Home | History | Annotate | Download | only in CodeGen
      1 //===---- ScheduleDAG.cpp - Implement the ScheduleDAG class ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements the ScheduleDAG class, which is a base class used by
     11 // scheduling implementation classes.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #define DEBUG_TYPE "pre-RA-sched"
     16 #include "llvm/CodeGen/ScheduleDAG.h"
     17 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
     18 #include "llvm/CodeGen/SelectionDAGNodes.h"
     19 #include "llvm/Target/TargetMachine.h"
     20 #include "llvm/Target/TargetInstrInfo.h"
     21 #include "llvm/Target/TargetRegisterInfo.h"
     22 #include "llvm/Support/CommandLine.h"
     23 #include "llvm/Support/Debug.h"
     24 #include "llvm/Support/raw_ostream.h"
     25 #include <climits>
     26 using namespace llvm;
     27 
     28 #ifndef NDEBUG
     29 static cl::opt<bool> StressSchedOpt(
     30   "stress-sched", cl::Hidden, cl::init(false),
     31   cl::desc("Stress test instruction scheduling"));
     32 #endif
     33 
     34 void SchedulingPriorityQueue::anchor() { }
     35 
     36 ScheduleDAG::ScheduleDAG(MachineFunction &mf)
     37   : TM(mf.getTarget()),
     38     TII(TM.getInstrInfo()),
     39     TRI(TM.getRegisterInfo()),
     40     MF(mf), MRI(mf.getRegInfo()),
     41     EntrySU(), ExitSU() {
     42 #ifndef NDEBUG
     43   StressSched = StressSchedOpt;
     44 #endif
     45 }
     46 
     47 ScheduleDAG::~ScheduleDAG() {}
     48 
     49 /// Clear the DAG state (e.g. between scheduling regions).
     50 void ScheduleDAG::clearDAG() {
     51   SUnits.clear();
     52   EntrySU = SUnit();
     53   ExitSU = SUnit();
     54 }
     55 
     56 /// getInstrDesc helper to handle SDNodes.
     57 const MCInstrDesc *ScheduleDAG::getNodeDesc(const SDNode *Node) const {
     58   if (!Node || !Node->isMachineOpcode()) return NULL;
     59   return &TII->get(Node->getMachineOpcode());
     60 }
     61 
     62 /// addPred - This adds the specified edge as a pred of the current node if
     63 /// not already.  It also adds the current node as a successor of the
     64 /// specified node.
     65 bool SUnit::addPred(const SDep &D) {
     66   // If this node already has this depenence, don't add a redundant one.
     67   for (SmallVector<SDep, 4>::iterator I = Preds.begin(), E = Preds.end();
     68        I != E; ++I) {
     69     if (I->overlaps(D)) {
     70       // Extend the latency if needed. Equivalent to removePred(I) + addPred(D).
     71       if (I->getLatency() < D.getLatency()) {
     72         SUnit *PredSU = I->getSUnit();
     73         // Find the corresponding successor in N.
     74         SDep ForwardD = *I;
     75         ForwardD.setSUnit(this);
     76         for (SmallVector<SDep, 4>::iterator II = PredSU->Succs.begin(),
     77                EE = PredSU->Succs.end(); II != EE; ++II) {
     78           if (*II == ForwardD) {
     79             II->setLatency(D.getLatency());
     80             break;
     81           }
     82         }
     83         I->setLatency(D.getLatency());
     84       }
     85       return false;
     86     }
     87   }
     88   // Now add a corresponding succ to N.
     89   SDep P = D;
     90   P.setSUnit(this);
     91   SUnit *N = D.getSUnit();
     92   // Update the bookkeeping.
     93   if (D.getKind() == SDep::Data) {
     94     assert(NumPreds < UINT_MAX && "NumPreds will overflow!");
     95     assert(N->NumSuccs < UINT_MAX && "NumSuccs will overflow!");
     96     ++NumPreds;
     97     ++N->NumSuccs;
     98   }
     99   if (!N->isScheduled) {
    100     assert(NumPredsLeft < UINT_MAX && "NumPredsLeft will overflow!");
    101     ++NumPredsLeft;
    102   }
    103   if (!isScheduled) {
    104     assert(N->NumSuccsLeft < UINT_MAX && "NumSuccsLeft will overflow!");
    105     ++N->NumSuccsLeft;
    106   }
    107   Preds.push_back(D);
    108   N->Succs.push_back(P);
    109   if (P.getLatency() != 0) {
    110     this->setDepthDirty();
    111     N->setHeightDirty();
    112   }
    113   return true;
    114 }
    115 
    116 /// removePred - This removes the specified edge as a pred of the current
    117 /// node if it exists.  It also removes the current node as a successor of
    118 /// the specified node.
    119 void SUnit::removePred(const SDep &D) {
    120   // Find the matching predecessor.
    121   for (SmallVector<SDep, 4>::iterator I = Preds.begin(), E = Preds.end();
    122        I != E; ++I)
    123     if (*I == D) {
    124       bool FoundSucc = false;
    125       // Find the corresponding successor in N.
    126       SDep P = D;
    127       P.setSUnit(this);
    128       SUnit *N = D.getSUnit();
    129       for (SmallVector<SDep, 4>::iterator II = N->Succs.begin(),
    130              EE = N->Succs.end(); II != EE; ++II)
    131         if (*II == P) {
    132           FoundSucc = true;
    133           N->Succs.erase(II);
    134           break;
    135         }
    136       assert(FoundSucc && "Mismatching preds / succs lists!");
    137       (void)FoundSucc;
    138       Preds.erase(I);
    139       // Update the bookkeeping.
    140       if (P.getKind() == SDep::Data) {
    141         assert(NumPreds > 0 && "NumPreds will underflow!");
    142         assert(N->NumSuccs > 0 && "NumSuccs will underflow!");
    143         --NumPreds;
    144         --N->NumSuccs;
    145       }
    146       if (!N->isScheduled) {
    147         assert(NumPredsLeft > 0 && "NumPredsLeft will underflow!");
    148         --NumPredsLeft;
    149       }
    150       if (!isScheduled) {
    151         assert(N->NumSuccsLeft > 0 && "NumSuccsLeft will underflow!");
    152         --N->NumSuccsLeft;
    153       }
    154       if (P.getLatency() != 0) {
    155         this->setDepthDirty();
    156         N->setHeightDirty();
    157       }
    158       return;
    159     }
    160 }
    161 
    162 void SUnit::setDepthDirty() {
    163   if (!isDepthCurrent) return;
    164   SmallVector<SUnit*, 8> WorkList;
    165   WorkList.push_back(this);
    166   do {
    167     SUnit *SU = WorkList.pop_back_val();
    168     SU->isDepthCurrent = false;
    169     for (SUnit::const_succ_iterator I = SU->Succs.begin(),
    170          E = SU->Succs.end(); I != E; ++I) {
    171       SUnit *SuccSU = I->getSUnit();
    172       if (SuccSU->isDepthCurrent)
    173         WorkList.push_back(SuccSU);
    174     }
    175   } while (!WorkList.empty());
    176 }
    177 
    178 void SUnit::setHeightDirty() {
    179   if (!isHeightCurrent) return;
    180   SmallVector<SUnit*, 8> WorkList;
    181   WorkList.push_back(this);
    182   do {
    183     SUnit *SU = WorkList.pop_back_val();
    184     SU->isHeightCurrent = false;
    185     for (SUnit::const_pred_iterator I = SU->Preds.begin(),
    186          E = SU->Preds.end(); I != E; ++I) {
    187       SUnit *PredSU = I->getSUnit();
    188       if (PredSU->isHeightCurrent)
    189         WorkList.push_back(PredSU);
    190     }
    191   } while (!WorkList.empty());
    192 }
    193 
    194 /// setDepthToAtLeast - Update this node's successors to reflect the
    195 /// fact that this node's depth just increased.
    196 ///
    197 void SUnit::setDepthToAtLeast(unsigned NewDepth) {
    198   if (NewDepth <= getDepth())
    199     return;
    200   setDepthDirty();
    201   Depth = NewDepth;
    202   isDepthCurrent = true;
    203 }
    204 
    205 /// setHeightToAtLeast - Update this node's predecessors to reflect the
    206 /// fact that this node's height just increased.
    207 ///
    208 void SUnit::setHeightToAtLeast(unsigned NewHeight) {
    209   if (NewHeight <= getHeight())
    210     return;
    211   setHeightDirty();
    212   Height = NewHeight;
    213   isHeightCurrent = true;
    214 }
    215 
    216 /// ComputeDepth - Calculate the maximal path from the node to the exit.
    217 ///
    218 void SUnit::ComputeDepth() {
    219   SmallVector<SUnit*, 8> WorkList;
    220   WorkList.push_back(this);
    221   do {
    222     SUnit *Cur = WorkList.back();
    223 
    224     bool Done = true;
    225     unsigned MaxPredDepth = 0;
    226     for (SUnit::const_pred_iterator I = Cur->Preds.begin(),
    227          E = Cur->Preds.end(); I != E; ++I) {
    228       SUnit *PredSU = I->getSUnit();
    229       if (PredSU->isDepthCurrent)
    230         MaxPredDepth = std::max(MaxPredDepth,
    231                                 PredSU->Depth + I->getLatency());
    232       else {
    233         Done = false;
    234         WorkList.push_back(PredSU);
    235       }
    236     }
    237 
    238     if (Done) {
    239       WorkList.pop_back();
    240       if (MaxPredDepth != Cur->Depth) {
    241         Cur->setDepthDirty();
    242         Cur->Depth = MaxPredDepth;
    243       }
    244       Cur->isDepthCurrent = true;
    245     }
    246   } while (!WorkList.empty());
    247 }
    248 
    249 /// ComputeHeight - Calculate the maximal path from the node to the entry.
    250 ///
    251 void SUnit::ComputeHeight() {
    252   SmallVector<SUnit*, 8> WorkList;
    253   WorkList.push_back(this);
    254   do {
    255     SUnit *Cur = WorkList.back();
    256 
    257     bool Done = true;
    258     unsigned MaxSuccHeight = 0;
    259     for (SUnit::const_succ_iterator I = Cur->Succs.begin(),
    260          E = Cur->Succs.end(); I != E; ++I) {
    261       SUnit *SuccSU = I->getSUnit();
    262       if (SuccSU->isHeightCurrent)
    263         MaxSuccHeight = std::max(MaxSuccHeight,
    264                                  SuccSU->Height + I->getLatency());
    265       else {
    266         Done = false;
    267         WorkList.push_back(SuccSU);
    268       }
    269     }
    270 
    271     if (Done) {
    272       WorkList.pop_back();
    273       if (MaxSuccHeight != Cur->Height) {
    274         Cur->setHeightDirty();
    275         Cur->Height = MaxSuccHeight;
    276       }
    277       Cur->isHeightCurrent = true;
    278     }
    279   } while (!WorkList.empty());
    280 }
    281 
    282 #ifndef NDEBUG
    283 /// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or
    284 /// a group of nodes flagged together.
    285 void SUnit::dump(const ScheduleDAG *G) const {
    286   dbgs() << "SU(" << NodeNum << "): ";
    287   G->dumpNode(this);
    288 }
    289 
    290 void SUnit::dumpAll(const ScheduleDAG *G) const {
    291   dump(G);
    292 
    293   dbgs() << "  # preds left       : " << NumPredsLeft << "\n";
    294   dbgs() << "  # succs left       : " << NumSuccsLeft << "\n";
    295   dbgs() << "  # rdefs left       : " << NumRegDefsLeft << "\n";
    296   dbgs() << "  Latency            : " << Latency << "\n";
    297   dbgs() << "  Depth              : " << Depth << "\n";
    298   dbgs() << "  Height             : " << Height << "\n";
    299 
    300   if (Preds.size() != 0) {
    301     dbgs() << "  Predecessors:\n";
    302     for (SUnit::const_succ_iterator I = Preds.begin(), E = Preds.end();
    303          I != E; ++I) {
    304       dbgs() << "   ";
    305       switch (I->getKind()) {
    306       case SDep::Data:        dbgs() << "val "; break;
    307       case SDep::Anti:        dbgs() << "anti"; break;
    308       case SDep::Output:      dbgs() << "out "; break;
    309       case SDep::Order:       dbgs() << "ch  "; break;
    310       }
    311       dbgs() << "SU(" << I->getSUnit()->NodeNum << ")";
    312       if (I->isArtificial())
    313         dbgs() << " *";
    314       dbgs() << ": Latency=" << I->getLatency();
    315       if (I->isAssignedRegDep())
    316         dbgs() << " Reg=" << PrintReg(I->getReg(), G->TRI);
    317       dbgs() << "\n";
    318     }
    319   }
    320   if (Succs.size() != 0) {
    321     dbgs() << "  Successors:\n";
    322     for (SUnit::const_succ_iterator I = Succs.begin(), E = Succs.end();
    323          I != E; ++I) {
    324       dbgs() << "   ";
    325       switch (I->getKind()) {
    326       case SDep::Data:        dbgs() << "val "; break;
    327       case SDep::Anti:        dbgs() << "anti"; break;
    328       case SDep::Output:      dbgs() << "out "; break;
    329       case SDep::Order:       dbgs() << "ch  "; break;
    330       }
    331       dbgs() << "SU(" << I->getSUnit()->NodeNum << ")";
    332       if (I->isArtificial())
    333         dbgs() << " *";
    334       dbgs() << ": Latency=" << I->getLatency();
    335       dbgs() << "\n";
    336     }
    337   }
    338   dbgs() << "\n";
    339 }
    340 #endif
    341 
    342 #ifndef NDEBUG
    343 /// VerifyScheduledDAG - Verify that all SUnits were scheduled and that
    344 /// their state is consistent. Return the number of scheduled nodes.
    345 ///
    346 unsigned ScheduleDAG::VerifyScheduledDAG(bool isBottomUp) {
    347   bool AnyNotSched = false;
    348   unsigned DeadNodes = 0;
    349   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
    350     if (!SUnits[i].isScheduled) {
    351       if (SUnits[i].NumPreds == 0 && SUnits[i].NumSuccs == 0) {
    352         ++DeadNodes;
    353         continue;
    354       }
    355       if (!AnyNotSched)
    356         dbgs() << "*** Scheduling failed! ***\n";
    357       SUnits[i].dump(this);
    358       dbgs() << "has not been scheduled!\n";
    359       AnyNotSched = true;
    360     }
    361     if (SUnits[i].isScheduled &&
    362         (isBottomUp ? SUnits[i].getHeight() : SUnits[i].getDepth()) >
    363           unsigned(INT_MAX)) {
    364       if (!AnyNotSched)
    365         dbgs() << "*** Scheduling failed! ***\n";
    366       SUnits[i].dump(this);
    367       dbgs() << "has an unexpected "
    368            << (isBottomUp ? "Height" : "Depth") << " value!\n";
    369       AnyNotSched = true;
    370     }
    371     if (isBottomUp) {
    372       if (SUnits[i].NumSuccsLeft != 0) {
    373         if (!AnyNotSched)
    374           dbgs() << "*** Scheduling failed! ***\n";
    375         SUnits[i].dump(this);
    376         dbgs() << "has successors left!\n";
    377         AnyNotSched = true;
    378       }
    379     } else {
    380       if (SUnits[i].NumPredsLeft != 0) {
    381         if (!AnyNotSched)
    382           dbgs() << "*** Scheduling failed! ***\n";
    383         SUnits[i].dump(this);
    384         dbgs() << "has predecessors left!\n";
    385         AnyNotSched = true;
    386       }
    387     }
    388   }
    389   assert(!AnyNotSched);
    390   return SUnits.size() - DeadNodes;
    391 }
    392 #endif
    393 
    394 /// InitDAGTopologicalSorting - create the initial topological
    395 /// ordering from the DAG to be scheduled.
    396 ///
    397 /// The idea of the algorithm is taken from
    398 /// "Online algorithms for managing the topological order of
    399 /// a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly
    400 /// This is the MNR algorithm, which was first introduced by
    401 /// A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in
    402 /// "Maintaining a topological order under edge insertions".
    403 ///
    404 /// Short description of the algorithm:
    405 ///
    406 /// Topological ordering, ord, of a DAG maps each node to a topological
    407 /// index so that for all edges X->Y it is the case that ord(X) < ord(Y).
    408 ///
    409 /// This means that if there is a path from the node X to the node Z,
    410 /// then ord(X) < ord(Z).
    411 ///
    412 /// This property can be used to check for reachability of nodes:
    413 /// if Z is reachable from X, then an insertion of the edge Z->X would
    414 /// create a cycle.
    415 ///
    416 /// The algorithm first computes a topological ordering for the DAG by
    417 /// initializing the Index2Node and Node2Index arrays and then tries to keep
    418 /// the ordering up-to-date after edge insertions by reordering the DAG.
    419 ///
    420 /// On insertion of the edge X->Y, the algorithm first marks by calling DFS
    421 /// the nodes reachable from Y, and then shifts them using Shift to lie
    422 /// immediately after X in Index2Node.
    423 void ScheduleDAGTopologicalSort::InitDAGTopologicalSorting() {
    424   unsigned DAGSize = SUnits.size();
    425   std::vector<SUnit*> WorkList;
    426   WorkList.reserve(DAGSize);
    427 
    428   Index2Node.resize(DAGSize);
    429   Node2Index.resize(DAGSize);
    430 
    431   // Initialize the data structures.
    432   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
    433     SUnit *SU = &SUnits[i];
    434     int NodeNum = SU->NodeNum;
    435     unsigned Degree = SU->Succs.size();
    436     // Temporarily use the Node2Index array as scratch space for degree counts.
    437     Node2Index[NodeNum] = Degree;
    438 
    439     // Is it a node without dependencies?
    440     if (Degree == 0) {
    441       assert(SU->Succs.empty() && "SUnit should have no successors");
    442       // Collect leaf nodes.
    443       WorkList.push_back(SU);
    444     }
    445   }
    446 
    447   int Id = DAGSize;
    448   while (!WorkList.empty()) {
    449     SUnit *SU = WorkList.back();
    450     WorkList.pop_back();
    451     Allocate(SU->NodeNum, --Id);
    452     for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
    453          I != E; ++I) {
    454       SUnit *SU = I->getSUnit();
    455       if (!--Node2Index[SU->NodeNum])
    456         // If all dependencies of the node are processed already,
    457         // then the node can be computed now.
    458         WorkList.push_back(SU);
    459     }
    460   }
    461 
    462   Visited.resize(DAGSize);
    463 
    464 #ifndef NDEBUG
    465   // Check correctness of the ordering
    466   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
    467     SUnit *SU = &SUnits[i];
    468     for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
    469          I != E; ++I) {
    470       assert(Node2Index[SU->NodeNum] > Node2Index[I->getSUnit()->NodeNum] &&
    471       "Wrong topological sorting");
    472     }
    473   }
    474 #endif
    475 }
    476 
    477 /// AddPred - Updates the topological ordering to accommodate an edge
    478 /// to be added from SUnit X to SUnit Y.
    479 void ScheduleDAGTopologicalSort::AddPred(SUnit *Y, SUnit *X) {
    480   int UpperBound, LowerBound;
    481   LowerBound = Node2Index[Y->NodeNum];
    482   UpperBound = Node2Index[X->NodeNum];
    483   bool HasLoop = false;
    484   // Is Ord(X) < Ord(Y) ?
    485   if (LowerBound < UpperBound) {
    486     // Update the topological order.
    487     Visited.reset();
    488     DFS(Y, UpperBound, HasLoop);
    489     assert(!HasLoop && "Inserted edge creates a loop!");
    490     // Recompute topological indexes.
    491     Shift(Visited, LowerBound, UpperBound);
    492   }
    493 }
    494 
    495 /// RemovePred - Updates the topological ordering to accommodate an
    496 /// an edge to be removed from the specified node N from the predecessors
    497 /// of the current node M.
    498 void ScheduleDAGTopologicalSort::RemovePred(SUnit *M, SUnit *N) {
    499   // InitDAGTopologicalSorting();
    500 }
    501 
    502 /// DFS - Make a DFS traversal to mark all nodes reachable from SU and mark
    503 /// all nodes affected by the edge insertion. These nodes will later get new
    504 /// topological indexes by means of the Shift method.
    505 void ScheduleDAGTopologicalSort::DFS(const SUnit *SU, int UpperBound,
    506                                      bool &HasLoop) {
    507   std::vector<const SUnit*> WorkList;
    508   WorkList.reserve(SUnits.size());
    509 
    510   WorkList.push_back(SU);
    511   do {
    512     SU = WorkList.back();
    513     WorkList.pop_back();
    514     Visited.set(SU->NodeNum);
    515     for (int I = SU->Succs.size()-1; I >= 0; --I) {
    516       int s = SU->Succs[I].getSUnit()->NodeNum;
    517       if (Node2Index[s] == UpperBound) {
    518         HasLoop = true;
    519         return;
    520       }
    521       // Visit successors if not already and in affected region.
    522       if (!Visited.test(s) && Node2Index[s] < UpperBound) {
    523         WorkList.push_back(SU->Succs[I].getSUnit());
    524       }
    525     }
    526   } while (!WorkList.empty());
    527 }
    528 
    529 /// Shift - Renumber the nodes so that the topological ordering is
    530 /// preserved.
    531 void ScheduleDAGTopologicalSort::Shift(BitVector& Visited, int LowerBound,
    532                                        int UpperBound) {
    533   std::vector<int> L;
    534   int shift = 0;
    535   int i;
    536 
    537   for (i = LowerBound; i <= UpperBound; ++i) {
    538     // w is node at topological index i.
    539     int w = Index2Node[i];
    540     if (Visited.test(w)) {
    541       // Unmark.
    542       Visited.reset(w);
    543       L.push_back(w);
    544       shift = shift + 1;
    545     } else {
    546       Allocate(w, i - shift);
    547     }
    548   }
    549 
    550   for (unsigned j = 0; j < L.size(); ++j) {
    551     Allocate(L[j], i - shift);
    552     i = i + 1;
    553   }
    554 }
    555 
    556 
    557 /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
    558 /// create a cycle.
    559 bool ScheduleDAGTopologicalSort::WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
    560   if (IsReachable(TargetSU, SU))
    561     return true;
    562   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
    563        I != E; ++I)
    564     if (I->isAssignedRegDep() &&
    565         IsReachable(TargetSU, I->getSUnit()))
    566       return true;
    567   return false;
    568 }
    569 
    570 /// IsReachable - Checks if SU is reachable from TargetSU.
    571 bool ScheduleDAGTopologicalSort::IsReachable(const SUnit *SU,
    572                                              const SUnit *TargetSU) {
    573   // If insertion of the edge SU->TargetSU would create a cycle
    574   // then there is a path from TargetSU to SU.
    575   int UpperBound, LowerBound;
    576   LowerBound = Node2Index[TargetSU->NodeNum];
    577   UpperBound = Node2Index[SU->NodeNum];
    578   bool HasLoop = false;
    579   // Is Ord(TargetSU) < Ord(SU) ?
    580   if (LowerBound < UpperBound) {
    581     Visited.reset();
    582     // There may be a path from TargetSU to SU. Check for it.
    583     DFS(TargetSU, UpperBound, HasLoop);
    584   }
    585   return HasLoop;
    586 }
    587 
    588 /// Allocate - assign the topological index to the node n.
    589 void ScheduleDAGTopologicalSort::Allocate(int n, int index) {
    590   Node2Index[n] = index;
    591   Index2Node[index] = n;
    592 }
    593 
    594 ScheduleDAGTopologicalSort::
    595 ScheduleDAGTopologicalSort(std::vector<SUnit> &sunits) : SUnits(sunits) {}
    596 
    597 ScheduleHazardRecognizer::~ScheduleHazardRecognizer() {}
    598