Home | History | Annotate | Download | only in X86
      1 //===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the pass which converts floating point instructions from
     11 // pseudo registers into register stack instructions.  This pass uses live
     12 // variable information to indicate where the FPn registers are used and their
     13 // lifetimes.
     14 //
     15 // The x87 hardware tracks liveness of the stack registers, so it is necessary
     16 // to implement exact liveness tracking between basic blocks. The CFG edges are
     17 // partitioned into bundles where the same FP registers must be live in
     18 // identical stack positions. Instructions are inserted at the end of each basic
     19 // block to rearrange the live registers to match the outgoing bundle.
     20 //
     21 // This approach avoids splitting critical edges at the potential cost of more
     22 // live register shuffling instructions when critical edges are present.
     23 //
     24 //===----------------------------------------------------------------------===//
     25 
     26 #define DEBUG_TYPE "x86-codegen"
     27 #include "X86.h"
     28 #include "X86InstrInfo.h"
     29 #include "llvm/InlineAsm.h"
     30 #include "llvm/ADT/DepthFirstIterator.h"
     31 #include "llvm/ADT/SmallPtrSet.h"
     32 #include "llvm/ADT/SmallVector.h"
     33 #include "llvm/ADT/Statistic.h"
     34 #include "llvm/ADT/STLExtras.h"
     35 #include "llvm/CodeGen/EdgeBundles.h"
     36 #include "llvm/CodeGen/MachineFunctionPass.h"
     37 #include "llvm/CodeGen/MachineInstrBuilder.h"
     38 #include "llvm/CodeGen/MachineRegisterInfo.h"
     39 #include "llvm/CodeGen/Passes.h"
     40 #include "llvm/Support/Debug.h"
     41 #include "llvm/Support/ErrorHandling.h"
     42 #include "llvm/Support/raw_ostream.h"
     43 #include "llvm/Target/TargetInstrInfo.h"
     44 #include "llvm/Target/TargetMachine.h"
     45 #include <algorithm>
     46 using namespace llvm;
     47 
     48 STATISTIC(NumFXCH, "Number of fxch instructions inserted");
     49 STATISTIC(NumFP  , "Number of floating point instructions");
     50 
     51 namespace {
     52   struct FPS : public MachineFunctionPass {
     53     static char ID;
     54     FPS() : MachineFunctionPass(ID) {
     55       initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
     56       // This is really only to keep valgrind quiet.
     57       // The logic in isLive() is too much for it.
     58       memset(Stack, 0, sizeof(Stack));
     59       memset(RegMap, 0, sizeof(RegMap));
     60     }
     61 
     62     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
     63       AU.setPreservesCFG();
     64       AU.addRequired<EdgeBundles>();
     65       AU.addPreservedID(MachineLoopInfoID);
     66       AU.addPreservedID(MachineDominatorsID);
     67       MachineFunctionPass::getAnalysisUsage(AU);
     68     }
     69 
     70     virtual bool runOnMachineFunction(MachineFunction &MF);
     71 
     72     virtual const char *getPassName() const { return "X86 FP Stackifier"; }
     73 
     74   private:
     75     const TargetInstrInfo *TII; // Machine instruction info.
     76 
     77     // Two CFG edges are related if they leave the same block, or enter the same
     78     // block. The transitive closure of an edge under this relation is a
     79     // LiveBundle. It represents a set of CFG edges where the live FP stack
     80     // registers must be allocated identically in the x87 stack.
     81     //
     82     // A LiveBundle is usually all the edges leaving a block, or all the edges
     83     // entering a block, but it can contain more edges if critical edges are
     84     // present.
     85     //
     86     // The set of live FP registers in a LiveBundle is calculated by bundleCFG,
     87     // but the exact mapping of FP registers to stack slots is fixed later.
     88     struct LiveBundle {
     89       // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c.
     90       unsigned Mask;
     91 
     92       // Number of pre-assigned live registers in FixStack. This is 0 when the
     93       // stack order has not yet been fixed.
     94       unsigned FixCount;
     95 
     96       // Assigned stack order for live-in registers.
     97       // FixStack[i] == getStackEntry(i) for all i < FixCount.
     98       unsigned char FixStack[8];
     99 
    100       LiveBundle() : Mask(0), FixCount(0) {}
    101 
    102       // Have the live registers been assigned a stack order yet?
    103       bool isFixed() const { return !Mask || FixCount; }
    104     };
    105 
    106     // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges
    107     // with no live FP registers.
    108     SmallVector<LiveBundle, 8> LiveBundles;
    109 
    110     // The edge bundle analysis provides indices into the LiveBundles vector.
    111     EdgeBundles *Bundles;
    112 
    113     // Return a bitmask of FP registers in block's live-in list.
    114     unsigned calcLiveInMask(MachineBasicBlock *MBB) {
    115       unsigned Mask = 0;
    116       for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
    117            E = MBB->livein_end(); I != E; ++I) {
    118         unsigned Reg = *I - X86::FP0;
    119         if (Reg < 8)
    120           Mask |= 1 << Reg;
    121       }
    122       return Mask;
    123     }
    124 
    125     // Partition all the CFG edges into LiveBundles.
    126     void bundleCFG(MachineFunction &MF);
    127 
    128     MachineBasicBlock *MBB;     // Current basic block
    129 
    130     // The hardware keeps track of how many FP registers are live, so we have
    131     // to model that exactly. Usually, each live register corresponds to an
    132     // FP<n> register, but when dealing with calls, returns, and inline
    133     // assembly, it is sometimes neccesary to have live scratch registers.
    134     unsigned Stack[8];          // FP<n> Registers in each stack slot...
    135     unsigned StackTop;          // The current top of the FP stack.
    136 
    137     enum {
    138       NumFPRegs = 16            // Including scratch pseudo-registers.
    139     };
    140 
    141     // For each live FP<n> register, point to its Stack[] entry.
    142     // The first entries correspond to FP0-FP6, the rest are scratch registers
    143     // used when we need slightly different live registers than what the
    144     // register allocator thinks.
    145     unsigned RegMap[NumFPRegs];
    146 
    147     // Pending fixed registers - Inline assembly needs FP registers to appear
    148     // in fixed stack slot positions. This is handled by copying FP registers
    149     // to ST registers before the instruction, and copying back after the
    150     // instruction.
    151     //
    152     // This is modeled with pending ST registers. NumPendingSTs is the number
    153     // of ST registers (ST0-STn) we are tracking. PendingST[n] points to an FP
    154     // register that holds the ST value. The ST registers are not moved into
    155     // place until immediately before the instruction that needs them.
    156     //
    157     // It can happen that we need an ST register to be live when no FP register
    158     // holds the value:
    159     //
    160     //   %ST0 = COPY %FP4<kill>
    161     //
    162     // When that happens, we allocate a scratch FP register to hold the ST
    163     // value. That means every register in PendingST must be live.
    164 
    165     unsigned NumPendingSTs;
    166     unsigned char PendingST[8];
    167 
    168     // Set up our stack model to match the incoming registers to MBB.
    169     void setupBlockStack();
    170 
    171     // Shuffle live registers to match the expectations of successor blocks.
    172     void finishBlockStack();
    173 
    174     void dumpStack() const {
    175       dbgs() << "Stack contents:";
    176       for (unsigned i = 0; i != StackTop; ++i) {
    177         dbgs() << " FP" << Stack[i];
    178         assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
    179       }
    180       for (unsigned i = 0; i != NumPendingSTs; ++i)
    181         dbgs() << ", ST" << i << " in FP" << unsigned(PendingST[i]);
    182       dbgs() << "\n";
    183     }
    184 
    185     /// getSlot - Return the stack slot number a particular register number is
    186     /// in.
    187     unsigned getSlot(unsigned RegNo) const {
    188       assert(RegNo < NumFPRegs && "Regno out of range!");
    189       return RegMap[RegNo];
    190     }
    191 
    192     /// isLive - Is RegNo currently live in the stack?
    193     bool isLive(unsigned RegNo) const {
    194       unsigned Slot = getSlot(RegNo);
    195       return Slot < StackTop && Stack[Slot] == RegNo;
    196     }
    197 
    198     /// getScratchReg - Return an FP register that is not currently in use.
    199     unsigned getScratchReg() {
    200       for (int i = NumFPRegs - 1; i >= 8; --i)
    201         if (!isLive(i))
    202           return i;
    203       llvm_unreachable("Ran out of scratch FP registers");
    204     }
    205 
    206     /// isScratchReg - Returns trus if RegNo is a scratch FP register.
    207     bool isScratchReg(unsigned RegNo) {
    208       return RegNo > 8 && RegNo < NumFPRegs;
    209     }
    210 
    211     /// getStackEntry - Return the X86::FP<n> register in register ST(i).
    212     unsigned getStackEntry(unsigned STi) const {
    213       if (STi >= StackTop)
    214         report_fatal_error("Access past stack top!");
    215       return Stack[StackTop-1-STi];
    216     }
    217 
    218     /// getSTReg - Return the X86::ST(i) register which contains the specified
    219     /// FP<RegNo> register.
    220     unsigned getSTReg(unsigned RegNo) const {
    221       return StackTop - 1 - getSlot(RegNo) + X86::ST0;
    222     }
    223 
    224     // pushReg - Push the specified FP<n> register onto the stack.
    225     void pushReg(unsigned Reg) {
    226       assert(Reg < NumFPRegs && "Register number out of range!");
    227       if (StackTop >= 8)
    228         report_fatal_error("Stack overflow!");
    229       Stack[StackTop] = Reg;
    230       RegMap[Reg] = StackTop++;
    231     }
    232 
    233     bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
    234     void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
    235       DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
    236       if (isAtTop(RegNo)) return;
    237 
    238       unsigned STReg = getSTReg(RegNo);
    239       unsigned RegOnTop = getStackEntry(0);
    240 
    241       // Swap the slots the regs are in.
    242       std::swap(RegMap[RegNo], RegMap[RegOnTop]);
    243 
    244       // Swap stack slot contents.
    245       if (RegMap[RegOnTop] >= StackTop)
    246         report_fatal_error("Access past stack top!");
    247       std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
    248 
    249       // Emit an fxch to update the runtime processors version of the state.
    250       BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg);
    251       ++NumFXCH;
    252     }
    253 
    254     void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
    255       DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
    256       unsigned STReg = getSTReg(RegNo);
    257       pushReg(AsReg);   // New register on top of stack
    258 
    259       BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg);
    260     }
    261 
    262     /// duplicatePendingSTBeforeKill - The instruction at I is about to kill
    263     /// RegNo. If any PendingST registers still need the RegNo value, duplicate
    264     /// them to new scratch registers.
    265     void duplicatePendingSTBeforeKill(unsigned RegNo, MachineInstr *I) {
    266       for (unsigned i = 0; i != NumPendingSTs; ++i) {
    267         if (PendingST[i] != RegNo)
    268           continue;
    269         unsigned SR = getScratchReg();
    270         DEBUG(dbgs() << "Duplicating pending ST" << i
    271                      << " in FP" << RegNo << " to FP" << SR << '\n');
    272         duplicateToTop(RegNo, SR, I);
    273         PendingST[i] = SR;
    274       }
    275     }
    276 
    277     /// popStackAfter - Pop the current value off of the top of the FP stack
    278     /// after the specified instruction.
    279     void popStackAfter(MachineBasicBlock::iterator &I);
    280 
    281     /// freeStackSlotAfter - Free the specified register from the register
    282     /// stack, so that it is no longer in a register.  If the register is
    283     /// currently at the top of the stack, we just pop the current instruction,
    284     /// otherwise we store the current top-of-stack into the specified slot,
    285     /// then pop the top of stack.
    286     void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
    287 
    288     /// freeStackSlotBefore - Just the pop, no folding. Return the inserted
    289     /// instruction.
    290     MachineBasicBlock::iterator
    291     freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo);
    292 
    293     /// Adjust the live registers to be the set in Mask.
    294     void adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I);
    295 
    296     /// Shuffle the top FixCount stack entries such that FP reg FixStack[0] is
    297     /// st(0), FP reg FixStack[1] is st(1) etc.
    298     void shuffleStackTop(const unsigned char *FixStack, unsigned FixCount,
    299                          MachineBasicBlock::iterator I);
    300 
    301     bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
    302 
    303     void handleZeroArgFP(MachineBasicBlock::iterator &I);
    304     void handleOneArgFP(MachineBasicBlock::iterator &I);
    305     void handleOneArgFPRW(MachineBasicBlock::iterator &I);
    306     void handleTwoArgFP(MachineBasicBlock::iterator &I);
    307     void handleCompareFP(MachineBasicBlock::iterator &I);
    308     void handleCondMovFP(MachineBasicBlock::iterator &I);
    309     void handleSpecialFP(MachineBasicBlock::iterator &I);
    310 
    311     // Check if a COPY instruction is using FP registers.
    312     bool isFPCopy(MachineInstr *MI) {
    313       unsigned DstReg = MI->getOperand(0).getReg();
    314       unsigned SrcReg = MI->getOperand(1).getReg();
    315 
    316       return X86::RFP80RegClass.contains(DstReg) ||
    317         X86::RFP80RegClass.contains(SrcReg);
    318     }
    319   };
    320   char FPS::ID = 0;
    321 }
    322 
    323 FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
    324 
    325 /// getFPReg - Return the X86::FPx register number for the specified operand.
    326 /// For example, this returns 3 for X86::FP3.
    327 static unsigned getFPReg(const MachineOperand &MO) {
    328   assert(MO.isReg() && "Expected an FP register!");
    329   unsigned Reg = MO.getReg();
    330   assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
    331   return Reg - X86::FP0;
    332 }
    333 
    334 /// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
    335 /// register references into FP stack references.
    336 ///
    337 bool FPS::runOnMachineFunction(MachineFunction &MF) {
    338   // We only need to run this pass if there are any FP registers used in this
    339   // function.  If it is all integer, there is nothing for us to do!
    340   bool FPIsUsed = false;
    341 
    342   assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!");
    343   for (unsigned i = 0; i <= 6; ++i)
    344     if (MF.getRegInfo().isPhysRegUsed(X86::FP0+i)) {
    345       FPIsUsed = true;
    346       break;
    347     }
    348 
    349   // Early exit.
    350   if (!FPIsUsed) return false;
    351 
    352   Bundles = &getAnalysis<EdgeBundles>();
    353   TII = MF.getTarget().getInstrInfo();
    354 
    355   // Prepare cross-MBB liveness.
    356   bundleCFG(MF);
    357 
    358   StackTop = 0;
    359 
    360   // Process the function in depth first order so that we process at least one
    361   // of the predecessors for every reachable block in the function.
    362   SmallPtrSet<MachineBasicBlock*, 8> Processed;
    363   MachineBasicBlock *Entry = MF.begin();
    364 
    365   bool Changed = false;
    366   for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*, 8> >
    367          I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
    368        I != E; ++I)
    369     Changed |= processBasicBlock(MF, **I);
    370 
    371   // Process any unreachable blocks in arbitrary order now.
    372   if (MF.size() != Processed.size())
    373     for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB)
    374       if (Processed.insert(BB))
    375         Changed |= processBasicBlock(MF, *BB);
    376 
    377   LiveBundles.clear();
    378 
    379   return Changed;
    380 }
    381 
    382 /// bundleCFG - Scan all the basic blocks to determine consistent live-in and
    383 /// live-out sets for the FP registers. Consistent means that the set of
    384 /// registers live-out from a block is identical to the live-in set of all
    385 /// successors. This is not enforced by the normal live-in lists since
    386 /// registers may be implicitly defined, or not used by all successors.
    387 void FPS::bundleCFG(MachineFunction &MF) {
    388   assert(LiveBundles.empty() && "Stale data in LiveBundles");
    389   LiveBundles.resize(Bundles->getNumBundles());
    390 
    391   // Gather the actual live-in masks for all MBBs.
    392   for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
    393     MachineBasicBlock *MBB = I;
    394     const unsigned Mask = calcLiveInMask(MBB);
    395     if (!Mask)
    396       continue;
    397     // Update MBB ingoing bundle mask.
    398     LiveBundles[Bundles->getBundle(MBB->getNumber(), false)].Mask |= Mask;
    399   }
    400 }
    401 
    402 /// processBasicBlock - Loop over all of the instructions in the basic block,
    403 /// transforming FP instructions into their stack form.
    404 ///
    405 bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
    406   bool Changed = false;
    407   MBB = &BB;
    408   NumPendingSTs = 0;
    409 
    410   setupBlockStack();
    411 
    412   for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
    413     MachineInstr *MI = I;
    414     uint64_t Flags = MI->getDesc().TSFlags;
    415 
    416     unsigned FPInstClass = Flags & X86II::FPTypeMask;
    417     if (MI->isInlineAsm())
    418       FPInstClass = X86II::SpecialFP;
    419 
    420     if (MI->isCopy() && isFPCopy(MI))
    421       FPInstClass = X86II::SpecialFP;
    422 
    423     if (MI->isImplicitDef() &&
    424         X86::RFP80RegClass.contains(MI->getOperand(0).getReg()))
    425       FPInstClass = X86II::SpecialFP;
    426 
    427     if (FPInstClass == X86II::NotFP)
    428       continue;  // Efficiently ignore non-fp insts!
    429 
    430     MachineInstr *PrevMI = 0;
    431     if (I != BB.begin())
    432       PrevMI = prior(I);
    433 
    434     ++NumFP;  // Keep track of # of pseudo instrs
    435     DEBUG(dbgs() << "\nFPInst:\t" << *MI);
    436 
    437     // Get dead variables list now because the MI pointer may be deleted as part
    438     // of processing!
    439     SmallVector<unsigned, 8> DeadRegs;
    440     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    441       const MachineOperand &MO = MI->getOperand(i);
    442       if (MO.isReg() && MO.isDead())
    443         DeadRegs.push_back(MO.getReg());
    444     }
    445 
    446     switch (FPInstClass) {
    447     case X86II::ZeroArgFP:  handleZeroArgFP(I); break;
    448     case X86II::OneArgFP:   handleOneArgFP(I);  break;  // fstp ST(0)
    449     case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
    450     case X86II::TwoArgFP:   handleTwoArgFP(I);  break;
    451     case X86II::CompareFP:  handleCompareFP(I); break;
    452     case X86II::CondMovFP:  handleCondMovFP(I); break;
    453     case X86II::SpecialFP:  handleSpecialFP(I); break;
    454     default: llvm_unreachable("Unknown FP Type!");
    455     }
    456 
    457     // Check to see if any of the values defined by this instruction are dead
    458     // after definition.  If so, pop them.
    459     for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
    460       unsigned Reg = DeadRegs[i];
    461       if (Reg >= X86::FP0 && Reg <= X86::FP6) {
    462         DEBUG(dbgs() << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
    463         freeStackSlotAfter(I, Reg-X86::FP0);
    464       }
    465     }
    466 
    467     // Print out all of the instructions expanded to if -debug
    468     DEBUG(
    469       MachineBasicBlock::iterator PrevI(PrevMI);
    470       if (I == PrevI) {
    471         dbgs() << "Just deleted pseudo instruction\n";
    472       } else {
    473         MachineBasicBlock::iterator Start = I;
    474         // Rewind to first instruction newly inserted.
    475         while (Start != BB.begin() && prior(Start) != PrevI) --Start;
    476         dbgs() << "Inserted instructions:\n\t";
    477         Start->print(dbgs(), &MF.getTarget());
    478         while (++Start != llvm::next(I)) {}
    479       }
    480       dumpStack();
    481     );
    482     (void)PrevMI;
    483 
    484     Changed = true;
    485   }
    486 
    487   finishBlockStack();
    488 
    489   return Changed;
    490 }
    491 
    492 /// setupBlockStack - Use the live bundles to set up our model of the stack
    493 /// to match predecessors' live out stack.
    494 void FPS::setupBlockStack() {
    495   DEBUG(dbgs() << "\nSetting up live-ins for BB#" << MBB->getNumber()
    496                << " derived from " << MBB->getName() << ".\n");
    497   StackTop = 0;
    498   // Get the live-in bundle for MBB.
    499   const LiveBundle &Bundle =
    500     LiveBundles[Bundles->getBundle(MBB->getNumber(), false)];
    501 
    502   if (!Bundle.Mask) {
    503     DEBUG(dbgs() << "Block has no FP live-ins.\n");
    504     return;
    505   }
    506 
    507   // Depth-first iteration should ensure that we always have an assigned stack.
    508   assert(Bundle.isFixed() && "Reached block before any predecessors");
    509 
    510   // Push the fixed live-in registers.
    511   for (unsigned i = Bundle.FixCount; i > 0; --i) {
    512     MBB->addLiveIn(X86::ST0+i-1);
    513     DEBUG(dbgs() << "Live-in st(" << (i-1) << "): %FP"
    514                  << unsigned(Bundle.FixStack[i-1]) << '\n');
    515     pushReg(Bundle.FixStack[i-1]);
    516   }
    517 
    518   // Kill off unwanted live-ins. This can happen with a critical edge.
    519   // FIXME: We could keep these live registers around as zombies. They may need
    520   // to be revived at the end of a short block. It might save a few instrs.
    521   adjustLiveRegs(calcLiveInMask(MBB), MBB->begin());
    522   DEBUG(MBB->dump());
    523 }
    524 
    525 /// finishBlockStack - Revive live-outs that are implicitly defined out of
    526 /// MBB. Shuffle live registers to match the expected fixed stack of any
    527 /// predecessors, and ensure that all predecessors are expecting the same
    528 /// stack.
    529 void FPS::finishBlockStack() {
    530   // The RET handling below takes care of return blocks for us.
    531   if (MBB->succ_empty())
    532     return;
    533 
    534   DEBUG(dbgs() << "Setting up live-outs for BB#" << MBB->getNumber()
    535                << " derived from " << MBB->getName() << ".\n");
    536 
    537   // Get MBB's live-out bundle.
    538   unsigned BundleIdx = Bundles->getBundle(MBB->getNumber(), true);
    539   LiveBundle &Bundle = LiveBundles[BundleIdx];
    540 
    541   // We may need to kill and define some registers to match successors.
    542   // FIXME: This can probably be combined with the shuffle below.
    543   MachineBasicBlock::iterator Term = MBB->getFirstTerminator();
    544   adjustLiveRegs(Bundle.Mask, Term);
    545 
    546   if (!Bundle.Mask) {
    547     DEBUG(dbgs() << "No live-outs.\n");
    548     return;
    549   }
    550 
    551   // Has the stack order been fixed yet?
    552   DEBUG(dbgs() << "LB#" << BundleIdx << ": ");
    553   if (Bundle.isFixed()) {
    554     DEBUG(dbgs() << "Shuffling stack to match.\n");
    555     shuffleStackTop(Bundle.FixStack, Bundle.FixCount, Term);
    556   } else {
    557     // Not fixed yet, we get to choose.
    558     DEBUG(dbgs() << "Fixing stack order now.\n");
    559     Bundle.FixCount = StackTop;
    560     for (unsigned i = 0; i < StackTop; ++i)
    561       Bundle.FixStack[i] = getStackEntry(i);
    562   }
    563 }
    564 
    565 
    566 //===----------------------------------------------------------------------===//
    567 // Efficient Lookup Table Support
    568 //===----------------------------------------------------------------------===//
    569 
    570 namespace {
    571   struct TableEntry {
    572     uint16_t from;
    573     uint16_t to;
    574     bool operator<(const TableEntry &TE) const { return from < TE.from; }
    575     friend bool operator<(const TableEntry &TE, unsigned V) {
    576       return TE.from < V;
    577     }
    578     friend bool LLVM_ATTRIBUTE_USED operator<(unsigned V,
    579                                               const TableEntry &TE) {
    580       return V < TE.from;
    581     }
    582   };
    583 }
    584 
    585 #ifndef NDEBUG
    586 static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
    587   for (unsigned i = 0; i != NumEntries-1; ++i)
    588     if (!(Table[i] < Table[i+1])) return false;
    589   return true;
    590 }
    591 #endif
    592 
    593 static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
    594   const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
    595   if (I != Table+N && I->from == Opcode)
    596     return I->to;
    597   return -1;
    598 }
    599 
    600 #ifdef NDEBUG
    601 #define ASSERT_SORTED(TABLE)
    602 #else
    603 #define ASSERT_SORTED(TABLE)                                              \
    604   { static bool TABLE##Checked = false;                                   \
    605     if (!TABLE##Checked) {                                                \
    606        assert(TableIsSorted(TABLE, array_lengthof(TABLE)) &&              \
    607               "All lookup tables must be sorted for efficient access!");  \
    608        TABLE##Checked = true;                                             \
    609     }                                                                     \
    610   }
    611 #endif
    612 
    613 //===----------------------------------------------------------------------===//
    614 // Register File -> Register Stack Mapping Methods
    615 //===----------------------------------------------------------------------===//
    616 
    617 // OpcodeTable - Sorted map of register instructions to their stack version.
    618 // The first element is an register file pseudo instruction, the second is the
    619 // concrete X86 instruction which uses the register stack.
    620 //
    621 static const TableEntry OpcodeTable[] = {
    622   { X86::ABS_Fp32     , X86::ABS_F     },
    623   { X86::ABS_Fp64     , X86::ABS_F     },
    624   { X86::ABS_Fp80     , X86::ABS_F     },
    625   { X86::ADD_Fp32m    , X86::ADD_F32m  },
    626   { X86::ADD_Fp64m    , X86::ADD_F64m  },
    627   { X86::ADD_Fp64m32  , X86::ADD_F32m  },
    628   { X86::ADD_Fp80m32  , X86::ADD_F32m  },
    629   { X86::ADD_Fp80m64  , X86::ADD_F64m  },
    630   { X86::ADD_FpI16m32 , X86::ADD_FI16m },
    631   { X86::ADD_FpI16m64 , X86::ADD_FI16m },
    632   { X86::ADD_FpI16m80 , X86::ADD_FI16m },
    633   { X86::ADD_FpI32m32 , X86::ADD_FI32m },
    634   { X86::ADD_FpI32m64 , X86::ADD_FI32m },
    635   { X86::ADD_FpI32m80 , X86::ADD_FI32m },
    636   { X86::CHS_Fp32     , X86::CHS_F     },
    637   { X86::CHS_Fp64     , X86::CHS_F     },
    638   { X86::CHS_Fp80     , X86::CHS_F     },
    639   { X86::CMOVBE_Fp32  , X86::CMOVBE_F  },
    640   { X86::CMOVBE_Fp64  , X86::CMOVBE_F  },
    641   { X86::CMOVBE_Fp80  , X86::CMOVBE_F  },
    642   { X86::CMOVB_Fp32   , X86::CMOVB_F   },
    643   { X86::CMOVB_Fp64   , X86::CMOVB_F  },
    644   { X86::CMOVB_Fp80   , X86::CMOVB_F  },
    645   { X86::CMOVE_Fp32   , X86::CMOVE_F  },
    646   { X86::CMOVE_Fp64   , X86::CMOVE_F   },
    647   { X86::CMOVE_Fp80   , X86::CMOVE_F   },
    648   { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
    649   { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
    650   { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
    651   { X86::CMOVNB_Fp32  , X86::CMOVNB_F  },
    652   { X86::CMOVNB_Fp64  , X86::CMOVNB_F  },
    653   { X86::CMOVNB_Fp80  , X86::CMOVNB_F  },
    654   { X86::CMOVNE_Fp32  , X86::CMOVNE_F  },
    655   { X86::CMOVNE_Fp64  , X86::CMOVNE_F  },
    656   { X86::CMOVNE_Fp80  , X86::CMOVNE_F  },
    657   { X86::CMOVNP_Fp32  , X86::CMOVNP_F  },
    658   { X86::CMOVNP_Fp64  , X86::CMOVNP_F  },
    659   { X86::CMOVNP_Fp80  , X86::CMOVNP_F  },
    660   { X86::CMOVP_Fp32   , X86::CMOVP_F   },
    661   { X86::CMOVP_Fp64   , X86::CMOVP_F   },
    662   { X86::CMOVP_Fp80   , X86::CMOVP_F   },
    663   { X86::COS_Fp32     , X86::COS_F     },
    664   { X86::COS_Fp64     , X86::COS_F     },
    665   { X86::COS_Fp80     , X86::COS_F     },
    666   { X86::DIVR_Fp32m   , X86::DIVR_F32m },
    667   { X86::DIVR_Fp64m   , X86::DIVR_F64m },
    668   { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
    669   { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
    670   { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
    671   { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
    672   { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
    673   { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
    674   { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
    675   { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
    676   { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
    677   { X86::DIV_Fp32m    , X86::DIV_F32m  },
    678   { X86::DIV_Fp64m    , X86::DIV_F64m  },
    679   { X86::DIV_Fp64m32  , X86::DIV_F32m  },
    680   { X86::DIV_Fp80m32  , X86::DIV_F32m  },
    681   { X86::DIV_Fp80m64  , X86::DIV_F64m  },
    682   { X86::DIV_FpI16m32 , X86::DIV_FI16m },
    683   { X86::DIV_FpI16m64 , X86::DIV_FI16m },
    684   { X86::DIV_FpI16m80 , X86::DIV_FI16m },
    685   { X86::DIV_FpI32m32 , X86::DIV_FI32m },
    686   { X86::DIV_FpI32m64 , X86::DIV_FI32m },
    687   { X86::DIV_FpI32m80 , X86::DIV_FI32m },
    688   { X86::ILD_Fp16m32  , X86::ILD_F16m  },
    689   { X86::ILD_Fp16m64  , X86::ILD_F16m  },
    690   { X86::ILD_Fp16m80  , X86::ILD_F16m  },
    691   { X86::ILD_Fp32m32  , X86::ILD_F32m  },
    692   { X86::ILD_Fp32m64  , X86::ILD_F32m  },
    693   { X86::ILD_Fp32m80  , X86::ILD_F32m  },
    694   { X86::ILD_Fp64m32  , X86::ILD_F64m  },
    695   { X86::ILD_Fp64m64  , X86::ILD_F64m  },
    696   { X86::ILD_Fp64m80  , X86::ILD_F64m  },
    697   { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
    698   { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
    699   { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
    700   { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
    701   { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
    702   { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
    703   { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
    704   { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
    705   { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
    706   { X86::IST_Fp16m32  , X86::IST_F16m  },
    707   { X86::IST_Fp16m64  , X86::IST_F16m  },
    708   { X86::IST_Fp16m80  , X86::IST_F16m  },
    709   { X86::IST_Fp32m32  , X86::IST_F32m  },
    710   { X86::IST_Fp32m64  , X86::IST_F32m  },
    711   { X86::IST_Fp32m80  , X86::IST_F32m  },
    712   { X86::IST_Fp64m32  , X86::IST_FP64m },
    713   { X86::IST_Fp64m64  , X86::IST_FP64m },
    714   { X86::IST_Fp64m80  , X86::IST_FP64m },
    715   { X86::LD_Fp032     , X86::LD_F0     },
    716   { X86::LD_Fp064     , X86::LD_F0     },
    717   { X86::LD_Fp080     , X86::LD_F0     },
    718   { X86::LD_Fp132     , X86::LD_F1     },
    719   { X86::LD_Fp164     , X86::LD_F1     },
    720   { X86::LD_Fp180     , X86::LD_F1     },
    721   { X86::LD_Fp32m     , X86::LD_F32m   },
    722   { X86::LD_Fp32m64   , X86::LD_F32m   },
    723   { X86::LD_Fp32m80   , X86::LD_F32m   },
    724   { X86::LD_Fp64m     , X86::LD_F64m   },
    725   { X86::LD_Fp64m80   , X86::LD_F64m   },
    726   { X86::LD_Fp80m     , X86::LD_F80m   },
    727   { X86::MUL_Fp32m    , X86::MUL_F32m  },
    728   { X86::MUL_Fp64m    , X86::MUL_F64m  },
    729   { X86::MUL_Fp64m32  , X86::MUL_F32m  },
    730   { X86::MUL_Fp80m32  , X86::MUL_F32m  },
    731   { X86::MUL_Fp80m64  , X86::MUL_F64m  },
    732   { X86::MUL_FpI16m32 , X86::MUL_FI16m },
    733   { X86::MUL_FpI16m64 , X86::MUL_FI16m },
    734   { X86::MUL_FpI16m80 , X86::MUL_FI16m },
    735   { X86::MUL_FpI32m32 , X86::MUL_FI32m },
    736   { X86::MUL_FpI32m64 , X86::MUL_FI32m },
    737   { X86::MUL_FpI32m80 , X86::MUL_FI32m },
    738   { X86::SIN_Fp32     , X86::SIN_F     },
    739   { X86::SIN_Fp64     , X86::SIN_F     },
    740   { X86::SIN_Fp80     , X86::SIN_F     },
    741   { X86::SQRT_Fp32    , X86::SQRT_F    },
    742   { X86::SQRT_Fp64    , X86::SQRT_F    },
    743   { X86::SQRT_Fp80    , X86::SQRT_F    },
    744   { X86::ST_Fp32m     , X86::ST_F32m   },
    745   { X86::ST_Fp64m     , X86::ST_F64m   },
    746   { X86::ST_Fp64m32   , X86::ST_F32m   },
    747   { X86::ST_Fp80m32   , X86::ST_F32m   },
    748   { X86::ST_Fp80m64   , X86::ST_F64m   },
    749   { X86::ST_FpP80m    , X86::ST_FP80m  },
    750   { X86::SUBR_Fp32m   , X86::SUBR_F32m },
    751   { X86::SUBR_Fp64m   , X86::SUBR_F64m },
    752   { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
    753   { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
    754   { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
    755   { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
    756   { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
    757   { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
    758   { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
    759   { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
    760   { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
    761   { X86::SUB_Fp32m    , X86::SUB_F32m  },
    762   { X86::SUB_Fp64m    , X86::SUB_F64m  },
    763   { X86::SUB_Fp64m32  , X86::SUB_F32m  },
    764   { X86::SUB_Fp80m32  , X86::SUB_F32m  },
    765   { X86::SUB_Fp80m64  , X86::SUB_F64m  },
    766   { X86::SUB_FpI16m32 , X86::SUB_FI16m },
    767   { X86::SUB_FpI16m64 , X86::SUB_FI16m },
    768   { X86::SUB_FpI16m80 , X86::SUB_FI16m },
    769   { X86::SUB_FpI32m32 , X86::SUB_FI32m },
    770   { X86::SUB_FpI32m64 , X86::SUB_FI32m },
    771   { X86::SUB_FpI32m80 , X86::SUB_FI32m },
    772   { X86::TST_Fp32     , X86::TST_F     },
    773   { X86::TST_Fp64     , X86::TST_F     },
    774   { X86::TST_Fp80     , X86::TST_F     },
    775   { X86::UCOM_FpIr32  , X86::UCOM_FIr  },
    776   { X86::UCOM_FpIr64  , X86::UCOM_FIr  },
    777   { X86::UCOM_FpIr80  , X86::UCOM_FIr  },
    778   { X86::UCOM_Fpr32   , X86::UCOM_Fr   },
    779   { X86::UCOM_Fpr64   , X86::UCOM_Fr   },
    780   { X86::UCOM_Fpr80   , X86::UCOM_Fr   },
    781 };
    782 
    783 static unsigned getConcreteOpcode(unsigned Opcode) {
    784   ASSERT_SORTED(OpcodeTable);
    785   int Opc = Lookup(OpcodeTable, array_lengthof(OpcodeTable), Opcode);
    786   assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
    787   return Opc;
    788 }
    789 
    790 //===----------------------------------------------------------------------===//
    791 // Helper Methods
    792 //===----------------------------------------------------------------------===//
    793 
    794 // PopTable - Sorted map of instructions to their popping version.  The first
    795 // element is an instruction, the second is the version which pops.
    796 //
    797 static const TableEntry PopTable[] = {
    798   { X86::ADD_FrST0 , X86::ADD_FPrST0  },
    799 
    800   { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
    801   { X86::DIV_FrST0 , X86::DIV_FPrST0  },
    802 
    803   { X86::IST_F16m  , X86::IST_FP16m   },
    804   { X86::IST_F32m  , X86::IST_FP32m   },
    805 
    806   { X86::MUL_FrST0 , X86::MUL_FPrST0  },
    807 
    808   { X86::ST_F32m   , X86::ST_FP32m    },
    809   { X86::ST_F64m   , X86::ST_FP64m    },
    810   { X86::ST_Frr    , X86::ST_FPrr     },
    811 
    812   { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
    813   { X86::SUB_FrST0 , X86::SUB_FPrST0  },
    814 
    815   { X86::UCOM_FIr  , X86::UCOM_FIPr   },
    816 
    817   { X86::UCOM_FPr  , X86::UCOM_FPPr   },
    818   { X86::UCOM_Fr   , X86::UCOM_FPr    },
    819 };
    820 
    821 /// popStackAfter - Pop the current value off of the top of the FP stack after
    822 /// the specified instruction.  This attempts to be sneaky and combine the pop
    823 /// into the instruction itself if possible.  The iterator is left pointing to
    824 /// the last instruction, be it a new pop instruction inserted, or the old
    825 /// instruction if it was modified in place.
    826 ///
    827 void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
    828   MachineInstr* MI = I;
    829   DebugLoc dl = MI->getDebugLoc();
    830   ASSERT_SORTED(PopTable);
    831   if (StackTop == 0)
    832     report_fatal_error("Cannot pop empty stack!");
    833   RegMap[Stack[--StackTop]] = ~0;     // Update state
    834 
    835   // Check to see if there is a popping version of this instruction...
    836   int Opcode = Lookup(PopTable, array_lengthof(PopTable), I->getOpcode());
    837   if (Opcode != -1) {
    838     I->setDesc(TII->get(Opcode));
    839     if (Opcode == X86::UCOM_FPPr)
    840       I->RemoveOperand(0);
    841   } else {    // Insert an explicit pop
    842     I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
    843   }
    844 }
    845 
    846 /// freeStackSlotAfter - Free the specified register from the register stack, so
    847 /// that it is no longer in a register.  If the register is currently at the top
    848 /// of the stack, we just pop the current instruction, otherwise we store the
    849 /// current top-of-stack into the specified slot, then pop the top of stack.
    850 void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
    851   if (getStackEntry(0) == FPRegNo) {  // already at the top of stack? easy.
    852     popStackAfter(I);
    853     return;
    854   }
    855 
    856   // Otherwise, store the top of stack into the dead slot, killing the operand
    857   // without having to add in an explicit xchg then pop.
    858   //
    859   I = freeStackSlotBefore(++I, FPRegNo);
    860 }
    861 
    862 /// freeStackSlotBefore - Free the specified register without trying any
    863 /// folding.
    864 MachineBasicBlock::iterator
    865 FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) {
    866   unsigned STReg    = getSTReg(FPRegNo);
    867   unsigned OldSlot  = getSlot(FPRegNo);
    868   unsigned TopReg   = Stack[StackTop-1];
    869   Stack[OldSlot]    = TopReg;
    870   RegMap[TopReg]    = OldSlot;
    871   RegMap[FPRegNo]   = ~0;
    872   Stack[--StackTop] = ~0;
    873   return BuildMI(*MBB, I, DebugLoc(), TII->get(X86::ST_FPrr)).addReg(STReg);
    874 }
    875 
    876 /// adjustLiveRegs - Kill and revive registers such that exactly the FP
    877 /// registers with a bit in Mask are live.
    878 void FPS::adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I) {
    879   unsigned Defs = Mask;
    880   unsigned Kills = 0;
    881   for (unsigned i = 0; i < StackTop; ++i) {
    882     unsigned RegNo = Stack[i];
    883     if (!(Defs & (1 << RegNo)))
    884       // This register is live, but we don't want it.
    885       Kills |= (1 << RegNo);
    886     else
    887       // We don't need to imp-def this live register.
    888       Defs &= ~(1 << RegNo);
    889   }
    890   assert((Kills & Defs) == 0 && "Register needs killing and def'ing?");
    891 
    892   // Produce implicit-defs for free by using killed registers.
    893   while (Kills && Defs) {
    894     unsigned KReg = CountTrailingZeros_32(Kills);
    895     unsigned DReg = CountTrailingZeros_32(Defs);
    896     DEBUG(dbgs() << "Renaming %FP" << KReg << " as imp %FP" << DReg << "\n");
    897     std::swap(Stack[getSlot(KReg)], Stack[getSlot(DReg)]);
    898     std::swap(RegMap[KReg], RegMap[DReg]);
    899     Kills &= ~(1 << KReg);
    900     Defs &= ~(1 << DReg);
    901   }
    902 
    903   // Kill registers by popping.
    904   if (Kills && I != MBB->begin()) {
    905     MachineBasicBlock::iterator I2 = llvm::prior(I);
    906     while (StackTop) {
    907       unsigned KReg = getStackEntry(0);
    908       if (!(Kills & (1 << KReg)))
    909         break;
    910       DEBUG(dbgs() << "Popping %FP" << KReg << "\n");
    911       popStackAfter(I2);
    912       Kills &= ~(1 << KReg);
    913     }
    914   }
    915 
    916   // Manually kill the rest.
    917   while (Kills) {
    918     unsigned KReg = CountTrailingZeros_32(Kills);
    919     DEBUG(dbgs() << "Killing %FP" << KReg << "\n");
    920     freeStackSlotBefore(I, KReg);
    921     Kills &= ~(1 << KReg);
    922   }
    923 
    924   // Load zeros for all the imp-defs.
    925   while(Defs) {
    926     unsigned DReg = CountTrailingZeros_32(Defs);
    927     DEBUG(dbgs() << "Defining %FP" << DReg << " as 0\n");
    928     BuildMI(*MBB, I, DebugLoc(), TII->get(X86::LD_F0));
    929     pushReg(DReg);
    930     Defs &= ~(1 << DReg);
    931   }
    932 
    933   // Now we should have the correct registers live.
    934   DEBUG(dumpStack());
    935   assert(StackTop == CountPopulation_32(Mask) && "Live count mismatch");
    936 }
    937 
    938 /// shuffleStackTop - emit fxch instructions before I to shuffle the top
    939 /// FixCount entries into the order given by FixStack.
    940 /// FIXME: Is there a better algorithm than insertion sort?
    941 void FPS::shuffleStackTop(const unsigned char *FixStack,
    942                           unsigned FixCount,
    943                           MachineBasicBlock::iterator I) {
    944   // Move items into place, starting from the desired stack bottom.
    945   while (FixCount--) {
    946     // Old register at position FixCount.
    947     unsigned OldReg = getStackEntry(FixCount);
    948     // Desired register at position FixCount.
    949     unsigned Reg = FixStack[FixCount];
    950     if (Reg == OldReg)
    951       continue;
    952     // (Reg st0) (OldReg st0) = (Reg OldReg st0)
    953     moveToTop(Reg, I);
    954     if (FixCount > 0)
    955       moveToTop(OldReg, I);
    956   }
    957   DEBUG(dumpStack());
    958 }
    959 
    960 
    961 //===----------------------------------------------------------------------===//
    962 // Instruction transformation implementation
    963 //===----------------------------------------------------------------------===//
    964 
    965 /// handleZeroArgFP - ST(0) = fld0    ST(0) = flds <mem>
    966 ///
    967 void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
    968   MachineInstr *MI = I;
    969   unsigned DestReg = getFPReg(MI->getOperand(0));
    970 
    971   // Change from the pseudo instruction to the concrete instruction.
    972   MI->RemoveOperand(0);   // Remove the explicit ST(0) operand
    973   MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
    974 
    975   // Result gets pushed on the stack.
    976   pushReg(DestReg);
    977 }
    978 
    979 /// handleOneArgFP - fst <mem>, ST(0)
    980 ///
    981 void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
    982   MachineInstr *MI = I;
    983   unsigned NumOps = MI->getDesc().getNumOperands();
    984   assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) &&
    985          "Can only handle fst* & ftst instructions!");
    986 
    987   // Is this the last use of the source register?
    988   unsigned Reg = getFPReg(MI->getOperand(NumOps-1));
    989   bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
    990 
    991   if (KillsSrc)
    992     duplicatePendingSTBeforeKill(Reg, I);
    993 
    994   // FISTP64m is strange because there isn't a non-popping versions.
    995   // If we have one _and_ we don't want to pop the operand, duplicate the value
    996   // on the stack instead of moving it.  This ensure that popping the value is
    997   // always ok.
    998   // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
    999   //
   1000   if (!KillsSrc &&
   1001       (MI->getOpcode() == X86::IST_Fp64m32 ||
   1002        MI->getOpcode() == X86::ISTT_Fp16m32 ||
   1003        MI->getOpcode() == X86::ISTT_Fp32m32 ||
   1004        MI->getOpcode() == X86::ISTT_Fp64m32 ||
   1005        MI->getOpcode() == X86::IST_Fp64m64 ||
   1006        MI->getOpcode() == X86::ISTT_Fp16m64 ||
   1007        MI->getOpcode() == X86::ISTT_Fp32m64 ||
   1008        MI->getOpcode() == X86::ISTT_Fp64m64 ||
   1009        MI->getOpcode() == X86::IST_Fp64m80 ||
   1010        MI->getOpcode() == X86::ISTT_Fp16m80 ||
   1011        MI->getOpcode() == X86::ISTT_Fp32m80 ||
   1012        MI->getOpcode() == X86::ISTT_Fp64m80 ||
   1013        MI->getOpcode() == X86::ST_FpP80m)) {
   1014     duplicateToTop(Reg, getScratchReg(), I);
   1015   } else {
   1016     moveToTop(Reg, I);            // Move to the top of the stack...
   1017   }
   1018 
   1019   // Convert from the pseudo instruction to the concrete instruction.
   1020   MI->RemoveOperand(NumOps-1);    // Remove explicit ST(0) operand
   1021   MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
   1022 
   1023   if (MI->getOpcode() == X86::IST_FP64m ||
   1024       MI->getOpcode() == X86::ISTT_FP16m ||
   1025       MI->getOpcode() == X86::ISTT_FP32m ||
   1026       MI->getOpcode() == X86::ISTT_FP64m ||
   1027       MI->getOpcode() == X86::ST_FP80m) {
   1028     if (StackTop == 0)
   1029       report_fatal_error("Stack empty??");
   1030     --StackTop;
   1031   } else if (KillsSrc) { // Last use of operand?
   1032     popStackAfter(I);
   1033   }
   1034 }
   1035 
   1036 
   1037 /// handleOneArgFPRW: Handle instructions that read from the top of stack and
   1038 /// replace the value with a newly computed value.  These instructions may have
   1039 /// non-fp operands after their FP operands.
   1040 ///
   1041 ///  Examples:
   1042 ///     R1 = fchs R2
   1043 ///     R1 = fadd R2, [mem]
   1044 ///
   1045 void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
   1046   MachineInstr *MI = I;
   1047 #ifndef NDEBUG
   1048   unsigned NumOps = MI->getDesc().getNumOperands();
   1049   assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
   1050 #endif
   1051 
   1052   // Is this the last use of the source register?
   1053   unsigned Reg = getFPReg(MI->getOperand(1));
   1054   bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
   1055 
   1056   if (KillsSrc) {
   1057     duplicatePendingSTBeforeKill(Reg, I);
   1058     // If this is the last use of the source register, just make sure it's on
   1059     // the top of the stack.
   1060     moveToTop(Reg, I);
   1061     if (StackTop == 0)
   1062       report_fatal_error("Stack cannot be empty!");
   1063     --StackTop;
   1064     pushReg(getFPReg(MI->getOperand(0)));
   1065   } else {
   1066     // If this is not the last use of the source register, _copy_ it to the top
   1067     // of the stack.
   1068     duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
   1069   }
   1070 
   1071   // Change from the pseudo instruction to the concrete instruction.
   1072   MI->RemoveOperand(1);   // Drop the source operand.
   1073   MI->RemoveOperand(0);   // Drop the destination operand.
   1074   MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
   1075 }
   1076 
   1077 
   1078 //===----------------------------------------------------------------------===//
   1079 // Define tables of various ways to map pseudo instructions
   1080 //
   1081 
   1082 // ForwardST0Table - Map: A = B op C  into: ST(0) = ST(0) op ST(i)
   1083 static const TableEntry ForwardST0Table[] = {
   1084   { X86::ADD_Fp32  , X86::ADD_FST0r },
   1085   { X86::ADD_Fp64  , X86::ADD_FST0r },
   1086   { X86::ADD_Fp80  , X86::ADD_FST0r },
   1087   { X86::DIV_Fp32  , X86::DIV_FST0r },
   1088   { X86::DIV_Fp64  , X86::DIV_FST0r },
   1089   { X86::DIV_Fp80  , X86::DIV_FST0r },
   1090   { X86::MUL_Fp32  , X86::MUL_FST0r },
   1091   { X86::MUL_Fp64  , X86::MUL_FST0r },
   1092   { X86::MUL_Fp80  , X86::MUL_FST0r },
   1093   { X86::SUB_Fp32  , X86::SUB_FST0r },
   1094   { X86::SUB_Fp64  , X86::SUB_FST0r },
   1095   { X86::SUB_Fp80  , X86::SUB_FST0r },
   1096 };
   1097 
   1098 // ReverseST0Table - Map: A = B op C  into: ST(0) = ST(i) op ST(0)
   1099 static const TableEntry ReverseST0Table[] = {
   1100   { X86::ADD_Fp32  , X86::ADD_FST0r  },   // commutative
   1101   { X86::ADD_Fp64  , X86::ADD_FST0r  },   // commutative
   1102   { X86::ADD_Fp80  , X86::ADD_FST0r  },   // commutative
   1103   { X86::DIV_Fp32  , X86::DIVR_FST0r },
   1104   { X86::DIV_Fp64  , X86::DIVR_FST0r },
   1105   { X86::DIV_Fp80  , X86::DIVR_FST0r },
   1106   { X86::MUL_Fp32  , X86::MUL_FST0r  },   // commutative
   1107   { X86::MUL_Fp64  , X86::MUL_FST0r  },   // commutative
   1108   { X86::MUL_Fp80  , X86::MUL_FST0r  },   // commutative
   1109   { X86::SUB_Fp32  , X86::SUBR_FST0r },
   1110   { X86::SUB_Fp64  , X86::SUBR_FST0r },
   1111   { X86::SUB_Fp80  , X86::SUBR_FST0r },
   1112 };
   1113 
   1114 // ForwardSTiTable - Map: A = B op C  into: ST(i) = ST(0) op ST(i)
   1115 static const TableEntry ForwardSTiTable[] = {
   1116   { X86::ADD_Fp32  , X86::ADD_FrST0  },   // commutative
   1117   { X86::ADD_Fp64  , X86::ADD_FrST0  },   // commutative
   1118   { X86::ADD_Fp80  , X86::ADD_FrST0  },   // commutative
   1119   { X86::DIV_Fp32  , X86::DIVR_FrST0 },
   1120   { X86::DIV_Fp64  , X86::DIVR_FrST0 },
   1121   { X86::DIV_Fp80  , X86::DIVR_FrST0 },
   1122   { X86::MUL_Fp32  , X86::MUL_FrST0  },   // commutative
   1123   { X86::MUL_Fp64  , X86::MUL_FrST0  },   // commutative
   1124   { X86::MUL_Fp80  , X86::MUL_FrST0  },   // commutative
   1125   { X86::SUB_Fp32  , X86::SUBR_FrST0 },
   1126   { X86::SUB_Fp64  , X86::SUBR_FrST0 },
   1127   { X86::SUB_Fp80  , X86::SUBR_FrST0 },
   1128 };
   1129 
   1130 // ReverseSTiTable - Map: A = B op C  into: ST(i) = ST(i) op ST(0)
   1131 static const TableEntry ReverseSTiTable[] = {
   1132   { X86::ADD_Fp32  , X86::ADD_FrST0 },
   1133   { X86::ADD_Fp64  , X86::ADD_FrST0 },
   1134   { X86::ADD_Fp80  , X86::ADD_FrST0 },
   1135   { X86::DIV_Fp32  , X86::DIV_FrST0 },
   1136   { X86::DIV_Fp64  , X86::DIV_FrST0 },
   1137   { X86::DIV_Fp80  , X86::DIV_FrST0 },
   1138   { X86::MUL_Fp32  , X86::MUL_FrST0 },
   1139   { X86::MUL_Fp64  , X86::MUL_FrST0 },
   1140   { X86::MUL_Fp80  , X86::MUL_FrST0 },
   1141   { X86::SUB_Fp32  , X86::SUB_FrST0 },
   1142   { X86::SUB_Fp64  , X86::SUB_FrST0 },
   1143   { X86::SUB_Fp80  , X86::SUB_FrST0 },
   1144 };
   1145 
   1146 
   1147 /// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
   1148 /// instructions which need to be simplified and possibly transformed.
   1149 ///
   1150 /// Result: ST(0) = fsub  ST(0), ST(i)
   1151 ///         ST(i) = fsub  ST(0), ST(i)
   1152 ///         ST(0) = fsubr ST(0), ST(i)
   1153 ///         ST(i) = fsubr ST(0), ST(i)
   1154 ///
   1155 void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
   1156   ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
   1157   ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
   1158   MachineInstr *MI = I;
   1159 
   1160   unsigned NumOperands = MI->getDesc().getNumOperands();
   1161   assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
   1162   unsigned Dest = getFPReg(MI->getOperand(0));
   1163   unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
   1164   unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
   1165   bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
   1166   bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
   1167   DebugLoc dl = MI->getDebugLoc();
   1168 
   1169   unsigned TOS = getStackEntry(0);
   1170 
   1171   // One of our operands must be on the top of the stack.  If neither is yet, we
   1172   // need to move one.
   1173   if (Op0 != TOS && Op1 != TOS) {   // No operand at TOS?
   1174     // We can choose to move either operand to the top of the stack.  If one of
   1175     // the operands is killed by this instruction, we want that one so that we
   1176     // can update right on top of the old version.
   1177     if (KillsOp0) {
   1178       moveToTop(Op0, I);         // Move dead operand to TOS.
   1179       TOS = Op0;
   1180     } else if (KillsOp1) {
   1181       moveToTop(Op1, I);
   1182       TOS = Op1;
   1183     } else {
   1184       // All of the operands are live after this instruction executes, so we
   1185       // cannot update on top of any operand.  Because of this, we must
   1186       // duplicate one of the stack elements to the top.  It doesn't matter
   1187       // which one we pick.
   1188       //
   1189       duplicateToTop(Op0, Dest, I);
   1190       Op0 = TOS = Dest;
   1191       KillsOp0 = true;
   1192     }
   1193   } else if (!KillsOp0 && !KillsOp1) {
   1194     // If we DO have one of our operands at the top of the stack, but we don't
   1195     // have a dead operand, we must duplicate one of the operands to a new slot
   1196     // on the stack.
   1197     duplicateToTop(Op0, Dest, I);
   1198     Op0 = TOS = Dest;
   1199     KillsOp0 = true;
   1200   }
   1201 
   1202   // Now we know that one of our operands is on the top of the stack, and at
   1203   // least one of our operands is killed by this instruction.
   1204   assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
   1205          "Stack conditions not set up right!");
   1206 
   1207   // We decide which form to use based on what is on the top of the stack, and
   1208   // which operand is killed by this instruction.
   1209   const TableEntry *InstTable;
   1210   bool isForward = TOS == Op0;
   1211   bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
   1212   if (updateST0) {
   1213     if (isForward)
   1214       InstTable = ForwardST0Table;
   1215     else
   1216       InstTable = ReverseST0Table;
   1217   } else {
   1218     if (isForward)
   1219       InstTable = ForwardSTiTable;
   1220     else
   1221       InstTable = ReverseSTiTable;
   1222   }
   1223 
   1224   int Opcode = Lookup(InstTable, array_lengthof(ForwardST0Table),
   1225                       MI->getOpcode());
   1226   assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
   1227 
   1228   // NotTOS - The register which is not on the top of stack...
   1229   unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
   1230 
   1231   // Replace the old instruction with a new instruction
   1232   MBB->remove(I++);
   1233   I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS));
   1234 
   1235   // If both operands are killed, pop one off of the stack in addition to
   1236   // overwriting the other one.
   1237   if (KillsOp0 && KillsOp1 && Op0 != Op1) {
   1238     assert(!updateST0 && "Should have updated other operand!");
   1239     popStackAfter(I);   // Pop the top of stack
   1240   }
   1241 
   1242   // Update stack information so that we know the destination register is now on
   1243   // the stack.
   1244   unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
   1245   assert(UpdatedSlot < StackTop && Dest < 7);
   1246   Stack[UpdatedSlot]   = Dest;
   1247   RegMap[Dest]         = UpdatedSlot;
   1248   MBB->getParent()->DeleteMachineInstr(MI); // Remove the old instruction
   1249 }
   1250 
   1251 /// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
   1252 /// register arguments and no explicit destinations.
   1253 ///
   1254 void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
   1255   ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
   1256   ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
   1257   MachineInstr *MI = I;
   1258 
   1259   unsigned NumOperands = MI->getDesc().getNumOperands();
   1260   assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
   1261   unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
   1262   unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
   1263   bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
   1264   bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
   1265 
   1266   // Make sure the first operand is on the top of stack, the other one can be
   1267   // anywhere.
   1268   moveToTop(Op0, I);
   1269 
   1270   // Change from the pseudo instruction to the concrete instruction.
   1271   MI->getOperand(0).setReg(getSTReg(Op1));
   1272   MI->RemoveOperand(1);
   1273   MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
   1274 
   1275   // If any of the operands are killed by this instruction, free them.
   1276   if (KillsOp0) freeStackSlotAfter(I, Op0);
   1277   if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
   1278 }
   1279 
   1280 /// handleCondMovFP - Handle two address conditional move instructions.  These
   1281 /// instructions move a st(i) register to st(0) iff a condition is true.  These
   1282 /// instructions require that the first operand is at the top of the stack, but
   1283 /// otherwise don't modify the stack at all.
   1284 void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
   1285   MachineInstr *MI = I;
   1286 
   1287   unsigned Op0 = getFPReg(MI->getOperand(0));
   1288   unsigned Op1 = getFPReg(MI->getOperand(2));
   1289   bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
   1290 
   1291   // The first operand *must* be on the top of the stack.
   1292   moveToTop(Op0, I);
   1293 
   1294   // Change the second operand to the stack register that the operand is in.
   1295   // Change from the pseudo instruction to the concrete instruction.
   1296   MI->RemoveOperand(0);
   1297   MI->RemoveOperand(1);
   1298   MI->getOperand(0).setReg(getSTReg(Op1));
   1299   MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
   1300 
   1301   // If we kill the second operand, make sure to pop it from the stack.
   1302   if (Op0 != Op1 && KillsOp1) {
   1303     // Get this value off of the register stack.
   1304     freeStackSlotAfter(I, Op1);
   1305   }
   1306 }
   1307 
   1308 
   1309 /// handleSpecialFP - Handle special instructions which behave unlike other
   1310 /// floating point instructions.  This is primarily intended for use by pseudo
   1311 /// instructions.
   1312 ///
   1313 void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
   1314   MachineInstr *MI = I;
   1315   switch (MI->getOpcode()) {
   1316   default: llvm_unreachable("Unknown SpecialFP instruction!");
   1317   case TargetOpcode::COPY: {
   1318     // We handle three kinds of copies: FP <- FP, FP <- ST, and ST <- FP.
   1319     const MachineOperand &MO1 = MI->getOperand(1);
   1320     const MachineOperand &MO0 = MI->getOperand(0);
   1321     unsigned DstST = MO0.getReg() - X86::ST0;
   1322     unsigned SrcST = MO1.getReg() - X86::ST0;
   1323     bool KillsSrc = MI->killsRegister(MO1.getReg());
   1324 
   1325     // ST = COPY FP. Set up a pending ST register.
   1326     if (DstST < 8) {
   1327       unsigned SrcFP = getFPReg(MO1);
   1328       assert(isLive(SrcFP) && "Cannot copy dead register");
   1329       assert(!MO0.isDead() && "Cannot copy to dead ST register");
   1330 
   1331       // Unallocated STs are marked as the nonexistent FP255.
   1332       while (NumPendingSTs <= DstST)
   1333         PendingST[NumPendingSTs++] = NumFPRegs;
   1334 
   1335       // STi could still be live from a previous inline asm.
   1336       if (isScratchReg(PendingST[DstST])) {
   1337         DEBUG(dbgs() << "Clobbering old ST in FP" << unsigned(PendingST[DstST])
   1338                      << '\n');
   1339         freeStackSlotBefore(MI, PendingST[DstST]);
   1340       }
   1341 
   1342       // When the source is killed, allocate a scratch FP register.
   1343       if (KillsSrc) {
   1344         duplicatePendingSTBeforeKill(SrcFP, I);
   1345         unsigned Slot = getSlot(SrcFP);
   1346         unsigned SR = getScratchReg();
   1347         PendingST[DstST] = SR;
   1348         Stack[Slot] = SR;
   1349         RegMap[SR] = Slot;
   1350       } else
   1351         PendingST[DstST] = SrcFP;
   1352       break;
   1353     }
   1354 
   1355     // FP = COPY ST. Extract fixed stack value.
   1356     // Any instruction defining ST registers must have assigned them to a
   1357     // scratch register.
   1358     if (SrcST < 8) {
   1359       unsigned DstFP = getFPReg(MO0);
   1360       assert(!isLive(DstFP) && "Cannot copy ST to live FP register");
   1361       assert(NumPendingSTs > SrcST && "Cannot copy from dead ST register");
   1362       unsigned SrcFP = PendingST[SrcST];
   1363       assert(isScratchReg(SrcFP) && "Expected ST in a scratch register");
   1364       assert(isLive(SrcFP) && "Scratch holding ST is dead");
   1365 
   1366       // DstFP steals the stack slot from SrcFP.
   1367       unsigned Slot = getSlot(SrcFP);
   1368       Stack[Slot] = DstFP;
   1369       RegMap[DstFP] = Slot;
   1370 
   1371       // Always treat the ST as killed.
   1372       PendingST[SrcST] = NumFPRegs;
   1373       while (NumPendingSTs && PendingST[NumPendingSTs - 1] == NumFPRegs)
   1374         --NumPendingSTs;
   1375       break;
   1376     }
   1377 
   1378     // FP <- FP copy.
   1379     unsigned DstFP = getFPReg(MO0);
   1380     unsigned SrcFP = getFPReg(MO1);
   1381     assert(isLive(SrcFP) && "Cannot copy dead register");
   1382     if (KillsSrc) {
   1383       // If the input operand is killed, we can just change the owner of the
   1384       // incoming stack slot into the result.
   1385       unsigned Slot = getSlot(SrcFP);
   1386       Stack[Slot] = DstFP;
   1387       RegMap[DstFP] = Slot;
   1388     } else {
   1389       // For COPY we just duplicate the specified value to a new stack slot.
   1390       // This could be made better, but would require substantial changes.
   1391       duplicateToTop(SrcFP, DstFP, I);
   1392     }
   1393     break;
   1394   }
   1395 
   1396   case TargetOpcode::IMPLICIT_DEF: {
   1397     // All FP registers must be explicitly defined, so load a 0 instead.
   1398     unsigned Reg = MI->getOperand(0).getReg() - X86::FP0;
   1399     DEBUG(dbgs() << "Emitting LD_F0 for implicit FP" << Reg << '\n');
   1400     BuildMI(*MBB, I, MI->getDebugLoc(), TII->get(X86::LD_F0));
   1401     pushReg(Reg);
   1402     break;
   1403   }
   1404 
   1405   case X86::FpPOP_RETVAL: {
   1406     // The FpPOP_RETVAL instruction is used after calls that return a value on
   1407     // the floating point stack. We cannot model this with ST defs since CALL
   1408     // instructions have fixed clobber lists. This instruction is interpreted
   1409     // to mean that there is one more live register on the stack than we
   1410     // thought.
   1411     //
   1412     // This means that StackTop does not match the hardware stack between a
   1413     // call and the FpPOP_RETVAL instructions.  We do tolerate FP instructions
   1414     // between CALL and FpPOP_RETVAL as long as they don't overflow the
   1415     // hardware stack.
   1416     unsigned DstFP = getFPReg(MI->getOperand(0));
   1417 
   1418     // Move existing stack elements up to reflect reality.
   1419     assert(StackTop < 8 && "Stack overflowed before FpPOP_RETVAL");
   1420     if (StackTop) {
   1421       std::copy_backward(Stack, Stack + StackTop, Stack + StackTop + 1);
   1422       for (unsigned i = 0; i != NumFPRegs; ++i)
   1423         ++RegMap[i];
   1424     }
   1425     ++StackTop;
   1426 
   1427     // DstFP is the new bottom of the stack.
   1428     Stack[0] = DstFP;
   1429     RegMap[DstFP] = 0;
   1430 
   1431     // DstFP will be killed by processBasicBlock if this was a dead def.
   1432     break;
   1433   }
   1434 
   1435   case TargetOpcode::INLINEASM: {
   1436     // The inline asm MachineInstr currently only *uses* FP registers for the
   1437     // 'f' constraint.  These should be turned into the current ST(x) register
   1438     // in the machine instr.
   1439     //
   1440     // There are special rules for x87 inline assembly. The compiler must know
   1441     // exactly how many registers are popped and pushed implicitly by the asm.
   1442     // Otherwise it is not possible to restore the stack state after the inline
   1443     // asm.
   1444     //
   1445     // There are 3 kinds of input operands:
   1446     //
   1447     // 1. Popped inputs. These must appear at the stack top in ST0-STn. A
   1448     //    popped input operand must be in a fixed stack slot, and it is either
   1449     //    tied to an output operand, or in the clobber list. The MI has ST use
   1450     //    and def operands for these inputs.
   1451     //
   1452     // 2. Fixed inputs. These inputs appear in fixed stack slots, but are
   1453     //    preserved by the inline asm. The fixed stack slots must be STn-STm
   1454     //    following the popped inputs. A fixed input operand cannot be tied to
   1455     //    an output or appear in the clobber list. The MI has ST use operands
   1456     //    and no defs for these inputs.
   1457     //
   1458     // 3. Preserved inputs. These inputs use the "f" constraint which is
   1459     //    represented as an FP register. The inline asm won't change these
   1460     //    stack slots.
   1461     //
   1462     // Outputs must be in ST registers, FP outputs are not allowed. Clobbered
   1463     // registers do not count as output operands. The inline asm changes the
   1464     // stack as if it popped all the popped inputs and then pushed all the
   1465     // output operands.
   1466 
   1467     // Scan the assembly for ST registers used, defined and clobbered. We can
   1468     // only tell clobbers from defs by looking at the asm descriptor.
   1469     unsigned STUses = 0, STDefs = 0, STClobbers = 0, STDeadDefs = 0;
   1470     unsigned NumOps = 0;
   1471     for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI->getNumOperands();
   1472          i != e && MI->getOperand(i).isImm(); i += 1 + NumOps) {
   1473       unsigned Flags = MI->getOperand(i).getImm();
   1474       NumOps = InlineAsm::getNumOperandRegisters(Flags);
   1475       if (NumOps != 1)
   1476         continue;
   1477       const MachineOperand &MO = MI->getOperand(i + 1);
   1478       if (!MO.isReg())
   1479         continue;
   1480       unsigned STReg = MO.getReg() - X86::ST0;
   1481       if (STReg >= 8)
   1482         continue;
   1483 
   1484       switch (InlineAsm::getKind(Flags)) {
   1485       case InlineAsm::Kind_RegUse:
   1486         STUses |= (1u << STReg);
   1487         break;
   1488       case InlineAsm::Kind_RegDef:
   1489       case InlineAsm::Kind_RegDefEarlyClobber:
   1490         STDefs |= (1u << STReg);
   1491         if (MO.isDead())
   1492           STDeadDefs |= (1u << STReg);
   1493         break;
   1494       case InlineAsm::Kind_Clobber:
   1495         STClobbers |= (1u << STReg);
   1496         break;
   1497       default:
   1498         break;
   1499       }
   1500     }
   1501 
   1502     if (STUses && !isMask_32(STUses))
   1503       MI->emitError("fixed input regs must be last on the x87 stack");
   1504     unsigned NumSTUses = CountTrailingOnes_32(STUses);
   1505 
   1506     // Defs must be contiguous from the stack top. ST0-STn.
   1507     if (STDefs && !isMask_32(STDefs)) {
   1508       MI->emitError("output regs must be last on the x87 stack");
   1509       STDefs = NextPowerOf2(STDefs) - 1;
   1510     }
   1511     unsigned NumSTDefs = CountTrailingOnes_32(STDefs);
   1512 
   1513     // So must the clobbered stack slots. ST0-STm, m >= n.
   1514     if (STClobbers && !isMask_32(STDefs | STClobbers))
   1515       MI->emitError("clobbers must be last on the x87 stack");
   1516 
   1517     // Popped inputs are the ones that are also clobbered or defined.
   1518     unsigned STPopped = STUses & (STDefs | STClobbers);
   1519     if (STPopped && !isMask_32(STPopped))
   1520       MI->emitError("implicitly popped regs must be last on the x87 stack");
   1521     unsigned NumSTPopped = CountTrailingOnes_32(STPopped);
   1522 
   1523     DEBUG(dbgs() << "Asm uses " << NumSTUses << " fixed regs, pops "
   1524                  << NumSTPopped << ", and defines " << NumSTDefs << " regs.\n");
   1525 
   1526     // Scan the instruction for FP uses corresponding to "f" constraints.
   1527     // Collect FP registers to kill afer the instruction.
   1528     // Always kill all the scratch regs.
   1529     unsigned FPKills = ((1u << NumFPRegs) - 1) & ~0xff;
   1530     unsigned FPUsed = 0;
   1531     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   1532       MachineOperand &Op = MI->getOperand(i);
   1533       if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
   1534         continue;
   1535       if (!Op.isUse())
   1536         MI->emitError("illegal \"f\" output constraint");
   1537       unsigned FPReg = getFPReg(Op);
   1538       FPUsed |= 1U << FPReg;
   1539 
   1540       // If we kill this operand, make sure to pop it from the stack after the
   1541       // asm.  We just remember it for now, and pop them all off at the end in
   1542       // a batch.
   1543       if (Op.isKill())
   1544         FPKills |= 1U << FPReg;
   1545     }
   1546 
   1547     // The popped inputs will be killed by the instruction, so duplicate them
   1548     // if the FP register needs to be live after the instruction, or if it is
   1549     // used in the instruction itself. We effectively treat the popped inputs
   1550     // as early clobbers.
   1551     for (unsigned i = 0; i < NumSTPopped; ++i) {
   1552       if ((FPKills & ~FPUsed) & (1u << PendingST[i]))
   1553         continue;
   1554       unsigned SR = getScratchReg();
   1555       duplicateToTop(PendingST[i], SR, I);
   1556       DEBUG(dbgs() << "Duplicating ST" << i << " in FP"
   1557                    << unsigned(PendingST[i]) << " to avoid clobbering it.\n");
   1558       PendingST[i] = SR;
   1559     }
   1560 
   1561     // Make sure we have a unique live register for every fixed use. Some of
   1562     // them could be undef uses, and we need to emit LD_F0 instructions.
   1563     for (unsigned i = 0; i < NumSTUses; ++i) {
   1564       if (i < NumPendingSTs && PendingST[i] < NumFPRegs) {
   1565         // Check for shared assignments.
   1566         for (unsigned j = 0; j < i; ++j) {
   1567           if (PendingST[j] != PendingST[i])
   1568             continue;
   1569           // STi and STj are inn the same register, create a copy.
   1570           unsigned SR = getScratchReg();
   1571           duplicateToTop(PendingST[i], SR, I);
   1572           DEBUG(dbgs() << "Duplicating ST" << i << " in FP"
   1573                        << unsigned(PendingST[i])
   1574                        << " to avoid collision with ST" << j << '\n');
   1575           PendingST[i] = SR;
   1576         }
   1577         continue;
   1578       }
   1579       unsigned SR = getScratchReg();
   1580       DEBUG(dbgs() << "Emitting LD_F0 for ST" << i << " in FP" << SR << '\n');
   1581       BuildMI(*MBB, I, MI->getDebugLoc(), TII->get(X86::LD_F0));
   1582       pushReg(SR);
   1583       PendingST[i] = SR;
   1584       if (NumPendingSTs == i)
   1585         ++NumPendingSTs;
   1586     }
   1587     assert(NumPendingSTs >= NumSTUses && "Fixed registers should be assigned");
   1588 
   1589     // Now we can rearrange the live registers to match what was requested.
   1590     shuffleStackTop(PendingST, NumPendingSTs, I);
   1591     DEBUG({dbgs() << "Before asm: "; dumpStack();});
   1592 
   1593     // With the stack layout fixed, rewrite the FP registers.
   1594     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   1595       MachineOperand &Op = MI->getOperand(i);
   1596       if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
   1597         continue;
   1598       unsigned FPReg = getFPReg(Op);
   1599       Op.setReg(getSTReg(FPReg));
   1600     }
   1601 
   1602     // Simulate the inline asm popping its inputs and pushing its outputs.
   1603     StackTop -= NumSTPopped;
   1604 
   1605     // Hold the fixed output registers in scratch FP registers. They will be
   1606     // transferred to real FP registers by copies.
   1607     NumPendingSTs = 0;
   1608     for (unsigned i = 0; i < NumSTDefs; ++i) {
   1609       unsigned SR = getScratchReg();
   1610       pushReg(SR);
   1611       FPKills &= ~(1u << SR);
   1612     }
   1613     for (unsigned i = 0; i < NumSTDefs; ++i)
   1614       PendingST[NumPendingSTs++] = getStackEntry(i);
   1615     DEBUG({dbgs() << "After asm: "; dumpStack();});
   1616 
   1617     // If any of the ST defs were dead, pop them immediately. Our caller only
   1618     // handles dead FP defs.
   1619     MachineBasicBlock::iterator InsertPt = MI;
   1620     for (unsigned i = 0; STDefs & (1u << i); ++i) {
   1621       if (!(STDeadDefs & (1u << i)))
   1622         continue;
   1623       freeStackSlotAfter(InsertPt, PendingST[i]);
   1624       PendingST[i] = NumFPRegs;
   1625     }
   1626     while (NumPendingSTs && PendingST[NumPendingSTs - 1] == NumFPRegs)
   1627       --NumPendingSTs;
   1628 
   1629     // If this asm kills any FP registers (is the last use of them) we must
   1630     // explicitly emit pop instructions for them.  Do this now after the asm has
   1631     // executed so that the ST(x) numbers are not off (which would happen if we
   1632     // did this inline with operand rewriting).
   1633     //
   1634     // Note: this might be a non-optimal pop sequence.  We might be able to do
   1635     // better by trying to pop in stack order or something.
   1636     while (FPKills) {
   1637       unsigned FPReg = CountTrailingZeros_32(FPKills);
   1638       if (isLive(FPReg))
   1639         freeStackSlotAfter(InsertPt, FPReg);
   1640       FPKills &= ~(1U << FPReg);
   1641     }
   1642     // Don't delete the inline asm!
   1643     return;
   1644   }
   1645 
   1646   case X86::WIN_FTOL_32:
   1647   case X86::WIN_FTOL_64: {
   1648     // Push the operand into ST0.
   1649     MachineOperand &Op = MI->getOperand(0);
   1650     assert(Op.isUse() && Op.isReg() &&
   1651       Op.getReg() >= X86::FP0 && Op.getReg() <= X86::FP6);
   1652     unsigned FPReg = getFPReg(Op);
   1653     if (Op.isKill())
   1654       moveToTop(FPReg, I);
   1655     else
   1656       duplicateToTop(FPReg, FPReg, I);
   1657 
   1658     // Emit the call. This will pop the operand.
   1659     BuildMI(*MBB, I, MI->getDebugLoc(), TII->get(X86::CALLpcrel32))
   1660       .addExternalSymbol("_ftol2")
   1661       .addReg(X86::ST0, RegState::ImplicitKill)
   1662       .addReg(X86::EAX, RegState::Define | RegState::Implicit)
   1663       .addReg(X86::EDX, RegState::Define | RegState::Implicit)
   1664       .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
   1665     --StackTop;
   1666 
   1667     break;
   1668   }
   1669 
   1670   case X86::RET:
   1671   case X86::RETI:
   1672     // If RET has an FP register use operand, pass the first one in ST(0) and
   1673     // the second one in ST(1).
   1674 
   1675     // Find the register operands.
   1676     unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
   1677     unsigned LiveMask = 0;
   1678 
   1679     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   1680       MachineOperand &Op = MI->getOperand(i);
   1681       if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
   1682         continue;
   1683       // FP Register uses must be kills unless there are two uses of the same
   1684       // register, in which case only one will be a kill.
   1685       assert(Op.isUse() &&
   1686              (Op.isKill() ||                        // Marked kill.
   1687               getFPReg(Op) == FirstFPRegOp ||       // Second instance.
   1688               MI->killsRegister(Op.getReg())) &&    // Later use is marked kill.
   1689              "Ret only defs operands, and values aren't live beyond it");
   1690 
   1691       if (FirstFPRegOp == ~0U)
   1692         FirstFPRegOp = getFPReg(Op);
   1693       else {
   1694         assert(SecondFPRegOp == ~0U && "More than two fp operands!");
   1695         SecondFPRegOp = getFPReg(Op);
   1696       }
   1697       LiveMask |= (1 << getFPReg(Op));
   1698 
   1699       // Remove the operand so that later passes don't see it.
   1700       MI->RemoveOperand(i);
   1701       --i, --e;
   1702     }
   1703 
   1704     // We may have been carrying spurious live-ins, so make sure only the returned
   1705     // registers are left live.
   1706     adjustLiveRegs(LiveMask, MI);
   1707     if (!LiveMask) return;  // Quick check to see if any are possible.
   1708 
   1709     // There are only four possibilities here:
   1710     // 1) we are returning a single FP value.  In this case, it has to be in
   1711     //    ST(0) already, so just declare success by removing the value from the
   1712     //    FP Stack.
   1713     if (SecondFPRegOp == ~0U) {
   1714       // Assert that the top of stack contains the right FP register.
   1715       assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
   1716              "Top of stack not the right register for RET!");
   1717 
   1718       // Ok, everything is good, mark the value as not being on the stack
   1719       // anymore so that our assertion about the stack being empty at end of
   1720       // block doesn't fire.
   1721       StackTop = 0;
   1722       return;
   1723     }
   1724 
   1725     // Otherwise, we are returning two values:
   1726     // 2) If returning the same value for both, we only have one thing in the FP
   1727     //    stack.  Consider:  RET FP1, FP1
   1728     if (StackTop == 1) {
   1729       assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
   1730              "Stack misconfiguration for RET!");
   1731 
   1732       // Duplicate the TOS so that we return it twice.  Just pick some other FPx
   1733       // register to hold it.
   1734       unsigned NewReg = getScratchReg();
   1735       duplicateToTop(FirstFPRegOp, NewReg, MI);
   1736       FirstFPRegOp = NewReg;
   1737     }
   1738 
   1739     /// Okay we know we have two different FPx operands now:
   1740     assert(StackTop == 2 && "Must have two values live!");
   1741 
   1742     /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
   1743     ///    in ST(1).  In this case, emit an fxch.
   1744     if (getStackEntry(0) == SecondFPRegOp) {
   1745       assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
   1746       moveToTop(FirstFPRegOp, MI);
   1747     }
   1748 
   1749     /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
   1750     /// ST(1).  Just remove both from our understanding of the stack and return.
   1751     assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
   1752     assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
   1753     StackTop = 0;
   1754     return;
   1755   }
   1756 
   1757   I = MBB->erase(I);  // Remove the pseudo instruction
   1758 
   1759   // We want to leave I pointing to the previous instruction, but what if we
   1760   // just erased the first instruction?
   1761   if (I == MBB->begin()) {
   1762     DEBUG(dbgs() << "Inserting dummy KILL\n");
   1763     I = BuildMI(*MBB, I, DebugLoc(), TII->get(TargetOpcode::KILL));
   1764   } else
   1765     --I;
   1766 }
   1767