Extend by adding rubbish bits.
    112       return ISD::ANY_EXTEND;
    113     case ZeroOrOneBooleanContent:
    114       // Extend by adding zero bits.
    115       return ISD::ZERO_EXTEND;
    116     case ZeroOrNegativeOneBooleanContent:
    117       // Extend by copying the sign bit.
    118       return ISD::SIGN_EXTEND;
    119     }
    120     llvm_unreachable("Invalid content kind");
    121   }
    122 
    123   /// NOTE: The constructor takes ownership of TLOF.
    124   explicit TargetLowering(const TargetMachine &TM,
    125                           const TargetLoweringObjectFile *TLOF);
    126   virtual ~TargetLowering();
    127 
    128   const TargetMachine &getTargetMachine() const { return TM; }
    129   const TargetData *getTargetData() const { return TD; }
    130   const TargetLoweringObjectFile &getObjFileLowering() const { return TLOF; }
    131 
    132   bool isBigEndian() const { return !IsLittleEndian; }
    133   bool isLittleEndian() const { return IsLittleEndian; }
    134   MVT getPointerTy() const { return PointerTy; }
    135   virtual MVT getShiftAmountTy(EVT LHSTy) const;
    136 
    137   /// isSelectExpensive - Return true if the select operation is expensive for
    138   /// this target.
    139   bool isSelectExpensive() const { return SelectIsExpensive; }
    140 
    141   /// isIntDivCheap() - Return true if integer divide is usually cheaper than
    142   /// a sequence of several shifts, adds, and multiplies for this target.
    143   bool isIntDivCheap() const { return IntDivIsCheap; }
    144 
    145   /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
    146   /// srl/add/sra.
    147   bool isPow2DivCheap() const { return Pow2DivIsCheap; }
    148 
    149   /// isJumpExpensive() - Return true if Flow Control is an expensive operation
    150   /// that should be avoided.
    151   bool isJumpExpensive() const { return JumpIsExpensive; }
    152 
    153   /// getSetCCResultType - Return the ValueType of the result of SETCC
    154   /// operations.  Also used to obtain the target's preferred type for
    155   /// the condition operand of SELECT and BRCOND nodes.  In the case of
    156   /// BRCOND the argument passed is MVT::Other since there are no other
    157   /// operands to get a type hint from.
    158   virtual EVT getSetCCResultType(EVT VT) const;
    159 
    160   /// getCmpLibcallReturnType - Return the ValueType for comparison
    161   /// libcalls. Comparions libcalls include floating point comparion calls,
    162   /// and Ordered/Unordered check calls on floating point numbers.
    163   virtual
    164   MVT::SimpleValueType getCmpLibcallReturnType() const;
    165 
    166   /// getBooleanContents - For targets without i1 registers, this gives the
    167   /// nature of the high-bits of boolean values held in types wider than i1.
    168   /// "Boolean values" are special true/false values produced by nodes like
    169   /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
    170   /// Not to be confused with general values promoted from i1.
    171   /// Some cpus distinguish between vectors of boolean and scalars; the isVec
    172   /// parameter selects between the two kinds.  For example on X86 a scalar
    173   /// boolean should be zero extended from i1, while the elements of a vector
    174   /// of booleans should be sign extended from i1.
    175   BooleanContent getBooleanContents(bool isVec) const {
    176     return isVec ? BooleanVectorContents : BooleanContents;
    177   }
    178 
    179   /// getSchedulingPreference - Return target scheduling preference.
    180   Sched::Preference getSchedulingPreference() const {
    181     return SchedPreferenceInfo;
    182   }
    183 
    184   /// getSchedulingPreference - Some scheduler, e.g. hybrid, can switch to
    185   /// different scheduling heuristics for different nodes. This function returns
    186   /// the preference (or none) for the given node.
    187   virtual Sched::Preference getSchedulingPreference(SDNode *) const {
    188     return Sched::None;
    189   }
    190 
    191   /// getRegClassFor - Return the register class that should be used for the
    192   /// specified value type.
    193   virtual const TargetRegisterClass *getRegClassFor(EVT VT) const {
    194     assert(VT.isSimple() && "getRegClassFor called on illegal type!");
    195     const TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
    196     assert(RC && "This value type is not natively supported!");
    197     return RC;
    198   }
    199 
    200   /// getRepRegClassFor - Return the 'representative' register class for the
    201   /// specified value type. The 'representative' register class is the largest
    202   /// legal super-reg register class for the register class of the value type.
    203   /// For example, on i386 the rep register class for i8, i16, and i32 are GR32;
    204   /// while the rep register class is GR64 on x86_64.
    205   virtual const TargetRegisterClass *getRepRegClassFor(EVT VT) const {
    206     assert(VT.isSimple() && "getRepRegClassFor called on illegal type!");
    207     const TargetRegisterClass *RC = RepRegClassForVT[VT.getSimpleVT().SimpleTy];
    208     return RC;
    209   }
    210 
    211   /// getRepRegClassCostFor - Return the cost of the 'representative' register
    212   /// class for the specified value type.
    213   virtual uint8_t getRepRegClassCostFor(EVT VT) const {
    214     assert(VT.isSimple() && "getRepRegClassCostFor called on illegal type!");
    215     return RepRegClassCostForVT[VT.getSimpleVT().SimpleTy];
    216   }
    217 
    218   /// isTypeLegal - Return true if the target has native support for the
    219   /// specified value type.  This means that it has a register that directly
    220   /// holds it without promotions or expansions.
    221   bool isTypeLegal(EVT VT) const {
    222     assert(!VT.isSimple() ||
    223            (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
    224     return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != 0;
    225   }
    226 
    227   class ValueTypeActionImpl {
    228     /// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum
    229     /// that indicates how instruction selection should deal with the type.
    230     uint8_t ValueTypeActions[MVT::LAST_VALUETYPE];
    231 
    232   public:
    233     ValueTypeActionImpl() {
    234       std::fill(ValueTypeActions, array_endof(ValueTypeActions), 0);
    235     }
    236 
    237     LegalizeTypeAction getTypeAction(MVT VT) const {
    238       return (LegalizeTypeAction)ValueTypeActions[VT.SimpleTy];
    239     }
    240 
    241     void setTypeAction(EVT VT, LegalizeTypeAction Action) {
    242       unsigned I = VT.getSimpleVT().SimpleTy;
    243       ValueTypeActions[I] = Action;
    244     }
    245   };
    246 
    247   const ValueTypeActionImpl &getValueTypeActions() const {
    248     return ValueTypeActions;
    249   }
    250 
    251   /// getTypeAction - Return how we should legalize values of this type, either
    252   /// it is already legal (return 'Legal') or we need to promote it to a larger
    253   /// type (return 'Promote'), or we need to expand it into multiple registers
    254   /// of smaller integer type (return 'Expand').  'Custom' is not an option.
    255   LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const {
    256     return getTypeConversion(Context, VT).first;
    257   }
    258   LegalizeTypeAction getTypeAction(MVT VT) const {
    259     return ValueTypeActions.getTypeAction(VT);
    260   }
    261 
    262   /// getTypeToTransformTo - For types supported by the target, this is an
    263   /// identity function.  For types that must be promoted to larger types, this
    264   /// returns the larger type to promote to.  For integer types that are larger
    265   /// than the largest integer register, this contains one step in the expansion
    266   /// to get to the smaller register. For illegal floating point types, this
    267   /// returns the integer type to transform to.
    268   EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
    269     return getTypeConversion(Context, VT).second;
    270   }
    271 
    272   /// getTypeToExpandTo - For types supported by the target, this is an
    273   /// identity function.  For types that must be expanded (i.e. integer types
    274   /// that are larger than the largest integer register or illegal floating
    275   /// point types), this returns the largest legal type it will be expanded to.
    276   EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
    277     assert(!VT.isVector());
    278     while (true) {
    279       switch (getTypeAction(Context, VT)) {
    280       case TypeLegal:
    281         return VT;
    282       case TypeExpandInteger:
    283         VT = getTypeToTransformTo(Context, VT);
    284         break;
    285       default:
    286         llvm_unreachable("Type is not legal nor is it to be expanded!");
    287       }
    288     }
    289   }
    290 
    291   /// getVectorTypeBreakdown - Vector types are broken down into some number of
    292   /// legal first class types.  For example, EVT::v8f32 maps to 2 EVT::v4f32
    293   /// with Altivec or SSE1, or 8 promoted EVT::f64 values with the X86 FP stack.
    294   /// Similarly, EVT::v2i64 turns into 4 EVT::i32 values with both PPC and X86.
    295   ///
    296   /// This method returns the number of registers needed, and the VT for each
    297   /// register.  It also returns the VT and quantity of the intermediate values
    298   /// before they are promoted/expanded.
    299   ///
    300   unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
    301                                   EVT &IntermediateVT,
    302                                   unsigned &NumIntermediates,
    303                                   EVT &RegisterVT) const;
    304 
    305   /// getTgtMemIntrinsic: Given an intrinsic, checks if on the target the
    306   /// intrinsic will need to map to a MemIntrinsicNode (touches memory). If
    307   /// this is the case, it returns true and store the intrinsic
    308   /// information into the IntrinsicInfo that was passed to the function.
    309   struct IntrinsicInfo {
    310     unsigned     opc;         // target opcode
    311     EVT          memVT;       // memory VT
    312     const Value* ptrVal;      // value representing memory location
    313     int          offset;      // offset off of ptrVal
    314     unsigned     align;       // alignment
    315     bool         vol;         // is volatile?
    316     bool         readMem;     // reads memory?
    317     bool         writeMem;    // writes memory?
    318   };
    319 
    320   virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &,
    321                                   unsigned /*Intrinsic*/) const {
    322     return false;
    323   }
    324 
    325   /// isFPImmLegal - Returns true if the target can instruction select the
    326   /// specified FP immediate natively. If false, the legalizer will materialize
    327   /// the FP immediate as a load from a constant pool.
    328   virtual bool isFPImmLegal(const APFloat &/*Imm*/, EVT /*VT*/) const {
    329     return false;
    330   }
    331 
    332   /// isShuffleMaskLegal - Targets can use this to indicate that they only
    333   /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
    334   /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
    335   /// are assumed to be legal.
    336   virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
    337                                   EVT /*VT*/) const {
    338     return true;
    339   }
    340 
    341   /// canOpTrap - Returns true if the operation can trap for the value type.
    342   /// VT must be a legal type. By default, we optimistically assume most
    343   /// operations don't trap except for divide and remainder.
    344   virtual bool canOpTrap(unsigned Op, EVT VT) const;
    345 
    346   /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
    347   /// used by Targets can use this to indicate if there is a suitable
    348   /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
    349   /// pool entry.
    350   virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
    351                                       EVT /*VT*/) const {
    352     return false;
    353   }
    354 
    355   /// getOperationAction - Return how this operation should be treated: either
    356   /// it is legal, needs to be promoted to a larger size, needs to be
    357   /// expanded to some other code sequence, or the target has a custom expander
    358   /// for it.
    359   LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
    360     if (VT.isExtended()) return Expand;
    361     assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
    362     unsigned I = (unsigned) VT.getSimpleVT().SimpleTy;
    363     return (LegalizeAction)OpActions[I][Op];
    364   }
    365 
    366   /// isOperationLegalOrCustom - Return true if the specified operation is
    367   /// legal on this target or can be made legal with custom lowering. This
    368   /// is used to help guide high-level lowering decisions.
    369   bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
    370     return (VT == MVT::Other || isTypeLegal(VT)) &&
    371       (getOperationAction(Op, VT) == Legal ||
    372        getOperationAction(Op, VT) == Custom);
    373   }
    374 
    375   /// isOperationLegal - Return true if the specified operation is legal on this
    376   /// target.
    377   bool isOperationLegal(unsigned Op, EVT VT) const {
    378     return (VT == MVT::Other || isTypeLegal(VT)) &&
    379            getOperationAction(Op, VT) == Legal;
    380   }
    381 
    382   /// getLoadExtAction - Return how this load with extension should be treated:
    383   /// either it is legal, needs to be promoted to a larger size, needs to be
    384   /// expanded to some other code sequence, or the target has a custom expander
    385   /// for it.
    386   LegalizeAction getLoadExtAction(unsigned ExtType, EVT VT) const {
    387     assert(ExtType < ISD::LAST_LOADEXT_TYPE &&
    388            VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
    389            "Table isn't big enough!");
    390     return (LegalizeAction)LoadExtActions[VT.getSimpleVT().SimpleTy][ExtType];
    391   }
    392 
    393   /// isLoadExtLegal - Return true if the specified load with extension is legal
    394   /// on this target.
    395   bool isLoadExtLegal(unsigned ExtType, EVT VT) const {
    396     return VT.isSimple() && getLoadExtAction(ExtType, VT) == Legal;
    397   }
    398 
    399   /// getTruncStoreAction - Return how this store with truncation should be
    400   /// treated: either it is legal, needs to be promoted to a larger size, needs
    401   /// to be expanded to some other code sequence, or the target has a custom
    402   /// expander for it.
    403   LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const {
    404     assert(ValVT.getSimpleVT() < MVT::LAST_VALUETYPE &&
    405            MemVT.getSimpleVT() < MVT::LAST_VALUETYPE &&
    406            "Table isn't big enough!");
    407     return (LegalizeAction)TruncStoreActions[ValVT.getSimpleVT().SimpleTy]
    408                                             [MemVT.getSimpleVT().SimpleTy];
    409   }
    410 
    411   /// isTruncStoreLegal - Return true if the specified store with truncation is
    412   /// legal on this target.
    413   bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
    414     return isTypeLegal(ValVT) && MemVT.isSimple() &&
    415            getTruncStoreAction(ValVT, MemVT) == Legal;
    416   }
    417 
    418   /// getIndexedLoadAction - Return how the indexed load should be treated:
    419   /// either it is legal, needs to be promoted to a larger size, needs to be
    420   /// expanded to some other code sequence, or the target has a custom expander
    421   /// for it.
    422   LegalizeAction
    423   getIndexedLoadAction(unsigned IdxMode, EVT VT) const {
    424     assert(IdxMode < ISD::LAST_INDEXED_MODE &&
    425            VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
    426            "Table isn't big enough!");
    427     unsigned Ty = (unsigned)VT.getSimpleVT().SimpleTy;
    428     return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] & 0xf0) >> 4);
    429   }
    430 
    431   /// isIndexedLoadLegal - Return true if the specified indexed load is legal
    432   /// on this target.
    433   bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
    434     return VT.isSimple() &&
    435       (getIndexedLoadAction(IdxMode, VT) == Legal ||
    436        getIndexedLoadAction(IdxMode, VT) == Custom);
    437   }
    438 
    439   /// getIndexedStoreAction - Return how the indexed store should be treated:
    440   /// either it is legal, needs to be promoted to a larger size, needs to be
    441   /// expanded to some other code sequence, or the target has a custom expander
    442   /// for it.
    443   LegalizeAction
    444   getIndexedStoreAction(unsigned IdxMode, EVT VT) const {
    445     assert(IdxMode < ISD::LAST_INDEXED_MODE &&
    446            VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
    447            "Table isn't big enough!");
    448     unsigned Ty = (unsigned)VT.getSimpleVT().SimpleTy;
    449     return (LegalizeAction)(IndexedModeActions[Ty][IdxMode] & 0x0f);
    450   }
    451 
    452   /// isIndexedStoreLegal - Return true if the specified indexed load is legal
    453   /// on this target.
    454   bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
    455     return VT.isSimple() &&
    456       (getIndexedStoreAction(IdxMode, VT) == Legal ||
    457        getIndexedStoreAction(IdxMode, VT) == Custom);
    458   }
    459 
    460   /// getCondCodeAction - Return how the condition code should be treated:
    461   /// either it is legal, needs to be expanded to some other code sequence,
    462   /// or the target has a custom expander for it.
    463   LegalizeAction
    464   getCondCodeAction(ISD::CondCode CC, EVT VT) const {
    465     assert((unsigned)CC < array_lengthof(CondCodeActions) &&
    466            (unsigned)VT.getSimpleVT().SimpleTy < sizeof(CondCodeActions[0])*4 &&
    467            "Table isn't big enough!");
    468     LegalizeAction Action = (LegalizeAction)
    469       ((CondCodeActions[CC] >> (2*VT.getSimpleVT().SimpleTy)) & 3);
    470     assert(Action != Promote && "Can't promote condition code!");
    471     return Action;
    472   }
    473 
    474   /// isCondCodeLegal - Return true if the specified condition code is legal
    475   /// on this target.
    476   bool isCondCodeLegal(ISD::CondCode CC, EVT VT) const {
    477     return getCondCodeAction(CC, VT) == Legal ||
    478            getCondCodeAction(CC, VT) == Custom;
    479   }
    480 
    481 
    482   /// getTypeToPromoteTo - If the action for this operation is to promote, this
    483   /// method returns the ValueType to promote to.
    484   EVT getTypeToPromoteTo(unsigned Op, EVT VT) const {
    485     assert(getOperationAction(Op, VT) == Promote &&
    486            "This operation isn't promoted!");
    487 
    488     // See if this has an explicit type specified.
    489     std::map<std::pair<unsigned, MVT::SimpleValueType>,
    490              MVT::SimpleValueType>::const_iterator PTTI =
    491       PromoteToType.find(std::make_pair(Op, VT.getSimpleVT().SimpleTy));
    492     if (PTTI != PromoteToType.end()) return PTTI->second;
    493 
    494     assert((VT.isInteger() || VT.isFloatingPoint()) &&
    495            "Cannot autopromote this type, add it with AddPromotedToType.");
    496 
    497     EVT NVT = VT;
    498     do {
    499       NVT = (MVT::SimpleValueType)(NVT.getSimpleVT().SimpleTy+1);
    500       assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
    501              "Didn't find type to promote to!");
    502     } while (!isTypeLegal(NVT) ||
    503               getOperationAction(Op, NVT) == Promote);
    504     return NVT;
    505   }
    506 
    507   /// getValueType - Return the EVT corresponding to this LLVM type.
    508   /// This is fixed by the LLVM operations except for the pointer size.  If
    509   /// AllowUnknown is true, this will return MVT::Other for types with no EVT
    510   /// counterpart (e.g. structs), otherwise it will assert.
    511   EVT getValueType(Type *Ty, bool AllowUnknown = false) const {
    512     // Lower scalar pointers to native pointer types.
    513     if (Ty->isPointerTy()) return PointerTy;
    514 
    515     if (Ty->isVectorTy()) {
    516       VectorType *VTy = cast<VectorType>(Ty);
    517       Type *Elm = VTy->getElementType();
    518       // Lower vectors of pointers to native pointer types.
    519       if (Elm->isPointerTy())
    520         Elm = EVT(PointerTy).getTypeForEVT(Ty->getContext());
    521       return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(Elm, false),
    522                        VTy->getNumElements());
    523     }
    524     return EVT::getEVT(Ty, AllowUnknown);
    525   }
    526 
    527   /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
    528   /// function arguments in the caller parameter area.  This is the actual
    529   /// alignment, not its logarithm.
    530   virtual unsigned getByValTypeAlignment(Type *Ty) const;
    531 
    532   /// getRegisterType - Return the type of registers that this ValueType will
    533   /// eventually require.
    534   EVT getRegisterType(MVT VT) const {
    535     assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
    536     return RegisterTypeForVT[VT.SimpleTy];
    537   }
    538 
    539   /// getRegisterType - Return the type of registers that this ValueType will
    540   /// eventually require.
    541   EVT getRegisterType(LLVMContext &Context, EVT VT) const {
    542     if (VT.isSimple()) {
    543       assert((unsigned)VT.getSimpleVT().SimpleTy <
    544                 array_lengthof(RegisterTypeForVT));
    545       return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
    546     }
    547     if (VT.isVector()) {
    548       EVT VT1, RegisterVT;
    549       unsigned NumIntermediates;
    550       (void)getVectorTypeBreakdown(Context, VT, VT1,
    551                                    NumIntermediates, RegisterVT);
    552       return RegisterVT;
    553     }
    554     if (VT.isInteger()) {
    555       return getRegisterType(Context, getTypeToTransformTo(Context, VT));
    556     }
    557     llvm_unreachable("Unsupported extended type!");
    558   }
    559 
    560   /// getNumRegisters - Return the number of registers that this ValueType will
    561   /// eventually require.  This is one for any types promoted to live in larger
    562   /// registers, but may be more than one for types (like i64) that are split
    563   /// into pieces.  For types like i140, which are first promoted then expanded,
    564   /// it is the number of registers needed to hold all the bits of the original
    565   /// type.  For an i140 on a 32 bit machine this means 5 registers.
    566   unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
    567     if (VT.isSimple()) {
    568       assert((unsigned)VT.getSimpleVT().SimpleTy <
    569                 array_lengthof(NumRegistersForVT));
    570       return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
    571     }
    572     if (VT.isVector()) {
    573       EVT VT1, VT2;
    574       unsigned NumIntermediates;
    575       return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
    576     }
    577     if (VT.isInteger()) {
    578       unsigned BitWidth = VT.getSizeInBits();
    579       unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
    580       return (BitWidth + RegWidth - 1) / RegWidth;
    581     }
    582     llvm_unreachable("Unsupported extended type!");
    583   }
    584 
    585   /// ShouldShrinkFPConstant - If true, then instruction selection should
    586   /// seek to shrink the FP constant of the specified type to a smaller type
    587   /// in order to save space and / or reduce runtime.
    588   virtual bool ShouldShrinkFPConstant(EVT) const { return true; }
    589 
    590   /// hasTargetDAGCombine - If true, the target has custom DAG combine
    591   /// transformations that it can perform for the specified node.
    592   bool hasTargetDAGCombine(ISD::NodeType NT) const {
    593     assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
    594     return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
    595   }
    596 
    597   /// This function returns the maximum number of store operations permitted
    598   /// to replace a call to llvm.memset. The value is set by the target at the
    599   /// performance threshold for such a replacement. If OptSize is true,
    600   /// return the limit for functions that have OptSize attribute.
    601   /// @brief Get maximum # of store operations permitted for llvm.memset
    602   unsigned getMaxStoresPerMemset(bool OptSize) const {
    603     return OptSize ? maxStoresPerMemsetOptSize : maxStoresPerMemset;
    604   }
    605 
    606   /// This function returns the maximum number of store operations permitted
    607   /// to replace a call to llvm.memcpy. The value is set by the target at the
    608   /// performance threshold for such a replacement. If OptSize is true,
    609   /// return the limit for functions that have OptSize attribute.
    610   /// @brief Get maximum # of store operations permitted for llvm.memcpy
    611   unsigned getMaxStoresPerMemcpy(bool OptSize) const {
    612     return OptSize ? maxStoresPerMemcpyOptSize : maxStoresPerMemcpy;
    613   }
    614 
    615   /// This function returns the maximum number of store operations permitted
    616   /// to replace a call to llvm.memmove. The value is set by the target at the
    617   /// performance threshold for such a replacement. If OptSize is true,
    618   /// return the limit for functions that have OptSize attribute.
    619   /// @brief Get maximum # of store operations permitted for llvm.memmove
    620   unsigned getMaxStoresPerMemmove(bool OptSize) const {
    621     return OptSize ? maxStoresPerMemmoveOptSize : maxStoresPerMemmove;
    622   }
    623 
    624   /// This function returns true if the target allows unaligned memory accesses.
    625   /// of the specified type. This is used, for example, in situations where an
    626   /// array copy/move/set is  converted to a sequence of store operations. It's
    627   /// use helps to ensure that such replacements don't generate code that causes
    628   /// an alignment error  (trap) on the target machine.
    629   /// @brief Determine if the target supports unaligned memory accesses.
    630   virtual bool allowsUnalignedMemoryAccesses(EVT) const {
    631     return false;
    632   }
    633 
    634   /// This function returns true if the target would benefit from code placement
    635   /// optimization.
    636   /// @brief Determine if the target should perform code placement optimization.
    637   bool shouldOptimizeCodePlacement() const {
    638     return benefitFromCodePlacementOpt;
    639   }
    640 
    641   /// getOptimalMemOpType - Returns the target specific optimal type for load
    642   /// and store operations as a result of memset, memcpy, and memmove
    643   /// lowering. If DstAlign is zero that means it's safe to destination
    644   /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
    645   /// means there isn't a need to check it against alignment requirement,
    646   /// probably because the source does not need to be loaded. If
    647   /// 'IsZeroVal' is true, that means it's safe to return a
    648   /// non-scalar-integer type, e.g. empty string source, constant, or loaded
    649   /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
    650   /// constant so it does not need to be loaded.
    651   /// It returns EVT::Other if the type should be determined using generic
    652   /// target-independent logic.
    653   virtual EVT getOptimalMemOpType(uint64_t /*Size*/,
    654                                   unsigned /*DstAlign*/, unsigned /*SrcAlign*/,
    655                                   bool /*IsZeroVal*/,
    656                                   bool /*MemcpyStrSrc*/,
    657                                   MachineFunction &/*MF*/) const {
    658     return MVT::Other;
    659   }
    660 
    661   /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
    662   /// to implement llvm.setjmp.
    663   bool usesUnderscoreSetJmp() const {
    664     return UseUnderscoreSetJmp;
    665   }
    666 
    667   /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
    668   /// to implement llvm.longjmp.
    669   bool usesUnderscoreLongJmp() const {
    670     return UseUnderscoreLongJmp;
    671   }
    672 
    673   /// getStackPointerRegisterToSaveRestore - If a physical register, this
    674   /// specifies the register that llvm.savestack/llvm.restorestack should save
    675   /// and restore.
    676   unsigned getStackPointerRegisterToSaveRestore() const {
    677     return StackPointerRegisterToSaveRestore;
    678   }
    679 
    680   /// getExceptionPointerRegister - If a physical register, this returns
    681   /// the register that receives the exception address on entry to a landing
    682   /// pad.
    683   unsigned getExceptionPointerRegister() const {
    684     return ExceptionPointerRegister;
    685   }
    686 
    687   /// getExceptionSelectorRegister - If a physical register, this returns
    688   /// the register that receives the exception typeid on entry to a landing
    689   /// pad.
    690   unsigned getExceptionSelectorRegister() const {
    691     return ExceptionSelectorRegister;
    692   }
    693 
    694   /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
    695   /// set, the default is 200)
    696   unsigned getJumpBufSize() const {
    697     return JumpBufSize;
    698   }
    699 
    700   /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
    701   /// (if never set, the default is 0)
    702   unsigned getJumpBufAlignment() const {
    703     return JumpBufAlignment;
    704   }
    705 
    706   /// getMinStackArgumentAlignment - return the minimum stack alignment of an
    707   /// argument.
    708   unsigned getMinStackArgumentAlignment() const {
    709     return MinStackArgumentAlignment;
    710   }
    711 
    712   /// getMinFunctionAlignment - return the minimum function alignment.
    713   ///
    714   unsigned getMinFunctionAlignment() const {
    715     return MinFunctionAlignment;
    716   }
    717 
    718   /// getPrefFunctionAlignment - return the preferred function alignment.
    719   ///
    720   unsigned getPrefFunctionAlignment() const {
    721     return PrefFunctionAlignment;
    722   }
    723 
    724   /// getPrefLoopAlignment - return the preferred loop alignment.
    725   ///
    726   unsigned getPrefLoopAlignment() const {
    727     return PrefLoopAlignment;
    728   }
    729 
    730   /// getShouldFoldAtomicFences - return whether the combiner should fold
    731   /// fence MEMBARRIER instructions into the atomic intrinsic instructions.
    732   ///
    733   bool getShouldFoldAtomicFences() const {
    734     return ShouldFoldAtomicFences;
    735   }
    736 
    737   /// getInsertFencesFor - return whether the DAG builder should automatically
    738   /// insert fences and reduce ordering for atomics.
    739   ///
    740   bool getInsertFencesForAtomic() const {
    741     return InsertFencesForAtomic;
    742   }
    743 
    744   /// getPreIndexedAddressParts - returns true by value, base pointer and
    745   /// offset pointer and addressing mode by reference if the node's address
    746   /// can be legally represented as pre-indexed load / store address.
    747   virtual bool getPreIndexedAddressParts(SDNode * /*N*/, SDValue &/*Base*/,
    748                                          SDValue &/*Offset*/,
    749                                          ISD::MemIndexedMode &/*AM*/,
    750                                          SelectionDAG &/*DAG*/) const {
    751     return false;
    752   }
    753 
    754   /// getPostIndexedAddressParts - returns true by value, base pointer and
    755   /// offset pointer and addressing mode by reference if this node can be
    756   /// combined with a load / store to form a post-indexed load / store.
    757   virtual bool getPostIndexedAddressParts(SDNode * /*N*/, SDNode * /*Op*/,
    758                                           SDValue &/*Base*/, SDValue &/*Offset*/,
    759                                           ISD::MemIndexedMode &/*AM*/,
    760                                           SelectionDAG &/*DAG*/) const {
    761     return false;
    762   }
    763 
    764   /// getJumpTableEncoding - Return the entry encoding for a jump table in the
    765   /// current function.  The returned value is a member of the
    766   /// MachineJumpTableInfo::JTEntryKind enum.
    767   virtual unsigned getJumpTableEncoding() const;
    768 
    769   virtual const MCExpr *
    770   LowerCustomJumpTableEntry(const MachineJumpTableInfo * /*MJTI*/,
    771                             const MachineBasicBlock * /*MBB*/, unsigned /*uid*/,
    772                             MCContext &/*Ctx*/) const {
    773     llvm_unreachable("Need to implement this hook if target has custom JTIs");
    774   }
    775 
    776   /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
    777   /// jumptable.
    778   virtual SDValue getPICJumpTableRelocBase(SDValue Table,
    779                                            SelectionDAG &DAG) const;
    780 
    781   /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
    782   /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
    783   /// MCExpr.
    784   virtual const MCExpr *
    785   getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
    786                                unsigned JTI, MCContext &Ctx) const;
    787 
    788   /// isOffsetFoldingLegal - Return true if folding a constant offset
    789   /// with the given GlobalAddress is legal.  It is frequently not legal in
    790   /// PIC relocation models.
    791   virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
    792 
    793   /// getStackCookieLocation - Return true if the target stores stack
    794   /// protector cookies at a fixed offset in some non-standard address
    795   /// space, and populates the address space and offset as
    796   /// appropriate.
    797   virtual bool getStackCookieLocation(unsigned &/*AddressSpace*/,
    798                                       unsigned &/*Offset*/) const {
    799     return false;
    800   }
    801 
    802   /// getMaximalGlobalOffset - Returns the maximal possible offset which can be
    803   /// used for loads / stores from the global.
    804   virtual unsigned getMaximalGlobalOffset() const {
    805     return 0;
    806   }
    807 
    808   //===--------------------------------------------------------------------===//
    809   // TargetLowering Optimization Methods
    810   //
    811 
    812   /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
    813   /// SDValues for returning information from TargetLowering to its clients
    814   /// that want to combine
    815   struct TargetLoweringOpt {
    816     SelectionDAG &DAG;
    817     bool LegalTys;
    818     bool LegalOps;
    819     SDValue Old;
    820     SDValue New;
    821 
    822     explicit TargetLoweringOpt(SelectionDAG &InDAG,
    823                                bool LT, bool LO) :
    824       DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
    825 
    826     bool LegalTypes() const { return LegalTys; }
    827     bool LegalOperations() const { return LegalOps; }
    828 
    829     bool CombineTo(SDValue O, SDValue N) {
    830       Old = O;
    831       New = N;
    832       return true;
    833     }
    834 
    835     /// ShrinkDemandedConstant - Check to see if the specified operand of the
    836     /// specified instruction is a constant integer.  If so, check to see if
    837     /// there are any bits set in the constant that are not demanded.  If so,
    838     /// shrink the constant and return true.
    839     bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
    840 
    841     /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
    842     /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
    843     /// cast, but it could be generalized for targets with other types of
    844     /// implicit widening casts.
    845     bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
    846                           DebugLoc dl);
    847   };
    848 
    849   /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
    850   /// DemandedMask bits of the result of Op are ever used downstream.  If we can
    851   /// use this information to simplify Op, create a new simplified DAG node and
    852   /// return true, returning the original and new nodes in Old and New.
    853   /// Otherwise, analyze the expression and return a mask of KnownOne and
    854   /// KnownZero bits for the expression (used to simplify the caller).
    855   /// The KnownZero/One bits may only be accurate for those bits in the
    856   /// DemandedMask.
    857   bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
    858                             APInt &KnownZero, APInt &KnownOne,
    859                             TargetLoweringOpt &TLO, unsigned Depth = 0) const;
    860 
    861   /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
    862   /// Mask are known to be either zero or one and return them in the
    863   /// KnownZero/KnownOne bitsets.
    864   virtual void computeMaskedBitsForTargetNode(const SDValue Op,
    865                                               APInt &KnownZero,
    866                                               APInt &KnownOne,
    867                                               const SelectionDAG &DAG,
    868                                               unsigned Depth = 0) const;
    869 
    870   /// ComputeNumSignBitsForTargetNode - This method can be implemented by
    871   /// targets that want to expose additional information about sign bits to the
    872   /// DAG Combiner.
    873   virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
    874                                                    unsigned Depth = 0) const;
    875 
    876   struct DAGCombinerInfo {
    877     void *DC;  // The DAG Combiner object.
    878     bool BeforeLegalize;
    879     bool BeforeLegalizeOps;
    880     bool CalledByLegalizer;
    881   public:
    882     SelectionDAG &DAG;
    883 
    884     DAGCombinerInfo(SelectionDAG &dag, bool bl, bool blo, bool cl, void *dc)
    885       : DC(dc), BeforeLegalize(bl), BeforeLegalizeOps(blo),
    886         CalledByLegalizer(cl), DAG(dag) {}
    887 
    888     bool isBeforeLegalize() const { return BeforeLegalize; }
    889     bool isBeforeLegalizeOps() const { return BeforeLegalizeOps; }
    890     bool isCalledByLegalizer() const { return CalledByLegalizer; }
    891 
    892     void AddToWorklist(SDNode *N);
    893     void RemoveFromWorklist(SDNode *N);
    894     SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To,
    895                       bool AddTo = true);
    896     SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
    897     SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
    898 
    899     void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
    900   };
    901 
    902   /// SimplifySetCC - Try to simplify a setcc built with the specified operands
    903   /// and cc. If it is unable to simplify it, return a null SDValue.
    904   SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
    905                           ISD::CondCode Cond, bool foldBooleans,
    906                           DAGCombinerInfo &DCI, DebugLoc dl) const;
    907 
    908   /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
    909   /// node is a GlobalAddress + offset.
    910   virtual bool
    911   isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
    912 
    913   /// PerformDAGCombine - This method will be invoked for all target nodes and
    914   /// for any target-independent nodes that the target has registered with
    915   /// invoke it for.
    916   ///
    917   /// The semantics are as follows:
    918   /// Return Value:
    919   ///   SDValue.Val == 0   - No change was made
    920   ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
    921   ///   otherwise          - N should be replaced by the returned Operand.
    922   ///
    923   /// In addition, methods provided by DAGCombinerInfo may be used to perform
    924   /// more complex transformations.
    925   ///
    926   virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
    927 
    928   /// isTypeDesirableForOp - Return true if the target has native support for
    929   /// the specified value type and it is 'desirable' to use the type for the
    930   /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
    931   /// instruction encodings are longer and some i16 instructions are slow.
    932   virtual bool isTypeDesirableForOp(unsigned /*Opc*/, EVT VT) const {
    933     // By default, assume all legal types are desirable.
    934     return isTypeLegal(VT);
    935   }
    936 
    937   /// isDesirableToPromoteOp - Return true if it is profitable for dag combiner
    938   /// to transform a floating point op of specified opcode to a equivalent op of
    939   /// an integer type. e.g. f32 load -> i32 load can be profitable on ARM.
    940   virtual bool isDesirableToTransformToIntegerOp(unsigned /*Opc*/,
    941                                                  EVT /*VT*/) const {
    942     return false;
    943   }
    944 
    945   /// IsDesirableToPromoteOp - This method query the target whether it is
    946   /// beneficial for dag combiner to promote the specified node. If true, it
    947   /// should return the desired promotion type by reference.
    948   virtual bool IsDesirableToPromoteOp(SDValue /*Op*/, EVT &/*PVT*/) const {
    949     return false;
    950   }
    951 
    952   //===--------------------------------------------------------------------===//
    953   // TargetLowering Configuration Methods - These methods should be invoked by
    954   // the derived class constructor to configure this object for the target.
    955   //
    956 
    957 protected:
    958   /// setBooleanContents - Specify how the target extends the result of a
    959   /// boolean value from i1 to a wider type.  See getBooleanContents.
    960   void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; }
    961   /// setBooleanVectorContents - Specify how the target extends the result
    962   /// of a vector boolean value from a vector of i1 to a wider type.  See
    963   /// getBooleanContents.
    964   void setBooleanVectorContents(BooleanContent Ty) {
    965     BooleanVectorContents = Ty;
    966   }
    967 
    968   /// setSchedulingPreference - Specify the target scheduling preference.
    969   void setSchedulingPreference(Sched::Preference Pref) {
    970     SchedPreferenceInfo = Pref;
    971   }
    972 
    973   /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
    974   /// use _setjmp to implement llvm.setjmp or the non _ version.
    975   /// Defaults to false.
    976   void setUseUnderscoreSetJmp(bool Val) {
    977     UseUnderscoreSetJmp = Val;
    978   }
    979 
    980   /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
    981   /// use _longjmp to implement llvm.longjmp or the non _ version.
    982   /// Defaults to false.
    983   void setUseUnderscoreLongJmp(bool Val) {
    984     UseUnderscoreLongJmp = Val;
    985   }
    986 
    987   /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
    988   /// specifies the register that llvm.savestack/llvm.restorestack should save
    989   /// and restore.
    990   void setStackPointerRegisterToSaveRestore(unsigned R) {
    991     StackPointerRegisterToSaveRestore = R;
    992   }
    993 
    994   /// setExceptionPointerRegister - If set to a physical register, this sets
    995   /// the register that receives the exception address on entry to a landing
    996   /// pad.
    997   void setExceptionPointerRegister(unsigned R) {
    998     ExceptionPointerRegister = R;
    999   }
   1000 
   1001   /// setExceptionSelectorRegister - If set to a physical register, this sets
   1002   /// the register that receives the exception typeid on entry to a landing
   1003   /// pad.
   1004   void setExceptionSelectorRegister(unsigned R) {
   1005     ExceptionSelectorRegister = R;
   1006   }
   1007 
   1008   /// SelectIsExpensive - Tells the code generator not to expand operations
   1009   /// into sequences that use the select operations if possible.
   1010   void setSelectIsExpensive(bool isExpensive = true) {
   1011     SelectIsExpensive = isExpensive;
   1012   }
   1013 
   1014   /// JumpIsExpensive - Tells the code generator not to expand sequence of
   1015   /// operations into a separate sequences that increases the amount of
   1016   /// flow control.
   1017   void setJumpIsExpensive(bool isExpensive = true) {
   1018     JumpIsExpensive = isExpensive;
   1019   }
   1020 
   1021   /// setIntDivIsCheap - Tells the code generator that integer divide is
   1022   /// expensive, and if possible, should be replaced by an alternate sequence
   1023   /// of instructions not containing an integer divide.
   1024   void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
   1025 
   1026   /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
   1027   /// srl/add/sra for a signed divide by power of two, and let the target handle
   1028   /// it.
   1029   void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
   1030 
   1031   /// addRegisterClass - Add the specified register class as an available
   1032   /// regclass for the specified value type.  This indicates the selector can
   1033   /// handle values of that class natively.
   1034   void addRegisterClass(EVT VT, const TargetRegisterClass *RC) {
   1035     assert((unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
   1036     AvailableRegClasses.push_back(std::make_pair(VT, RC));
   1037     RegClassForVT[VT.getSimpleVT().SimpleTy] = RC;
   1038   }
   1039 
   1040   /// findRepresentativeClass - Return the largest legal super-reg register class
   1041   /// of the register class for the specified type and its associated "cost".
   1042   virtual std::pair<const TargetRegisterClass*, uint8_t>
   1043   findRepresentativeClass(EVT VT) const;
   1044 
   1045   /// computeRegisterProperties - Once all of the register classes are added,
   1046   /// this allows us to compute derived properties we expose.
   1047   void computeRegisterProperties();
   1048 
   1049   /// setOperationAction - Indicate that the specified operation does not work
   1050   /// with the specified type and indicate what to do about it.
   1051   void setOperationAction(unsigned Op, MVT VT,
   1052                           LegalizeAction Action) {
   1053     assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
   1054     OpActions[(unsigned)VT.SimpleTy][Op] = (uint8_t)Action;
   1055   }
   1056 
   1057   /// setLoadExtAction - Indicate that the specified load with extension does
   1058   /// not work with the specified type and indicate what to do about it.
   1059   void setLoadExtAction(unsigned ExtType, MVT VT,
   1060                         LegalizeAction Action) {
   1061     assert(ExtType < ISD::LAST_LOADEXT_TYPE && VT < MVT::LAST_VALUETYPE &&
   1062            "Table isn't big enough!");
   1063     LoadExtActions[VT.SimpleTy][ExtType] = (uint8_t)Action;
   1064   }
   1065 
   1066   /// setTruncStoreAction - Indicate that the specified truncating store does
   1067   /// not work with the specified type and indicate what to do about it.
   1068   void setTruncStoreAction(MVT ValVT, MVT MemVT,
   1069                            LegalizeAction Action) {
   1070     assert(ValVT < MVT::LAST_VALUETYPE && MemVT < MVT::LAST_VALUETYPE &&
   1071            "Table isn't big enough!");
   1072     TruncStoreActions[ValVT.SimpleTy][MemVT.SimpleTy] = (uint8_t)Action;
   1073   }
   1074 
   1075   /// setIndexedLoadAction - Indicate that the specified indexed load does or
   1076   /// does not work with the specified type and indicate what to do abort
   1077   /// it. NOTE: All indexed mode loads are initialized to Expand in
   1078   /// TargetLowering.cpp
   1079   void setIndexedLoadAction(unsigned IdxMode, MVT VT,
   1080                             LegalizeAction Action) {
   1081     assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE &&
   1082            (unsigned)Action < 0xf && "Table isn't big enough!");
   1083     // Load action are kept in the upper half.
   1084     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0xf0;
   1085     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action) <<4;
   1086   }
   1087 
   1088   /// setIndexedStoreAction - Indicate that the specified indexed store does or
   1089   /// does not work with the specified type and indicate what to do about
   1090   /// it. NOTE: All indexed mode stores are initialized to Expand in
   1091   /// TargetLowering.cpp
   1092   void setIndexedStoreAction(unsigned IdxMode, MVT VT,
   1093                              LegalizeAction Action) {
   1094     assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE &&
   1095            (unsigned)Action < 0xf && "Table isn't big enough!");
   1096     // Store action are kept in the lower half.
   1097     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0x0f;
   1098     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action);
   1099   }
   1100 
   1101   /// setCondCodeAction - Indicate that the specified condition code is or isn't
   1102   /// supported on the target and indicate what to do about it.
   1103   void setCondCodeAction(ISD::CondCode CC, MVT VT,
   1104                          LegalizeAction Action) {
   1105     assert(VT < MVT::LAST_VALUETYPE &&
   1106            (unsigned)CC < array_lengthof(CondCodeActions) &&
   1107            "Table isn't big enough!");
   1108     CondCodeActions[(unsigned)CC] &= ~(uint64_t(3UL)  << VT.SimpleTy*2);
   1109     CondCodeActions[(unsigned)CC] |= (uint64_t)Action << VT.SimpleTy*2;
   1110   }
   1111 
   1112   /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
   1113   /// promotion code defaults to trying a larger integer/fp until it can find
   1114   /// one that works.  If that default is insufficient, this method can be used
   1115   /// by the target to override the default.
   1116   void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
   1117     PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
   1118   }
   1119 
   1120   /// setTargetDAGCombine - Targets should invoke this method for each target
   1121   /// independent node that they want to provide a custom DAG combiner for by
   1122   /// implementing the PerformDAGCombine virtual method.
   1123   void setTargetDAGCombine(ISD::NodeType NT) {
   1124     assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
   1125     TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
   1126   }
   1127 
   1128   /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
   1129   /// bytes); default is 200
   1130   void setJumpBufSize(unsigned Size) {
   1131     JumpBufSize = Size;
   1132   }
   1133 
   1134   /// setJumpBufAlignment - Set the target's required jmp_buf buffer
   1135   /// alignment (in bytes); default is 0
   1136   void setJumpBufAlignment(unsigned Align) {
   1137     JumpBufAlignment = Align;
   1138   }
   1139 
   1140   /// setMinFunctionAlignment - Set the target's minimum function alignment (in
   1141   /// log2(bytes))
   1142   void setMinFunctionAlignment(unsigned Align) {
   1143     MinFunctionAlignment = Align;
   1144   }
   1145 
   1146   /// setPrefFunctionAlignment - Set the target's preferred function alignment.
   1147   /// This should be set if there is a performance benefit to
   1148   /// higher-than-minimum alignment (in log2(bytes))
   1149   void setPrefFunctionAlignment(unsigned Align) {
   1150     PrefFunctionAlignment = Align;
   1151   }
   1152 
   1153   /// setPrefLoopAlignment - Set the target's preferred loop alignment. Default
   1154   /// alignment is zero, it means the target does not care about loop alignment.
   1155   /// The alignment is specified in log2(bytes).
   1156   void setPrefLoopAlignment(unsigned Align) {
   1157     PrefLoopAlignment = Align;
   1158   }
   1159 
   1160   /// setMinStackArgumentAlignment - Set the minimum stack alignment of an
   1161   /// argument (in log2(bytes)).
   1162   void setMinStackArgumentAlignment(unsigned Align) {
   1163     MinStackArgumentAlignment = Align;
   1164   }
   1165 
   1166   /// setShouldFoldAtomicFences - Set if the target's implementation of the
   1167   /// atomic operation intrinsics includes locking. Default is false.
   1168   void setShouldFoldAtomicFences(bool fold) {
   1169     ShouldFoldAtomicFences = fold;
   1170   }
   1171 
   1172   /// setInsertFencesForAtomic - Set if the the DAG builder should
   1173   /// automatically insert fences and reduce the order of atomic memory
   1174   /// operations to Monotonic.
   1175   void setInsertFencesForAtomic(bool fence) {
   1176     InsertFencesForAtomic = fence;
   1177   }
   1178 
   1179 public:
   1180   //===--------------------------------------------------------------------===//
   1181   // Lowering methods - These methods must be implemented by targets so that
   1182   // the SelectionDAGLowering code knows how to lower these.
   1183   //
   1184 
   1185   /// LowerFormalArguments - This hook must be implemented to lower the
   1186   /// incoming (formal) arguments, described by the Ins array, into the
   1187   /// specified DAG. The implementation should fill in the InVals array
   1188   /// with legal-type argument values, and return the resulting token
   1189   /// chain value.
   1190   ///
   1191   virtual SDValue
   1192     LowerFormalArguments(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
   1193                          bool /*isVarArg*/,
   1194                          const SmallVectorImpl<ISD::InputArg> &/*Ins*/,
   1195                          DebugLoc /*dl*/, SelectionDAG &/*DAG*/,
   1196                          SmallVectorImpl<SDValue> &/*InVals*/) const {
   1197     llvm_unreachable("Not Implemented");
   1198   }
   1199 
   1200   /// LowerCallTo - This function lowers an abstract call to a function into an
   1201   /// actual call.  This returns a pair of operands.  The first element is the
   1202   /// return value for the function (if RetTy is not VoidTy).  The second
   1203   /// element is the outgoing token chain. It calls LowerCall to do the actual
   1204   /// lowering.
   1205   struct ArgListEntry {
   1206     SDValue Node;
   1207     Type* Ty;
   1208     bool isSExt  : 1;
   1209     bool isZExt  : 1;
   1210     bool isInReg : 1;
   1211     bool isSRet  : 1;
   1212     bool isNest  : 1;
   1213     bool isByVal : 1;
   1214     uint16_t Alignment;
   1215 
   1216     ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
   1217       isSRet(false), isNest(false), isByVal(false), Alignment(0) { }
   1218   };
   1219   typedef std::vector<ArgListEntry> ArgListTy;
   1220   std::pair<SDValue, SDValue>
   1221   LowerCallTo(SDValue Chain, Type *RetTy, bool RetSExt, bool RetZExt,
   1222               bool isVarArg, bool isInreg, unsigned NumFixedArgs,
   1223               CallingConv::ID CallConv, bool isTailCall,
   1224               bool doesNotRet, bool isReturnValueUsed,
   1225               SDValue Callee, ArgListTy &Args,
   1226               SelectionDAG &DAG, DebugLoc dl) const;
   1227 
   1228   /// LowerCall - This hook must be implemented to lower calls into the
   1229   /// the specified DAG. The outgoing arguments to the call are described
   1230   /// by the Outs array, and the values to be returned by the call are
   1231   /// described by the Ins array. The implementation should fill in the
   1232   /// InVals array with legal-type return values from the call, and return
   1233   /// the resulting token chain value.
   1234   virtual SDValue
   1235     LowerCall(SDValue /*Chain*/, SDValue /*Callee*/,
   1236               CallingConv::ID /*CallConv*/, bool /*isVarArg*/,
   1237               bool /*doesNotRet*/, bool &/*isTailCall*/,
   1238               const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
   1239               const SmallVectorImpl<SDValue> &/*OutVals*/,
   1240               const SmallVectorImpl<ISD::InputArg> &/*Ins*/,
   1241               DebugLoc /*dl*/, SelectionDAG &/*DAG*/,
   1242               SmallVectorImpl<SDValue> &/*InVals*/) const {
   1243     llvm_unreachable("Not Implemented");
   1244   }
   1245 
   1246   /// HandleByVal - Target-specific cleanup for formal ByVal parameters.
   1247   virtual void HandleByVal(CCState *, unsigned &) const {}
   1248 
   1249   /// CanLowerReturn - This hook should be implemented to check whether the
   1250   /// return values described by the Outs array can fit into the return
   1251   /// registers.  If false is returned, an sret-demotion is performed.
   1252   ///
   1253   virtual bool CanLowerReturn(CallingConv::ID /*CallConv*/,
   1254 			      MachineFunction &/*MF*/, bool /*isVarArg*/,
   1255                const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
   1256                LLVMContext &/*Context*/) const
   1257   {
   1258     // Return true by default to get preexisting behavior.
   1259     return true;
   1260   }
   1261 
   1262   /// LowerReturn - This hook must be implemented to lower outgoing
   1263   /// return values, described by the Outs array, into the specified
   1264   /// DAG. The implementation should return the resulting token chain
   1265   /// value.
   1266   ///
   1267   virtual SDValue
   1268     LowerReturn(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
   1269                 bool /*isVarArg*/,
   1270                 const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
   1271                 const SmallVectorImpl<SDValue> &/*OutVals*/,
   1272                 DebugLoc /*dl*/, SelectionDAG &/*DAG*/) const {
   1273     llvm_unreachable("Not Implemented");
   1274   }
   1275 
   1276   /// isUsedByReturnOnly - Return true if result of the specified node is used
   1277   /// by a return node only. It also compute and return the input chain for the
   1278   /// tail call.
   1279   /// This is used to determine whether it is possible
   1280   /// to codegen a libcall as tail call at legalization time.
   1281   virtual bool isUsedByReturnOnly(SDNode *, SDValue &Chain) const {
   1282     return false;
   1283   }
   1284 
   1285   /// mayBeEmittedAsTailCall - Return true if the target may be able emit the
   1286   /// call instruction as a tail call. This is used by optimization passes to
   1287   /// determine if it's profitable to duplicate return instructions to enable
   1288   /// tailcall optimization.
   1289   virtual bool mayBeEmittedAsTailCall(CallInst *) const {
   1290     return false;
   1291   }
   1292 
   1293   /// getTypeForExtArgOrReturn - Return the type that should be used to zero or
   1294   /// sign extend a zeroext/signext integer argument or return value.
   1295   /// FIXME: Most C calling convention requires the return type to be promoted,
   1296   /// but this is not true all the time, e.g. i1 on x86-64. It is also not
   1297   /// necessary for non-C calling conventions. The frontend should handle this
   1298   /// and include all of the necessary information.
   1299   virtual EVT getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
   1300                                        ISD::NodeType /*ExtendKind*/) const {
   1301     EVT MinVT = getRegisterType(Context, MVT::i32);
   1302     return VT.bitsLT(MinVT) ? MinVT : VT;
   1303   }
   1304 
   1305   /// LowerOperationWrapper - This callback is invoked by the type legalizer
   1306   /// to legalize nodes with an illegal operand type but legal result types.
   1307   /// It replaces the LowerOperation callback in the type Legalizer.
   1308   /// The reason we can not do away with LowerOperation entirely is that
   1309   /// LegalizeDAG isn't yet ready to use this callback.
   1310   /// TODO: Consider merging with ReplaceNodeResults.
   1311 
   1312   /// The target places new result values for the node in Results (their number
   1313   /// and types must exactly match those of the original return values of
   1314   /// the node), or leaves Results empty, which indicates that the node is not
   1315   /// to be custom lowered after all.
   1316   /// The default implementation calls LowerOperation.
   1317   virtual void LowerOperationWrapper(SDNode *N,
   1318                                      SmallVectorImpl<SDValue> &Results,
   1319                                      SelectionDAG &DAG) const;
   1320 
   1321   /// LowerOperation - This callback is invoked for operations that are
   1322   /// unsupported by the target, which are registered to use 'custom' lowering,
   1323   /// and whose defined values are all legal.
   1324   /// If the target has no operations that require custom lowering, it need not
   1325   /// implement this.  The default implementation of this aborts.
   1326   virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
   1327 
   1328   /// ReplaceNodeResults - This callback is invoked when a node result type is
   1329   /// illegal for the target, and the operation was registered to use 'custom'
   1330   /// lowering for that result type.  The target places new result values for
   1331   /// the node in Results (their number and types must exactly match those of
   1332   /// the original return values of the node), or leaves Results empty, which
   1333   /// indicates that the node is not to be custom lowered after all.
   1334   ///
   1335   /// If the target has no operations that require custom lowering, it need not
   1336   /// implement this.  The default implementation aborts.
   1337   virtual void ReplaceNodeResults(SDNode * /*N*/,
   1338                                   SmallVectorImpl<SDValue> &/*Results*/,
   1339                                   SelectionDAG &/*DAG*/) const {
   1340     llvm_unreachable("ReplaceNodeResults not implemented for this target!");
   1341   }
   1342 
   1343   /// getTargetNodeName() - This method returns the name of a target specific
   1344   /// DAG node.
   1345   virtual const char *getTargetNodeName(unsigned Opcode) const;
   1346 
   1347   /// createFastISel - This method returns a target specific FastISel object,
   1348   /// or null if the target does not support "fast" ISel.
   1349   virtual FastISel *createFastISel(FunctionLoweringInfo &) const {
   1350     return 0;
   1351   }
   1352 
   1353   //===--------------------------------------------------------------------===//
   1354   // Inline Asm Support hooks
   1355   //
   1356 
   1357   /// ExpandInlineAsm - This hook allows the target to expand an inline asm
   1358   /// call to be explicit llvm code if it wants to.  This is useful for
   1359   /// turning simple inline asms into LLVM intrinsics, which gives the
   1360   /// compiler more information about the behavior of the code.
   1361   virtual bool ExpandInlineAsm(CallInst *) const {
   1362     return false;
   1363   }
   1364 
   1365   enum ConstraintType {
   1366     C_Register,            // Constraint represents specific register(s).
   1367     C_RegisterClass,       // Constraint represents any of register(s) in class.
   1368     C_Memory,              // Memory constraint.
   1369     C_Other,               // Something else.
   1370     C_Unknown              // Unsupported constraint.
   1371   };
   1372 
   1373   enum ConstraintWeight {
   1374     // Generic weights.
   1375     CW_Invalid  = -1,     // No match.
   1376     CW_Okay     = 0,      // Acceptable.
   1377     CW_Good     = 1,      // Good weight.
   1378     CW_Better   = 2,      // Better weight.
   1379     CW_Best     = 3,      // Best weight.
   1380 
   1381     // Well-known weights.
   1382     CW_SpecificReg  = CW_Okay,    // Specific register operands.
   1383     CW_Register     = CW_Good,    // Register operands.
   1384     CW_Memory       = CW_Better,  // Memory operands.
   1385     CW_Constant     = CW_Best,    // Constant operand.
   1386     CW_Default      = CW_Okay     // Default or don't know type.
   1387   };
   1388 
   1389   /// AsmOperandInfo - This contains information for each constraint that we are
   1390   /// lowering.
   1391   struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
   1392     /// ConstraintCode - This contains the actual string for the code, like "m".
   1393     /// TargetLowering picks the 'best' code from ConstraintInfo::Codes that
   1394     /// most closely matches the operand.
   1395     std::string ConstraintCode;
   1396 
   1397     /// ConstraintType - Information about the constraint code, e.g. Register,
   1398     /// RegisterClass, Memory, Other, Unknown.
   1399     TargetLowering::ConstraintType ConstraintType;
   1400 
   1401     /// CallOperandval - If this is the result output operand or a
   1402     /// clobber, this is null, otherwise it is the incoming operand to the
   1403     /// CallInst.  This gets modified as the asm is processed.
   1404     Value *CallOperandVal;
   1405 
   1406     /// ConstraintVT - The ValueType for the operand value.
   1407     EVT ConstraintVT;
   1408 
   1409     /// isMatchingInputConstraint - Return true of this is an input operand that
   1410     /// is a matching constraint like "4".
   1411     bool isMatchingInputConstraint() const;
   1412 
   1413     /// getMatchedOperand - If this is an input matching constraint, this method
   1414     /// returns the output operand it matches.
   1415     unsigned getMatchedOperand() const;
   1416 
   1417     /// Copy constructor for copying from an AsmOperandInfo.
   1418     AsmOperandInfo(const AsmOperandInfo &info)
   1419       : InlineAsm::ConstraintInfo(info),
   1420         ConstraintCode(info.ConstraintCode),
   1421         ConstraintType(info.ConstraintType),
   1422         CallOperandVal(info.CallOperandVal),
   1423         ConstraintVT(info.ConstraintVT) {
   1424     }
   1425 
   1426     /// Copy constructor for copying from a ConstraintInfo.
   1427     AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
   1428       : InlineAsm::ConstraintInfo(info),
   1429         ConstraintType(TargetLowering::C_Unknown),
   1430         CallOperandVal(0), ConstraintVT(MVT::Other) {
   1431     }
   1432   };
   1433 
   1434   typedef std::vector<AsmOperandInfo> AsmOperandInfoVector;
   1435 
   1436   /// ParseConstraints - Split up the constraint string from the inline
   1437   /// assembly value into the specific constraints and their prefixes,
   1438   /// and also tie in the associated operand values.
   1439   /// If this returns an empty vector, and if the constraint string itself
   1440   /// isn't empty, there was an error parsing.
   1441   virtual AsmOperandInfoVector ParseConstraints(ImmutableCallSite CS) const;
   1442 
   1443   /// Examine constraint type and operand type and determine a weight value.
   1444   /// The operand object must already have been set up with the operand type.
   1445   virtual ConstraintWeight getMultipleConstraintMatchWeight(
   1446       AsmOperandInfo &info, int maIndex) const;
   1447 
   1448   /// Examine constraint string and operand type and determine a weight value.
   1449   /// The operand object must already have been set up with the operand type.
   1450   virtual ConstraintWeight getSingleConstraintMatchWeight(
   1451       AsmOperandInfo &info, const char *constraint) const;
   1452 
   1453   /// ComputeConstraintToUse - Determines the constraint code and constraint
   1454   /// type to use for the specific AsmOperandInfo, setting
   1455   /// OpInfo.ConstraintCode and OpInfo.ConstraintType.  If the actual operand
   1456   /// being passed in is available, it can be passed in as Op, otherwise an
   1457   /// empty SDValue can be passed.
   1458   virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
   1459                                       SDValue Op,
   1460                                       SelectionDAG *DAG = 0) const;
   1461 
   1462   /// getConstraintType - Given a constraint, return the type of constraint it
   1463   /// is for this target.
   1464   virtual ConstraintType getConstraintType(const std::string &Constraint) const;
   1465 
   1466   /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
   1467   /// {edx}), return the register number and the register class for the
   1468   /// register.
   1469   ///
   1470   /// Given a register class constraint, like 'r', if this corresponds directly
   1471   /// to an LLVM register class, return a register of 0 and the register class
   1472   /// pointer.
   1473   ///
   1474   /// This should only be used for C_Register constraints.  On error,
   1475   /// this returns a register number of 0 and a null register class pointer..
   1476   virtual std::pair<unsigned, const TargetRegisterClass*>
   1477     getRegForInlineAsmConstraint(const std::string &Constraint,
   1478                                  EVT VT) const;
   1479 
   1480   /// LowerXConstraint - try to replace an X constraint, which matches anything,
   1481   /// with another that has more specific requirements based on the type of the
   1482   /// corresponding operand.  This returns null if there is no replacement to
   1483   /// make.
   1484   virtual const char *LowerXConstraint(EVT ConstraintVT) const;
   1485 
   1486   /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
   1487   /// vector.  If it is invalid, don't add anything to Ops.
   1488   virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
   1489                                             std::vector<SDValue> &Ops,
   1490                                             SelectionDAG &DAG) const;
   1491 
   1492   //===--------------------------------------------------------------------===//
   1493   // Instruction Emitting Hooks
   1494   //
   1495 
   1496   // EmitInstrWithCustomInserter - This method should be implemented by targets
   1497   // that mark instructions with the 'usesCustomInserter' flag.  These
   1498   // instructions are special in various ways, which require special support to
   1499   // insert.  The specified MachineInstr is created but not inserted into any
   1500   // basic blocks, and this method is called to expand it into a sequence of
   1501   // instructions, potentially also creating new basic blocks and control flow.
   1502   virtual MachineBasicBlock *
   1503     EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const;
   1504 
   1505   /// AdjustInstrPostInstrSelection - This method should be implemented by
   1506   /// targets that mark instructions with the 'hasPostISelHook' flag. These
   1507   /// instructions must be adjusted after instruction selection by target hooks.
   1508   /// e.g. To fill in optional defs for ARM 's' setting instructions.
   1509   virtual void
   1510   AdjustInstrPostInstrSelection(MachineInstr *MI, SDNode *Node) const;
   1511 
   1512   //===--------------------------------------------------------------------===//
   1513   // Addressing mode description hooks (used by LSR etc).
   1514   //
   1515 
   1516   /// AddrMode - This represents an addressing mode of:
   1517   ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
   1518   /// If BaseGV is null,  there is no BaseGV.
   1519   /// If BaseOffs is zero, there is no base offset.
   1520   /// If HasBaseReg is false, there is no base register.
   1521   /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
   1522   /// no scale.
   1523   ///
   1524   struct AddrMode {
   1525     GlobalValue *BaseGV;
   1526     int64_t      BaseOffs;
   1527     bool         HasBaseReg;
   1528     int64_t      Scale;
   1529     AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
   1530   };
   1531 
   1532   /// GetAddrModeArguments - CodeGenPrepare sinks address calculations into the
   1533   /// same BB as Load/Store instructions reading the address.  This allows as
   1534   /// much computation as possible to be done in the address mode for that
   1535   /// operand.  This hook lets targets also pass back when this should be done
   1536   /// on intrinsics which load/store.
   1537   virtual bool GetAddrModeArguments(IntrinsicInst *I,
   1538                                     SmallVectorImpl<Value*> &Ops,
   1539                                     Type *&AccessTy) const {
   1540     return false;
   1541   }
   1542 
   1543   /// isLegalAddressingMode - Return true if the addressing mode represented by
   1544   /// AM is legal for this target, for a load/store of the specified type.
   1545   /// The type may be VoidTy, in which case only return true if the addressing
   1546   /// mode is legal for a load/store of any legal type.
   1547   /// TODO: Handle pre/postinc as well.
   1548   virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const;
   1549 
   1550   /// isLegalICmpImmediate - Return true if the specified immediate is legal
   1551   /// icmp immediate, that is the target has icmp instructions which can compare
   1552   /// a register against the immediate without having to materialize the
   1553   /// immediate into a register.
   1554   virtual bool isLegalICmpImmediate(int64_t) const {
   1555     return true;
   1556   }
   1557 
   1558   /// isLegalAddImmediate - Return true if the specified immediate is legal
   1559   /// add immediate, that is the target has add instructions which can add
   1560   /// a register with the immediate without having to materialize the
   1561   /// immediate into a register.
   1562   virtual bool isLegalAddImmediate(int64_t) const {
   1563     return true;
   1564   }
   1565 
   1566   /// isTruncateFree - Return true if it's free to truncate a value of
   1567   /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
   1568   /// register EAX to i16 by referencing its sub-register AX.
   1569   virtual bool isTruncateFree(Type * /*Ty1*/, Type * /*Ty2*/) const {
   1570     return false;
   1571   }
   1572 
   1573   virtual bool isTruncateFree(EVT /*VT1*/, EVT /*VT2*/) const {
   1574     return false;
   1575   }
   1576 
   1577   /// isZExtFree - Return true if any actual instruction that defines a
   1578   /// value of type Ty1 implicitly zero-extends the value to Ty2 in the result
   1579   /// register. This does not necessarily include registers defined in
   1580   /// unknown ways, such as incoming arguments, or copies from unknown
   1581   /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
   1582   /// does not necessarily apply to truncate instructions. e.g. on x86-64,
   1583   /// all instructions that define 32-bit values implicit zero-extend the
   1584   /// result out to 64 bits.
   1585   virtual bool isZExtFree(Type * /*Ty1*/, Type * /*Ty2*/) const {
   1586     return false;
   1587   }
   1588 
   1589   virtual bool isZExtFree(EVT /*VT1*/, EVT /*VT2*/) const {
   1590     return false;
   1591   }
   1592 
   1593   /// isFNegFree - Return true if an fneg operation is free to the point where
   1594   /// it is never worthwhile to replace it with a bitwise operation.
   1595   virtual bool isFNegFree(EVT) const {
   1596     return false;
   1597   }
   1598 
   1599   /// isFAbsFree - Return true if an fneg operation is free to the point where
   1600   /// it is never worthwhile to replace it with a bitwise operation.
   1601   virtual bool isFAbsFree(EVT) const {
   1602     return false;
   1603   }
   1604 
   1605   /// isNarrowingProfitable - Return true if it's profitable to narrow
   1606   /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
   1607   /// from i32 to i8 but not from i32 to i16.
   1608   virtual bool isNarrowingProfitable(EVT /*VT1*/, EVT /*VT2*/) const {
   1609     return false;
   1610   }
   1611 
   1612   //===--------------------------------------------------------------------===//
   1613   // Div utility functions
   1614   //
   1615   SDValue BuildExactSDIV(SDValue Op1, SDValue Op2, DebugLoc dl,
   1616                          SelectionDAG &DAG) const;
   1617   SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
   1618                       std::vector<SDNode*>* Created) const;
   1619   SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
   1620                       std::vector<SDNode*>* Created) const;
   1621 
   1622 
   1623   //===--------------------------------------------------------------------===//
   1624   // Runtime Library hooks
   1625   //
   1626 
   1627   /// setLibcallName - Rename the default libcall routine name for the specified
   1628   /// libcall.
   1629   void setLibcallName(RTLIB::Libcall Call, const char *Name) {
   1630     LibcallRoutineNames[Call] = Name;
   1631   }
   1632 
   1633   /// getLibcallName - Get the libcall routine name for the specified libcall.
   1634   ///
   1635   const char *getLibcallName(RTLIB::Libcall Call) const {
   1636     return LibcallRoutineNames[Call];
   1637   }
   1638 
   1639   /// setCmpLibcallCC - Override the default CondCode to be used to test the
   1640   /// result of the comparison libcall against zero.
   1641   void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
   1642     CmpLibcallCCs[Call] = CC;
   1643   }
   1644 
   1645   /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
   1646   /// the comparison libcall against zero.
   1647   ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
   1648     return CmpLibcallCCs[Call];
   1649   }
   1650 
   1651   /// setLibcallCallingConv - Set the CallingConv that should be used for the
   1652   /// specified libcall.
   1653   void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
   1654     LibcallCallingConvs[Call] = CC;
   1655   }
   1656 
   1657   /// getLibcallCallingConv - Get the CallingConv that should be used for the
   1658   /// specified libcall.
   1659   CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
   1660     return LibcallCallingConvs[Call];
   1661   }
   1662 
   1663 private:
   1664   const TargetMachine &TM;
   1665   const TargetData *TD;
   1666   const TargetLoweringObjectFile &TLOF;
   1667 
   1668   /// We are in the process of implementing a new TypeLegalization action
   1669   /// which is the promotion of vector elements. This feature is under
   1670   /// development. Until this feature is complete, it is only enabled using a
   1671   /// flag. We pass this flag using a member because of circular dep issues.
   1672   /// This member will be removed with the flag once we complete the transition.
   1673   bool mayPromoteElements;
   1674 
   1675   /// PointerTy - The type to use for pointers, usually i32 or i64.
   1676   ///
   1677   MVT PointerTy;
   1678 
   1679   /// IsLittleEndian - True if this is a little endian target.
   1680   ///
   1681   bool IsLittleEndian;
   1682 
   1683   /// SelectIsExpensive - Tells the code generator not to expand operations
   1684   /// into sequences that use the select operations if possible.
   1685   bool SelectIsExpensive;
   1686 
   1687   /// IntDivIsCheap - Tells the code generator not to expand integer divides by
   1688   /// constants into a sequence of muls, adds, and shifts.  This is a hack until
   1689   /// a real cost model is in place.  If we ever optimize for size, this will be
   1690   /// set to true unconditionally.
   1691   bool IntDivIsCheap;
   1692 
   1693   /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
   1694   /// srl/add/sra for a signed divide by power of two, and let the target handle
   1695   /// it.
   1696   bool Pow2DivIsCheap;
   1697 
   1698   /// JumpIsExpensive - Tells the code generator that it shouldn't generate
   1699   /// extra flow control instructions and should attempt to combine flow
   1700   /// control instructions via predication.
   1701   bool JumpIsExpensive;
   1702 
   1703   /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
   1704   /// llvm.setjmp.  Defaults to false.
   1705   bool UseUnderscoreSetJmp;
   1706 
   1707   /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
   1708   /// llvm.longjmp.  Defaults to false.
   1709   bool UseUnderscoreLongJmp;
   1710 
   1711   /// BooleanContents - Information about the contents of the high-bits in
   1712   /// boolean values held in a type wider than i1.  See getBooleanContents.
   1713   BooleanContent BooleanContents;
   1714   /// BooleanVectorContents - Information about the contents of the high-bits
   1715   /// in boolean vector values when the element type is wider than i1.  See
   1716   /// getBooleanContents.
   1717   BooleanContent BooleanVectorContents;
   1718 
   1719   /// SchedPreferenceInfo - The target scheduling preference: shortest possible
   1720   /// total cycles or lowest register usage.
   1721   Sched::Preference SchedPreferenceInfo;
   1722 
   1723   /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
   1724   unsigned JumpBufSize;
   1725 
   1726   /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
   1727   /// buffers
   1728   unsigned JumpBufAlignment;
   1729 
   1730   /// MinStackArgumentAlignment - The minimum alignment that any argument
   1731   /// on the stack needs to have.
   1732   ///
   1733   unsigned MinStackArgumentAlignment;
   1734 
   1735   /// MinFunctionAlignment - The minimum function alignment (used when
   1736   /// optimizing for size, and to prevent explicitly provided alignment
   1737   /// from leading to incorrect code).
   1738   ///
   1739   unsigned MinFunctionAlignment;
   1740 
   1741   /// PrefFunctionAlignment - The preferred function alignment (used when
   1742   /// alignment unspecified and optimizing for speed).
   1743   ///
   1744   unsigned PrefFunctionAlignment;
   1745 
   1746   /// PrefLoopAlignment - The preferred loop alignment.
   1747   ///
   1748   unsigned PrefLoopAlignment;
   1749 
   1750   /// ShouldFoldAtomicFences - Whether fencing MEMBARRIER instructions should
   1751   /// be folded into the enclosed atomic intrinsic instruction by the
   1752   /// combiner.
   1753   bool ShouldFoldAtomicFences;
   1754 
   1755   /// InsertFencesForAtomic - Whether the DAG builder should automatically
   1756   /// insert fences and reduce ordering for atomics.  (This will be set for
   1757   /// for most architectures with weak memory ordering.)
   1758   bool InsertFencesForAtomic;
   1759 
   1760   /// StackPointerRegisterToSaveRestore - If set to a physical register, this
   1761   /// specifies the register that llvm.savestack/llvm.restorestack should save
   1762   /// and restore.
   1763   unsigned StackPointerRegisterToSaveRestore;
   1764 
   1765   /// ExceptionPointerRegister - If set to a physical register, this specifies
   1766   /// the register that receives the exception address on entry to a landing
   1767   /// pad.
   1768   unsigned ExceptionPointerRegister;
   1769 
   1770   /// ExceptionSelectorRegister - If set to a physical register, this specifies
   1771   /// the register that receives the exception typeid on entry to a landing
   1772   /// pad.
   1773   unsigned ExceptionSelectorRegister;
   1774 
   1775   /// RegClassForVT - This indicates the default register class to use for
   1776   /// each ValueType the target supports natively.
   1777   const TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
   1778   unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
   1779   EVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
   1780 
   1781   /// RepRegClassForVT - This indicates the "representative" register class to
   1782   /// use for each ValueType the target supports natively. This information is
   1783   /// used by the scheduler to track register pressure. By default, the
   1784   /// representative register class is the largest legal super-reg register
   1785   /// class of the register class of the specified type. e.g. On x86, i8, i16,
   1786   /// and i32's representative class would be GR32.
   1787   const TargetRegisterClass *RepRegClassForVT[MVT::LAST_VALUETYPE];
   1788 
   1789   /// RepRegClassCostForVT - This indicates the "cost" of the "representative"
   1790   /// register class for each ValueType. The cost is used by the scheduler to
   1791   /// approximate register pressure.
   1792   uint8_t RepRegClassCostForVT[MVT::LAST_VALUETYPE];
   1793 
   1794   /// TransformToType - For any value types we are promoting or expanding, this
   1795   /// contains the value type that we are changing to.  For Expanded types, this
   1796   /// contains one step of the expand (e.g. i64 -> i32), even if there are
   1797   /// multiple steps required (e.g. i64 -> i16).  For types natively supported
   1798   /// by the system, this holds the same type (e.g. i32 -> i32).
   1799   EVT TransformToType[MVT::LAST_VALUETYPE];
   1800 
   1801   /// OpActions - For each operation and each value type, keep a LegalizeAction
   1802   /// that indicates how instruction selection should deal with the operation.
   1803   /// Most operations are Legal (aka, supported natively by the target), but
   1804   /// operations that are not should be described.  Note that operations on
   1805   /// non-legal value types are not described here.
   1806   uint8_t OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END];
   1807 
   1808   /// LoadExtActions - For each load extension type and each value type,
   1809   /// keep a LegalizeAction that indicates how instruction selection should deal
   1810   /// with a load of a specific value type and extension type.
   1811   uint8_t LoadExtActions[MVT::LAST_VALUETYPE][ISD::LAST_LOADEXT_TYPE];
   1812 
   1813   /// TruncStoreActions - For each value type pair keep a LegalizeAction that
   1814   /// indicates whether a truncating store of a specific value type and
   1815   /// truncating type is legal.
   1816   uint8_t TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
   1817 
   1818   /// IndexedModeActions - For each indexed mode and each value type,
   1819   /// keep a pair of LegalizeAction that indicates how instruction
   1820   /// selection should deal with the load / store.  The first dimension is the
   1821   /// value_type for the reference. The second dimension represents the various
   1822   /// modes for load store.
   1823   uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE];
   1824 
   1825   /// CondCodeActions - For each condition code (ISD::CondCode) keep a
   1826   /// LegalizeAction that indicates how instruction selection should
   1827   /// deal with the condition code.
   1828   uint64_t CondCodeActions[ISD::SETCC_INVALID];
   1829 
   1830   ValueTypeActionImpl ValueTypeActions;
   1831 
   1832   typedef std::pair<LegalizeTypeAction, EVT> LegalizeKind;
   1833 
   1834   LegalizeKind
   1835   getTypeConversion(LLVMContext &Context, EVT VT) const {
   1836     // If this is a simple type, use the ComputeRegisterProp mechanism.
   1837     if (VT.isSimple()) {
   1838       assert((unsigned)VT.getSimpleVT().SimpleTy <
   1839              array_lengthof(TransformToType));
   1840       EVT NVT = TransformToType[VT.getSimpleVT().SimpleTy];
   1841       LegalizeTypeAction LA = ValueTypeActions.getTypeAction(VT.getSimpleVT());
   1842 
   1843       assert(
   1844         (!(NVT.isSimple() && LA != TypeLegal) ||
   1845          ValueTypeActions.getTypeAction(NVT.getSimpleVT()) != TypePromoteInteger)
   1846          && "Promote may not follow Expand or Promote");
   1847 
   1848       return LegalizeKind(LA, NVT);
   1849     }
   1850 
   1851     // Handle Extended Scalar Types.
   1852     if (!VT.isVector()) {
   1853       assert(VT.isInteger() && "Float types must be simple");
   1854       unsigned BitSize = VT.getSizeInBits();
   1855       // First promote to a power-of-two size, then expand if necessary.
   1856       if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
   1857         EVT NVT = VT.getRoundIntegerType(Context);
   1858         assert(NVT != VT && "Unable to round integer VT");
   1859         LegalizeKind NextStep = getTypeConversion(Context, NVT);
   1860         // Avoid multi-step promotion.
   1861         if (NextStep.first == TypePromoteInteger) return NextStep;
   1862         // Return rounded integer type.
   1863         return LegalizeKind(TypePromoteInteger, NVT);
   1864       }
   1865 
   1866       return LegalizeKind(TypeExpandInteger,
   1867                           EVT::getIntegerVT(Context, VT.getSizeInBits()/2));
   1868     }
   1869 
   1870     // Handle vector types.
   1871     unsigned NumElts = VT.getVectorNumElements();
   1872     EVT EltVT = VT.getVectorElementType();
   1873 
   1874     // Vectors with only one element are always scalarized.
   1875     if (NumElts == 1)
   1876       return LegalizeKind(TypeScalarizeVector, EltVT);
   1877 
   1878     // If we allow the promotion of vector elements using a flag,
   1879     // then try to widen vector elements until a legal type is found.
   1880     if (mayPromoteElements && EltVT.isInteger()) {
   1881       // Vectors with a number of elements that is not a power of two are always
   1882       // widened, for example <3 x float> -> <4 x float>.
   1883       if (!VT.isPow2VectorType()) {
   1884         NumElts = (unsigned)NextPowerOf2(NumElts);
   1885         EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
   1886         return LegalizeKind(TypeWidenVector, NVT);
   1887       }
   1888 
   1889       // Examine the element type.
   1890       LegalizeKind LK = getTypeConversion(Context, EltVT);
   1891 
   1892       // If type is to be expanded, split the vector.
   1893       //  <4 x i140> -> <2 x i140>
   1894       if (LK.first == TypeExpandInteger)
   1895         return LegalizeKind(TypeSplitVector,
   1896                             EVT::getVectorVT(Context, EltVT, NumElts / 2));
   1897 
   1898       // Promote the integer element types until a legal vector type is found
   1899       // or until the element integer type is too big. If a legal type was not
   1900       // found, fallback to the usual mechanism of widening/splitting the
   1901       // vector.
   1902       while (1) {
   1903         // Increase the bitwidth of the element to the next pow-of-two
   1904         // (which is greater than 8 bits).
   1905         EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits()
   1906                                  ).getRoundIntegerType(Context);
   1907 
   1908         // Stop trying when getting a non-simple element type.
   1909         // Note that vector elements may be greater than legal vector element
   1910         // types. Example: X86 XMM registers hold 64bit element on 32bit systems.
   1911         if (!EltVT.isSimple()) break;
   1912 
   1913         // Build a new vector type and check if it is legal.
   1914         MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
   1915         // Found a legal promoted vector type.
   1916         if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
   1917           return LegalizeKind(TypePromoteInteger,
   1918                               EVT::getVectorVT(Context, EltVT, NumElts));
   1919       }
   1920     }
   1921 
   1922     // Try to widen the vector until a legal type is found.
   1923     // If there is no wider legal type, split the vector.
   1924     while (1) {
   1925       // Round up to the next power of 2.
   1926       NumElts = (unsigned)NextPowerOf2(NumElts);
   1927 
   1928       // If there is no simple vector type with this many elements then there
   1929       // cannot be a larger legal vector type.  Note that this assumes that
   1930       // there are no skipped intermediate vector types in the simple types.
   1931       if (!EltVT.isSimple()) break;
   1932       MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
   1933       if (LargerVector == MVT()) break;
   1934 
   1935       // If this type is legal then widen the vector.
   1936       if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
   1937         return LegalizeKind(TypeWidenVector, LargerVector);
   1938     }
   1939 
   1940     // Widen odd vectors to next power of two.
   1941     if (!VT.isPow2VectorType()) {
   1942       EVT NVT = VT.getPow2VectorType(Context);
   1943       return LegalizeKind(TypeWidenVector, NVT);
   1944     }
   1945 
   1946     // Vectors with illegal element types are expanded.
   1947     EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
   1948     return LegalizeKind(TypeSplitVector, NVT);
   1949   }
   1950 
   1951   std::vector<std::pair<EVT, const TargetRegisterClass*> > AvailableRegClasses;
   1952 
   1953   /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
   1954   /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
   1955   /// which sets a bit in this array.
   1956   unsigned char
   1957   TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
   1958 
   1959   /// PromoteToType - For operations that must be promoted to a specific type,
   1960   /// this holds the destination type.  This map should be sparse, so don't hold
   1961   /// it as an array.
   1962   ///
   1963   /// Targets add entries to this map with AddPromotedToType(..), clients access
   1964   /// this with getTypeToPromoteTo(..).
   1965   std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
   1966     PromoteToType;
   1967 
   1968   /// LibcallRoutineNames - Stores the name each libcall.
   1969   ///
   1970   const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
   1971 
   1972   /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
   1973   /// of each of the comparison libcall against zero.
   1974   ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
   1975 
   1976   /// LibcallCallingConvs - Stores the CallingConv that should be used for each
   1977   /// libcall.
   1978   CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
   1979 
   1980 protected:
   1981   /// When lowering \@llvm.memset this field specifies the maximum number of
   1982   /// store operations that may be substituted for the call to memset. Targets
   1983   /// must set this value based on the cost threshold for that target. Targets
   1984   /// should assume that the memset will be done using as many of the largest
   1985   /// store operations first, followed by smaller ones, if necessary, per
   1986   /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
   1987   /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
   1988   /// store.  This only applies to setting a constant array of a constant size.
   1989   /// @brief Specify maximum number of store instructions per memset call.
   1990   unsigned maxStoresPerMemset;
   1991 
   1992   /// Maximum number of stores operations that may be substituted for the call
   1993   /// to memset, used for functions with OptSize attribute.
   1994   unsigned maxStoresPerMemsetOptSize;
   1995 
   1996   /// When lowering \@llvm.memcpy this field specifies the maximum number of
   1997   /// store operations that may be substituted for a call to memcpy. Targets
   1998   /// must set this value based on the cost threshold for that target. Targets
   1999   /// should assume that the memcpy will be done using as many of the largest
   2000   /// store operations first, followed by smaller ones, if necessary, per
   2001   /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
   2002   /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
   2003   /// and one 1-byte store. This only applies to copying a constant array of
   2004   /// constant size.
   2005   /// @brief Specify maximum bytes of store instructions per memcpy call.
   2006   unsigned maxStoresPerMemcpy;
   2007 
   2008   /// Maximum number of store operations that may be substituted for a call
   2009   /// to memcpy, used for functions with OptSize attribute.
   2010   unsigned maxStoresPerMemcpyOptSize;
   2011 
   2012   /// When lowering \@llvm.memmove this field specifies the maximum number of
   2013   /// store instructions that may be substituted for a call to memmove. Targets
   2014   /// must set this value based on the cost threshold for that target. Targets
   2015   /// should assume that the memmove will be done using as many of the largest
   2016   /// store operations first, followed by smaller ones, if necessary, per
   2017   /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
   2018   /// with 8-bit alignment would result in nine 1-byte stores.  This only
   2019   /// applies to copying a constant array of constant size.
   2020   /// @brief Specify maximum bytes of store instructions per memmove call.
   2021   unsigned maxStoresPerMemmove;
   2022 
   2023   /// Maximum number of store instructions that may be substituted for a call
   2024   /// to memmove, used for functions with OpSize attribute.
   2025   unsigned maxStoresPerMemmoveOptSize;
   2026 
   2027   /// This field specifies whether the target can benefit from code placement
   2028   /// optimization.
   2029   bool benefitFromCodePlacementOpt;
   2030 
   2031 private:
   2032   /// isLegalRC - Return true if the value types that can be represented by the
   2033   /// specified register class are all legal.
   2034   bool isLegalRC(const TargetRegisterClass *RC) const;
   2035 
   2036   /// hasLegalSuperRegRegClasses - Return true if the specified register class
   2037   /// has one or more super-reg register classes that are legal.
   2038   bool hasLegalSuperRegRegClasses(const TargetRegisterClass *RC) const;
   2039 };
   2040 
   2041 /// GetReturnInfo - Given an LLVM IR type and return type attributes,
   2042 /// compute the return value EVTs and flags, and optionally also
   2043 /// the offsets, if the return value is being lowered to memory.
   2044 void GetReturnInfo(Type* ReturnType, Attributes attr,
   2045                    SmallVectorImpl<ISD::OutputArg> &Outs,
   2046                    const TargetLowering &TLI,
   2047                    SmallVectorImpl<uint64_t> *Offsets = 0);
   2048 
   2049 } // end llvm namespace
   2050 
   2051 #endif
   2052