1 //===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the pass that transforms the ARM machine instructions into 11 // relocatable machine code. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "jit" 16 #include "ARM.h" 17 #include "ARMConstantPoolValue.h" 18 #include "ARMBaseInstrInfo.h" 19 #include "ARMRelocations.h" 20 #include "ARMSubtarget.h" 21 #include "ARMTargetMachine.h" 22 #include "MCTargetDesc/ARMAddressingModes.h" 23 #include "llvm/Constants.h" 24 #include "llvm/DerivedTypes.h" 25 #include "llvm/Function.h" 26 #include "llvm/PassManager.h" 27 #include "llvm/CodeGen/JITCodeEmitter.h" 28 #include "llvm/CodeGen/MachineConstantPool.h" 29 #include "llvm/CodeGen/MachineFunctionPass.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineJumpTableInfo.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/Passes.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/raw_ostream.h" 38 #ifndef NDEBUG 39 #include <iomanip> 40 #endif 41 using namespace llvm; 42 43 STATISTIC(NumEmitted, "Number of machine instructions emitted"); 44 45 namespace { 46 47 class ARMCodeEmitter : public MachineFunctionPass { 48 ARMJITInfo *JTI; 49 const ARMBaseInstrInfo *II; 50 const TargetData *TD; 51 const ARMSubtarget *Subtarget; 52 TargetMachine &TM; 53 JITCodeEmitter &MCE; 54 MachineModuleInfo *MMI; 55 const std::vector<MachineConstantPoolEntry> *MCPEs; 56 const std::vector<MachineJumpTableEntry> *MJTEs; 57 bool IsPIC; 58 bool IsThumb; 59 60 void getAnalysisUsage(AnalysisUsage &AU) const { 61 AU.addRequired<MachineModuleInfo>(); 62 MachineFunctionPass::getAnalysisUsage(AU); 63 } 64 65 static char ID; 66 public: 67 ARMCodeEmitter(TargetMachine &tm, JITCodeEmitter &mce) 68 : MachineFunctionPass(ID), JTI(0), 69 II((const ARMBaseInstrInfo *)tm.getInstrInfo()), 70 TD(tm.getTargetData()), TM(tm), 71 MCE(mce), MCPEs(0), MJTEs(0), 72 IsPIC(TM.getRelocationModel() == Reloc::PIC_), IsThumb(false) {} 73 74 /// getBinaryCodeForInstr - This function, generated by the 75 /// CodeEmitterGenerator using TableGen, produces the binary encoding for 76 /// machine instructions. 77 uint64_t getBinaryCodeForInstr(const MachineInstr &MI) const; 78 79 bool runOnMachineFunction(MachineFunction &MF); 80 81 virtual const char *getPassName() const { 82 return "ARM Machine Code Emitter"; 83 } 84 85 void emitInstruction(const MachineInstr &MI); 86 87 private: 88 89 void emitWordLE(unsigned Binary); 90 void emitDWordLE(uint64_t Binary); 91 void emitConstantToMemory(unsigned CPI, const Constant *CV); 92 void emitConstPoolInstruction(const MachineInstr &MI); 93 void emitMOVi32immInstruction(const MachineInstr &MI); 94 void emitMOVi2piecesInstruction(const MachineInstr &MI); 95 void emitLEApcrelInstruction(const MachineInstr &MI); 96 void emitLEApcrelJTInstruction(const MachineInstr &MI); 97 void emitPseudoMoveInstruction(const MachineInstr &MI); 98 void addPCLabel(unsigned LabelID); 99 void emitPseudoInstruction(const MachineInstr &MI); 100 unsigned getMachineSoRegOpValue(const MachineInstr &MI, 101 const MCInstrDesc &MCID, 102 const MachineOperand &MO, 103 unsigned OpIdx); 104 105 unsigned getMachineSoImmOpValue(unsigned SoImm); 106 unsigned getAddrModeSBit(const MachineInstr &MI, 107 const MCInstrDesc &MCID) const; 108 109 void emitDataProcessingInstruction(const MachineInstr &MI, 110 unsigned ImplicitRd = 0, 111 unsigned ImplicitRn = 0); 112 113 void emitLoadStoreInstruction(const MachineInstr &MI, 114 unsigned ImplicitRd = 0, 115 unsigned ImplicitRn = 0); 116 117 void emitMiscLoadStoreInstruction(const MachineInstr &MI, 118 unsigned ImplicitRn = 0); 119 120 void emitLoadStoreMultipleInstruction(const MachineInstr &MI); 121 122 void emitMulFrmInstruction(const MachineInstr &MI); 123 124 void emitExtendInstruction(const MachineInstr &MI); 125 126 void emitMiscArithInstruction(const MachineInstr &MI); 127 128 void emitSaturateInstruction(const MachineInstr &MI); 129 130 void emitBranchInstruction(const MachineInstr &MI); 131 132 void emitInlineJumpTable(unsigned JTIndex); 133 134 void emitMiscBranchInstruction(const MachineInstr &MI); 135 136 void emitVFPArithInstruction(const MachineInstr &MI); 137 138 void emitVFPConversionInstruction(const MachineInstr &MI); 139 140 void emitVFPLoadStoreInstruction(const MachineInstr &MI); 141 142 void emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI); 143 144 void emitMiscInstruction(const MachineInstr &MI); 145 146 void emitNEONLaneInstruction(const MachineInstr &MI); 147 void emitNEONDupInstruction(const MachineInstr &MI); 148 void emitNEON1RegModImmInstruction(const MachineInstr &MI); 149 void emitNEON2RegInstruction(const MachineInstr &MI); 150 void emitNEON3RegInstruction(const MachineInstr &MI); 151 152 /// getMachineOpValue - Return binary encoding of operand. If the machine 153 /// operand requires relocation, record the relocation and return zero. 154 unsigned getMachineOpValue(const MachineInstr &MI, 155 const MachineOperand &MO) const; 156 unsigned getMachineOpValue(const MachineInstr &MI, unsigned OpIdx) const { 157 return getMachineOpValue(MI, MI.getOperand(OpIdx)); 158 } 159 160 // FIXME: The legacy JIT ARMCodeEmitter doesn't rely on the the 161 // TableGen'erated getBinaryCodeForInstr() function to encode any 162 // operand values, instead querying getMachineOpValue() directly for 163 // each operand it needs to encode. Thus, any of the new encoder 164 // helper functions can simply return 0 as the values the return 165 // are already handled elsewhere. They are placeholders to allow this 166 // encoder to continue to function until the MC encoder is sufficiently 167 // far along that this one can be eliminated entirely. 168 unsigned NEONThumb2DataIPostEncoder(const MachineInstr &MI, unsigned Val) 169 const { return 0; } 170 unsigned NEONThumb2LoadStorePostEncoder(const MachineInstr &MI,unsigned Val) 171 const { return 0; } 172 unsigned NEONThumb2DupPostEncoder(const MachineInstr &MI,unsigned Val) 173 const { return 0; } 174 unsigned VFPThumb2PostEncoder(const MachineInstr&MI, unsigned Val) 175 const { 176 if (IsThumb) { 177 Val &= 0x0FFFFFFF; 178 Val |= 0xE0000000; 179 } 180 return Val; 181 } 182 unsigned getAdrLabelOpValue(const MachineInstr &MI, unsigned Op) 183 const { return 0; } 184 unsigned getThumbAdrLabelOpValue(const MachineInstr &MI, unsigned Op) 185 const { return 0; } 186 unsigned getThumbBLTargetOpValue(const MachineInstr &MI, unsigned Op) 187 const { return 0; } 188 unsigned getThumbBLXTargetOpValue(const MachineInstr &MI, unsigned Op) 189 const { return 0; } 190 unsigned getThumbBRTargetOpValue(const MachineInstr &MI, unsigned Op) 191 const { return 0; } 192 unsigned getThumbBCCTargetOpValue(const MachineInstr &MI, unsigned Op) 193 const { return 0; } 194 unsigned getThumbCBTargetOpValue(const MachineInstr &MI, unsigned Op) 195 const { return 0; } 196 unsigned getBranchTargetOpValue(const MachineInstr &MI, unsigned Op) 197 const { return 0; } 198 unsigned getUnconditionalBranchTargetOpValue(const MachineInstr &MI, 199 unsigned Op) const { return 0; } 200 unsigned getARMBranchTargetOpValue(const MachineInstr &MI, unsigned Op) 201 const { return 0; } 202 unsigned getARMBLTargetOpValue(const MachineInstr &MI, unsigned Op) 203 const { return 0; } 204 unsigned getARMBLXTargetOpValue(const MachineInstr &MI, unsigned Op) 205 const { return 0; } 206 unsigned getCCOutOpValue(const MachineInstr &MI, unsigned Op) 207 const { return 0; } 208 unsigned getSOImmOpValue(const MachineInstr &MI, unsigned Op) 209 const { return 0; } 210 unsigned getT2SOImmOpValue(const MachineInstr &MI, unsigned Op) 211 const { return 0; } 212 unsigned getSORegRegOpValue(const MachineInstr &MI, unsigned Op) 213 const { return 0; } 214 unsigned getSORegImmOpValue(const MachineInstr &MI, unsigned Op) 215 const { return 0; } 216 unsigned getThumbAddrModeRegRegOpValue(const MachineInstr &MI, unsigned Op) 217 const { return 0; } 218 unsigned getT2AddrModeImm12OpValue(const MachineInstr &MI, unsigned Op) 219 const { return 0; } 220 unsigned getT2AddrModeImm8OpValue(const MachineInstr &MI, unsigned Op) 221 const { return 0; } 222 unsigned getT2Imm8s4OpValue(const MachineInstr &MI, unsigned Op) 223 const { return 0; } 224 unsigned getT2AddrModeImm8s4OpValue(const MachineInstr &MI, unsigned Op) 225 const { return 0; } 226 unsigned getT2AddrModeImm0_1020s4OpValue(const MachineInstr &MI,unsigned Op) 227 const { return 0; } 228 unsigned getT2AddrModeImm8OffsetOpValue(const MachineInstr &MI, unsigned Op) 229 const { return 0; } 230 unsigned getT2AddrModeImm12OffsetOpValue(const MachineInstr &MI,unsigned Op) 231 const { return 0; } 232 unsigned getT2AddrModeSORegOpValue(const MachineInstr &MI, unsigned Op) 233 const { return 0; } 234 unsigned getT2SORegOpValue(const MachineInstr &MI, unsigned Op) 235 const { return 0; } 236 unsigned getT2AdrLabelOpValue(const MachineInstr &MI, unsigned Op) 237 const { return 0; } 238 unsigned getAddrMode6AddressOpValue(const MachineInstr &MI, unsigned Op) 239 const { return 0; } 240 unsigned getAddrMode6OneLane32AddressOpValue(const MachineInstr &MI, 241 unsigned Op) 242 const { return 0; } 243 unsigned getAddrMode6DupAddressOpValue(const MachineInstr &MI, unsigned Op) 244 const { return 0; } 245 unsigned getAddrMode6OffsetOpValue(const MachineInstr &MI, unsigned Op) 246 const { return 0; } 247 unsigned getBitfieldInvertedMaskOpValue(const MachineInstr &MI, 248 unsigned Op) const { return 0; } 249 unsigned getSsatBitPosValue(const MachineInstr &MI, 250 unsigned Op) const { return 0; } 251 uint32_t getLdStmModeOpValue(const MachineInstr &MI, unsigned OpIdx) 252 const {return 0; } 253 uint32_t getLdStSORegOpValue(const MachineInstr &MI, unsigned OpIdx) 254 const { return 0; } 255 256 unsigned getAddrModeImm12OpValue(const MachineInstr &MI, unsigned Op) 257 const { 258 // {17-13} = reg 259 // {12} = (U)nsigned (add == '1', sub == '0') 260 // {11-0} = imm12 261 const MachineOperand &MO = MI.getOperand(Op); 262 const MachineOperand &MO1 = MI.getOperand(Op + 1); 263 if (!MO.isReg()) { 264 emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry); 265 return 0; 266 } 267 unsigned Reg = getARMRegisterNumbering(MO.getReg()); 268 int32_t Imm12 = MO1.getImm(); 269 uint32_t Binary; 270 Binary = Imm12 & 0xfff; 271 if (Imm12 >= 0) 272 Binary |= (1 << 12); 273 Binary |= (Reg << 13); 274 return Binary; 275 } 276 277 unsigned getHiLo16ImmOpValue(const MachineInstr &MI, unsigned Op) 278 const { 279 const MCInstrDesc &MCID = MI.getDesc(); 280 const MachineOperand &MO = MI.getOperand(Op); 281 282 unsigned Reloc = (MCID.Opcode == ARM::MOVi16 ? 283 ARM::reloc_arm_movw : ARM::reloc_arm_movt); 284 285 if (!MO.isImm()) { 286 emitGlobalAddress(MO.getGlobal(), Reloc, true, false); 287 return 0; 288 } 289 unsigned Imm16 = static_cast<unsigned>(MO.getImm()); 290 return Imm16; 291 } 292 293 uint32_t getAddrMode2OpValue(const MachineInstr &MI, unsigned OpIdx) 294 const { return 0;} 295 uint32_t getAddrMode2OffsetOpValue(const MachineInstr &MI, unsigned OpIdx) 296 const { return 0;} 297 uint32_t getPostIdxRegOpValue(const MachineInstr &MI, unsigned OpIdx) 298 const { return 0;} 299 uint32_t getAddrMode3OffsetOpValue(const MachineInstr &MI, unsigned OpIdx) 300 const { return 0;} 301 uint32_t getAddrMode3OpValue(const MachineInstr &MI, unsigned Op) 302 const { return 0; } 303 uint32_t getAddrModeThumbSPOpValue(const MachineInstr &MI, unsigned Op) 304 const { return 0; } 305 uint32_t getAddrModeSOpValue(const MachineInstr &MI, unsigned Op) 306 const { return 0; } 307 uint32_t getAddrModeISOpValue(const MachineInstr &MI, unsigned Op) 308 const { return 0; } 309 uint32_t getAddrModePCOpValue(const MachineInstr &MI, unsigned Op) 310 const { return 0; } 311 uint32_t getAddrMode5OpValue(const MachineInstr &MI, unsigned Op) const { 312 // {12-9} = reg 313 // {8} = (U)nsigned (add == '1', sub == '0') 314 // {7-0} = imm8 315 uint32_t Binary = 0; 316 const MachineOperand &MO = MI.getOperand(Op); 317 uint32_t Reg = getMachineOpValue(MI, MO); 318 Binary |= (Reg << 9); 319 320 // If there is a non-zero immediate offset, encode it. 321 if (MO.isReg()) { 322 const MachineOperand &MO1 = MI.getOperand(Op + 1); 323 if (uint32_t ImmOffs = ARM_AM::getAM5Offset(MO1.getImm())) { 324 if (ARM_AM::getAM5Op(MO1.getImm()) == ARM_AM::add) 325 Binary |= 1 << 8; 326 Binary |= ImmOffs & 0xff; 327 return Binary; 328 } 329 } 330 331 // If immediate offset is omitted, default to +0. 332 Binary |= 1 << 8; 333 return Binary; 334 } 335 unsigned getNEONVcvtImm32OpValue(const MachineInstr &MI, unsigned Op) 336 const { return 0; } 337 338 unsigned getRegisterListOpValue(const MachineInstr &MI, unsigned Op) 339 const { return 0; } 340 341 unsigned getShiftRight8Imm(const MachineInstr &MI, unsigned Op) 342 const { return 0; } 343 unsigned getShiftRight16Imm(const MachineInstr &MI, unsigned Op) 344 const { return 0; } 345 unsigned getShiftRight32Imm(const MachineInstr &MI, unsigned Op) 346 const { return 0; } 347 unsigned getShiftRight64Imm(const MachineInstr &MI, unsigned Op) 348 const { return 0; } 349 350 /// getMovi32Value - Return binary encoding of operand for movw/movt. If the 351 /// machine operand requires relocation, record the relocation and return 352 /// zero. 353 unsigned getMovi32Value(const MachineInstr &MI,const MachineOperand &MO, 354 unsigned Reloc); 355 356 /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value. 357 /// 358 unsigned getShiftOp(unsigned Imm) const ; 359 360 /// Routines that handle operands which add machine relocations which are 361 /// fixed up by the relocation stage. 362 void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc, 363 bool MayNeedFarStub, bool Indirect, 364 intptr_t ACPV = 0) const; 365 void emitExternalSymbolAddress(const char *ES, unsigned Reloc) const; 366 void emitConstPoolAddress(unsigned CPI, unsigned Reloc) const; 367 void emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const; 368 void emitMachineBasicBlock(MachineBasicBlock *BB, unsigned Reloc, 369 intptr_t JTBase = 0) const; 370 }; 371 } 372 373 char ARMCodeEmitter::ID = 0; 374 375 /// createARMJITCodeEmitterPass - Return a pass that emits the collected ARM 376 /// code to the specified MCE object. 377 FunctionPass *llvm::createARMJITCodeEmitterPass(ARMBaseTargetMachine &TM, 378 JITCodeEmitter &JCE) { 379 return new ARMCodeEmitter(TM, JCE); 380 } 381 382 bool ARMCodeEmitter::runOnMachineFunction(MachineFunction &MF) { 383 assert((MF.getTarget().getRelocationModel() != Reloc::Default || 384 MF.getTarget().getRelocationModel() != Reloc::Static) && 385 "JIT relocation model must be set to static or default!"); 386 JTI = ((ARMBaseTargetMachine &)MF.getTarget()).getJITInfo(); 387 II = (const ARMBaseInstrInfo *)MF.getTarget().getInstrInfo(); 388 TD = MF.getTarget().getTargetData(); 389 Subtarget = &TM.getSubtarget<ARMSubtarget>(); 390 MCPEs = &MF.getConstantPool()->getConstants(); 391 MJTEs = 0; 392 if (MF.getJumpTableInfo()) MJTEs = &MF.getJumpTableInfo()->getJumpTables(); 393 IsPIC = TM.getRelocationModel() == Reloc::PIC_; 394 IsThumb = MF.getInfo<ARMFunctionInfo>()->isThumbFunction(); 395 JTI->Initialize(MF, IsPIC); 396 MMI = &getAnalysis<MachineModuleInfo>(); 397 MCE.setModuleInfo(MMI); 398 399 do { 400 DEBUG(errs() << "JITTing function '" 401 << MF.getFunction()->getName() << "'\n"); 402 MCE.startFunction(MF); 403 for (MachineFunction::iterator MBB = MF.begin(), E = MF.end(); 404 MBB != E; ++MBB) { 405 MCE.StartMachineBasicBlock(MBB); 406 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); 407 I != E; ++I) 408 emitInstruction(*I); 409 } 410 } while (MCE.finishFunction(MF)); 411 412 return false; 413 } 414 415 /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value. 416 /// 417 unsigned ARMCodeEmitter::getShiftOp(unsigned Imm) const { 418 switch (ARM_AM::getAM2ShiftOpc(Imm)) { 419 default: llvm_unreachable("Unknown shift opc!"); 420 case ARM_AM::asr: return 2; 421 case ARM_AM::lsl: return 0; 422 case ARM_AM::lsr: return 1; 423 case ARM_AM::ror: 424 case ARM_AM::rrx: return 3; 425 } 426 } 427 428 /// getMovi32Value - Return binary encoding of operand for movw/movt. If the 429 /// machine operand requires relocation, record the relocation and return zero. 430 unsigned ARMCodeEmitter::getMovi32Value(const MachineInstr &MI, 431 const MachineOperand &MO, 432 unsigned Reloc) { 433 assert(((Reloc == ARM::reloc_arm_movt) || (Reloc == ARM::reloc_arm_movw)) 434 && "Relocation to this function should be for movt or movw"); 435 436 if (MO.isImm()) 437 return static_cast<unsigned>(MO.getImm()); 438 else if (MO.isGlobal()) 439 emitGlobalAddress(MO.getGlobal(), Reloc, true, false); 440 else if (MO.isSymbol()) 441 emitExternalSymbolAddress(MO.getSymbolName(), Reloc); 442 else if (MO.isMBB()) 443 emitMachineBasicBlock(MO.getMBB(), Reloc); 444 else { 445 #ifndef NDEBUG 446 errs() << MO; 447 #endif 448 llvm_unreachable("Unsupported operand type for movw/movt"); 449 } 450 return 0; 451 } 452 453 /// getMachineOpValue - Return binary encoding of operand. If the machine 454 /// operand requires relocation, record the relocation and return zero. 455 unsigned ARMCodeEmitter::getMachineOpValue(const MachineInstr &MI, 456 const MachineOperand &MO) const { 457 if (MO.isReg()) 458 return getARMRegisterNumbering(MO.getReg()); 459 else if (MO.isImm()) 460 return static_cast<unsigned>(MO.getImm()); 461 else if (MO.isFPImm()) 462 return static_cast<unsigned>(MO.getFPImm()->getValueAPF() 463 .bitcastToAPInt().getHiBits(32).getLimitedValue()); 464 else if (MO.isGlobal()) 465 emitGlobalAddress(MO.getGlobal(), ARM::reloc_arm_branch, true, false); 466 else if (MO.isSymbol()) 467 emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_branch); 468 else if (MO.isCPI()) { 469 const MCInstrDesc &MCID = MI.getDesc(); 470 // For VFP load, the immediate offset is multiplied by 4. 471 unsigned Reloc = ((MCID.TSFlags & ARMII::FormMask) == ARMII::VFPLdStFrm) 472 ? ARM::reloc_arm_vfp_cp_entry : ARM::reloc_arm_cp_entry; 473 emitConstPoolAddress(MO.getIndex(), Reloc); 474 } else if (MO.isJTI()) 475 emitJumpTableAddress(MO.getIndex(), ARM::reloc_arm_relative); 476 else if (MO.isMBB()) 477 emitMachineBasicBlock(MO.getMBB(), ARM::reloc_arm_branch); 478 else 479 llvm_unreachable("Unable to encode MachineOperand!"); 480 return 0; 481 } 482 483 /// emitGlobalAddress - Emit the specified address to the code stream. 484 /// 485 void ARMCodeEmitter::emitGlobalAddress(const GlobalValue *GV, unsigned Reloc, 486 bool MayNeedFarStub, bool Indirect, 487 intptr_t ACPV) const { 488 MachineRelocation MR = Indirect 489 ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc, 490 const_cast<GlobalValue *>(GV), 491 ACPV, MayNeedFarStub) 492 : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc, 493 const_cast<GlobalValue *>(GV), ACPV, 494 MayNeedFarStub); 495 MCE.addRelocation(MR); 496 } 497 498 /// emitExternalSymbolAddress - Arrange for the address of an external symbol to 499 /// be emitted to the current location in the function, and allow it to be PC 500 /// relative. 501 void ARMCodeEmitter:: 502 emitExternalSymbolAddress(const char *ES, unsigned Reloc) const { 503 MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(), 504 Reloc, ES)); 505 } 506 507 /// emitConstPoolAddress - Arrange for the address of an constant pool 508 /// to be emitted to the current location in the function, and allow it to be PC 509 /// relative. 510 void ARMCodeEmitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc) const { 511 // Tell JIT emitter we'll resolve the address. 512 MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(), 513 Reloc, CPI, 0, true)); 514 } 515 516 /// emitJumpTableAddress - Arrange for the address of a jump table to 517 /// be emitted to the current location in the function, and allow it to be PC 518 /// relative. 519 void ARMCodeEmitter:: 520 emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const { 521 MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(), 522 Reloc, JTIndex, 0, true)); 523 } 524 525 /// emitMachineBasicBlock - Emit the specified address basic block. 526 void ARMCodeEmitter::emitMachineBasicBlock(MachineBasicBlock *BB, 527 unsigned Reloc, 528 intptr_t JTBase) const { 529 MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(), 530 Reloc, BB, JTBase)); 531 } 532 533 void ARMCodeEmitter::emitWordLE(unsigned Binary) { 534 DEBUG(errs() << " 0x"; 535 errs().write_hex(Binary) << "\n"); 536 MCE.emitWordLE(Binary); 537 } 538 539 void ARMCodeEmitter::emitDWordLE(uint64_t Binary) { 540 DEBUG(errs() << " 0x"; 541 errs().write_hex(Binary) << "\n"); 542 MCE.emitDWordLE(Binary); 543 } 544 545 void ARMCodeEmitter::emitInstruction(const MachineInstr &MI) { 546 DEBUG(errs() << "JIT: " << (void*)MCE.getCurrentPCValue() << ":\t" << MI); 547 548 MCE.processDebugLoc(MI.getDebugLoc(), true); 549 550 ++NumEmitted; // Keep track of the # of mi's emitted 551 switch (MI.getDesc().TSFlags & ARMII::FormMask) { 552 default: { 553 llvm_unreachable("Unhandled instruction encoding format!"); 554 } 555 case ARMII::MiscFrm: 556 if (MI.getOpcode() == ARM::LEApcrelJT) { 557 // Materialize jumptable address. 558 emitLEApcrelJTInstruction(MI); 559 break; 560 } 561 llvm_unreachable("Unhandled instruction encoding!"); 562 case ARMII::Pseudo: 563 emitPseudoInstruction(MI); 564 break; 565 case ARMII::DPFrm: 566 case ARMII::DPSoRegFrm: 567 emitDataProcessingInstruction(MI); 568 break; 569 case ARMII::LdFrm: 570 case ARMII::StFrm: 571 emitLoadStoreInstruction(MI); 572 break; 573 case ARMII::LdMiscFrm: 574 case ARMII::StMiscFrm: 575 emitMiscLoadStoreInstruction(MI); 576 break; 577 case ARMII::LdStMulFrm: 578 emitLoadStoreMultipleInstruction(MI); 579 break; 580 case ARMII::MulFrm: 581 emitMulFrmInstruction(MI); 582 break; 583 case ARMII::ExtFrm: 584 emitExtendInstruction(MI); 585 break; 586 case ARMII::ArithMiscFrm: 587 emitMiscArithInstruction(MI); 588 break; 589 case ARMII::SatFrm: 590 emitSaturateInstruction(MI); 591 break; 592 case ARMII::BrFrm: 593 emitBranchInstruction(MI); 594 break; 595 case ARMII::BrMiscFrm: 596 emitMiscBranchInstruction(MI); 597 break; 598 // VFP instructions. 599 case ARMII::VFPUnaryFrm: 600 case ARMII::VFPBinaryFrm: 601 emitVFPArithInstruction(MI); 602 break; 603 case ARMII::VFPConv1Frm: 604 case ARMII::VFPConv2Frm: 605 case ARMII::VFPConv3Frm: 606 case ARMII::VFPConv4Frm: 607 case ARMII::VFPConv5Frm: 608 emitVFPConversionInstruction(MI); 609 break; 610 case ARMII::VFPLdStFrm: 611 emitVFPLoadStoreInstruction(MI); 612 break; 613 case ARMII::VFPLdStMulFrm: 614 emitVFPLoadStoreMultipleInstruction(MI); 615 break; 616 case ARMII::VFPMiscFrm: 617 emitMiscInstruction(MI); 618 break; 619 // NEON instructions. 620 case ARMII::NGetLnFrm: 621 case ARMII::NSetLnFrm: 622 emitNEONLaneInstruction(MI); 623 break; 624 case ARMII::NDupFrm: 625 emitNEONDupInstruction(MI); 626 break; 627 case ARMII::N1RegModImmFrm: 628 emitNEON1RegModImmInstruction(MI); 629 break; 630 case ARMII::N2RegFrm: 631 emitNEON2RegInstruction(MI); 632 break; 633 case ARMII::N3RegFrm: 634 emitNEON3RegInstruction(MI); 635 break; 636 } 637 MCE.processDebugLoc(MI.getDebugLoc(), false); 638 } 639 640 void ARMCodeEmitter::emitConstantToMemory(unsigned CPI, const Constant *C) { 641 DEBUG({ 642 errs() << " ** Constant pool #" << CPI << " @ " 643 << (void*)MCE.getCurrentPCValue() << " "; 644 if (const Function *F = dyn_cast<Function>(C)) 645 errs() << F->getName(); 646 else 647 errs() << *C; 648 errs() << '\n'; 649 }); 650 651 switch (C->getValueID()) { 652 default: { 653 llvm_unreachable("Unable to handle this constantpool entry!"); 654 break; 655 } 656 case Value::GlobalVariableVal: { 657 emitGlobalAddress(static_cast<const GlobalValue*>(C), 658 ARM::reloc_arm_absolute, isa<Function>(C), false); 659 emitWordLE(0); 660 break; 661 } 662 case Value::ConstantIntVal: { 663 const ConstantInt *CI = static_cast<const ConstantInt*>(C); 664 uint32_t Val = *(uint32_t*)CI->getValue().getRawData(); 665 emitWordLE(Val); 666 break; 667 } 668 case Value::ConstantFPVal: { 669 const ConstantFP *CFP = static_cast<const ConstantFP*>(C); 670 if (CFP->getType()->isFloatTy()) 671 emitWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 672 else if (CFP->getType()->isDoubleTy()) 673 emitDWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 674 else { 675 llvm_unreachable("Unable to handle this constantpool entry!"); 676 } 677 break; 678 } 679 case Value::ConstantArrayVal: { 680 const ConstantArray *CA = static_cast<const ConstantArray*>(C); 681 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) 682 emitConstantToMemory(CPI, CA->getOperand(i)); 683 break; 684 } 685 case Value::ConstantVectorVal:{ 686 //FIXME:emit vector 687 const ConstantVector *CV = static_cast<const ConstantVector*>(C); 688 break; 689 } 690 } 691 692 return; 693 } 694 695 void ARMCodeEmitter::emitConstPoolInstruction(const MachineInstr &MI) { 696 unsigned CPI = MI.getOperand(0).getImm(); // CP instruction index. 697 unsigned CPIndex = MI.getOperand(1).getIndex(); // Actual cp entry index. 698 const MachineConstantPoolEntry &MCPE = (*MCPEs)[CPIndex]; 699 700 // Remember the CONSTPOOL_ENTRY address for later relocation. 701 JTI->addConstantPoolEntryAddr(CPI, MCE.getCurrentPCValue()); 702 703 // Emit constpool island entry. In most cases, the actual values will be 704 // resolved and relocated after code emission. 705 if (MCPE.isMachineConstantPoolEntry()) { 706 ARMConstantPoolValue *ACPV = 707 static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal); 708 709 DEBUG(errs() << " ** ARM constant pool #" << CPI << " @ " 710 << (void*)MCE.getCurrentPCValue() << " " << *ACPV << '\n'); 711 712 assert(ACPV->isGlobalValue() && "unsupported constant pool value"); 713 const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV(); 714 if (GV) { 715 Reloc::Model RelocM = TM.getRelocationModel(); 716 emitGlobalAddress(GV, ARM::reloc_arm_machine_cp_entry, 717 isa<Function>(GV), 718 Subtarget->GVIsIndirectSymbol(GV, RelocM), 719 (intptr_t)ACPV); 720 } else { 721 const char *Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(); 722 emitExternalSymbolAddress(Sym, ARM::reloc_arm_absolute); 723 } 724 emitWordLE(0); 725 } else { 726 emitConstantToMemory(CPI, MCPE.Val.ConstVal); 727 } 728 } 729 730 void ARMCodeEmitter::emitMOVi32immInstruction(const MachineInstr &MI) { 731 const MachineOperand &MO0 = MI.getOperand(0); 732 const MachineOperand &MO1 = MI.getOperand(1); 733 734 // Emit the 'movw' instruction. 735 unsigned Binary = 0x30 << 20; // mov: Insts{27-20} = 0b00110000 736 737 unsigned Lo16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movw) & 0xFFFF; 738 739 // Set the conditional execution predicate. 740 Binary |= II->getPredicate(&MI) << ARMII::CondShift; 741 742 // Encode Rd. 743 Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift; 744 745 // Encode imm16 as imm4:imm12 746 Binary |= Lo16 & 0xFFF; // Insts{11-0} = imm12 747 Binary |= ((Lo16 >> 12) & 0xF) << 16; // Insts{19-16} = imm4 748 emitWordLE(Binary); 749 750 unsigned Hi16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movt) >> 16; 751 // Emit the 'movt' instruction. 752 Binary = 0x34 << 20; // movt: Insts{27-20} = 0b00110100 753 754 // Set the conditional execution predicate. 755 Binary |= II->getPredicate(&MI) << ARMII::CondShift; 756 757 // Encode Rd. 758 Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift; 759 760 // Encode imm16 as imm4:imm1, same as movw above. 761 Binary |= Hi16 & 0xFFF; 762 Binary |= ((Hi16 >> 12) & 0xF) << 16; 763 emitWordLE(Binary); 764 } 765 766 void ARMCodeEmitter::emitMOVi2piecesInstruction(const MachineInstr &MI) { 767 const MachineOperand &MO0 = MI.getOperand(0); 768 const MachineOperand &MO1 = MI.getOperand(1); 769 assert(MO1.isImm() && ARM_AM::isSOImmTwoPartVal(MO1.getImm()) && 770 "Not a valid so_imm value!"); 771 unsigned V1 = ARM_AM::getSOImmTwoPartFirst(MO1.getImm()); 772 unsigned V2 = ARM_AM::getSOImmTwoPartSecond(MO1.getImm()); 773 774 // Emit the 'mov' instruction. 775 unsigned Binary = 0xd << 21; // mov: Insts{24-21} = 0b1101 776 777 // Set the conditional execution predicate. 778 Binary |= II->getPredicate(&MI) << ARMII::CondShift; 779 780 // Encode Rd. 781 Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift; 782 783 // Encode so_imm. 784 // Set bit I(25) to identify this is the immediate form of <shifter_op> 785 Binary |= 1 << ARMII::I_BitShift; 786 Binary |= getMachineSoImmOpValue(V1); 787 emitWordLE(Binary); 788 789 // Now the 'orr' instruction. 790 Binary = 0xc << 21; // orr: Insts{24-21} = 0b1100 791 792 // Set the conditional execution predicate. 793 Binary |= II->getPredicate(&MI) << ARMII::CondShift; 794 795 // Encode Rd. 796 Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift; 797 798 // Encode Rn. 799 Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRnShift; 800 801 // Encode so_imm. 802 // Set bit I(25) to identify this is the immediate form of <shifter_op> 803 Binary |= 1 << ARMII::I_BitShift; 804 Binary |= getMachineSoImmOpValue(V2); 805 emitWordLE(Binary); 806 } 807 808 void ARMCodeEmitter::emitLEApcrelInstruction(const MachineInstr &MI) { 809 // It's basically add r, pc, (LCPI - $+8) 810 const MCInstrDesc &MCID = MI.getDesc(); 811 812 unsigned Binary = 0; 813 814 // Set the conditional execution predicate 815 Binary |= II->getPredicate(&MI) << ARMII::CondShift; 816 817 // Encode S bit if MI modifies CPSR. 818 Binary |= getAddrModeSBit(MI, MCID); 819 820 // Encode Rd. 821 Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift; 822 823 // Encode Rn which is PC. 824 Binary |= getARMRegisterNumbering(ARM::PC) << ARMII::RegRnShift; 825 826 // Encode the displacement which is a so_imm. 827 // Set bit I(25) to identify this is the immediate form of <shifter_op> 828 Binary |= 1 << ARMII::I_BitShift; 829 emitConstPoolAddress(MI.getOperand(1).getIndex(), ARM::reloc_arm_so_imm_cp_entry); 830 831 emitWordLE(Binary); 832 } 833 834 void ARMCodeEmitter::emitLEApcrelJTInstruction(const MachineInstr &MI) { 835 // It's basically add r, pc, (LJTI - $+8) 836 837 const MCInstrDesc &MCID = MI.getDesc(); 838 839 // Emit the 'add' instruction. 840 unsigned Binary = 0x4 << 21; // add: Insts{24-21} = 0b0100 841 842 // Set the conditional execution predicate 843 Binary |= II->getPredicate(&MI) << ARMII::CondShift; 844 845 // Encode S bit if MI modifies CPSR. 846 Binary |= getAddrModeSBit(MI, MCID); 847 848 // Encode Rd. 849 Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift; 850 851 // Encode Rn which is PC. 852 Binary |= getARMRegisterNumbering(ARM::PC) << ARMII::RegRnShift; 853 854 // Encode the displacement. 855 Binary |= 1 << ARMII::I_BitShift; 856 emitJumpTableAddress(MI.getOperand(1).getIndex(), ARM::reloc_arm_jt_base); 857 858 emitWordLE(Binary); 859 } 860 861 void ARMCodeEmitter::emitPseudoMoveInstruction(const MachineInstr &MI) { 862 unsigned Opcode = MI.getDesc().Opcode; 863 864 // Part of binary is determined by TableGn. 865 unsigned Binary = getBinaryCodeForInstr(MI); 866 867 // Set the conditional execution predicate 868 Binary |= II->getPredicate(&MI) << ARMII::CondShift; 869 870 // Encode S bit if MI modifies CPSR. 871 if (Opcode == ARM::MOVsrl_flag || Opcode == ARM::MOVsra_flag) 872 Binary |= 1 << ARMII::S_BitShift; 873 874 // Encode register def if there is one. 875 Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift; 876 877 // Encode the shift operation. 878 switch (Opcode) { 879 default: break; 880 case ARM::RRX: 881 // rrx 882 Binary |= 0x6 << 4; 883 break; 884 case ARM::MOVsrl_flag: 885 // lsr #1 886 Binary |= (0x2 << 4) | (1 << 7); 887 break; 888 case ARM::MOVsra_flag: 889 // asr #1 890 Binary |= (0x4 << 4) | (1 << 7); 891 break; 892 } 893 894 // Encode register Rm. 895 Binary |= getMachineOpValue(MI, 1); 896 897 emitWordLE(Binary); 898 } 899 900 void ARMCodeEmitter::addPCLabel(unsigned LabelID) { 901 DEBUG(errs() << " ** LPC" << LabelID << " @ " 902 << (void*)MCE.getCurrentPCValue() << '\n'); 903 JTI->addPCLabelAddr(LabelID, MCE.getCurrentPCValue()); 904 } 905 906 void ARMCodeEmitter::emitPseudoInstruction(const MachineInstr &MI) { 907 unsigned Opcode = MI.getDesc().Opcode; 908 switch (Opcode) { 909 default: 910 llvm_unreachable("ARMCodeEmitter::emitPseudoInstruction"); 911 case ARM::B: 912 emitBranchInstruction(MI); 913 break; 914 case ARM::BR_JTr: 915 case ARM::BR_JTm: 916 case ARM::BR_JTadd: 917 emitMiscBranchInstruction(MI); 918 break; 919 case ARM::BX_CALL: 920 case ARM::BMOVPCRX_CALL: { 921 // First emit mov lr, pc 922 unsigned Binary = 0x01a0e00f; 923 Binary |= II->getPredicate(&MI) << ARMII::CondShift; 924 emitWordLE(Binary); 925 926 // and then emit the branch. 927 emitMiscBranchInstruction(MI); 928 break; 929 } 930 case TargetOpcode::INLINEASM: { 931 // We allow inline assembler nodes with empty bodies - they can 932 // implicitly define registers, which is ok for JIT. 933 if (MI.getOperand(0).getSymbolName()[0]) { 934 report_fatal_error("JIT does not support inline asm!"); 935 } 936 break; 937 } 938 case TargetOpcode::PROLOG_LABEL: 939 case TargetOpcode::EH_LABEL: 940 MCE.emitLabel(MI.getOperand(0).getMCSymbol()); 941 break; 942 case TargetOpcode::IMPLICIT_DEF: 943 case TargetOpcode::KILL: 944 // Do nothing. 945 break; 946 case ARM::CONSTPOOL_ENTRY: 947 emitConstPoolInstruction(MI); 948 break; 949 case ARM::LDMIA_RET: 950 emitLoadStoreMultipleInstruction(MI); 951 break; 952 case ARM::PICADD: { 953 // Remember of the address of the PC label for relocation later. 954 addPCLabel(MI.getOperand(2).getImm()); 955 // PICADD is just an add instruction that implicitly read pc. 956 emitDataProcessingInstruction(MI, 0, ARM::PC); 957 break; 958 } 959 case ARM::PICLDR: 960 case ARM::PICLDRB: 961 case ARM::PICSTR: 962 case ARM::PICSTRB: { 963 // Remember of the address of the PC label for relocation later. 964 addPCLabel(MI.getOperand(2).getImm()); 965 // These are just load / store instructions that implicitly read pc. 966 emitLoadStoreInstruction(MI, 0, ARM::PC); 967 break; 968 } 969 case ARM::PICLDRH: 970 case ARM::PICLDRSH: 971 case ARM::PICLDRSB: 972 case ARM::PICSTRH: { 973 // Remember of the address of the PC label for relocation later. 974 addPCLabel(MI.getOperand(2).getImm()); 975 // These are just load / store instructions that implicitly read pc. 976 emitMiscLoadStoreInstruction(MI, ARM::PC); 977 break; 978 } 979 980 case ARM::MOVi32imm: 981 // Two instructions to materialize a constant. 982 if (Subtarget->hasV6T2Ops()) 983 emitMOVi32immInstruction(MI); 984 else 985 emitMOVi2piecesInstruction(MI); 986 break; 987 case ARM::LEApcrel: 988 // Materialize constantpool index address. 989 emitLEApcrelInstruction(MI); 990 break; 991 case ARM::LEApcrelJT: 992 // Materialize jumptable address. 993 emitLEApcrelJTInstruction(MI); 994 break; 995 case ARM::RRX: 996 case ARM::MOVsrl_flag: 997 case ARM::MOVsra_flag: 998 emitPseudoMoveInstruction(MI); 999 break; 1000 } 1001 } 1002 1003 unsigned ARMCodeEmitter::getMachineSoRegOpValue(const MachineInstr &MI, 1004 const MCInstrDesc &MCID, 1005 const MachineOperand &MO, 1006 unsigned OpIdx) { 1007 unsigned Binary = getMachineOpValue(MI, MO); 1008 1009 const MachineOperand &MO1 = MI.getOperand(OpIdx + 1); 1010 const MachineOperand &MO2 = MI.getOperand(OpIdx + 2); 1011 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO2.getImm()); 1012 1013 // Encode the shift opcode. 1014 unsigned SBits = 0; 1015 unsigned Rs = MO1.getReg(); 1016 if (Rs) { 1017 // Set shift operand (bit[7:4]). 1018 // LSL - 0001 1019 // LSR - 0011 1020 // ASR - 0101 1021 // ROR - 0111 1022 // RRX - 0110 and bit[11:8] clear. 1023 switch (SOpc) { 1024 default: llvm_unreachable("Unknown shift opc!"); 1025 case ARM_AM::lsl: SBits = 0x1; break; 1026 case ARM_AM::lsr: SBits = 0x3; break; 1027 case ARM_AM::asr: SBits = 0x5; break; 1028 case ARM_AM::ror: SBits = 0x7; break; 1029 case ARM_AM::rrx: SBits = 0x6; break; 1030 } 1031 } else { 1032 // Set shift operand (bit[6:4]). 1033 // LSL - 000 1034 // LSR - 010 1035 // ASR - 100 1036 // ROR - 110 1037 switch (SOpc) { 1038 default: llvm_unreachable("Unknown shift opc!"); 1039 case ARM_AM::lsl: SBits = 0x0; break; 1040 case ARM_AM::lsr: SBits = 0x2; break; 1041 case ARM_AM::asr: SBits = 0x4; break; 1042 case ARM_AM::ror: SBits = 0x6; break; 1043 } 1044 } 1045 Binary |= SBits << 4; 1046 if (SOpc == ARM_AM::rrx) 1047 return Binary; 1048 1049 // Encode the shift operation Rs or shift_imm (except rrx). 1050 if (Rs) { 1051 // Encode Rs bit[11:8]. 1052 assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0); 1053 return Binary | (getARMRegisterNumbering(Rs) << ARMII::RegRsShift); 1054 } 1055 1056 // Encode shift_imm bit[11:7]. 1057 return Binary | ARM_AM::getSORegOffset(MO2.getImm()) << 7; 1058 } 1059 1060 unsigned ARMCodeEmitter::getMachineSoImmOpValue(unsigned SoImm) { 1061 int SoImmVal = ARM_AM::getSOImmVal(SoImm); 1062 assert(SoImmVal != -1 && "Not a valid so_imm value!"); 1063 1064 // Encode rotate_imm. 1065 unsigned Binary = (ARM_AM::getSOImmValRot((unsigned)SoImmVal) >> 1) 1066 << ARMII::SoRotImmShift; 1067 1068 // Encode immed_8. 1069 Binary |= ARM_AM::getSOImmValImm((unsigned)SoImmVal); 1070 return Binary; 1071 } 1072 1073 unsigned ARMCodeEmitter::getAddrModeSBit(const MachineInstr &MI, 1074 const MCInstrDesc &MCID) const { 1075 for (unsigned i = MI.getNumOperands(), e = MCID.getNumOperands(); i >= e;--i){ 1076 const MachineOperand &MO = MI.getOperand(i-1); 1077 if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) 1078 return 1 << ARMII::S_BitShift; 1079 } 1080 return 0; 1081 } 1082 1083 void ARMCodeEmitter::emitDataProcessingInstruction(const MachineInstr &MI, 1084 unsigned ImplicitRd, 1085 unsigned ImplicitRn) { 1086 const MCInstrDesc &MCID = MI.getDesc(); 1087 1088 // Part of binary is determined by TableGn. 1089 unsigned Binary = getBinaryCodeForInstr(MI); 1090 1091 if (MCID.Opcode == ARM::MOVi16 || MCID.Opcode == ARM::MOVTi16) { 1092 emitWordLE(Binary); 1093 return; 1094 } 1095 1096 // Set the conditional execution predicate 1097 Binary |= II->getPredicate(&MI) << ARMII::CondShift; 1098 1099 // Encode S bit if MI modifies CPSR. 1100 Binary |= getAddrModeSBit(MI, MCID); 1101 1102 // Encode register def if there is one. 1103 unsigned NumDefs = MCID.getNumDefs(); 1104 unsigned OpIdx = 0; 1105 if (NumDefs) 1106 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift; 1107 else if (ImplicitRd) 1108 // Special handling for implicit use (e.g. PC). 1109 Binary |= (getARMRegisterNumbering(ImplicitRd) << ARMII::RegRdShift); 1110 1111 if (MCID.Opcode == ARM::MOVi16) { 1112 // Get immediate from MI. 1113 unsigned Lo16 = getMovi32Value(MI, MI.getOperand(OpIdx), 1114 ARM::reloc_arm_movw); 1115 // Encode imm which is the same as in emitMOVi32immInstruction(). 1116 Binary |= Lo16 & 0xFFF; 1117 Binary |= ((Lo16 >> 12) & 0xF) << 16; 1118 emitWordLE(Binary); 1119 return; 1120 } else if(MCID.Opcode == ARM::MOVTi16) { 1121 unsigned Hi16 = (getMovi32Value(MI, MI.getOperand(OpIdx), 1122 ARM::reloc_arm_movt) >> 16); 1123 Binary |= Hi16 & 0xFFF; 1124 Binary |= ((Hi16 >> 12) & 0xF) << 16; 1125 emitWordLE(Binary); 1126 return; 1127 } else if ((MCID.Opcode == ARM::BFC) || (MCID.Opcode == ARM::BFI)) { 1128 uint32_t v = ~MI.getOperand(2).getImm(); 1129 int32_t lsb = CountTrailingZeros_32(v); 1130 int32_t msb = (32 - CountLeadingZeros_32(v)) - 1; 1131 // Instr{20-16} = msb, Instr{11-7} = lsb 1132 Binary |= (msb & 0x1F) << 16; 1133 Binary |= (lsb & 0x1F) << 7; 1134 emitWordLE(Binary); 1135 return; 1136 } else if ((MCID.Opcode == ARM::UBFX) || (MCID.Opcode == ARM::SBFX)) { 1137 // Encode Rn in Instr{0-3} 1138 Binary |= getMachineOpValue(MI, OpIdx++); 1139 1140 uint32_t lsb = MI.getOperand(OpIdx++).getImm(); 1141 uint32_t widthm1 = MI.getOperand(OpIdx++).getImm() - 1; 1142 1143 // Instr{20-16} = widthm1, Instr{11-7} = lsb 1144 Binary |= (widthm1 & 0x1F) << 16; 1145 Binary |= (lsb & 0x1F) << 7; 1146 emitWordLE(Binary); 1147 return; 1148 } 1149 1150 // If this is a two-address operand, skip it. e.g. MOVCCr operand 1. 1151 if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1) 1152 ++OpIdx; 1153 1154 // Encode first non-shifter register operand if there is one. 1155 bool isUnary = MCID.TSFlags & ARMII::UnaryDP; 1156 if (!isUnary) { 1157 if (ImplicitRn) 1158 // Special handling for implicit use (e.g. PC). 1159 Binary |= (getARMRegisterNumbering(ImplicitRn) << ARMII::RegRnShift); 1160 else { 1161 Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRnShift; 1162 ++OpIdx; 1163 } 1164 } 1165 1166 // Encode shifter operand. 1167 const MachineOperand &MO = MI.getOperand(OpIdx); 1168 if ((MCID.TSFlags & ARMII::FormMask) == ARMII::DPSoRegFrm) { 1169 // Encode SoReg. 1170 emitWordLE(Binary | getMachineSoRegOpValue(MI, MCID, MO, OpIdx)); 1171 return; 1172 } 1173 1174 if (MO.isReg()) { 1175 // Encode register Rm. 1176 emitWordLE(Binary | getARMRegisterNumbering(MO.getReg())); 1177 return; 1178 } 1179 1180 // Encode so_imm. 1181 Binary |= getMachineSoImmOpValue((unsigned)MO.getImm()); 1182 1183 emitWordLE(Binary); 1184 } 1185 1186 void ARMCodeEmitter::emitLoadStoreInstruction(const MachineInstr &MI, 1187 unsigned ImplicitRd, 1188 unsigned ImplicitRn) { 1189 const MCInstrDesc &MCID = MI.getDesc(); 1190 unsigned Form = MCID.TSFlags & ARMII::FormMask; 1191 bool IsPrePost = (MCID.TSFlags & ARMII::IndexModeMask) != 0; 1192 1193 // Part of binary is determined by TableGn. 1194 unsigned Binary = getBinaryCodeForInstr(MI); 1195 1196 // If this is an LDRi12, STRi12 or LDRcp, nothing more needs be done. 1197 if (MI.getOpcode() == ARM::LDRi12 || MI.getOpcode() == ARM::LDRcp || 1198 MI.getOpcode() == ARM::STRi12 || MI.getOpcode() == ARM::LDRBi12 || 1199 MI.getOpcode() == ARM::STRBi12) { 1200 emitWordLE(Binary); 1201 return; 1202 } 1203 1204 if (MI.getOpcode() == ARM::BR_JTm) 1205 Binary = 0x710F000; 1206 else if (MI.getOpcode() == ARM::BR_JTr) 1207 Binary = 0x1A0F000; 1208 1209 // Set the conditional execution predicate 1210 Binary |= II->getPredicate(&MI) << ARMII::CondShift; 1211 1212 unsigned OpIdx = 0; 1213 1214 // Operand 0 of a pre- and post-indexed store is the address base 1215 // writeback. Skip it. 1216 bool Skipped = false; 1217 if (IsPrePost && Form == ARMII::StFrm) { 1218 ++OpIdx; 1219 Skipped = true; 1220 } 1221 1222 // Set first operand 1223 if (ImplicitRd) 1224 // Special handling for implicit use (e.g. PC). 1225 Binary |= (getARMRegisterNumbering(ImplicitRd) << ARMII::RegRdShift); 1226 else 1227 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift; 1228 1229 // Set second operand 1230 if (ImplicitRn) 1231 // Special handling for implicit use (e.g. PC). 1232 Binary |= (getARMRegisterNumbering(ImplicitRn) << ARMII::RegRnShift); 1233 else 1234 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift; 1235 1236 // If this is a two-address operand, skip it. e.g. LDR_PRE. 1237 if (!Skipped && MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1) 1238 ++OpIdx; 1239 1240 const MachineOperand &MO2 = MI.getOperand(OpIdx); 1241 unsigned AM2Opc = (ImplicitRn == ARM::PC) 1242 ? 0 : MI.getOperand(OpIdx+1).getImm(); 1243 1244 // Set bit U(23) according to sign of immed value (positive or negative). 1245 Binary |= ((ARM_AM::getAM2Op(AM2Opc) == ARM_AM::add ? 1 : 0) << 1246 ARMII::U_BitShift); 1247 if (!MO2.getReg()) { // is immediate 1248 if (ARM_AM::getAM2Offset(AM2Opc)) 1249 // Set the value of offset_12 field 1250 Binary |= ARM_AM::getAM2Offset(AM2Opc); 1251 emitWordLE(Binary); 1252 return; 1253 } 1254 1255 // Set bit I(25), because this is not in immediate encoding. 1256 Binary |= 1 << ARMII::I_BitShift; 1257 assert(TargetRegisterInfo::isPhysicalRegister(MO2.getReg())); 1258 // Set bit[3:0] to the corresponding Rm register 1259 Binary |= getARMRegisterNumbering(MO2.getReg()); 1260 1261 // If this instr is in scaled register offset/index instruction, set 1262 // shift_immed(bit[11:7]) and shift(bit[6:5]) fields. 1263 if (unsigned ShImm = ARM_AM::getAM2Offset(AM2Opc)) { 1264 Binary |= getShiftOp(AM2Opc) << ARMII::ShiftImmShift; // shift 1265 Binary |= ShImm << ARMII::ShiftShift; // shift_immed 1266 } 1267 1268 emitWordLE(Binary); 1269 } 1270 1271 void ARMCodeEmitter::emitMiscLoadStoreInstruction(const MachineInstr &MI, 1272 unsigned ImplicitRn) { 1273 const MCInstrDesc &MCID = MI.getDesc(); 1274 unsigned Form = MCID.TSFlags & ARMII::FormMask; 1275 bool IsPrePost = (MCID.TSFlags & ARMII::IndexModeMask) != 0; 1276 1277 // Part of binary is determined by TableGn. 1278 unsigned Binary = getBinaryCodeForInstr(MI); 1279 1280 // Set the conditional execution predicate 1281 Binary |= II->getPredicate(&MI) << ARMII::CondShift; 1282 1283 unsigned OpIdx = 0; 1284 1285 // Operand 0 of a pre- and post-indexed store is the address base 1286 // writeback. Skip it. 1287 bool Skipped = false; 1288 if (IsPrePost && Form == ARMII::StMiscFrm) { 1289 ++OpIdx; 1290 Skipped = true; 1291 } 1292 1293 // Set first operand 1294 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift; 1295 1296 // Skip LDRD and STRD's second operand. 1297 if (MCID.Opcode == ARM::LDRD || MCID.Opcode == ARM::STRD) 1298 ++OpIdx; 1299 1300 // Set second operand 1301 if (ImplicitRn) 1302 // Special handling for implicit use (e.g. PC). 1303 Binary |= (getARMRegisterNumbering(ImplicitRn) << ARMII::RegRnShift); 1304 else 1305 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift; 1306 1307 // If this is a two-address operand, skip it. e.g. LDRH_POST. 1308 if (!Skipped && MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1) 1309 ++OpIdx; 1310 1311 const MachineOperand &MO2 = MI.getOperand(OpIdx); 1312 unsigned AM3Opc = (ImplicitRn == ARM::PC) 1313 ? 0 : MI.getOperand(OpIdx+1).getImm(); 1314 1315 // Set bit U(23) according to sign of immed value (positive or negative) 1316 Binary |= ((ARM_AM::getAM3Op(AM3Opc) == ARM_AM::add ? 1 : 0) << 1317 ARMII::U_BitShift); 1318 1319 // If this instr is in register offset/index encoding, set bit[3:0] 1320 // to the corresponding Rm register. 1321 if (MO2.getReg()) { 1322 Binary |= getARMRegisterNumbering(MO2.getReg()); 1323 emitWordLE(Binary); 1324 return; 1325 } 1326 1327 // This instr is in immediate offset/index encoding, set bit 22 to 1. 1328 Binary |= 1 << ARMII::AM3_I_BitShift; 1329 if (unsigned ImmOffs = ARM_AM::getAM3Offset(AM3Opc)) { 1330 // Set operands 1331 Binary |= (ImmOffs >> 4) << ARMII::ImmHiShift; // immedH 1332 Binary |= (ImmOffs & 0xF); // immedL 1333 } 1334 1335 emitWordLE(Binary); 1336 } 1337 1338 static unsigned getAddrModeUPBits(unsigned Mode) { 1339 unsigned Binary = 0; 1340 1341 // Set addressing mode by modifying bits U(23) and P(24) 1342 // IA - Increment after - bit U = 1 and bit P = 0 1343 // IB - Increment before - bit U = 1 and bit P = 1 1344 // DA - Decrement after - bit U = 0 and bit P = 0 1345 // DB - Decrement before - bit U = 0 and bit P = 1 1346 switch (Mode) { 1347 default: llvm_unreachable("Unknown addressing sub-mode!"); 1348 case ARM_AM::da: break; 1349 case ARM_AM::db: Binary |= 0x1 << ARMII::P_BitShift; break; 1350 case ARM_AM::ia: Binary |= 0x1 << ARMII::U_BitShift; break; 1351 case ARM_AM::ib: Binary |= 0x3 << ARMII::U_BitShift; break; 1352 } 1353 1354 return Binary; 1355 } 1356 1357 void ARMCodeEmitter::emitLoadStoreMultipleInstruction(const MachineInstr &MI) { 1358 const MCInstrDesc &MCID = MI.getDesc(); 1359 bool IsUpdating = (MCID.TSFlags & ARMII::IndexModeMask) != 0; 1360 1361 // Part of binary is determined by TableGn. 1362 unsigned Binary = getBinaryCodeForInstr(MI); 1363 1364 if (MCID.getOpcode() == ARM::LDMIA_RET) { 1365 IsUpdating = true; 1366 Binary |= 0x8B00000; 1367 } 1368 1369 // Set the conditional execution predicate 1370 Binary |= II->getPredicate(&MI) << ARMII::CondShift; 1371 1372 // Skip operand 0 of an instruction with base register update. 1373 unsigned OpIdx = 0; 1374 if (IsUpdating) 1375 ++OpIdx; 1376 1377 // Set base address operand 1378 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift; 1379 1380 // Set addressing mode by modifying bits U(23) and P(24) 1381 ARM_AM::AMSubMode Mode = ARM_AM::getLoadStoreMultipleSubMode(MI.getOpcode()); 1382 Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(Mode)); 1383 1384 // Set bit W(21) 1385 if (IsUpdating) 1386 Binary |= 0x1 << ARMII::W_BitShift; 1387 1388 // Set registers 1389 for (unsigned i = OpIdx+2, e = MI.getNumOperands(); i != e; ++i) { 1390 const MachineOperand &MO = MI.getOperand(i); 1391 if (!MO.isReg() || MO.isImplicit()) 1392 break; 1393 unsigned RegNum = getARMRegisterNumbering(MO.getReg()); 1394 assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) && 1395 RegNum < 16); 1396 Binary |= 0x1 << RegNum; 1397 } 1398 1399 emitWordLE(Binary); 1400 } 1401 1402 void ARMCodeEmitter::emitMulFrmInstruction(const MachineInstr &MI) { 1403 const MCInstrDesc &MCID = MI.getDesc(); 1404 1405 // Part of binary is determined by TableGn. 1406 unsigned Binary = getBinaryCodeForInstr(MI); 1407 1408 // Set the conditional execution predicate 1409 Binary |= II->getPredicate(&MI) << ARMII::CondShift; 1410 1411 // Encode S bit if MI modifies CPSR. 1412 Binary |= getAddrModeSBit(MI, MCID); 1413 1414 // 32x32->64bit operations have two destination registers. The number 1415 // of register definitions will tell us if that's what we're dealing with. 1416 unsigned OpIdx = 0; 1417 if (MCID.getNumDefs() == 2) 1418 Binary |= getMachineOpValue (MI, OpIdx++) << ARMII::RegRdLoShift; 1419 1420 // Encode Rd 1421 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdHiShift; 1422 1423 // Encode Rm 1424 Binary |= getMachineOpValue(MI, OpIdx++); 1425 1426 // Encode Rs 1427 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRsShift; 1428 1429 // Many multiple instructions (e.g. MLA) have three src operands. Encode 1430 // it as Rn (for multiply, that's in the same offset as RdLo. 1431 if (MCID.getNumOperands() > OpIdx && 1432 !MCID.OpInfo[OpIdx].isPredicate() && 1433 !MCID.OpInfo[OpIdx].isOptionalDef()) 1434 Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRdLoShift; 1435 1436 emitWordLE(Binary); 1437 } 1438 1439 void ARMCodeEmitter::emitExtendInstruction(const MachineInstr &MI) { 1440 const MCInstrDesc &MCID = MI.getDesc(); 1441 1442 // Part of binary is determined by TableGn. 1443 unsigned Binary = getBinaryCodeForInstr(MI); 1444 1445 // Set the conditional execution predicate 1446 Binary |= II->getPredicate(&MI) << ARMII::CondShift; 1447 1448 unsigned OpIdx = 0; 1449 1450 // Encode Rd 1451 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift; 1452 1453 const MachineOperand &MO1 = MI.getOperand(OpIdx++); 1454 const MachineOperand &MO2 = MI.getOperand(OpIdx); 1455 if (MO2.isReg()) { 1456 // Two register operand form. 1457 // Encode Rn. 1458 Binary |= getMachineOpValue(MI, MO1) << ARMII::RegRnShift; 1459 1460 // Encode Rm. 1461 Binary |= getMachineOpValue(MI, MO2); 1462 ++OpIdx; 1463 } else { 1464 Binary |= getMachineOpValue(MI, MO1); 1465 } 1466 1467 // Encode rot imm (0, 8, 16, or 24) if it has a rotate immediate operand. 1468 if (MI.getOperand(OpIdx).isImm() && 1469 !MCID.OpInfo[OpIdx].isPredicate() && 1470 !MCID.OpInfo[OpIdx].isOptionalDef()) 1471 Binary |= (getMachineOpValue(MI, OpIdx) / 8) << ARMII::ExtRotImmShift; 1472 1473 emitWordLE(Binary); 1474 } 1475 1476 void ARMCodeEmitter::emitMiscArithInstruction(const MachineInstr &MI) { 1477 const MCInstrDesc &MCID = MI.getDesc(); 1478 1479 // Part of binary is determined by TableGn. 1480 unsigned Binary = getBinaryCodeForInstr(MI); 1481 1482 // Set the conditional execution predicate 1483 Binary |= II->getPredicate(&MI) << ARMII::CondShift; 1484 1485 // PKH instructions are finished at this point 1486 if (MCID.Opcode == ARM::PKHBT || MCID.Opcode == ARM::PKHTB) { 1487 emitWordLE(Binary); 1488 return; 1489 } 1490 1491 unsigned OpIdx = 0; 1492 1493 // Encode Rd 1494 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift; 1495 1496 const MachineOperand &MO = MI.getOperand(OpIdx++); 1497 if (OpIdx == MCID.getNumOperands() || 1498 MCID.OpInfo[OpIdx].isPredicate() || 1499 MCID.OpInfo[OpIdx].isOptionalDef()) { 1500 // Encode Rm and it's done. 1501 Binary |= getMachineOpValue(MI, MO); 1502 emitWordLE(Binary); 1503 return; 1504 } 1505 1506 // Encode Rn. 1507 Binary |= getMachineOpValue(MI, MO) << ARMII::RegRnShift; 1508 1509 // Encode Rm. 1510 Binary |= getMachineOpValue(MI, OpIdx++); 1511 1512 // Encode shift_imm. 1513 unsigned ShiftAmt = MI.getOperand(OpIdx).getImm(); 1514 if (MCID.Opcode == ARM::PKHTB) { 1515 assert(ShiftAmt != 0 && "PKHTB shift_imm is 0!"); 1516 if (ShiftAmt == 32) 1517 ShiftAmt = 0; 1518 } 1519 assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!"); 1520 Binary |= ShiftAmt << ARMII::ShiftShift; 1521 1522 emitWordLE(Binary); 1523 } 1524 1525 void ARMCodeEmitter::emitSaturateInstruction(const MachineInstr &MI) { 1526 const MCInstrDesc &MCID = MI.getDesc(); 1527 1528 // Part of binary is determined by TableGen. 1529 unsigned Binary = getBinaryCodeForInstr(MI); 1530 1531 // Set the conditional execution predicate 1532 Binary |= II->getPredicate(&MI) << ARMII::CondShift; 1533 1534 // Encode Rd 1535 Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift; 1536 1537 // Encode saturate bit position. 1538 unsigned Pos = MI.getOperand(1).getImm(); 1539 if (MCID.Opcode == ARM::SSAT || MCID.Opcode == ARM::SSAT16) 1540 Pos -= 1; 1541 assert((Pos < 16 || (Pos < 32 && 1542 MCID.Opcode != ARM::SSAT16 && 1543 MCID.Opcode != ARM::USAT16)) && 1544 "saturate bit position out of range"); 1545 Binary |= Pos << 16; 1546 1547 // Encode Rm 1548 Binary |= getMachineOpValue(MI, 2); 1549 1550 // Encode shift_imm. 1551 if (MCID.getNumOperands() == 4) { 1552 unsigned ShiftOp = MI.getOperand(3).getImm(); 1553 ARM_AM::ShiftOpc Opc = ARM_AM::getSORegShOp(ShiftOp); 1554 if (Opc == ARM_AM::asr) 1555 Binary |= (1 << 6); 1556 unsigned ShiftAmt = MI.getOperand(3).getImm(); 1557 if (ShiftAmt == 32 && Opc == ARM_AM::asr) 1558 ShiftAmt = 0; 1559 assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!"); 1560 Binary |= ShiftAmt << ARMII::ShiftShift; 1561 } 1562 1563 emitWordLE(Binary); 1564 } 1565 1566 void ARMCodeEmitter::emitBranchInstruction(const MachineInstr &MI) { 1567 const MCInstrDesc &MCID = MI.getDesc(); 1568 1569 if (MCID.Opcode == ARM::TPsoft) { 1570 llvm_unreachable("ARM::TPsoft FIXME"); // FIXME 1571 } 1572 1573 // Part of binary is determined by TableGn. 1574 unsigned Binary = getBinaryCodeForInstr(MI); 1575 1576 if (MCID.Opcode == ARM::B) { 1577 Binary = 0xEA000000; 1578 } 1579 1580 // Set the conditional execution predicate 1581 Binary |= II->getPredicate(&MI) << ARMII::CondShift; 1582 1583 // Set signed_immed_24 field 1584 Binary |= getMachineOpValue(MI, 0); 1585 1586 emitWordLE(Binary); 1587 } 1588 1589 void ARMCodeEmitter::emitInlineJumpTable(unsigned JTIndex) { 1590 // Remember the base address of the inline jump table. 1591 uintptr_t JTBase = MCE.getCurrentPCValue(); 1592 JTI->addJumpTableBaseAddr(JTIndex, JTBase); 1593 DEBUG(errs() << " ** Jump Table #" << JTIndex << " @ " << (void*)JTBase 1594 << '\n'); 1595 1596 // Now emit the jump table entries. 1597 const std::vector<MachineBasicBlock*> &MBBs = (*MJTEs)[JTIndex].MBBs; 1598 for (unsigned i = 0, e = MBBs.size(); i != e; ++i) { 1599 if (IsPIC) 1600 // DestBB address - JT base. 1601 emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_pic_jt, JTBase); 1602 else 1603 // Absolute DestBB address. 1604 emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_absolute); 1605 emitWordLE(0); 1606 } 1607 } 1608 1609 void ARMCodeEmitter::emitMiscBranchInstruction(const MachineInstr &MI) { 1610 const MCInstrDesc &MCID = MI.getDesc(); 1611 1612 // Handle jump tables. 1613 if (MCID.Opcode == ARM::BR_JTr || MCID.Opcode == ARM::BR_JTadd) { 1614 // First emit a ldr pc, [] instruction. 1615 emitDataProcessingInstruction(MI, ARM::PC); 1616 1617 // Then emit the inline jump table. 1618 unsigned JTIndex = 1619 (MCID.Opcode == ARM::BR_JTr) 1620 ? MI.getOperand(1).getIndex() : MI.getOperand(2).getIndex(); 1621 emitInlineJumpTable(JTIndex); 1622 return; 1623 } else if (MCID.Opcode == ARM::BR_JTm) { 1624 // First emit a ldr pc, [] instruction. 1625 emitLoadStoreInstruction(MI, ARM::PC); 1626 1627 // Then emit the inline jump table. 1628 emitInlineJumpTable(MI.getOperand(3).getIndex()); 1629 return; 1630 } 1631 1632 // Part of binary is determined by TableGn. 1633 unsigned Binary = getBinaryCodeForInstr(MI); 1634 1635 // Set the conditional execution predicate 1636 Binary |= II->getPredicate(&MI) << ARMII::CondShift; 1637 1638 if (MCID.Opcode == ARM::BX_RET || MCID.Opcode == ARM::MOVPCLR) 1639 // The return register is LR. 1640 Binary |= getARMRegisterNumbering(ARM::LR); 1641 else 1642 // otherwise, set the return register 1643 Binary |= getMachineOpValue(MI, 0); 1644 1645 emitWordLE(Binary); 1646 } 1647 1648 static unsigned encodeVFPRd(const MachineInstr &MI, unsigned OpIdx) { 1649 unsigned RegD = MI.getOperand(OpIdx).getReg(); 1650 unsigned Binary = 0; 1651 bool isSPVFP = ARM::SPRRegisterClass->contains(RegD); 1652 RegD = getARMRegisterNumbering(RegD); 1653 if (!isSPVFP) { 1654 Binary |= (RegD & 0x0F) << ARMII::RegRdShift; 1655 Binary |= ((RegD & 0x10) >> 4) << ARMII::D_BitShift; 1656 } else { 1657 Binary |= ((RegD & 0x1E) >> 1) << ARMII::RegRdShift; 1658 Binary |= (RegD & 0x01) << ARMII::D_BitShift; 1659 } 1660 return Binary; 1661 } 1662 1663 static unsigned encodeVFPRn(const MachineInstr &MI, unsigned OpIdx) { 1664 unsigned RegN = MI.getOperand(OpIdx).getReg(); 1665 unsigned Binary = 0; 1666 bool isSPVFP = ARM::SPRRegisterClass->contains(RegN); 1667 RegN = getARMRegisterNumbering(RegN); 1668 if (!isSPVFP) { 1669 Binary |= (RegN & 0x0F) << ARMII::RegRnShift; 1670 Binary |= ((RegN & 0x10) >> 4) << ARMII::N_BitShift; 1671 } else { 1672 Binary |= ((RegN & 0x1E) >> 1) << ARMII::RegRnShift; 1673 Binary |= (RegN & 0x01) << ARMII::N_BitShift; 1674 } 1675 return Binary; 1676 } 1677 1678 static unsigned encodeVFPRm(const MachineInstr &MI, unsigned OpIdx) { 1679 unsigned RegM = MI.getOperand(OpIdx).getReg(); 1680 unsigned Binary = 0; 1681 bool isSPVFP = ARM::SPRRegisterClass->contains(RegM); 1682 RegM = getARMRegisterNumbering(RegM); 1683 if (!isSPVFP) { 1684 Binary |= (RegM & 0x0F); 1685 Binary |= ((RegM & 0x10) >> 4) << ARMII::M_BitShift; 1686 } else { 1687 Binary |= ((RegM & 0x1E) >> 1); 1688 Binary |= (RegM & 0x01) << ARMII::M_BitShift; 1689 } 1690 return Binary; 1691 } 1692 1693 void ARMCodeEmitter::emitVFPArithInstruction(const MachineInstr &MI) { 1694 const MCInstrDesc &MCID = MI.getDesc(); 1695 1696 // Part of binary is determined by TableGn. 1697 unsigned Binary = getBinaryCodeForInstr(MI); 1698 1699 // Set the conditional execution predicate 1700 Binary |= II->getPredicate(&MI) << ARMII::CondShift; 1701 1702 unsigned OpIdx = 0; 1703 1704 // Encode Dd / Sd. 1705 Binary |= encodeVFPRd(MI, OpIdx++); 1706 1707 // If this is a two-address operand, skip it, e.g. FMACD. 1708 if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1) 1709 ++OpIdx; 1710 1711 // Encode Dn / Sn. 1712 if ((MCID.TSFlags & ARMII::FormMask) == ARMII::VFPBinaryFrm) 1713 Binary |= encodeVFPRn(MI, OpIdx++); 1714 1715 if (OpIdx == MCID.getNumOperands() || 1716 MCID.OpInfo[OpIdx].isPredicate() || 1717 MCID.OpInfo[OpIdx].isOptionalDef()) { 1718 // FCMPEZD etc. has only one operand. 1719 emitWordLE(Binary); 1720 return; 1721 } 1722 1723 // Encode Dm / Sm. 1724 Binary |= encodeVFPRm(MI, OpIdx); 1725 1726 emitWordLE(Binary); 1727 } 1728 1729 void ARMCodeEmitter::emitVFPConversionInstruction(const MachineInstr &MI) { 1730 const MCInstrDesc &MCID = MI.getDesc(); 1731 unsigned Form = MCID.TSFlags & ARMII::FormMask; 1732 1733 // Part of binary is determined by TableGn. 1734 unsigned Binary = getBinaryCodeForInstr(MI); 1735 1736 // Set the conditional execution predicate 1737 Binary |= II->getPredicate(&MI) << ARMII::CondShift; 1738 1739 switch (Form) { 1740 default: break; 1741 case ARMII::VFPConv1Frm: 1742 case ARMII::VFPConv2Frm: 1743 case ARMII::VFPConv3Frm: 1744 // Encode Dd / Sd. 1745 Binary |= encodeVFPRd(MI, 0); 1746 break; 1747 case ARMII::VFPConv4Frm: 1748 // Encode Dn / Sn. 1749 Binary |= encodeVFPRn(MI, 0); 1750 break; 1751 case ARMII::VFPConv5Frm: 1752 // Encode Dm / Sm. 1753 Binary |= encodeVFPRm(MI, 0); 1754 break; 1755 } 1756 1757 switch (Form) { 1758 default: break; 1759 case ARMII::VFPConv1Frm: 1760 // Encode Dm / Sm. 1761 Binary |= encodeVFPRm(MI, 1); 1762 break; 1763 case ARMII::VFPConv2Frm: 1764 case ARMII::VFPConv3Frm: 1765 // Encode Dn / Sn. 1766 Binary |= encodeVFPRn(MI, 1); 1767 break; 1768 case ARMII::VFPConv4Frm: 1769 case ARMII::VFPConv5Frm: 1770 // Encode Dd / Sd. 1771 Binary |= encodeVFPRd(MI, 1); 1772 break; 1773 } 1774 1775 if (Form == ARMII::VFPConv5Frm) 1776 // Encode Dn / Sn. 1777 Binary |= encodeVFPRn(MI, 2); 1778 else if (Form == ARMII::VFPConv3Frm) 1779 // Encode Dm / Sm. 1780 Binary |= encodeVFPRm(MI, 2); 1781 1782 emitWordLE(Binary); 1783 } 1784 1785 void ARMCodeEmitter::emitVFPLoadStoreInstruction(const MachineInstr &MI) { 1786 // Part of binary is determined by TableGn. 1787 unsigned Binary = getBinaryCodeForInstr(MI); 1788 1789 // Set the conditional execution predicate 1790 Binary |= II->getPredicate(&MI) << ARMII::CondShift; 1791 1792 if (MI.getOpcode() == ARM::VLDRS || MI.getOpcode() == ARM::VLDRD || 1793 MI.getOpcode() == ARM::VSTRS || MI.getOpcode() == ARM::VSTRD){ 1794 emitWordLE(Binary); 1795 return; 1796 } 1797 1798 unsigned OpIdx = 0; 1799 1800 // Encode Dd / Sd. 1801 Binary |= encodeVFPRd(MI, OpIdx++); 1802 1803 // Encode address base. 1804 const MachineOperand &Base = MI.getOperand(OpIdx++); 1805 Binary |= getMachineOpValue(MI, Base) << ARMII::RegRnShift; 1806 1807 // If there is a non-zero immediate offset, encode it. 1808 if (Base.isReg()) { 1809 const MachineOperand &Offset = MI.getOperand(OpIdx); 1810 if (unsigned ImmOffs = ARM_AM::getAM5Offset(Offset.getImm())) { 1811 if (ARM_AM::getAM5Op(Offset.getImm()) == ARM_AM::add) 1812 Binary |= 1 << ARMII::U_BitShift; 1813 Binary |= ImmOffs; 1814 emitWordLE(Binary); 1815 return; 1816 } 1817 } 1818 1819 // If immediate offset is omitted, default to +0. 1820 Binary |= 1 << ARMII::U_BitShift; 1821 1822 emitWordLE(Binary); 1823 } 1824 1825 void 1826 ARMCodeEmitter::emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI) { 1827 const MCInstrDesc &MCID = MI.getDesc(); 1828 bool IsUpdating = (MCID.TSFlags & ARMII::IndexModeMask) != 0; 1829 1830 // Part of binary is determined by TableGn. 1831 unsigned Binary = getBinaryCodeForInstr(MI); 1832 1833 // Set the conditional execution predicate 1834 Binary |= II->getPredicate(&MI) << ARMII::CondShift; 1835 1836 // Skip operand 0 of an instruction with base register update. 1837 unsigned OpIdx = 0; 1838 if (IsUpdating) 1839 ++OpIdx; 1840 1841 // Set base address operand 1842 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift; 1843 1844 // Set addressing mode by modifying bits U(23) and P(24) 1845 ARM_AM::AMSubMode Mode = ARM_AM::getLoadStoreMultipleSubMode(MI.getOpcode()); 1846 Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(Mode)); 1847 1848 // Set bit W(21) 1849 if (IsUpdating) 1850 Binary |= 0x1 << ARMII::W_BitShift; 1851 1852 // First register is encoded in Dd. 1853 Binary |= encodeVFPRd(MI, OpIdx+2); 1854 1855 // Count the number of registers. 1856 unsigned NumRegs = 1; 1857 for (unsigned i = OpIdx+3, e = MI.getNumOperands(); i != e; ++i) { 1858 const MachineOperand &MO = MI.getOperand(i); 1859 if (!MO.isReg() || MO.isImplicit()) 1860 break; 1861 ++NumRegs; 1862 } 1863 // Bit 8 will be set if <list> is consecutive 64-bit registers (e.g., D0) 1864 // Otherwise, it will be 0, in the case of 32-bit registers. 1865 if(Binary & 0x100) 1866 Binary |= NumRegs * 2; 1867 else 1868 Binary |= NumRegs; 1869 1870 emitWordLE(Binary); 1871 } 1872 1873 void ARMCodeEmitter::emitMiscInstruction(const MachineInstr &MI) { 1874 unsigned Opcode = MI.getDesc().Opcode; 1875 // Part of binary is determined by TableGn. 1876 unsigned Binary = getBinaryCodeForInstr(MI); 1877 1878 if (Opcode == ARM::FCONSTS) { 1879 unsigned Imm = getMachineOpValue(MI, 1); 1880 Binary &= ~(0x780000 >> 19); 1881 Binary |= (Imm & 0x780000) >> 19; 1882 Binary &= ~(0x3800000 >> 7); 1883 Binary |= (Imm & 0x3800000) >> 7; 1884 Binary = VFPThumb2PostEncoder(MI, Binary); 1885 } 1886 1887 // Set the conditional execution predicate 1888 Binary |= II->getPredicate(&MI) << ARMII::CondShift; 1889 1890 emitWordLE(Binary); 1891 } 1892 1893 static unsigned encodeNEONRd(const MachineInstr &MI, unsigned OpIdx) { 1894 unsigned RegD = MI.getOperand(OpIdx).getReg(); 1895 unsigned Binary = 0; 1896 RegD = getARMRegisterNumbering(RegD); 1897 Binary |= (RegD & 0xf) << ARMII::RegRdShift; 1898 Binary |= ((RegD >> 4) & 1) << ARMII::D_BitShift; 1899 return Binary; 1900 } 1901 1902 static unsigned encodeNEONRn(const MachineInstr &MI, unsigned OpIdx) { 1903 unsigned RegN = MI.getOperand(OpIdx).getReg(); 1904 unsigned Binary = 0; 1905 RegN = getARMRegisterNumbering(RegN); 1906 Binary |= (RegN & 0xf) << ARMII::RegRnShift; 1907 Binary |= ((RegN >> 4) & 1) << ARMII::N_BitShift; 1908 return Binary; 1909 } 1910 1911 static unsigned encodeNEONRm(const MachineInstr &MI, unsigned OpIdx) { 1912 unsigned RegM = MI.getOperand(OpIdx).getReg(); 1913 unsigned Binary = 0; 1914 RegM = getARMRegisterNumbering(RegM); 1915 Binary |= (RegM & 0xf); 1916 Binary |= ((RegM >> 4) & 1) << ARMII::M_BitShift; 1917 return Binary; 1918 } 1919 1920 /// convertNEONDataProcToThumb - Convert the ARM mode encoding for a NEON 1921 /// data-processing instruction to the corresponding Thumb encoding. 1922 static unsigned convertNEONDataProcToThumb(unsigned Binary) { 1923 assert((Binary & 0xfe000000) == 0xf2000000 && 1924 "not an ARM NEON data-processing instruction"); 1925 unsigned UBit = (Binary >> 24) & 1; 1926 return 0xef000000 | (UBit << 28) | (Binary & 0xffffff); 1927 } 1928 1929 void ARMCodeEmitter::emitNEONLaneInstruction(const MachineInstr &MI) { 1930 unsigned Binary = getBinaryCodeForInstr(MI); 1931 1932 unsigned RegTOpIdx, RegNOpIdx, LnOpIdx; 1933 const MCInstrDesc &MCID = MI.getDesc(); 1934 if ((MCID.TSFlags & ARMII::FormMask) == ARMII::NGetLnFrm) { 1935 RegTOpIdx = 0; 1936 RegNOpIdx = 1; 1937 LnOpIdx = 2; 1938 } else { // ARMII::NSetLnFrm 1939 RegTOpIdx = 2; 1940 RegNOpIdx = 0; 1941 LnOpIdx = 3; 1942 } 1943 1944 // Set the conditional execution predicate 1945 Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift; 1946 1947 unsigned RegT = MI.getOperand(RegTOpIdx).getReg(); 1948 RegT = getARMRegisterNumbering(RegT); 1949 Binary |= (RegT << ARMII::RegRdShift); 1950 Binary |= encodeNEONRn(MI, RegNOpIdx); 1951 1952 unsigned LaneShift; 1953 if ((Binary & (1 << 22)) != 0) 1954 LaneShift = 0; // 8-bit elements 1955 else if ((Binary & (1 << 5)) != 0) 1956 LaneShift = 1; // 16-bit elements 1957 else 1958 LaneShift = 2; // 32-bit elements 1959 1960 unsigned Lane = MI.getOperand(LnOpIdx).getImm() << LaneShift; 1961 unsigned Opc1 = Lane >> 2; 1962 unsigned Opc2 = Lane & 3; 1963 assert((Opc1 & 3) == 0 && "out-of-range lane number operand"); 1964 Binary |= (Opc1 << 21); 1965 Binary |= (Opc2 << 5); 1966 1967 emitWordLE(Binary); 1968 } 1969 1970 void ARMCodeEmitter::emitNEONDupInstruction(const MachineInstr &MI) { 1971 unsigned Binary = getBinaryCodeForInstr(MI); 1972 1973 // Set the conditional execution predicate 1974 Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift; 1975 1976 unsigned RegT = MI.getOperand(1).getReg(); 1977 RegT = getARMRegisterNumbering(RegT); 1978 Binary |= (RegT << ARMII::RegRdShift); 1979 Binary |= encodeNEONRn(MI, 0); 1980 emitWordLE(Binary); 1981 } 1982 1983 void ARMCodeEmitter::emitNEON1RegModImmInstruction(const MachineInstr &MI) { 1984 unsigned Binary = getBinaryCodeForInstr(MI); 1985 // Destination register is encoded in Dd. 1986 Binary |= encodeNEONRd(MI, 0); 1987 // Immediate fields: Op, Cmode, I, Imm3, Imm4 1988 unsigned Imm = MI.getOperand(1).getImm(); 1989 unsigned Op = (Imm >> 12) & 1; 1990 unsigned Cmode = (Imm >> 8) & 0xf; 1991 unsigned I = (Imm >> 7) & 1; 1992 unsigned Imm3 = (Imm >> 4) & 0x7; 1993 unsigned Imm4 = Imm & 0xf; 1994 Binary |= (I << 24) | (Imm3 << 16) | (Cmode << 8) | (Op << 5) | Imm4; 1995 if (IsThumb) 1996 Binary = convertNEONDataProcToThumb(Binary); 1997 emitWordLE(Binary); 1998 } 1999 2000 void ARMCodeEmitter::emitNEON2RegInstruction(const MachineInstr &MI) { 2001 const MCInstrDesc &MCID = MI.getDesc(); 2002 unsigned Binary = getBinaryCodeForInstr(MI); 2003 // Destination register is encoded in Dd; source register in Dm. 2004 unsigned OpIdx = 0; 2005 Binary |= encodeNEONRd(MI, OpIdx++); 2006 if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1) 2007 ++OpIdx; 2008 Binary |= encodeNEONRm(MI, OpIdx); 2009 if (IsThumb) 2010 Binary = convertNEONDataProcToThumb(Binary); 2011 // FIXME: This does not handle VDUPfdf or VDUPfqf. 2012 emitWordLE(Binary); 2013 } 2014 2015 void ARMCodeEmitter::emitNEON3RegInstruction(const MachineInstr &MI) { 2016 const MCInstrDesc &MCID = MI.getDesc(); 2017 unsigned Binary = getBinaryCodeForInstr(MI); 2018 // Destination register is encoded in Dd; source registers in Dn and Dm. 2019 unsigned OpIdx = 0; 2020 Binary |= encodeNEONRd(MI, OpIdx++); 2021 if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1) 2022 ++OpIdx; 2023 Binary |= encodeNEONRn(MI, OpIdx++); 2024 if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1) 2025 ++OpIdx; 2026 Binary |= encodeNEONRm(MI, OpIdx); 2027 if (IsThumb) 2028 Binary = convertNEONDataProcToThumb(Binary); 2029 // FIXME: This does not handle VMOVDneon or VMOVQ. 2030 emitWordLE(Binary); 2031 } 2032 2033 #include "ARMGenCodeEmitter.inc" 2034