Home | History | Annotate | Download | only in CppBackend
      1 //===-- CPPBackend.cpp - Library for converting LLVM code to C++ code -----===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the writing of the LLVM IR as a set of C++ calls to the
     11 // LLVM IR interface. The input module is assumed to be verified.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "CPPTargetMachine.h"
     16 #include "llvm/CallingConv.h"
     17 #include "llvm/Constants.h"
     18 #include "llvm/DerivedTypes.h"
     19 #include "llvm/InlineAsm.h"
     20 #include "llvm/Instruction.h"
     21 #include "llvm/Instructions.h"
     22 #include "llvm/Module.h"
     23 #include "llvm/Pass.h"
     24 #include "llvm/PassManager.h"
     25 #include "llvm/MC/MCAsmInfo.h"
     26 #include "llvm/MC/MCInstrInfo.h"
     27 #include "llvm/MC/MCSubtargetInfo.h"
     28 #include "llvm/ADT/SmallPtrSet.h"
     29 #include "llvm/Support/CommandLine.h"
     30 #include "llvm/Support/ErrorHandling.h"
     31 #include "llvm/Support/FormattedStream.h"
     32 #include "llvm/Support/TargetRegistry.h"
     33 #include "llvm/ADT/StringExtras.h"
     34 #include "llvm/Config/config.h"
     35 #include <algorithm>
     36 #include <cstdio>
     37 #include <map>
     38 #include <set>
     39 using namespace llvm;
     40 
     41 static cl::opt<std::string>
     42 FuncName("cppfname", cl::desc("Specify the name of the generated function"),
     43          cl::value_desc("function name"));
     44 
     45 enum WhatToGenerate {
     46   GenProgram,
     47   GenModule,
     48   GenContents,
     49   GenFunction,
     50   GenFunctions,
     51   GenInline,
     52   GenVariable,
     53   GenType
     54 };
     55 
     56 static cl::opt<WhatToGenerate> GenerationType("cppgen", cl::Optional,
     57   cl::desc("Choose what kind of output to generate"),
     58   cl::init(GenProgram),
     59   cl::values(
     60     clEnumValN(GenProgram,  "program",   "Generate a complete program"),
     61     clEnumValN(GenModule,   "module",    "Generate a module definition"),
     62     clEnumValN(GenContents, "contents",  "Generate contents of a module"),
     63     clEnumValN(GenFunction, "function",  "Generate a function definition"),
     64     clEnumValN(GenFunctions,"functions", "Generate all function definitions"),
     65     clEnumValN(GenInline,   "inline",    "Generate an inline function"),
     66     clEnumValN(GenVariable, "variable",  "Generate a variable definition"),
     67     clEnumValN(GenType,     "type",      "Generate a type definition"),
     68     clEnumValEnd
     69   )
     70 );
     71 
     72 static cl::opt<std::string> NameToGenerate("cppfor", cl::Optional,
     73   cl::desc("Specify the name of the thing to generate"),
     74   cl::init("!bad!"));
     75 
     76 extern "C" void LLVMInitializeCppBackendTarget() {
     77   // Register the target.
     78   RegisterTargetMachine<CPPTargetMachine> X(TheCppBackendTarget);
     79 }
     80 
     81 namespace {
     82   typedef std::vector<Type*> TypeList;
     83   typedef std::map<Type*,std::string> TypeMap;
     84   typedef std::map<const Value*,std::string> ValueMap;
     85   typedef std::set<std::string> NameSet;
     86   typedef std::set<Type*> TypeSet;
     87   typedef std::set<const Value*> ValueSet;
     88   typedef std::map<const Value*,std::string> ForwardRefMap;
     89 
     90   /// CppWriter - This class is the main chunk of code that converts an LLVM
     91   /// module to a C++ translation unit.
     92   class CppWriter : public ModulePass {
     93     formatted_raw_ostream &Out;
     94     const Module *TheModule;
     95     uint64_t uniqueNum;
     96     TypeMap TypeNames;
     97     ValueMap ValueNames;
     98     NameSet UsedNames;
     99     TypeSet DefinedTypes;
    100     ValueSet DefinedValues;
    101     ForwardRefMap ForwardRefs;
    102     bool is_inline;
    103     unsigned indent_level;
    104 
    105   public:
    106     static char ID;
    107     explicit CppWriter(formatted_raw_ostream &o) :
    108       ModulePass(ID), Out(o), uniqueNum(0), is_inline(false), indent_level(0){}
    109 
    110     virtual const char *getPassName() const { return "C++ backend"; }
    111 
    112     bool runOnModule(Module &M);
    113 
    114     void printProgram(const std::string& fname, const std::string& modName );
    115     void printModule(const std::string& fname, const std::string& modName );
    116     void printContents(const std::string& fname, const std::string& modName );
    117     void printFunction(const std::string& fname, const std::string& funcName );
    118     void printFunctions();
    119     void printInline(const std::string& fname, const std::string& funcName );
    120     void printVariable(const std::string& fname, const std::string& varName );
    121     void printType(const std::string& fname, const std::string& typeName );
    122 
    123     void error(const std::string& msg);
    124 
    125 
    126     formatted_raw_ostream& nl(formatted_raw_ostream &Out, int delta = 0);
    127     inline void in() { indent_level++; }
    128     inline void out() { if (indent_level >0) indent_level--; }
    129 
    130   private:
    131     void printLinkageType(GlobalValue::LinkageTypes LT);
    132     void printVisibilityType(GlobalValue::VisibilityTypes VisTypes);
    133     void printThreadLocalMode(GlobalVariable::ThreadLocalMode TLM);
    134     void printCallingConv(CallingConv::ID cc);
    135     void printEscapedString(const std::string& str);
    136     void printCFP(const ConstantFP* CFP);
    137 
    138     std::string getCppName(Type* val);
    139     inline void printCppName(Type* val);
    140 
    141     std::string getCppName(const Value* val);
    142     inline void printCppName(const Value* val);
    143 
    144     void printAttributes(const AttrListPtr &PAL, const std::string &name);
    145     void printType(Type* Ty);
    146     void printTypes(const Module* M);
    147 
    148     void printConstant(const Constant *CPV);
    149     void printConstants(const Module* M);
    150 
    151     void printVariableUses(const GlobalVariable *GV);
    152     void printVariableHead(const GlobalVariable *GV);
    153     void printVariableBody(const GlobalVariable *GV);
    154 
    155     void printFunctionUses(const Function *F);
    156     void printFunctionHead(const Function *F);
    157     void printFunctionBody(const Function *F);
    158     void printInstruction(const Instruction *I, const std::string& bbname);
    159     std::string getOpName(const Value*);
    160 
    161     void printModuleBody();
    162   };
    163 } // end anonymous namespace.
    164 
    165 formatted_raw_ostream &CppWriter::nl(formatted_raw_ostream &Out, int delta) {
    166   Out << '\n';
    167   if (delta >= 0 || indent_level >= unsigned(-delta))
    168     indent_level += delta;
    169   Out.indent(indent_level);
    170   return Out;
    171 }
    172 
    173 static inline void sanitize(std::string &str) {
    174   for (size_t i = 0; i < str.length(); ++i)
    175     if (!isalnum(str[i]) && str[i] != '_')
    176       str[i] = '_';
    177 }
    178 
    179 static std::string getTypePrefix(Type *Ty) {
    180   switch (Ty->getTypeID()) {
    181   case Type::VoidTyID:     return "void_";
    182   case Type::IntegerTyID:
    183     return "int" + utostr(cast<IntegerType>(Ty)->getBitWidth()) + "_";
    184   case Type::FloatTyID:    return "float_";
    185   case Type::DoubleTyID:   return "double_";
    186   case Type::LabelTyID:    return "label_";
    187   case Type::FunctionTyID: return "func_";
    188   case Type::StructTyID:   return "struct_";
    189   case Type::ArrayTyID:    return "array_";
    190   case Type::PointerTyID:  return "ptr_";
    191   case Type::VectorTyID:   return "packed_";
    192   default:                 return "other_";
    193   }
    194 }
    195 
    196 void CppWriter::error(const std::string& msg) {
    197   report_fatal_error(msg);
    198 }
    199 
    200 static inline std::string ftostr(const APFloat& V) {
    201   std::string Buf;
    202   if (&V.getSemantics() == &APFloat::IEEEdouble) {
    203     raw_string_ostream(Buf) << V.convertToDouble();
    204     return Buf;
    205   } else if (&V.getSemantics() == &APFloat::IEEEsingle) {
    206     raw_string_ostream(Buf) << (double)V.convertToFloat();
    207     return Buf;
    208   }
    209   return "<unknown format in ftostr>"; // error
    210 }
    211 
    212 // printCFP - Print a floating point constant .. very carefully :)
    213 // This makes sure that conversion to/from floating yields the same binary
    214 // result so that we don't lose precision.
    215 void CppWriter::printCFP(const ConstantFP *CFP) {
    216   bool ignored;
    217   APFloat APF = APFloat(CFP->getValueAPF());  // copy
    218   if (CFP->getType() == Type::getFloatTy(CFP->getContext()))
    219     APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &ignored);
    220   Out << "ConstantFP::get(mod->getContext(), ";
    221   Out << "APFloat(";
    222 #if HAVE_PRINTF_A
    223   char Buffer[100];
    224   sprintf(Buffer, "%A", APF.convertToDouble());
    225   if ((!strncmp(Buffer, "0x", 2) ||
    226        !strncmp(Buffer, "-0x", 3) ||
    227        !strncmp(Buffer, "+0x", 3)) &&
    228       APF.bitwiseIsEqual(APFloat(atof(Buffer)))) {
    229     if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
    230       Out << "BitsToDouble(" << Buffer << ")";
    231     else
    232       Out << "BitsToFloat((float)" << Buffer << ")";
    233     Out << ")";
    234   } else {
    235 #endif
    236     std::string StrVal = ftostr(CFP->getValueAPF());
    237 
    238     while (StrVal[0] == ' ')
    239       StrVal.erase(StrVal.begin());
    240 
    241     // Check to make sure that the stringized number is not some string like
    242     // "Inf" or NaN.  Check that the string matches the "[-+]?[0-9]" regex.
    243     if (((StrVal[0] >= '0' && StrVal[0] <= '9') ||
    244          ((StrVal[0] == '-' || StrVal[0] == '+') &&
    245           (StrVal[1] >= '0' && StrVal[1] <= '9'))) &&
    246         (CFP->isExactlyValue(atof(StrVal.c_str())))) {
    247       if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
    248         Out <<  StrVal;
    249       else
    250         Out << StrVal << "f";
    251     } else if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
    252       Out << "BitsToDouble(0x"
    253           << utohexstr(CFP->getValueAPF().bitcastToAPInt().getZExtValue())
    254           << "ULL) /* " << StrVal << " */";
    255     else
    256       Out << "BitsToFloat(0x"
    257           << utohexstr((uint32_t)CFP->getValueAPF().
    258                                       bitcastToAPInt().getZExtValue())
    259           << "U) /* " << StrVal << " */";
    260     Out << ")";
    261 #if HAVE_PRINTF_A
    262   }
    263 #endif
    264   Out << ")";
    265 }
    266 
    267 void CppWriter::printCallingConv(CallingConv::ID cc){
    268   // Print the calling convention.
    269   switch (cc) {
    270   case CallingConv::C:     Out << "CallingConv::C"; break;
    271   case CallingConv::Fast:  Out << "CallingConv::Fast"; break;
    272   case CallingConv::Cold:  Out << "CallingConv::Cold"; break;
    273   case CallingConv::FirstTargetCC: Out << "CallingConv::FirstTargetCC"; break;
    274   default:                 Out << cc; break;
    275   }
    276 }
    277 
    278 void CppWriter::printLinkageType(GlobalValue::LinkageTypes LT) {
    279   switch (LT) {
    280   case GlobalValue::InternalLinkage:
    281     Out << "GlobalValue::InternalLinkage"; break;
    282   case GlobalValue::PrivateLinkage:
    283     Out << "GlobalValue::PrivateLinkage"; break;
    284   case GlobalValue::LinkerPrivateLinkage:
    285     Out << "GlobalValue::LinkerPrivateLinkage"; break;
    286   case GlobalValue::LinkerPrivateWeakLinkage:
    287     Out << "GlobalValue::LinkerPrivateWeakLinkage"; break;
    288   case GlobalValue::AvailableExternallyLinkage:
    289     Out << "GlobalValue::AvailableExternallyLinkage "; break;
    290   case GlobalValue::LinkOnceAnyLinkage:
    291     Out << "GlobalValue::LinkOnceAnyLinkage "; break;
    292   case GlobalValue::LinkOnceODRLinkage:
    293     Out << "GlobalValue::LinkOnceODRLinkage "; break;
    294   case GlobalValue::LinkOnceODRAutoHideLinkage:
    295     Out << "GlobalValue::LinkOnceODRAutoHideLinkage"; break;
    296   case GlobalValue::WeakAnyLinkage:
    297     Out << "GlobalValue::WeakAnyLinkage"; break;
    298   case GlobalValue::WeakODRLinkage:
    299     Out << "GlobalValue::WeakODRLinkage"; break;
    300   case GlobalValue::AppendingLinkage:
    301     Out << "GlobalValue::AppendingLinkage"; break;
    302   case GlobalValue::ExternalLinkage:
    303     Out << "GlobalValue::ExternalLinkage"; break;
    304   case GlobalValue::DLLImportLinkage:
    305     Out << "GlobalValue::DLLImportLinkage"; break;
    306   case GlobalValue::DLLExportLinkage:
    307     Out << "GlobalValue::DLLExportLinkage"; break;
    308   case GlobalValue::ExternalWeakLinkage:
    309     Out << "GlobalValue::ExternalWeakLinkage"; break;
    310   case GlobalValue::CommonLinkage:
    311     Out << "GlobalValue::CommonLinkage"; break;
    312   }
    313 }
    314 
    315 void CppWriter::printVisibilityType(GlobalValue::VisibilityTypes VisType) {
    316   switch (VisType) {
    317   case GlobalValue::DefaultVisibility:
    318     Out << "GlobalValue::DefaultVisibility";
    319     break;
    320   case GlobalValue::HiddenVisibility:
    321     Out << "GlobalValue::HiddenVisibility";
    322     break;
    323   case GlobalValue::ProtectedVisibility:
    324     Out << "GlobalValue::ProtectedVisibility";
    325     break;
    326   }
    327 }
    328 
    329 void CppWriter::printThreadLocalMode(GlobalVariable::ThreadLocalMode TLM) {
    330   switch (TLM) {
    331     case GlobalVariable::NotThreadLocal:
    332       Out << "GlobalVariable::NotThreadLocal";
    333       break;
    334     case GlobalVariable::GeneralDynamicTLSModel:
    335       Out << "GlobalVariable::GeneralDynamicTLSModel";
    336       break;
    337     case GlobalVariable::LocalDynamicTLSModel:
    338       Out << "GlobalVariable::LocalDynamicTLSModel";
    339       break;
    340     case GlobalVariable::InitialExecTLSModel:
    341       Out << "GlobalVariable::InitialExecTLSModel";
    342       break;
    343     case GlobalVariable::LocalExecTLSModel:
    344       Out << "GlobalVariable::LocalExecTLSModel";
    345       break;
    346   }
    347 }
    348 
    349 // printEscapedString - Print each character of the specified string, escaping
    350 // it if it is not printable or if it is an escape char.
    351 void CppWriter::printEscapedString(const std::string &Str) {
    352   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
    353     unsigned char C = Str[i];
    354     if (isprint(C) && C != '"' && C != '\\') {
    355       Out << C;
    356     } else {
    357       Out << "\\x"
    358           << (char) ((C/16  < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
    359           << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
    360     }
    361   }
    362 }
    363 
    364 std::string CppWriter::getCppName(Type* Ty) {
    365   // First, handle the primitive types .. easy
    366   if (Ty->isPrimitiveType() || Ty->isIntegerTy()) {
    367     switch (Ty->getTypeID()) {
    368     case Type::VoidTyID:   return "Type::getVoidTy(mod->getContext())";
    369     case Type::IntegerTyID: {
    370       unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
    371       return "IntegerType::get(mod->getContext(), " + utostr(BitWidth) + ")";
    372     }
    373     case Type::X86_FP80TyID: return "Type::getX86_FP80Ty(mod->getContext())";
    374     case Type::FloatTyID:    return "Type::getFloatTy(mod->getContext())";
    375     case Type::DoubleTyID:   return "Type::getDoubleTy(mod->getContext())";
    376     case Type::LabelTyID:    return "Type::getLabelTy(mod->getContext())";
    377     case Type::X86_MMXTyID:  return "Type::getX86_MMXTy(mod->getContext())";
    378     default:
    379       error("Invalid primitive type");
    380       break;
    381     }
    382     // shouldn't be returned, but make it sensible
    383     return "Type::getVoidTy(mod->getContext())";
    384   }
    385 
    386   // Now, see if we've seen the type before and return that
    387   TypeMap::iterator I = TypeNames.find(Ty);
    388   if (I != TypeNames.end())
    389     return I->second;
    390 
    391   // Okay, let's build a new name for this type. Start with a prefix
    392   const char* prefix = 0;
    393   switch (Ty->getTypeID()) {
    394   case Type::FunctionTyID:    prefix = "FuncTy_"; break;
    395   case Type::StructTyID:      prefix = "StructTy_"; break;
    396   case Type::ArrayTyID:       prefix = "ArrayTy_"; break;
    397   case Type::PointerTyID:     prefix = "PointerTy_"; break;
    398   case Type::VectorTyID:      prefix = "VectorTy_"; break;
    399   default:                    prefix = "OtherTy_"; break; // prevent breakage
    400   }
    401 
    402   // See if the type has a name in the symboltable and build accordingly
    403   std::string name;
    404   if (StructType *STy = dyn_cast<StructType>(Ty))
    405     if (STy->hasName())
    406       name = STy->getName();
    407 
    408   if (name.empty())
    409     name = utostr(uniqueNum++);
    410 
    411   name = std::string(prefix) + name;
    412   sanitize(name);
    413 
    414   // Save the name
    415   return TypeNames[Ty] = name;
    416 }
    417 
    418 void CppWriter::printCppName(Type* Ty) {
    419   printEscapedString(getCppName(Ty));
    420 }
    421 
    422 std::string CppWriter::getCppName(const Value* val) {
    423   std::string name;
    424   ValueMap::iterator I = ValueNames.find(val);
    425   if (I != ValueNames.end() && I->first == val)
    426     return  I->second;
    427 
    428   if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(val)) {
    429     name = std::string("gvar_") +
    430       getTypePrefix(GV->getType()->getElementType());
    431   } else if (isa<Function>(val)) {
    432     name = std::string("func_");
    433   } else if (const Constant* C = dyn_cast<Constant>(val)) {
    434     name = std::string("const_") + getTypePrefix(C->getType());
    435   } else if (const Argument* Arg = dyn_cast<Argument>(val)) {
    436     if (is_inline) {
    437       unsigned argNum = std::distance(Arg->getParent()->arg_begin(),
    438                                       Function::const_arg_iterator(Arg)) + 1;
    439       name = std::string("arg_") + utostr(argNum);
    440       NameSet::iterator NI = UsedNames.find(name);
    441       if (NI != UsedNames.end())
    442         name += std::string("_") + utostr(uniqueNum++);
    443       UsedNames.insert(name);
    444       return ValueNames[val] = name;
    445     } else {
    446       name = getTypePrefix(val->getType());
    447     }
    448   } else {
    449     name = getTypePrefix(val->getType());
    450   }
    451   if (val->hasName())
    452     name += val->getName();
    453   else
    454     name += utostr(uniqueNum++);
    455   sanitize(name);
    456   NameSet::iterator NI = UsedNames.find(name);
    457   if (NI != UsedNames.end())
    458     name += std::string("_") + utostr(uniqueNum++);
    459   UsedNames.insert(name);
    460   return ValueNames[val] = name;
    461 }
    462 
    463 void CppWriter::printCppName(const Value* val) {
    464   printEscapedString(getCppName(val));
    465 }
    466 
    467 void CppWriter::printAttributes(const AttrListPtr &PAL,
    468                                 const std::string &name) {
    469   Out << "AttrListPtr " << name << "_PAL;";
    470   nl(Out);
    471   if (!PAL.isEmpty()) {
    472     Out << '{'; in(); nl(Out);
    473     Out << "SmallVector<AttributeWithIndex, 4> Attrs;"; nl(Out);
    474     Out << "AttributeWithIndex PAWI;"; nl(Out);
    475     for (unsigned i = 0; i < PAL.getNumSlots(); ++i) {
    476       unsigned index = PAL.getSlot(i).Index;
    477       Attributes attrs = PAL.getSlot(i).Attrs;
    478       Out << "PAWI.Index = " << index << "U; PAWI.Attrs = Attribute::None ";
    479 #define HANDLE_ATTR(X)                 \
    480       if (attrs & Attribute::X)      \
    481         Out << " | Attribute::" #X;  \
    482       attrs &= ~Attribute::X;
    483 
    484       HANDLE_ATTR(SExt);
    485       HANDLE_ATTR(ZExt);
    486       HANDLE_ATTR(NoReturn);
    487       HANDLE_ATTR(InReg);
    488       HANDLE_ATTR(StructRet);
    489       HANDLE_ATTR(NoUnwind);
    490       HANDLE_ATTR(NoAlias);
    491       HANDLE_ATTR(ByVal);
    492       HANDLE_ATTR(Nest);
    493       HANDLE_ATTR(ReadNone);
    494       HANDLE_ATTR(ReadOnly);
    495       HANDLE_ATTR(NoInline);
    496       HANDLE_ATTR(AlwaysInline);
    497       HANDLE_ATTR(OptimizeForSize);
    498       HANDLE_ATTR(StackProtect);
    499       HANDLE_ATTR(StackProtectReq);
    500       HANDLE_ATTR(NoCapture);
    501       HANDLE_ATTR(NoRedZone);
    502       HANDLE_ATTR(NoImplicitFloat);
    503       HANDLE_ATTR(Naked);
    504       HANDLE_ATTR(InlineHint);
    505       HANDLE_ATTR(ReturnsTwice);
    506       HANDLE_ATTR(UWTable);
    507       HANDLE_ATTR(NonLazyBind);
    508 #undef HANDLE_ATTR
    509       if (attrs & Attribute::StackAlignment)
    510         Out << " | Attribute::constructStackAlignmentFromInt("
    511             << Attribute::getStackAlignmentFromAttrs(attrs)
    512             << ")";
    513       attrs &= ~Attribute::StackAlignment;
    514       assert(attrs == 0 && "Unhandled attribute!");
    515       Out << ";";
    516       nl(Out);
    517       Out << "Attrs.push_back(PAWI);";
    518       nl(Out);
    519     }
    520     Out << name << "_PAL = AttrListPtr::get(Attrs);";
    521     nl(Out);
    522     out(); nl(Out);
    523     Out << '}'; nl(Out);
    524   }
    525 }
    526 
    527 void CppWriter::printType(Type* Ty) {
    528   // We don't print definitions for primitive types
    529   if (Ty->isPrimitiveType() || Ty->isIntegerTy())
    530     return;
    531 
    532   // If we already defined this type, we don't need to define it again.
    533   if (DefinedTypes.find(Ty) != DefinedTypes.end())
    534     return;
    535 
    536   // Everything below needs the name for the type so get it now.
    537   std::string typeName(getCppName(Ty));
    538 
    539   // Print the type definition
    540   switch (Ty->getTypeID()) {
    541   case Type::FunctionTyID:  {
    542     FunctionType* FT = cast<FunctionType>(Ty);
    543     Out << "std::vector<Type*>" << typeName << "_args;";
    544     nl(Out);
    545     FunctionType::param_iterator PI = FT->param_begin();
    546     FunctionType::param_iterator PE = FT->param_end();
    547     for (; PI != PE; ++PI) {
    548       Type* argTy = static_cast<Type*>(*PI);
    549       printType(argTy);
    550       std::string argName(getCppName(argTy));
    551       Out << typeName << "_args.push_back(" << argName;
    552       Out << ");";
    553       nl(Out);
    554     }
    555     printType(FT->getReturnType());
    556     std::string retTypeName(getCppName(FT->getReturnType()));
    557     Out << "FunctionType* " << typeName << " = FunctionType::get(";
    558     in(); nl(Out) << "/*Result=*/" << retTypeName;
    559     Out << ",";
    560     nl(Out) << "/*Params=*/" << typeName << "_args,";
    561     nl(Out) << "/*isVarArg=*/" << (FT->isVarArg() ? "true" : "false") << ");";
    562     out();
    563     nl(Out);
    564     break;
    565   }
    566   case Type::StructTyID: {
    567     StructType* ST = cast<StructType>(Ty);
    568     if (!ST->isLiteral()) {
    569       Out << "StructType *" << typeName << " = mod->getTypeByName(\"";
    570       printEscapedString(ST->getName());
    571       Out << "\");";
    572       nl(Out);
    573       Out << "if (!" << typeName << ") {";
    574       nl(Out);
    575       Out << typeName << " = ";
    576       Out << "StructType::create(mod->getContext(), \"";
    577       printEscapedString(ST->getName());
    578       Out << "\");";
    579       nl(Out);
    580       Out << "}";
    581       nl(Out);
    582       // Indicate that this type is now defined.
    583       DefinedTypes.insert(Ty);
    584     }
    585 
    586     Out << "std::vector<Type*>" << typeName << "_fields;";
    587     nl(Out);
    588     StructType::element_iterator EI = ST->element_begin();
    589     StructType::element_iterator EE = ST->element_end();
    590     for (; EI != EE; ++EI) {
    591       Type* fieldTy = static_cast<Type*>(*EI);
    592       printType(fieldTy);
    593       std::string fieldName(getCppName(fieldTy));
    594       Out << typeName << "_fields.push_back(" << fieldName;
    595       Out << ");";
    596       nl(Out);
    597     }
    598 
    599     if (ST->isLiteral()) {
    600       Out << "StructType *" << typeName << " = ";
    601       Out << "StructType::get(" << "mod->getContext(), ";
    602     } else {
    603       Out << "if (" << typeName << "->isOpaque()) {";
    604       nl(Out);
    605       Out << typeName << "->setBody(";
    606     }
    607 
    608     Out << typeName << "_fields, /*isPacked=*/"
    609         << (ST->isPacked() ? "true" : "false") << ");";
    610     nl(Out);
    611     if (!ST->isLiteral()) {
    612       Out << "}";
    613       nl(Out);
    614     }
    615     break;
    616   }
    617   case Type::ArrayTyID: {
    618     ArrayType* AT = cast<ArrayType>(Ty);
    619     Type* ET = AT->getElementType();
    620     printType(ET);
    621     if (DefinedTypes.find(Ty) == DefinedTypes.end()) {
    622       std::string elemName(getCppName(ET));
    623       Out << "ArrayType* " << typeName << " = ArrayType::get("
    624           << elemName
    625           << ", " << utostr(AT->getNumElements()) << ");";
    626       nl(Out);
    627     }
    628     break;
    629   }
    630   case Type::PointerTyID: {
    631     PointerType* PT = cast<PointerType>(Ty);
    632     Type* ET = PT->getElementType();
    633     printType(ET);
    634     if (DefinedTypes.find(Ty) == DefinedTypes.end()) {
    635       std::string elemName(getCppName(ET));
    636       Out << "PointerType* " << typeName << " = PointerType::get("
    637           << elemName
    638           << ", " << utostr(PT->getAddressSpace()) << ");";
    639       nl(Out);
    640     }
    641     break;
    642   }
    643   case Type::VectorTyID: {
    644     VectorType* PT = cast<VectorType>(Ty);
    645     Type* ET = PT->getElementType();
    646     printType(ET);
    647     if (DefinedTypes.find(Ty) == DefinedTypes.end()) {
    648       std::string elemName(getCppName(ET));
    649       Out << "VectorType* " << typeName << " = VectorType::get("
    650           << elemName
    651           << ", " << utostr(PT->getNumElements()) << ");";
    652       nl(Out);
    653     }
    654     break;
    655   }
    656   default:
    657     error("Invalid TypeID");
    658   }
    659 
    660   // Indicate that this type is now defined.
    661   DefinedTypes.insert(Ty);
    662 
    663   // Finally, separate the type definition from other with a newline.
    664   nl(Out);
    665 }
    666 
    667 void CppWriter::printTypes(const Module* M) {
    668   // Add all of the global variables to the value table.
    669   for (Module::const_global_iterator I = TheModule->global_begin(),
    670          E = TheModule->global_end(); I != E; ++I) {
    671     if (I->hasInitializer())
    672       printType(I->getInitializer()->getType());
    673     printType(I->getType());
    674   }
    675 
    676   // Add all the functions to the table
    677   for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
    678        FI != FE; ++FI) {
    679     printType(FI->getReturnType());
    680     printType(FI->getFunctionType());
    681     // Add all the function arguments
    682     for (Function::const_arg_iterator AI = FI->arg_begin(),
    683            AE = FI->arg_end(); AI != AE; ++AI) {
    684       printType(AI->getType());
    685     }
    686 
    687     // Add all of the basic blocks and instructions
    688     for (Function::const_iterator BB = FI->begin(),
    689            E = FI->end(); BB != E; ++BB) {
    690       printType(BB->getType());
    691       for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
    692            ++I) {
    693         printType(I->getType());
    694         for (unsigned i = 0; i < I->getNumOperands(); ++i)
    695           printType(I->getOperand(i)->getType());
    696       }
    697     }
    698   }
    699 }
    700 
    701 
    702 // printConstant - Print out a constant pool entry...
    703 void CppWriter::printConstant(const Constant *CV) {
    704   // First, if the constant is actually a GlobalValue (variable or function)
    705   // or its already in the constant list then we've printed it already and we
    706   // can just return.
    707   if (isa<GlobalValue>(CV) || ValueNames.find(CV) != ValueNames.end())
    708     return;
    709 
    710   std::string constName(getCppName(CV));
    711   std::string typeName(getCppName(CV->getType()));
    712 
    713   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
    714     std::string constValue = CI->getValue().toString(10, true);
    715     Out << "ConstantInt* " << constName
    716         << " = ConstantInt::get(mod->getContext(), APInt("
    717         << cast<IntegerType>(CI->getType())->getBitWidth()
    718         << ", StringRef(\"" <<  constValue << "\"), 10));";
    719   } else if (isa<ConstantAggregateZero>(CV)) {
    720     Out << "ConstantAggregateZero* " << constName
    721         << " = ConstantAggregateZero::get(" << typeName << ");";
    722   } else if (isa<ConstantPointerNull>(CV)) {
    723     Out << "ConstantPointerNull* " << constName
    724         << " = ConstantPointerNull::get(" << typeName << ");";
    725   } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
    726     Out << "ConstantFP* " << constName << " = ";
    727     printCFP(CFP);
    728     Out << ";";
    729   } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
    730     Out << "std::vector<Constant*> " << constName << "_elems;";
    731     nl(Out);
    732     unsigned N = CA->getNumOperands();
    733     for (unsigned i = 0; i < N; ++i) {
    734       printConstant(CA->getOperand(i)); // recurse to print operands
    735       Out << constName << "_elems.push_back("
    736           << getCppName(CA->getOperand(i)) << ");";
    737       nl(Out);
    738     }
    739     Out << "Constant* " << constName << " = ConstantArray::get("
    740         << typeName << ", " << constName << "_elems);";
    741   } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
    742     Out << "std::vector<Constant*> " << constName << "_fields;";
    743     nl(Out);
    744     unsigned N = CS->getNumOperands();
    745     for (unsigned i = 0; i < N; i++) {
    746       printConstant(CS->getOperand(i));
    747       Out << constName << "_fields.push_back("
    748           << getCppName(CS->getOperand(i)) << ");";
    749       nl(Out);
    750     }
    751     Out << "Constant* " << constName << " = ConstantStruct::get("
    752         << typeName << ", " << constName << "_fields);";
    753   } else if (const ConstantVector *CVec = dyn_cast<ConstantVector>(CV)) {
    754     Out << "std::vector<Constant*> " << constName << "_elems;";
    755     nl(Out);
    756     unsigned N = CVec->getNumOperands();
    757     for (unsigned i = 0; i < N; ++i) {
    758       printConstant(CVec->getOperand(i));
    759       Out << constName << "_elems.push_back("
    760           << getCppName(CVec->getOperand(i)) << ");";
    761       nl(Out);
    762     }
    763     Out << "Constant* " << constName << " = ConstantVector::get("
    764         << typeName << ", " << constName << "_elems);";
    765   } else if (isa<UndefValue>(CV)) {
    766     Out << "UndefValue* " << constName << " = UndefValue::get("
    767         << typeName << ");";
    768   } else if (const ConstantDataSequential *CDS =
    769                dyn_cast<ConstantDataSequential>(CV)) {
    770     if (CDS->isString()) {
    771       Out << "Constant *" << constName <<
    772       " = ConstantDataArray::getString(mod->getContext(), \"";
    773       StringRef Str = CDS->getAsString();
    774       bool nullTerminate = false;
    775       if (Str.back() == 0) {
    776         Str = Str.drop_back();
    777         nullTerminate = true;
    778       }
    779       printEscapedString(Str);
    780       // Determine if we want null termination or not.
    781       if (nullTerminate)
    782         Out << "\", true);";
    783       else
    784         Out << "\", false);";// No null terminator
    785     } else {
    786       // TODO: Could generate more efficient code generating CDS calls instead.
    787       Out << "std::vector<Constant*> " << constName << "_elems;";
    788       nl(Out);
    789       for (unsigned i = 0; i != CDS->getNumElements(); ++i) {
    790         Constant *Elt = CDS->getElementAsConstant(i);
    791         printConstant(Elt);
    792         Out << constName << "_elems.push_back(" << getCppName(Elt) << ");";
    793         nl(Out);
    794       }
    795       Out << "Constant* " << constName;
    796 
    797       if (isa<ArrayType>(CDS->getType()))
    798         Out << " = ConstantArray::get(";
    799       else
    800         Out << " = ConstantVector::get(";
    801       Out << typeName << ", " << constName << "_elems);";
    802     }
    803   } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
    804     if (CE->getOpcode() == Instruction::GetElementPtr) {
    805       Out << "std::vector<Constant*> " << constName << "_indices;";
    806       nl(Out);
    807       printConstant(CE->getOperand(0));
    808       for (unsigned i = 1; i < CE->getNumOperands(); ++i ) {
    809         printConstant(CE->getOperand(i));
    810         Out << constName << "_indices.push_back("
    811             << getCppName(CE->getOperand(i)) << ");";
    812         nl(Out);
    813       }
    814       Out << "Constant* " << constName
    815           << " = ConstantExpr::getGetElementPtr("
    816           << getCppName(CE->getOperand(0)) << ", "
    817           << constName << "_indices);";
    818     } else if (CE->isCast()) {
    819       printConstant(CE->getOperand(0));
    820       Out << "Constant* " << constName << " = ConstantExpr::getCast(";
    821       switch (CE->getOpcode()) {
    822       default: llvm_unreachable("Invalid cast opcode");
    823       case Instruction::Trunc: Out << "Instruction::Trunc"; break;
    824       case Instruction::ZExt:  Out << "Instruction::ZExt"; break;
    825       case Instruction::SExt:  Out << "Instruction::SExt"; break;
    826       case Instruction::FPTrunc:  Out << "Instruction::FPTrunc"; break;
    827       case Instruction::FPExt:  Out << "Instruction::FPExt"; break;
    828       case Instruction::FPToUI:  Out << "Instruction::FPToUI"; break;
    829       case Instruction::FPToSI:  Out << "Instruction::FPToSI"; break;
    830       case Instruction::UIToFP:  Out << "Instruction::UIToFP"; break;
    831       case Instruction::SIToFP:  Out << "Instruction::SIToFP"; break;
    832       case Instruction::PtrToInt:  Out << "Instruction::PtrToInt"; break;
    833       case Instruction::IntToPtr:  Out << "Instruction::IntToPtr"; break;
    834       case Instruction::BitCast:  Out << "Instruction::BitCast"; break;
    835       }
    836       Out << ", " << getCppName(CE->getOperand(0)) << ", "
    837           << getCppName(CE->getType()) << ");";
    838     } else {
    839       unsigned N = CE->getNumOperands();
    840       for (unsigned i = 0; i < N; ++i ) {
    841         printConstant(CE->getOperand(i));
    842       }
    843       Out << "Constant* " << constName << " = ConstantExpr::";
    844       switch (CE->getOpcode()) {
    845       case Instruction::Add:    Out << "getAdd(";  break;
    846       case Instruction::FAdd:   Out << "getFAdd(";  break;
    847       case Instruction::Sub:    Out << "getSub("; break;
    848       case Instruction::FSub:   Out << "getFSub("; break;
    849       case Instruction::Mul:    Out << "getMul("; break;
    850       case Instruction::FMul:   Out << "getFMul("; break;
    851       case Instruction::UDiv:   Out << "getUDiv("; break;
    852       case Instruction::SDiv:   Out << "getSDiv("; break;
    853       case Instruction::FDiv:   Out << "getFDiv("; break;
    854       case Instruction::URem:   Out << "getURem("; break;
    855       case Instruction::SRem:   Out << "getSRem("; break;
    856       case Instruction::FRem:   Out << "getFRem("; break;
    857       case Instruction::And:    Out << "getAnd("; break;
    858       case Instruction::Or:     Out << "getOr("; break;
    859       case Instruction::Xor:    Out << "getXor("; break;
    860       case Instruction::ICmp:
    861         Out << "getICmp(ICmpInst::ICMP_";
    862         switch (CE->getPredicate()) {
    863         case ICmpInst::ICMP_EQ:  Out << "EQ"; break;
    864         case ICmpInst::ICMP_NE:  Out << "NE"; break;
    865         case ICmpInst::ICMP_SLT: Out << "SLT"; break;
    866         case ICmpInst::ICMP_ULT: Out << "ULT"; break;
    867         case ICmpInst::ICMP_SGT: Out << "SGT"; break;
    868         case ICmpInst::ICMP_UGT: Out << "UGT"; break;
    869         case ICmpInst::ICMP_SLE: Out << "SLE"; break;
    870         case ICmpInst::ICMP_ULE: Out << "ULE"; break;
    871         case ICmpInst::ICMP_SGE: Out << "SGE"; break;
    872         case ICmpInst::ICMP_UGE: Out << "UGE"; break;
    873         default: error("Invalid ICmp Predicate");
    874         }
    875         break;
    876       case Instruction::FCmp:
    877         Out << "getFCmp(FCmpInst::FCMP_";
    878         switch (CE->getPredicate()) {
    879         case FCmpInst::FCMP_FALSE: Out << "FALSE"; break;
    880         case FCmpInst::FCMP_ORD:   Out << "ORD"; break;
    881         case FCmpInst::FCMP_UNO:   Out << "UNO"; break;
    882         case FCmpInst::FCMP_OEQ:   Out << "OEQ"; break;
    883         case FCmpInst::FCMP_UEQ:   Out << "UEQ"; break;
    884         case FCmpInst::FCMP_ONE:   Out << "ONE"; break;
    885         case FCmpInst::FCMP_UNE:   Out << "UNE"; break;
    886         case FCmpInst::FCMP_OLT:   Out << "OLT"; break;
    887         case FCmpInst::FCMP_ULT:   Out << "ULT"; break;
    888         case FCmpInst::FCMP_OGT:   Out << "OGT"; break;
    889         case FCmpInst::FCMP_UGT:   Out << "UGT"; break;
    890         case FCmpInst::FCMP_OLE:   Out << "OLE"; break;
    891         case FCmpInst::FCMP_ULE:   Out << "ULE"; break;
    892         case FCmpInst::FCMP_OGE:   Out << "OGE"; break;
    893         case FCmpInst::FCMP_UGE:   Out << "UGE"; break;
    894         case FCmpInst::FCMP_TRUE:  Out << "TRUE"; break;
    895         default: error("Invalid FCmp Predicate");
    896         }
    897         break;
    898       case Instruction::Shl:     Out << "getShl("; break;
    899       case Instruction::LShr:    Out << "getLShr("; break;
    900       case Instruction::AShr:    Out << "getAShr("; break;
    901       case Instruction::Select:  Out << "getSelect("; break;
    902       case Instruction::ExtractElement: Out << "getExtractElement("; break;
    903       case Instruction::InsertElement:  Out << "getInsertElement("; break;
    904       case Instruction::ShuffleVector:  Out << "getShuffleVector("; break;
    905       default:
    906         error("Invalid constant expression");
    907         break;
    908       }
    909       Out << getCppName(CE->getOperand(0));
    910       for (unsigned i = 1; i < CE->getNumOperands(); ++i)
    911         Out << ", " << getCppName(CE->getOperand(i));
    912       Out << ");";
    913     }
    914   } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
    915     Out << "Constant* " << constName << " = ";
    916     Out << "BlockAddress::get(" << getOpName(BA->getBasicBlock()) << ");";
    917   } else {
    918     error("Bad Constant");
    919     Out << "Constant* " << constName << " = 0; ";
    920   }
    921   nl(Out);
    922 }
    923 
    924 void CppWriter::printConstants(const Module* M) {
    925   // Traverse all the global variables looking for constant initializers
    926   for (Module::const_global_iterator I = TheModule->global_begin(),
    927          E = TheModule->global_end(); I != E; ++I)
    928     if (I->hasInitializer())
    929       printConstant(I->getInitializer());
    930 
    931   // Traverse the LLVM functions looking for constants
    932   for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
    933        FI != FE; ++FI) {
    934     // Add all of the basic blocks and instructions
    935     for (Function::const_iterator BB = FI->begin(),
    936            E = FI->end(); BB != E; ++BB) {
    937       for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
    938            ++I) {
    939         for (unsigned i = 0; i < I->getNumOperands(); ++i) {
    940           if (Constant* C = dyn_cast<Constant>(I->getOperand(i))) {
    941             printConstant(C);
    942           }
    943         }
    944       }
    945     }
    946   }
    947 }
    948 
    949 void CppWriter::printVariableUses(const GlobalVariable *GV) {
    950   nl(Out) << "// Type Definitions";
    951   nl(Out);
    952   printType(GV->getType());
    953   if (GV->hasInitializer()) {
    954     const Constant *Init = GV->getInitializer();
    955     printType(Init->getType());
    956     if (const Function *F = dyn_cast<Function>(Init)) {
    957       nl(Out)<< "/ Function Declarations"; nl(Out);
    958       printFunctionHead(F);
    959     } else if (const GlobalVariable* gv = dyn_cast<GlobalVariable>(Init)) {
    960       nl(Out) << "// Global Variable Declarations"; nl(Out);
    961       printVariableHead(gv);
    962 
    963       nl(Out) << "// Global Variable Definitions"; nl(Out);
    964       printVariableBody(gv);
    965     } else  {
    966       nl(Out) << "// Constant Definitions"; nl(Out);
    967       printConstant(Init);
    968     }
    969   }
    970 }
    971 
    972 void CppWriter::printVariableHead(const GlobalVariable *GV) {
    973   nl(Out) << "GlobalVariable* " << getCppName(GV);
    974   if (is_inline) {
    975     Out << " = mod->getGlobalVariable(mod->getContext(), ";
    976     printEscapedString(GV->getName());
    977     Out << ", " << getCppName(GV->getType()->getElementType()) << ",true)";
    978     nl(Out) << "if (!" << getCppName(GV) << ") {";
    979     in(); nl(Out) << getCppName(GV);
    980   }
    981   Out << " = new GlobalVariable(/*Module=*/*mod, ";
    982   nl(Out) << "/*Type=*/";
    983   printCppName(GV->getType()->getElementType());
    984   Out << ",";
    985   nl(Out) << "/*isConstant=*/" << (GV->isConstant()?"true":"false");
    986   Out << ",";
    987   nl(Out) << "/*Linkage=*/";
    988   printLinkageType(GV->getLinkage());
    989   Out << ",";
    990   nl(Out) << "/*Initializer=*/0, ";
    991   if (GV->hasInitializer()) {
    992     Out << "// has initializer, specified below";
    993   }
    994   nl(Out) << "/*Name=*/\"";
    995   printEscapedString(GV->getName());
    996   Out << "\");";
    997   nl(Out);
    998 
    999   if (GV->hasSection()) {
   1000     printCppName(GV);
   1001     Out << "->setSection(\"";
   1002     printEscapedString(GV->getSection());
   1003     Out << "\");";
   1004     nl(Out);
   1005   }
   1006   if (GV->getAlignment()) {
   1007     printCppName(GV);
   1008     Out << "->setAlignment(" << utostr(GV->getAlignment()) << ");";
   1009     nl(Out);
   1010   }
   1011   if (GV->getVisibility() != GlobalValue::DefaultVisibility) {
   1012     printCppName(GV);
   1013     Out << "->setVisibility(";
   1014     printVisibilityType(GV->getVisibility());
   1015     Out << ");";
   1016     nl(Out);
   1017   }
   1018   if (GV->isThreadLocal()) {
   1019     printCppName(GV);
   1020     Out << "->setThreadLocalMode(";
   1021     printThreadLocalMode(GV->getThreadLocalMode());
   1022     Out << ");";
   1023     nl(Out);
   1024   }
   1025   if (is_inline) {
   1026     out(); Out << "}"; nl(Out);
   1027   }
   1028 }
   1029 
   1030 void CppWriter::printVariableBody(const GlobalVariable *GV) {
   1031   if (GV->hasInitializer()) {
   1032     printCppName(GV);
   1033     Out << "->setInitializer(";
   1034     Out << getCppName(GV->getInitializer()) << ");";
   1035     nl(Out);
   1036   }
   1037 }
   1038 
   1039 std::string CppWriter::getOpName(const Value* V) {
   1040   if (!isa<Instruction>(V) || DefinedValues.find(V) != DefinedValues.end())
   1041     return getCppName(V);
   1042 
   1043   // See if its alread in the map of forward references, if so just return the
   1044   // name we already set up for it
   1045   ForwardRefMap::const_iterator I = ForwardRefs.find(V);
   1046   if (I != ForwardRefs.end())
   1047     return I->second;
   1048 
   1049   // This is a new forward reference. Generate a unique name for it
   1050   std::string result(std::string("fwdref_") + utostr(uniqueNum++));
   1051 
   1052   // Yes, this is a hack. An Argument is the smallest instantiable value that
   1053   // we can make as a placeholder for the real value. We'll replace these
   1054   // Argument instances later.
   1055   Out << "Argument* " << result << " = new Argument("
   1056       << getCppName(V->getType()) << ");";
   1057   nl(Out);
   1058   ForwardRefs[V] = result;
   1059   return result;
   1060 }
   1061 
   1062 static StringRef ConvertAtomicOrdering(AtomicOrdering Ordering) {
   1063   switch (Ordering) {
   1064     case NotAtomic: return "NotAtomic";
   1065     case Unordered: return "Unordered";
   1066     case Monotonic: return "Monotonic";
   1067     case Acquire: return "Acquire";
   1068     case Release: return "Release";
   1069     case AcquireRelease: return "AcquireRelease";
   1070     case SequentiallyConsistent: return "SequentiallyConsistent";
   1071   }
   1072   llvm_unreachable("Unknown ordering");
   1073 }
   1074 
   1075 static StringRef ConvertAtomicSynchScope(SynchronizationScope SynchScope) {
   1076   switch (SynchScope) {
   1077     case SingleThread: return "SingleThread";
   1078     case CrossThread: return "CrossThread";
   1079   }
   1080   llvm_unreachable("Unknown synch scope");
   1081 }
   1082 
   1083 // printInstruction - This member is called for each Instruction in a function.
   1084 void CppWriter::printInstruction(const Instruction *I,
   1085                                  const std::string& bbname) {
   1086   std::string iName(getCppName(I));
   1087 
   1088   // Before we emit this instruction, we need to take care of generating any
   1089   // forward references. So, we get the names of all the operands in advance
   1090   const unsigned Ops(I->getNumOperands());
   1091   std::string* opNames = new std::string[Ops];
   1092   for (unsigned i = 0; i < Ops; i++)
   1093     opNames[i] = getOpName(I->getOperand(i));
   1094 
   1095   switch (I->getOpcode()) {
   1096   default:
   1097     error("Invalid instruction");
   1098     break;
   1099 
   1100   case Instruction::Ret: {
   1101     const ReturnInst* ret =  cast<ReturnInst>(I);
   1102     Out << "ReturnInst::Create(mod->getContext(), "
   1103         << (ret->getReturnValue() ? opNames[0] + ", " : "") << bbname << ");";
   1104     break;
   1105   }
   1106   case Instruction::Br: {
   1107     const BranchInst* br = cast<BranchInst>(I);
   1108     Out << "BranchInst::Create(" ;
   1109     if (br->getNumOperands() == 3) {
   1110       Out << opNames[2] << ", "
   1111           << opNames[1] << ", "
   1112           << opNames[0] << ", ";
   1113 
   1114     } else if (br->getNumOperands() == 1) {
   1115       Out << opNames[0] << ", ";
   1116     } else {
   1117       error("Branch with 2 operands?");
   1118     }
   1119     Out << bbname << ");";
   1120     break;
   1121   }
   1122   case Instruction::Switch: {
   1123     const SwitchInst *SI = cast<SwitchInst>(I);
   1124     Out << "SwitchInst* " << iName << " = SwitchInst::Create("
   1125         << getOpName(SI->getCondition()) << ", "
   1126         << getOpName(SI->getDefaultDest()) << ", "
   1127         << SI->getNumCases() << ", " << bbname << ");";
   1128     nl(Out);
   1129     for (SwitchInst::ConstCaseIt i = SI->case_begin(), e = SI->case_end();
   1130          i != e; ++i) {
   1131       const IntegersSubset CaseVal = i.getCaseValueEx();
   1132       const BasicBlock *BB = i.getCaseSuccessor();
   1133       Out << iName << "->addCase("
   1134           << getOpName(CaseVal) << ", "
   1135           << getOpName(BB) << ");";
   1136       nl(Out);
   1137     }
   1138     break;
   1139   }
   1140   case Instruction::IndirectBr: {
   1141     const IndirectBrInst *IBI = cast<IndirectBrInst>(I);
   1142     Out << "IndirectBrInst *" << iName << " = IndirectBrInst::Create("
   1143         << opNames[0] << ", " << IBI->getNumDestinations() << ");";
   1144     nl(Out);
   1145     for (unsigned i = 1; i != IBI->getNumOperands(); ++i) {
   1146       Out << iName << "->addDestination(" << opNames[i] << ");";
   1147       nl(Out);
   1148     }
   1149     break;
   1150   }
   1151   case Instruction::Resume: {
   1152     Out << "ResumeInst::Create(mod->getContext(), " << opNames[0]
   1153         << ", " << bbname << ");";
   1154     break;
   1155   }
   1156   case Instruction::Invoke: {
   1157     const InvokeInst* inv = cast<InvokeInst>(I);
   1158     Out << "std::vector<Value*> " << iName << "_params;";
   1159     nl(Out);
   1160     for (unsigned i = 0; i < inv->getNumArgOperands(); ++i) {
   1161       Out << iName << "_params.push_back("
   1162           << getOpName(inv->getArgOperand(i)) << ");";
   1163       nl(Out);
   1164     }
   1165     // FIXME: This shouldn't use magic numbers -3, -2, and -1.
   1166     Out << "InvokeInst *" << iName << " = InvokeInst::Create("
   1167         << getOpName(inv->getCalledFunction()) << ", "
   1168         << getOpName(inv->getNormalDest()) << ", "
   1169         << getOpName(inv->getUnwindDest()) << ", "
   1170         << iName << "_params, \"";
   1171     printEscapedString(inv->getName());
   1172     Out << "\", " << bbname << ");";
   1173     nl(Out) << iName << "->setCallingConv(";
   1174     printCallingConv(inv->getCallingConv());
   1175     Out << ");";
   1176     printAttributes(inv->getAttributes(), iName);
   1177     Out << iName << "->setAttributes(" << iName << "_PAL);";
   1178     nl(Out);
   1179     break;
   1180   }
   1181   case Instruction::Unreachable: {
   1182     Out << "new UnreachableInst("
   1183         << "mod->getContext(), "
   1184         << bbname << ");";
   1185     break;
   1186   }
   1187   case Instruction::Add:
   1188   case Instruction::FAdd:
   1189   case Instruction::Sub:
   1190   case Instruction::FSub:
   1191   case Instruction::Mul:
   1192   case Instruction::FMul:
   1193   case Instruction::UDiv:
   1194   case Instruction::SDiv:
   1195   case Instruction::FDiv:
   1196   case Instruction::URem:
   1197   case Instruction::SRem:
   1198   case Instruction::FRem:
   1199   case Instruction::And:
   1200   case Instruction::Or:
   1201   case Instruction::Xor:
   1202   case Instruction::Shl:
   1203   case Instruction::LShr:
   1204   case Instruction::AShr:{
   1205     Out << "BinaryOperator* " << iName << " = BinaryOperator::Create(";
   1206     switch (I->getOpcode()) {
   1207     case Instruction::Add: Out << "Instruction::Add"; break;
   1208     case Instruction::FAdd: Out << "Instruction::FAdd"; break;
   1209     case Instruction::Sub: Out << "Instruction::Sub"; break;
   1210     case Instruction::FSub: Out << "Instruction::FSub"; break;
   1211     case Instruction::Mul: Out << "Instruction::Mul"; break;
   1212     case Instruction::FMul: Out << "Instruction::FMul"; break;
   1213     case Instruction::UDiv:Out << "Instruction::UDiv"; break;
   1214     case Instruction::SDiv:Out << "Instruction::SDiv"; break;
   1215     case Instruction::FDiv:Out << "Instruction::FDiv"; break;
   1216     case Instruction::URem:Out << "Instruction::URem"; break;
   1217     case Instruction::SRem:Out << "Instruction::SRem"; break;
   1218     case Instruction::FRem:Out << "Instruction::FRem"; break;
   1219     case Instruction::And: Out << "Instruction::And"; break;
   1220     case Instruction::Or:  Out << "Instruction::Or";  break;
   1221     case Instruction::Xor: Out << "Instruction::Xor"; break;
   1222     case Instruction::Shl: Out << "Instruction::Shl"; break;
   1223     case Instruction::LShr:Out << "Instruction::LShr"; break;
   1224     case Instruction::AShr:Out << "Instruction::AShr"; break;
   1225     default: Out << "Instruction::BadOpCode"; break;
   1226     }
   1227     Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
   1228     printEscapedString(I->getName());
   1229     Out << "\", " << bbname << ");";
   1230     break;
   1231   }
   1232   case Instruction::FCmp: {
   1233     Out << "FCmpInst* " << iName << " = new FCmpInst(*" << bbname << ", ";
   1234     switch (cast<FCmpInst>(I)->getPredicate()) {
   1235     case FCmpInst::FCMP_FALSE: Out << "FCmpInst::FCMP_FALSE"; break;
   1236     case FCmpInst::FCMP_OEQ  : Out << "FCmpInst::FCMP_OEQ"; break;
   1237     case FCmpInst::FCMP_OGT  : Out << "FCmpInst::FCMP_OGT"; break;
   1238     case FCmpInst::FCMP_OGE  : Out << "FCmpInst::FCMP_OGE"; break;
   1239     case FCmpInst::FCMP_OLT  : Out << "FCmpInst::FCMP_OLT"; break;
   1240     case FCmpInst::FCMP_OLE  : Out << "FCmpInst::FCMP_OLE"; break;
   1241     case FCmpInst::FCMP_ONE  : Out << "FCmpInst::FCMP_ONE"; break;
   1242     case FCmpInst::FCMP_ORD  : Out << "FCmpInst::FCMP_ORD"; break;
   1243     case FCmpInst::FCMP_UNO  : Out << "FCmpInst::FCMP_UNO"; break;
   1244     case FCmpInst::FCMP_UEQ  : Out << "FCmpInst::FCMP_UEQ"; break;
   1245     case FCmpInst::FCMP_UGT  : Out << "FCmpInst::FCMP_UGT"; break;
   1246     case FCmpInst::FCMP_UGE  : Out << "FCmpInst::FCMP_UGE"; break;
   1247     case FCmpInst::FCMP_ULT  : Out << "FCmpInst::FCMP_ULT"; break;
   1248     case FCmpInst::FCMP_ULE  : Out << "FCmpInst::FCMP_ULE"; break;
   1249     case FCmpInst::FCMP_UNE  : Out << "FCmpInst::FCMP_UNE"; break;
   1250     case FCmpInst::FCMP_TRUE : Out << "FCmpInst::FCMP_TRUE"; break;
   1251     default: Out << "FCmpInst::BAD_ICMP_PREDICATE"; break;
   1252     }
   1253     Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
   1254     printEscapedString(I->getName());
   1255     Out << "\");";
   1256     break;
   1257   }
   1258   case Instruction::ICmp: {
   1259     Out << "ICmpInst* " << iName << " = new ICmpInst(*" << bbname << ", ";
   1260     switch (cast<ICmpInst>(I)->getPredicate()) {
   1261     case ICmpInst::ICMP_EQ:  Out << "ICmpInst::ICMP_EQ";  break;
   1262     case ICmpInst::ICMP_NE:  Out << "ICmpInst::ICMP_NE";  break;
   1263     case ICmpInst::ICMP_ULE: Out << "ICmpInst::ICMP_ULE"; break;
   1264     case ICmpInst::ICMP_SLE: Out << "ICmpInst::ICMP_SLE"; break;
   1265     case ICmpInst::ICMP_UGE: Out << "ICmpInst::ICMP_UGE"; break;
   1266     case ICmpInst::ICMP_SGE: Out << "ICmpInst::ICMP_SGE"; break;
   1267     case ICmpInst::ICMP_ULT: Out << "ICmpInst::ICMP_ULT"; break;
   1268     case ICmpInst::ICMP_SLT: Out << "ICmpInst::ICMP_SLT"; break;
   1269     case ICmpInst::ICMP_UGT: Out << "ICmpInst::ICMP_UGT"; break;
   1270     case ICmpInst::ICMP_SGT: Out << "ICmpInst::ICMP_SGT"; break;
   1271     default: Out << "ICmpInst::BAD_ICMP_PREDICATE"; break;
   1272     }
   1273     Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
   1274     printEscapedString(I->getName());
   1275     Out << "\");";
   1276     break;
   1277   }
   1278   case Instruction::Alloca: {
   1279     const AllocaInst* allocaI = cast<AllocaInst>(I);
   1280     Out << "AllocaInst* " << iName << " = new AllocaInst("
   1281         << getCppName(allocaI->getAllocatedType()) << ", ";
   1282     if (allocaI->isArrayAllocation())
   1283       Out << opNames[0] << ", ";
   1284     Out << "\"";
   1285     printEscapedString(allocaI->getName());
   1286     Out << "\", " << bbname << ");";
   1287     if (allocaI->getAlignment())
   1288       nl(Out) << iName << "->setAlignment("
   1289           << allocaI->getAlignment() << ");";
   1290     break;
   1291   }
   1292   case Instruction::Load: {
   1293     const LoadInst* load = cast<LoadInst>(I);
   1294     Out << "LoadInst* " << iName << " = new LoadInst("
   1295         << opNames[0] << ", \"";
   1296     printEscapedString(load->getName());
   1297     Out << "\", " << (load->isVolatile() ? "true" : "false" )
   1298         << ", " << bbname << ");";
   1299     if (load->getAlignment())
   1300       nl(Out) << iName << "->setAlignment("
   1301               << load->getAlignment() << ");";
   1302     if (load->isAtomic()) {
   1303       StringRef Ordering = ConvertAtomicOrdering(load->getOrdering());
   1304       StringRef CrossThread = ConvertAtomicSynchScope(load->getSynchScope());
   1305       nl(Out) << iName << "->setAtomic("
   1306               << Ordering << ", " << CrossThread << ");";
   1307     }
   1308     break;
   1309   }
   1310   case Instruction::Store: {
   1311     const StoreInst* store = cast<StoreInst>(I);
   1312     Out << "StoreInst* " << iName << " = new StoreInst("
   1313         << opNames[0] << ", "
   1314         << opNames[1] << ", "
   1315         << (store->isVolatile() ? "true" : "false")
   1316         << ", " << bbname << ");";
   1317     if (store->getAlignment())
   1318       nl(Out) << iName << "->setAlignment("
   1319               << store->getAlignment() << ");";
   1320     if (store->isAtomic()) {
   1321       StringRef Ordering = ConvertAtomicOrdering(store->getOrdering());
   1322       StringRef CrossThread = ConvertAtomicSynchScope(store->getSynchScope());
   1323       nl(Out) << iName << "->setAtomic("
   1324               << Ordering << ", " << CrossThread << ");";
   1325     }
   1326     break;
   1327   }
   1328   case Instruction::GetElementPtr: {
   1329     const GetElementPtrInst* gep = cast<GetElementPtrInst>(I);
   1330     if (gep->getNumOperands() <= 2) {
   1331       Out << "GetElementPtrInst* " << iName << " = GetElementPtrInst::Create("
   1332           << opNames[0];
   1333       if (gep->getNumOperands() == 2)
   1334         Out << ", " << opNames[1];
   1335     } else {
   1336       Out << "std::vector<Value*> " << iName << "_indices;";
   1337       nl(Out);
   1338       for (unsigned i = 1; i < gep->getNumOperands(); ++i ) {
   1339         Out << iName << "_indices.push_back("
   1340             << opNames[i] << ");";
   1341         nl(Out);
   1342       }
   1343       Out << "Instruction* " << iName << " = GetElementPtrInst::Create("
   1344           << opNames[0] << ", " << iName << "_indices";
   1345     }
   1346     Out << ", \"";
   1347     printEscapedString(gep->getName());
   1348     Out << "\", " << bbname << ");";
   1349     break;
   1350   }
   1351   case Instruction::PHI: {
   1352     const PHINode* phi = cast<PHINode>(I);
   1353 
   1354     Out << "PHINode* " << iName << " = PHINode::Create("
   1355         << getCppName(phi->getType()) << ", "
   1356         << phi->getNumIncomingValues() << ", \"";
   1357     printEscapedString(phi->getName());
   1358     Out << "\", " << bbname << ");";
   1359     nl(Out);
   1360     for (unsigned i = 0; i < phi->getNumIncomingValues(); ++i) {
   1361       Out << iName << "->addIncoming("
   1362           << opNames[PHINode::getOperandNumForIncomingValue(i)] << ", "
   1363           << getOpName(phi->getIncomingBlock(i)) << ");";
   1364       nl(Out);
   1365     }
   1366     break;
   1367   }
   1368   case Instruction::Trunc:
   1369   case Instruction::ZExt:
   1370   case Instruction::SExt:
   1371   case Instruction::FPTrunc:
   1372   case Instruction::FPExt:
   1373   case Instruction::FPToUI:
   1374   case Instruction::FPToSI:
   1375   case Instruction::UIToFP:
   1376   case Instruction::SIToFP:
   1377   case Instruction::PtrToInt:
   1378   case Instruction::IntToPtr:
   1379   case Instruction::BitCast: {
   1380     const CastInst* cst = cast<CastInst>(I);
   1381     Out << "CastInst* " << iName << " = new ";
   1382     switch (I->getOpcode()) {
   1383     case Instruction::Trunc:    Out << "TruncInst"; break;
   1384     case Instruction::ZExt:     Out << "ZExtInst"; break;
   1385     case Instruction::SExt:     Out << "SExtInst"; break;
   1386     case Instruction::FPTrunc:  Out << "FPTruncInst"; break;
   1387     case Instruction::FPExt:    Out << "FPExtInst"; break;
   1388     case Instruction::FPToUI:   Out << "FPToUIInst"; break;
   1389     case Instruction::FPToSI:   Out << "FPToSIInst"; break;
   1390     case Instruction::UIToFP:   Out << "UIToFPInst"; break;
   1391     case Instruction::SIToFP:   Out << "SIToFPInst"; break;
   1392     case Instruction::PtrToInt: Out << "PtrToIntInst"; break;
   1393     case Instruction::IntToPtr: Out << "IntToPtrInst"; break;
   1394     case Instruction::BitCast:  Out << "BitCastInst"; break;
   1395     default: llvm_unreachable("Unreachable");
   1396     }
   1397     Out << "(" << opNames[0] << ", "
   1398         << getCppName(cst->getType()) << ", \"";
   1399     printEscapedString(cst->getName());
   1400     Out << "\", " << bbname << ");";
   1401     break;
   1402   }
   1403   case Instruction::Call: {
   1404     const CallInst* call = cast<CallInst>(I);
   1405     if (const InlineAsm* ila = dyn_cast<InlineAsm>(call->getCalledValue())) {
   1406       Out << "InlineAsm* " << getCppName(ila) << " = InlineAsm::get("
   1407           << getCppName(ila->getFunctionType()) << ", \""
   1408           << ila->getAsmString() << "\", \""
   1409           << ila->getConstraintString() << "\","
   1410           << (ila->hasSideEffects() ? "true" : "false") << ");";
   1411       nl(Out);
   1412     }
   1413     if (call->getNumArgOperands() > 1) {
   1414       Out << "std::vector<Value*> " << iName << "_params;";
   1415       nl(Out);
   1416       for (unsigned i = 0; i < call->getNumArgOperands(); ++i) {
   1417         Out << iName << "_params.push_back(" << opNames[i] << ");";
   1418         nl(Out);
   1419       }
   1420       Out << "CallInst* " << iName << " = CallInst::Create("
   1421           << opNames[call->getNumArgOperands()] << ", "
   1422           << iName << "_params, \"";
   1423     } else if (call->getNumArgOperands() == 1) {
   1424       Out << "CallInst* " << iName << " = CallInst::Create("
   1425           << opNames[call->getNumArgOperands()] << ", " << opNames[0] << ", \"";
   1426     } else {
   1427       Out << "CallInst* " << iName << " = CallInst::Create("
   1428           << opNames[call->getNumArgOperands()] << ", \"";
   1429     }
   1430     printEscapedString(call->getName());
   1431     Out << "\", " << bbname << ");";
   1432     nl(Out) << iName << "->setCallingConv(";
   1433     printCallingConv(call->getCallingConv());
   1434     Out << ");";
   1435     nl(Out) << iName << "->setTailCall("
   1436         << (call->isTailCall() ? "true" : "false");
   1437     Out << ");";
   1438     nl(Out);
   1439     printAttributes(call->getAttributes(), iName);
   1440     Out << iName << "->setAttributes(" << iName << "_PAL);";
   1441     nl(Out);
   1442     break;
   1443   }
   1444   case Instruction::Select: {
   1445     const SelectInst* sel = cast<SelectInst>(I);
   1446     Out << "SelectInst* " << getCppName(sel) << " = SelectInst::Create(";
   1447     Out << opNames[0] << ", " << opNames[1] << ", " << opNames[2] << ", \"";
   1448     printEscapedString(sel->getName());
   1449     Out << "\", " << bbname << ");";
   1450     break;
   1451   }
   1452   case Instruction::UserOp1:
   1453     /// FALL THROUGH
   1454   case Instruction::UserOp2: {
   1455     /// FIXME: What should be done here?
   1456     break;
   1457   }
   1458   case Instruction::VAArg: {
   1459     const VAArgInst* va = cast<VAArgInst>(I);
   1460     Out << "VAArgInst* " << getCppName(va) << " = new VAArgInst("
   1461         << opNames[0] << ", " << getCppName(va->getType()) << ", \"";
   1462     printEscapedString(va->getName());
   1463     Out << "\", " << bbname << ");";
   1464     break;
   1465   }
   1466   case Instruction::ExtractElement: {
   1467     const ExtractElementInst* eei = cast<ExtractElementInst>(I);
   1468     Out << "ExtractElementInst* " << getCppName(eei)
   1469         << " = new ExtractElementInst(" << opNames[0]
   1470         << ", " << opNames[1] << ", \"";
   1471     printEscapedString(eei->getName());
   1472     Out << "\", " << bbname << ");";
   1473     break;
   1474   }
   1475   case Instruction::InsertElement: {
   1476     const InsertElementInst* iei = cast<InsertElementInst>(I);
   1477     Out << "InsertElementInst* " << getCppName(iei)
   1478         << " = InsertElementInst::Create(" << opNames[0]
   1479         << ", " << opNames[1] << ", " << opNames[2] << ", \"";
   1480     printEscapedString(iei->getName());
   1481     Out << "\", " << bbname << ");";
   1482     break;
   1483   }
   1484   case Instruction::ShuffleVector: {
   1485     const ShuffleVectorInst* svi = cast<ShuffleVectorInst>(I);
   1486     Out << "ShuffleVectorInst* " << getCppName(svi)
   1487         << " = new ShuffleVectorInst(" << opNames[0]
   1488         << ", " << opNames[1] << ", " << opNames[2] << ", \"";
   1489     printEscapedString(svi->getName());
   1490     Out << "\", " << bbname << ");";
   1491     break;
   1492   }
   1493   case Instruction::ExtractValue: {
   1494     const ExtractValueInst *evi = cast<ExtractValueInst>(I);
   1495     Out << "std::vector<unsigned> " << iName << "_indices;";
   1496     nl(Out);
   1497     for (unsigned i = 0; i < evi->getNumIndices(); ++i) {
   1498       Out << iName << "_indices.push_back("
   1499           << evi->idx_begin()[i] << ");";
   1500       nl(Out);
   1501     }
   1502     Out << "ExtractValueInst* " << getCppName(evi)
   1503         << " = ExtractValueInst::Create(" << opNames[0]
   1504         << ", "
   1505         << iName << "_indices, \"";
   1506     printEscapedString(evi->getName());
   1507     Out << "\", " << bbname << ");";
   1508     break;
   1509   }
   1510   case Instruction::InsertValue: {
   1511     const InsertValueInst *ivi = cast<InsertValueInst>(I);
   1512     Out << "std::vector<unsigned> " << iName << "_indices;";
   1513     nl(Out);
   1514     for (unsigned i = 0; i < ivi->getNumIndices(); ++i) {
   1515       Out << iName << "_indices.push_back("
   1516           << ivi->idx_begin()[i] << ");";
   1517       nl(Out);
   1518     }
   1519     Out << "InsertValueInst* " << getCppName(ivi)
   1520         << " = InsertValueInst::Create(" << opNames[0]
   1521         << ", " << opNames[1] << ", "
   1522         << iName << "_indices, \"";
   1523     printEscapedString(ivi->getName());
   1524     Out << "\", " << bbname << ");";
   1525     break;
   1526   }
   1527   case Instruction::Fence: {
   1528     const FenceInst *fi = cast<FenceInst>(I);
   1529     StringRef Ordering = ConvertAtomicOrdering(fi->getOrdering());
   1530     StringRef CrossThread = ConvertAtomicSynchScope(fi->getSynchScope());
   1531     Out << "FenceInst* " << iName
   1532         << " = new FenceInst(mod->getContext(), "
   1533         << Ordering << ", " << CrossThread << ", " << bbname
   1534         << ");";
   1535     break;
   1536   }
   1537   case Instruction::AtomicCmpXchg: {
   1538     const AtomicCmpXchgInst *cxi = cast<AtomicCmpXchgInst>(I);
   1539     StringRef Ordering = ConvertAtomicOrdering(cxi->getOrdering());
   1540     StringRef CrossThread = ConvertAtomicSynchScope(cxi->getSynchScope());
   1541     Out << "AtomicCmpXchgInst* " << iName
   1542         << " = new AtomicCmpXchgInst("
   1543         << opNames[0] << ", " << opNames[1] << ", " << opNames[2] << ", "
   1544         << Ordering << ", " << CrossThread << ", " << bbname
   1545         << ");";
   1546     nl(Out) << iName << "->setName(\"";
   1547     printEscapedString(cxi->getName());
   1548     Out << "\");";
   1549     break;
   1550   }
   1551   case Instruction::AtomicRMW: {
   1552     const AtomicRMWInst *rmwi = cast<AtomicRMWInst>(I);
   1553     StringRef Ordering = ConvertAtomicOrdering(rmwi->getOrdering());
   1554     StringRef CrossThread = ConvertAtomicSynchScope(rmwi->getSynchScope());
   1555     StringRef Operation;
   1556     switch (rmwi->getOperation()) {
   1557       case AtomicRMWInst::Xchg: Operation = "AtomicRMWInst::Xchg"; break;
   1558       case AtomicRMWInst::Add:  Operation = "AtomicRMWInst::Add"; break;
   1559       case AtomicRMWInst::Sub:  Operation = "AtomicRMWInst::Sub"; break;
   1560       case AtomicRMWInst::And:  Operation = "AtomicRMWInst::And"; break;
   1561       case AtomicRMWInst::Nand: Operation = "AtomicRMWInst::Nand"; break;
   1562       case AtomicRMWInst::Or:   Operation = "AtomicRMWInst::Or"; break;
   1563       case AtomicRMWInst::Xor:  Operation = "AtomicRMWInst::Xor"; break;
   1564       case AtomicRMWInst::Max:  Operation = "AtomicRMWInst::Max"; break;
   1565       case AtomicRMWInst::Min:  Operation = "AtomicRMWInst::Min"; break;
   1566       case AtomicRMWInst::UMax: Operation = "AtomicRMWInst::UMax"; break;
   1567       case AtomicRMWInst::UMin: Operation = "AtomicRMWInst::UMin"; break;
   1568       case AtomicRMWInst::BAD_BINOP: llvm_unreachable("Bad atomic operation");
   1569     }
   1570     Out << "AtomicRMWInst* " << iName
   1571         << " = new AtomicRMWInst("
   1572         << Operation << ", "
   1573         << opNames[0] << ", " << opNames[1] << ", "
   1574         << Ordering << ", " << CrossThread << ", " << bbname
   1575         << ");";
   1576     nl(Out) << iName << "->setName(\"";
   1577     printEscapedString(rmwi->getName());
   1578     Out << "\");";
   1579     break;
   1580   }
   1581   }
   1582   DefinedValues.insert(I);
   1583   nl(Out);
   1584   delete [] opNames;
   1585 }
   1586 
   1587 // Print out the types, constants and declarations needed by one function
   1588 void CppWriter::printFunctionUses(const Function* F) {
   1589   nl(Out) << "// Type Definitions"; nl(Out);
   1590   if (!is_inline) {
   1591     // Print the function's return type
   1592     printType(F->getReturnType());
   1593 
   1594     // Print the function's function type
   1595     printType(F->getFunctionType());
   1596 
   1597     // Print the types of each of the function's arguments
   1598     for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
   1599          AI != AE; ++AI) {
   1600       printType(AI->getType());
   1601     }
   1602   }
   1603 
   1604   // Print type definitions for every type referenced by an instruction and
   1605   // make a note of any global values or constants that are referenced
   1606   SmallPtrSet<GlobalValue*,64> gvs;
   1607   SmallPtrSet<Constant*,64> consts;
   1608   for (Function::const_iterator BB = F->begin(), BE = F->end();
   1609        BB != BE; ++BB){
   1610     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
   1611          I != E; ++I) {
   1612       // Print the type of the instruction itself
   1613       printType(I->getType());
   1614 
   1615       // Print the type of each of the instruction's operands
   1616       for (unsigned i = 0; i < I->getNumOperands(); ++i) {
   1617         Value* operand = I->getOperand(i);
   1618         printType(operand->getType());
   1619 
   1620         // If the operand references a GVal or Constant, make a note of it
   1621         if (GlobalValue* GV = dyn_cast<GlobalValue>(operand)) {
   1622           gvs.insert(GV);
   1623           if (GenerationType != GenFunction)
   1624             if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
   1625               if (GVar->hasInitializer())
   1626                 consts.insert(GVar->getInitializer());
   1627         } else if (Constant* C = dyn_cast<Constant>(operand)) {
   1628           consts.insert(C);
   1629           for (unsigned j = 0; j < C->getNumOperands(); ++j) {
   1630             // If the operand references a GVal or Constant, make a note of it
   1631             Value* operand = C->getOperand(j);
   1632             printType(operand->getType());
   1633             if (GlobalValue* GV = dyn_cast<GlobalValue>(operand)) {
   1634               gvs.insert(GV);
   1635               if (GenerationType != GenFunction)
   1636                 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
   1637                   if (GVar->hasInitializer())
   1638                     consts.insert(GVar->getInitializer());
   1639             }
   1640           }
   1641         }
   1642       }
   1643     }
   1644   }
   1645 
   1646   // Print the function declarations for any functions encountered
   1647   nl(Out) << "// Function Declarations"; nl(Out);
   1648   for (SmallPtrSet<GlobalValue*,64>::iterator I = gvs.begin(), E = gvs.end();
   1649        I != E; ++I) {
   1650     if (Function* Fun = dyn_cast<Function>(*I)) {
   1651       if (!is_inline || Fun != F)
   1652         printFunctionHead(Fun);
   1653     }
   1654   }
   1655 
   1656   // Print the global variable declarations for any variables encountered
   1657   nl(Out) << "// Global Variable Declarations"; nl(Out);
   1658   for (SmallPtrSet<GlobalValue*,64>::iterator I = gvs.begin(), E = gvs.end();
   1659        I != E; ++I) {
   1660     if (GlobalVariable* F = dyn_cast<GlobalVariable>(*I))
   1661       printVariableHead(F);
   1662   }
   1663 
   1664   // Print the constants found
   1665   nl(Out) << "// Constant Definitions"; nl(Out);
   1666   for (SmallPtrSet<Constant*,64>::iterator I = consts.begin(),
   1667          E = consts.end(); I != E; ++I) {
   1668     printConstant(*I);
   1669   }
   1670 
   1671   // Process the global variables definitions now that all the constants have
   1672   // been emitted. These definitions just couple the gvars with their constant
   1673   // initializers.
   1674   if (GenerationType != GenFunction) {
   1675     nl(Out) << "// Global Variable Definitions"; nl(Out);
   1676     for (SmallPtrSet<GlobalValue*,64>::iterator I = gvs.begin(), E = gvs.end();
   1677          I != E; ++I) {
   1678       if (GlobalVariable* GV = dyn_cast<GlobalVariable>(*I))
   1679         printVariableBody(GV);
   1680     }
   1681   }
   1682 }
   1683 
   1684 void CppWriter::printFunctionHead(const Function* F) {
   1685   nl(Out) << "Function* " << getCppName(F);
   1686   Out << " = mod->getFunction(\"";
   1687   printEscapedString(F->getName());
   1688   Out << "\");";
   1689   nl(Out) << "if (!" << getCppName(F) << ") {";
   1690   nl(Out) << getCppName(F);
   1691 
   1692   Out<< " = Function::Create(";
   1693   nl(Out,1) << "/*Type=*/" << getCppName(F->getFunctionType()) << ",";
   1694   nl(Out) << "/*Linkage=*/";
   1695   printLinkageType(F->getLinkage());
   1696   Out << ",";
   1697   nl(Out) << "/*Name=*/\"";
   1698   printEscapedString(F->getName());
   1699   Out << "\", mod); " << (F->isDeclaration()? "// (external, no body)" : "");
   1700   nl(Out,-1);
   1701   printCppName(F);
   1702   Out << "->setCallingConv(";
   1703   printCallingConv(F->getCallingConv());
   1704   Out << ");";
   1705   nl(Out);
   1706   if (F->hasSection()) {
   1707     printCppName(F);
   1708     Out << "->setSection(\"" << F->getSection() << "\");";
   1709     nl(Out);
   1710   }
   1711   if (F->getAlignment()) {
   1712     printCppName(F);
   1713     Out << "->setAlignment(" << F->getAlignment() << ");";
   1714     nl(Out);
   1715   }
   1716   if (F->getVisibility() != GlobalValue::DefaultVisibility) {
   1717     printCppName(F);
   1718     Out << "->setVisibility(";
   1719     printVisibilityType(F->getVisibility());
   1720     Out << ");";
   1721     nl(Out);
   1722   }
   1723   if (F->hasGC()) {
   1724     printCppName(F);
   1725     Out << "->setGC(\"" << F->getGC() << "\");";
   1726     nl(Out);
   1727   }
   1728   Out << "}";
   1729   nl(Out);
   1730   printAttributes(F->getAttributes(), getCppName(F));
   1731   printCppName(F);
   1732   Out << "->setAttributes(" << getCppName(F) << "_PAL);";
   1733   nl(Out);
   1734 }
   1735 
   1736 void CppWriter::printFunctionBody(const Function *F) {
   1737   if (F->isDeclaration())
   1738     return; // external functions have no bodies.
   1739 
   1740   // Clear the DefinedValues and ForwardRefs maps because we can't have
   1741   // cross-function forward refs
   1742   ForwardRefs.clear();
   1743   DefinedValues.clear();
   1744 
   1745   // Create all the argument values
   1746   if (!is_inline) {
   1747     if (!F->arg_empty()) {
   1748       Out << "Function::arg_iterator args = " << getCppName(F)
   1749           << "->arg_begin();";
   1750       nl(Out);
   1751     }
   1752     for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
   1753          AI != AE; ++AI) {
   1754       Out << "Value* " << getCppName(AI) << " = args++;";
   1755       nl(Out);
   1756       if (AI->hasName()) {
   1757         Out << getCppName(AI) << "->setName(\"";
   1758         printEscapedString(AI->getName());
   1759         Out << "\");";
   1760         nl(Out);
   1761       }
   1762     }
   1763   }
   1764 
   1765   // Create all the basic blocks
   1766   nl(Out);
   1767   for (Function::const_iterator BI = F->begin(), BE = F->end();
   1768        BI != BE; ++BI) {
   1769     std::string bbname(getCppName(BI));
   1770     Out << "BasicBlock* " << bbname <<
   1771            " = BasicBlock::Create(mod->getContext(), \"";
   1772     if (BI->hasName())
   1773       printEscapedString(BI->getName());
   1774     Out << "\"," << getCppName(BI->getParent()) << ",0);";
   1775     nl(Out);
   1776   }
   1777 
   1778   // Output all of its basic blocks... for the function
   1779   for (Function::const_iterator BI = F->begin(), BE = F->end();
   1780        BI != BE; ++BI) {
   1781     std::string bbname(getCppName(BI));
   1782     nl(Out) << "// Block " << BI->getName() << " (" << bbname << ")";
   1783     nl(Out);
   1784 
   1785     // Output all of the instructions in the basic block...
   1786     for (BasicBlock::const_iterator I = BI->begin(), E = BI->end();
   1787          I != E; ++I) {
   1788       printInstruction(I,bbname);
   1789     }
   1790   }
   1791 
   1792   // Loop over the ForwardRefs and resolve them now that all instructions
   1793   // are generated.
   1794   if (!ForwardRefs.empty()) {
   1795     nl(Out) << "// Resolve Forward References";
   1796     nl(Out);
   1797   }
   1798 
   1799   while (!ForwardRefs.empty()) {
   1800     ForwardRefMap::iterator I = ForwardRefs.begin();
   1801     Out << I->second << "->replaceAllUsesWith("
   1802         << getCppName(I->first) << "); delete " << I->second << ";";
   1803     nl(Out);
   1804     ForwardRefs.erase(I);
   1805   }
   1806 }
   1807 
   1808 void CppWriter::printInline(const std::string& fname,
   1809                             const std::string& func) {
   1810   const Function* F = TheModule->getFunction(func);
   1811   if (!F) {
   1812     error(std::string("Function '") + func + "' not found in input module");
   1813     return;
   1814   }
   1815   if (F->isDeclaration()) {
   1816     error(std::string("Function '") + func + "' is external!");
   1817     return;
   1818   }
   1819   nl(Out) << "BasicBlock* " << fname << "(Module* mod, Function *"
   1820           << getCppName(F);
   1821   unsigned arg_count = 1;
   1822   for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
   1823        AI != AE; ++AI) {
   1824     Out << ", Value* arg_" << arg_count;
   1825   }
   1826   Out << ") {";
   1827   nl(Out);
   1828   is_inline = true;
   1829   printFunctionUses(F);
   1830   printFunctionBody(F);
   1831   is_inline = false;
   1832   Out << "return " << getCppName(F->begin()) << ";";
   1833   nl(Out) << "}";
   1834   nl(Out);
   1835 }
   1836 
   1837 void CppWriter::printModuleBody() {
   1838   // Print out all the type definitions
   1839   nl(Out) << "// Type Definitions"; nl(Out);
   1840   printTypes(TheModule);
   1841 
   1842   // Functions can call each other and global variables can reference them so
   1843   // define all the functions first before emitting their function bodies.
   1844   nl(Out) << "// Function Declarations"; nl(Out);
   1845   for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
   1846        I != E; ++I)
   1847     printFunctionHead(I);
   1848 
   1849   // Process the global variables declarations. We can't initialze them until
   1850   // after the constants are printed so just print a header for each global
   1851   nl(Out) << "// Global Variable Declarations\n"; nl(Out);
   1852   for (Module::const_global_iterator I = TheModule->global_begin(),
   1853          E = TheModule->global_end(); I != E; ++I) {
   1854     printVariableHead(I);
   1855   }
   1856 
   1857   // Print out all the constants definitions. Constants don't recurse except
   1858   // through GlobalValues. All GlobalValues have been declared at this point
   1859   // so we can proceed to generate the constants.
   1860   nl(Out) << "// Constant Definitions"; nl(Out);
   1861   printConstants(TheModule);
   1862 
   1863   // Process the global variables definitions now that all the constants have
   1864   // been emitted. These definitions just couple the gvars with their constant
   1865   // initializers.
   1866   nl(Out) << "// Global Variable Definitions"; nl(Out);
   1867   for (Module::const_global_iterator I = TheModule->global_begin(),
   1868          E = TheModule->global_end(); I != E; ++I) {
   1869     printVariableBody(I);
   1870   }
   1871 
   1872   // Finally, we can safely put out all of the function bodies.
   1873   nl(Out) << "// Function Definitions"; nl(Out);
   1874   for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
   1875        I != E; ++I) {
   1876     if (!I->isDeclaration()) {
   1877       nl(Out) << "// Function: " << I->getName() << " (" << getCppName(I)
   1878               << ")";
   1879       nl(Out) << "{";
   1880       nl(Out,1);
   1881       printFunctionBody(I);
   1882       nl(Out,-1) << "}";
   1883       nl(Out);
   1884     }
   1885   }
   1886 }
   1887 
   1888 void CppWriter::printProgram(const std::string& fname,
   1889                              const std::string& mName) {
   1890   Out << "#include <llvm/LLVMContext.h>\n";
   1891   Out << "#include <llvm/Module.h>\n";
   1892   Out << "#include <llvm/DerivedTypes.h>\n";
   1893   Out << "#include <llvm/Constants.h>\n";
   1894   Out << "#include <llvm/GlobalVariable.h>\n";
   1895   Out << "#include <llvm/Function.h>\n";
   1896   Out << "#include <llvm/CallingConv.h>\n";
   1897   Out << "#include <llvm/BasicBlock.h>\n";
   1898   Out << "#include <llvm/Instructions.h>\n";
   1899   Out << "#include <llvm/InlineAsm.h>\n";
   1900   Out << "#include <llvm/Support/FormattedStream.h>\n";
   1901   Out << "#include <llvm/Support/MathExtras.h>\n";
   1902   Out << "#include <llvm/Pass.h>\n";
   1903   Out << "#include <llvm/PassManager.h>\n";
   1904   Out << "#include <llvm/ADT/SmallVector.h>\n";
   1905   Out << "#include <llvm/Analysis/Verifier.h>\n";
   1906   Out << "#include <llvm/Assembly/PrintModulePass.h>\n";
   1907   Out << "#include <algorithm>\n";
   1908   Out << "using namespace llvm;\n\n";
   1909   Out << "Module* " << fname << "();\n\n";
   1910   Out << "int main(int argc, char**argv) {\n";
   1911   Out << "  Module* Mod = " << fname << "();\n";
   1912   Out << "  verifyModule(*Mod, PrintMessageAction);\n";
   1913   Out << "  PassManager PM;\n";
   1914   Out << "  PM.add(createPrintModulePass(&outs()));\n";
   1915   Out << "  PM.run(*Mod);\n";
   1916   Out << "  return 0;\n";
   1917   Out << "}\n\n";
   1918   printModule(fname,mName);
   1919 }
   1920 
   1921 void CppWriter::printModule(const std::string& fname,
   1922                             const std::string& mName) {
   1923   nl(Out) << "Module* " << fname << "() {";
   1924   nl(Out,1) << "// Module Construction";
   1925   nl(Out) << "Module* mod = new Module(\"";
   1926   printEscapedString(mName);
   1927   Out << "\", getGlobalContext());";
   1928   if (!TheModule->getTargetTriple().empty()) {
   1929     nl(Out) << "mod->setDataLayout(\"" << TheModule->getDataLayout() << "\");";
   1930   }
   1931   if (!TheModule->getTargetTriple().empty()) {
   1932     nl(Out) << "mod->setTargetTriple(\"" << TheModule->getTargetTriple()
   1933             << "\");";
   1934   }
   1935 
   1936   if (!TheModule->getModuleInlineAsm().empty()) {
   1937     nl(Out) << "mod->setModuleInlineAsm(\"";
   1938     printEscapedString(TheModule->getModuleInlineAsm());
   1939     Out << "\");";
   1940   }
   1941   nl(Out);
   1942 
   1943   // Loop over the dependent libraries and emit them.
   1944   Module::lib_iterator LI = TheModule->lib_begin();
   1945   Module::lib_iterator LE = TheModule->lib_end();
   1946   while (LI != LE) {
   1947     Out << "mod->addLibrary(\"" << *LI << "\");";
   1948     nl(Out);
   1949     ++LI;
   1950   }
   1951   printModuleBody();
   1952   nl(Out) << "return mod;";
   1953   nl(Out,-1) << "}";
   1954   nl(Out);
   1955 }
   1956 
   1957 void CppWriter::printContents(const std::string& fname,
   1958                               const std::string& mName) {
   1959   Out << "\nModule* " << fname << "(Module *mod) {\n";
   1960   Out << "\nmod->setModuleIdentifier(\"";
   1961   printEscapedString(mName);
   1962   Out << "\");\n";
   1963   printModuleBody();
   1964   Out << "\nreturn mod;\n";
   1965   Out << "\n}\n";
   1966 }
   1967 
   1968 void CppWriter::printFunction(const std::string& fname,
   1969                               const std::string& funcName) {
   1970   const Function* F = TheModule->getFunction(funcName);
   1971   if (!F) {
   1972     error(std::string("Function '") + funcName + "' not found in input module");
   1973     return;
   1974   }
   1975   Out << "\nFunction* " << fname << "(Module *mod) {\n";
   1976   printFunctionUses(F);
   1977   printFunctionHead(F);
   1978   printFunctionBody(F);
   1979   Out << "return " << getCppName(F) << ";\n";
   1980   Out << "}\n";
   1981 }
   1982 
   1983 void CppWriter::printFunctions() {
   1984   const Module::FunctionListType &funcs = TheModule->getFunctionList();
   1985   Module::const_iterator I  = funcs.begin();
   1986   Module::const_iterator IE = funcs.end();
   1987 
   1988   for (; I != IE; ++I) {
   1989     const Function &func = *I;
   1990     if (!func.isDeclaration()) {
   1991       std::string name("define_");
   1992       name += func.getName();
   1993       printFunction(name, func.getName());
   1994     }
   1995   }
   1996 }
   1997 
   1998 void CppWriter::printVariable(const std::string& fname,
   1999                               const std::string& varName) {
   2000   const GlobalVariable* GV = TheModule->getNamedGlobal(varName);
   2001 
   2002   if (!GV) {
   2003     error(std::string("Variable '") + varName + "' not found in input module");
   2004     return;
   2005   }
   2006   Out << "\nGlobalVariable* " << fname << "(Module *mod) {\n";
   2007   printVariableUses(GV);
   2008   printVariableHead(GV);
   2009   printVariableBody(GV);
   2010   Out << "return " << getCppName(GV) << ";\n";
   2011   Out << "}\n";
   2012 }
   2013 
   2014 void CppWriter::printType(const std::string &fname,
   2015                           const std::string &typeName) {
   2016   Type* Ty = TheModule->getTypeByName(typeName);
   2017   if (!Ty) {
   2018     error(std::string("Type '") + typeName + "' not found in input module");
   2019     return;
   2020   }
   2021   Out << "\nType* " << fname << "(Module *mod) {\n";
   2022   printType(Ty);
   2023   Out << "return " << getCppName(Ty) << ";\n";
   2024   Out << "}\n";
   2025 }
   2026 
   2027 bool CppWriter::runOnModule(Module &M) {
   2028   TheModule = &M;
   2029 
   2030   // Emit a header
   2031   Out << "// Generated by llvm2cpp - DO NOT MODIFY!\n\n";
   2032 
   2033   // Get the name of the function we're supposed to generate
   2034   std::string fname = FuncName.getValue();
   2035 
   2036   // Get the name of the thing we are to generate
   2037   std::string tgtname = NameToGenerate.getValue();
   2038   if (GenerationType == GenModule ||
   2039       GenerationType == GenContents ||
   2040       GenerationType == GenProgram ||
   2041       GenerationType == GenFunctions) {
   2042     if (tgtname == "!bad!") {
   2043       if (M.getModuleIdentifier() == "-")
   2044         tgtname = "<stdin>";
   2045       else
   2046         tgtname = M.getModuleIdentifier();
   2047     }
   2048   } else if (tgtname == "!bad!")
   2049     error("You must use the -for option with -gen-{function,variable,type}");
   2050 
   2051   switch (WhatToGenerate(GenerationType)) {
   2052    case GenProgram:
   2053     if (fname.empty())
   2054       fname = "makeLLVMModule";
   2055     printProgram(fname,tgtname);
   2056     break;
   2057    case GenModule:
   2058     if (fname.empty())
   2059       fname = "makeLLVMModule";
   2060     printModule(fname,tgtname);
   2061     break;
   2062    case GenContents:
   2063     if (fname.empty())
   2064       fname = "makeLLVMModuleContents";
   2065     printContents(fname,tgtname);
   2066     break;
   2067    case GenFunction:
   2068     if (fname.empty())
   2069       fname = "makeLLVMFunction";
   2070     printFunction(fname,tgtname);
   2071     break;
   2072    case GenFunctions:
   2073     printFunctions();
   2074     break;
   2075    case GenInline:
   2076     if (fname.empty())
   2077       fname = "makeLLVMInline";
   2078     printInline(fname,tgtname);
   2079     break;
   2080    case GenVariable:
   2081     if (fname.empty())
   2082       fname = "makeLLVMVariable";
   2083     printVariable(fname,tgtname);
   2084     break;
   2085    case GenType:
   2086     if (fname.empty())
   2087       fname = "makeLLVMType";
   2088     printType(fname,tgtname);
   2089     break;
   2090   }
   2091 
   2092   return false;
   2093 }
   2094 
   2095 char CppWriter::ID = 0;
   2096 
   2097 //===----------------------------------------------------------------------===//
   2098 //                       External Interface declaration
   2099 //===----------------------------------------------------------------------===//
   2100 
   2101 bool CPPTargetMachine::addPassesToEmitFile(PassManagerBase &PM,
   2102                                            formatted_raw_ostream &o,
   2103                                            CodeGenFileType FileType,
   2104                                            bool DisableVerify,
   2105                                            AnalysisID StartAfter,
   2106                                            AnalysisID StopAfter) {
   2107   if (FileType != TargetMachine::CGFT_AssemblyFile) return true;
   2108   PM.add(new CppWriter(o));
   2109   return false;
   2110 }
   2111