Home | History | Annotate | Download | only in CodeGen
      1 //===-- PeepholeOptimizer.cpp - Peephole Optimizations --------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Perform peephole optimizations on the machine code:
     11 //
     12 // - Optimize Extensions
     13 //
     14 //     Optimization of sign / zero extension instructions. It may be extended to
     15 //     handle other instructions with similar properties.
     16 //
     17 //     On some targets, some instructions, e.g. X86 sign / zero extension, may
     18 //     leave the source value in the lower part of the result. This optimization
     19 //     will replace some uses of the pre-extension value with uses of the
     20 //     sub-register of the results.
     21 //
     22 // - Optimize Comparisons
     23 //
     24 //     Optimization of comparison instructions. For instance, in this code:
     25 //
     26 //       sub r1, 1
     27 //       cmp r1, 0
     28 //       bz  L1
     29 //
     30 //     If the "sub" instruction all ready sets (or could be modified to set) the
     31 //     same flag that the "cmp" instruction sets and that "bz" uses, then we can
     32 //     eliminate the "cmp" instruction.
     33 //
     34 //     Another instance, in this code:
     35 //
     36 //       sub r1, r3 | sub r1, imm
     37 //       cmp r3, r1 or cmp r1, r3 | cmp r1, imm
     38 //       bge L1
     39 //
     40 //     If the branch instruction can use flag from "sub", then we can replace
     41 //     "sub" with "subs" and eliminate the "cmp" instruction.
     42 //
     43 // - Optimize Bitcast pairs:
     44 //
     45 //     v1 = bitcast v0
     46 //     v2 = bitcast v1
     47 //        = v2
     48 //   =>
     49 //     v1 = bitcast v0
     50 //        = v0
     51 //
     52 //===----------------------------------------------------------------------===//
     53 
     54 #define DEBUG_TYPE "peephole-opt"
     55 #include "llvm/CodeGen/Passes.h"
     56 #include "llvm/CodeGen/MachineDominators.h"
     57 #include "llvm/CodeGen/MachineInstrBuilder.h"
     58 #include "llvm/CodeGen/MachineRegisterInfo.h"
     59 #include "llvm/Target/TargetInstrInfo.h"
     60 #include "llvm/Target/TargetRegisterInfo.h"
     61 #include "llvm/Support/CommandLine.h"
     62 #include "llvm/ADT/DenseMap.h"
     63 #include "llvm/ADT/SmallPtrSet.h"
     64 #include "llvm/ADT/SmallSet.h"
     65 #include "llvm/ADT/Statistic.h"
     66 using namespace llvm;
     67 
     68 // Optimize Extensions
     69 static cl::opt<bool>
     70 Aggressive("aggressive-ext-opt", cl::Hidden,
     71            cl::desc("Aggressive extension optimization"));
     72 
     73 static cl::opt<bool>
     74 DisablePeephole("disable-peephole", cl::Hidden, cl::init(false),
     75                 cl::desc("Disable the peephole optimizer"));
     76 
     77 STATISTIC(NumReuse,      "Number of extension results reused");
     78 STATISTIC(NumBitcasts,   "Number of bitcasts eliminated");
     79 STATISTIC(NumCmps,       "Number of compares eliminated");
     80 STATISTIC(NumImmFold,    "Number of move immediate folded");
     81 STATISTIC(NumLoadFold,   "Number of loads folded");
     82 STATISTIC(NumSelects,    "Number of selects optimized");
     83 
     84 namespace {
     85   class PeepholeOptimizer : public MachineFunctionPass {
     86     const TargetMachine   *TM;
     87     const TargetInstrInfo *TII;
     88     MachineRegisterInfo   *MRI;
     89     MachineDominatorTree  *DT;  // Machine dominator tree
     90 
     91   public:
     92     static char ID; // Pass identification
     93     PeepholeOptimizer() : MachineFunctionPass(ID) {
     94       initializePeepholeOptimizerPass(*PassRegistry::getPassRegistry());
     95     }
     96 
     97     virtual bool runOnMachineFunction(MachineFunction &MF);
     98 
     99     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    100       AU.setPreservesCFG();
    101       MachineFunctionPass::getAnalysisUsage(AU);
    102       if (Aggressive) {
    103         AU.addRequired<MachineDominatorTree>();
    104         AU.addPreserved<MachineDominatorTree>();
    105       }
    106     }
    107 
    108   private:
    109     bool optimizeBitcastInstr(MachineInstr *MI, MachineBasicBlock *MBB);
    110     bool optimizeCmpInstr(MachineInstr *MI, MachineBasicBlock *MBB);
    111     bool optimizeExtInstr(MachineInstr *MI, MachineBasicBlock *MBB,
    112                           SmallPtrSet<MachineInstr*, 8> &LocalMIs);
    113     bool optimizeSelect(MachineInstr *MI);
    114     bool isMoveImmediate(MachineInstr *MI,
    115                          SmallSet<unsigned, 4> &ImmDefRegs,
    116                          DenseMap<unsigned, MachineInstr*> &ImmDefMIs);
    117     bool foldImmediate(MachineInstr *MI, MachineBasicBlock *MBB,
    118                        SmallSet<unsigned, 4> &ImmDefRegs,
    119                        DenseMap<unsigned, MachineInstr*> &ImmDefMIs);
    120     bool isLoadFoldable(MachineInstr *MI, unsigned &FoldAsLoadDefReg);
    121   };
    122 }
    123 
    124 char PeepholeOptimizer::ID = 0;
    125 char &llvm::PeepholeOptimizerID = PeepholeOptimizer::ID;
    126 INITIALIZE_PASS_BEGIN(PeepholeOptimizer, "peephole-opts",
    127                 "Peephole Optimizations", false, false)
    128 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
    129 INITIALIZE_PASS_END(PeepholeOptimizer, "peephole-opts",
    130                 "Peephole Optimizations", false, false)
    131 
    132 /// optimizeExtInstr - If instruction is a copy-like instruction, i.e. it reads
    133 /// a single register and writes a single register and it does not modify the
    134 /// source, and if the source value is preserved as a sub-register of the
    135 /// result, then replace all reachable uses of the source with the subreg of the
    136 /// result.
    137 ///
    138 /// Do not generate an EXTRACT that is used only in a debug use, as this changes
    139 /// the code. Since this code does not currently share EXTRACTs, just ignore all
    140 /// debug uses.
    141 bool PeepholeOptimizer::
    142 optimizeExtInstr(MachineInstr *MI, MachineBasicBlock *MBB,
    143                  SmallPtrSet<MachineInstr*, 8> &LocalMIs) {
    144   unsigned SrcReg, DstReg, SubIdx;
    145   if (!TII->isCoalescableExtInstr(*MI, SrcReg, DstReg, SubIdx))
    146     return false;
    147 
    148   if (TargetRegisterInfo::isPhysicalRegister(DstReg) ||
    149       TargetRegisterInfo::isPhysicalRegister(SrcReg))
    150     return false;
    151 
    152   if (MRI->hasOneNonDBGUse(SrcReg))
    153     // No other uses.
    154     return false;
    155 
    156   // Ensure DstReg can get a register class that actually supports
    157   // sub-registers. Don't change the class until we commit.
    158   const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
    159   DstRC = TM->getRegisterInfo()->getSubClassWithSubReg(DstRC, SubIdx);
    160   if (!DstRC)
    161     return false;
    162 
    163   // The ext instr may be operating on a sub-register of SrcReg as well.
    164   // PPC::EXTSW is a 32 -> 64-bit sign extension, but it reads a 64-bit
    165   // register.
    166   // If UseSrcSubIdx is Set, SubIdx also applies to SrcReg, and only uses of
    167   // SrcReg:SubIdx should be replaced.
    168   bool UseSrcSubIdx = TM->getRegisterInfo()->
    169     getSubClassWithSubReg(MRI->getRegClass(SrcReg), SubIdx) != 0;
    170 
    171   // The source has other uses. See if we can replace the other uses with use of
    172   // the result of the extension.
    173   SmallPtrSet<MachineBasicBlock*, 4> ReachedBBs;
    174   for (MachineRegisterInfo::use_nodbg_iterator
    175        UI = MRI->use_nodbg_begin(DstReg), UE = MRI->use_nodbg_end();
    176        UI != UE; ++UI)
    177     ReachedBBs.insert(UI->getParent());
    178 
    179   // Uses that are in the same BB of uses of the result of the instruction.
    180   SmallVector<MachineOperand*, 8> Uses;
    181 
    182   // Uses that the result of the instruction can reach.
    183   SmallVector<MachineOperand*, 8> ExtendedUses;
    184 
    185   bool ExtendLife = true;
    186   for (MachineRegisterInfo::use_nodbg_iterator
    187        UI = MRI->use_nodbg_begin(SrcReg), UE = MRI->use_nodbg_end();
    188        UI != UE; ++UI) {
    189     MachineOperand &UseMO = UI.getOperand();
    190     MachineInstr *UseMI = &*UI;
    191     if (UseMI == MI)
    192       continue;
    193 
    194     if (UseMI->isPHI()) {
    195       ExtendLife = false;
    196       continue;
    197     }
    198 
    199     // Only accept uses of SrcReg:SubIdx.
    200     if (UseSrcSubIdx && UseMO.getSubReg() != SubIdx)
    201       continue;
    202 
    203     // It's an error to translate this:
    204     //
    205     //    %reg1025 = <sext> %reg1024
    206     //     ...
    207     //    %reg1026 = SUBREG_TO_REG 0, %reg1024, 4
    208     //
    209     // into this:
    210     //
    211     //    %reg1025 = <sext> %reg1024
    212     //     ...
    213     //    %reg1027 = COPY %reg1025:4
    214     //    %reg1026 = SUBREG_TO_REG 0, %reg1027, 4
    215     //
    216     // The problem here is that SUBREG_TO_REG is there to assert that an
    217     // implicit zext occurs. It doesn't insert a zext instruction. If we allow
    218     // the COPY here, it will give us the value after the <sext>, not the
    219     // original value of %reg1024 before <sext>.
    220     if (UseMI->getOpcode() == TargetOpcode::SUBREG_TO_REG)
    221       continue;
    222 
    223     MachineBasicBlock *UseMBB = UseMI->getParent();
    224     if (UseMBB == MBB) {
    225       // Local uses that come after the extension.
    226       if (!LocalMIs.count(UseMI))
    227         Uses.push_back(&UseMO);
    228     } else if (ReachedBBs.count(UseMBB)) {
    229       // Non-local uses where the result of the extension is used. Always
    230       // replace these unless it's a PHI.
    231       Uses.push_back(&UseMO);
    232     } else if (Aggressive && DT->dominates(MBB, UseMBB)) {
    233       // We may want to extend the live range of the extension result in order
    234       // to replace these uses.
    235       ExtendedUses.push_back(&UseMO);
    236     } else {
    237       // Both will be live out of the def MBB anyway. Don't extend live range of
    238       // the extension result.
    239       ExtendLife = false;
    240       break;
    241     }
    242   }
    243 
    244   if (ExtendLife && !ExtendedUses.empty())
    245     // Extend the liveness of the extension result.
    246     std::copy(ExtendedUses.begin(), ExtendedUses.end(),
    247               std::back_inserter(Uses));
    248 
    249   // Now replace all uses.
    250   bool Changed = false;
    251   if (!Uses.empty()) {
    252     SmallPtrSet<MachineBasicBlock*, 4> PHIBBs;
    253 
    254     // Look for PHI uses of the extended result, we don't want to extend the
    255     // liveness of a PHI input. It breaks all kinds of assumptions down
    256     // stream. A PHI use is expected to be the kill of its source values.
    257     for (MachineRegisterInfo::use_nodbg_iterator
    258          UI = MRI->use_nodbg_begin(DstReg), UE = MRI->use_nodbg_end();
    259          UI != UE; ++UI)
    260       if (UI->isPHI())
    261         PHIBBs.insert(UI->getParent());
    262 
    263     const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
    264     for (unsigned i = 0, e = Uses.size(); i != e; ++i) {
    265       MachineOperand *UseMO = Uses[i];
    266       MachineInstr *UseMI = UseMO->getParent();
    267       MachineBasicBlock *UseMBB = UseMI->getParent();
    268       if (PHIBBs.count(UseMBB))
    269         continue;
    270 
    271       // About to add uses of DstReg, clear DstReg's kill flags.
    272       if (!Changed) {
    273         MRI->clearKillFlags(DstReg);
    274         MRI->constrainRegClass(DstReg, DstRC);
    275       }
    276 
    277       unsigned NewVR = MRI->createVirtualRegister(RC);
    278       MachineInstr *Copy = BuildMI(*UseMBB, UseMI, UseMI->getDebugLoc(),
    279                                    TII->get(TargetOpcode::COPY), NewVR)
    280         .addReg(DstReg, 0, SubIdx);
    281       // SubIdx applies to both SrcReg and DstReg when UseSrcSubIdx is set.
    282       if (UseSrcSubIdx) {
    283         Copy->getOperand(0).setSubReg(SubIdx);
    284         Copy->getOperand(0).setIsUndef();
    285       }
    286       UseMO->setReg(NewVR);
    287       ++NumReuse;
    288       Changed = true;
    289     }
    290   }
    291 
    292   return Changed;
    293 }
    294 
    295 /// optimizeBitcastInstr - If the instruction is a bitcast instruction A that
    296 /// cannot be optimized away during isel (e.g. ARM::VMOVSR, which bitcast
    297 /// a value cross register classes), and the source is defined by another
    298 /// bitcast instruction B. And if the register class of source of B matches
    299 /// the register class of instruction A, then it is legal to replace all uses
    300 /// of the def of A with source of B. e.g.
    301 ///   %vreg0<def> = VMOVSR %vreg1
    302 ///   %vreg3<def> = VMOVRS %vreg0
    303 ///   Replace all uses of vreg3 with vreg1.
    304 
    305 bool PeepholeOptimizer::optimizeBitcastInstr(MachineInstr *MI,
    306                                              MachineBasicBlock *MBB) {
    307   unsigned NumDefs = MI->getDesc().getNumDefs();
    308   unsigned NumSrcs = MI->getDesc().getNumOperands() - NumDefs;
    309   if (NumDefs != 1)
    310     return false;
    311 
    312   unsigned Def = 0;
    313   unsigned Src = 0;
    314   for (unsigned i = 0, e = NumDefs + NumSrcs; i != e; ++i) {
    315     const MachineOperand &MO = MI->getOperand(i);
    316     if (!MO.isReg())
    317       continue;
    318     unsigned Reg = MO.getReg();
    319     if (!Reg)
    320       continue;
    321     if (MO.isDef())
    322       Def = Reg;
    323     else if (Src)
    324       // Multiple sources?
    325       return false;
    326     else
    327       Src = Reg;
    328   }
    329 
    330   assert(Def && Src && "Malformed bitcast instruction!");
    331 
    332   MachineInstr *DefMI = MRI->getVRegDef(Src);
    333   if (!DefMI || !DefMI->isBitcast())
    334     return false;
    335 
    336   unsigned SrcSrc = 0;
    337   NumDefs = DefMI->getDesc().getNumDefs();
    338   NumSrcs = DefMI->getDesc().getNumOperands() - NumDefs;
    339   if (NumDefs != 1)
    340     return false;
    341   for (unsigned i = 0, e = NumDefs + NumSrcs; i != e; ++i) {
    342     const MachineOperand &MO = DefMI->getOperand(i);
    343     if (!MO.isReg() || MO.isDef())
    344       continue;
    345     unsigned Reg = MO.getReg();
    346     if (!Reg)
    347       continue;
    348     if (!MO.isDef()) {
    349       if (SrcSrc)
    350         // Multiple sources?
    351         return false;
    352       else
    353         SrcSrc = Reg;
    354     }
    355   }
    356 
    357   if (MRI->getRegClass(SrcSrc) != MRI->getRegClass(Def))
    358     return false;
    359 
    360   MRI->replaceRegWith(Def, SrcSrc);
    361   MRI->clearKillFlags(SrcSrc);
    362   MI->eraseFromParent();
    363   ++NumBitcasts;
    364   return true;
    365 }
    366 
    367 /// optimizeCmpInstr - If the instruction is a compare and the previous
    368 /// instruction it's comparing against all ready sets (or could be modified to
    369 /// set) the same flag as the compare, then we can remove the comparison and use
    370 /// the flag from the previous instruction.
    371 bool PeepholeOptimizer::optimizeCmpInstr(MachineInstr *MI,
    372                                          MachineBasicBlock *MBB) {
    373   // If this instruction is a comparison against zero and isn't comparing a
    374   // physical register, we can try to optimize it.
    375   unsigned SrcReg, SrcReg2;
    376   int CmpMask, CmpValue;
    377   if (!TII->analyzeCompare(MI, SrcReg, SrcReg2, CmpMask, CmpValue) ||
    378       TargetRegisterInfo::isPhysicalRegister(SrcReg) ||
    379       (SrcReg2 != 0 && TargetRegisterInfo::isPhysicalRegister(SrcReg2)))
    380     return false;
    381 
    382   // Attempt to optimize the comparison instruction.
    383   if (TII->optimizeCompareInstr(MI, SrcReg, SrcReg2, CmpMask, CmpValue, MRI)) {
    384     ++NumCmps;
    385     return true;
    386   }
    387 
    388   return false;
    389 }
    390 
    391 /// Optimize a select instruction.
    392 bool PeepholeOptimizer::optimizeSelect(MachineInstr *MI) {
    393   unsigned TrueOp = 0;
    394   unsigned FalseOp = 0;
    395   bool Optimizable = false;
    396   SmallVector<MachineOperand, 4> Cond;
    397   if (TII->analyzeSelect(MI, Cond, TrueOp, FalseOp, Optimizable))
    398     return false;
    399   if (!Optimizable)
    400     return false;
    401   if (!TII->optimizeSelect(MI))
    402     return false;
    403   MI->eraseFromParent();
    404   ++NumSelects;
    405   return true;
    406 }
    407 
    408 /// isLoadFoldable - Check whether MI is a candidate for folding into a later
    409 /// instruction. We only fold loads to virtual registers and the virtual
    410 /// register defined has a single use.
    411 bool PeepholeOptimizer::isLoadFoldable(MachineInstr *MI,
    412                                        unsigned &FoldAsLoadDefReg) {
    413   if (!MI->canFoldAsLoad() || !MI->mayLoad())
    414     return false;
    415   const MCInstrDesc &MCID = MI->getDesc();
    416   if (MCID.getNumDefs() != 1)
    417     return false;
    418 
    419   unsigned Reg = MI->getOperand(0).getReg();
    420   // To reduce compilation time, we check MRI->hasOneUse when inserting
    421   // loads. It should be checked when processing uses of the load, since
    422   // uses can be removed during peephole.
    423   if (!MI->getOperand(0).getSubReg() &&
    424       TargetRegisterInfo::isVirtualRegister(Reg) &&
    425       MRI->hasOneUse(Reg)) {
    426     FoldAsLoadDefReg = Reg;
    427     return true;
    428   }
    429   return false;
    430 }
    431 
    432 bool PeepholeOptimizer::isMoveImmediate(MachineInstr *MI,
    433                                         SmallSet<unsigned, 4> &ImmDefRegs,
    434                                  DenseMap<unsigned, MachineInstr*> &ImmDefMIs) {
    435   const MCInstrDesc &MCID = MI->getDesc();
    436   if (!MI->isMoveImmediate())
    437     return false;
    438   if (MCID.getNumDefs() != 1)
    439     return false;
    440   unsigned Reg = MI->getOperand(0).getReg();
    441   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
    442     ImmDefMIs.insert(std::make_pair(Reg, MI));
    443     ImmDefRegs.insert(Reg);
    444     return true;
    445   }
    446 
    447   return false;
    448 }
    449 
    450 /// foldImmediate - Try folding register operands that are defined by move
    451 /// immediate instructions, i.e. a trivial constant folding optimization, if
    452 /// and only if the def and use are in the same BB.
    453 bool PeepholeOptimizer::foldImmediate(MachineInstr *MI, MachineBasicBlock *MBB,
    454                                       SmallSet<unsigned, 4> &ImmDefRegs,
    455                                  DenseMap<unsigned, MachineInstr*> &ImmDefMIs) {
    456   for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
    457     MachineOperand &MO = MI->getOperand(i);
    458     if (!MO.isReg() || MO.isDef())
    459       continue;
    460     unsigned Reg = MO.getReg();
    461     if (!TargetRegisterInfo::isVirtualRegister(Reg))
    462       continue;
    463     if (ImmDefRegs.count(Reg) == 0)
    464       continue;
    465     DenseMap<unsigned, MachineInstr*>::iterator II = ImmDefMIs.find(Reg);
    466     assert(II != ImmDefMIs.end());
    467     if (TII->FoldImmediate(MI, II->second, Reg, MRI)) {
    468       ++NumImmFold;
    469       return true;
    470     }
    471   }
    472   return false;
    473 }
    474 
    475 bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) {
    476   if (DisablePeephole)
    477     return false;
    478 
    479   TM  = &MF.getTarget();
    480   TII = TM->getInstrInfo();
    481   MRI = &MF.getRegInfo();
    482   DT  = Aggressive ? &getAnalysis<MachineDominatorTree>() : 0;
    483 
    484   bool Changed = false;
    485 
    486   SmallPtrSet<MachineInstr*, 8> LocalMIs;
    487   SmallSet<unsigned, 4> ImmDefRegs;
    488   DenseMap<unsigned, MachineInstr*> ImmDefMIs;
    489   unsigned FoldAsLoadDefReg;
    490   for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
    491     MachineBasicBlock *MBB = &*I;
    492 
    493     bool SeenMoveImm = false;
    494     LocalMIs.clear();
    495     ImmDefRegs.clear();
    496     ImmDefMIs.clear();
    497     FoldAsLoadDefReg = 0;
    498 
    499     for (MachineBasicBlock::iterator
    500            MII = I->begin(), MIE = I->end(); MII != MIE; ) {
    501       MachineInstr *MI = &*MII;
    502       // We may be erasing MI below, increment MII now.
    503       ++MII;
    504       LocalMIs.insert(MI);
    505 
    506       // If there exists an instruction which belongs to the following
    507       // categories, we will discard the load candidate.
    508       if (MI->isLabel() || MI->isPHI() || MI->isImplicitDef() ||
    509           MI->isKill() || MI->isInlineAsm() || MI->isDebugValue() ||
    510           MI->hasUnmodeledSideEffects()) {
    511         FoldAsLoadDefReg = 0;
    512         continue;
    513       }
    514       if (MI->mayStore() || MI->isCall())
    515         FoldAsLoadDefReg = 0;
    516 
    517       if ((MI->isBitcast() && optimizeBitcastInstr(MI, MBB)) ||
    518           (MI->isCompare() && optimizeCmpInstr(MI, MBB)) ||
    519           (MI->isSelect() && optimizeSelect(MI))) {
    520         // MI is deleted.
    521         LocalMIs.erase(MI);
    522         Changed = true;
    523         continue;
    524       }
    525 
    526       if (isMoveImmediate(MI, ImmDefRegs, ImmDefMIs)) {
    527         SeenMoveImm = true;
    528       } else {
    529         Changed |= optimizeExtInstr(MI, MBB, LocalMIs);
    530         if (SeenMoveImm)
    531           Changed |= foldImmediate(MI, MBB, ImmDefRegs, ImmDefMIs);
    532       }
    533 
    534       // Check whether MI is a load candidate for folding into a later
    535       // instruction. If MI is not a candidate, check whether we can fold an
    536       // earlier load into MI.
    537       if (!isLoadFoldable(MI, FoldAsLoadDefReg) && FoldAsLoadDefReg) {
    538         // We need to fold load after optimizeCmpInstr, since optimizeCmpInstr
    539         // can enable folding by converting SUB to CMP.
    540         MachineInstr *DefMI = 0;
    541         MachineInstr *FoldMI = TII->optimizeLoadInstr(MI, MRI,
    542                                                       FoldAsLoadDefReg, DefMI);
    543         if (FoldMI) {
    544           // Update LocalMIs since we replaced MI with FoldMI and deleted DefMI.
    545           LocalMIs.erase(MI);
    546           LocalMIs.erase(DefMI);
    547           LocalMIs.insert(FoldMI);
    548           MI->eraseFromParent();
    549           DefMI->eraseFromParent();
    550           ++NumLoadFold;
    551 
    552           // MI is replaced with FoldMI.
    553           Changed = true;
    554           continue;
    555         }
    556       }
    557     }
    558   }
    559 
    560   return Changed;
    561 }
    562