Home | History | Annotate | Download | only in Sema
      1 //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements semantic analysis for declarations.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Sema/SemaInternal.h"
     15 #include "clang/Sema/Initialization.h"
     16 #include "clang/Sema/Lookup.h"
     17 #include "clang/Sema/CXXFieldCollector.h"
     18 #include "clang/Sema/Scope.h"
     19 #include "clang/Sema/ScopeInfo.h"
     20 #include "TypeLocBuilder.h"
     21 #include "clang/AST/ASTConsumer.h"
     22 #include "clang/AST/ASTContext.h"
     23 #include "clang/AST/CXXInheritance.h"
     24 #include "clang/AST/CommentDiagnostic.h"
     25 #include "clang/AST/DeclCXX.h"
     26 #include "clang/AST/DeclObjC.h"
     27 #include "clang/AST/DeclTemplate.h"
     28 #include "clang/AST/EvaluatedExprVisitor.h"
     29 #include "clang/AST/ExprCXX.h"
     30 #include "clang/AST/StmtCXX.h"
     31 #include "clang/AST/CharUnits.h"
     32 #include "clang/Sema/DeclSpec.h"
     33 #include "clang/Sema/ParsedTemplate.h"
     34 #include "clang/Parse/ParseDiagnostic.h"
     35 #include "clang/Basic/PartialDiagnostic.h"
     36 #include "clang/Sema/DelayedDiagnostic.h"
     37 #include "clang/Basic/SourceManager.h"
     38 #include "clang/Basic/TargetInfo.h"
     39 // FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
     40 #include "clang/Lex/Preprocessor.h"
     41 #include "clang/Lex/HeaderSearch.h"
     42 #include "clang/Lex/ModuleLoader.h"
     43 #include "llvm/ADT/SmallString.h"
     44 #include "llvm/ADT/Triple.h"
     45 #include <algorithm>
     46 #include <cstring>
     47 #include <functional>
     48 using namespace clang;
     49 using namespace sema;
     50 
     51 Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
     52   if (OwnedType) {
     53     Decl *Group[2] = { OwnedType, Ptr };
     54     return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
     55   }
     56 
     57   return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
     58 }
     59 
     60 namespace {
     61 
     62 class TypeNameValidatorCCC : public CorrectionCandidateCallback {
     63  public:
     64   TypeNameValidatorCCC(bool AllowInvalid, bool WantClass=false)
     65       : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass) {
     66     WantExpressionKeywords = false;
     67     WantCXXNamedCasts = false;
     68     WantRemainingKeywords = false;
     69   }
     70 
     71   virtual bool ValidateCandidate(const TypoCorrection &candidate) {
     72     if (NamedDecl *ND = candidate.getCorrectionDecl())
     73       return (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) &&
     74           (AllowInvalidDecl || !ND->isInvalidDecl());
     75     else
     76       return !WantClassName && candidate.isKeyword();
     77   }
     78 
     79  private:
     80   bool AllowInvalidDecl;
     81   bool WantClassName;
     82 };
     83 
     84 }
     85 
     86 /// \brief Determine whether the token kind starts a simple-type-specifier.
     87 bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
     88   switch (Kind) {
     89   // FIXME: Take into account the current language when deciding whether a
     90   // token kind is a valid type specifier
     91   case tok::kw_short:
     92   case tok::kw_long:
     93   case tok::kw___int64:
     94   case tok::kw___int128:
     95   case tok::kw_signed:
     96   case tok::kw_unsigned:
     97   case tok::kw_void:
     98   case tok::kw_char:
     99   case tok::kw_int:
    100   case tok::kw_half:
    101   case tok::kw_float:
    102   case tok::kw_double:
    103   case tok::kw_wchar_t:
    104   case tok::kw_bool:
    105   case tok::kw___underlying_type:
    106     return true;
    107 
    108   case tok::annot_typename:
    109   case tok::kw_char16_t:
    110   case tok::kw_char32_t:
    111   case tok::kw_typeof:
    112   case tok::kw_decltype:
    113     return getLangOpts().CPlusPlus;
    114 
    115   default:
    116     break;
    117   }
    118 
    119   return false;
    120 }
    121 
    122 /// \brief If the identifier refers to a type name within this scope,
    123 /// return the declaration of that type.
    124 ///
    125 /// This routine performs ordinary name lookup of the identifier II
    126 /// within the given scope, with optional C++ scope specifier SS, to
    127 /// determine whether the name refers to a type. If so, returns an
    128 /// opaque pointer (actually a QualType) corresponding to that
    129 /// type. Otherwise, returns NULL.
    130 ///
    131 /// If name lookup results in an ambiguity, this routine will complain
    132 /// and then return NULL.
    133 ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
    134                              Scope *S, CXXScopeSpec *SS,
    135                              bool isClassName, bool HasTrailingDot,
    136                              ParsedType ObjectTypePtr,
    137                              bool IsCtorOrDtorName,
    138                              bool WantNontrivialTypeSourceInfo,
    139                              IdentifierInfo **CorrectedII) {
    140   // Determine where we will perform name lookup.
    141   DeclContext *LookupCtx = 0;
    142   if (ObjectTypePtr) {
    143     QualType ObjectType = ObjectTypePtr.get();
    144     if (ObjectType->isRecordType())
    145       LookupCtx = computeDeclContext(ObjectType);
    146   } else if (SS && SS->isNotEmpty()) {
    147     LookupCtx = computeDeclContext(*SS, false);
    148 
    149     if (!LookupCtx) {
    150       if (isDependentScopeSpecifier(*SS)) {
    151         // C++ [temp.res]p3:
    152         //   A qualified-id that refers to a type and in which the
    153         //   nested-name-specifier depends on a template-parameter (14.6.2)
    154         //   shall be prefixed by the keyword typename to indicate that the
    155         //   qualified-id denotes a type, forming an
    156         //   elaborated-type-specifier (7.1.5.3).
    157         //
    158         // We therefore do not perform any name lookup if the result would
    159         // refer to a member of an unknown specialization.
    160         if (!isClassName && !IsCtorOrDtorName)
    161           return ParsedType();
    162 
    163         // We know from the grammar that this name refers to a type,
    164         // so build a dependent node to describe the type.
    165         if (WantNontrivialTypeSourceInfo)
    166           return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
    167 
    168         NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
    169         QualType T =
    170           CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
    171                             II, NameLoc);
    172 
    173           return ParsedType::make(T);
    174       }
    175 
    176       return ParsedType();
    177     }
    178 
    179     if (!LookupCtx->isDependentContext() &&
    180         RequireCompleteDeclContext(*SS, LookupCtx))
    181       return ParsedType();
    182   }
    183 
    184   // FIXME: LookupNestedNameSpecifierName isn't the right kind of
    185   // lookup for class-names.
    186   LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
    187                                       LookupOrdinaryName;
    188   LookupResult Result(*this, &II, NameLoc, Kind);
    189   if (LookupCtx) {
    190     // Perform "qualified" name lookup into the declaration context we
    191     // computed, which is either the type of the base of a member access
    192     // expression or the declaration context associated with a prior
    193     // nested-name-specifier.
    194     LookupQualifiedName(Result, LookupCtx);
    195 
    196     if (ObjectTypePtr && Result.empty()) {
    197       // C++ [basic.lookup.classref]p3:
    198       //   If the unqualified-id is ~type-name, the type-name is looked up
    199       //   in the context of the entire postfix-expression. If the type T of
    200       //   the object expression is of a class type C, the type-name is also
    201       //   looked up in the scope of class C. At least one of the lookups shall
    202       //   find a name that refers to (possibly cv-qualified) T.
    203       LookupName(Result, S);
    204     }
    205   } else {
    206     // Perform unqualified name lookup.
    207     LookupName(Result, S);
    208   }
    209 
    210   NamedDecl *IIDecl = 0;
    211   switch (Result.getResultKind()) {
    212   case LookupResult::NotFound:
    213   case LookupResult::NotFoundInCurrentInstantiation:
    214     if (CorrectedII) {
    215       TypeNameValidatorCCC Validator(true, isClassName);
    216       TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
    217                                               Kind, S, SS, Validator);
    218       IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
    219       TemplateTy Template;
    220       bool MemberOfUnknownSpecialization;
    221       UnqualifiedId TemplateName;
    222       TemplateName.setIdentifier(NewII, NameLoc);
    223       NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
    224       CXXScopeSpec NewSS, *NewSSPtr = SS;
    225       if (SS && NNS) {
    226         NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
    227         NewSSPtr = &NewSS;
    228       }
    229       if (Correction && (NNS || NewII != &II) &&
    230           // Ignore a correction to a template type as the to-be-corrected
    231           // identifier is not a template (typo correction for template names
    232           // is handled elsewhere).
    233           !(getLangOpts().CPlusPlus && NewSSPtr &&
    234             isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
    235                            false, Template, MemberOfUnknownSpecialization))) {
    236         ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
    237                                     isClassName, HasTrailingDot, ObjectTypePtr,
    238                                     IsCtorOrDtorName,
    239                                     WantNontrivialTypeSourceInfo);
    240         if (Ty) {
    241           std::string CorrectedStr(Correction.getAsString(getLangOpts()));
    242           std::string CorrectedQuotedStr(
    243               Correction.getQuoted(getLangOpts()));
    244           Diag(NameLoc, diag::err_unknown_type_or_class_name_suggest)
    245               << Result.getLookupName() << CorrectedQuotedStr << isClassName
    246               << FixItHint::CreateReplacement(SourceRange(NameLoc),
    247                                               CorrectedStr);
    248           if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
    249             Diag(FirstDecl->getLocation(), diag::note_previous_decl)
    250               << CorrectedQuotedStr;
    251 
    252           if (SS && NNS)
    253             SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
    254           *CorrectedII = NewII;
    255           return Ty;
    256         }
    257       }
    258     }
    259     // If typo correction failed or was not performed, fall through
    260   case LookupResult::FoundOverloaded:
    261   case LookupResult::FoundUnresolvedValue:
    262     Result.suppressDiagnostics();
    263     return ParsedType();
    264 
    265   case LookupResult::Ambiguous:
    266     // Recover from type-hiding ambiguities by hiding the type.  We'll
    267     // do the lookup again when looking for an object, and we can
    268     // diagnose the error then.  If we don't do this, then the error
    269     // about hiding the type will be immediately followed by an error
    270     // that only makes sense if the identifier was treated like a type.
    271     if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
    272       Result.suppressDiagnostics();
    273       return ParsedType();
    274     }
    275 
    276     // Look to see if we have a type anywhere in the list of results.
    277     for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
    278          Res != ResEnd; ++Res) {
    279       if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
    280         if (!IIDecl ||
    281             (*Res)->getLocation().getRawEncoding() <
    282               IIDecl->getLocation().getRawEncoding())
    283           IIDecl = *Res;
    284       }
    285     }
    286 
    287     if (!IIDecl) {
    288       // None of the entities we found is a type, so there is no way
    289       // to even assume that the result is a type. In this case, don't
    290       // complain about the ambiguity. The parser will either try to
    291       // perform this lookup again (e.g., as an object name), which
    292       // will produce the ambiguity, or will complain that it expected
    293       // a type name.
    294       Result.suppressDiagnostics();
    295       return ParsedType();
    296     }
    297 
    298     // We found a type within the ambiguous lookup; diagnose the
    299     // ambiguity and then return that type. This might be the right
    300     // answer, or it might not be, but it suppresses any attempt to
    301     // perform the name lookup again.
    302     break;
    303 
    304   case LookupResult::Found:
    305     IIDecl = Result.getFoundDecl();
    306     break;
    307   }
    308 
    309   assert(IIDecl && "Didn't find decl");
    310 
    311   QualType T;
    312   if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
    313     DiagnoseUseOfDecl(IIDecl, NameLoc);
    314 
    315     if (T.isNull())
    316       T = Context.getTypeDeclType(TD);
    317 
    318     // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
    319     // constructor or destructor name (in such a case, the scope specifier
    320     // will be attached to the enclosing Expr or Decl node).
    321     if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
    322       if (WantNontrivialTypeSourceInfo) {
    323         // Construct a type with type-source information.
    324         TypeLocBuilder Builder;
    325         Builder.pushTypeSpec(T).setNameLoc(NameLoc);
    326 
    327         T = getElaboratedType(ETK_None, *SS, T);
    328         ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
    329         ElabTL.setElaboratedKeywordLoc(SourceLocation());
    330         ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
    331         return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
    332       } else {
    333         T = getElaboratedType(ETK_None, *SS, T);
    334       }
    335     }
    336   } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
    337     (void)DiagnoseUseOfDecl(IDecl, NameLoc);
    338     if (!HasTrailingDot)
    339       T = Context.getObjCInterfaceType(IDecl);
    340   }
    341 
    342   if (T.isNull()) {
    343     // If it's not plausibly a type, suppress diagnostics.
    344     Result.suppressDiagnostics();
    345     return ParsedType();
    346   }
    347   return ParsedType::make(T);
    348 }
    349 
    350 /// isTagName() - This method is called *for error recovery purposes only*
    351 /// to determine if the specified name is a valid tag name ("struct foo").  If
    352 /// so, this returns the TST for the tag corresponding to it (TST_enum,
    353 /// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose
    354 /// cases in C where the user forgot to specify the tag.
    355 DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
    356   // Do a tag name lookup in this scope.
    357   LookupResult R(*this, &II, SourceLocation(), LookupTagName);
    358   LookupName(R, S, false);
    359   R.suppressDiagnostics();
    360   if (R.getResultKind() == LookupResult::Found)
    361     if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
    362       switch (TD->getTagKind()) {
    363       case TTK_Struct: return DeclSpec::TST_struct;
    364       case TTK_Interface: return DeclSpec::TST_interface;
    365       case TTK_Union:  return DeclSpec::TST_union;
    366       case TTK_Class:  return DeclSpec::TST_class;
    367       case TTK_Enum:   return DeclSpec::TST_enum;
    368       }
    369     }
    370 
    371   return DeclSpec::TST_unspecified;
    372 }
    373 
    374 /// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
    375 /// if a CXXScopeSpec's type is equal to the type of one of the base classes
    376 /// then downgrade the missing typename error to a warning.
    377 /// This is needed for MSVC compatibility; Example:
    378 /// @code
    379 /// template<class T> class A {
    380 /// public:
    381 ///   typedef int TYPE;
    382 /// };
    383 /// template<class T> class B : public A<T> {
    384 /// public:
    385 ///   A<T>::TYPE a; // no typename required because A<T> is a base class.
    386 /// };
    387 /// @endcode
    388 bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
    389   if (CurContext->isRecord()) {
    390     const Type *Ty = SS->getScopeRep()->getAsType();
    391 
    392     CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
    393     for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
    394           BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
    395       if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
    396         return true;
    397     return S->isFunctionPrototypeScope();
    398   }
    399   return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
    400 }
    401 
    402 bool Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
    403                                    SourceLocation IILoc,
    404                                    Scope *S,
    405                                    CXXScopeSpec *SS,
    406                                    ParsedType &SuggestedType) {
    407   // We don't have anything to suggest (yet).
    408   SuggestedType = ParsedType();
    409 
    410   // There may have been a typo in the name of the type. Look up typo
    411   // results, in case we have something that we can suggest.
    412   TypeNameValidatorCCC Validator(false);
    413   if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(II, IILoc),
    414                                              LookupOrdinaryName, S, SS,
    415                                              Validator)) {
    416     std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
    417     std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
    418 
    419     if (Corrected.isKeyword()) {
    420       // We corrected to a keyword.
    421       IdentifierInfo *NewII = Corrected.getCorrectionAsIdentifierInfo();
    422       if (!isSimpleTypeSpecifier(NewII->getTokenID()))
    423         CorrectedQuotedStr = "the keyword " + CorrectedQuotedStr;
    424       Diag(IILoc, diag::err_unknown_typename_suggest)
    425         << II << CorrectedQuotedStr
    426         << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
    427       II = NewII;
    428     } else {
    429       NamedDecl *Result = Corrected.getCorrectionDecl();
    430       // We found a similarly-named type or interface; suggest that.
    431       if (!SS || !SS->isSet())
    432         Diag(IILoc, diag::err_unknown_typename_suggest)
    433           << II << CorrectedQuotedStr
    434           << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
    435       else if (DeclContext *DC = computeDeclContext(*SS, false))
    436         Diag(IILoc, diag::err_unknown_nested_typename_suggest)
    437           << II << DC << CorrectedQuotedStr << SS->getRange()
    438           << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
    439       else
    440         llvm_unreachable("could not have corrected a typo here");
    441 
    442       Diag(Result->getLocation(), diag::note_previous_decl)
    443         << CorrectedQuotedStr;
    444 
    445       SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
    446                                   false, false, ParsedType(),
    447                                   /*IsCtorOrDtorName=*/false,
    448                                   /*NonTrivialTypeSourceInfo=*/true);
    449     }
    450     return true;
    451   }
    452 
    453   if (getLangOpts().CPlusPlus) {
    454     // See if II is a class template that the user forgot to pass arguments to.
    455     UnqualifiedId Name;
    456     Name.setIdentifier(II, IILoc);
    457     CXXScopeSpec EmptySS;
    458     TemplateTy TemplateResult;
    459     bool MemberOfUnknownSpecialization;
    460     if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
    461                        Name, ParsedType(), true, TemplateResult,
    462                        MemberOfUnknownSpecialization) == TNK_Type_template) {
    463       TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
    464       Diag(IILoc, diag::err_template_missing_args) << TplName;
    465       if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
    466         Diag(TplDecl->getLocation(), diag::note_template_decl_here)
    467           << TplDecl->getTemplateParameters()->getSourceRange();
    468       }
    469       return true;
    470     }
    471   }
    472 
    473   // FIXME: Should we move the logic that tries to recover from a missing tag
    474   // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
    475 
    476   if (!SS || (!SS->isSet() && !SS->isInvalid()))
    477     Diag(IILoc, diag::err_unknown_typename) << II;
    478   else if (DeclContext *DC = computeDeclContext(*SS, false))
    479     Diag(IILoc, diag::err_typename_nested_not_found)
    480       << II << DC << SS->getRange();
    481   else if (isDependentScopeSpecifier(*SS)) {
    482     unsigned DiagID = diag::err_typename_missing;
    483     if (getLangOpts().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
    484       DiagID = diag::warn_typename_missing;
    485 
    486     Diag(SS->getRange().getBegin(), DiagID)
    487       << (NestedNameSpecifier *)SS->getScopeRep() << II->getName()
    488       << SourceRange(SS->getRange().getBegin(), IILoc)
    489       << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
    490     SuggestedType = ActOnTypenameType(S, SourceLocation(),
    491                                       *SS, *II, IILoc).get();
    492   } else {
    493     assert(SS && SS->isInvalid() &&
    494            "Invalid scope specifier has already been diagnosed");
    495   }
    496 
    497   return true;
    498 }
    499 
    500 /// \brief Determine whether the given result set contains either a type name
    501 /// or
    502 static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
    503   bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
    504                        NextToken.is(tok::less);
    505 
    506   for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
    507     if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
    508       return true;
    509 
    510     if (CheckTemplate && isa<TemplateDecl>(*I))
    511       return true;
    512   }
    513 
    514   return false;
    515 }
    516 
    517 static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
    518                                     Scope *S, CXXScopeSpec &SS,
    519                                     IdentifierInfo *&Name,
    520                                     SourceLocation NameLoc) {
    521   LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
    522   SemaRef.LookupParsedName(R, S, &SS);
    523   if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
    524     const char *TagName = 0;
    525     const char *FixItTagName = 0;
    526     switch (Tag->getTagKind()) {
    527       case TTK_Class:
    528         TagName = "class";
    529         FixItTagName = "class ";
    530         break;
    531 
    532       case TTK_Enum:
    533         TagName = "enum";
    534         FixItTagName = "enum ";
    535         break;
    536 
    537       case TTK_Struct:
    538         TagName = "struct";
    539         FixItTagName = "struct ";
    540         break;
    541 
    542       case TTK_Interface:
    543         TagName = "__interface";
    544         FixItTagName = "__interface ";
    545         break;
    546 
    547       case TTK_Union:
    548         TagName = "union";
    549         FixItTagName = "union ";
    550         break;
    551     }
    552 
    553     SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
    554       << Name << TagName << SemaRef.getLangOpts().CPlusPlus
    555       << FixItHint::CreateInsertion(NameLoc, FixItTagName);
    556 
    557     for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
    558          I != IEnd; ++I)
    559       SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
    560         << Name << TagName;
    561 
    562     // Replace lookup results with just the tag decl.
    563     Result.clear(Sema::LookupTagName);
    564     SemaRef.LookupParsedName(Result, S, &SS);
    565     return true;
    566   }
    567 
    568   return false;
    569 }
    570 
    571 /// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
    572 static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
    573                                   QualType T, SourceLocation NameLoc) {
    574   ASTContext &Context = S.Context;
    575 
    576   TypeLocBuilder Builder;
    577   Builder.pushTypeSpec(T).setNameLoc(NameLoc);
    578 
    579   T = S.getElaboratedType(ETK_None, SS, T);
    580   ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
    581   ElabTL.setElaboratedKeywordLoc(SourceLocation());
    582   ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
    583   return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
    584 }
    585 
    586 Sema::NameClassification Sema::ClassifyName(Scope *S,
    587                                             CXXScopeSpec &SS,
    588                                             IdentifierInfo *&Name,
    589                                             SourceLocation NameLoc,
    590                                             const Token &NextToken,
    591                                             bool IsAddressOfOperand,
    592                                             CorrectionCandidateCallback *CCC) {
    593   DeclarationNameInfo NameInfo(Name, NameLoc);
    594   ObjCMethodDecl *CurMethod = getCurMethodDecl();
    595 
    596   if (NextToken.is(tok::coloncolon)) {
    597     BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
    598                                 QualType(), false, SS, 0, false);
    599 
    600   }
    601 
    602   LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
    603   LookupParsedName(Result, S, &SS, !CurMethod);
    604 
    605   // Perform lookup for Objective-C instance variables (including automatically
    606   // synthesized instance variables), if we're in an Objective-C method.
    607   // FIXME: This lookup really, really needs to be folded in to the normal
    608   // unqualified lookup mechanism.
    609   if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
    610     ExprResult E = LookupInObjCMethod(Result, S, Name, true);
    611     if (E.get() || E.isInvalid())
    612       return E;
    613   }
    614 
    615   bool SecondTry = false;
    616   bool IsFilteredTemplateName = false;
    617 
    618 Corrected:
    619   switch (Result.getResultKind()) {
    620   case LookupResult::NotFound:
    621     // If an unqualified-id is followed by a '(', then we have a function
    622     // call.
    623     if (!SS.isSet() && NextToken.is(tok::l_paren)) {
    624       // In C++, this is an ADL-only call.
    625       // FIXME: Reference?
    626       if (getLangOpts().CPlusPlus)
    627         return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
    628 
    629       // C90 6.3.2.2:
    630       //   If the expression that precedes the parenthesized argument list in a
    631       //   function call consists solely of an identifier, and if no
    632       //   declaration is visible for this identifier, the identifier is
    633       //   implicitly declared exactly as if, in the innermost block containing
    634       //   the function call, the declaration
    635       //
    636       //     extern int identifier ();
    637       //
    638       //   appeared.
    639       //
    640       // We also allow this in C99 as an extension.
    641       if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
    642         Result.addDecl(D);
    643         Result.resolveKind();
    644         return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
    645       }
    646     }
    647 
    648     // In C, we first see whether there is a tag type by the same name, in
    649     // which case it's likely that the user just forget to write "enum",
    650     // "struct", or "union".
    651     if (!getLangOpts().CPlusPlus && !SecondTry &&
    652         isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
    653       break;
    654     }
    655 
    656     // Perform typo correction to determine if there is another name that is
    657     // close to this name.
    658     if (!SecondTry && CCC) {
    659       SecondTry = true;
    660       if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
    661                                                  Result.getLookupKind(), S,
    662                                                  &SS, *CCC)) {
    663         unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
    664         unsigned QualifiedDiag = diag::err_no_member_suggest;
    665         std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
    666         std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
    667 
    668         NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
    669         NamedDecl *UnderlyingFirstDecl
    670           = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
    671         if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
    672             UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
    673           UnqualifiedDiag = diag::err_no_template_suggest;
    674           QualifiedDiag = diag::err_no_member_template_suggest;
    675         } else if (UnderlyingFirstDecl &&
    676                    (isa<TypeDecl>(UnderlyingFirstDecl) ||
    677                     isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
    678                     isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
    679            UnqualifiedDiag = diag::err_unknown_typename_suggest;
    680            QualifiedDiag = diag::err_unknown_nested_typename_suggest;
    681          }
    682 
    683         if (SS.isEmpty())
    684           Diag(NameLoc, UnqualifiedDiag)
    685             << Name << CorrectedQuotedStr
    686             << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
    687         else
    688           Diag(NameLoc, QualifiedDiag)
    689             << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
    690             << SS.getRange()
    691             << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
    692 
    693         // Update the name, so that the caller has the new name.
    694         Name = Corrected.getCorrectionAsIdentifierInfo();
    695 
    696         // Typo correction corrected to a keyword.
    697         if (Corrected.isKeyword())
    698           return Corrected.getCorrectionAsIdentifierInfo();
    699 
    700         // Also update the LookupResult...
    701         // FIXME: This should probably go away at some point
    702         Result.clear();
    703         Result.setLookupName(Corrected.getCorrection());
    704         if (FirstDecl) {
    705           Result.addDecl(FirstDecl);
    706           Diag(FirstDecl->getLocation(), diag::note_previous_decl)
    707             << CorrectedQuotedStr;
    708         }
    709 
    710         // If we found an Objective-C instance variable, let
    711         // LookupInObjCMethod build the appropriate expression to
    712         // reference the ivar.
    713         // FIXME: This is a gross hack.
    714         if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
    715           Result.clear();
    716           ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
    717           return E;
    718         }
    719 
    720         goto Corrected;
    721       }
    722     }
    723 
    724     // We failed to correct; just fall through and let the parser deal with it.
    725     Result.suppressDiagnostics();
    726     return NameClassification::Unknown();
    727 
    728   case LookupResult::NotFoundInCurrentInstantiation: {
    729     // We performed name lookup into the current instantiation, and there were
    730     // dependent bases, so we treat this result the same way as any other
    731     // dependent nested-name-specifier.
    732 
    733     // C++ [temp.res]p2:
    734     //   A name used in a template declaration or definition and that is
    735     //   dependent on a template-parameter is assumed not to name a type
    736     //   unless the applicable name lookup finds a type name or the name is
    737     //   qualified by the keyword typename.
    738     //
    739     // FIXME: If the next token is '<', we might want to ask the parser to
    740     // perform some heroics to see if we actually have a
    741     // template-argument-list, which would indicate a missing 'template'
    742     // keyword here.
    743     return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
    744                                       NameInfo, IsAddressOfOperand,
    745                                       /*TemplateArgs=*/0);
    746   }
    747 
    748   case LookupResult::Found:
    749   case LookupResult::FoundOverloaded:
    750   case LookupResult::FoundUnresolvedValue:
    751     break;
    752 
    753   case LookupResult::Ambiguous:
    754     if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
    755         hasAnyAcceptableTemplateNames(Result)) {
    756       // C++ [temp.local]p3:
    757       //   A lookup that finds an injected-class-name (10.2) can result in an
    758       //   ambiguity in certain cases (for example, if it is found in more than
    759       //   one base class). If all of the injected-class-names that are found
    760       //   refer to specializations of the same class template, and if the name
    761       //   is followed by a template-argument-list, the reference refers to the
    762       //   class template itself and not a specialization thereof, and is not
    763       //   ambiguous.
    764       //
    765       // This filtering can make an ambiguous result into an unambiguous one,
    766       // so try again after filtering out template names.
    767       FilterAcceptableTemplateNames(Result);
    768       if (!Result.isAmbiguous()) {
    769         IsFilteredTemplateName = true;
    770         break;
    771       }
    772     }
    773 
    774     // Diagnose the ambiguity and return an error.
    775     return NameClassification::Error();
    776   }
    777 
    778   if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
    779       (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
    780     // C++ [temp.names]p3:
    781     //   After name lookup (3.4) finds that a name is a template-name or that
    782     //   an operator-function-id or a literal- operator-id refers to a set of
    783     //   overloaded functions any member of which is a function template if
    784     //   this is followed by a <, the < is always taken as the delimiter of a
    785     //   template-argument-list and never as the less-than operator.
    786     if (!IsFilteredTemplateName)
    787       FilterAcceptableTemplateNames(Result);
    788 
    789     if (!Result.empty()) {
    790       bool IsFunctionTemplate;
    791       TemplateName Template;
    792       if (Result.end() - Result.begin() > 1) {
    793         IsFunctionTemplate = true;
    794         Template = Context.getOverloadedTemplateName(Result.begin(),
    795                                                      Result.end());
    796       } else {
    797         TemplateDecl *TD
    798           = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
    799         IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
    800 
    801         if (SS.isSet() && !SS.isInvalid())
    802           Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
    803                                                     /*TemplateKeyword=*/false,
    804                                                       TD);
    805         else
    806           Template = TemplateName(TD);
    807       }
    808 
    809       if (IsFunctionTemplate) {
    810         // Function templates always go through overload resolution, at which
    811         // point we'll perform the various checks (e.g., accessibility) we need
    812         // to based on which function we selected.
    813         Result.suppressDiagnostics();
    814 
    815         return NameClassification::FunctionTemplate(Template);
    816       }
    817 
    818       return NameClassification::TypeTemplate(Template);
    819     }
    820   }
    821 
    822   NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
    823   if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
    824     DiagnoseUseOfDecl(Type, NameLoc);
    825     QualType T = Context.getTypeDeclType(Type);
    826     if (SS.isNotEmpty())
    827       return buildNestedType(*this, SS, T, NameLoc);
    828     return ParsedType::make(T);
    829   }
    830 
    831   ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
    832   if (!Class) {
    833     // FIXME: It's unfortunate that we don't have a Type node for handling this.
    834     if (ObjCCompatibleAliasDecl *Alias
    835                                 = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
    836       Class = Alias->getClassInterface();
    837   }
    838 
    839   if (Class) {
    840     DiagnoseUseOfDecl(Class, NameLoc);
    841 
    842     if (NextToken.is(tok::period)) {
    843       // Interface. <something> is parsed as a property reference expression.
    844       // Just return "unknown" as a fall-through for now.
    845       Result.suppressDiagnostics();
    846       return NameClassification::Unknown();
    847     }
    848 
    849     QualType T = Context.getObjCInterfaceType(Class);
    850     return ParsedType::make(T);
    851   }
    852 
    853   // We can have a type template here if we're classifying a template argument.
    854   if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl))
    855     return NameClassification::TypeTemplate(
    856         TemplateName(cast<TemplateDecl>(FirstDecl)));
    857 
    858   // Check for a tag type hidden by a non-type decl in a few cases where it
    859   // seems likely a type is wanted instead of the non-type that was found.
    860   if (!getLangOpts().ObjC1) {
    861     bool NextIsOp = NextToken.is(tok::amp) || NextToken.is(tok::star);
    862     if ((NextToken.is(tok::identifier) ||
    863          (NextIsOp && FirstDecl->isFunctionOrFunctionTemplate())) &&
    864         isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
    865       TypeDecl *Type = Result.getAsSingle<TypeDecl>();
    866       DiagnoseUseOfDecl(Type, NameLoc);
    867       QualType T = Context.getTypeDeclType(Type);
    868       if (SS.isNotEmpty())
    869         return buildNestedType(*this, SS, T, NameLoc);
    870       return ParsedType::make(T);
    871     }
    872   }
    873 
    874   if (FirstDecl->isCXXClassMember())
    875     return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 0);
    876 
    877   bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
    878   return BuildDeclarationNameExpr(SS, Result, ADL);
    879 }
    880 
    881 // Determines the context to return to after temporarily entering a
    882 // context.  This depends in an unnecessarily complicated way on the
    883 // exact ordering of callbacks from the parser.
    884 DeclContext *Sema::getContainingDC(DeclContext *DC) {
    885 
    886   // Functions defined inline within classes aren't parsed until we've
    887   // finished parsing the top-level class, so the top-level class is
    888   // the context we'll need to return to.
    889   if (isa<FunctionDecl>(DC)) {
    890     DC = DC->getLexicalParent();
    891 
    892     // A function not defined within a class will always return to its
    893     // lexical context.
    894     if (!isa<CXXRecordDecl>(DC))
    895       return DC;
    896 
    897     // A C++ inline method/friend is parsed *after* the topmost class
    898     // it was declared in is fully parsed ("complete");  the topmost
    899     // class is the context we need to return to.
    900     while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
    901       DC = RD;
    902 
    903     // Return the declaration context of the topmost class the inline method is
    904     // declared in.
    905     return DC;
    906   }
    907 
    908   return DC->getLexicalParent();
    909 }
    910 
    911 void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
    912   assert(getContainingDC(DC) == CurContext &&
    913       "The next DeclContext should be lexically contained in the current one.");
    914   CurContext = DC;
    915   S->setEntity(DC);
    916 }
    917 
    918 void Sema::PopDeclContext() {
    919   assert(CurContext && "DeclContext imbalance!");
    920 
    921   CurContext = getContainingDC(CurContext);
    922   assert(CurContext && "Popped translation unit!");
    923 }
    924 
    925 /// EnterDeclaratorContext - Used when we must lookup names in the context
    926 /// of a declarator's nested name specifier.
    927 ///
    928 void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
    929   // C++0x [basic.lookup.unqual]p13:
    930   //   A name used in the definition of a static data member of class
    931   //   X (after the qualified-id of the static member) is looked up as
    932   //   if the name was used in a member function of X.
    933   // C++0x [basic.lookup.unqual]p14:
    934   //   If a variable member of a namespace is defined outside of the
    935   //   scope of its namespace then any name used in the definition of
    936   //   the variable member (after the declarator-id) is looked up as
    937   //   if the definition of the variable member occurred in its
    938   //   namespace.
    939   // Both of these imply that we should push a scope whose context
    940   // is the semantic context of the declaration.  We can't use
    941   // PushDeclContext here because that context is not necessarily
    942   // lexically contained in the current context.  Fortunately,
    943   // the containing scope should have the appropriate information.
    944 
    945   assert(!S->getEntity() && "scope already has entity");
    946 
    947 #ifndef NDEBUG
    948   Scope *Ancestor = S->getParent();
    949   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
    950   assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
    951 #endif
    952 
    953   CurContext = DC;
    954   S->setEntity(DC);
    955 }
    956 
    957 void Sema::ExitDeclaratorContext(Scope *S) {
    958   assert(S->getEntity() == CurContext && "Context imbalance!");
    959 
    960   // Switch back to the lexical context.  The safety of this is
    961   // enforced by an assert in EnterDeclaratorContext.
    962   Scope *Ancestor = S->getParent();
    963   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
    964   CurContext = (DeclContext*) Ancestor->getEntity();
    965 
    966   // We don't need to do anything with the scope, which is going to
    967   // disappear.
    968 }
    969 
    970 
    971 void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
    972   FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
    973   if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
    974     // We assume that the caller has already called
    975     // ActOnReenterTemplateScope
    976     FD = TFD->getTemplatedDecl();
    977   }
    978   if (!FD)
    979     return;
    980 
    981   // Same implementation as PushDeclContext, but enters the context
    982   // from the lexical parent, rather than the top-level class.
    983   assert(CurContext == FD->getLexicalParent() &&
    984     "The next DeclContext should be lexically contained in the current one.");
    985   CurContext = FD;
    986   S->setEntity(CurContext);
    987 
    988   for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
    989     ParmVarDecl *Param = FD->getParamDecl(P);
    990     // If the parameter has an identifier, then add it to the scope
    991     if (Param->getIdentifier()) {
    992       S->AddDecl(Param);
    993       IdResolver.AddDecl(Param);
    994     }
    995   }
    996 }
    997 
    998 
    999 void Sema::ActOnExitFunctionContext() {
   1000   // Same implementation as PopDeclContext, but returns to the lexical parent,
   1001   // rather than the top-level class.
   1002   assert(CurContext && "DeclContext imbalance!");
   1003   CurContext = CurContext->getLexicalParent();
   1004   assert(CurContext && "Popped translation unit!");
   1005 }
   1006 
   1007 
   1008 /// \brief Determine whether we allow overloading of the function
   1009 /// PrevDecl with another declaration.
   1010 ///
   1011 /// This routine determines whether overloading is possible, not
   1012 /// whether some new function is actually an overload. It will return
   1013 /// true in C++ (where we can always provide overloads) or, as an
   1014 /// extension, in C when the previous function is already an
   1015 /// overloaded function declaration or has the "overloadable"
   1016 /// attribute.
   1017 static bool AllowOverloadingOfFunction(LookupResult &Previous,
   1018                                        ASTContext &Context) {
   1019   if (Context.getLangOpts().CPlusPlus)
   1020     return true;
   1021 
   1022   if (Previous.getResultKind() == LookupResult::FoundOverloaded)
   1023     return true;
   1024 
   1025   return (Previous.getResultKind() == LookupResult::Found
   1026           && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
   1027 }
   1028 
   1029 /// Add this decl to the scope shadowed decl chains.
   1030 void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
   1031   // Move up the scope chain until we find the nearest enclosing
   1032   // non-transparent context. The declaration will be introduced into this
   1033   // scope.
   1034   while (S->getEntity() &&
   1035          ((DeclContext *)S->getEntity())->isTransparentContext())
   1036     S = S->getParent();
   1037 
   1038   // Add scoped declarations into their context, so that they can be
   1039   // found later. Declarations without a context won't be inserted
   1040   // into any context.
   1041   if (AddToContext)
   1042     CurContext->addDecl(D);
   1043 
   1044   // Out-of-line definitions shouldn't be pushed into scope in C++.
   1045   // Out-of-line variable and function definitions shouldn't even in C.
   1046   if ((getLangOpts().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
   1047       D->isOutOfLine() &&
   1048       !D->getDeclContext()->getRedeclContext()->Equals(
   1049         D->getLexicalDeclContext()->getRedeclContext()))
   1050     return;
   1051 
   1052   // Template instantiations should also not be pushed into scope.
   1053   if (isa<FunctionDecl>(D) &&
   1054       cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
   1055     return;
   1056 
   1057   // If this replaces anything in the current scope,
   1058   IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
   1059                                IEnd = IdResolver.end();
   1060   for (; I != IEnd; ++I) {
   1061     if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
   1062       S->RemoveDecl(*I);
   1063       IdResolver.RemoveDecl(*I);
   1064 
   1065       // Should only need to replace one decl.
   1066       break;
   1067     }
   1068   }
   1069 
   1070   S->AddDecl(D);
   1071 
   1072   if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
   1073     // Implicitly-generated labels may end up getting generated in an order that
   1074     // isn't strictly lexical, which breaks name lookup. Be careful to insert
   1075     // the label at the appropriate place in the identifier chain.
   1076     for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
   1077       DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
   1078       if (IDC == CurContext) {
   1079         if (!S->isDeclScope(*I))
   1080           continue;
   1081       } else if (IDC->Encloses(CurContext))
   1082         break;
   1083     }
   1084 
   1085     IdResolver.InsertDeclAfter(I, D);
   1086   } else {
   1087     IdResolver.AddDecl(D);
   1088   }
   1089 }
   1090 
   1091 void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
   1092   if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
   1093     TUScope->AddDecl(D);
   1094 }
   1095 
   1096 bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
   1097                          bool ExplicitInstantiationOrSpecialization) {
   1098   return IdResolver.isDeclInScope(D, Ctx, Context, S,
   1099                                   ExplicitInstantiationOrSpecialization);
   1100 }
   1101 
   1102 Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
   1103   DeclContext *TargetDC = DC->getPrimaryContext();
   1104   do {
   1105     if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
   1106       if (ScopeDC->getPrimaryContext() == TargetDC)
   1107         return S;
   1108   } while ((S = S->getParent()));
   1109 
   1110   return 0;
   1111 }
   1112 
   1113 static bool isOutOfScopePreviousDeclaration(NamedDecl *,
   1114                                             DeclContext*,
   1115                                             ASTContext&);
   1116 
   1117 /// Filters out lookup results that don't fall within the given scope
   1118 /// as determined by isDeclInScope.
   1119 void Sema::FilterLookupForScope(LookupResult &R,
   1120                                 DeclContext *Ctx, Scope *S,
   1121                                 bool ConsiderLinkage,
   1122                                 bool ExplicitInstantiationOrSpecialization) {
   1123   LookupResult::Filter F = R.makeFilter();
   1124   while (F.hasNext()) {
   1125     NamedDecl *D = F.next();
   1126 
   1127     if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
   1128       continue;
   1129 
   1130     if (ConsiderLinkage &&
   1131         isOutOfScopePreviousDeclaration(D, Ctx, Context))
   1132       continue;
   1133 
   1134     F.erase();
   1135   }
   1136 
   1137   F.done();
   1138 }
   1139 
   1140 static bool isUsingDecl(NamedDecl *D) {
   1141   return isa<UsingShadowDecl>(D) ||
   1142          isa<UnresolvedUsingTypenameDecl>(D) ||
   1143          isa<UnresolvedUsingValueDecl>(D);
   1144 }
   1145 
   1146 /// Removes using shadow declarations from the lookup results.
   1147 static void RemoveUsingDecls(LookupResult &R) {
   1148   LookupResult::Filter F = R.makeFilter();
   1149   while (F.hasNext())
   1150     if (isUsingDecl(F.next()))
   1151       F.erase();
   1152 
   1153   F.done();
   1154 }
   1155 
   1156 /// \brief Check for this common pattern:
   1157 /// @code
   1158 /// class S {
   1159 ///   S(const S&); // DO NOT IMPLEMENT
   1160 ///   void operator=(const S&); // DO NOT IMPLEMENT
   1161 /// };
   1162 /// @endcode
   1163 static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
   1164   // FIXME: Should check for private access too but access is set after we get
   1165   // the decl here.
   1166   if (D->doesThisDeclarationHaveABody())
   1167     return false;
   1168 
   1169   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
   1170     return CD->isCopyConstructor();
   1171   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
   1172     return Method->isCopyAssignmentOperator();
   1173   return false;
   1174 }
   1175 
   1176 bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
   1177   assert(D);
   1178 
   1179   if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
   1180     return false;
   1181 
   1182   // Ignore class templates.
   1183   if (D->getDeclContext()->isDependentContext() ||
   1184       D->getLexicalDeclContext()->isDependentContext())
   1185     return false;
   1186 
   1187   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
   1188     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
   1189       return false;
   1190 
   1191     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
   1192       if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
   1193         return false;
   1194     } else {
   1195       // 'static inline' functions are used in headers; don't warn.
   1196       if (FD->getStorageClass() == SC_Static &&
   1197           FD->isInlineSpecified())
   1198         return false;
   1199     }
   1200 
   1201     if (FD->doesThisDeclarationHaveABody() &&
   1202         Context.DeclMustBeEmitted(FD))
   1203       return false;
   1204   } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
   1205     if (!VD->isFileVarDecl() ||
   1206         VD->getType().isConstant(Context) ||
   1207         Context.DeclMustBeEmitted(VD))
   1208       return false;
   1209 
   1210     if (VD->isStaticDataMember() &&
   1211         VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
   1212       return false;
   1213 
   1214   } else {
   1215     return false;
   1216   }
   1217 
   1218   // Only warn for unused decls internal to the translation unit.
   1219   if (D->getLinkage() == ExternalLinkage)
   1220     return false;
   1221 
   1222   return true;
   1223 }
   1224 
   1225 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
   1226   if (!D)
   1227     return;
   1228 
   1229   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
   1230     const FunctionDecl *First = FD->getFirstDeclaration();
   1231     if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
   1232       return; // First should already be in the vector.
   1233   }
   1234 
   1235   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
   1236     const VarDecl *First = VD->getFirstDeclaration();
   1237     if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
   1238       return; // First should already be in the vector.
   1239   }
   1240 
   1241   if (ShouldWarnIfUnusedFileScopedDecl(D))
   1242     UnusedFileScopedDecls.push_back(D);
   1243 }
   1244 
   1245 static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
   1246   if (D->isInvalidDecl())
   1247     return false;
   1248 
   1249   if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>())
   1250     return false;
   1251 
   1252   if (isa<LabelDecl>(D))
   1253     return true;
   1254 
   1255   // White-list anything that isn't a local variable.
   1256   if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
   1257       !D->getDeclContext()->isFunctionOrMethod())
   1258     return false;
   1259 
   1260   // Types of valid local variables should be complete, so this should succeed.
   1261   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
   1262 
   1263     // White-list anything with an __attribute__((unused)) type.
   1264     QualType Ty = VD->getType();
   1265 
   1266     // Only look at the outermost level of typedef.
   1267     if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
   1268       if (TT->getDecl()->hasAttr<UnusedAttr>())
   1269         return false;
   1270     }
   1271 
   1272     // If we failed to complete the type for some reason, or if the type is
   1273     // dependent, don't diagnose the variable.
   1274     if (Ty->isIncompleteType() || Ty->isDependentType())
   1275       return false;
   1276 
   1277     if (const TagType *TT = Ty->getAs<TagType>()) {
   1278       const TagDecl *Tag = TT->getDecl();
   1279       if (Tag->hasAttr<UnusedAttr>())
   1280         return false;
   1281 
   1282       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
   1283         if (!RD->hasTrivialDestructor())
   1284           return false;
   1285 
   1286         if (const Expr *Init = VD->getInit()) {
   1287           const CXXConstructExpr *Construct =
   1288             dyn_cast<CXXConstructExpr>(Init);
   1289           if (Construct && !Construct->isElidable()) {
   1290             CXXConstructorDecl *CD = Construct->getConstructor();
   1291             if (!CD->isTrivial())
   1292               return false;
   1293           }
   1294         }
   1295       }
   1296     }
   1297 
   1298     // TODO: __attribute__((unused)) templates?
   1299   }
   1300 
   1301   return true;
   1302 }
   1303 
   1304 static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
   1305                                      FixItHint &Hint) {
   1306   if (isa<LabelDecl>(D)) {
   1307     SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
   1308                 tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
   1309     if (AfterColon.isInvalid())
   1310       return;
   1311     Hint = FixItHint::CreateRemoval(CharSourceRange::
   1312                                     getCharRange(D->getLocStart(), AfterColon));
   1313   }
   1314   return;
   1315 }
   1316 
   1317 /// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
   1318 /// unless they are marked attr(unused).
   1319 void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
   1320   FixItHint Hint;
   1321   if (!ShouldDiagnoseUnusedDecl(D))
   1322     return;
   1323 
   1324   GenerateFixForUnusedDecl(D, Context, Hint);
   1325 
   1326   unsigned DiagID;
   1327   if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
   1328     DiagID = diag::warn_unused_exception_param;
   1329   else if (isa<LabelDecl>(D))
   1330     DiagID = diag::warn_unused_label;
   1331   else
   1332     DiagID = diag::warn_unused_variable;
   1333 
   1334   Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
   1335 }
   1336 
   1337 static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
   1338   // Verify that we have no forward references left.  If so, there was a goto
   1339   // or address of a label taken, but no definition of it.  Label fwd
   1340   // definitions are indicated with a null substmt.
   1341   if (L->getStmt() == 0)
   1342     S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
   1343 }
   1344 
   1345 void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
   1346   if (S->decl_empty()) return;
   1347   assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
   1348          "Scope shouldn't contain decls!");
   1349 
   1350   for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
   1351        I != E; ++I) {
   1352     Decl *TmpD = (*I);
   1353     assert(TmpD && "This decl didn't get pushed??");
   1354 
   1355     assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
   1356     NamedDecl *D = cast<NamedDecl>(TmpD);
   1357 
   1358     if (!D->getDeclName()) continue;
   1359 
   1360     // Diagnose unused variables in this scope.
   1361     if (!S->hasErrorOccurred())
   1362       DiagnoseUnusedDecl(D);
   1363 
   1364     // If this was a forward reference to a label, verify it was defined.
   1365     if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
   1366       CheckPoppedLabel(LD, *this);
   1367 
   1368     // Remove this name from our lexical scope.
   1369     IdResolver.RemoveDecl(D);
   1370   }
   1371 }
   1372 
   1373 void Sema::ActOnStartFunctionDeclarator() {
   1374   ++InFunctionDeclarator;
   1375 }
   1376 
   1377 void Sema::ActOnEndFunctionDeclarator() {
   1378   assert(InFunctionDeclarator);
   1379   --InFunctionDeclarator;
   1380 }
   1381 
   1382 /// \brief Look for an Objective-C class in the translation unit.
   1383 ///
   1384 /// \param Id The name of the Objective-C class we're looking for. If
   1385 /// typo-correction fixes this name, the Id will be updated
   1386 /// to the fixed name.
   1387 ///
   1388 /// \param IdLoc The location of the name in the translation unit.
   1389 ///
   1390 /// \param DoTypoCorrection If true, this routine will attempt typo correction
   1391 /// if there is no class with the given name.
   1392 ///
   1393 /// \returns The declaration of the named Objective-C class, or NULL if the
   1394 /// class could not be found.
   1395 ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
   1396                                               SourceLocation IdLoc,
   1397                                               bool DoTypoCorrection) {
   1398   // The third "scope" argument is 0 since we aren't enabling lazy built-in
   1399   // creation from this context.
   1400   NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
   1401 
   1402   if (!IDecl && DoTypoCorrection) {
   1403     // Perform typo correction at the given location, but only if we
   1404     // find an Objective-C class name.
   1405     DeclFilterCCC<ObjCInterfaceDecl> Validator;
   1406     if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
   1407                                        LookupOrdinaryName, TUScope, NULL,
   1408                                        Validator)) {
   1409       IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
   1410       Diag(IdLoc, diag::err_undef_interface_suggest)
   1411         << Id << IDecl->getDeclName()
   1412         << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
   1413       Diag(IDecl->getLocation(), diag::note_previous_decl)
   1414         << IDecl->getDeclName();
   1415 
   1416       Id = IDecl->getIdentifier();
   1417     }
   1418   }
   1419   ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
   1420   // This routine must always return a class definition, if any.
   1421   if (Def && Def->getDefinition())
   1422       Def = Def->getDefinition();
   1423   return Def;
   1424 }
   1425 
   1426 /// getNonFieldDeclScope - Retrieves the innermost scope, starting
   1427 /// from S, where a non-field would be declared. This routine copes
   1428 /// with the difference between C and C++ scoping rules in structs and
   1429 /// unions. For example, the following code is well-formed in C but
   1430 /// ill-formed in C++:
   1431 /// @code
   1432 /// struct S6 {
   1433 ///   enum { BAR } e;
   1434 /// };
   1435 ///
   1436 /// void test_S6() {
   1437 ///   struct S6 a;
   1438 ///   a.e = BAR;
   1439 /// }
   1440 /// @endcode
   1441 /// For the declaration of BAR, this routine will return a different
   1442 /// scope. The scope S will be the scope of the unnamed enumeration
   1443 /// within S6. In C++, this routine will return the scope associated
   1444 /// with S6, because the enumeration's scope is a transparent
   1445 /// context but structures can contain non-field names. In C, this
   1446 /// routine will return the translation unit scope, since the
   1447 /// enumeration's scope is a transparent context and structures cannot
   1448 /// contain non-field names.
   1449 Scope *Sema::getNonFieldDeclScope(Scope *S) {
   1450   while (((S->getFlags() & Scope::DeclScope) == 0) ||
   1451          (S->getEntity() &&
   1452           ((DeclContext *)S->getEntity())->isTransparentContext()) ||
   1453          (S->isClassScope() && !getLangOpts().CPlusPlus))
   1454     S = S->getParent();
   1455   return S;
   1456 }
   1457 
   1458 /// LazilyCreateBuiltin - The specified Builtin-ID was first used at
   1459 /// file scope.  lazily create a decl for it. ForRedeclaration is true
   1460 /// if we're creating this built-in in anticipation of redeclaring the
   1461 /// built-in.
   1462 NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
   1463                                      Scope *S, bool ForRedeclaration,
   1464                                      SourceLocation Loc) {
   1465   Builtin::ID BID = (Builtin::ID)bid;
   1466 
   1467   ASTContext::GetBuiltinTypeError Error;
   1468   QualType R = Context.GetBuiltinType(BID, Error);
   1469   switch (Error) {
   1470   case ASTContext::GE_None:
   1471     // Okay
   1472     break;
   1473 
   1474   case ASTContext::GE_Missing_stdio:
   1475     if (ForRedeclaration)
   1476       Diag(Loc, diag::warn_implicit_decl_requires_stdio)
   1477         << Context.BuiltinInfo.GetName(BID);
   1478     return 0;
   1479 
   1480   case ASTContext::GE_Missing_setjmp:
   1481     if (ForRedeclaration)
   1482       Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
   1483         << Context.BuiltinInfo.GetName(BID);
   1484     return 0;
   1485 
   1486   case ASTContext::GE_Missing_ucontext:
   1487     if (ForRedeclaration)
   1488       Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
   1489         << Context.BuiltinInfo.GetName(BID);
   1490     return 0;
   1491   }
   1492 
   1493   if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
   1494     Diag(Loc, diag::ext_implicit_lib_function_decl)
   1495       << Context.BuiltinInfo.GetName(BID)
   1496       << R;
   1497     if (Context.BuiltinInfo.getHeaderName(BID) &&
   1498         Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
   1499           != DiagnosticsEngine::Ignored)
   1500       Diag(Loc, diag::note_please_include_header)
   1501         << Context.BuiltinInfo.getHeaderName(BID)
   1502         << Context.BuiltinInfo.GetName(BID);
   1503   }
   1504 
   1505   FunctionDecl *New = FunctionDecl::Create(Context,
   1506                                            Context.getTranslationUnitDecl(),
   1507                                            Loc, Loc, II, R, /*TInfo=*/0,
   1508                                            SC_Extern,
   1509                                            SC_None, false,
   1510                                            /*hasPrototype=*/true);
   1511   New->setImplicit();
   1512 
   1513   // Create Decl objects for each parameter, adding them to the
   1514   // FunctionDecl.
   1515   if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
   1516     SmallVector<ParmVarDecl*, 16> Params;
   1517     for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
   1518       ParmVarDecl *parm =
   1519         ParmVarDecl::Create(Context, New, SourceLocation(),
   1520                             SourceLocation(), 0,
   1521                             FT->getArgType(i), /*TInfo=*/0,
   1522                             SC_None, SC_None, 0);
   1523       parm->setScopeInfo(0, i);
   1524       Params.push_back(parm);
   1525     }
   1526     New->setParams(Params);
   1527   }
   1528 
   1529   AddKnownFunctionAttributes(New);
   1530 
   1531   // TUScope is the translation-unit scope to insert this function into.
   1532   // FIXME: This is hideous. We need to teach PushOnScopeChains to
   1533   // relate Scopes to DeclContexts, and probably eliminate CurContext
   1534   // entirely, but we're not there yet.
   1535   DeclContext *SavedContext = CurContext;
   1536   CurContext = Context.getTranslationUnitDecl();
   1537   PushOnScopeChains(New, TUScope);
   1538   CurContext = SavedContext;
   1539   return New;
   1540 }
   1541 
   1542 bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
   1543   QualType OldType;
   1544   if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
   1545     OldType = OldTypedef->getUnderlyingType();
   1546   else
   1547     OldType = Context.getTypeDeclType(Old);
   1548   QualType NewType = New->getUnderlyingType();
   1549 
   1550   if (NewType->isVariablyModifiedType()) {
   1551     // Must not redefine a typedef with a variably-modified type.
   1552     int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
   1553     Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
   1554       << Kind << NewType;
   1555     if (Old->getLocation().isValid())
   1556       Diag(Old->getLocation(), diag::note_previous_definition);
   1557     New->setInvalidDecl();
   1558     return true;
   1559   }
   1560 
   1561   if (OldType != NewType &&
   1562       !OldType->isDependentType() &&
   1563       !NewType->isDependentType() &&
   1564       !Context.hasSameType(OldType, NewType)) {
   1565     int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
   1566     Diag(New->getLocation(), diag::err_redefinition_different_typedef)
   1567       << Kind << NewType << OldType;
   1568     if (Old->getLocation().isValid())
   1569       Diag(Old->getLocation(), diag::note_previous_definition);
   1570     New->setInvalidDecl();
   1571     return true;
   1572   }
   1573   return false;
   1574 }
   1575 
   1576 /// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
   1577 /// same name and scope as a previous declaration 'Old'.  Figure out
   1578 /// how to resolve this situation, merging decls or emitting
   1579 /// diagnostics as appropriate. If there was an error, set New to be invalid.
   1580 ///
   1581 void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
   1582   // If the new decl is known invalid already, don't bother doing any
   1583   // merging checks.
   1584   if (New->isInvalidDecl()) return;
   1585 
   1586   // Allow multiple definitions for ObjC built-in typedefs.
   1587   // FIXME: Verify the underlying types are equivalent!
   1588   if (getLangOpts().ObjC1) {
   1589     const IdentifierInfo *TypeID = New->getIdentifier();
   1590     switch (TypeID->getLength()) {
   1591     default: break;
   1592     case 2:
   1593       {
   1594         if (!TypeID->isStr("id"))
   1595           break;
   1596         QualType T = New->getUnderlyingType();
   1597         if (!T->isPointerType())
   1598           break;
   1599         if (!T->isVoidPointerType()) {
   1600           QualType PT = T->getAs<PointerType>()->getPointeeType();
   1601           if (!PT->isStructureType())
   1602             break;
   1603         }
   1604         Context.setObjCIdRedefinitionType(T);
   1605         // Install the built-in type for 'id', ignoring the current definition.
   1606         New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
   1607         return;
   1608       }
   1609     case 5:
   1610       if (!TypeID->isStr("Class"))
   1611         break;
   1612       Context.setObjCClassRedefinitionType(New->getUnderlyingType());
   1613       // Install the built-in type for 'Class', ignoring the current definition.
   1614       New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
   1615       return;
   1616     case 3:
   1617       if (!TypeID->isStr("SEL"))
   1618         break;
   1619       Context.setObjCSelRedefinitionType(New->getUnderlyingType());
   1620       // Install the built-in type for 'SEL', ignoring the current definition.
   1621       New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
   1622       return;
   1623     }
   1624     // Fall through - the typedef name was not a builtin type.
   1625   }
   1626 
   1627   // Verify the old decl was also a type.
   1628   TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
   1629   if (!Old) {
   1630     Diag(New->getLocation(), diag::err_redefinition_different_kind)
   1631       << New->getDeclName();
   1632 
   1633     NamedDecl *OldD = OldDecls.getRepresentativeDecl();
   1634     if (OldD->getLocation().isValid())
   1635       Diag(OldD->getLocation(), diag::note_previous_definition);
   1636 
   1637     return New->setInvalidDecl();
   1638   }
   1639 
   1640   // If the old declaration is invalid, just give up here.
   1641   if (Old->isInvalidDecl())
   1642     return New->setInvalidDecl();
   1643 
   1644   // If the typedef types are not identical, reject them in all languages and
   1645   // with any extensions enabled.
   1646   if (isIncompatibleTypedef(Old, New))
   1647     return;
   1648 
   1649   // The types match.  Link up the redeclaration chain if the old
   1650   // declaration was a typedef.
   1651   if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
   1652     New->setPreviousDeclaration(Typedef);
   1653 
   1654   if (getLangOpts().MicrosoftExt)
   1655     return;
   1656 
   1657   if (getLangOpts().CPlusPlus) {
   1658     // C++ [dcl.typedef]p2:
   1659     //   In a given non-class scope, a typedef specifier can be used to
   1660     //   redefine the name of any type declared in that scope to refer
   1661     //   to the type to which it already refers.
   1662     if (!isa<CXXRecordDecl>(CurContext))
   1663       return;
   1664 
   1665     // C++0x [dcl.typedef]p4:
   1666     //   In a given class scope, a typedef specifier can be used to redefine
   1667     //   any class-name declared in that scope that is not also a typedef-name
   1668     //   to refer to the type to which it already refers.
   1669     //
   1670     // This wording came in via DR424, which was a correction to the
   1671     // wording in DR56, which accidentally banned code like:
   1672     //
   1673     //   struct S {
   1674     //     typedef struct A { } A;
   1675     //   };
   1676     //
   1677     // in the C++03 standard. We implement the C++0x semantics, which
   1678     // allow the above but disallow
   1679     //
   1680     //   struct S {
   1681     //     typedef int I;
   1682     //     typedef int I;
   1683     //   };
   1684     //
   1685     // since that was the intent of DR56.
   1686     if (!isa<TypedefNameDecl>(Old))
   1687       return;
   1688 
   1689     Diag(New->getLocation(), diag::err_redefinition)
   1690       << New->getDeclName();
   1691     Diag(Old->getLocation(), diag::note_previous_definition);
   1692     return New->setInvalidDecl();
   1693   }
   1694 
   1695   // Modules always permit redefinition of typedefs, as does C11.
   1696   if (getLangOpts().Modules || getLangOpts().C11)
   1697     return;
   1698 
   1699   // If we have a redefinition of a typedef in C, emit a warning.  This warning
   1700   // is normally mapped to an error, but can be controlled with
   1701   // -Wtypedef-redefinition.  If either the original or the redefinition is
   1702   // in a system header, don't emit this for compatibility with GCC.
   1703   if (getDiagnostics().getSuppressSystemWarnings() &&
   1704       (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
   1705        Context.getSourceManager().isInSystemHeader(New->getLocation())))
   1706     return;
   1707 
   1708   Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
   1709     << New->getDeclName();
   1710   Diag(Old->getLocation(), diag::note_previous_definition);
   1711   return;
   1712 }
   1713 
   1714 /// DeclhasAttr - returns true if decl Declaration already has the target
   1715 /// attribute.
   1716 static bool
   1717 DeclHasAttr(const Decl *D, const Attr *A) {
   1718   // There can be multiple AvailabilityAttr in a Decl. Make sure we copy
   1719   // all of them. It is mergeAvailabilityAttr in SemaDeclAttr.cpp that is
   1720   // responsible for making sure they are consistent.
   1721   const AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(A);
   1722   if (AA)
   1723     return false;
   1724 
   1725   const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
   1726   const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
   1727   for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
   1728     if ((*i)->getKind() == A->getKind()) {
   1729       if (Ann) {
   1730         if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
   1731           return true;
   1732         continue;
   1733       }
   1734       // FIXME: Don't hardcode this check
   1735       if (OA && isa<OwnershipAttr>(*i))
   1736         return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
   1737       return true;
   1738     }
   1739 
   1740   return false;
   1741 }
   1742 
   1743 bool Sema::mergeDeclAttribute(Decl *D, InheritableAttr *Attr) {
   1744   InheritableAttr *NewAttr = NULL;
   1745   if (AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(Attr))
   1746     NewAttr = mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
   1747                                     AA->getIntroduced(), AA->getDeprecated(),
   1748                                     AA->getObsoleted(), AA->getUnavailable(),
   1749                                     AA->getMessage());
   1750   else if (VisibilityAttr *VA = dyn_cast<VisibilityAttr>(Attr))
   1751     NewAttr = mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility());
   1752   else if (DLLImportAttr *ImportA = dyn_cast<DLLImportAttr>(Attr))
   1753     NewAttr = mergeDLLImportAttr(D, ImportA->getRange());
   1754   else if (DLLExportAttr *ExportA = dyn_cast<DLLExportAttr>(Attr))
   1755     NewAttr = mergeDLLExportAttr(D, ExportA->getRange());
   1756   else if (FormatAttr *FA = dyn_cast<FormatAttr>(Attr))
   1757     NewAttr = mergeFormatAttr(D, FA->getRange(), FA->getType(),
   1758                               FA->getFormatIdx(), FA->getFirstArg());
   1759   else if (SectionAttr *SA = dyn_cast<SectionAttr>(Attr))
   1760     NewAttr = mergeSectionAttr(D, SA->getRange(), SA->getName());
   1761   else if (!DeclHasAttr(D, Attr))
   1762     NewAttr = cast<InheritableAttr>(Attr->clone(Context));
   1763 
   1764   if (NewAttr) {
   1765     NewAttr->setInherited(true);
   1766     D->addAttr(NewAttr);
   1767     return true;
   1768   }
   1769 
   1770   return false;
   1771 }
   1772 
   1773 static const Decl *getDefinition(const Decl *D) {
   1774   if (const TagDecl *TD = dyn_cast<TagDecl>(D))
   1775     return TD->getDefinition();
   1776   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
   1777     return VD->getDefinition();
   1778   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
   1779     const FunctionDecl* Def;
   1780     if (FD->hasBody(Def))
   1781       return Def;
   1782   }
   1783   return NULL;
   1784 }
   1785 
   1786 static bool hasAttribute(const Decl *D, attr::Kind Kind) {
   1787   for (Decl::attr_iterator I = D->attr_begin(), E = D->attr_end();
   1788        I != E; ++I) {
   1789     Attr *Attribute = *I;
   1790     if (Attribute->getKind() == Kind)
   1791       return true;
   1792   }
   1793   return false;
   1794 }
   1795 
   1796 /// checkNewAttributesAfterDef - If we already have a definition, check that
   1797 /// there are no new attributes in this declaration.
   1798 static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
   1799   if (!New->hasAttrs())
   1800     return;
   1801 
   1802   const Decl *Def = getDefinition(Old);
   1803   if (!Def || Def == New)
   1804     return;
   1805 
   1806   AttrVec &NewAttributes = New->getAttrs();
   1807   for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
   1808     const Attr *NewAttribute = NewAttributes[I];
   1809     if (hasAttribute(Def, NewAttribute->getKind())) {
   1810       ++I;
   1811       continue; // regular attr merging will take care of validating this.
   1812     }
   1813     S.Diag(NewAttribute->getLocation(),
   1814            diag::warn_attribute_precede_definition);
   1815     S.Diag(Def->getLocation(), diag::note_previous_definition);
   1816     NewAttributes.erase(NewAttributes.begin() + I);
   1817     --E;
   1818   }
   1819 }
   1820 
   1821 /// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
   1822 void Sema::mergeDeclAttributes(Decl *New, Decl *Old,
   1823                                bool MergeDeprecation) {
   1824   // attributes declared post-definition are currently ignored
   1825   checkNewAttributesAfterDef(*this, New, Old);
   1826 
   1827   if (!Old->hasAttrs())
   1828     return;
   1829 
   1830   bool foundAny = New->hasAttrs();
   1831 
   1832   // Ensure that any moving of objects within the allocated map is done before
   1833   // we process them.
   1834   if (!foundAny) New->setAttrs(AttrVec());
   1835 
   1836   for (specific_attr_iterator<InheritableAttr>
   1837          i = Old->specific_attr_begin<InheritableAttr>(),
   1838          e = Old->specific_attr_end<InheritableAttr>();
   1839        i != e; ++i) {
   1840     // Ignore deprecated/unavailable/availability attributes if requested.
   1841     if (!MergeDeprecation &&
   1842         (isa<DeprecatedAttr>(*i) ||
   1843          isa<UnavailableAttr>(*i) ||
   1844          isa<AvailabilityAttr>(*i)))
   1845       continue;
   1846 
   1847     if (mergeDeclAttribute(New, *i))
   1848       foundAny = true;
   1849   }
   1850 
   1851   if (!foundAny) New->dropAttrs();
   1852 }
   1853 
   1854 /// mergeParamDeclAttributes - Copy attributes from the old parameter
   1855 /// to the new one.
   1856 static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
   1857                                      const ParmVarDecl *oldDecl,
   1858                                      ASTContext &C) {
   1859   if (!oldDecl->hasAttrs())
   1860     return;
   1861 
   1862   bool foundAny = newDecl->hasAttrs();
   1863 
   1864   // Ensure that any moving of objects within the allocated map is
   1865   // done before we process them.
   1866   if (!foundAny) newDecl->setAttrs(AttrVec());
   1867 
   1868   for (specific_attr_iterator<InheritableParamAttr>
   1869        i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
   1870        e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
   1871     if (!DeclHasAttr(newDecl, *i)) {
   1872       InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
   1873       newAttr->setInherited(true);
   1874       newDecl->addAttr(newAttr);
   1875       foundAny = true;
   1876     }
   1877   }
   1878 
   1879   if (!foundAny) newDecl->dropAttrs();
   1880 }
   1881 
   1882 namespace {
   1883 
   1884 /// Used in MergeFunctionDecl to keep track of function parameters in
   1885 /// C.
   1886 struct GNUCompatibleParamWarning {
   1887   ParmVarDecl *OldParm;
   1888   ParmVarDecl *NewParm;
   1889   QualType PromotedType;
   1890 };
   1891 
   1892 }
   1893 
   1894 /// getSpecialMember - get the special member enum for a method.
   1895 Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
   1896   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
   1897     if (Ctor->isDefaultConstructor())
   1898       return Sema::CXXDefaultConstructor;
   1899 
   1900     if (Ctor->isCopyConstructor())
   1901       return Sema::CXXCopyConstructor;
   1902 
   1903     if (Ctor->isMoveConstructor())
   1904       return Sema::CXXMoveConstructor;
   1905   } else if (isa<CXXDestructorDecl>(MD)) {
   1906     return Sema::CXXDestructor;
   1907   } else if (MD->isCopyAssignmentOperator()) {
   1908     return Sema::CXXCopyAssignment;
   1909   } else if (MD->isMoveAssignmentOperator()) {
   1910     return Sema::CXXMoveAssignment;
   1911   }
   1912 
   1913   return Sema::CXXInvalid;
   1914 }
   1915 
   1916 /// canRedefineFunction - checks if a function can be redefined. Currently,
   1917 /// only extern inline functions can be redefined, and even then only in
   1918 /// GNU89 mode.
   1919 static bool canRedefineFunction(const FunctionDecl *FD,
   1920                                 const LangOptions& LangOpts) {
   1921   return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
   1922           !LangOpts.CPlusPlus &&
   1923           FD->isInlineSpecified() &&
   1924           FD->getStorageClass() == SC_Extern);
   1925 }
   1926 
   1927 /// Is the given calling convention the ABI default for the given
   1928 /// declaration?
   1929 static bool isABIDefaultCC(Sema &S, CallingConv CC, FunctionDecl *D) {
   1930   CallingConv ABIDefaultCC;
   1931   if (isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
   1932     ABIDefaultCC = S.Context.getDefaultCXXMethodCallConv(D->isVariadic());
   1933   } else {
   1934     // Free C function or a static method.
   1935     ABIDefaultCC = (S.Context.getLangOpts().MRTD ? CC_X86StdCall : CC_C);
   1936   }
   1937   return ABIDefaultCC == CC;
   1938 }
   1939 
   1940 /// MergeFunctionDecl - We just parsed a function 'New' from
   1941 /// declarator D which has the same name and scope as a previous
   1942 /// declaration 'Old'.  Figure out how to resolve this situation,
   1943 /// merging decls or emitting diagnostics as appropriate.
   1944 ///
   1945 /// In C++, New and Old must be declarations that are not
   1946 /// overloaded. Use IsOverload to determine whether New and Old are
   1947 /// overloaded, and to select the Old declaration that New should be
   1948 /// merged with.
   1949 ///
   1950 /// Returns true if there was an error, false otherwise.
   1951 bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, Scope *S) {
   1952   // Verify the old decl was also a function.
   1953   FunctionDecl *Old = 0;
   1954   if (FunctionTemplateDecl *OldFunctionTemplate
   1955         = dyn_cast<FunctionTemplateDecl>(OldD))
   1956     Old = OldFunctionTemplate->getTemplatedDecl();
   1957   else
   1958     Old = dyn_cast<FunctionDecl>(OldD);
   1959   if (!Old) {
   1960     if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
   1961       Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
   1962       Diag(Shadow->getTargetDecl()->getLocation(),
   1963            diag::note_using_decl_target);
   1964       Diag(Shadow->getUsingDecl()->getLocation(),
   1965            diag::note_using_decl) << 0;
   1966       return true;
   1967     }
   1968 
   1969     Diag(New->getLocation(), diag::err_redefinition_different_kind)
   1970       << New->getDeclName();
   1971     Diag(OldD->getLocation(), diag::note_previous_definition);
   1972     return true;
   1973   }
   1974 
   1975   // Determine whether the previous declaration was a definition,
   1976   // implicit declaration, or a declaration.
   1977   diag::kind PrevDiag;
   1978   if (Old->isThisDeclarationADefinition())
   1979     PrevDiag = diag::note_previous_definition;
   1980   else if (Old->isImplicit())
   1981     PrevDiag = diag::note_previous_implicit_declaration;
   1982   else
   1983     PrevDiag = diag::note_previous_declaration;
   1984 
   1985   QualType OldQType = Context.getCanonicalType(Old->getType());
   1986   QualType NewQType = Context.getCanonicalType(New->getType());
   1987 
   1988   // Don't complain about this if we're in GNU89 mode and the old function
   1989   // is an extern inline function.
   1990   if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
   1991       New->getStorageClass() == SC_Static &&
   1992       Old->getStorageClass() != SC_Static &&
   1993       !canRedefineFunction(Old, getLangOpts())) {
   1994     if (getLangOpts().MicrosoftExt) {
   1995       Diag(New->getLocation(), diag::warn_static_non_static) << New;
   1996       Diag(Old->getLocation(), PrevDiag);
   1997     } else {
   1998       Diag(New->getLocation(), diag::err_static_non_static) << New;
   1999       Diag(Old->getLocation(), PrevDiag);
   2000       return true;
   2001     }
   2002   }
   2003 
   2004   // If a function is first declared with a calling convention, but is
   2005   // later declared or defined without one, the second decl assumes the
   2006   // calling convention of the first.
   2007   //
   2008   // It's OK if a function is first declared without a calling convention,
   2009   // but is later declared or defined with the default calling convention.
   2010   //
   2011   // For the new decl, we have to look at the NON-canonical type to tell the
   2012   // difference between a function that really doesn't have a calling
   2013   // convention and one that is declared cdecl. That's because in
   2014   // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
   2015   // because it is the default calling convention.
   2016   //
   2017   // Note also that we DO NOT return at this point, because we still have
   2018   // other tests to run.
   2019   const FunctionType *OldType = cast<FunctionType>(OldQType);
   2020   const FunctionType *NewType = New->getType()->getAs<FunctionType>();
   2021   FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
   2022   FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
   2023   bool RequiresAdjustment = false;
   2024   if (OldTypeInfo.getCC() == NewTypeInfo.getCC()) {
   2025     // Fast path: nothing to do.
   2026 
   2027   // Inherit the CC from the previous declaration if it was specified
   2028   // there but not here.
   2029   } else if (NewTypeInfo.getCC() == CC_Default) {
   2030     NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
   2031     RequiresAdjustment = true;
   2032 
   2033   // Don't complain about mismatches when the default CC is
   2034   // effectively the same as the explict one.
   2035   } else if (OldTypeInfo.getCC() == CC_Default &&
   2036              isABIDefaultCC(*this, NewTypeInfo.getCC(), New)) {
   2037     NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
   2038     RequiresAdjustment = true;
   2039 
   2040   } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
   2041                                      NewTypeInfo.getCC())) {
   2042     // Calling conventions really aren't compatible, so complain.
   2043     Diag(New->getLocation(), diag::err_cconv_change)
   2044       << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
   2045       << (OldTypeInfo.getCC() == CC_Default)
   2046       << (OldTypeInfo.getCC() == CC_Default ? "" :
   2047           FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
   2048     Diag(Old->getLocation(), diag::note_previous_declaration);
   2049     return true;
   2050   }
   2051 
   2052   // FIXME: diagnose the other way around?
   2053   if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
   2054     NewTypeInfo = NewTypeInfo.withNoReturn(true);
   2055     RequiresAdjustment = true;
   2056   }
   2057 
   2058   // Merge regparm attribute.
   2059   if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
   2060       OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
   2061     if (NewTypeInfo.getHasRegParm()) {
   2062       Diag(New->getLocation(), diag::err_regparm_mismatch)
   2063         << NewType->getRegParmType()
   2064         << OldType->getRegParmType();
   2065       Diag(Old->getLocation(), diag::note_previous_declaration);
   2066       return true;
   2067     }
   2068 
   2069     NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
   2070     RequiresAdjustment = true;
   2071   }
   2072 
   2073   // Merge ns_returns_retained attribute.
   2074   if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
   2075     if (NewTypeInfo.getProducesResult()) {
   2076       Diag(New->getLocation(), diag::err_returns_retained_mismatch);
   2077       Diag(Old->getLocation(), diag::note_previous_declaration);
   2078       return true;
   2079     }
   2080 
   2081     NewTypeInfo = NewTypeInfo.withProducesResult(true);
   2082     RequiresAdjustment = true;
   2083   }
   2084 
   2085   if (RequiresAdjustment) {
   2086     NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
   2087     New->setType(QualType(NewType, 0));
   2088     NewQType = Context.getCanonicalType(New->getType());
   2089   }
   2090 
   2091   if (getLangOpts().CPlusPlus) {
   2092     // (C++98 13.1p2):
   2093     //   Certain function declarations cannot be overloaded:
   2094     //     -- Function declarations that differ only in the return type
   2095     //        cannot be overloaded.
   2096     QualType OldReturnType = OldType->getResultType();
   2097     QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
   2098     QualType ResQT;
   2099     if (OldReturnType != NewReturnType) {
   2100       if (NewReturnType->isObjCObjectPointerType()
   2101           && OldReturnType->isObjCObjectPointerType())
   2102         ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
   2103       if (ResQT.isNull()) {
   2104         if (New->isCXXClassMember() && New->isOutOfLine())
   2105           Diag(New->getLocation(),
   2106                diag::err_member_def_does_not_match_ret_type) << New;
   2107         else
   2108           Diag(New->getLocation(), diag::err_ovl_diff_return_type);
   2109         Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
   2110         return true;
   2111       }
   2112       else
   2113         NewQType = ResQT;
   2114     }
   2115 
   2116     const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
   2117     CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
   2118     if (OldMethod && NewMethod) {
   2119       // Preserve triviality.
   2120       NewMethod->setTrivial(OldMethod->isTrivial());
   2121 
   2122       // MSVC allows explicit template specialization at class scope:
   2123       // 2 CXMethodDecls referring to the same function will be injected.
   2124       // We don't want a redeclartion error.
   2125       bool IsClassScopeExplicitSpecialization =
   2126                               OldMethod->isFunctionTemplateSpecialization() &&
   2127                               NewMethod->isFunctionTemplateSpecialization();
   2128       bool isFriend = NewMethod->getFriendObjectKind();
   2129 
   2130       if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
   2131           !IsClassScopeExplicitSpecialization) {
   2132         //    -- Member function declarations with the same name and the
   2133         //       same parameter types cannot be overloaded if any of them
   2134         //       is a static member function declaration.
   2135         if (OldMethod->isStatic() || NewMethod->isStatic()) {
   2136           Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
   2137           Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
   2138           return true;
   2139         }
   2140 
   2141         // C++ [class.mem]p1:
   2142         //   [...] A member shall not be declared twice in the
   2143         //   member-specification, except that a nested class or member
   2144         //   class template can be declared and then later defined.
   2145         if (ActiveTemplateInstantiations.empty()) {
   2146           unsigned NewDiag;
   2147           if (isa<CXXConstructorDecl>(OldMethod))
   2148             NewDiag = diag::err_constructor_redeclared;
   2149           else if (isa<CXXDestructorDecl>(NewMethod))
   2150             NewDiag = diag::err_destructor_redeclared;
   2151           else if (isa<CXXConversionDecl>(NewMethod))
   2152             NewDiag = diag::err_conv_function_redeclared;
   2153           else
   2154             NewDiag = diag::err_member_redeclared;
   2155 
   2156           Diag(New->getLocation(), NewDiag);
   2157         } else {
   2158           Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
   2159             << New << New->getType();
   2160         }
   2161         Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
   2162 
   2163       // Complain if this is an explicit declaration of a special
   2164       // member that was initially declared implicitly.
   2165       //
   2166       // As an exception, it's okay to befriend such methods in order
   2167       // to permit the implicit constructor/destructor/operator calls.
   2168       } else if (OldMethod->isImplicit()) {
   2169         if (isFriend) {
   2170           NewMethod->setImplicit();
   2171         } else {
   2172           Diag(NewMethod->getLocation(),
   2173                diag::err_definition_of_implicitly_declared_member)
   2174             << New << getSpecialMember(OldMethod);
   2175           return true;
   2176         }
   2177       } else if (OldMethod->isExplicitlyDefaulted() && !isFriend) {
   2178         Diag(NewMethod->getLocation(),
   2179              diag::err_definition_of_explicitly_defaulted_member)
   2180           << getSpecialMember(OldMethod);
   2181         return true;
   2182       }
   2183     }
   2184 
   2185     // (C++98 8.3.5p3):
   2186     //   All declarations for a function shall agree exactly in both the
   2187     //   return type and the parameter-type-list.
   2188     // We also want to respect all the extended bits except noreturn.
   2189 
   2190     // noreturn should now match unless the old type info didn't have it.
   2191     QualType OldQTypeForComparison = OldQType;
   2192     if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
   2193       assert(OldQType == QualType(OldType, 0));
   2194       const FunctionType *OldTypeForComparison
   2195         = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
   2196       OldQTypeForComparison = QualType(OldTypeForComparison, 0);
   2197       assert(OldQTypeForComparison.isCanonical());
   2198     }
   2199 
   2200     if (OldQTypeForComparison == NewQType)
   2201       return MergeCompatibleFunctionDecls(New, Old, S);
   2202 
   2203     // Fall through for conflicting redeclarations and redefinitions.
   2204   }
   2205 
   2206   // C: Function types need to be compatible, not identical. This handles
   2207   // duplicate function decls like "void f(int); void f(enum X);" properly.
   2208   if (!getLangOpts().CPlusPlus &&
   2209       Context.typesAreCompatible(OldQType, NewQType)) {
   2210     const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
   2211     const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
   2212     const FunctionProtoType *OldProto = 0;
   2213     if (isa<FunctionNoProtoType>(NewFuncType) &&
   2214         (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
   2215       // The old declaration provided a function prototype, but the
   2216       // new declaration does not. Merge in the prototype.
   2217       assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
   2218       SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
   2219                                                  OldProto->arg_type_end());
   2220       NewQType = Context.getFunctionType(NewFuncType->getResultType(),
   2221                                          ParamTypes.data(), ParamTypes.size(),
   2222                                          OldProto->getExtProtoInfo());
   2223       New->setType(NewQType);
   2224       New->setHasInheritedPrototype();
   2225 
   2226       // Synthesize a parameter for each argument type.
   2227       SmallVector<ParmVarDecl*, 16> Params;
   2228       for (FunctionProtoType::arg_type_iterator
   2229              ParamType = OldProto->arg_type_begin(),
   2230              ParamEnd = OldProto->arg_type_end();
   2231            ParamType != ParamEnd; ++ParamType) {
   2232         ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
   2233                                                  SourceLocation(),
   2234                                                  SourceLocation(), 0,
   2235                                                  *ParamType, /*TInfo=*/0,
   2236                                                  SC_None, SC_None,
   2237                                                  0);
   2238         Param->setScopeInfo(0, Params.size());
   2239         Param->setImplicit();
   2240         Params.push_back(Param);
   2241       }
   2242 
   2243       New->setParams(Params);
   2244     }
   2245 
   2246     return MergeCompatibleFunctionDecls(New, Old, S);
   2247   }
   2248 
   2249   // GNU C permits a K&R definition to follow a prototype declaration
   2250   // if the declared types of the parameters in the K&R definition
   2251   // match the types in the prototype declaration, even when the
   2252   // promoted types of the parameters from the K&R definition differ
   2253   // from the types in the prototype. GCC then keeps the types from
   2254   // the prototype.
   2255   //
   2256   // If a variadic prototype is followed by a non-variadic K&R definition,
   2257   // the K&R definition becomes variadic.  This is sort of an edge case, but
   2258   // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
   2259   // C99 6.9.1p8.
   2260   if (!getLangOpts().CPlusPlus &&
   2261       Old->hasPrototype() && !New->hasPrototype() &&
   2262       New->getType()->getAs<FunctionProtoType>() &&
   2263       Old->getNumParams() == New->getNumParams()) {
   2264     SmallVector<QualType, 16> ArgTypes;
   2265     SmallVector<GNUCompatibleParamWarning, 16> Warnings;
   2266     const FunctionProtoType *OldProto
   2267       = Old->getType()->getAs<FunctionProtoType>();
   2268     const FunctionProtoType *NewProto
   2269       = New->getType()->getAs<FunctionProtoType>();
   2270 
   2271     // Determine whether this is the GNU C extension.
   2272     QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
   2273                                                NewProto->getResultType());
   2274     bool LooseCompatible = !MergedReturn.isNull();
   2275     for (unsigned Idx = 0, End = Old->getNumParams();
   2276          LooseCompatible && Idx != End; ++Idx) {
   2277       ParmVarDecl *OldParm = Old->getParamDecl(Idx);
   2278       ParmVarDecl *NewParm = New->getParamDecl(Idx);
   2279       if (Context.typesAreCompatible(OldParm->getType(),
   2280                                      NewProto->getArgType(Idx))) {
   2281         ArgTypes.push_back(NewParm->getType());
   2282       } else if (Context.typesAreCompatible(OldParm->getType(),
   2283                                             NewParm->getType(),
   2284                                             /*CompareUnqualified=*/true)) {
   2285         GNUCompatibleParamWarning Warn
   2286           = { OldParm, NewParm, NewProto->getArgType(Idx) };
   2287         Warnings.push_back(Warn);
   2288         ArgTypes.push_back(NewParm->getType());
   2289       } else
   2290         LooseCompatible = false;
   2291     }
   2292 
   2293     if (LooseCompatible) {
   2294       for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
   2295         Diag(Warnings[Warn].NewParm->getLocation(),
   2296              diag::ext_param_promoted_not_compatible_with_prototype)
   2297           << Warnings[Warn].PromotedType
   2298           << Warnings[Warn].OldParm->getType();
   2299         if (Warnings[Warn].OldParm->getLocation().isValid())
   2300           Diag(Warnings[Warn].OldParm->getLocation(),
   2301                diag::note_previous_declaration);
   2302       }
   2303 
   2304       New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
   2305                                            ArgTypes.size(),
   2306                                            OldProto->getExtProtoInfo()));
   2307       return MergeCompatibleFunctionDecls(New, Old, S);
   2308     }
   2309 
   2310     // Fall through to diagnose conflicting types.
   2311   }
   2312 
   2313   // A function that has already been declared has been redeclared or defined
   2314   // with a different type- show appropriate diagnostic
   2315   if (unsigned BuiltinID = Old->getBuiltinID()) {
   2316     // The user has declared a builtin function with an incompatible
   2317     // signature.
   2318     if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
   2319       // The function the user is redeclaring is a library-defined
   2320       // function like 'malloc' or 'printf'. Warn about the
   2321       // redeclaration, then pretend that we don't know about this
   2322       // library built-in.
   2323       Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
   2324       Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
   2325         << Old << Old->getType();
   2326       New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
   2327       Old->setInvalidDecl();
   2328       return false;
   2329     }
   2330 
   2331     PrevDiag = diag::note_previous_builtin_declaration;
   2332   }
   2333 
   2334   Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
   2335   Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
   2336   return true;
   2337 }
   2338 
   2339 /// \brief Completes the merge of two function declarations that are
   2340 /// known to be compatible.
   2341 ///
   2342 /// This routine handles the merging of attributes and other
   2343 /// properties of function declarations form the old declaration to
   2344 /// the new declaration, once we know that New is in fact a
   2345 /// redeclaration of Old.
   2346 ///
   2347 /// \returns false
   2348 bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
   2349                                         Scope *S) {
   2350   // Merge the attributes
   2351   mergeDeclAttributes(New, Old);
   2352 
   2353   // Merge the storage class.
   2354   if (Old->getStorageClass() != SC_Extern &&
   2355       Old->getStorageClass() != SC_None)
   2356     New->setStorageClass(Old->getStorageClass());
   2357 
   2358   // Merge "pure" flag.
   2359   if (Old->isPure())
   2360     New->setPure();
   2361 
   2362   // Merge attributes from the parameters.  These can mismatch with K&R
   2363   // declarations.
   2364   if (New->getNumParams() == Old->getNumParams())
   2365     for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
   2366       mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
   2367                                Context);
   2368 
   2369   if (getLangOpts().CPlusPlus)
   2370     return MergeCXXFunctionDecl(New, Old, S);
   2371 
   2372   return false;
   2373 }
   2374 
   2375 
   2376 void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
   2377                                 ObjCMethodDecl *oldMethod) {
   2378 
   2379   // Merge the attributes, including deprecated/unavailable
   2380   mergeDeclAttributes(newMethod, oldMethod, /* mergeDeprecation */true);
   2381 
   2382   // Merge attributes from the parameters.
   2383   ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
   2384                                        oe = oldMethod->param_end();
   2385   for (ObjCMethodDecl::param_iterator
   2386          ni = newMethod->param_begin(), ne = newMethod->param_end();
   2387        ni != ne && oi != oe; ++ni, ++oi)
   2388     mergeParamDeclAttributes(*ni, *oi, Context);
   2389 
   2390   CheckObjCMethodOverride(newMethod, oldMethod, true);
   2391 }
   2392 
   2393 /// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
   2394 /// scope as a previous declaration 'Old'.  Figure out how to merge their types,
   2395 /// emitting diagnostics as appropriate.
   2396 ///
   2397 /// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
   2398 /// to here in AddInitializerToDecl. We can't check them before the initializer
   2399 /// is attached.
   2400 void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
   2401   if (New->isInvalidDecl() || Old->isInvalidDecl())
   2402     return;
   2403 
   2404   QualType MergedT;
   2405   if (getLangOpts().CPlusPlus) {
   2406     AutoType *AT = New->getType()->getContainedAutoType();
   2407     if (AT && !AT->isDeduced()) {
   2408       // We don't know what the new type is until the initializer is attached.
   2409       return;
   2410     } else if (Context.hasSameType(New->getType(), Old->getType())) {
   2411       // These could still be something that needs exception specs checked.
   2412       return MergeVarDeclExceptionSpecs(New, Old);
   2413     }
   2414     // C++ [basic.link]p10:
   2415     //   [...] the types specified by all declarations referring to a given
   2416     //   object or function shall be identical, except that declarations for an
   2417     //   array object can specify array types that differ by the presence or
   2418     //   absence of a major array bound (8.3.4).
   2419     else if (Old->getType()->isIncompleteArrayType() &&
   2420              New->getType()->isArrayType()) {
   2421       CanQual<ArrayType> OldArray
   2422         = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
   2423       CanQual<ArrayType> NewArray
   2424         = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
   2425       if (OldArray->getElementType() == NewArray->getElementType())
   2426         MergedT = New->getType();
   2427     } else if (Old->getType()->isArrayType() &&
   2428              New->getType()->isIncompleteArrayType()) {
   2429       CanQual<ArrayType> OldArray
   2430         = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
   2431       CanQual<ArrayType> NewArray
   2432         = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
   2433       if (OldArray->getElementType() == NewArray->getElementType())
   2434         MergedT = Old->getType();
   2435     } else if (New->getType()->isObjCObjectPointerType()
   2436                && Old->getType()->isObjCObjectPointerType()) {
   2437         MergedT = Context.mergeObjCGCQualifiers(New->getType(),
   2438                                                         Old->getType());
   2439     }
   2440   } else {
   2441     MergedT = Context.mergeTypes(New->getType(), Old->getType());
   2442   }
   2443   if (MergedT.isNull()) {
   2444     Diag(New->getLocation(), diag::err_redefinition_different_type)
   2445       << New->getDeclName();
   2446     Diag(Old->getLocation(), diag::note_previous_definition);
   2447     return New->setInvalidDecl();
   2448   }
   2449   New->setType(MergedT);
   2450 }
   2451 
   2452 /// MergeVarDecl - We just parsed a variable 'New' which has the same name
   2453 /// and scope as a previous declaration 'Old'.  Figure out how to resolve this
   2454 /// situation, merging decls or emitting diagnostics as appropriate.
   2455 ///
   2456 /// Tentative definition rules (C99 6.9.2p2) are checked by
   2457 /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
   2458 /// definitions here, since the initializer hasn't been attached.
   2459 ///
   2460 void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
   2461   // If the new decl is already invalid, don't do any other checking.
   2462   if (New->isInvalidDecl())
   2463     return;
   2464 
   2465   // Verify the old decl was also a variable.
   2466   VarDecl *Old = 0;
   2467   if (!Previous.isSingleResult() ||
   2468       !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
   2469     Diag(New->getLocation(), diag::err_redefinition_different_kind)
   2470       << New->getDeclName();
   2471     Diag(Previous.getRepresentativeDecl()->getLocation(),
   2472          diag::note_previous_definition);
   2473     return New->setInvalidDecl();
   2474   }
   2475 
   2476   // C++ [class.mem]p1:
   2477   //   A member shall not be declared twice in the member-specification [...]
   2478   //
   2479   // Here, we need only consider static data members.
   2480   if (Old->isStaticDataMember() && !New->isOutOfLine()) {
   2481     Diag(New->getLocation(), diag::err_duplicate_member)
   2482       << New->getIdentifier();
   2483     Diag(Old->getLocation(), diag::note_previous_declaration);
   2484     New->setInvalidDecl();
   2485   }
   2486 
   2487   mergeDeclAttributes(New, Old);
   2488   // Warn if an already-declared variable is made a weak_import in a subsequent
   2489   // declaration
   2490   if (New->getAttr<WeakImportAttr>() &&
   2491       Old->getStorageClass() == SC_None &&
   2492       !Old->getAttr<WeakImportAttr>()) {
   2493     Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
   2494     Diag(Old->getLocation(), diag::note_previous_definition);
   2495     // Remove weak_import attribute on new declaration.
   2496     New->dropAttr<WeakImportAttr>();
   2497   }
   2498 
   2499   // Merge the types.
   2500   MergeVarDeclTypes(New, Old);
   2501   if (New->isInvalidDecl())
   2502     return;
   2503 
   2504   // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
   2505   if (New->getStorageClass() == SC_Static &&
   2506       (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
   2507     Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
   2508     Diag(Old->getLocation(), diag::note_previous_definition);
   2509     return New->setInvalidDecl();
   2510   }
   2511   // C99 6.2.2p4:
   2512   //   For an identifier declared with the storage-class specifier
   2513   //   extern in a scope in which a prior declaration of that
   2514   //   identifier is visible,23) if the prior declaration specifies
   2515   //   internal or external linkage, the linkage of the identifier at
   2516   //   the later declaration is the same as the linkage specified at
   2517   //   the prior declaration. If no prior declaration is visible, or
   2518   //   if the prior declaration specifies no linkage, then the
   2519   //   identifier has external linkage.
   2520   if (New->hasExternalStorage() && Old->hasLinkage())
   2521     /* Okay */;
   2522   else if (New->getStorageClass() != SC_Static &&
   2523            Old->getStorageClass() == SC_Static) {
   2524     Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
   2525     Diag(Old->getLocation(), diag::note_previous_definition);
   2526     return New->setInvalidDecl();
   2527   }
   2528 
   2529   // Check if extern is followed by non-extern and vice-versa.
   2530   if (New->hasExternalStorage() &&
   2531       !Old->hasLinkage() && Old->isLocalVarDecl()) {
   2532     Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
   2533     Diag(Old->getLocation(), diag::note_previous_definition);
   2534     return New->setInvalidDecl();
   2535   }
   2536   if (Old->hasExternalStorage() &&
   2537       !New->hasLinkage() && New->isLocalVarDecl()) {
   2538     Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
   2539     Diag(Old->getLocation(), diag::note_previous_definition);
   2540     return New->setInvalidDecl();
   2541   }
   2542 
   2543   // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
   2544 
   2545   // FIXME: The test for external storage here seems wrong? We still
   2546   // need to check for mismatches.
   2547   if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
   2548       // Don't complain about out-of-line definitions of static members.
   2549       !(Old->getLexicalDeclContext()->isRecord() &&
   2550         !New->getLexicalDeclContext()->isRecord())) {
   2551     Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
   2552     Diag(Old->getLocation(), diag::note_previous_definition);
   2553     return New->setInvalidDecl();
   2554   }
   2555 
   2556   if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
   2557     Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
   2558     Diag(Old->getLocation(), diag::note_previous_definition);
   2559   } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
   2560     Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
   2561     Diag(Old->getLocation(), diag::note_previous_definition);
   2562   }
   2563 
   2564   // C++ doesn't have tentative definitions, so go right ahead and check here.
   2565   const VarDecl *Def;
   2566   if (getLangOpts().CPlusPlus &&
   2567       New->isThisDeclarationADefinition() == VarDecl::Definition &&
   2568       (Def = Old->getDefinition())) {
   2569     Diag(New->getLocation(), diag::err_redefinition)
   2570       << New->getDeclName();
   2571     Diag(Def->getLocation(), diag::note_previous_definition);
   2572     New->setInvalidDecl();
   2573     return;
   2574   }
   2575   // c99 6.2.2 P4.
   2576   // For an identifier declared with the storage-class specifier extern in a
   2577   // scope in which a prior declaration of that identifier is visible, if
   2578   // the prior declaration specifies internal or external linkage, the linkage
   2579   // of the identifier at the later declaration is the same as the linkage
   2580   // specified at the prior declaration.
   2581   // FIXME. revisit this code.
   2582   if (New->hasExternalStorage() &&
   2583       Old->getLinkage() == InternalLinkage &&
   2584       New->getDeclContext() == Old->getDeclContext())
   2585     New->setStorageClass(Old->getStorageClass());
   2586 
   2587   // Keep a chain of previous declarations.
   2588   New->setPreviousDeclaration(Old);
   2589 
   2590   // Inherit access appropriately.
   2591   New->setAccess(Old->getAccess());
   2592 }
   2593 
   2594 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
   2595 /// no declarator (e.g. "struct foo;") is parsed.
   2596 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
   2597                                        DeclSpec &DS) {
   2598   return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg());
   2599 }
   2600 
   2601 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
   2602 /// no declarator (e.g. "struct foo;") is parsed. It also accopts template
   2603 /// parameters to cope with template friend declarations.
   2604 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
   2605                                        DeclSpec &DS,
   2606                                        MultiTemplateParamsArg TemplateParams) {
   2607   Decl *TagD = 0;
   2608   TagDecl *Tag = 0;
   2609   if (DS.getTypeSpecType() == DeclSpec::TST_class ||
   2610       DS.getTypeSpecType() == DeclSpec::TST_struct ||
   2611       DS.getTypeSpecType() == DeclSpec::TST_interface ||
   2612       DS.getTypeSpecType() == DeclSpec::TST_union ||
   2613       DS.getTypeSpecType() == DeclSpec::TST_enum) {
   2614     TagD = DS.getRepAsDecl();
   2615 
   2616     if (!TagD) // We probably had an error
   2617       return 0;
   2618 
   2619     // Note that the above type specs guarantee that the
   2620     // type rep is a Decl, whereas in many of the others
   2621     // it's a Type.
   2622     if (isa<TagDecl>(TagD))
   2623       Tag = cast<TagDecl>(TagD);
   2624     else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
   2625       Tag = CTD->getTemplatedDecl();
   2626   }
   2627 
   2628   if (Tag) {
   2629     Tag->setFreeStanding();
   2630     if (Tag->isInvalidDecl())
   2631       return Tag;
   2632   }
   2633 
   2634   if (unsigned TypeQuals = DS.getTypeQualifiers()) {
   2635     // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
   2636     // or incomplete types shall not be restrict-qualified."
   2637     if (TypeQuals & DeclSpec::TQ_restrict)
   2638       Diag(DS.getRestrictSpecLoc(),
   2639            diag::err_typecheck_invalid_restrict_not_pointer_noarg)
   2640            << DS.getSourceRange();
   2641   }
   2642 
   2643   if (DS.isConstexprSpecified()) {
   2644     // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
   2645     // and definitions of functions and variables.
   2646     if (Tag)
   2647       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
   2648         << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
   2649             DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
   2650             DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
   2651             DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4);
   2652     else
   2653       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
   2654     // Don't emit warnings after this error.
   2655     return TagD;
   2656   }
   2657 
   2658   if (DS.isFriendSpecified()) {
   2659     // If we're dealing with a decl but not a TagDecl, assume that
   2660     // whatever routines created it handled the friendship aspect.
   2661     if (TagD && !Tag)
   2662       return 0;
   2663     return ActOnFriendTypeDecl(S, DS, TemplateParams);
   2664   }
   2665 
   2666   // Track whether we warned about the fact that there aren't any
   2667   // declarators.
   2668   bool emittedWarning = false;
   2669 
   2670   if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
   2671     if (!Record->getDeclName() && Record->isCompleteDefinition() &&
   2672         DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
   2673       if (getLangOpts().CPlusPlus ||
   2674           Record->getDeclContext()->isRecord())
   2675         return BuildAnonymousStructOrUnion(S, DS, AS, Record);
   2676 
   2677       Diag(DS.getLocStart(), diag::ext_no_declarators)
   2678         << DS.getSourceRange();
   2679       emittedWarning = true;
   2680     }
   2681   }
   2682 
   2683   // Check for Microsoft C extension: anonymous struct.
   2684   if (getLangOpts().MicrosoftExt && !getLangOpts().CPlusPlus &&
   2685       CurContext->isRecord() &&
   2686       DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
   2687     // Handle 2 kinds of anonymous struct:
   2688     //   struct STRUCT;
   2689     // and
   2690     //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
   2691     RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
   2692     if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
   2693         (DS.getTypeSpecType() == DeclSpec::TST_typename &&
   2694          DS.getRepAsType().get()->isStructureType())) {
   2695       Diag(DS.getLocStart(), diag::ext_ms_anonymous_struct)
   2696         << DS.getSourceRange();
   2697       return BuildMicrosoftCAnonymousStruct(S, DS, Record);
   2698     }
   2699   }
   2700 
   2701   if (getLangOpts().CPlusPlus &&
   2702       DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
   2703     if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
   2704       if (Enum->enumerator_begin() == Enum->enumerator_end() &&
   2705           !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
   2706         Diag(Enum->getLocation(), diag::ext_no_declarators)
   2707           << DS.getSourceRange();
   2708         emittedWarning = true;
   2709       }
   2710 
   2711   // Skip all the checks below if we have a type error.
   2712   if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
   2713 
   2714   if (!DS.isMissingDeclaratorOk()) {
   2715     // Warn about typedefs of enums without names, since this is an
   2716     // extension in both Microsoft and GNU.
   2717     if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
   2718         Tag && isa<EnumDecl>(Tag)) {
   2719       Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
   2720         << DS.getSourceRange();
   2721       return Tag;
   2722     }
   2723 
   2724     Diag(DS.getLocStart(), diag::ext_no_declarators)
   2725       << DS.getSourceRange();
   2726     emittedWarning = true;
   2727   }
   2728 
   2729   // We're going to complain about a bunch of spurious specifiers;
   2730   // only do this if we're declaring a tag, because otherwise we
   2731   // should be getting diag::ext_no_declarators.
   2732   if (emittedWarning || (TagD && TagD->isInvalidDecl()))
   2733     return TagD;
   2734 
   2735   // Note that a linkage-specification sets a storage class, but
   2736   // 'extern "C" struct foo;' is actually valid and not theoretically
   2737   // useless.
   2738   if (DeclSpec::SCS scs = DS.getStorageClassSpec())
   2739     if (!DS.isExternInLinkageSpec())
   2740       Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
   2741         << DeclSpec::getSpecifierName(scs);
   2742 
   2743   if (DS.isThreadSpecified())
   2744     Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
   2745   if (DS.getTypeQualifiers()) {
   2746     if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
   2747       Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
   2748     if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
   2749       Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
   2750     // Restrict is covered above.
   2751   }
   2752   if (DS.isInlineSpecified())
   2753     Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
   2754   if (DS.isVirtualSpecified())
   2755     Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
   2756   if (DS.isExplicitSpecified())
   2757     Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
   2758 
   2759   if (DS.isModulePrivateSpecified() &&
   2760       Tag && Tag->getDeclContext()->isFunctionOrMethod())
   2761     Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
   2762       << Tag->getTagKind()
   2763       << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
   2764 
   2765   // Warn about ignored type attributes, for example:
   2766   // __attribute__((aligned)) struct A;
   2767   // Attributes should be placed after tag to apply to type declaration.
   2768   if (!DS.getAttributes().empty()) {
   2769     DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
   2770     if (TypeSpecType == DeclSpec::TST_class ||
   2771         TypeSpecType == DeclSpec::TST_struct ||
   2772         TypeSpecType == DeclSpec::TST_interface ||
   2773         TypeSpecType == DeclSpec::TST_union ||
   2774         TypeSpecType == DeclSpec::TST_enum) {
   2775       AttributeList* attrs = DS.getAttributes().getList();
   2776       while (attrs) {
   2777         Diag(attrs->getScopeLoc(),
   2778              diag::warn_declspec_attribute_ignored)
   2779         << attrs->getName()
   2780         << (TypeSpecType == DeclSpec::TST_class ? 0 :
   2781             TypeSpecType == DeclSpec::TST_struct ? 1 :
   2782             TypeSpecType == DeclSpec::TST_union ? 2 :
   2783             TypeSpecType == DeclSpec::TST_interface ? 3 : 4);
   2784         attrs = attrs->getNext();
   2785       }
   2786     }
   2787   }
   2788 
   2789   ActOnDocumentableDecl(TagD);
   2790 
   2791   return TagD;
   2792 }
   2793 
   2794 /// We are trying to inject an anonymous member into the given scope;
   2795 /// check if there's an existing declaration that can't be overloaded.
   2796 ///
   2797 /// \return true if this is a forbidden redeclaration
   2798 static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
   2799                                          Scope *S,
   2800                                          DeclContext *Owner,
   2801                                          DeclarationName Name,
   2802                                          SourceLocation NameLoc,
   2803                                          unsigned diagnostic) {
   2804   LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
   2805                  Sema::ForRedeclaration);
   2806   if (!SemaRef.LookupName(R, S)) return false;
   2807 
   2808   if (R.getAsSingle<TagDecl>())
   2809     return false;
   2810 
   2811   // Pick a representative declaration.
   2812   NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
   2813   assert(PrevDecl && "Expected a non-null Decl");
   2814 
   2815   if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
   2816     return false;
   2817 
   2818   SemaRef.Diag(NameLoc, diagnostic) << Name;
   2819   SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
   2820 
   2821   return true;
   2822 }
   2823 
   2824 /// InjectAnonymousStructOrUnionMembers - Inject the members of the
   2825 /// anonymous struct or union AnonRecord into the owning context Owner
   2826 /// and scope S. This routine will be invoked just after we realize
   2827 /// that an unnamed union or struct is actually an anonymous union or
   2828 /// struct, e.g.,
   2829 ///
   2830 /// @code
   2831 /// union {
   2832 ///   int i;
   2833 ///   float f;
   2834 /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
   2835 ///    // f into the surrounding scope.x
   2836 /// @endcode
   2837 ///
   2838 /// This routine is recursive, injecting the names of nested anonymous
   2839 /// structs/unions into the owning context and scope as well.
   2840 static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
   2841                                                 DeclContext *Owner,
   2842                                                 RecordDecl *AnonRecord,
   2843                                                 AccessSpecifier AS,
   2844                               SmallVector<NamedDecl*, 2> &Chaining,
   2845                                                       bool MSAnonStruct) {
   2846   unsigned diagKind
   2847     = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
   2848                             : diag::err_anonymous_struct_member_redecl;
   2849 
   2850   bool Invalid = false;
   2851 
   2852   // Look every FieldDecl and IndirectFieldDecl with a name.
   2853   for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
   2854                                DEnd = AnonRecord->decls_end();
   2855        D != DEnd; ++D) {
   2856     if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
   2857         cast<NamedDecl>(*D)->getDeclName()) {
   2858       ValueDecl *VD = cast<ValueDecl>(*D);
   2859       if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
   2860                                        VD->getLocation(), diagKind)) {
   2861         // C++ [class.union]p2:
   2862         //   The names of the members of an anonymous union shall be
   2863         //   distinct from the names of any other entity in the
   2864         //   scope in which the anonymous union is declared.
   2865         Invalid = true;
   2866       } else {
   2867         // C++ [class.union]p2:
   2868         //   For the purpose of name lookup, after the anonymous union
   2869         //   definition, the members of the anonymous union are
   2870         //   considered to have been defined in the scope in which the
   2871         //   anonymous union is declared.
   2872         unsigned OldChainingSize = Chaining.size();
   2873         if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
   2874           for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
   2875                PE = IF->chain_end(); PI != PE; ++PI)
   2876             Chaining.push_back(*PI);
   2877         else
   2878           Chaining.push_back(VD);
   2879 
   2880         assert(Chaining.size() >= 2);
   2881         NamedDecl **NamedChain =
   2882           new (SemaRef.Context)NamedDecl*[Chaining.size()];
   2883         for (unsigned i = 0; i < Chaining.size(); i++)
   2884           NamedChain[i] = Chaining[i];
   2885 
   2886         IndirectFieldDecl* IndirectField =
   2887           IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
   2888                                     VD->getIdentifier(), VD->getType(),
   2889                                     NamedChain, Chaining.size());
   2890 
   2891         IndirectField->setAccess(AS);
   2892         IndirectField->setImplicit();
   2893         SemaRef.PushOnScopeChains(IndirectField, S);
   2894 
   2895         // That includes picking up the appropriate access specifier.
   2896         if (AS != AS_none) IndirectField->setAccess(AS);
   2897 
   2898         Chaining.resize(OldChainingSize);
   2899       }
   2900     }
   2901   }
   2902 
   2903   return Invalid;
   2904 }
   2905 
   2906 /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
   2907 /// a VarDecl::StorageClass. Any error reporting is up to the caller:
   2908 /// illegal input values are mapped to SC_None.
   2909 static StorageClass
   2910 StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
   2911   switch (StorageClassSpec) {
   2912   case DeclSpec::SCS_unspecified:    return SC_None;
   2913   case DeclSpec::SCS_extern:         return SC_Extern;
   2914   case DeclSpec::SCS_static:         return SC_Static;
   2915   case DeclSpec::SCS_auto:           return SC_Auto;
   2916   case DeclSpec::SCS_register:       return SC_Register;
   2917   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
   2918     // Illegal SCSs map to None: error reporting is up to the caller.
   2919   case DeclSpec::SCS_mutable:        // Fall through.
   2920   case DeclSpec::SCS_typedef:        return SC_None;
   2921   }
   2922   llvm_unreachable("unknown storage class specifier");
   2923 }
   2924 
   2925 /// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
   2926 /// a StorageClass. Any error reporting is up to the caller:
   2927 /// illegal input values are mapped to SC_None.
   2928 static StorageClass
   2929 StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
   2930   switch (StorageClassSpec) {
   2931   case DeclSpec::SCS_unspecified:    return SC_None;
   2932   case DeclSpec::SCS_extern:         return SC_Extern;
   2933   case DeclSpec::SCS_static:         return SC_Static;
   2934   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
   2935     // Illegal SCSs map to None: error reporting is up to the caller.
   2936   case DeclSpec::SCS_auto:           // Fall through.
   2937   case DeclSpec::SCS_mutable:        // Fall through.
   2938   case DeclSpec::SCS_register:       // Fall through.
   2939   case DeclSpec::SCS_typedef:        return SC_None;
   2940   }
   2941   llvm_unreachable("unknown storage class specifier");
   2942 }
   2943 
   2944 /// BuildAnonymousStructOrUnion - Handle the declaration of an
   2945 /// anonymous structure or union. Anonymous unions are a C++ feature
   2946 /// (C++ [class.union]) and a C11 feature; anonymous structures
   2947 /// are a C11 feature and GNU C++ extension.
   2948 Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
   2949                                              AccessSpecifier AS,
   2950                                              RecordDecl *Record) {
   2951   DeclContext *Owner = Record->getDeclContext();
   2952 
   2953   // Diagnose whether this anonymous struct/union is an extension.
   2954   if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
   2955     Diag(Record->getLocation(), diag::ext_anonymous_union);
   2956   else if (!Record->isUnion() && getLangOpts().CPlusPlus)
   2957     Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
   2958   else if (!Record->isUnion() && !getLangOpts().C11)
   2959     Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
   2960 
   2961   // C and C++ require different kinds of checks for anonymous
   2962   // structs/unions.
   2963   bool Invalid = false;
   2964   if (getLangOpts().CPlusPlus) {
   2965     const char* PrevSpec = 0;
   2966     unsigned DiagID;
   2967     if (Record->isUnion()) {
   2968       // C++ [class.union]p6:
   2969       //   Anonymous unions declared in a named namespace or in the
   2970       //   global namespace shall be declared static.
   2971       if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
   2972           (isa<TranslationUnitDecl>(Owner) ||
   2973            (isa<NamespaceDecl>(Owner) &&
   2974             cast<NamespaceDecl>(Owner)->getDeclName()))) {
   2975         Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
   2976           << FixItHint::CreateInsertion(Record->getLocation(), "static ");
   2977 
   2978         // Recover by adding 'static'.
   2979         DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
   2980                                PrevSpec, DiagID);
   2981       }
   2982       // C++ [class.union]p6:
   2983       //   A storage class is not allowed in a declaration of an
   2984       //   anonymous union in a class scope.
   2985       else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
   2986                isa<RecordDecl>(Owner)) {
   2987         Diag(DS.getStorageClassSpecLoc(),
   2988              diag::err_anonymous_union_with_storage_spec)
   2989           << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
   2990 
   2991         // Recover by removing the storage specifier.
   2992         DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
   2993                                SourceLocation(),
   2994                                PrevSpec, DiagID);
   2995       }
   2996     }
   2997 
   2998     // Ignore const/volatile/restrict qualifiers.
   2999     if (DS.getTypeQualifiers()) {
   3000       if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
   3001         Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
   3002           << Record->isUnion() << 0
   3003           << FixItHint::CreateRemoval(DS.getConstSpecLoc());
   3004       if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
   3005         Diag(DS.getVolatileSpecLoc(),
   3006              diag::ext_anonymous_struct_union_qualified)
   3007           << Record->isUnion() << 1
   3008           << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
   3009       if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
   3010         Diag(DS.getRestrictSpecLoc(),
   3011              diag::ext_anonymous_struct_union_qualified)
   3012           << Record->isUnion() << 2
   3013           << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
   3014 
   3015       DS.ClearTypeQualifiers();
   3016     }
   3017 
   3018     // C++ [class.union]p2:
   3019     //   The member-specification of an anonymous union shall only
   3020     //   define non-static data members. [Note: nested types and
   3021     //   functions cannot be declared within an anonymous union. ]
   3022     for (DeclContext::decl_iterator Mem = Record->decls_begin(),
   3023                                  MemEnd = Record->decls_end();
   3024          Mem != MemEnd; ++Mem) {
   3025       if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
   3026         // C++ [class.union]p3:
   3027         //   An anonymous union shall not have private or protected
   3028         //   members (clause 11).
   3029         assert(FD->getAccess() != AS_none);
   3030         if (FD->getAccess() != AS_public) {
   3031           Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
   3032             << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
   3033           Invalid = true;
   3034         }
   3035 
   3036         // C++ [class.union]p1
   3037         //   An object of a class with a non-trivial constructor, a non-trivial
   3038         //   copy constructor, a non-trivial destructor, or a non-trivial copy
   3039         //   assignment operator cannot be a member of a union, nor can an
   3040         //   array of such objects.
   3041         if (CheckNontrivialField(FD))
   3042           Invalid = true;
   3043       } else if ((*Mem)->isImplicit()) {
   3044         // Any implicit members are fine.
   3045       } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
   3046         // This is a type that showed up in an
   3047         // elaborated-type-specifier inside the anonymous struct or
   3048         // union, but which actually declares a type outside of the
   3049         // anonymous struct or union. It's okay.
   3050       } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
   3051         if (!MemRecord->isAnonymousStructOrUnion() &&
   3052             MemRecord->getDeclName()) {
   3053           // Visual C++ allows type definition in anonymous struct or union.
   3054           if (getLangOpts().MicrosoftExt)
   3055             Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
   3056               << (int)Record->isUnion();
   3057           else {
   3058             // This is a nested type declaration.
   3059             Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
   3060               << (int)Record->isUnion();
   3061             Invalid = true;
   3062           }
   3063         }
   3064       } else if (isa<AccessSpecDecl>(*Mem)) {
   3065         // Any access specifier is fine.
   3066       } else {
   3067         // We have something that isn't a non-static data
   3068         // member. Complain about it.
   3069         unsigned DK = diag::err_anonymous_record_bad_member;
   3070         if (isa<TypeDecl>(*Mem))
   3071           DK = diag::err_anonymous_record_with_type;
   3072         else if (isa<FunctionDecl>(*Mem))
   3073           DK = diag::err_anonymous_record_with_function;
   3074         else if (isa<VarDecl>(*Mem))
   3075           DK = diag::err_anonymous_record_with_static;
   3076 
   3077         // Visual C++ allows type definition in anonymous struct or union.
   3078         if (getLangOpts().MicrosoftExt &&
   3079             DK == diag::err_anonymous_record_with_type)
   3080           Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
   3081             << (int)Record->isUnion();
   3082         else {
   3083           Diag((*Mem)->getLocation(), DK)
   3084               << (int)Record->isUnion();
   3085           Invalid = true;
   3086         }
   3087       }
   3088     }
   3089   }
   3090 
   3091   if (!Record->isUnion() && !Owner->isRecord()) {
   3092     Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
   3093       << (int)getLangOpts().CPlusPlus;
   3094     Invalid = true;
   3095   }
   3096 
   3097   // Mock up a declarator.
   3098   Declarator Dc(DS, Declarator::MemberContext);
   3099   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
   3100   assert(TInfo && "couldn't build declarator info for anonymous struct/union");
   3101 
   3102   // Create a declaration for this anonymous struct/union.
   3103   NamedDecl *Anon = 0;
   3104   if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
   3105     Anon = FieldDecl::Create(Context, OwningClass,
   3106                              DS.getLocStart(),
   3107                              Record->getLocation(),
   3108                              /*IdentifierInfo=*/0,
   3109                              Context.getTypeDeclType(Record),
   3110                              TInfo,
   3111                              /*BitWidth=*/0, /*Mutable=*/false,
   3112                              /*InitStyle=*/ICIS_NoInit);
   3113     Anon->setAccess(AS);
   3114     if (getLangOpts().CPlusPlus)
   3115       FieldCollector->Add(cast<FieldDecl>(Anon));
   3116   } else {
   3117     DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
   3118     assert(SCSpec != DeclSpec::SCS_typedef &&
   3119            "Parser allowed 'typedef' as storage class VarDecl.");
   3120     VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
   3121     if (SCSpec == DeclSpec::SCS_mutable) {
   3122       // mutable can only appear on non-static class members, so it's always
   3123       // an error here
   3124       Diag(Record->getLocation(), diag::err_mutable_nonmember);
   3125       Invalid = true;
   3126       SC = SC_None;
   3127     }
   3128     SCSpec = DS.getStorageClassSpecAsWritten();
   3129     VarDecl::StorageClass SCAsWritten
   3130       = StorageClassSpecToVarDeclStorageClass(SCSpec);
   3131 
   3132     Anon = VarDecl::Create(Context, Owner,
   3133                            DS.getLocStart(),
   3134                            Record->getLocation(), /*IdentifierInfo=*/0,
   3135                            Context.getTypeDeclType(Record),
   3136                            TInfo, SC, SCAsWritten);
   3137 
   3138     // Default-initialize the implicit variable. This initialization will be
   3139     // trivial in almost all cases, except if a union member has an in-class
   3140     // initializer:
   3141     //   union { int n = 0; };
   3142     ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
   3143   }
   3144   Anon->setImplicit();
   3145 
   3146   // Add the anonymous struct/union object to the current
   3147   // context. We'll be referencing this object when we refer to one of
   3148   // its members.
   3149   Owner->addDecl(Anon);
   3150 
   3151   // Inject the members of the anonymous struct/union into the owning
   3152   // context and into the identifier resolver chain for name lookup
   3153   // purposes.
   3154   SmallVector<NamedDecl*, 2> Chain;
   3155   Chain.push_back(Anon);
   3156 
   3157   if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
   3158                                           Chain, false))
   3159     Invalid = true;
   3160 
   3161   // Mark this as an anonymous struct/union type. Note that we do not
   3162   // do this until after we have already checked and injected the
   3163   // members of this anonymous struct/union type, because otherwise
   3164   // the members could be injected twice: once by DeclContext when it
   3165   // builds its lookup table, and once by
   3166   // InjectAnonymousStructOrUnionMembers.
   3167   Record->setAnonymousStructOrUnion(true);
   3168 
   3169   if (Invalid)
   3170     Anon->setInvalidDecl();
   3171 
   3172   return Anon;
   3173 }
   3174 
   3175 /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
   3176 /// Microsoft C anonymous structure.
   3177 /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
   3178 /// Example:
   3179 ///
   3180 /// struct A { int a; };
   3181 /// struct B { struct A; int b; };
   3182 ///
   3183 /// void foo() {
   3184 ///   B var;
   3185 ///   var.a = 3;
   3186 /// }
   3187 ///
   3188 Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
   3189                                            RecordDecl *Record) {
   3190 
   3191   // If there is no Record, get the record via the typedef.
   3192   if (!Record)
   3193     Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
   3194 
   3195   // Mock up a declarator.
   3196   Declarator Dc(DS, Declarator::TypeNameContext);
   3197   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
   3198   assert(TInfo && "couldn't build declarator info for anonymous struct");
   3199 
   3200   // Create a declaration for this anonymous struct.
   3201   NamedDecl* Anon = FieldDecl::Create(Context,
   3202                              cast<RecordDecl>(CurContext),
   3203                              DS.getLocStart(),
   3204                              DS.getLocStart(),
   3205                              /*IdentifierInfo=*/0,
   3206                              Context.getTypeDeclType(Record),
   3207                              TInfo,
   3208                              /*BitWidth=*/0, /*Mutable=*/false,
   3209                              /*InitStyle=*/ICIS_NoInit);
   3210   Anon->setImplicit();
   3211 
   3212   // Add the anonymous struct object to the current context.
   3213   CurContext->addDecl(Anon);
   3214 
   3215   // Inject the members of the anonymous struct into the current
   3216   // context and into the identifier resolver chain for name lookup
   3217   // purposes.
   3218   SmallVector<NamedDecl*, 2> Chain;
   3219   Chain.push_back(Anon);
   3220 
   3221   RecordDecl *RecordDef = Record->getDefinition();
   3222   if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
   3223                                                         RecordDef, AS_none,
   3224                                                         Chain, true))
   3225     Anon->setInvalidDecl();
   3226 
   3227   return Anon;
   3228 }
   3229 
   3230 /// GetNameForDeclarator - Determine the full declaration name for the
   3231 /// given Declarator.
   3232 DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
   3233   return GetNameFromUnqualifiedId(D.getName());
   3234 }
   3235 
   3236 /// \brief Retrieves the declaration name from a parsed unqualified-id.
   3237 DeclarationNameInfo
   3238 Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
   3239   DeclarationNameInfo NameInfo;
   3240   NameInfo.setLoc(Name.StartLocation);
   3241 
   3242   switch (Name.getKind()) {
   3243 
   3244   case UnqualifiedId::IK_ImplicitSelfParam:
   3245   case UnqualifiedId::IK_Identifier:
   3246     NameInfo.setName(Name.Identifier);
   3247     NameInfo.setLoc(Name.StartLocation);
   3248     return NameInfo;
   3249 
   3250   case UnqualifiedId::IK_OperatorFunctionId:
   3251     NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
   3252                                            Name.OperatorFunctionId.Operator));
   3253     NameInfo.setLoc(Name.StartLocation);
   3254     NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
   3255       = Name.OperatorFunctionId.SymbolLocations[0];
   3256     NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
   3257       = Name.EndLocation.getRawEncoding();
   3258     return NameInfo;
   3259 
   3260   case UnqualifiedId::IK_LiteralOperatorId:
   3261     NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
   3262                                                            Name.Identifier));
   3263     NameInfo.setLoc(Name.StartLocation);
   3264     NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
   3265     return NameInfo;
   3266 
   3267   case UnqualifiedId::IK_ConversionFunctionId: {
   3268     TypeSourceInfo *TInfo;
   3269     QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
   3270     if (Ty.isNull())
   3271       return DeclarationNameInfo();
   3272     NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
   3273                                                Context.getCanonicalType(Ty)));
   3274     NameInfo.setLoc(Name.StartLocation);
   3275     NameInfo.setNamedTypeInfo(TInfo);
   3276     return NameInfo;
   3277   }
   3278 
   3279   case UnqualifiedId::IK_ConstructorName: {
   3280     TypeSourceInfo *TInfo;
   3281     QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
   3282     if (Ty.isNull())
   3283       return DeclarationNameInfo();
   3284     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
   3285                                               Context.getCanonicalType(Ty)));
   3286     NameInfo.setLoc(Name.StartLocation);
   3287     NameInfo.setNamedTypeInfo(TInfo);
   3288     return NameInfo;
   3289   }
   3290 
   3291   case UnqualifiedId::IK_ConstructorTemplateId: {
   3292     // In well-formed code, we can only have a constructor
   3293     // template-id that refers to the current context, so go there
   3294     // to find the actual type being constructed.
   3295     CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
   3296     if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
   3297       return DeclarationNameInfo();
   3298 
   3299     // Determine the type of the class being constructed.
   3300     QualType CurClassType = Context.getTypeDeclType(CurClass);
   3301 
   3302     // FIXME: Check two things: that the template-id names the same type as
   3303     // CurClassType, and that the template-id does not occur when the name
   3304     // was qualified.
   3305 
   3306     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
   3307                                     Context.getCanonicalType(CurClassType)));
   3308     NameInfo.setLoc(Name.StartLocation);
   3309     // FIXME: should we retrieve TypeSourceInfo?
   3310     NameInfo.setNamedTypeInfo(0);
   3311     return NameInfo;
   3312   }
   3313 
   3314   case UnqualifiedId::IK_DestructorName: {
   3315     TypeSourceInfo *TInfo;
   3316     QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
   3317     if (Ty.isNull())
   3318       return DeclarationNameInfo();
   3319     NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
   3320                                               Context.getCanonicalType(Ty)));
   3321     NameInfo.setLoc(Name.StartLocation);
   3322     NameInfo.setNamedTypeInfo(TInfo);
   3323     return NameInfo;
   3324   }
   3325 
   3326   case UnqualifiedId::IK_TemplateId: {
   3327     TemplateName TName = Name.TemplateId->Template.get();
   3328     SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
   3329     return Context.getNameForTemplate(TName, TNameLoc);
   3330   }
   3331 
   3332   } // switch (Name.getKind())
   3333 
   3334   llvm_unreachable("Unknown name kind");
   3335 }
   3336 
   3337 static QualType getCoreType(QualType Ty) {
   3338   do {
   3339     if (Ty->isPointerType() || Ty->isReferenceType())
   3340       Ty = Ty->getPointeeType();
   3341     else if (Ty->isArrayType())
   3342       Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
   3343     else
   3344       return Ty.withoutLocalFastQualifiers();
   3345   } while (true);
   3346 }
   3347 
   3348 /// hasSimilarParameters - Determine whether the C++ functions Declaration
   3349 /// and Definition have "nearly" matching parameters. This heuristic is
   3350 /// used to improve diagnostics in the case where an out-of-line function
   3351 /// definition doesn't match any declaration within the class or namespace.
   3352 /// Also sets Params to the list of indices to the parameters that differ
   3353 /// between the declaration and the definition. If hasSimilarParameters
   3354 /// returns true and Params is empty, then all of the parameters match.
   3355 static bool hasSimilarParameters(ASTContext &Context,
   3356                                      FunctionDecl *Declaration,
   3357                                      FunctionDecl *Definition,
   3358                                      llvm::SmallVectorImpl<unsigned> &Params) {
   3359   Params.clear();
   3360   if (Declaration->param_size() != Definition->param_size())
   3361     return false;
   3362   for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
   3363     QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
   3364     QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
   3365 
   3366     // The parameter types are identical
   3367     if (Context.hasSameType(DefParamTy, DeclParamTy))
   3368       continue;
   3369 
   3370     QualType DeclParamBaseTy = getCoreType(DeclParamTy);
   3371     QualType DefParamBaseTy = getCoreType(DefParamTy);
   3372     const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
   3373     const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
   3374 
   3375     if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
   3376         (DeclTyName && DeclTyName == DefTyName))
   3377       Params.push_back(Idx);
   3378     else  // The two parameters aren't even close
   3379       return false;
   3380   }
   3381 
   3382   return true;
   3383 }
   3384 
   3385 /// NeedsRebuildingInCurrentInstantiation - Checks whether the given
   3386 /// declarator needs to be rebuilt in the current instantiation.
   3387 /// Any bits of declarator which appear before the name are valid for
   3388 /// consideration here.  That's specifically the type in the decl spec
   3389 /// and the base type in any member-pointer chunks.
   3390 static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
   3391                                                     DeclarationName Name) {
   3392   // The types we specifically need to rebuild are:
   3393   //   - typenames, typeofs, and decltypes
   3394   //   - types which will become injected class names
   3395   // Of course, we also need to rebuild any type referencing such a
   3396   // type.  It's safest to just say "dependent", but we call out a
   3397   // few cases here.
   3398 
   3399   DeclSpec &DS = D.getMutableDeclSpec();
   3400   switch (DS.getTypeSpecType()) {
   3401   case DeclSpec::TST_typename:
   3402   case DeclSpec::TST_typeofType:
   3403   case DeclSpec::TST_decltype:
   3404   case DeclSpec::TST_underlyingType:
   3405   case DeclSpec::TST_atomic: {
   3406     // Grab the type from the parser.
   3407     TypeSourceInfo *TSI = 0;
   3408     QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
   3409     if (T.isNull() || !T->isDependentType()) break;
   3410 
   3411     // Make sure there's a type source info.  This isn't really much
   3412     // of a waste; most dependent types should have type source info
   3413     // attached already.
   3414     if (!TSI)
   3415       TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
   3416 
   3417     // Rebuild the type in the current instantiation.
   3418     TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
   3419     if (!TSI) return true;
   3420 
   3421     // Store the new type back in the decl spec.
   3422     ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
   3423     DS.UpdateTypeRep(LocType);
   3424     break;
   3425   }
   3426 
   3427   case DeclSpec::TST_typeofExpr: {
   3428     Expr *E = DS.getRepAsExpr();
   3429     ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
   3430     if (Result.isInvalid()) return true;
   3431     DS.UpdateExprRep(Result.get());
   3432     break;
   3433   }
   3434 
   3435   default:
   3436     // Nothing to do for these decl specs.
   3437     break;
   3438   }
   3439 
   3440   // It doesn't matter what order we do this in.
   3441   for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
   3442     DeclaratorChunk &Chunk = D.getTypeObject(I);
   3443 
   3444     // The only type information in the declarator which can come
   3445     // before the declaration name is the base type of a member
   3446     // pointer.
   3447     if (Chunk.Kind != DeclaratorChunk::MemberPointer)
   3448       continue;
   3449 
   3450     // Rebuild the scope specifier in-place.
   3451     CXXScopeSpec &SS = Chunk.Mem.Scope();
   3452     if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
   3453       return true;
   3454   }
   3455 
   3456   return false;
   3457 }
   3458 
   3459 Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
   3460   D.setFunctionDefinitionKind(FDK_Declaration);
   3461   Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
   3462 
   3463   if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
   3464       Dcl && Dcl->getDeclContext()->isFileContext())
   3465     Dcl->setTopLevelDeclInObjCContainer();
   3466 
   3467   return Dcl;
   3468 }
   3469 
   3470 /// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
   3471 ///   If T is the name of a class, then each of the following shall have a
   3472 ///   name different from T:
   3473 ///     - every static data member of class T;
   3474 ///     - every member function of class T
   3475 ///     - every member of class T that is itself a type;
   3476 /// \returns true if the declaration name violates these rules.
   3477 bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
   3478                                    DeclarationNameInfo NameInfo) {
   3479   DeclarationName Name = NameInfo.getName();
   3480 
   3481   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
   3482     if (Record->getIdentifier() && Record->getDeclName() == Name) {
   3483       Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
   3484       return true;
   3485     }
   3486 
   3487   return false;
   3488 }
   3489 
   3490 /// \brief Diagnose a declaration whose declarator-id has the given
   3491 /// nested-name-specifier.
   3492 ///
   3493 /// \param SS The nested-name-specifier of the declarator-id.
   3494 ///
   3495 /// \param DC The declaration context to which the nested-name-specifier
   3496 /// resolves.
   3497 ///
   3498 /// \param Name The name of the entity being declared.
   3499 ///
   3500 /// \param Loc The location of the name of the entity being declared.
   3501 ///
   3502 /// \returns true if we cannot safely recover from this error, false otherwise.
   3503 bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
   3504                                         DeclarationName Name,
   3505                                       SourceLocation Loc) {
   3506   DeclContext *Cur = CurContext;
   3507   while (isa<LinkageSpecDecl>(Cur))
   3508     Cur = Cur->getParent();
   3509 
   3510   // C++ [dcl.meaning]p1:
   3511   //   A declarator-id shall not be qualified except for the definition
   3512   //   of a member function (9.3) or static data member (9.4) outside of
   3513   //   its class, the definition or explicit instantiation of a function
   3514   //   or variable member of a namespace outside of its namespace, or the
   3515   //   definition of an explicit specialization outside of its namespace,
   3516   //   or the declaration of a friend function that is a member of
   3517   //   another class or namespace (11.3). [...]
   3518 
   3519   // The user provided a superfluous scope specifier that refers back to the
   3520   // class or namespaces in which the entity is already declared.
   3521   //
   3522   // class X {
   3523   //   void X::f();
   3524   // };
   3525   if (Cur->Equals(DC)) {
   3526     Diag(Loc, diag::warn_member_extra_qualification)
   3527       << Name << FixItHint::CreateRemoval(SS.getRange());
   3528     SS.clear();
   3529     return false;
   3530   }
   3531 
   3532   // Check whether the qualifying scope encloses the scope of the original
   3533   // declaration.
   3534   if (!Cur->Encloses(DC)) {
   3535     if (Cur->isRecord())
   3536       Diag(Loc, diag::err_member_qualification)
   3537         << Name << SS.getRange();
   3538     else if (isa<TranslationUnitDecl>(DC))
   3539       Diag(Loc, diag::err_invalid_declarator_global_scope)
   3540         << Name << SS.getRange();
   3541     else if (isa<FunctionDecl>(Cur))
   3542       Diag(Loc, diag::err_invalid_declarator_in_function)
   3543         << Name << SS.getRange();
   3544     else
   3545       Diag(Loc, diag::err_invalid_declarator_scope)
   3546       << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
   3547 
   3548     return true;
   3549   }
   3550 
   3551   if (Cur->isRecord()) {
   3552     // Cannot qualify members within a class.
   3553     Diag(Loc, diag::err_member_qualification)
   3554       << Name << SS.getRange();
   3555     SS.clear();
   3556 
   3557     // C++ constructors and destructors with incorrect scopes can break
   3558     // our AST invariants by having the wrong underlying types. If
   3559     // that's the case, then drop this declaration entirely.
   3560     if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
   3561          Name.getNameKind() == DeclarationName::CXXDestructorName) &&
   3562         !Context.hasSameType(Name.getCXXNameType(),
   3563                              Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
   3564       return true;
   3565 
   3566     return false;
   3567   }
   3568 
   3569   // C++11 [dcl.meaning]p1:
   3570   //   [...] "The nested-name-specifier of the qualified declarator-id shall
   3571   //   not begin with a decltype-specifer"
   3572   NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
   3573   while (SpecLoc.getPrefix())
   3574     SpecLoc = SpecLoc.getPrefix();
   3575   if (dyn_cast_or_null<DecltypeType>(
   3576         SpecLoc.getNestedNameSpecifier()->getAsType()))
   3577     Diag(Loc, diag::err_decltype_in_declarator)
   3578       << SpecLoc.getTypeLoc().getSourceRange();
   3579 
   3580   return false;
   3581 }
   3582 
   3583 Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
   3584                              MultiTemplateParamsArg TemplateParamLists) {
   3585   // TODO: consider using NameInfo for diagnostic.
   3586   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
   3587   DeclarationName Name = NameInfo.getName();
   3588 
   3589   // All of these full declarators require an identifier.  If it doesn't have
   3590   // one, the ParsedFreeStandingDeclSpec action should be used.
   3591   if (!Name) {
   3592     if (!D.isInvalidType())  // Reject this if we think it is valid.
   3593       Diag(D.getDeclSpec().getLocStart(),
   3594            diag::err_declarator_need_ident)
   3595         << D.getDeclSpec().getSourceRange() << D.getSourceRange();
   3596     return 0;
   3597   } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
   3598     return 0;
   3599 
   3600   // The scope passed in may not be a decl scope.  Zip up the scope tree until
   3601   // we find one that is.
   3602   while ((S->getFlags() & Scope::DeclScope) == 0 ||
   3603          (S->getFlags() & Scope::TemplateParamScope) != 0)
   3604     S = S->getParent();
   3605 
   3606   DeclContext *DC = CurContext;
   3607   if (D.getCXXScopeSpec().isInvalid())
   3608     D.setInvalidType();
   3609   else if (D.getCXXScopeSpec().isSet()) {
   3610     if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
   3611                                         UPPC_DeclarationQualifier))
   3612       return 0;
   3613 
   3614     bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
   3615     DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
   3616     if (!DC) {
   3617       // If we could not compute the declaration context, it's because the
   3618       // declaration context is dependent but does not refer to a class,
   3619       // class template, or class template partial specialization. Complain
   3620       // and return early, to avoid the coming semantic disaster.
   3621       Diag(D.getIdentifierLoc(),
   3622            diag::err_template_qualified_declarator_no_match)
   3623         << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
   3624         << D.getCXXScopeSpec().getRange();
   3625       return 0;
   3626     }
   3627     bool IsDependentContext = DC->isDependentContext();
   3628 
   3629     if (!IsDependentContext &&
   3630         RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
   3631       return 0;
   3632 
   3633     if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
   3634       Diag(D.getIdentifierLoc(),
   3635            diag::err_member_def_undefined_record)
   3636         << Name << DC << D.getCXXScopeSpec().getRange();
   3637       D.setInvalidType();
   3638     } else if (!D.getDeclSpec().isFriendSpecified()) {
   3639       if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
   3640                                       Name, D.getIdentifierLoc())) {
   3641         if (DC->isRecord())
   3642           return 0;
   3643 
   3644         D.setInvalidType();
   3645       }
   3646     }
   3647 
   3648     // Check whether we need to rebuild the type of the given
   3649     // declaration in the current instantiation.
   3650     if (EnteringContext && IsDependentContext &&
   3651         TemplateParamLists.size() != 0) {
   3652       ContextRAII SavedContext(*this, DC);
   3653       if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
   3654         D.setInvalidType();
   3655     }
   3656   }
   3657 
   3658   if (DiagnoseClassNameShadow(DC, NameInfo))
   3659     // If this is a typedef, we'll end up spewing multiple diagnostics.
   3660     // Just return early; it's safer.
   3661     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
   3662       return 0;
   3663 
   3664   NamedDecl *New;
   3665 
   3666   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
   3667   QualType R = TInfo->getType();
   3668 
   3669   if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
   3670                                       UPPC_DeclarationType))
   3671     D.setInvalidType();
   3672 
   3673   LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
   3674                         ForRedeclaration);
   3675 
   3676   // See if this is a redefinition of a variable in the same scope.
   3677   if (!D.getCXXScopeSpec().isSet()) {
   3678     bool IsLinkageLookup = false;
   3679 
   3680     // If the declaration we're planning to build will be a function
   3681     // or object with linkage, then look for another declaration with
   3682     // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
   3683     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
   3684       /* Do nothing*/;
   3685     else if (R->isFunctionType()) {
   3686       if (CurContext->isFunctionOrMethod() ||
   3687           D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
   3688         IsLinkageLookup = true;
   3689     } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
   3690       IsLinkageLookup = true;
   3691     else if (CurContext->getRedeclContext()->isTranslationUnit() &&
   3692              D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
   3693       IsLinkageLookup = true;
   3694 
   3695     if (IsLinkageLookup)
   3696       Previous.clear(LookupRedeclarationWithLinkage);
   3697 
   3698     LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
   3699   } else { // Something like "int foo::x;"
   3700     LookupQualifiedName(Previous, DC);
   3701 
   3702     // C++ [dcl.meaning]p1:
   3703     //   When the declarator-id is qualified, the declaration shall refer to a
   3704     //  previously declared member of the class or namespace to which the
   3705     //  qualifier refers (or, in the case of a namespace, of an element of the
   3706     //  inline namespace set of that namespace (7.3.1)) or to a specialization
   3707     //  thereof; [...]
   3708     //
   3709     // Note that we already checked the context above, and that we do not have
   3710     // enough information to make sure that Previous contains the declaration
   3711     // we want to match. For example, given:
   3712     //
   3713     //   class X {
   3714     //     void f();
   3715     //     void f(float);
   3716     //   };
   3717     //
   3718     //   void X::f(int) { } // ill-formed
   3719     //
   3720     // In this case, Previous will point to the overload set
   3721     // containing the two f's declared in X, but neither of them
   3722     // matches.
   3723 
   3724     // C++ [dcl.meaning]p1:
   3725     //   [...] the member shall not merely have been introduced by a
   3726     //   using-declaration in the scope of the class or namespace nominated by
   3727     //   the nested-name-specifier of the declarator-id.
   3728     RemoveUsingDecls(Previous);
   3729   }
   3730 
   3731   if (Previous.isSingleResult() &&
   3732       Previous.getFoundDecl()->isTemplateParameter()) {
   3733     // Maybe we will complain about the shadowed template parameter.
   3734     if (!D.isInvalidType())
   3735       DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
   3736                                       Previous.getFoundDecl());
   3737 
   3738     // Just pretend that we didn't see the previous declaration.
   3739     Previous.clear();
   3740   }
   3741 
   3742   // In C++, the previous declaration we find might be a tag type
   3743   // (class or enum). In this case, the new declaration will hide the
   3744   // tag type. Note that this does does not apply if we're declaring a
   3745   // typedef (C++ [dcl.typedef]p4).
   3746   if (Previous.isSingleTagDecl() &&
   3747       D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
   3748     Previous.clear();
   3749 
   3750   bool AddToScope = true;
   3751   if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
   3752     if (TemplateParamLists.size()) {
   3753       Diag(D.getIdentifierLoc(), diag::err_template_typedef);
   3754       return 0;
   3755     }
   3756 
   3757     New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
   3758   } else if (R->isFunctionType()) {
   3759     New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
   3760                                   TemplateParamLists,
   3761                                   AddToScope);
   3762   } else {
   3763     New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
   3764                                   TemplateParamLists);
   3765   }
   3766 
   3767   if (New == 0)
   3768     return 0;
   3769 
   3770   // If this has an identifier and is not an invalid redeclaration or
   3771   // function template specialization, add it to the scope stack.
   3772   if (New->getDeclName() && AddToScope &&
   3773        !(D.isRedeclaration() && New->isInvalidDecl()))
   3774     PushOnScopeChains(New, S);
   3775 
   3776   return New;
   3777 }
   3778 
   3779 /// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
   3780 /// types into constant array types in certain situations which would otherwise
   3781 /// be errors (for GCC compatibility).
   3782 static QualType TryToFixInvalidVariablyModifiedType(QualType T,
   3783                                                     ASTContext &Context,
   3784                                                     bool &SizeIsNegative,
   3785                                                     llvm::APSInt &Oversized) {
   3786   // This method tries to turn a variable array into a constant
   3787   // array even when the size isn't an ICE.  This is necessary
   3788   // for compatibility with code that depends on gcc's buggy
   3789   // constant expression folding, like struct {char x[(int)(char*)2];}
   3790   SizeIsNegative = false;
   3791   Oversized = 0;
   3792 
   3793   if (T->isDependentType())
   3794     return QualType();
   3795 
   3796   QualifierCollector Qs;
   3797   const Type *Ty = Qs.strip(T);
   3798 
   3799   if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
   3800     QualType Pointee = PTy->getPointeeType();
   3801     QualType FixedType =
   3802         TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
   3803                                             Oversized);
   3804     if (FixedType.isNull()) return FixedType;
   3805     FixedType = Context.getPointerType(FixedType);
   3806     return Qs.apply(Context, FixedType);
   3807   }
   3808   if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
   3809     QualType Inner = PTy->getInnerType();
   3810     QualType FixedType =
   3811         TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
   3812                                             Oversized);
   3813     if (FixedType.isNull()) return FixedType;
   3814     FixedType = Context.getParenType(FixedType);
   3815     return Qs.apply(Context, FixedType);
   3816   }
   3817 
   3818   const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
   3819   if (!VLATy)
   3820     return QualType();
   3821   // FIXME: We should probably handle this case
   3822   if (VLATy->getElementType()->isVariablyModifiedType())
   3823     return QualType();
   3824 
   3825   llvm::APSInt Res;
   3826   if (!VLATy->getSizeExpr() ||
   3827       !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
   3828     return QualType();
   3829 
   3830   // Check whether the array size is negative.
   3831   if (Res.isSigned() && Res.isNegative()) {
   3832     SizeIsNegative = true;
   3833     return QualType();
   3834   }
   3835 
   3836   // Check whether the array is too large to be addressed.
   3837   unsigned ActiveSizeBits
   3838     = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
   3839                                               Res);
   3840   if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
   3841     Oversized = Res;
   3842     return QualType();
   3843   }
   3844 
   3845   return Context.getConstantArrayType(VLATy->getElementType(),
   3846                                       Res, ArrayType::Normal, 0);
   3847 }
   3848 
   3849 /// \brief Register the given locally-scoped external C declaration so
   3850 /// that it can be found later for redeclarations
   3851 void
   3852 Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
   3853                                        const LookupResult &Previous,
   3854                                        Scope *S) {
   3855   assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
   3856          "Decl is not a locally-scoped decl!");
   3857   // Note that we have a locally-scoped external with this name.
   3858   LocallyScopedExternalDecls[ND->getDeclName()] = ND;
   3859 
   3860   if (!Previous.isSingleResult())
   3861     return;
   3862 
   3863   NamedDecl *PrevDecl = Previous.getFoundDecl();
   3864 
   3865   // If there was a previous declaration of this variable, it may be
   3866   // in our identifier chain. Update the identifier chain with the new
   3867   // declaration.
   3868   if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
   3869     // The previous declaration was found on the identifer resolver
   3870     // chain, so remove it from its scope.
   3871 
   3872     if (S->isDeclScope(PrevDecl)) {
   3873       // Special case for redeclarations in the SAME scope.
   3874       // Because this declaration is going to be added to the identifier chain
   3875       // later, we should temporarily take it OFF the chain.
   3876       IdResolver.RemoveDecl(ND);
   3877 
   3878     } else {
   3879       // Find the scope for the original declaration.
   3880       while (S && !S->isDeclScope(PrevDecl))
   3881         S = S->getParent();
   3882     }
   3883 
   3884     if (S)
   3885       S->RemoveDecl(PrevDecl);
   3886   }
   3887 }
   3888 
   3889 llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
   3890 Sema::findLocallyScopedExternalDecl(DeclarationName Name) {
   3891   if (ExternalSource) {
   3892     // Load locally-scoped external decls from the external source.
   3893     SmallVector<NamedDecl *, 4> Decls;
   3894     ExternalSource->ReadLocallyScopedExternalDecls(Decls);
   3895     for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
   3896       llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
   3897         = LocallyScopedExternalDecls.find(Decls[I]->getDeclName());
   3898       if (Pos == LocallyScopedExternalDecls.end())
   3899         LocallyScopedExternalDecls[Decls[I]->getDeclName()] = Decls[I];
   3900     }
   3901   }
   3902 
   3903   return LocallyScopedExternalDecls.find(Name);
   3904 }
   3905 
   3906 /// \brief Diagnose function specifiers on a declaration of an identifier that
   3907 /// does not identify a function.
   3908 void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
   3909   // FIXME: We should probably indicate the identifier in question to avoid
   3910   // confusion for constructs like "inline int a(), b;"
   3911   if (D.getDeclSpec().isInlineSpecified())
   3912     Diag(D.getDeclSpec().getInlineSpecLoc(),
   3913          diag::err_inline_non_function);
   3914 
   3915   if (D.getDeclSpec().isVirtualSpecified())
   3916     Diag(D.getDeclSpec().getVirtualSpecLoc(),
   3917          diag::err_virtual_non_function);
   3918 
   3919   if (D.getDeclSpec().isExplicitSpecified())
   3920     Diag(D.getDeclSpec().getExplicitSpecLoc(),
   3921          diag::err_explicit_non_function);
   3922 }
   3923 
   3924 NamedDecl*
   3925 Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
   3926                              TypeSourceInfo *TInfo, LookupResult &Previous) {
   3927   // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
   3928   if (D.getCXXScopeSpec().isSet()) {
   3929     Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
   3930       << D.getCXXScopeSpec().getRange();
   3931     D.setInvalidType();
   3932     // Pretend we didn't see the scope specifier.
   3933     DC = CurContext;
   3934     Previous.clear();
   3935   }
   3936 
   3937   if (getLangOpts().CPlusPlus) {
   3938     // Check that there are no default arguments (C++ only).
   3939     CheckExtraCXXDefaultArguments(D);
   3940   }
   3941 
   3942   DiagnoseFunctionSpecifiers(D);
   3943 
   3944   if (D.getDeclSpec().isThreadSpecified())
   3945     Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
   3946   if (D.getDeclSpec().isConstexprSpecified())
   3947     Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
   3948       << 1;
   3949 
   3950   if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
   3951     Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
   3952       << D.getName().getSourceRange();
   3953     return 0;
   3954   }
   3955 
   3956   TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
   3957   if (!NewTD) return 0;
   3958 
   3959   // Handle attributes prior to checking for duplicates in MergeVarDecl
   3960   ProcessDeclAttributes(S, NewTD, D);
   3961 
   3962   CheckTypedefForVariablyModifiedType(S, NewTD);
   3963 
   3964   bool Redeclaration = D.isRedeclaration();
   3965   NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
   3966   D.setRedeclaration(Redeclaration);
   3967   return ND;
   3968 }
   3969 
   3970 void
   3971 Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
   3972   // C99 6.7.7p2: If a typedef name specifies a variably modified type
   3973   // then it shall have block scope.
   3974   // Note that variably modified types must be fixed before merging the decl so
   3975   // that redeclarations will match.
   3976   QualType T = NewTD->getUnderlyingType();
   3977   if (T->isVariablyModifiedType()) {
   3978     getCurFunction()->setHasBranchProtectedScope();
   3979 
   3980     if (S->getFnParent() == 0) {
   3981       bool SizeIsNegative;
   3982       llvm::APSInt Oversized;
   3983       QualType FixedTy =
   3984           TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
   3985                                               Oversized);
   3986       if (!FixedTy.isNull()) {
   3987         Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
   3988         NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
   3989       } else {
   3990         if (SizeIsNegative)
   3991           Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
   3992         else if (T->isVariableArrayType())
   3993           Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
   3994         else if (Oversized.getBoolValue())
   3995           Diag(NewTD->getLocation(), diag::err_array_too_large)
   3996             << Oversized.toString(10);
   3997         else
   3998           Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
   3999         NewTD->setInvalidDecl();
   4000       }
   4001     }
   4002   }
   4003 }
   4004 
   4005 
   4006 /// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
   4007 /// declares a typedef-name, either using the 'typedef' type specifier or via
   4008 /// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
   4009 NamedDecl*
   4010 Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
   4011                            LookupResult &Previous, bool &Redeclaration) {
   4012   // Merge the decl with the existing one if appropriate. If the decl is
   4013   // in an outer scope, it isn't the same thing.
   4014   FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
   4015                        /*ExplicitInstantiationOrSpecialization=*/false);
   4016   if (!Previous.empty()) {
   4017     Redeclaration = true;
   4018     MergeTypedefNameDecl(NewTD, Previous);
   4019   }
   4020 
   4021   // If this is the C FILE type, notify the AST context.
   4022   if (IdentifierInfo *II = NewTD->getIdentifier())
   4023     if (!NewTD->isInvalidDecl() &&
   4024         NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
   4025       if (II->isStr("FILE"))
   4026         Context.setFILEDecl(NewTD);
   4027       else if (II->isStr("jmp_buf"))
   4028         Context.setjmp_bufDecl(NewTD);
   4029       else if (II->isStr("sigjmp_buf"))
   4030         Context.setsigjmp_bufDecl(NewTD);
   4031       else if (II->isStr("ucontext_t"))
   4032         Context.setucontext_tDecl(NewTD);
   4033     }
   4034 
   4035   return NewTD;
   4036 }
   4037 
   4038 /// \brief Determines whether the given declaration is an out-of-scope
   4039 /// previous declaration.
   4040 ///
   4041 /// This routine should be invoked when name lookup has found a
   4042 /// previous declaration (PrevDecl) that is not in the scope where a
   4043 /// new declaration by the same name is being introduced. If the new
   4044 /// declaration occurs in a local scope, previous declarations with
   4045 /// linkage may still be considered previous declarations (C99
   4046 /// 6.2.2p4-5, C++ [basic.link]p6).
   4047 ///
   4048 /// \param PrevDecl the previous declaration found by name
   4049 /// lookup
   4050 ///
   4051 /// \param DC the context in which the new declaration is being
   4052 /// declared.
   4053 ///
   4054 /// \returns true if PrevDecl is an out-of-scope previous declaration
   4055 /// for a new delcaration with the same name.
   4056 static bool
   4057 isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
   4058                                 ASTContext &Context) {
   4059   if (!PrevDecl)
   4060     return false;
   4061 
   4062   if (!PrevDecl->hasLinkage())
   4063     return false;
   4064 
   4065   if (Context.getLangOpts().CPlusPlus) {
   4066     // C++ [basic.link]p6:
   4067     //   If there is a visible declaration of an entity with linkage
   4068     //   having the same name and type, ignoring entities declared
   4069     //   outside the innermost enclosing namespace scope, the block
   4070     //   scope declaration declares that same entity and receives the
   4071     //   linkage of the previous declaration.
   4072     DeclContext *OuterContext = DC->getRedeclContext();
   4073     if (!OuterContext->isFunctionOrMethod())
   4074       // This rule only applies to block-scope declarations.
   4075       return false;
   4076 
   4077     DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
   4078     if (PrevOuterContext->isRecord())
   4079       // We found a member function: ignore it.
   4080       return false;
   4081 
   4082     // Find the innermost enclosing namespace for the new and
   4083     // previous declarations.
   4084     OuterContext = OuterContext->getEnclosingNamespaceContext();
   4085     PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
   4086 
   4087     // The previous declaration is in a different namespace, so it
   4088     // isn't the same function.
   4089     if (!OuterContext->Equals(PrevOuterContext))
   4090       return false;
   4091   }
   4092 
   4093   return true;
   4094 }
   4095 
   4096 static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
   4097   CXXScopeSpec &SS = D.getCXXScopeSpec();
   4098   if (!SS.isSet()) return;
   4099   DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
   4100 }
   4101 
   4102 bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
   4103   QualType type = decl->getType();
   4104   Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
   4105   if (lifetime == Qualifiers::OCL_Autoreleasing) {
   4106     // Various kinds of declaration aren't allowed to be __autoreleasing.
   4107     unsigned kind = -1U;
   4108     if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
   4109       if (var->hasAttr<BlocksAttr>())
   4110         kind = 0; // __block
   4111       else if (!var->hasLocalStorage())
   4112         kind = 1; // global
   4113     } else if (isa<ObjCIvarDecl>(decl)) {
   4114       kind = 3; // ivar
   4115     } else if (isa<FieldDecl>(decl)) {
   4116       kind = 2; // field
   4117     }
   4118 
   4119     if (kind != -1U) {
   4120       Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
   4121         << kind;
   4122     }
   4123   } else if (lifetime == Qualifiers::OCL_None) {
   4124     // Try to infer lifetime.
   4125     if (!type->isObjCLifetimeType())
   4126       return false;
   4127 
   4128     lifetime = type->getObjCARCImplicitLifetime();
   4129     type = Context.getLifetimeQualifiedType(type, lifetime);
   4130     decl->setType(type);
   4131   }
   4132 
   4133   if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
   4134     // Thread-local variables cannot have lifetime.
   4135     if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
   4136         var->isThreadSpecified()) {
   4137       Diag(var->getLocation(), diag::err_arc_thread_ownership)
   4138         << var->getType();
   4139       return true;
   4140     }
   4141   }
   4142 
   4143   return false;
   4144 }
   4145 
   4146 NamedDecl*
   4147 Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
   4148                               TypeSourceInfo *TInfo, LookupResult &Previous,
   4149                               MultiTemplateParamsArg TemplateParamLists) {
   4150   QualType R = TInfo->getType();
   4151   DeclarationName Name = GetNameForDeclarator(D).getName();
   4152 
   4153   // Check that there are no default arguments (C++ only).
   4154   if (getLangOpts().CPlusPlus)
   4155     CheckExtraCXXDefaultArguments(D);
   4156 
   4157   DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
   4158   assert(SCSpec != DeclSpec::SCS_typedef &&
   4159          "Parser allowed 'typedef' as storage class VarDecl.");
   4160   VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
   4161   if (SCSpec == DeclSpec::SCS_mutable) {
   4162     // mutable can only appear on non-static class members, so it's always
   4163     // an error here
   4164     Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
   4165     D.setInvalidType();
   4166     SC = SC_None;
   4167   }
   4168   SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
   4169   VarDecl::StorageClass SCAsWritten
   4170     = StorageClassSpecToVarDeclStorageClass(SCSpec);
   4171 
   4172   IdentifierInfo *II = Name.getAsIdentifierInfo();
   4173   if (!II) {
   4174     Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
   4175       << Name;
   4176     return 0;
   4177   }
   4178 
   4179   DiagnoseFunctionSpecifiers(D);
   4180 
   4181   if (!DC->isRecord() && S->getFnParent() == 0) {
   4182     // C99 6.9p2: The storage-class specifiers auto and register shall not
   4183     // appear in the declaration specifiers in an external declaration.
   4184     if (SC == SC_Auto || SC == SC_Register) {
   4185 
   4186       // If this is a register variable with an asm label specified, then this
   4187       // is a GNU extension.
   4188       if (SC == SC_Register && D.getAsmLabel())
   4189         Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
   4190       else
   4191         Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
   4192       D.setInvalidType();
   4193     }
   4194   }
   4195 
   4196   if (getLangOpts().OpenCL) {
   4197     // Set up the special work-group-local storage class for variables in the
   4198     // OpenCL __local address space.
   4199     if (R.getAddressSpace() == LangAS::opencl_local)
   4200       SC = SC_OpenCLWorkGroupLocal;
   4201   }
   4202 
   4203   bool isExplicitSpecialization = false;
   4204   VarDecl *NewVD;
   4205   if (!getLangOpts().CPlusPlus) {
   4206     NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
   4207                             D.getIdentifierLoc(), II,
   4208                             R, TInfo, SC, SCAsWritten);
   4209 
   4210     if (D.isInvalidType())
   4211       NewVD->setInvalidDecl();
   4212   } else {
   4213     if (DC->isRecord() && !CurContext->isRecord()) {
   4214       // This is an out-of-line definition of a static data member.
   4215       if (SC == SC_Static) {
   4216         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
   4217              diag::err_static_out_of_line)
   4218           << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
   4219       } else if (SC == SC_None)
   4220         SC = SC_Static;
   4221     }
   4222     if (SC == SC_Static && CurContext->isRecord()) {
   4223       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
   4224         if (RD->isLocalClass())
   4225           Diag(D.getIdentifierLoc(),
   4226                diag::err_static_data_member_not_allowed_in_local_class)
   4227             << Name << RD->getDeclName();
   4228 
   4229         // C++98 [class.union]p1: If a union contains a static data member,
   4230         // the program is ill-formed. C++11 drops this restriction.
   4231         if (RD->isUnion())
   4232           Diag(D.getIdentifierLoc(),
   4233                getLangOpts().CPlusPlus0x
   4234                  ? diag::warn_cxx98_compat_static_data_member_in_union
   4235                  : diag::ext_static_data_member_in_union) << Name;
   4236         // We conservatively disallow static data members in anonymous structs.
   4237         else if (!RD->getDeclName())
   4238           Diag(D.getIdentifierLoc(),
   4239                diag::err_static_data_member_not_allowed_in_anon_struct)
   4240             << Name << RD->isUnion();
   4241       }
   4242     }
   4243 
   4244     // Match up the template parameter lists with the scope specifier, then
   4245     // determine whether we have a template or a template specialization.
   4246     isExplicitSpecialization = false;
   4247     bool Invalid = false;
   4248     if (TemplateParameterList *TemplateParams
   4249         = MatchTemplateParametersToScopeSpecifier(
   4250                                   D.getDeclSpec().getLocStart(),
   4251                                                   D.getIdentifierLoc(),
   4252                                                   D.getCXXScopeSpec(),
   4253                                                   TemplateParamLists.data(),
   4254                                                   TemplateParamLists.size(),
   4255                                                   /*never a friend*/ false,
   4256                                                   isExplicitSpecialization,
   4257                                                   Invalid)) {
   4258       if (TemplateParams->size() > 0) {
   4259         // There is no such thing as a variable template.
   4260         Diag(D.getIdentifierLoc(), diag::err_template_variable)
   4261           << II
   4262           << SourceRange(TemplateParams->getTemplateLoc(),
   4263                          TemplateParams->getRAngleLoc());
   4264         return 0;
   4265       } else {
   4266         // There is an extraneous 'template<>' for this variable. Complain
   4267         // about it, but allow the declaration of the variable.
   4268         Diag(TemplateParams->getTemplateLoc(),
   4269              diag::err_template_variable_noparams)
   4270           << II
   4271           << SourceRange(TemplateParams->getTemplateLoc(),
   4272                          TemplateParams->getRAngleLoc());
   4273       }
   4274     }
   4275 
   4276     NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
   4277                             D.getIdentifierLoc(), II,
   4278                             R, TInfo, SC, SCAsWritten);
   4279 
   4280     // If this decl has an auto type in need of deduction, make a note of the
   4281     // Decl so we can diagnose uses of it in its own initializer.
   4282     if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
   4283         R->getContainedAutoType())
   4284       ParsingInitForAutoVars.insert(NewVD);
   4285 
   4286     if (D.isInvalidType() || Invalid)
   4287       NewVD->setInvalidDecl();
   4288 
   4289     SetNestedNameSpecifier(NewVD, D);
   4290 
   4291     if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
   4292       NewVD->setTemplateParameterListsInfo(Context,
   4293                                            TemplateParamLists.size(),
   4294                                            TemplateParamLists.data());
   4295     }
   4296 
   4297     if (D.getDeclSpec().isConstexprSpecified())
   4298       NewVD->setConstexpr(true);
   4299   }
   4300 
   4301   // Set the lexical context. If the declarator has a C++ scope specifier, the
   4302   // lexical context will be different from the semantic context.
   4303   NewVD->setLexicalDeclContext(CurContext);
   4304 
   4305   if (D.getDeclSpec().isThreadSpecified()) {
   4306     if (NewVD->hasLocalStorage())
   4307       Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
   4308     else if (!Context.getTargetInfo().isTLSSupported())
   4309       Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
   4310     else
   4311       NewVD->setThreadSpecified(true);
   4312   }
   4313 
   4314   if (D.getDeclSpec().isModulePrivateSpecified()) {
   4315     if (isExplicitSpecialization)
   4316       Diag(NewVD->getLocation(), diag::err_module_private_specialization)
   4317         << 2
   4318         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
   4319     else if (NewVD->hasLocalStorage())
   4320       Diag(NewVD->getLocation(), diag::err_module_private_local)
   4321         << 0 << NewVD->getDeclName()
   4322         << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
   4323         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
   4324     else
   4325       NewVD->setModulePrivate();
   4326   }
   4327 
   4328   // Handle attributes prior to checking for duplicates in MergeVarDecl
   4329   ProcessDeclAttributes(S, NewVD, D);
   4330 
   4331   if (getLangOpts().CUDA) {
   4332     // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
   4333     // storage [duration]."
   4334     if (SC == SC_None && S->getFnParent() != 0 &&
   4335        (NewVD->hasAttr<CUDASharedAttr>() || NewVD->hasAttr<CUDAConstantAttr>()))
   4336       NewVD->setStorageClass(SC_Static);
   4337   }
   4338 
   4339   // In auto-retain/release, infer strong retension for variables of
   4340   // retainable type.
   4341   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
   4342     NewVD->setInvalidDecl();
   4343 
   4344   // Handle GNU asm-label extension (encoded as an attribute).
   4345   if (Expr *E = (Expr*)D.getAsmLabel()) {
   4346     // The parser guarantees this is a string.
   4347     StringLiteral *SE = cast<StringLiteral>(E);
   4348     StringRef Label = SE->getString();
   4349     if (S->getFnParent() != 0) {
   4350       switch (SC) {
   4351       case SC_None:
   4352       case SC_Auto:
   4353         Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
   4354         break;
   4355       case SC_Register:
   4356         if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
   4357           Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
   4358         break;
   4359       case SC_Static:
   4360       case SC_Extern:
   4361       case SC_PrivateExtern:
   4362       case SC_OpenCLWorkGroupLocal:
   4363         break;
   4364       }
   4365     }
   4366 
   4367     NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
   4368                                                 Context, Label));
   4369   } else if (!ExtnameUndeclaredIdentifiers.empty()) {
   4370     llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
   4371       ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
   4372     if (I != ExtnameUndeclaredIdentifiers.end()) {
   4373       NewVD->addAttr(I->second);
   4374       ExtnameUndeclaredIdentifiers.erase(I);
   4375     }
   4376   }
   4377 
   4378   // Diagnose shadowed variables before filtering for scope.
   4379   if (!D.getCXXScopeSpec().isSet())
   4380     CheckShadow(S, NewVD, Previous);
   4381 
   4382   // Don't consider existing declarations that are in a different
   4383   // scope and are out-of-semantic-context declarations (if the new
   4384   // declaration has linkage).
   4385   FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
   4386                        isExplicitSpecialization);
   4387 
   4388   if (!getLangOpts().CPlusPlus) {
   4389     D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
   4390   } else {
   4391     // Merge the decl with the existing one if appropriate.
   4392     if (!Previous.empty()) {
   4393       if (Previous.isSingleResult() &&
   4394           isa<FieldDecl>(Previous.getFoundDecl()) &&
   4395           D.getCXXScopeSpec().isSet()) {
   4396         // The user tried to define a non-static data member
   4397         // out-of-line (C++ [dcl.meaning]p1).
   4398         Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
   4399           << D.getCXXScopeSpec().getRange();
   4400         Previous.clear();
   4401         NewVD->setInvalidDecl();
   4402       }
   4403     } else if (D.getCXXScopeSpec().isSet()) {
   4404       // No previous declaration in the qualifying scope.
   4405       Diag(D.getIdentifierLoc(), diag::err_no_member)
   4406         << Name << computeDeclContext(D.getCXXScopeSpec(), true)
   4407         << D.getCXXScopeSpec().getRange();
   4408       NewVD->setInvalidDecl();
   4409     }
   4410 
   4411     D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
   4412 
   4413     // This is an explicit specialization of a static data member. Check it.
   4414     if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
   4415         CheckMemberSpecialization(NewVD, Previous))
   4416       NewVD->setInvalidDecl();
   4417   }
   4418 
   4419   // If this is a locally-scoped extern C variable, update the map of
   4420   // such variables.
   4421   if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
   4422       !NewVD->isInvalidDecl())
   4423     RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
   4424 
   4425   // If there's a #pragma GCC visibility in scope, and this isn't a class
   4426   // member, set the visibility of this variable.
   4427   if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
   4428     AddPushedVisibilityAttribute(NewVD);
   4429 
   4430   MarkUnusedFileScopedDecl(NewVD);
   4431 
   4432   return NewVD;
   4433 }
   4434 
   4435 /// \brief Diagnose variable or built-in function shadowing.  Implements
   4436 /// -Wshadow.
   4437 ///
   4438 /// This method is called whenever a VarDecl is added to a "useful"
   4439 /// scope.
   4440 ///
   4441 /// \param S the scope in which the shadowing name is being declared
   4442 /// \param R the lookup of the name
   4443 ///
   4444 void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
   4445   // Return if warning is ignored.
   4446   if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
   4447         DiagnosticsEngine::Ignored)
   4448     return;
   4449 
   4450   // Don't diagnose declarations at file scope.
   4451   if (D->hasGlobalStorage())
   4452     return;
   4453 
   4454   DeclContext *NewDC = D->getDeclContext();
   4455 
   4456   // Only diagnose if we're shadowing an unambiguous field or variable.
   4457   if (R.getResultKind() != LookupResult::Found)
   4458     return;
   4459 
   4460   NamedDecl* ShadowedDecl = R.getFoundDecl();
   4461   if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
   4462     return;
   4463 
   4464   // Fields are not shadowed by variables in C++ static methods.
   4465   if (isa<FieldDecl>(ShadowedDecl))
   4466     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
   4467       if (MD->isStatic())
   4468         return;
   4469 
   4470   if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
   4471     if (shadowedVar->isExternC()) {
   4472       // For shadowing external vars, make sure that we point to the global
   4473       // declaration, not a locally scoped extern declaration.
   4474       for (VarDecl::redecl_iterator
   4475              I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
   4476            I != E; ++I)
   4477         if (I->isFileVarDecl()) {
   4478           ShadowedDecl = *I;
   4479           break;
   4480         }
   4481     }
   4482 
   4483   DeclContext *OldDC = ShadowedDecl->getDeclContext();
   4484 
   4485   // Only warn about certain kinds of shadowing for class members.
   4486   if (NewDC && NewDC->isRecord()) {
   4487     // In particular, don't warn about shadowing non-class members.
   4488     if (!OldDC->isRecord())
   4489       return;
   4490 
   4491     // TODO: should we warn about static data members shadowing
   4492     // static data members from base classes?
   4493 
   4494     // TODO: don't diagnose for inaccessible shadowed members.
   4495     // This is hard to do perfectly because we might friend the
   4496     // shadowing context, but that's just a false negative.
   4497   }
   4498 
   4499   // Determine what kind of declaration we're shadowing.
   4500   unsigned Kind;
   4501   if (isa<RecordDecl>(OldDC)) {
   4502     if (isa<FieldDecl>(ShadowedDecl))
   4503       Kind = 3; // field
   4504     else
   4505       Kind = 2; // static data member
   4506   } else if (OldDC->isFileContext())
   4507     Kind = 1; // global
   4508   else
   4509     Kind = 0; // local
   4510 
   4511   DeclarationName Name = R.getLookupName();
   4512 
   4513   // Emit warning and note.
   4514   Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
   4515   Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
   4516 }
   4517 
   4518 /// \brief Check -Wshadow without the advantage of a previous lookup.
   4519 void Sema::CheckShadow(Scope *S, VarDecl *D) {
   4520   if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
   4521         DiagnosticsEngine::Ignored)
   4522     return;
   4523 
   4524   LookupResult R(*this, D->getDeclName(), D->getLocation(),
   4525                  Sema::LookupOrdinaryName, Sema::ForRedeclaration);
   4526   LookupName(R, S);
   4527   CheckShadow(S, D, R);
   4528 }
   4529 
   4530 /// \brief Perform semantic checking on a newly-created variable
   4531 /// declaration.
   4532 ///
   4533 /// This routine performs all of the type-checking required for a
   4534 /// variable declaration once it has been built. It is used both to
   4535 /// check variables after they have been parsed and their declarators
   4536 /// have been translated into a declaration, and to check variables
   4537 /// that have been instantiated from a template.
   4538 ///
   4539 /// Sets NewVD->isInvalidDecl() if an error was encountered.
   4540 ///
   4541 /// Returns true if the variable declaration is a redeclaration.
   4542 bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
   4543                                     LookupResult &Previous) {
   4544   // If the decl is already known invalid, don't check it.
   4545   if (NewVD->isInvalidDecl())
   4546     return false;
   4547 
   4548   QualType T = NewVD->getType();
   4549 
   4550   if (T->isObjCObjectType()) {
   4551     Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
   4552       << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
   4553     T = Context.getObjCObjectPointerType(T);
   4554     NewVD->setType(T);
   4555   }
   4556 
   4557   // Emit an error if an address space was applied to decl with local storage.
   4558   // This includes arrays of objects with address space qualifiers, but not
   4559   // automatic variables that point to other address spaces.
   4560   // ISO/IEC TR 18037 S5.1.2
   4561   if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
   4562     Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
   4563     NewVD->setInvalidDecl();
   4564     return false;
   4565   }
   4566 
   4567   // OpenCL v1.2 s6.8 -- The static qualifier is valid only in program
   4568   // scope.
   4569   if ((getLangOpts().OpenCLVersion >= 120)
   4570       && NewVD->isStaticLocal()) {
   4571     Diag(NewVD->getLocation(), diag::err_static_function_scope);
   4572     NewVD->setInvalidDecl();
   4573     return false;
   4574   }
   4575 
   4576   if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
   4577       && !NewVD->hasAttr<BlocksAttr>()) {
   4578     if (getLangOpts().getGC() != LangOptions::NonGC)
   4579       Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
   4580     else
   4581       Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
   4582   }
   4583 
   4584   bool isVM = T->isVariablyModifiedType();
   4585   if (isVM || NewVD->hasAttr<CleanupAttr>() ||
   4586       NewVD->hasAttr<BlocksAttr>())
   4587     getCurFunction()->setHasBranchProtectedScope();
   4588 
   4589   if ((isVM && NewVD->hasLinkage()) ||
   4590       (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
   4591     bool SizeIsNegative;
   4592     llvm::APSInt Oversized;
   4593     QualType FixedTy =
   4594         TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
   4595                                             Oversized);
   4596 
   4597     if (FixedTy.isNull() && T->isVariableArrayType()) {
   4598       const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
   4599       // FIXME: This won't give the correct result for
   4600       // int a[10][n];
   4601       SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
   4602 
   4603       if (NewVD->isFileVarDecl())
   4604         Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
   4605         << SizeRange;
   4606       else if (NewVD->getStorageClass() == SC_Static)
   4607         Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
   4608         << SizeRange;
   4609       else
   4610         Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
   4611         << SizeRange;
   4612       NewVD->setInvalidDecl();
   4613       return false;
   4614     }
   4615 
   4616     if (FixedTy.isNull()) {
   4617       if (NewVD->isFileVarDecl())
   4618         Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
   4619       else
   4620         Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
   4621       NewVD->setInvalidDecl();
   4622       return false;
   4623     }
   4624 
   4625     Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
   4626     NewVD->setType(FixedTy);
   4627   }
   4628 
   4629   if (Previous.empty() && NewVD->isExternC()) {
   4630     // Since we did not find anything by this name and we're declaring
   4631     // an extern "C" variable, look for a non-visible extern "C"
   4632     // declaration with the same name.
   4633     llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
   4634       = findLocallyScopedExternalDecl(NewVD->getDeclName());
   4635     if (Pos != LocallyScopedExternalDecls.end())
   4636       Previous.addDecl(Pos->second);
   4637   }
   4638 
   4639   if (T->isVoidType() && !NewVD->hasExternalStorage()) {
   4640     Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
   4641       << T;
   4642     NewVD->setInvalidDecl();
   4643     return false;
   4644   }
   4645 
   4646   if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
   4647     Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
   4648     NewVD->setInvalidDecl();
   4649     return false;
   4650   }
   4651 
   4652   if (isVM && NewVD->hasAttr<BlocksAttr>()) {
   4653     Diag(NewVD->getLocation(), diag::err_block_on_vm);
   4654     NewVD->setInvalidDecl();
   4655     return false;
   4656   }
   4657 
   4658   if (NewVD->isConstexpr() && !T->isDependentType() &&
   4659       RequireLiteralType(NewVD->getLocation(), T,
   4660                          diag::err_constexpr_var_non_literal)) {
   4661     NewVD->setInvalidDecl();
   4662     return false;
   4663   }
   4664 
   4665   if (!Previous.empty()) {
   4666     MergeVarDecl(NewVD, Previous);
   4667     return true;
   4668   }
   4669   return false;
   4670 }
   4671 
   4672 /// \brief Data used with FindOverriddenMethod
   4673 struct FindOverriddenMethodData {
   4674   Sema *S;
   4675   CXXMethodDecl *Method;
   4676 };
   4677 
   4678 /// \brief Member lookup function that determines whether a given C++
   4679 /// method overrides a method in a base class, to be used with
   4680 /// CXXRecordDecl::lookupInBases().
   4681 static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
   4682                                  CXXBasePath &Path,
   4683                                  void *UserData) {
   4684   RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
   4685 
   4686   FindOverriddenMethodData *Data
   4687     = reinterpret_cast<FindOverriddenMethodData*>(UserData);
   4688 
   4689   DeclarationName Name = Data->Method->getDeclName();
   4690 
   4691   // FIXME: Do we care about other names here too?
   4692   if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
   4693     // We really want to find the base class destructor here.
   4694     QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
   4695     CanQualType CT = Data->S->Context.getCanonicalType(T);
   4696 
   4697     Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
   4698   }
   4699 
   4700   for (Path.Decls = BaseRecord->lookup(Name);
   4701        Path.Decls.first != Path.Decls.second;
   4702        ++Path.Decls.first) {
   4703     NamedDecl *D = *Path.Decls.first;
   4704     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
   4705       if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
   4706         return true;
   4707     }
   4708   }
   4709 
   4710   return false;
   4711 }
   4712 
   4713 /// AddOverriddenMethods - See if a method overrides any in the base classes,
   4714 /// and if so, check that it's a valid override and remember it.
   4715 bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
   4716   // Look for virtual methods in base classes that this method might override.
   4717   CXXBasePaths Paths;
   4718   FindOverriddenMethodData Data;
   4719   Data.Method = MD;
   4720   Data.S = this;
   4721   bool AddedAny = false;
   4722   if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
   4723     for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
   4724          E = Paths.found_decls_end(); I != E; ++I) {
   4725       if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
   4726         MD->addOverriddenMethod(OldMD->getCanonicalDecl());
   4727         if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
   4728             !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
   4729             !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
   4730           AddedAny = true;
   4731         }
   4732       }
   4733     }
   4734   }
   4735 
   4736   return AddedAny;
   4737 }
   4738 
   4739 namespace {
   4740   // Struct for holding all of the extra arguments needed by
   4741   // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
   4742   struct ActOnFDArgs {
   4743     Scope *S;
   4744     Declarator &D;
   4745     MultiTemplateParamsArg TemplateParamLists;
   4746     bool AddToScope;
   4747   };
   4748 }
   4749 
   4750 namespace {
   4751 
   4752 // Callback to only accept typo corrections that have a non-zero edit distance.
   4753 // Also only accept corrections that have the same parent decl.
   4754 class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
   4755  public:
   4756   DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
   4757                             CXXRecordDecl *Parent)
   4758       : Context(Context), OriginalFD(TypoFD),
   4759         ExpectedParent(Parent ? Parent->getCanonicalDecl() : 0) {}
   4760 
   4761   virtual bool ValidateCandidate(const TypoCorrection &candidate) {
   4762     if (candidate.getEditDistance() == 0)
   4763       return false;
   4764 
   4765     llvm::SmallVector<unsigned, 1> MismatchedParams;
   4766     for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
   4767                                           CDeclEnd = candidate.end();
   4768          CDecl != CDeclEnd; ++CDecl) {
   4769       FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
   4770 
   4771       if (FD && !FD->hasBody() &&
   4772           hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
   4773         if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
   4774           CXXRecordDecl *Parent = MD->getParent();
   4775           if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
   4776             return true;
   4777         } else if (!ExpectedParent) {
   4778           return true;
   4779         }
   4780       }
   4781     }
   4782 
   4783     return false;
   4784   }
   4785 
   4786  private:
   4787   ASTContext &Context;
   4788   FunctionDecl *OriginalFD;
   4789   CXXRecordDecl *ExpectedParent;
   4790 };
   4791 
   4792 }
   4793 
   4794 /// \brief Generate diagnostics for an invalid function redeclaration.
   4795 ///
   4796 /// This routine handles generating the diagnostic messages for an invalid
   4797 /// function redeclaration, including finding possible similar declarations
   4798 /// or performing typo correction if there are no previous declarations with
   4799 /// the same name.
   4800 ///
   4801 /// Returns a NamedDecl iff typo correction was performed and substituting in
   4802 /// the new declaration name does not cause new errors.
   4803 static NamedDecl* DiagnoseInvalidRedeclaration(
   4804     Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
   4805     ActOnFDArgs &ExtraArgs) {
   4806   NamedDecl *Result = NULL;
   4807   DeclarationName Name = NewFD->getDeclName();
   4808   DeclContext *NewDC = NewFD->getDeclContext();
   4809   LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
   4810                     Sema::LookupOrdinaryName, Sema::ForRedeclaration);
   4811   llvm::SmallVector<unsigned, 1> MismatchedParams;
   4812   llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1> NearMatches;
   4813   TypoCorrection Correction;
   4814   bool isFriendDecl = (SemaRef.getLangOpts().CPlusPlus &&
   4815                        ExtraArgs.D.getDeclSpec().isFriendSpecified());
   4816   unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
   4817                                   : diag::err_member_def_does_not_match;
   4818 
   4819   NewFD->setInvalidDecl();
   4820   SemaRef.LookupQualifiedName(Prev, NewDC);
   4821   assert(!Prev.isAmbiguous() &&
   4822          "Cannot have an ambiguity in previous-declaration lookup");
   4823   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
   4824   DifferentNameValidatorCCC Validator(SemaRef.Context, NewFD,
   4825                                       MD ? MD->getParent() : 0);
   4826   if (!Prev.empty()) {
   4827     for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
   4828          Func != FuncEnd; ++Func) {
   4829       FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
   4830       if (FD &&
   4831           hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
   4832         // Add 1 to the index so that 0 can mean the mismatch didn't
   4833         // involve a parameter
   4834         unsigned ParamNum =
   4835             MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
   4836         NearMatches.push_back(std::make_pair(FD, ParamNum));
   4837       }
   4838     }
   4839   // If the qualified name lookup yielded nothing, try typo correction
   4840   } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
   4841                                          Prev.getLookupKind(), 0, 0,
   4842                                          Validator, NewDC))) {
   4843     // Trap errors.
   4844     Sema::SFINAETrap Trap(SemaRef);
   4845 
   4846     // Set up everything for the call to ActOnFunctionDeclarator
   4847     ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
   4848                               ExtraArgs.D.getIdentifierLoc());
   4849     Previous.clear();
   4850     Previous.setLookupName(Correction.getCorrection());
   4851     for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
   4852                                     CDeclEnd = Correction.end();
   4853          CDecl != CDeclEnd; ++CDecl) {
   4854       FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
   4855       if (FD && !FD->hasBody() &&
   4856           hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
   4857         Previous.addDecl(FD);
   4858       }
   4859     }
   4860     bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
   4861     // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
   4862     // pieces need to verify the typo-corrected C++ declaraction and hopefully
   4863     // eliminate the need for the parameter pack ExtraArgs.
   4864     Result = SemaRef.ActOnFunctionDeclarator(
   4865         ExtraArgs.S, ExtraArgs.D,
   4866         Correction.getCorrectionDecl()->getDeclContext(),
   4867         NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
   4868         ExtraArgs.AddToScope);
   4869     if (Trap.hasErrorOccurred()) {
   4870       // Pretend the typo correction never occurred
   4871       ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
   4872                                 ExtraArgs.D.getIdentifierLoc());
   4873       ExtraArgs.D.setRedeclaration(wasRedeclaration);
   4874       Previous.clear();
   4875       Previous.setLookupName(Name);
   4876       Result = NULL;
   4877     } else {
   4878       for (LookupResult::iterator Func = Previous.begin(),
   4879                                FuncEnd = Previous.end();
   4880            Func != FuncEnd; ++Func) {
   4881         if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
   4882           NearMatches.push_back(std::make_pair(FD, 0));
   4883       }
   4884     }
   4885     if (NearMatches.empty()) {
   4886       // Ignore the correction if it didn't yield any close FunctionDecl matches
   4887       Correction = TypoCorrection();
   4888     } else {
   4889       DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
   4890                              : diag::err_member_def_does_not_match_suggest;
   4891     }
   4892   }
   4893 
   4894   if (Correction) {
   4895     SourceRange FixItLoc(NewFD->getLocation());
   4896     CXXScopeSpec &SS = ExtraArgs.D.getCXXScopeSpec();
   4897     if (Correction.getCorrectionSpecifier() && SS.isValid())
   4898       FixItLoc.setBegin(SS.getBeginLoc());
   4899     SemaRef.Diag(NewFD->getLocStart(), DiagMsg)
   4900         << Name << NewDC << Correction.getQuoted(SemaRef.getLangOpts())
   4901         << FixItHint::CreateReplacement(
   4902             FixItLoc, Correction.getAsString(SemaRef.getLangOpts()));
   4903   } else {
   4904     SemaRef.Diag(NewFD->getLocation(), DiagMsg)
   4905         << Name << NewDC << NewFD->getLocation();
   4906   }
   4907 
   4908   bool NewFDisConst = false;
   4909   if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
   4910     NewFDisConst = NewMD->isConst();
   4911 
   4912   for (llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1>::iterator
   4913        NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
   4914        NearMatch != NearMatchEnd; ++NearMatch) {
   4915     FunctionDecl *FD = NearMatch->first;
   4916     bool FDisConst = false;
   4917     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
   4918       FDisConst = MD->isConst();
   4919 
   4920     if (unsigned Idx = NearMatch->second) {
   4921       ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
   4922       SourceLocation Loc = FDParam->getTypeSpecStartLoc();
   4923       if (Loc.isInvalid()) Loc = FD->getLocation();
   4924       SemaRef.Diag(Loc, diag::note_member_def_close_param_match)
   4925           << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
   4926     } else if (Correction) {
   4927       SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
   4928           << Correction.getQuoted(SemaRef.getLangOpts());
   4929     } else if (FDisConst != NewFDisConst) {
   4930       SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
   4931           << NewFDisConst << FD->getSourceRange().getEnd();
   4932     } else
   4933       SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
   4934   }
   4935   return Result;
   4936 }
   4937 
   4938 static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
   4939                                                           Declarator &D) {
   4940   switch (D.getDeclSpec().getStorageClassSpec()) {
   4941   default: llvm_unreachable("Unknown storage class!");
   4942   case DeclSpec::SCS_auto:
   4943   case DeclSpec::SCS_register:
   4944   case DeclSpec::SCS_mutable:
   4945     SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
   4946                  diag::err_typecheck_sclass_func);
   4947     D.setInvalidType();
   4948     break;
   4949   case DeclSpec::SCS_unspecified: break;
   4950   case DeclSpec::SCS_extern: return SC_Extern;
   4951   case DeclSpec::SCS_static: {
   4952     if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
   4953       // C99 6.7.1p5:
   4954       //   The declaration of an identifier for a function that has
   4955       //   block scope shall have no explicit storage-class specifier
   4956       //   other than extern
   4957       // See also (C++ [dcl.stc]p4).
   4958       SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
   4959                    diag::err_static_block_func);
   4960       break;
   4961     } else
   4962       return SC_Static;
   4963   }
   4964   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
   4965   }
   4966 
   4967   // No explicit storage class has already been returned
   4968   return SC_None;
   4969 }
   4970 
   4971 static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
   4972                                            DeclContext *DC, QualType &R,
   4973                                            TypeSourceInfo *TInfo,
   4974                                            FunctionDecl::StorageClass SC,
   4975                                            bool &IsVirtualOkay) {
   4976   DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
   4977   DeclarationName Name = NameInfo.getName();
   4978 
   4979   FunctionDecl *NewFD = 0;
   4980   bool isInline = D.getDeclSpec().isInlineSpecified();
   4981   DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
   4982   FunctionDecl::StorageClass SCAsWritten
   4983     = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
   4984 
   4985   if (!SemaRef.getLangOpts().CPlusPlus) {
   4986     // Determine whether the function was written with a
   4987     // prototype. This true when:
   4988     //   - there is a prototype in the declarator, or
   4989     //   - the type R of the function is some kind of typedef or other reference
   4990     //     to a type name (which eventually refers to a function type).
   4991     bool HasPrototype =
   4992       (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
   4993       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
   4994 
   4995     NewFD = FunctionDecl::Create(SemaRef.Context, DC,
   4996                                  D.getLocStart(), NameInfo, R,
   4997                                  TInfo, SC, SCAsWritten, isInline,
   4998                                  HasPrototype);
   4999     if (D.isInvalidType())
   5000       NewFD->setInvalidDecl();
   5001 
   5002     // Set the lexical context.
   5003     NewFD->setLexicalDeclContext(SemaRef.CurContext);
   5004 
   5005     return NewFD;
   5006   }
   5007 
   5008   bool isExplicit = D.getDeclSpec().isExplicitSpecified();
   5009   bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
   5010 
   5011   // Check that the return type is not an abstract class type.
   5012   // For record types, this is done by the AbstractClassUsageDiagnoser once
   5013   // the class has been completely parsed.
   5014   if (!DC->isRecord() &&
   5015       SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
   5016                                      R->getAs<FunctionType>()->getResultType(),
   5017                                      diag::err_abstract_type_in_decl,
   5018                                      SemaRef.AbstractReturnType))
   5019     D.setInvalidType();
   5020 
   5021   if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
   5022     // This is a C++ constructor declaration.
   5023     assert(DC->isRecord() &&
   5024            "Constructors can only be declared in a member context");
   5025 
   5026     R = SemaRef.CheckConstructorDeclarator(D, R, SC);
   5027     return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
   5028                                       D.getLocStart(), NameInfo,
   5029                                       R, TInfo, isExplicit, isInline,
   5030                                       /*isImplicitlyDeclared=*/false,
   5031                                       isConstexpr);
   5032 
   5033   } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
   5034     // This is a C++ destructor declaration.
   5035     if (DC->isRecord()) {
   5036       R = SemaRef.CheckDestructorDeclarator(D, R, SC);
   5037       CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
   5038       CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
   5039                                         SemaRef.Context, Record,
   5040                                         D.getLocStart(),
   5041                                         NameInfo, R, TInfo, isInline,
   5042                                         /*isImplicitlyDeclared=*/false);
   5043 
   5044       // If the class is complete, then we now create the implicit exception
   5045       // specification. If the class is incomplete or dependent, we can't do
   5046       // it yet.
   5047       if (SemaRef.getLangOpts().CPlusPlus0x && !Record->isDependentType() &&
   5048           Record->getDefinition() && !Record->isBeingDefined() &&
   5049           R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
   5050         SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
   5051       }
   5052 
   5053       IsVirtualOkay = true;
   5054       return NewDD;
   5055 
   5056     } else {
   5057       SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
   5058       D.setInvalidType();
   5059 
   5060       // Create a FunctionDecl to satisfy the function definition parsing
   5061       // code path.
   5062       return FunctionDecl::Create(SemaRef.Context, DC,
   5063                                   D.getLocStart(),
   5064                                   D.getIdentifierLoc(), Name, R, TInfo,
   5065                                   SC, SCAsWritten, isInline,
   5066                                   /*hasPrototype=*/true, isConstexpr);
   5067     }
   5068 
   5069   } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
   5070     if (!DC->isRecord()) {
   5071       SemaRef.Diag(D.getIdentifierLoc(),
   5072            diag::err_conv_function_not_member);
   5073       return 0;
   5074     }
   5075 
   5076     SemaRef.CheckConversionDeclarator(D, R, SC);
   5077     IsVirtualOkay = true;
   5078     return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
   5079                                      D.getLocStart(), NameInfo,
   5080                                      R, TInfo, isInline, isExplicit,
   5081                                      isConstexpr, SourceLocation());
   5082 
   5083   } else if (DC->isRecord()) {
   5084     // If the name of the function is the same as the name of the record,
   5085     // then this must be an invalid constructor that has a return type.
   5086     // (The parser checks for a return type and makes the declarator a
   5087     // constructor if it has no return type).
   5088     if (Name.getAsIdentifierInfo() &&
   5089         Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
   5090       SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
   5091         << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
   5092         << SourceRange(D.getIdentifierLoc());
   5093       return 0;
   5094     }
   5095 
   5096     bool isStatic = SC == SC_Static;
   5097 
   5098     // [class.free]p1:
   5099     // Any allocation function for a class T is a static member
   5100     // (even if not explicitly declared static).
   5101     if (Name.getCXXOverloadedOperator() == OO_New ||
   5102         Name.getCXXOverloadedOperator() == OO_Array_New)
   5103       isStatic = true;
   5104 
   5105     // [class.free]p6 Any deallocation function for a class X is a static member
   5106     // (even if not explicitly declared static).
   5107     if (Name.getCXXOverloadedOperator() == OO_Delete ||
   5108         Name.getCXXOverloadedOperator() == OO_Array_Delete)
   5109       isStatic = true;
   5110 
   5111     IsVirtualOkay = !isStatic;
   5112 
   5113     // This is a C++ method declaration.
   5114     return CXXMethodDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
   5115                                  D.getLocStart(), NameInfo, R,
   5116                                  TInfo, isStatic, SCAsWritten, isInline,
   5117                                  isConstexpr, SourceLocation());
   5118 
   5119   } else {
   5120     // Determine whether the function was written with a
   5121     // prototype. This true when:
   5122     //   - we're in C++ (where every function has a prototype),
   5123     return FunctionDecl::Create(SemaRef.Context, DC,
   5124                                 D.getLocStart(),
   5125                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
   5126                                 true/*HasPrototype*/, isConstexpr);
   5127   }
   5128 }
   5129 
   5130 NamedDecl*
   5131 Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
   5132                               TypeSourceInfo *TInfo, LookupResult &Previous,
   5133                               MultiTemplateParamsArg TemplateParamLists,
   5134                               bool &AddToScope) {
   5135   QualType R = TInfo->getType();
   5136 
   5137   assert(R.getTypePtr()->isFunctionType());
   5138 
   5139   // TODO: consider using NameInfo for diagnostic.
   5140   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
   5141   DeclarationName Name = NameInfo.getName();
   5142   FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
   5143 
   5144   if (D.getDeclSpec().isThreadSpecified())
   5145     Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
   5146 
   5147   // Do not allow returning a objc interface by-value.
   5148   if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
   5149     Diag(D.getIdentifierLoc(),
   5150          diag::err_object_cannot_be_passed_returned_by_value) << 0
   5151     << R->getAs<FunctionType>()->getResultType()
   5152     << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
   5153 
   5154     QualType T = R->getAs<FunctionType>()->getResultType();
   5155     T = Context.getObjCObjectPointerType(T);
   5156     if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
   5157       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
   5158       R = Context.getFunctionType(T, FPT->arg_type_begin(),
   5159                                   FPT->getNumArgs(), EPI);
   5160     }
   5161     else if (isa<FunctionNoProtoType>(R))
   5162       R = Context.getFunctionNoProtoType(T);
   5163   }
   5164 
   5165   bool isFriend = false;
   5166   FunctionTemplateDecl *FunctionTemplate = 0;
   5167   bool isExplicitSpecialization = false;
   5168   bool isFunctionTemplateSpecialization = false;
   5169 
   5170   bool isDependentClassScopeExplicitSpecialization = false;
   5171   bool HasExplicitTemplateArgs = false;
   5172   TemplateArgumentListInfo TemplateArgs;
   5173 
   5174   bool isVirtualOkay = false;
   5175 
   5176   FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
   5177                                               isVirtualOkay);
   5178   if (!NewFD) return 0;
   5179 
   5180   if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
   5181     NewFD->setTopLevelDeclInObjCContainer();
   5182 
   5183   if (getLangOpts().CPlusPlus) {
   5184     bool isInline = D.getDeclSpec().isInlineSpecified();
   5185     bool isVirtual = D.getDeclSpec().isVirtualSpecified();
   5186     bool isExplicit = D.getDeclSpec().isExplicitSpecified();
   5187     bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
   5188     isFriend = D.getDeclSpec().isFriendSpecified();
   5189     if (isFriend && !isInline && D.isFunctionDefinition()) {
   5190       // C++ [class.friend]p5
   5191       //   A function can be defined in a friend declaration of a
   5192       //   class . . . . Such a function is implicitly inline.
   5193       NewFD->setImplicitlyInline();
   5194     }
   5195 
   5196     // if this is a method defined in an __interface, set pure
   5197     // (isVirtual will already return true)
   5198     if (CXXRecordDecl *Parent = dyn_cast<CXXRecordDecl>(
   5199         NewFD->getDeclContext())) {
   5200       if (Parent->getTagKind() == TTK_Interface)
   5201         NewFD->setPure(true);
   5202     }
   5203 
   5204     SetNestedNameSpecifier(NewFD, D);
   5205     isExplicitSpecialization = false;
   5206     isFunctionTemplateSpecialization = false;
   5207     if (D.isInvalidType())
   5208       NewFD->setInvalidDecl();
   5209 
   5210     // Set the lexical context. If the declarator has a C++
   5211     // scope specifier, or is the object of a friend declaration, the
   5212     // lexical context will be different from the semantic context.
   5213     NewFD->setLexicalDeclContext(CurContext);
   5214 
   5215     // Match up the template parameter lists with the scope specifier, then
   5216     // determine whether we have a template or a template specialization.
   5217     bool Invalid = false;
   5218     if (TemplateParameterList *TemplateParams
   5219           = MatchTemplateParametersToScopeSpecifier(
   5220                                   D.getDeclSpec().getLocStart(),
   5221                                   D.getIdentifierLoc(),
   5222                                   D.getCXXScopeSpec(),
   5223                                   TemplateParamLists.data(),
   5224                                   TemplateParamLists.size(),
   5225                                   isFriend,
   5226                                   isExplicitSpecialization,
   5227                                   Invalid)) {
   5228       if (TemplateParams->size() > 0) {
   5229         // This is a function template
   5230 
   5231         // Check that we can declare a template here.
   5232         if (CheckTemplateDeclScope(S, TemplateParams))
   5233           return 0;
   5234 
   5235         // A destructor cannot be a template.
   5236         if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
   5237           Diag(NewFD->getLocation(), diag::err_destructor_template);
   5238           return 0;
   5239         }
   5240 
   5241         // If we're adding a template to a dependent context, we may need to
   5242         // rebuilding some of the types used within the template parameter list,
   5243         // now that we know what the current instantiation is.
   5244         if (DC->isDependentContext()) {
   5245           ContextRAII SavedContext(*this, DC);
   5246           if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
   5247             Invalid = true;
   5248         }
   5249 
   5250 
   5251         FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
   5252                                                         NewFD->getLocation(),
   5253                                                         Name, TemplateParams,
   5254                                                         NewFD);
   5255         FunctionTemplate->setLexicalDeclContext(CurContext);
   5256         NewFD->setDescribedFunctionTemplate(FunctionTemplate);
   5257 
   5258         // For source fidelity, store the other template param lists.
   5259         if (TemplateParamLists.size() > 1) {
   5260           NewFD->setTemplateParameterListsInfo(Context,
   5261                                                TemplateParamLists.size() - 1,
   5262                                                TemplateParamLists.data());
   5263         }
   5264       } else {
   5265         // This is a function template specialization.
   5266         isFunctionTemplateSpecialization = true;
   5267         // For source fidelity, store all the template param lists.
   5268         NewFD->setTemplateParameterListsInfo(Context,
   5269                                              TemplateParamLists.size(),
   5270                                              TemplateParamLists.data());
   5271 
   5272         // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
   5273         if (isFriend) {
   5274           // We want to remove the "template<>", found here.
   5275           SourceRange RemoveRange = TemplateParams->getSourceRange();
   5276 
   5277           // If we remove the template<> and the name is not a
   5278           // template-id, we're actually silently creating a problem:
   5279           // the friend declaration will refer to an untemplated decl,
   5280           // and clearly the user wants a template specialization.  So
   5281           // we need to insert '<>' after the name.
   5282           SourceLocation InsertLoc;
   5283           if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
   5284             InsertLoc = D.getName().getSourceRange().getEnd();
   5285             InsertLoc = PP.getLocForEndOfToken(InsertLoc);
   5286           }
   5287 
   5288           Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
   5289             << Name << RemoveRange
   5290             << FixItHint::CreateRemoval(RemoveRange)
   5291             << FixItHint::CreateInsertion(InsertLoc, "<>");
   5292         }
   5293       }
   5294     }
   5295     else {
   5296       // All template param lists were matched against the scope specifier:
   5297       // this is NOT (an explicit specialization of) a template.
   5298       if (TemplateParamLists.size() > 0)
   5299         // For source fidelity, store all the template param lists.
   5300         NewFD->setTemplateParameterListsInfo(Context,
   5301                                              TemplateParamLists.size(),
   5302                                              TemplateParamLists.data());
   5303     }
   5304 
   5305     if (Invalid) {
   5306       NewFD->setInvalidDecl();
   5307       if (FunctionTemplate)
   5308         FunctionTemplate->setInvalidDecl();
   5309     }
   5310 
   5311     // C++ [dcl.fct.spec]p5:
   5312     //   The virtual specifier shall only be used in declarations of
   5313     //   nonstatic class member functions that appear within a
   5314     //   member-specification of a class declaration; see 10.3.
   5315     //
   5316     if (isVirtual && !NewFD->isInvalidDecl()) {
   5317       if (!isVirtualOkay) {
   5318         Diag(D.getDeclSpec().getVirtualSpecLoc(),
   5319              diag::err_virtual_non_function);
   5320       } else if (!CurContext->isRecord()) {
   5321         // 'virtual' was specified outside of the class.
   5322         Diag(D.getDeclSpec().getVirtualSpecLoc(),
   5323              diag::err_virtual_out_of_class)
   5324           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
   5325       } else if (NewFD->getDescribedFunctionTemplate()) {
   5326         // C++ [temp.mem]p3:
   5327         //  A member function template shall not be virtual.
   5328         Diag(D.getDeclSpec().getVirtualSpecLoc(),
   5329              diag::err_virtual_member_function_template)
   5330           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
   5331       } else {
   5332         // Okay: Add virtual to the method.
   5333         NewFD->setVirtualAsWritten(true);
   5334       }
   5335     }
   5336 
   5337     // C++ [dcl.fct.spec]p3:
   5338     //  The inline specifier shall not appear on a block scope function
   5339     //  declaration.
   5340     if (isInline && !NewFD->isInvalidDecl()) {
   5341       if (CurContext->isFunctionOrMethod()) {
   5342         // 'inline' is not allowed on block scope function declaration.
   5343         Diag(D.getDeclSpec().getInlineSpecLoc(),
   5344              diag::err_inline_declaration_block_scope) << Name
   5345           << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
   5346       }
   5347     }
   5348 
   5349     // C++ [dcl.fct.spec]p6:
   5350     //  The explicit specifier shall be used only in the declaration of a
   5351     //  constructor or conversion function within its class definition;
   5352     //  see 12.3.1 and 12.3.2.
   5353     if (isExplicit && !NewFD->isInvalidDecl()) {
   5354       if (!CurContext->isRecord()) {
   5355         // 'explicit' was specified outside of the class.
   5356         Diag(D.getDeclSpec().getExplicitSpecLoc(),
   5357              diag::err_explicit_out_of_class)
   5358           << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
   5359       } else if (!isa<CXXConstructorDecl>(NewFD) &&
   5360                  !isa<CXXConversionDecl>(NewFD)) {
   5361         // 'explicit' was specified on a function that wasn't a constructor
   5362         // or conversion function.
   5363         Diag(D.getDeclSpec().getExplicitSpecLoc(),
   5364              diag::err_explicit_non_ctor_or_conv_function)
   5365           << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
   5366       }
   5367     }
   5368 
   5369     if (isConstexpr) {
   5370       // C++0x [dcl.constexpr]p2: constexpr functions and constexpr constructors
   5371       // are implicitly inline.
   5372       NewFD->setImplicitlyInline();
   5373 
   5374       // C++0x [dcl.constexpr]p3: functions declared constexpr are required to
   5375       // be either constructors or to return a literal type. Therefore,
   5376       // destructors cannot be declared constexpr.
   5377       if (isa<CXXDestructorDecl>(NewFD))
   5378         Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
   5379     }
   5380 
   5381     // If __module_private__ was specified, mark the function accordingly.
   5382     if (D.getDeclSpec().isModulePrivateSpecified()) {
   5383       if (isFunctionTemplateSpecialization) {
   5384         SourceLocation ModulePrivateLoc
   5385           = D.getDeclSpec().getModulePrivateSpecLoc();
   5386         Diag(ModulePrivateLoc, diag::err_module_private_specialization)
   5387           << 0
   5388           << FixItHint::CreateRemoval(ModulePrivateLoc);
   5389       } else {
   5390         NewFD->setModulePrivate();
   5391         if (FunctionTemplate)
   5392           FunctionTemplate->setModulePrivate();
   5393       }
   5394     }
   5395 
   5396     if (isFriend) {
   5397       // For now, claim that the objects have no previous declaration.
   5398       if (FunctionTemplate) {
   5399         FunctionTemplate->setObjectOfFriendDecl(false);
   5400         FunctionTemplate->setAccess(AS_public);
   5401       }
   5402       NewFD->setObjectOfFriendDecl(false);
   5403       NewFD->setAccess(AS_public);
   5404     }
   5405 
   5406     // If a function is defined as defaulted or deleted, mark it as such now.
   5407     switch (D.getFunctionDefinitionKind()) {
   5408       case FDK_Declaration:
   5409       case FDK_Definition:
   5410         break;
   5411 
   5412       case FDK_Defaulted:
   5413         NewFD->setDefaulted();
   5414         break;
   5415 
   5416       case FDK_Deleted:
   5417         NewFD->setDeletedAsWritten();
   5418         break;
   5419     }
   5420 
   5421     if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
   5422         D.isFunctionDefinition()) {
   5423       // C++ [class.mfct]p2:
   5424       //   A member function may be defined (8.4) in its class definition, in
   5425       //   which case it is an inline member function (7.1.2)
   5426       NewFD->setImplicitlyInline();
   5427     }
   5428 
   5429     if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
   5430         !CurContext->isRecord()) {
   5431       // C++ [class.static]p1:
   5432       //   A data or function member of a class may be declared static
   5433       //   in a class definition, in which case it is a static member of
   5434       //   the class.
   5435 
   5436       // Complain about the 'static' specifier if it's on an out-of-line
   5437       // member function definition.
   5438       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
   5439            diag::err_static_out_of_line)
   5440         << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
   5441     }
   5442   }
   5443 
   5444   // Filter out previous declarations that don't match the scope.
   5445   FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
   5446                        isExplicitSpecialization ||
   5447                        isFunctionTemplateSpecialization);
   5448 
   5449   // Handle GNU asm-label extension (encoded as an attribute).
   5450   if (Expr *E = (Expr*) D.getAsmLabel()) {
   5451     // The parser guarantees this is a string.
   5452     StringLiteral *SE = cast<StringLiteral>(E);
   5453     NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
   5454                                                 SE->getString()));
   5455   } else if (!ExtnameUndeclaredIdentifiers.empty()) {
   5456     llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
   5457       ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
   5458     if (I != ExtnameUndeclaredIdentifiers.end()) {
   5459       NewFD->addAttr(I->second);
   5460       ExtnameUndeclaredIdentifiers.erase(I);
   5461     }
   5462   }
   5463 
   5464   // Copy the parameter declarations from the declarator D to the function
   5465   // declaration NewFD, if they are available.  First scavenge them into Params.
   5466   SmallVector<ParmVarDecl*, 16> Params;
   5467   if (D.isFunctionDeclarator()) {
   5468     DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
   5469 
   5470     // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
   5471     // function that takes no arguments, not a function that takes a
   5472     // single void argument.
   5473     // We let through "const void" here because Sema::GetTypeForDeclarator
   5474     // already checks for that case.
   5475     if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
   5476         FTI.ArgInfo[0].Param &&
   5477         cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
   5478       // Empty arg list, don't push any params.
   5479       ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
   5480 
   5481       // In C++, the empty parameter-type-list must be spelled "void"; a
   5482       // typedef of void is not permitted.
   5483       if (getLangOpts().CPlusPlus &&
   5484           Param->getType().getUnqualifiedType() != Context.VoidTy) {
   5485         bool IsTypeAlias = false;
   5486         if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
   5487           IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
   5488         else if (const TemplateSpecializationType *TST =
   5489                    Param->getType()->getAs<TemplateSpecializationType>())
   5490           IsTypeAlias = TST->isTypeAlias();
   5491         Diag(Param->getLocation(), diag::err_param_typedef_of_void)
   5492           << IsTypeAlias;
   5493       }
   5494     } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
   5495       for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
   5496         ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
   5497         assert(Param->getDeclContext() != NewFD && "Was set before ?");
   5498         Param->setDeclContext(NewFD);
   5499         Params.push_back(Param);
   5500 
   5501         if (Param->isInvalidDecl())
   5502           NewFD->setInvalidDecl();
   5503       }
   5504     }
   5505 
   5506   } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
   5507     // When we're declaring a function with a typedef, typeof, etc as in the
   5508     // following example, we'll need to synthesize (unnamed)
   5509     // parameters for use in the declaration.
   5510     //
   5511     // @code
   5512     // typedef void fn(int);
   5513     // fn f;
   5514     // @endcode
   5515 
   5516     // Synthesize a parameter for each argument type.
   5517     for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
   5518          AE = FT->arg_type_end(); AI != AE; ++AI) {
   5519       ParmVarDecl *Param =
   5520         BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
   5521       Param->setScopeInfo(0, Params.size());
   5522       Params.push_back(Param);
   5523     }
   5524   } else {
   5525     assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
   5526            "Should not need args for typedef of non-prototype fn");
   5527   }
   5528 
   5529   // Finally, we know we have the right number of parameters, install them.
   5530   NewFD->setParams(Params);
   5531 
   5532   // Find all anonymous symbols defined during the declaration of this function
   5533   // and add to NewFD. This lets us track decls such 'enum Y' in:
   5534   //
   5535   //   void f(enum Y {AA} x) {}
   5536   //
   5537   // which would otherwise incorrectly end up in the translation unit scope.
   5538   NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
   5539   DeclsInPrototypeScope.clear();
   5540 
   5541   // Process the non-inheritable attributes on this declaration.
   5542   ProcessDeclAttributes(S, NewFD, D,
   5543                         /*NonInheritable=*/true, /*Inheritable=*/false);
   5544 
   5545   // Functions returning a variably modified type violate C99 6.7.5.2p2
   5546   // because all functions have linkage.
   5547   if (!NewFD->isInvalidDecl() &&
   5548       NewFD->getResultType()->isVariablyModifiedType()) {
   5549     Diag(NewFD->getLocation(), diag::err_vm_func_decl);
   5550     NewFD->setInvalidDecl();
   5551   }
   5552 
   5553   // Handle attributes.
   5554   ProcessDeclAttributes(S, NewFD, D,
   5555                         /*NonInheritable=*/false, /*Inheritable=*/true);
   5556 
   5557   if (!getLangOpts().CPlusPlus) {
   5558     // Perform semantic checking on the function declaration.
   5559     bool isExplicitSpecialization=false;
   5560     if (!NewFD->isInvalidDecl()) {
   5561       if (NewFD->isMain())
   5562         CheckMain(NewFD, D.getDeclSpec());
   5563       D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
   5564                                                   isExplicitSpecialization));
   5565     }
   5566     // Make graceful recovery from an invalid redeclaration.
   5567     else if (!Previous.empty())
   5568            D.setRedeclaration(true);
   5569     assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
   5570             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
   5571            "previous declaration set still overloaded");
   5572   } else {
   5573     // If the declarator is a template-id, translate the parser's template
   5574     // argument list into our AST format.
   5575     if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
   5576       TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
   5577       TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
   5578       TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
   5579       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
   5580                                          TemplateId->NumArgs);
   5581       translateTemplateArguments(TemplateArgsPtr,
   5582                                  TemplateArgs);
   5583 
   5584       HasExplicitTemplateArgs = true;
   5585 
   5586       if (NewFD->isInvalidDecl()) {
   5587         HasExplicitTemplateArgs = false;
   5588       } else if (FunctionTemplate) {
   5589         // Function template with explicit template arguments.
   5590         Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
   5591           << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
   5592 
   5593         HasExplicitTemplateArgs = false;
   5594       } else if (!isFunctionTemplateSpecialization &&
   5595                  !D.getDeclSpec().isFriendSpecified()) {
   5596         // We have encountered something that the user meant to be a
   5597         // specialization (because it has explicitly-specified template
   5598         // arguments) but that was not introduced with a "template<>" (or had
   5599         // too few of them).
   5600         Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
   5601           << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
   5602           << FixItHint::CreateInsertion(
   5603                                     D.getDeclSpec().getLocStart(),
   5604                                         "template<> ");
   5605         isFunctionTemplateSpecialization = true;
   5606       } else {
   5607         // "friend void foo<>(int);" is an implicit specialization decl.
   5608         isFunctionTemplateSpecialization = true;
   5609       }
   5610     } else if (isFriend && isFunctionTemplateSpecialization) {
   5611       // This combination is only possible in a recovery case;  the user
   5612       // wrote something like:
   5613       //   template <> friend void foo(int);
   5614       // which we're recovering from as if the user had written:
   5615       //   friend void foo<>(int);
   5616       // Go ahead and fake up a template id.
   5617       HasExplicitTemplateArgs = true;
   5618         TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
   5619       TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
   5620     }
   5621 
   5622     // If it's a friend (and only if it's a friend), it's possible
   5623     // that either the specialized function type or the specialized
   5624     // template is dependent, and therefore matching will fail.  In
   5625     // this case, don't check the specialization yet.
   5626     bool InstantiationDependent = false;
   5627     if (isFunctionTemplateSpecialization && isFriend &&
   5628         (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
   5629          TemplateSpecializationType::anyDependentTemplateArguments(
   5630             TemplateArgs.getArgumentArray(), TemplateArgs.size(),
   5631             InstantiationDependent))) {
   5632       assert(HasExplicitTemplateArgs &&
   5633              "friend function specialization without template args");
   5634       if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
   5635                                                        Previous))
   5636         NewFD->setInvalidDecl();
   5637     } else if (isFunctionTemplateSpecialization) {
   5638       if (CurContext->isDependentContext() && CurContext->isRecord()
   5639           && !isFriend) {
   5640         isDependentClassScopeExplicitSpecialization = true;
   5641         Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
   5642           diag::ext_function_specialization_in_class :
   5643           diag::err_function_specialization_in_class)
   5644           << NewFD->getDeclName();
   5645       } else if (CheckFunctionTemplateSpecialization(NewFD,
   5646                                   (HasExplicitTemplateArgs ? &TemplateArgs : 0),
   5647                                                      Previous))
   5648         NewFD->setInvalidDecl();
   5649 
   5650       // C++ [dcl.stc]p1:
   5651       //   A storage-class-specifier shall not be specified in an explicit
   5652       //   specialization (14.7.3)
   5653       if (SC != SC_None) {
   5654         if (SC != NewFD->getStorageClass())
   5655           Diag(NewFD->getLocation(),
   5656                diag::err_explicit_specialization_inconsistent_storage_class)
   5657             << SC
   5658             << FixItHint::CreateRemoval(
   5659                                       D.getDeclSpec().getStorageClassSpecLoc());
   5660 
   5661         else
   5662           Diag(NewFD->getLocation(),
   5663                diag::ext_explicit_specialization_storage_class)
   5664             << FixItHint::CreateRemoval(
   5665                                       D.getDeclSpec().getStorageClassSpecLoc());
   5666       }
   5667 
   5668     } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
   5669       if (CheckMemberSpecialization(NewFD, Previous))
   5670           NewFD->setInvalidDecl();
   5671     }
   5672 
   5673     // Perform semantic checking on the function declaration.
   5674     if (!isDependentClassScopeExplicitSpecialization) {
   5675       if (NewFD->isInvalidDecl()) {
   5676         // If this is a class member, mark the class invalid immediately.
   5677         // This avoids some consistency errors later.
   5678         if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
   5679           methodDecl->getParent()->setInvalidDecl();
   5680       } else {
   5681         if (NewFD->isMain())
   5682           CheckMain(NewFD, D.getDeclSpec());
   5683         D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
   5684                                                     isExplicitSpecialization));
   5685       }
   5686     }
   5687 
   5688     assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
   5689             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
   5690            "previous declaration set still overloaded");
   5691 
   5692     NamedDecl *PrincipalDecl = (FunctionTemplate
   5693                                 ? cast<NamedDecl>(FunctionTemplate)
   5694                                 : NewFD);
   5695 
   5696     if (isFriend && D.isRedeclaration()) {
   5697       AccessSpecifier Access = AS_public;
   5698       if (!NewFD->isInvalidDecl())
   5699         Access = NewFD->getPreviousDecl()->getAccess();
   5700 
   5701       NewFD->setAccess(Access);
   5702       if (FunctionTemplate) FunctionTemplate->setAccess(Access);
   5703 
   5704       PrincipalDecl->setObjectOfFriendDecl(true);
   5705     }
   5706 
   5707     if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
   5708         PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
   5709       PrincipalDecl->setNonMemberOperator();
   5710 
   5711     // If we have a function template, check the template parameter
   5712     // list. This will check and merge default template arguments.
   5713     if (FunctionTemplate) {
   5714       FunctionTemplateDecl *PrevTemplate =
   5715                                      FunctionTemplate->getPreviousDecl();
   5716       CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
   5717                        PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
   5718                             D.getDeclSpec().isFriendSpecified()
   5719                               ? (D.isFunctionDefinition()
   5720                                    ? TPC_FriendFunctionTemplateDefinition
   5721                                    : TPC_FriendFunctionTemplate)
   5722                               : (D.getCXXScopeSpec().isSet() &&
   5723                                  DC && DC->isRecord() &&
   5724                                  DC->isDependentContext())
   5725                                   ? TPC_ClassTemplateMember
   5726                                   : TPC_FunctionTemplate);
   5727     }
   5728 
   5729     if (NewFD->isInvalidDecl()) {
   5730       // Ignore all the rest of this.
   5731     } else if (!D.isRedeclaration()) {
   5732       struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
   5733                                        AddToScope };
   5734       // Fake up an access specifier if it's supposed to be a class member.
   5735       if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
   5736         NewFD->setAccess(AS_public);
   5737 
   5738       // Qualified decls generally require a previous declaration.
   5739       if (D.getCXXScopeSpec().isSet()) {
   5740         // ...with the major exception of templated-scope or
   5741         // dependent-scope friend declarations.
   5742 
   5743         // TODO: we currently also suppress this check in dependent
   5744         // contexts because (1) the parameter depth will be off when
   5745         // matching friend templates and (2) we might actually be
   5746         // selecting a friend based on a dependent factor.  But there
   5747         // are situations where these conditions don't apply and we
   5748         // can actually do this check immediately.
   5749         if (isFriend &&
   5750             (TemplateParamLists.size() ||
   5751              D.getCXXScopeSpec().getScopeRep()->isDependent() ||
   5752              CurContext->isDependentContext())) {
   5753           // ignore these
   5754         } else {
   5755           // The user tried to provide an out-of-line definition for a
   5756           // function that is a member of a class or namespace, but there
   5757           // was no such member function declared (C++ [class.mfct]p2,
   5758           // C++ [namespace.memdef]p2). For example:
   5759           //
   5760           // class X {
   5761           //   void f() const;
   5762           // };
   5763           //
   5764           // void X::f() { } // ill-formed
   5765           //
   5766           // Complain about this problem, and attempt to suggest close
   5767           // matches (e.g., those that differ only in cv-qualifiers and
   5768           // whether the parameter types are references).
   5769 
   5770           if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
   5771                                                                NewFD,
   5772                                                                ExtraArgs)) {
   5773             AddToScope = ExtraArgs.AddToScope;
   5774             return Result;
   5775           }
   5776         }
   5777 
   5778         // Unqualified local friend declarations are required to resolve
   5779         // to something.
   5780       } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
   5781         if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
   5782                                                              NewFD,
   5783                                                              ExtraArgs)) {
   5784           AddToScope = ExtraArgs.AddToScope;
   5785           return Result;
   5786         }
   5787       }
   5788 
   5789     } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
   5790                !isFriend && !isFunctionTemplateSpecialization &&
   5791                !isExplicitSpecialization) {
   5792       // An out-of-line member function declaration must also be a
   5793       // definition (C++ [dcl.meaning]p1).
   5794       // Note that this is not the case for explicit specializations of
   5795       // function templates or member functions of class templates, per
   5796       // C++ [temp.expl.spec]p2. We also allow these declarations as an
   5797       // extension for compatibility with old SWIG code which likes to
   5798       // generate them.
   5799       Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
   5800         << D.getCXXScopeSpec().getRange();
   5801     }
   5802   }
   5803 
   5804   AddKnownFunctionAttributes(NewFD);
   5805 
   5806   if (NewFD->hasAttr<OverloadableAttr>() &&
   5807       !NewFD->getType()->getAs<FunctionProtoType>()) {
   5808     Diag(NewFD->getLocation(),
   5809          diag::err_attribute_overloadable_no_prototype)
   5810       << NewFD;
   5811 
   5812     // Turn this into a variadic function with no parameters.
   5813     const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
   5814     FunctionProtoType::ExtProtoInfo EPI;
   5815     EPI.Variadic = true;
   5816     EPI.ExtInfo = FT->getExtInfo();
   5817 
   5818     QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
   5819     NewFD->setType(R);
   5820   }
   5821 
   5822   // If there's a #pragma GCC visibility in scope, and this isn't a class
   5823   // member, set the visibility of this function.
   5824   if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
   5825     AddPushedVisibilityAttribute(NewFD);
   5826 
   5827   // If there's a #pragma clang arc_cf_code_audited in scope, consider
   5828   // marking the function.
   5829   AddCFAuditedAttribute(NewFD);
   5830 
   5831   // If this is a locally-scoped extern C function, update the
   5832   // map of such names.
   5833   if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
   5834       && !NewFD->isInvalidDecl())
   5835     RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
   5836 
   5837   // Set this FunctionDecl's range up to the right paren.
   5838   NewFD->setRangeEnd(D.getSourceRange().getEnd());
   5839 
   5840   if (getLangOpts().CPlusPlus) {
   5841     if (FunctionTemplate) {
   5842       if (NewFD->isInvalidDecl())
   5843         FunctionTemplate->setInvalidDecl();
   5844       return FunctionTemplate;
   5845     }
   5846   }
   5847 
   5848   // OpenCL v1.2 s6.8 static is invalid for kernel functions.
   5849   if ((getLangOpts().OpenCLVersion >= 120)
   5850       && NewFD->hasAttr<OpenCLKernelAttr>()
   5851       && (SC == SC_Static)) {
   5852     Diag(D.getIdentifierLoc(), diag::err_static_kernel);
   5853     D.setInvalidType();
   5854   }
   5855 
   5856   MarkUnusedFileScopedDecl(NewFD);
   5857 
   5858   if (getLangOpts().CUDA)
   5859     if (IdentifierInfo *II = NewFD->getIdentifier())
   5860       if (!NewFD->isInvalidDecl() &&
   5861           NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
   5862         if (II->isStr("cudaConfigureCall")) {
   5863           if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
   5864             Diag(NewFD->getLocation(), diag::err_config_scalar_return);
   5865 
   5866           Context.setcudaConfigureCallDecl(NewFD);
   5867         }
   5868       }
   5869 
   5870   // Here we have an function template explicit specialization at class scope.
   5871   // The actually specialization will be postponed to template instatiation
   5872   // time via the ClassScopeFunctionSpecializationDecl node.
   5873   if (isDependentClassScopeExplicitSpecialization) {
   5874     ClassScopeFunctionSpecializationDecl *NewSpec =
   5875                          ClassScopeFunctionSpecializationDecl::Create(
   5876                                 Context, CurContext, SourceLocation(),
   5877                                 cast<CXXMethodDecl>(NewFD),
   5878                                 HasExplicitTemplateArgs, TemplateArgs);
   5879     CurContext->addDecl(NewSpec);
   5880     AddToScope = false;
   5881   }
   5882 
   5883   return NewFD;
   5884 }
   5885 
   5886 /// \brief Perform semantic checking of a new function declaration.
   5887 ///
   5888 /// Performs semantic analysis of the new function declaration
   5889 /// NewFD. This routine performs all semantic checking that does not
   5890 /// require the actual declarator involved in the declaration, and is
   5891 /// used both for the declaration of functions as they are parsed
   5892 /// (called via ActOnDeclarator) and for the declaration of functions
   5893 /// that have been instantiated via C++ template instantiation (called
   5894 /// via InstantiateDecl).
   5895 ///
   5896 /// \param IsExplicitSpecialization whether this new function declaration is
   5897 /// an explicit specialization of the previous declaration.
   5898 ///
   5899 /// This sets NewFD->isInvalidDecl() to true if there was an error.
   5900 ///
   5901 /// \returns true if the function declaration is a redeclaration.
   5902 bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
   5903                                     LookupResult &Previous,
   5904                                     bool IsExplicitSpecialization) {
   5905   assert(!NewFD->getResultType()->isVariablyModifiedType()
   5906          && "Variably modified return types are not handled here");
   5907 
   5908   // Check for a previous declaration of this name.
   5909   if (Previous.empty() && NewFD->isExternC()) {
   5910     // Since we did not find anything by this name and we're declaring
   5911     // an extern "C" function, look for a non-visible extern "C"
   5912     // declaration with the same name.
   5913     llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
   5914       = findLocallyScopedExternalDecl(NewFD->getDeclName());
   5915     if (Pos != LocallyScopedExternalDecls.end())
   5916       Previous.addDecl(Pos->second);
   5917   }
   5918 
   5919   bool Redeclaration = false;
   5920 
   5921   // Merge or overload the declaration with an existing declaration of
   5922   // the same name, if appropriate.
   5923   if (!Previous.empty()) {
   5924     // Determine whether NewFD is an overload of PrevDecl or
   5925     // a declaration that requires merging. If it's an overload,
   5926     // there's no more work to do here; we'll just add the new
   5927     // function to the scope.
   5928 
   5929     NamedDecl *OldDecl = 0;
   5930     if (!AllowOverloadingOfFunction(Previous, Context)) {
   5931       Redeclaration = true;
   5932       OldDecl = Previous.getFoundDecl();
   5933     } else {
   5934       switch (CheckOverload(S, NewFD, Previous, OldDecl,
   5935                             /*NewIsUsingDecl*/ false)) {
   5936       case Ovl_Match:
   5937         Redeclaration = true;
   5938         break;
   5939 
   5940       case Ovl_NonFunction:
   5941         Redeclaration = true;
   5942         break;
   5943 
   5944       case Ovl_Overload:
   5945         Redeclaration = false;
   5946         break;
   5947       }
   5948 
   5949       if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
   5950         // If a function name is overloadable in C, then every function
   5951         // with that name must be marked "overloadable".
   5952         Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
   5953           << Redeclaration << NewFD;
   5954         NamedDecl *OverloadedDecl = 0;
   5955         if (Redeclaration)
   5956           OverloadedDecl = OldDecl;
   5957         else if (!Previous.empty())
   5958           OverloadedDecl = Previous.getRepresentativeDecl();
   5959         if (OverloadedDecl)
   5960           Diag(OverloadedDecl->getLocation(),
   5961                diag::note_attribute_overloadable_prev_overload);
   5962         NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
   5963                                                         Context));
   5964       }
   5965     }
   5966 
   5967     if (Redeclaration) {
   5968       // NewFD and OldDecl represent declarations that need to be
   5969       // merged.
   5970       if (MergeFunctionDecl(NewFD, OldDecl, S)) {
   5971         NewFD->setInvalidDecl();
   5972         return Redeclaration;
   5973       }
   5974 
   5975       Previous.clear();
   5976       Previous.addDecl(OldDecl);
   5977 
   5978       if (FunctionTemplateDecl *OldTemplateDecl
   5979                                     = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
   5980         NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
   5981         FunctionTemplateDecl *NewTemplateDecl
   5982           = NewFD->getDescribedFunctionTemplate();
   5983         assert(NewTemplateDecl && "Template/non-template mismatch");
   5984         if (CXXMethodDecl *Method
   5985               = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
   5986           Method->setAccess(OldTemplateDecl->getAccess());
   5987           NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
   5988         }
   5989 
   5990         // If this is an explicit specialization of a member that is a function
   5991         // template, mark it as a member specialization.
   5992         if (IsExplicitSpecialization &&
   5993             NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
   5994           NewTemplateDecl->setMemberSpecialization();
   5995           assert(OldTemplateDecl->isMemberSpecialization());
   5996         }
   5997 
   5998       } else {
   5999         if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
   6000           NewFD->setAccess(OldDecl->getAccess());
   6001         NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
   6002       }
   6003     }
   6004   }
   6005 
   6006   // Semantic checking for this function declaration (in isolation).
   6007   if (getLangOpts().CPlusPlus) {
   6008     // C++-specific checks.
   6009     if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
   6010       CheckConstructor(Constructor);
   6011     } else if (CXXDestructorDecl *Destructor =
   6012                 dyn_cast<CXXDestructorDecl>(NewFD)) {
   6013       CXXRecordDecl *Record = Destructor->getParent();
   6014       QualType ClassType = Context.getTypeDeclType(Record);
   6015 
   6016       // FIXME: Shouldn't we be able to perform this check even when the class
   6017       // type is dependent? Both gcc and edg can handle that.
   6018       if (!ClassType->isDependentType()) {
   6019         DeclarationName Name
   6020           = Context.DeclarationNames.getCXXDestructorName(
   6021                                         Context.getCanonicalType(ClassType));
   6022         if (NewFD->getDeclName() != Name) {
   6023           Diag(NewFD->getLocation(), diag::err_destructor_name);
   6024           NewFD->setInvalidDecl();
   6025           return Redeclaration;
   6026         }
   6027       }
   6028     } else if (CXXConversionDecl *Conversion
   6029                = dyn_cast<CXXConversionDecl>(NewFD)) {
   6030       ActOnConversionDeclarator(Conversion);
   6031     }
   6032 
   6033     // Find any virtual functions that this function overrides.
   6034     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
   6035       if (!Method->isFunctionTemplateSpecialization() &&
   6036           !Method->getDescribedFunctionTemplate()) {
   6037         if (AddOverriddenMethods(Method->getParent(), Method)) {
   6038           // If the function was marked as "static", we have a problem.
   6039           if (NewFD->getStorageClass() == SC_Static) {
   6040             Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
   6041               << NewFD->getDeclName();
   6042             for (CXXMethodDecl::method_iterator
   6043                       Overridden = Method->begin_overridden_methods(),
   6044                    OverriddenEnd = Method->end_overridden_methods();
   6045                  Overridden != OverriddenEnd;
   6046                  ++Overridden) {
   6047               Diag((*Overridden)->getLocation(),
   6048                    diag::note_overridden_virtual_function);
   6049             }
   6050           }
   6051         }
   6052       }
   6053 
   6054       if (Method->isStatic())
   6055         checkThisInStaticMemberFunctionType(Method);
   6056     }
   6057 
   6058     // Extra checking for C++ overloaded operators (C++ [over.oper]).
   6059     if (NewFD->isOverloadedOperator() &&
   6060         CheckOverloadedOperatorDeclaration(NewFD)) {
   6061       NewFD->setInvalidDecl();
   6062       return Redeclaration;
   6063     }
   6064 
   6065     // Extra checking for C++0x literal operators (C++0x [over.literal]).
   6066     if (NewFD->getLiteralIdentifier() &&
   6067         CheckLiteralOperatorDeclaration(NewFD)) {
   6068       NewFD->setInvalidDecl();
   6069       return Redeclaration;
   6070     }
   6071 
   6072     // In C++, check default arguments now that we have merged decls. Unless
   6073     // the lexical context is the class, because in this case this is done
   6074     // during delayed parsing anyway.
   6075     if (!CurContext->isRecord())
   6076       CheckCXXDefaultArguments(NewFD);
   6077 
   6078     // If this function declares a builtin function, check the type of this
   6079     // declaration against the expected type for the builtin.
   6080     if (unsigned BuiltinID = NewFD->getBuiltinID()) {
   6081       ASTContext::GetBuiltinTypeError Error;
   6082       QualType T = Context.GetBuiltinType(BuiltinID, Error);
   6083       if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
   6084         // The type of this function differs from the type of the builtin,
   6085         // so forget about the builtin entirely.
   6086         Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
   6087       }
   6088     }
   6089 
   6090     // If this function is declared as being extern "C", then check to see if
   6091     // the function returns a UDT (class, struct, or union type) that is not C
   6092     // compatible, and if it does, warn the user.
   6093     if (NewFD->isExternC()) {
   6094       QualType R = NewFD->getResultType();
   6095       if (R->isIncompleteType() && !R->isVoidType())
   6096         Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
   6097             << NewFD << R;
   6098       else if (!R.isPODType(Context) && !R->isVoidType() &&
   6099                !R->isObjCObjectPointerType())
   6100         Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
   6101     }
   6102   }
   6103   return Redeclaration;
   6104 }
   6105 
   6106 void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
   6107   // C++11 [basic.start.main]p3:  A program that declares main to be inline,
   6108   //   static or constexpr is ill-formed.
   6109   // C99 6.7.4p4:  In a hosted environment, the inline function specifier
   6110   //   shall not appear in a declaration of main.
   6111   // static main is not an error under C99, but we should warn about it.
   6112   if (FD->getStorageClass() == SC_Static)
   6113     Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
   6114          ? diag::err_static_main : diag::warn_static_main)
   6115       << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
   6116   if (FD->isInlineSpecified())
   6117     Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
   6118       << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
   6119   if (FD->isConstexpr()) {
   6120     Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
   6121       << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
   6122     FD->setConstexpr(false);
   6123   }
   6124 
   6125   QualType T = FD->getType();
   6126   assert(T->isFunctionType() && "function decl is not of function type");
   6127   const FunctionType* FT = T->castAs<FunctionType>();
   6128 
   6129   // All the standards say that main() should should return 'int'.
   6130   if (Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
   6131     // In C and C++, main magically returns 0 if you fall off the end;
   6132     // set the flag which tells us that.
   6133     // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
   6134     FD->setHasImplicitReturnZero(true);
   6135 
   6136   // In C with GNU extensions we allow main() to have non-integer return
   6137   // type, but we should warn about the extension, and we disable the
   6138   // implicit-return-zero rule.
   6139   } else if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
   6140     Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
   6141 
   6142   // Otherwise, this is just a flat-out error.
   6143   } else {
   6144     Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
   6145     FD->setInvalidDecl(true);
   6146   }
   6147 
   6148   // Treat protoless main() as nullary.
   6149   if (isa<FunctionNoProtoType>(FT)) return;
   6150 
   6151   const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
   6152   unsigned nparams = FTP->getNumArgs();
   6153   assert(FD->getNumParams() == nparams);
   6154 
   6155   bool HasExtraParameters = (nparams > 3);
   6156 
   6157   // Darwin passes an undocumented fourth argument of type char**.  If
   6158   // other platforms start sprouting these, the logic below will start
   6159   // getting shifty.
   6160   if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
   6161     HasExtraParameters = false;
   6162 
   6163   if (HasExtraParameters) {
   6164     Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
   6165     FD->setInvalidDecl(true);
   6166     nparams = 3;
   6167   }
   6168 
   6169   // FIXME: a lot of the following diagnostics would be improved
   6170   // if we had some location information about types.
   6171 
   6172   QualType CharPP =
   6173     Context.getPointerType(Context.getPointerType(Context.CharTy));
   6174   QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
   6175 
   6176   for (unsigned i = 0; i < nparams; ++i) {
   6177     QualType AT = FTP->getArgType(i);
   6178 
   6179     bool mismatch = true;
   6180 
   6181     if (Context.hasSameUnqualifiedType(AT, Expected[i]))
   6182       mismatch = false;
   6183     else if (Expected[i] == CharPP) {
   6184       // As an extension, the following forms are okay:
   6185       //   char const **
   6186       //   char const * const *
   6187       //   char * const *
   6188 
   6189       QualifierCollector qs;
   6190       const PointerType* PT;
   6191       if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
   6192           (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
   6193           (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
   6194         qs.removeConst();
   6195         mismatch = !qs.empty();
   6196       }
   6197     }
   6198 
   6199     if (mismatch) {
   6200       Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
   6201       // TODO: suggest replacing given type with expected type
   6202       FD->setInvalidDecl(true);
   6203     }
   6204   }
   6205 
   6206   if (nparams == 1 && !FD->isInvalidDecl()) {
   6207     Diag(FD->getLocation(), diag::warn_main_one_arg);
   6208   }
   6209 
   6210   if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
   6211     Diag(FD->getLocation(), diag::err_main_template_decl);
   6212     FD->setInvalidDecl();
   6213   }
   6214 }
   6215 
   6216 bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
   6217   // FIXME: Need strict checking.  In C89, we need to check for
   6218   // any assignment, increment, decrement, function-calls, or
   6219   // commas outside of a sizeof.  In C99, it's the same list,
   6220   // except that the aforementioned are allowed in unevaluated
   6221   // expressions.  Everything else falls under the
   6222   // "may accept other forms of constant expressions" exception.
   6223   // (We never end up here for C++, so the constant expression
   6224   // rules there don't matter.)
   6225   if (Init->isConstantInitializer(Context, false))
   6226     return false;
   6227   Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
   6228     << Init->getSourceRange();
   6229   return true;
   6230 }
   6231 
   6232 namespace {
   6233   // Visits an initialization expression to see if OrigDecl is evaluated in
   6234   // its own initialization and throws a warning if it does.
   6235   class SelfReferenceChecker
   6236       : public EvaluatedExprVisitor<SelfReferenceChecker> {
   6237     Sema &S;
   6238     Decl *OrigDecl;
   6239     bool isRecordType;
   6240     bool isPODType;
   6241     bool isReferenceType;
   6242 
   6243   public:
   6244     typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
   6245 
   6246     SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
   6247                                                     S(S), OrigDecl(OrigDecl) {
   6248       isPODType = false;
   6249       isRecordType = false;
   6250       isReferenceType = false;
   6251       if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
   6252         isPODType = VD->getType().isPODType(S.Context);
   6253         isRecordType = VD->getType()->isRecordType();
   6254         isReferenceType = VD->getType()->isReferenceType();
   6255       }
   6256     }
   6257 
   6258     // Sometimes, the expression passed in lacks the casts that are used
   6259     // to determine which DeclRefExpr's to check.  Assume that the casts
   6260     // are present and continue visiting the expression.
   6261     void HandleExpr(Expr *E) {
   6262       // Skip checking T a = a where T is not a record or reference type.
   6263       // Doing so is a way to silence uninitialized warnings.
   6264       if (isRecordType || isReferenceType)
   6265         if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
   6266           HandleDeclRefExpr(DRE);
   6267 
   6268       if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
   6269         HandleValue(CO->getTrueExpr());
   6270         HandleValue(CO->getFalseExpr());
   6271       }
   6272 
   6273       Visit(E);
   6274     }
   6275 
   6276     // For most expressions, the cast is directly above the DeclRefExpr.
   6277     // For conditional operators, the cast can be outside the conditional
   6278     // operator if both expressions are DeclRefExpr's.
   6279     void HandleValue(Expr *E) {
   6280       E = E->IgnoreParenImpCasts();
   6281       if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
   6282         HandleDeclRefExpr(DRE);
   6283         return;
   6284       }
   6285 
   6286       if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
   6287         HandleValue(CO->getTrueExpr());
   6288         HandleValue(CO->getFalseExpr());
   6289       }
   6290     }
   6291 
   6292     void VisitImplicitCastExpr(ImplicitCastExpr *E) {
   6293       if ((!isRecordType && E->getCastKind() == CK_LValueToRValue) ||
   6294           (isRecordType && E->getCastKind() == CK_NoOp))
   6295         HandleValue(E->getSubExpr());
   6296 
   6297       Inherited::VisitImplicitCastExpr(E);
   6298     }
   6299 
   6300     void VisitMemberExpr(MemberExpr *E) {
   6301       // Don't warn on arrays since they can be treated as pointers.
   6302       if (E->getType()->canDecayToPointerType()) return;
   6303 
   6304       ValueDecl *VD = E->getMemberDecl();
   6305       CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(VD);
   6306       if (isa<FieldDecl>(VD) || (MD && !MD->isStatic()))
   6307         if (DeclRefExpr *DRE
   6308               = dyn_cast<DeclRefExpr>(E->getBase()->IgnoreParenImpCasts())) {
   6309           HandleDeclRefExpr(DRE);
   6310           return;
   6311         }
   6312 
   6313       Inherited::VisitMemberExpr(E);
   6314     }
   6315 
   6316     void VisitUnaryOperator(UnaryOperator *E) {
   6317       // For POD record types, addresses of its own members are well-defined.
   6318       if (E->getOpcode() == UO_AddrOf && isRecordType && isPODType &&
   6319           isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) return;
   6320       Inherited::VisitUnaryOperator(E);
   6321     }
   6322 
   6323     void VisitObjCMessageExpr(ObjCMessageExpr *E) { return; }
   6324 
   6325     void HandleDeclRefExpr(DeclRefExpr *DRE) {
   6326       Decl* ReferenceDecl = DRE->getDecl();
   6327       if (OrigDecl != ReferenceDecl) return;
   6328       LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
   6329                           Sema::NotForRedeclaration);
   6330       unsigned diag = isReferenceType
   6331           ? diag::warn_uninit_self_reference_in_reference_init
   6332           : diag::warn_uninit_self_reference_in_init;
   6333       S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
   6334                             S.PDiag(diag)
   6335                               << Result.getLookupName()
   6336                               << OrigDecl->getLocation()
   6337                               << DRE->getSourceRange());
   6338     }
   6339   };
   6340 }
   6341 
   6342 /// CheckSelfReference - Warns if OrigDecl is used in expression E.
   6343 void Sema::CheckSelfReference(Decl* OrigDecl, Expr *E) {
   6344   SelfReferenceChecker(*this, OrigDecl).HandleExpr(E);
   6345 }
   6346 
   6347 /// AddInitializerToDecl - Adds the initializer Init to the
   6348 /// declaration dcl. If DirectInit is true, this is C++ direct
   6349 /// initialization rather than copy initialization.
   6350 void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
   6351                                 bool DirectInit, bool TypeMayContainAuto) {
   6352   // If there is no declaration, there was an error parsing it.  Just ignore
   6353   // the initializer.
   6354   if (RealDecl == 0 || RealDecl->isInvalidDecl())
   6355     return;
   6356 
   6357   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
   6358     // With declarators parsed the way they are, the parser cannot
   6359     // distinguish between a normal initializer and a pure-specifier.
   6360     // Thus this grotesque test.
   6361     IntegerLiteral *IL;
   6362     if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
   6363         Context.getCanonicalType(IL->getType()) == Context.IntTy)
   6364       CheckPureMethod(Method, Init->getSourceRange());
   6365     else {
   6366       Diag(Method->getLocation(), diag::err_member_function_initialization)
   6367         << Method->getDeclName() << Init->getSourceRange();
   6368       Method->setInvalidDecl();
   6369     }
   6370     return;
   6371   }
   6372 
   6373   VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
   6374   if (!VDecl) {
   6375     assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
   6376     Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
   6377     RealDecl->setInvalidDecl();
   6378     return;
   6379   }
   6380 
   6381   // Check for self-references within variable initializers.
   6382   // Variables declared within a function/method body (except for references)
   6383   // are handled by a dataflow analysis.
   6384   // Record types initialized by initializer list are handled here.
   6385   // Initialization by constructors are handled in TryConstructorInitialization.
   6386   if ((!VDecl->hasLocalStorage() || VDecl->getType()->isReferenceType()) &&
   6387       (isa<InitListExpr>(Init) || !VDecl->getType()->isRecordType()))
   6388     CheckSelfReference(RealDecl, Init);
   6389 
   6390   ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
   6391 
   6392   // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
   6393   AutoType *Auto = 0;
   6394   if (TypeMayContainAuto &&
   6395       (Auto = VDecl->getType()->getContainedAutoType()) &&
   6396       !Auto->isDeduced()) {
   6397     Expr *DeduceInit = Init;
   6398     // Initializer could be a C++ direct-initializer. Deduction only works if it
   6399     // contains exactly one expression.
   6400     if (CXXDirectInit) {
   6401       if (CXXDirectInit->getNumExprs() == 0) {
   6402         // It isn't possible to write this directly, but it is possible to
   6403         // end up in this situation with "auto x(some_pack...);"
   6404         Diag(CXXDirectInit->getLocStart(),
   6405              diag::err_auto_var_init_no_expression)
   6406           << VDecl->getDeclName() << VDecl->getType()
   6407           << VDecl->getSourceRange();
   6408         RealDecl->setInvalidDecl();
   6409         return;
   6410       } else if (CXXDirectInit->getNumExprs() > 1) {
   6411         Diag(CXXDirectInit->getExpr(1)->getLocStart(),
   6412              diag::err_auto_var_init_multiple_expressions)
   6413           << VDecl->getDeclName() << VDecl->getType()
   6414           << VDecl->getSourceRange();
   6415         RealDecl->setInvalidDecl();
   6416         return;
   6417       } else {
   6418         DeduceInit = CXXDirectInit->getExpr(0);
   6419       }
   6420     }
   6421     TypeSourceInfo *DeducedType = 0;
   6422     if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
   6423             DAR_Failed)
   6424       DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
   6425     if (!DeducedType) {
   6426       RealDecl->setInvalidDecl();
   6427       return;
   6428     }
   6429     VDecl->setTypeSourceInfo(DeducedType);
   6430     VDecl->setType(DeducedType->getType());
   6431     VDecl->ClearLinkageCache();
   6432 
   6433     // In ARC, infer lifetime.
   6434     if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
   6435       VDecl->setInvalidDecl();
   6436 
   6437     // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
   6438     // 'id' instead of a specific object type prevents most of our usual checks.
   6439     // We only want to warn outside of template instantiations, though:
   6440     // inside a template, the 'id' could have come from a parameter.
   6441     if (ActiveTemplateInstantiations.empty() &&
   6442         DeducedType->getType()->isObjCIdType()) {
   6443       SourceLocation Loc = DeducedType->getTypeLoc().getBeginLoc();
   6444       Diag(Loc, diag::warn_auto_var_is_id)
   6445         << VDecl->getDeclName() << DeduceInit->getSourceRange();
   6446     }
   6447 
   6448     // If this is a redeclaration, check that the type we just deduced matches
   6449     // the previously declared type.
   6450     if (VarDecl *Old = VDecl->getPreviousDecl())
   6451       MergeVarDeclTypes(VDecl, Old);
   6452   }
   6453 
   6454   if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
   6455     // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
   6456     Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
   6457     VDecl->setInvalidDecl();
   6458     return;
   6459   }
   6460 
   6461   if (!VDecl->getType()->isDependentType()) {
   6462     // A definition must end up with a complete type, which means it must be
   6463     // complete with the restriction that an array type might be completed by
   6464     // the initializer; note that later code assumes this restriction.
   6465     QualType BaseDeclType = VDecl->getType();
   6466     if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
   6467       BaseDeclType = Array->getElementType();
   6468     if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
   6469                             diag::err_typecheck_decl_incomplete_type)) {
   6470       RealDecl->setInvalidDecl();
   6471       return;
   6472     }
   6473 
   6474     // The variable can not have an abstract class type.
   6475     if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
   6476                                diag::err_abstract_type_in_decl,
   6477                                AbstractVariableType))
   6478       VDecl->setInvalidDecl();
   6479   }
   6480 
   6481   const VarDecl *Def;
   6482   if ((Def = VDecl->getDefinition()) && Def != VDecl) {
   6483     Diag(VDecl->getLocation(), diag::err_redefinition)
   6484       << VDecl->getDeclName();
   6485     Diag(Def->getLocation(), diag::note_previous_definition);
   6486     VDecl->setInvalidDecl();
   6487     return;
   6488   }
   6489 
   6490   const VarDecl* PrevInit = 0;
   6491   if (getLangOpts().CPlusPlus) {
   6492     // C++ [class.static.data]p4
   6493     //   If a static data member is of const integral or const
   6494     //   enumeration type, its declaration in the class definition can
   6495     //   specify a constant-initializer which shall be an integral
   6496     //   constant expression (5.19). In that case, the member can appear
   6497     //   in integral constant expressions. The member shall still be
   6498     //   defined in a namespace scope if it is used in the program and the
   6499     //   namespace scope definition shall not contain an initializer.
   6500     //
   6501     // We already performed a redefinition check above, but for static
   6502     // data members we also need to check whether there was an in-class
   6503     // declaration with an initializer.
   6504     if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
   6505       Diag(VDecl->getLocation(), diag::err_redefinition)
   6506         << VDecl->getDeclName();
   6507       Diag(PrevInit->getLocation(), diag::note_previous_definition);
   6508       return;
   6509     }
   6510 
   6511     if (VDecl->hasLocalStorage())
   6512       getCurFunction()->setHasBranchProtectedScope();
   6513 
   6514     if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
   6515       VDecl->setInvalidDecl();
   6516       return;
   6517     }
   6518   }
   6519 
   6520   // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
   6521   // a kernel function cannot be initialized."
   6522   if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
   6523     Diag(VDecl->getLocation(), diag::err_local_cant_init);
   6524     VDecl->setInvalidDecl();
   6525     return;
   6526   }
   6527 
   6528   // Get the decls type and save a reference for later, since
   6529   // CheckInitializerTypes may change it.
   6530   QualType DclT = VDecl->getType(), SavT = DclT;
   6531 
   6532   // Top-level message sends default to 'id' when we're in a debugger
   6533   // and we are assigning it to a variable of 'id' type.
   6534   if (getLangOpts().DebuggerCastResultToId && DclT->isObjCIdType())
   6535     if (Init->getType() == Context.UnknownAnyTy && isa<ObjCMessageExpr>(Init)) {
   6536       ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
   6537       if (Result.isInvalid()) {
   6538         VDecl->setInvalidDecl();
   6539         return;
   6540       }
   6541       Init = Result.take();
   6542     }
   6543 
   6544   // Perform the initialization.
   6545   if (!VDecl->isInvalidDecl()) {
   6546     InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
   6547     InitializationKind Kind
   6548       = DirectInit ?
   6549           CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
   6550                                                            Init->getLocStart(),
   6551                                                            Init->getLocEnd())
   6552                         : InitializationKind::CreateDirectList(
   6553                                                           VDecl->getLocation())
   6554                    : InitializationKind::CreateCopy(VDecl->getLocation(),
   6555                                                     Init->getLocStart());
   6556 
   6557     Expr **Args = &Init;
   6558     unsigned NumArgs = 1;
   6559     if (CXXDirectInit) {
   6560       Args = CXXDirectInit->getExprs();
   6561       NumArgs = CXXDirectInit->getNumExprs();
   6562     }
   6563     InitializationSequence InitSeq(*this, Entity, Kind, Args, NumArgs);
   6564     ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
   6565                                         MultiExprArg(Args, NumArgs), &DclT);
   6566     if (Result.isInvalid()) {
   6567       VDecl->setInvalidDecl();
   6568       return;
   6569     }
   6570 
   6571     Init = Result.takeAs<Expr>();
   6572   }
   6573 
   6574   // If the type changed, it means we had an incomplete type that was
   6575   // completed by the initializer. For example:
   6576   //   int ary[] = { 1, 3, 5 };
   6577   // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
   6578   if (!VDecl->isInvalidDecl() && (DclT != SavT))
   6579     VDecl->setType(DclT);
   6580 
   6581   // Check any implicit conversions within the expression.
   6582   CheckImplicitConversions(Init, VDecl->getLocation());
   6583 
   6584   if (!VDecl->isInvalidDecl())
   6585     checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
   6586 
   6587   Init = MaybeCreateExprWithCleanups(Init);
   6588   // Attach the initializer to the decl.
   6589   VDecl->setInit(Init);
   6590 
   6591   if (VDecl->isLocalVarDecl()) {
   6592     // C99 6.7.8p4: All the expressions in an initializer for an object that has
   6593     // static storage duration shall be constant expressions or string literals.
   6594     // C++ does not have this restriction.
   6595     if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl() &&
   6596         VDecl->getStorageClass() == SC_Static)
   6597       CheckForConstantInitializer(Init, DclT);
   6598   } else if (VDecl->isStaticDataMember() &&
   6599              VDecl->getLexicalDeclContext()->isRecord()) {
   6600     // This is an in-class initialization for a static data member, e.g.,
   6601     //
   6602     // struct S {
   6603     //   static const int value = 17;
   6604     // };
   6605 
   6606     // C++ [class.mem]p4:
   6607     //   A member-declarator can contain a constant-initializer only
   6608     //   if it declares a static member (9.4) of const integral or
   6609     //   const enumeration type, see 9.4.2.
   6610     //
   6611     // C++11 [class.static.data]p3:
   6612     //   If a non-volatile const static data member is of integral or
   6613     //   enumeration type, its declaration in the class definition can
   6614     //   specify a brace-or-equal-initializer in which every initalizer-clause
   6615     //   that is an assignment-expression is a constant expression. A static
   6616     //   data member of literal type can be declared in the class definition
   6617     //   with the constexpr specifier; if so, its declaration shall specify a
   6618     //   brace-or-equal-initializer in which every initializer-clause that is
   6619     //   an assignment-expression is a constant expression.
   6620 
   6621     // Do nothing on dependent types.
   6622     if (DclT->isDependentType()) {
   6623 
   6624     // Allow any 'static constexpr' members, whether or not they are of literal
   6625     // type. We separately check that every constexpr variable is of literal
   6626     // type.
   6627     } else if (VDecl->isConstexpr()) {
   6628 
   6629     // Require constness.
   6630     } else if (!DclT.isConstQualified()) {
   6631       Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
   6632         << Init->getSourceRange();
   6633       VDecl->setInvalidDecl();
   6634 
   6635     // We allow integer constant expressions in all cases.
   6636     } else if (DclT->isIntegralOrEnumerationType()) {
   6637       // Check whether the expression is a constant expression.
   6638       SourceLocation Loc;
   6639       if (getLangOpts().CPlusPlus0x && DclT.isVolatileQualified())
   6640         // In C++11, a non-constexpr const static data member with an
   6641         // in-class initializer cannot be volatile.
   6642         Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
   6643       else if (Init->isValueDependent())
   6644         ; // Nothing to check.
   6645       else if (Init->isIntegerConstantExpr(Context, &Loc))
   6646         ; // Ok, it's an ICE!
   6647       else if (Init->isEvaluatable(Context)) {
   6648         // If we can constant fold the initializer through heroics, accept it,
   6649         // but report this as a use of an extension for -pedantic.
   6650         Diag(Loc, diag::ext_in_class_initializer_non_constant)
   6651           << Init->getSourceRange();
   6652       } else {
   6653         // Otherwise, this is some crazy unknown case.  Report the issue at the
   6654         // location provided by the isIntegerConstantExpr failed check.
   6655         Diag(Loc, diag::err_in_class_initializer_non_constant)
   6656           << Init->getSourceRange();
   6657         VDecl->setInvalidDecl();
   6658       }
   6659 
   6660     // We allow foldable floating-point constants as an extension.
   6661     } else if (DclT->isFloatingType()) { // also permits complex, which is ok
   6662       Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
   6663         << DclT << Init->getSourceRange();
   6664       if (getLangOpts().CPlusPlus0x)
   6665         Diag(VDecl->getLocation(),
   6666              diag::note_in_class_initializer_float_type_constexpr)
   6667           << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
   6668 
   6669       if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
   6670         Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
   6671           << Init->getSourceRange();
   6672         VDecl->setInvalidDecl();
   6673       }
   6674 
   6675     // Suggest adding 'constexpr' in C++11 for literal types.
   6676     } else if (getLangOpts().CPlusPlus0x && DclT->isLiteralType()) {
   6677       Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
   6678         << DclT << Init->getSourceRange()
   6679         << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
   6680       VDecl->setConstexpr(true);
   6681 
   6682     } else {
   6683       Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
   6684         << DclT << Init->getSourceRange();
   6685       VDecl->setInvalidDecl();
   6686     }
   6687   } else if (VDecl->isFileVarDecl()) {
   6688     if (VDecl->getStorageClassAsWritten() == SC_Extern &&
   6689         (!getLangOpts().CPlusPlus ||
   6690          !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
   6691       Diag(VDecl->getLocation(), diag::warn_extern_init);
   6692 
   6693     // C99 6.7.8p4. All file scoped initializers need to be constant.
   6694     if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
   6695       CheckForConstantInitializer(Init, DclT);
   6696   }
   6697 
   6698   // We will represent direct-initialization similarly to copy-initialization:
   6699   //    int x(1);  -as-> int x = 1;
   6700   //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
   6701   //
   6702   // Clients that want to distinguish between the two forms, can check for
   6703   // direct initializer using VarDecl::getInitStyle().
   6704   // A major benefit is that clients that don't particularly care about which
   6705   // exactly form was it (like the CodeGen) can handle both cases without
   6706   // special case code.
   6707 
   6708   // C++ 8.5p11:
   6709   // The form of initialization (using parentheses or '=') is generally
   6710   // insignificant, but does matter when the entity being initialized has a
   6711   // class type.
   6712   if (CXXDirectInit) {
   6713     assert(DirectInit && "Call-style initializer must be direct init.");
   6714     VDecl->setInitStyle(VarDecl::CallInit);
   6715   } else if (DirectInit) {
   6716     // This must be list-initialization. No other way is direct-initialization.
   6717     VDecl->setInitStyle(VarDecl::ListInit);
   6718   }
   6719 
   6720   CheckCompleteVariableDeclaration(VDecl);
   6721 }
   6722 
   6723 /// ActOnInitializerError - Given that there was an error parsing an
   6724 /// initializer for the given declaration, try to return to some form
   6725 /// of sanity.
   6726 void Sema::ActOnInitializerError(Decl *D) {
   6727   // Our main concern here is re-establishing invariants like "a
   6728   // variable's type is either dependent or complete".
   6729   if (!D || D->isInvalidDecl()) return;
   6730 
   6731   VarDecl *VD = dyn_cast<VarDecl>(D);
   6732   if (!VD) return;
   6733 
   6734   // Auto types are meaningless if we can't make sense of the initializer.
   6735   if (ParsingInitForAutoVars.count(D)) {
   6736     D->setInvalidDecl();
   6737     return;
   6738   }
   6739 
   6740   QualType Ty = VD->getType();
   6741   if (Ty->isDependentType()) return;
   6742 
   6743   // Require a complete type.
   6744   if (RequireCompleteType(VD->getLocation(),
   6745                           Context.getBaseElementType(Ty),
   6746                           diag::err_typecheck_decl_incomplete_type)) {
   6747     VD->setInvalidDecl();
   6748     return;
   6749   }
   6750 
   6751   // Require an abstract type.
   6752   if (RequireNonAbstractType(VD->getLocation(), Ty,
   6753                              diag::err_abstract_type_in_decl,
   6754                              AbstractVariableType)) {
   6755     VD->setInvalidDecl();
   6756     return;
   6757   }
   6758 
   6759   // Don't bother complaining about constructors or destructors,
   6760   // though.
   6761 }
   6762 
   6763 void Sema::ActOnUninitializedDecl(Decl *RealDecl,
   6764                                   bool TypeMayContainAuto) {
   6765   // If there is no declaration, there was an error parsing it. Just ignore it.
   6766   if (RealDecl == 0)
   6767     return;
   6768 
   6769   if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
   6770     QualType Type = Var->getType();
   6771 
   6772     // C++11 [dcl.spec.auto]p3
   6773     if (TypeMayContainAuto && Type->getContainedAutoType()) {
   6774       Diag(Var->getLocation(), diag::err_auto_var_requires_init)
   6775         << Var->getDeclName() << Type;
   6776       Var->setInvalidDecl();
   6777       return;
   6778     }
   6779 
   6780     // C++11 [class.static.data]p3: A static data member can be declared with
   6781     // the constexpr specifier; if so, its declaration shall specify
   6782     // a brace-or-equal-initializer.
   6783     // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
   6784     // the definition of a variable [...] or the declaration of a static data
   6785     // member.
   6786     if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
   6787       if (Var->isStaticDataMember())
   6788         Diag(Var->getLocation(),
   6789              diag::err_constexpr_static_mem_var_requires_init)
   6790           << Var->getDeclName();
   6791       else
   6792         Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
   6793       Var->setInvalidDecl();
   6794       return;
   6795     }
   6796 
   6797     switch (Var->isThisDeclarationADefinition()) {
   6798     case VarDecl::Definition:
   6799       if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
   6800         break;
   6801 
   6802       // We have an out-of-line definition of a static data member
   6803       // that has an in-class initializer, so we type-check this like
   6804       // a declaration.
   6805       //
   6806       // Fall through
   6807 
   6808     case VarDecl::DeclarationOnly:
   6809       // It's only a declaration.
   6810 
   6811       // Block scope. C99 6.7p7: If an identifier for an object is
   6812       // declared with no linkage (C99 6.2.2p6), the type for the
   6813       // object shall be complete.
   6814       if (!Type->isDependentType() && Var->isLocalVarDecl() &&
   6815           !Var->getLinkage() && !Var->isInvalidDecl() &&
   6816           RequireCompleteType(Var->getLocation(), Type,
   6817                               diag::err_typecheck_decl_incomplete_type))
   6818         Var->setInvalidDecl();
   6819 
   6820       // Make sure that the type is not abstract.
   6821       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
   6822           RequireNonAbstractType(Var->getLocation(), Type,
   6823                                  diag::err_abstract_type_in_decl,
   6824                                  AbstractVariableType))
   6825         Var->setInvalidDecl();
   6826       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
   6827           Var->getStorageClass() == SC_PrivateExtern) {
   6828         Diag(Var->getLocation(), diag::warn_private_extern);
   6829         Diag(Var->getLocation(), diag::note_private_extern);
   6830       }
   6831 
   6832       return;
   6833 
   6834     case VarDecl::TentativeDefinition:
   6835       // File scope. C99 6.9.2p2: A declaration of an identifier for an
   6836       // object that has file scope without an initializer, and without a
   6837       // storage-class specifier or with the storage-class specifier "static",
   6838       // constitutes a tentative definition. Note: A tentative definition with
   6839       // external linkage is valid (C99 6.2.2p5).
   6840       if (!Var->isInvalidDecl()) {
   6841         if (const IncompleteArrayType *ArrayT
   6842                                     = Context.getAsIncompleteArrayType(Type)) {
   6843           if (RequireCompleteType(Var->getLocation(),
   6844                                   ArrayT->getElementType(),
   6845                                   diag::err_illegal_decl_array_incomplete_type))
   6846             Var->setInvalidDecl();
   6847         } else if (Var->getStorageClass() == SC_Static) {
   6848           // C99 6.9.2p3: If the declaration of an identifier for an object is
   6849           // a tentative definition and has internal linkage (C99 6.2.2p3), the
   6850           // declared type shall not be an incomplete type.
   6851           // NOTE: code such as the following
   6852           //     static struct s;
   6853           //     struct s { int a; };
   6854           // is accepted by gcc. Hence here we issue a warning instead of
   6855           // an error and we do not invalidate the static declaration.
   6856           // NOTE: to avoid multiple warnings, only check the first declaration.
   6857           if (Var->getPreviousDecl() == 0)
   6858             RequireCompleteType(Var->getLocation(), Type,
   6859                                 diag::ext_typecheck_decl_incomplete_type);
   6860         }
   6861       }
   6862 
   6863       // Record the tentative definition; we're done.
   6864       if (!Var->isInvalidDecl())
   6865         TentativeDefinitions.push_back(Var);
   6866       return;
   6867     }
   6868 
   6869     // Provide a specific diagnostic for uninitialized variable
   6870     // definitions with incomplete array type.
   6871     if (Type->isIncompleteArrayType()) {
   6872       Diag(Var->getLocation(),
   6873            diag::err_typecheck_incomplete_array_needs_initializer);
   6874       Var->setInvalidDecl();
   6875       return;
   6876     }
   6877 
   6878     // Provide a specific diagnostic for uninitialized variable
   6879     // definitions with reference type.
   6880     if (Type->isReferenceType()) {
   6881       Diag(Var->getLocation(), diag::err_reference_var_requires_init)
   6882         << Var->getDeclName()
   6883         << SourceRange(Var->getLocation(), Var->getLocation());
   6884       Var->setInvalidDecl();
   6885       return;
   6886     }
   6887 
   6888     // Do not attempt to type-check the default initializer for a
   6889     // variable with dependent type.
   6890     if (Type->isDependentType())
   6891       return;
   6892 
   6893     if (Var->isInvalidDecl())
   6894       return;
   6895 
   6896     if (RequireCompleteType(Var->getLocation(),
   6897                             Context.getBaseElementType(Type),
   6898                             diag::err_typecheck_decl_incomplete_type)) {
   6899       Var->setInvalidDecl();
   6900       return;
   6901     }
   6902 
   6903     // The variable can not have an abstract class type.
   6904     if (RequireNonAbstractType(Var->getLocation(), Type,
   6905                                diag::err_abstract_type_in_decl,
   6906                                AbstractVariableType)) {
   6907       Var->setInvalidDecl();
   6908       return;
   6909     }
   6910 
   6911     // Check for jumps past the implicit initializer.  C++0x
   6912     // clarifies that this applies to a "variable with automatic
   6913     // storage duration", not a "local variable".
   6914     // C++11 [stmt.dcl]p3
   6915     //   A program that jumps from a point where a variable with automatic
   6916     //   storage duration is not in scope to a point where it is in scope is
   6917     //   ill-formed unless the variable has scalar type, class type with a
   6918     //   trivial default constructor and a trivial destructor, a cv-qualified
   6919     //   version of one of these types, or an array of one of the preceding
   6920     //   types and is declared without an initializer.
   6921     if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
   6922       if (const RecordType *Record
   6923             = Context.getBaseElementType(Type)->getAs<RecordType>()) {
   6924         CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
   6925         // Mark the function for further checking even if the looser rules of
   6926         // C++11 do not require such checks, so that we can diagnose
   6927         // incompatibilities with C++98.
   6928         if (!CXXRecord->isPOD())
   6929           getCurFunction()->setHasBranchProtectedScope();
   6930       }
   6931     }
   6932 
   6933     // C++03 [dcl.init]p9:
   6934     //   If no initializer is specified for an object, and the
   6935     //   object is of (possibly cv-qualified) non-POD class type (or
   6936     //   array thereof), the object shall be default-initialized; if
   6937     //   the object is of const-qualified type, the underlying class
   6938     //   type shall have a user-declared default
   6939     //   constructor. Otherwise, if no initializer is specified for
   6940     //   a non- static object, the object and its subobjects, if
   6941     //   any, have an indeterminate initial value); if the object
   6942     //   or any of its subobjects are of const-qualified type, the
   6943     //   program is ill-formed.
   6944     // C++0x [dcl.init]p11:
   6945     //   If no initializer is specified for an object, the object is
   6946     //   default-initialized; [...].
   6947     InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
   6948     InitializationKind Kind
   6949       = InitializationKind::CreateDefault(Var->getLocation());
   6950 
   6951     InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
   6952     ExprResult Init = InitSeq.Perform(*this, Entity, Kind, MultiExprArg());
   6953     if (Init.isInvalid())
   6954       Var->setInvalidDecl();
   6955     else if (Init.get()) {
   6956       Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
   6957       // This is important for template substitution.
   6958       Var->setInitStyle(VarDecl::CallInit);
   6959     }
   6960 
   6961     CheckCompleteVariableDeclaration(Var);
   6962   }
   6963 }
   6964 
   6965 void Sema::ActOnCXXForRangeDecl(Decl *D) {
   6966   VarDecl *VD = dyn_cast<VarDecl>(D);
   6967   if (!VD) {
   6968     Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
   6969     D->setInvalidDecl();
   6970     return;
   6971   }
   6972 
   6973   VD->setCXXForRangeDecl(true);
   6974 
   6975   // for-range-declaration cannot be given a storage class specifier.
   6976   int Error = -1;
   6977   switch (VD->getStorageClassAsWritten()) {
   6978   case SC_None:
   6979     break;
   6980   case SC_Extern:
   6981     Error = 0;
   6982     break;
   6983   case SC_Static:
   6984     Error = 1;
   6985     break;
   6986   case SC_PrivateExtern:
   6987     Error = 2;
   6988     break;
   6989   case SC_Auto:
   6990     Error = 3;
   6991     break;
   6992   case SC_Register:
   6993     Error = 4;
   6994     break;
   6995   case SC_OpenCLWorkGroupLocal:
   6996     llvm_unreachable("Unexpected storage class");
   6997   }
   6998   if (VD->isConstexpr())
   6999     Error = 5;
   7000   if (Error != -1) {
   7001     Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
   7002       << VD->getDeclName() << Error;
   7003     D->setInvalidDecl();
   7004   }
   7005 }
   7006 
   7007 void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
   7008   if (var->isInvalidDecl()) return;
   7009 
   7010   // In ARC, don't allow jumps past the implicit initialization of a
   7011   // local retaining variable.
   7012   if (getLangOpts().ObjCAutoRefCount &&
   7013       var->hasLocalStorage()) {
   7014     switch (var->getType().getObjCLifetime()) {
   7015     case Qualifiers::OCL_None:
   7016     case Qualifiers::OCL_ExplicitNone:
   7017     case Qualifiers::OCL_Autoreleasing:
   7018       break;
   7019 
   7020     case Qualifiers::OCL_Weak:
   7021     case Qualifiers::OCL_Strong:
   7022       getCurFunction()->setHasBranchProtectedScope();
   7023       break;
   7024     }
   7025   }
   7026 
   7027   // All the following checks are C++ only.
   7028   if (!getLangOpts().CPlusPlus) return;
   7029 
   7030   QualType baseType = Context.getBaseElementType(var->getType());
   7031   if (baseType->isDependentType()) return;
   7032 
   7033   // __block variables might require us to capture a copy-initializer.
   7034   if (var->hasAttr<BlocksAttr>()) {
   7035     // It's currently invalid to ever have a __block variable with an
   7036     // array type; should we diagnose that here?
   7037 
   7038     // Regardless, we don't want to ignore array nesting when
   7039     // constructing this copy.
   7040     QualType type = var->getType();
   7041 
   7042     if (type->isStructureOrClassType()) {
   7043       SourceLocation poi = var->getLocation();
   7044       Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
   7045       ExprResult result =
   7046         PerformCopyInitialization(
   7047                         InitializedEntity::InitializeBlock(poi, type, false),
   7048                                   poi, Owned(varRef));
   7049       if (!result.isInvalid()) {
   7050         result = MaybeCreateExprWithCleanups(result);
   7051         Expr *init = result.takeAs<Expr>();
   7052         Context.setBlockVarCopyInits(var, init);
   7053       }
   7054     }
   7055   }
   7056 
   7057   Expr *Init = var->getInit();
   7058   bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
   7059 
   7060   if (!var->getDeclContext()->isDependentContext() && Init) {
   7061     if (IsGlobal && !var->isConstexpr() &&
   7062         getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
   7063                                             var->getLocation())
   7064           != DiagnosticsEngine::Ignored &&
   7065         !Init->isConstantInitializer(Context, baseType->isReferenceType()))
   7066       Diag(var->getLocation(), diag::warn_global_constructor)
   7067         << Init->getSourceRange();
   7068 
   7069     if (var->isConstexpr()) {
   7070       llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
   7071       if (!var->evaluateValue(Notes) || !var->isInitICE()) {
   7072         SourceLocation DiagLoc = var->getLocation();
   7073         // If the note doesn't add any useful information other than a source
   7074         // location, fold it into the primary diagnostic.
   7075         if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
   7076               diag::note_invalid_subexpr_in_const_expr) {
   7077           DiagLoc = Notes[0].first;
   7078           Notes.clear();
   7079         }
   7080         Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
   7081           << var << Init->getSourceRange();
   7082         for (unsigned I = 0, N = Notes.size(); I != N; ++I)
   7083           Diag(Notes[I].first, Notes[I].second);
   7084       }
   7085     } else if (var->isUsableInConstantExpressions(Context)) {
   7086       // Check whether the initializer of a const variable of integral or
   7087       // enumeration type is an ICE now, since we can't tell whether it was
   7088       // initialized by a constant expression if we check later.
   7089       var->checkInitIsICE();
   7090     }
   7091   }
   7092 
   7093   // Require the destructor.
   7094   if (const RecordType *recordType = baseType->getAs<RecordType>())
   7095     FinalizeVarWithDestructor(var, recordType);
   7096 }
   7097 
   7098 /// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
   7099 /// any semantic actions necessary after any initializer has been attached.
   7100 void
   7101 Sema::FinalizeDeclaration(Decl *ThisDecl) {
   7102   // Note that we are no longer parsing the initializer for this declaration.
   7103   ParsingInitForAutoVars.erase(ThisDecl);
   7104 
   7105   // Now we have parsed the initializer and can update the table of magic
   7106   // tag values.
   7107   if (ThisDecl && ThisDecl->hasAttr<TypeTagForDatatypeAttr>()) {
   7108     const VarDecl *VD = dyn_cast<VarDecl>(ThisDecl);
   7109     if (VD && VD->getType()->isIntegralOrEnumerationType()) {
   7110       for (specific_attr_iterator<TypeTagForDatatypeAttr>
   7111                I = ThisDecl->specific_attr_begin<TypeTagForDatatypeAttr>(),
   7112                E = ThisDecl->specific_attr_end<TypeTagForDatatypeAttr>();
   7113            I != E; ++I) {
   7114         const Expr *MagicValueExpr = VD->getInit();
   7115         if (!MagicValueExpr) {
   7116           continue;
   7117         }
   7118         llvm::APSInt MagicValueInt;
   7119         if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
   7120           Diag(I->getRange().getBegin(),
   7121                diag::err_type_tag_for_datatype_not_ice)
   7122             << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
   7123           continue;
   7124         }
   7125         if (MagicValueInt.getActiveBits() > 64) {
   7126           Diag(I->getRange().getBegin(),
   7127                diag::err_type_tag_for_datatype_too_large)
   7128             << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
   7129           continue;
   7130         }
   7131         uint64_t MagicValue = MagicValueInt.getZExtValue();
   7132         RegisterTypeTagForDatatype(I->getArgumentKind(),
   7133                                    MagicValue,
   7134                                    I->getMatchingCType(),
   7135                                    I->getLayoutCompatible(),
   7136                                    I->getMustBeNull());
   7137       }
   7138     }
   7139   }
   7140 }
   7141 
   7142 Sema::DeclGroupPtrTy
   7143 Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
   7144                               Decl **Group, unsigned NumDecls) {
   7145   SmallVector<Decl*, 8> Decls;
   7146 
   7147   if (DS.isTypeSpecOwned())
   7148     Decls.push_back(DS.getRepAsDecl());
   7149 
   7150   for (unsigned i = 0; i != NumDecls; ++i)
   7151     if (Decl *D = Group[i])
   7152       Decls.push_back(D);
   7153 
   7154   return BuildDeclaratorGroup(Decls.data(), Decls.size(),
   7155                               DS.getTypeSpecType() == DeclSpec::TST_auto);
   7156 }
   7157 
   7158 /// BuildDeclaratorGroup - convert a list of declarations into a declaration
   7159 /// group, performing any necessary semantic checking.
   7160 Sema::DeclGroupPtrTy
   7161 Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
   7162                            bool TypeMayContainAuto) {
   7163   // C++0x [dcl.spec.auto]p7:
   7164   //   If the type deduced for the template parameter U is not the same in each
   7165   //   deduction, the program is ill-formed.
   7166   // FIXME: When initializer-list support is added, a distinction is needed
   7167   // between the deduced type U and the deduced type which 'auto' stands for.
   7168   //   auto a = 0, b = { 1, 2, 3 };
   7169   // is legal because the deduced type U is 'int' in both cases.
   7170   if (TypeMayContainAuto && NumDecls > 1) {
   7171     QualType Deduced;
   7172     CanQualType DeducedCanon;
   7173     VarDecl *DeducedDecl = 0;
   7174     for (unsigned i = 0; i != NumDecls; ++i) {
   7175       if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
   7176         AutoType *AT = D->getType()->getContainedAutoType();
   7177         // Don't reissue diagnostics when instantiating a template.
   7178         if (AT && D->isInvalidDecl())
   7179           break;
   7180         if (AT && AT->isDeduced()) {
   7181           QualType U = AT->getDeducedType();
   7182           CanQualType UCanon = Context.getCanonicalType(U);
   7183           if (Deduced.isNull()) {
   7184             Deduced = U;
   7185             DeducedCanon = UCanon;
   7186             DeducedDecl = D;
   7187           } else if (DeducedCanon != UCanon) {
   7188             Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
   7189                  diag::err_auto_different_deductions)
   7190               << Deduced << DeducedDecl->getDeclName()
   7191               << U << D->getDeclName()
   7192               << DeducedDecl->getInit()->getSourceRange()
   7193               << D->getInit()->getSourceRange();
   7194             D->setInvalidDecl();
   7195             break;
   7196           }
   7197         }
   7198       }
   7199     }
   7200   }
   7201 
   7202   ActOnDocumentableDecls(Group, NumDecls);
   7203 
   7204   return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
   7205 }
   7206 
   7207 void Sema::ActOnDocumentableDecl(Decl *D) {
   7208   ActOnDocumentableDecls(&D, 1);
   7209 }
   7210 
   7211 void Sema::ActOnDocumentableDecls(Decl **Group, unsigned NumDecls) {
   7212   // Don't parse the comment if Doxygen diagnostics are ignored.
   7213   if (NumDecls == 0 || !Group[0])
   7214    return;
   7215 
   7216   if (Diags.getDiagnosticLevel(diag::warn_doc_param_not_found,
   7217                                Group[0]->getLocation())
   7218         == DiagnosticsEngine::Ignored)
   7219     return;
   7220 
   7221   if (NumDecls >= 2) {
   7222     // This is a decl group.  Normally it will contain only declarations
   7223     // procuded from declarator list.  But in case we have any definitions or
   7224     // additional declaration references:
   7225     //   'typedef struct S {} S;'
   7226     //   'typedef struct S *S;'
   7227     //   'struct S *pS;'
   7228     // FinalizeDeclaratorGroup adds these as separate declarations.
   7229     Decl *MaybeTagDecl = Group[0];
   7230     if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
   7231       Group++;
   7232       NumDecls--;
   7233     }
   7234   }
   7235 
   7236   // See if there are any new comments that are not attached to a decl.
   7237   ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
   7238   if (!Comments.empty() &&
   7239       !Comments.back()->isAttached()) {
   7240     // There is at least one comment that not attached to a decl.
   7241     // Maybe it should be attached to one of these decls?
   7242     //
   7243     // Note that this way we pick up not only comments that precede the
   7244     // declaration, but also comments that *follow* the declaration -- thanks to
   7245     // the lookahead in the lexer: we've consumed the semicolon and looked
   7246     // ahead through comments.
   7247     for (unsigned i = 0; i != NumDecls; ++i)
   7248       Context.getCommentForDecl(Group[i]);
   7249   }
   7250 }
   7251 
   7252 /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
   7253 /// to introduce parameters into function prototype scope.
   7254 Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
   7255   const DeclSpec &DS = D.getDeclSpec();
   7256 
   7257   // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
   7258   // C++03 [dcl.stc]p2 also permits 'auto'.
   7259   VarDecl::StorageClass StorageClass = SC_None;
   7260   VarDecl::StorageClass StorageClassAsWritten = SC_None;
   7261   if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
   7262     StorageClass = SC_Register;
   7263     StorageClassAsWritten = SC_Register;
   7264   } else if (getLangOpts().CPlusPlus &&
   7265              DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
   7266     StorageClass = SC_Auto;
   7267     StorageClassAsWritten = SC_Auto;
   7268   } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
   7269     Diag(DS.getStorageClassSpecLoc(),
   7270          diag::err_invalid_storage_class_in_func_decl);
   7271     D.getMutableDeclSpec().ClearStorageClassSpecs();
   7272   }
   7273 
   7274   if (D.getDeclSpec().isThreadSpecified())
   7275     Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
   7276   if (D.getDeclSpec().isConstexprSpecified())
   7277     Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
   7278       << 0;
   7279 
   7280   DiagnoseFunctionSpecifiers(D);
   7281 
   7282   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
   7283   QualType parmDeclType = TInfo->getType();
   7284 
   7285   if (getLangOpts().CPlusPlus) {
   7286     // Check that there are no default arguments inside the type of this
   7287     // parameter.
   7288     CheckExtraCXXDefaultArguments(D);
   7289 
   7290     // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
   7291     if (D.getCXXScopeSpec().isSet()) {
   7292       Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
   7293         << D.getCXXScopeSpec().getRange();
   7294       D.getCXXScopeSpec().clear();
   7295     }
   7296   }
   7297 
   7298   // Ensure we have a valid name
   7299   IdentifierInfo *II = 0;
   7300   if (D.hasName()) {
   7301     II = D.getIdentifier();
   7302     if (!II) {
   7303       Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
   7304         << GetNameForDeclarator(D).getName().getAsString();
   7305       D.setInvalidType(true);
   7306     }
   7307   }
   7308 
   7309   // Check for redeclaration of parameters, e.g. int foo(int x, int x);
   7310   if (II) {
   7311     LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
   7312                    ForRedeclaration);
   7313     LookupName(R, S);
   7314     if (R.isSingleResult()) {
   7315       NamedDecl *PrevDecl = R.getFoundDecl();
   7316       if (PrevDecl->isTemplateParameter()) {
   7317         // Maybe we will complain about the shadowed template parameter.
   7318         DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
   7319         // Just pretend that we didn't see the previous declaration.
   7320         PrevDecl = 0;
   7321       } else if (S->isDeclScope(PrevDecl)) {
   7322         Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
   7323         Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
   7324 
   7325         // Recover by removing the name
   7326         II = 0;
   7327         D.SetIdentifier(0, D.getIdentifierLoc());
   7328         D.setInvalidType(true);
   7329       }
   7330     }
   7331   }
   7332 
   7333   // Temporarily put parameter variables in the translation unit, not
   7334   // the enclosing context.  This prevents them from accidentally
   7335   // looking like class members in C++.
   7336   ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
   7337                                     D.getLocStart(),
   7338                                     D.getIdentifierLoc(), II,
   7339                                     parmDeclType, TInfo,
   7340                                     StorageClass, StorageClassAsWritten);
   7341 
   7342   if (D.isInvalidType())
   7343     New->setInvalidDecl();
   7344 
   7345   assert(S->isFunctionPrototypeScope());
   7346   assert(S->getFunctionPrototypeDepth() >= 1);
   7347   New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
   7348                     S->getNextFunctionPrototypeIndex());
   7349 
   7350   // Add the parameter declaration into this scope.
   7351   S->AddDecl(New);
   7352   if (II)
   7353     IdResolver.AddDecl(New);
   7354 
   7355   ProcessDeclAttributes(S, New, D);
   7356 
   7357   if (D.getDeclSpec().isModulePrivateSpecified())
   7358     Diag(New->getLocation(), diag::err_module_private_local)
   7359       << 1 << New->getDeclName()
   7360       << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
   7361       << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
   7362 
   7363   if (New->hasAttr<BlocksAttr>()) {
   7364     Diag(New->getLocation(), diag::err_block_on_nonlocal);
   7365   }
   7366   return New;
   7367 }
   7368 
   7369 /// \brief Synthesizes a variable for a parameter arising from a
   7370 /// typedef.
   7371 ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
   7372                                               SourceLocation Loc,
   7373                                               QualType T) {
   7374   /* FIXME: setting StartLoc == Loc.
   7375      Would it be worth to modify callers so as to provide proper source
   7376      location for the unnamed parameters, embedding the parameter's type? */
   7377   ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
   7378                                 T, Context.getTrivialTypeSourceInfo(T, Loc),
   7379                                            SC_None, SC_None, 0);
   7380   Param->setImplicit();
   7381   return Param;
   7382 }
   7383 
   7384 void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
   7385                                     ParmVarDecl * const *ParamEnd) {
   7386   // Don't diagnose unused-parameter errors in template instantiations; we
   7387   // will already have done so in the template itself.
   7388   if (!ActiveTemplateInstantiations.empty())
   7389     return;
   7390 
   7391   for (; Param != ParamEnd; ++Param) {
   7392     if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
   7393         !(*Param)->hasAttr<UnusedAttr>()) {
   7394       Diag((*Param)->getLocation(), diag::warn_unused_parameter)
   7395         << (*Param)->getDeclName();
   7396     }
   7397   }
   7398 }
   7399 
   7400 void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
   7401                                                   ParmVarDecl * const *ParamEnd,
   7402                                                   QualType ReturnTy,
   7403                                                   NamedDecl *D) {
   7404   if (LangOpts.NumLargeByValueCopy == 0) // No check.
   7405     return;
   7406 
   7407   // Warn if the return value is pass-by-value and larger than the specified
   7408   // threshold.
   7409   if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
   7410     unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
   7411     if (Size > LangOpts.NumLargeByValueCopy)
   7412       Diag(D->getLocation(), diag::warn_return_value_size)
   7413           << D->getDeclName() << Size;
   7414   }
   7415 
   7416   // Warn if any parameter is pass-by-value and larger than the specified
   7417   // threshold.
   7418   for (; Param != ParamEnd; ++Param) {
   7419     QualType T = (*Param)->getType();
   7420     if (T->isDependentType() || !T.isPODType(Context))
   7421       continue;
   7422     unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
   7423     if (Size > LangOpts.NumLargeByValueCopy)
   7424       Diag((*Param)->getLocation(), diag::warn_parameter_size)
   7425           << (*Param)->getDeclName() << Size;
   7426   }
   7427 }
   7428 
   7429 ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
   7430                                   SourceLocation NameLoc, IdentifierInfo *Name,
   7431                                   QualType T, TypeSourceInfo *TSInfo,
   7432                                   VarDecl::StorageClass StorageClass,
   7433                                   VarDecl::StorageClass StorageClassAsWritten) {
   7434   // In ARC, infer a lifetime qualifier for appropriate parameter types.
   7435   if (getLangOpts().ObjCAutoRefCount &&
   7436       T.getObjCLifetime() == Qualifiers::OCL_None &&
   7437       T->isObjCLifetimeType()) {
   7438 
   7439     Qualifiers::ObjCLifetime lifetime;
   7440 
   7441     // Special cases for arrays:
   7442     //   - if it's const, use __unsafe_unretained
   7443     //   - otherwise, it's an error
   7444     if (T->isArrayType()) {
   7445       if (!T.isConstQualified()) {
   7446         DelayedDiagnostics.add(
   7447             sema::DelayedDiagnostic::makeForbiddenType(
   7448             NameLoc, diag::err_arc_array_param_no_ownership, T, false));
   7449       }
   7450       lifetime = Qualifiers::OCL_ExplicitNone;
   7451     } else {
   7452       lifetime = T->getObjCARCImplicitLifetime();
   7453     }
   7454     T = Context.getLifetimeQualifiedType(T, lifetime);
   7455   }
   7456 
   7457   ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
   7458                                          Context.getAdjustedParameterType(T),
   7459                                          TSInfo,
   7460                                          StorageClass, StorageClassAsWritten,
   7461                                          0);
   7462 
   7463   // Parameters can not be abstract class types.
   7464   // For record types, this is done by the AbstractClassUsageDiagnoser once
   7465   // the class has been completely parsed.
   7466   if (!CurContext->isRecord() &&
   7467       RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
   7468                              AbstractParamType))
   7469     New->setInvalidDecl();
   7470 
   7471   // Parameter declarators cannot be interface types. All ObjC objects are
   7472   // passed by reference.
   7473   if (T->isObjCObjectType()) {
   7474     SourceLocation TypeEndLoc = TSInfo->getTypeLoc().getLocEnd();
   7475     Diag(NameLoc,
   7476          diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
   7477       << FixItHint::CreateInsertion(TypeEndLoc, "*");
   7478     T = Context.getObjCObjectPointerType(T);
   7479     New->setType(T);
   7480   }
   7481 
   7482   // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
   7483   // duration shall not be qualified by an address-space qualifier."
   7484   // Since all parameters have automatic store duration, they can not have
   7485   // an address space.
   7486   if (T.getAddressSpace() != 0) {
   7487     Diag(NameLoc, diag::err_arg_with_address_space);
   7488     New->setInvalidDecl();
   7489   }
   7490 
   7491   return New;
   7492 }
   7493 
   7494 void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
   7495                                            SourceLocation LocAfterDecls) {
   7496   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
   7497 
   7498   // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
   7499   // for a K&R function.
   7500   if (!FTI.hasPrototype) {
   7501     for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
   7502       --i;
   7503       if (FTI.ArgInfo[i].Param == 0) {
   7504         SmallString<256> Code;
   7505         llvm::raw_svector_ostream(Code) << "  int "
   7506                                         << FTI.ArgInfo[i].Ident->getName()
   7507                                         << ";\n";
   7508         Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
   7509           << FTI.ArgInfo[i].Ident
   7510           << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
   7511 
   7512         // Implicitly declare the argument as type 'int' for lack of a better
   7513         // type.
   7514         AttributeFactory attrs;
   7515         DeclSpec DS(attrs);
   7516         const char* PrevSpec; // unused
   7517         unsigned DiagID; // unused
   7518         DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
   7519                            PrevSpec, DiagID);
   7520         Declarator ParamD(DS, Declarator::KNRTypeListContext);
   7521         ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
   7522         FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
   7523       }
   7524     }
   7525   }
   7526 }
   7527 
   7528 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
   7529   assert(getCurFunctionDecl() == 0 && "Function parsing confused");
   7530   assert(D.isFunctionDeclarator() && "Not a function declarator!");
   7531   Scope *ParentScope = FnBodyScope->getParent();
   7532 
   7533   D.setFunctionDefinitionKind(FDK_Definition);
   7534   Decl *DP = HandleDeclarator(ParentScope, D, MultiTemplateParamsArg());
   7535   return ActOnStartOfFunctionDef(FnBodyScope, DP);
   7536 }
   7537 
   7538 static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
   7539   // Don't warn about invalid declarations.
   7540   if (FD->isInvalidDecl())
   7541     return false;
   7542 
   7543   // Or declarations that aren't global.
   7544   if (!FD->isGlobal())
   7545     return false;
   7546 
   7547   // Don't warn about C++ member functions.
   7548   if (isa<CXXMethodDecl>(FD))
   7549     return false;
   7550 
   7551   // Don't warn about 'main'.
   7552   if (FD->isMain())
   7553     return false;
   7554 
   7555   // Don't warn about inline functions.
   7556   if (FD->isInlined())
   7557     return false;
   7558 
   7559   // Don't warn about function templates.
   7560   if (FD->getDescribedFunctionTemplate())
   7561     return false;
   7562 
   7563   // Don't warn about function template specializations.
   7564   if (FD->isFunctionTemplateSpecialization())
   7565     return false;
   7566 
   7567   // Don't warn for OpenCL kernels.
   7568   if (FD->hasAttr<OpenCLKernelAttr>())
   7569     return false;
   7570 
   7571   bool MissingPrototype = true;
   7572   for (const FunctionDecl *Prev = FD->getPreviousDecl();
   7573        Prev; Prev = Prev->getPreviousDecl()) {
   7574     // Ignore any declarations that occur in function or method
   7575     // scope, because they aren't visible from the header.
   7576     if (Prev->getDeclContext()->isFunctionOrMethod())
   7577       continue;
   7578 
   7579     MissingPrototype = !Prev->getType()->isFunctionProtoType();
   7580     break;
   7581   }
   7582 
   7583   return MissingPrototype;
   7584 }
   7585 
   7586 void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
   7587   // Don't complain if we're in GNU89 mode and the previous definition
   7588   // was an extern inline function.
   7589   const FunctionDecl *Definition;
   7590   if (FD->isDefined(Definition) &&
   7591       !canRedefineFunction(Definition, getLangOpts())) {
   7592     if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
   7593         Definition->getStorageClass() == SC_Extern)
   7594       Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
   7595         << FD->getDeclName() << getLangOpts().CPlusPlus;
   7596     else
   7597       Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
   7598     Diag(Definition->getLocation(), diag::note_previous_definition);
   7599     FD->setInvalidDecl();
   7600   }
   7601 }
   7602 
   7603 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
   7604   // Clear the last template instantiation error context.
   7605   LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
   7606 
   7607   if (!D)
   7608     return D;
   7609   FunctionDecl *FD = 0;
   7610 
   7611   if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
   7612     FD = FunTmpl->getTemplatedDecl();
   7613   else
   7614     FD = cast<FunctionDecl>(D);
   7615 
   7616   // Enter a new function scope
   7617   PushFunctionScope();
   7618 
   7619   // See if this is a redefinition.
   7620   if (!FD->isLateTemplateParsed())
   7621     CheckForFunctionRedefinition(FD);
   7622 
   7623   // Builtin functions cannot be defined.
   7624   if (unsigned BuiltinID = FD->getBuiltinID()) {
   7625     if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
   7626       Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
   7627       FD->setInvalidDecl();
   7628     }
   7629   }
   7630 
   7631   // The return type of a function definition must be complete
   7632   // (C99 6.9.1p3, C++ [dcl.fct]p6).
   7633   QualType ResultType = FD->getResultType();
   7634   if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
   7635       !FD->isInvalidDecl() &&
   7636       RequireCompleteType(FD->getLocation(), ResultType,
   7637                           diag::err_func_def_incomplete_result))
   7638     FD->setInvalidDecl();
   7639 
   7640   // GNU warning -Wmissing-prototypes:
   7641   //   Warn if a global function is defined without a previous
   7642   //   prototype declaration. This warning is issued even if the
   7643   //   definition itself provides a prototype. The aim is to detect
   7644   //   global functions that fail to be declared in header files.
   7645   if (ShouldWarnAboutMissingPrototype(FD))
   7646     Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
   7647 
   7648   if (FnBodyScope)
   7649     PushDeclContext(FnBodyScope, FD);
   7650 
   7651   // Check the validity of our function parameters
   7652   CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
   7653                            /*CheckParameterNames=*/true);
   7654 
   7655   // Introduce our parameters into the function scope
   7656   for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
   7657     ParmVarDecl *Param = FD->getParamDecl(p);
   7658     Param->setOwningFunction(FD);
   7659 
   7660     // If this has an identifier, add it to the scope stack.
   7661     if (Param->getIdentifier() && FnBodyScope) {
   7662       CheckShadow(FnBodyScope, Param);
   7663 
   7664       PushOnScopeChains(Param, FnBodyScope);
   7665     }
   7666   }
   7667 
   7668   // If we had any tags defined in the function prototype,
   7669   // introduce them into the function scope.
   7670   if (FnBodyScope) {
   7671     for (llvm::ArrayRef<NamedDecl*>::iterator I = FD->getDeclsInPrototypeScope().begin(),
   7672            E = FD->getDeclsInPrototypeScope().end(); I != E; ++I) {
   7673       NamedDecl *D = *I;
   7674 
   7675       // Some of these decls (like enums) may have been pinned to the translation unit
   7676       // for lack of a real context earlier. If so, remove from the translation unit
   7677       // and reattach to the current context.
   7678       if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
   7679         // Is the decl actually in the context?
   7680         for (DeclContext::decl_iterator DI = Context.getTranslationUnitDecl()->decls_begin(),
   7681                DE = Context.getTranslationUnitDecl()->decls_end(); DI != DE; ++DI) {
   7682           if (*DI == D) {
   7683             Context.getTranslationUnitDecl()->removeDecl(D);
   7684             break;
   7685           }
   7686         }
   7687         // Either way, reassign the lexical decl context to our FunctionDecl.
   7688         D->setLexicalDeclContext(CurContext);
   7689       }
   7690 
   7691       // If the decl has a non-null name, make accessible in the current scope.
   7692       if (!D->getName().empty())
   7693         PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
   7694 
   7695       // Similarly, dive into enums and fish their constants out, making them
   7696       // accessible in this scope.
   7697       if (EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
   7698         for (EnumDecl::enumerator_iterator EI = ED->enumerator_begin(),
   7699                EE = ED->enumerator_end(); EI != EE; ++EI)
   7700           PushOnScopeChains(*EI, FnBodyScope, /*AddToContext=*/false);
   7701       }
   7702     }
   7703   }
   7704 
   7705   // Ensure that the function's exception specification is instantiated.
   7706   if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
   7707     ResolveExceptionSpec(D->getLocation(), FPT);
   7708 
   7709   // Checking attributes of current function definition
   7710   // dllimport attribute.
   7711   DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
   7712   if (DA && (!FD->getAttr<DLLExportAttr>())) {
   7713     // dllimport attribute cannot be directly applied to definition.
   7714     // Microsoft accepts dllimport for functions defined within class scope.
   7715     if (!DA->isInherited() &&
   7716         !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
   7717       Diag(FD->getLocation(),
   7718            diag::err_attribute_can_be_applied_only_to_symbol_declaration)
   7719         << "dllimport";
   7720       FD->setInvalidDecl();
   7721       return FD;
   7722     }
   7723 
   7724     // Visual C++ appears to not think this is an issue, so only issue
   7725     // a warning when Microsoft extensions are disabled.
   7726     if (!LangOpts.MicrosoftExt) {
   7727       // If a symbol previously declared dllimport is later defined, the
   7728       // attribute is ignored in subsequent references, and a warning is
   7729       // emitted.
   7730       Diag(FD->getLocation(),
   7731            diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
   7732         << FD->getName() << "dllimport";
   7733     }
   7734   }
   7735   // We want to attach documentation to original Decl (which might be
   7736   // a function template).
   7737   ActOnDocumentableDecl(D);
   7738   return FD;
   7739 }
   7740 
   7741 /// \brief Given the set of return statements within a function body,
   7742 /// compute the variables that are subject to the named return value
   7743 /// optimization.
   7744 ///
   7745 /// Each of the variables that is subject to the named return value
   7746 /// optimization will be marked as NRVO variables in the AST, and any
   7747 /// return statement that has a marked NRVO variable as its NRVO candidate can
   7748 /// use the named return value optimization.
   7749 ///
   7750 /// This function applies a very simplistic algorithm for NRVO: if every return
   7751 /// statement in the function has the same NRVO candidate, that candidate is
   7752 /// the NRVO variable.
   7753 ///
   7754 /// FIXME: Employ a smarter algorithm that accounts for multiple return
   7755 /// statements and the lifetimes of the NRVO candidates. We should be able to
   7756 /// find a maximal set of NRVO variables.
   7757 void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
   7758   ReturnStmt **Returns = Scope->Returns.data();
   7759 
   7760   const VarDecl *NRVOCandidate = 0;
   7761   for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
   7762     if (!Returns[I]->getNRVOCandidate())
   7763       return;
   7764 
   7765     if (!NRVOCandidate)
   7766       NRVOCandidate = Returns[I]->getNRVOCandidate();
   7767     else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
   7768       return;
   7769   }
   7770 
   7771   if (NRVOCandidate)
   7772     const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
   7773 }
   7774 
   7775 Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
   7776   return ActOnFinishFunctionBody(D, BodyArg, false);
   7777 }
   7778 
   7779 Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
   7780                                     bool IsInstantiation) {
   7781   FunctionDecl *FD = 0;
   7782   FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
   7783   if (FunTmpl)
   7784     FD = FunTmpl->getTemplatedDecl();
   7785   else
   7786     FD = dyn_cast_or_null<FunctionDecl>(dcl);
   7787 
   7788   sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
   7789   sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
   7790 
   7791   if (FD) {
   7792     FD->setBody(Body);
   7793 
   7794     // If the function implicitly returns zero (like 'main') or is naked,
   7795     // don't complain about missing return statements.
   7796     if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
   7797       WP.disableCheckFallThrough();
   7798 
   7799     // MSVC permits the use of pure specifier (=0) on function definition,
   7800     // defined at class scope, warn about this non standard construct.
   7801     if (getLangOpts().MicrosoftExt && FD->isPure())
   7802       Diag(FD->getLocation(), diag::warn_pure_function_definition);
   7803 
   7804     if (!FD->isInvalidDecl()) {
   7805       DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
   7806       DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
   7807                                              FD->getResultType(), FD);
   7808 
   7809       // If this is a constructor, we need a vtable.
   7810       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
   7811         MarkVTableUsed(FD->getLocation(), Constructor->getParent());
   7812 
   7813       // Try to apply the named return value optimization. We have to check
   7814       // if we can do this here because lambdas keep return statements around
   7815       // to deduce an implicit return type.
   7816       if (getLangOpts().CPlusPlus && FD->getResultType()->isRecordType() &&
   7817           !FD->isDependentContext())
   7818         computeNRVO(Body, getCurFunction());
   7819     }
   7820 
   7821     assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
   7822            "Function parsing confused");
   7823   } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
   7824     assert(MD == getCurMethodDecl() && "Method parsing confused");
   7825     MD->setBody(Body);
   7826     if (!MD->isInvalidDecl()) {
   7827       DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
   7828       DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
   7829                                              MD->getResultType(), MD);
   7830 
   7831       if (Body)
   7832         computeNRVO(Body, getCurFunction());
   7833     }
   7834     if (getCurFunction()->ObjCShouldCallSuperDealloc) {
   7835       Diag(MD->getLocEnd(), diag::warn_objc_missing_super_call)
   7836         << MD->getSelector().getAsString();
   7837       getCurFunction()->ObjCShouldCallSuperDealloc = false;
   7838     }
   7839     if (getCurFunction()->ObjCShouldCallSuperFinalize) {
   7840       Diag(MD->getLocEnd(), diag::warn_objc_missing_super_finalize);
   7841       getCurFunction()->ObjCShouldCallSuperFinalize = false;
   7842     }
   7843   } else {
   7844     return 0;
   7845   }
   7846 
   7847   assert(!getCurFunction()->ObjCShouldCallSuperDealloc &&
   7848          "This should only be set for ObjC methods, which should have been "
   7849          "handled in the block above.");
   7850   assert(!getCurFunction()->ObjCShouldCallSuperFinalize &&
   7851          "This should only be set for ObjC methods, which should have been "
   7852          "handled in the block above.");
   7853 
   7854   // Verify and clean out per-function state.
   7855   if (Body) {
   7856     // C++ constructors that have function-try-blocks can't have return
   7857     // statements in the handlers of that block. (C++ [except.handle]p14)
   7858     // Verify this.
   7859     if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
   7860       DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
   7861 
   7862     // Verify that gotos and switch cases don't jump into scopes illegally.
   7863     if (getCurFunction()->NeedsScopeChecking() &&
   7864         !dcl->isInvalidDecl() &&
   7865         !hasAnyUnrecoverableErrorsInThisFunction() &&
   7866         !PP.isCodeCompletionEnabled())
   7867       DiagnoseInvalidJumps(Body);
   7868 
   7869     if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
   7870       if (!Destructor->getParent()->isDependentType())
   7871         CheckDestructor(Destructor);
   7872 
   7873       MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
   7874                                              Destructor->getParent());
   7875     }
   7876 
   7877     // If any errors have occurred, clear out any temporaries that may have
   7878     // been leftover. This ensures that these temporaries won't be picked up for
   7879     // deletion in some later function.
   7880     if (PP.getDiagnostics().hasErrorOccurred() ||
   7881         PP.getDiagnostics().getSuppressAllDiagnostics()) {
   7882       DiscardCleanupsInEvaluationContext();
   7883     } else if (!isa<FunctionTemplateDecl>(dcl)) {
   7884       // Since the body is valid, issue any analysis-based warnings that are
   7885       // enabled.
   7886       ActivePolicy = &WP;
   7887     }
   7888 
   7889     if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
   7890         (!CheckConstexprFunctionDecl(FD) ||
   7891          !CheckConstexprFunctionBody(FD, Body)))
   7892       FD->setInvalidDecl();
   7893 
   7894     assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
   7895     assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
   7896     assert(MaybeODRUseExprs.empty() &&
   7897            "Leftover expressions for odr-use checking");
   7898   }
   7899 
   7900   if (!IsInstantiation)
   7901     PopDeclContext();
   7902 
   7903   PopFunctionScopeInfo(ActivePolicy, dcl);
   7904 
   7905   // If any errors have occurred, clear out any temporaries that may have
   7906   // been leftover. This ensures that these temporaries won't be picked up for
   7907   // deletion in some later function.
   7908   if (getDiagnostics().hasErrorOccurred()) {
   7909     DiscardCleanupsInEvaluationContext();
   7910   }
   7911 
   7912   return dcl;
   7913 }
   7914 
   7915 
   7916 /// When we finish delayed parsing of an attribute, we must attach it to the
   7917 /// relevant Decl.
   7918 void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
   7919                                        ParsedAttributes &Attrs) {
   7920   // Always attach attributes to the underlying decl.
   7921   if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
   7922     D = TD->getTemplatedDecl();
   7923   ProcessDeclAttributeList(S, D, Attrs.getList());
   7924 
   7925   if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
   7926     if (Method->isStatic())
   7927       checkThisInStaticMemberFunctionAttributes(Method);
   7928 }
   7929 
   7930 
   7931 /// ImplicitlyDefineFunction - An undeclared identifier was used in a function
   7932 /// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
   7933 NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
   7934                                           IdentifierInfo &II, Scope *S) {
   7935   // Before we produce a declaration for an implicitly defined
   7936   // function, see whether there was a locally-scoped declaration of
   7937   // this name as a function or variable. If so, use that
   7938   // (non-visible) declaration, and complain about it.
   7939   llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
   7940     = findLocallyScopedExternalDecl(&II);
   7941   if (Pos != LocallyScopedExternalDecls.end()) {
   7942     Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
   7943     Diag(Pos->second->getLocation(), diag::note_previous_declaration);
   7944     return Pos->second;
   7945   }
   7946 
   7947   // Extension in C99.  Legal in C90, but warn about it.
   7948   unsigned diag_id;
   7949   if (II.getName().startswith("__builtin_"))
   7950     diag_id = diag::warn_builtin_unknown;
   7951   else if (getLangOpts().C99)
   7952     diag_id = diag::ext_implicit_function_decl;
   7953   else
   7954     diag_id = diag::warn_implicit_function_decl;
   7955   Diag(Loc, diag_id) << &II;
   7956 
   7957   // Because typo correction is expensive, only do it if the implicit
   7958   // function declaration is going to be treated as an error.
   7959   if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
   7960     TypoCorrection Corrected;
   7961     DeclFilterCCC<FunctionDecl> Validator;
   7962     if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
   7963                                       LookupOrdinaryName, S, 0, Validator))) {
   7964       std::string CorrectedStr = Corrected.getAsString(getLangOpts());
   7965       std::string CorrectedQuotedStr = Corrected.getQuoted(getLangOpts());
   7966       FunctionDecl *Func = Corrected.getCorrectionDeclAs<FunctionDecl>();
   7967 
   7968       Diag(Loc, diag::note_function_suggestion) << CorrectedQuotedStr
   7969           << FixItHint::CreateReplacement(Loc, CorrectedStr);
   7970 
   7971       if (Func->getLocation().isValid()
   7972           && !II.getName().startswith("__builtin_"))
   7973         Diag(Func->getLocation(), diag::note_previous_decl)
   7974             << CorrectedQuotedStr;
   7975     }
   7976   }
   7977 
   7978   // Set a Declarator for the implicit definition: int foo();
   7979   const char *Dummy;
   7980   AttributeFactory attrFactory;
   7981   DeclSpec DS(attrFactory);
   7982   unsigned DiagID;
   7983   bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
   7984   (void)Error; // Silence warning.
   7985   assert(!Error && "Error setting up implicit decl!");
   7986   Declarator D(DS, Declarator::BlockContext);
   7987   D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, false,
   7988                                              SourceLocation(), 0, 0, 0, true,
   7989                                              SourceLocation(), SourceLocation(),
   7990                                              SourceLocation(), SourceLocation(),
   7991                                              EST_None, SourceLocation(),
   7992                                              0, 0, 0, 0, Loc, Loc, D),
   7993                 DS.getAttributes(),
   7994                 SourceLocation());
   7995   D.SetIdentifier(&II, Loc);
   7996 
   7997   // Insert this function into translation-unit scope.
   7998 
   7999   DeclContext *PrevDC = CurContext;
   8000   CurContext = Context.getTranslationUnitDecl();
   8001 
   8002   FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
   8003   FD->setImplicit();
   8004 
   8005   CurContext = PrevDC;
   8006 
   8007   AddKnownFunctionAttributes(FD);
   8008 
   8009   return FD;
   8010 }
   8011 
   8012 /// \brief Adds any function attributes that we know a priori based on
   8013 /// the declaration of this function.
   8014 ///
   8015 /// These attributes can apply both to implicitly-declared builtins
   8016 /// (like __builtin___printf_chk) or to library-declared functions
   8017 /// like NSLog or printf.
   8018 ///
   8019 /// We need to check for duplicate attributes both here and where user-written
   8020 /// attributes are applied to declarations.
   8021 void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
   8022   if (FD->isInvalidDecl())
   8023     return;
   8024 
   8025   // If this is a built-in function, map its builtin attributes to
   8026   // actual attributes.
   8027   if (unsigned BuiltinID = FD->getBuiltinID()) {
   8028     // Handle printf-formatting attributes.
   8029     unsigned FormatIdx;
   8030     bool HasVAListArg;
   8031     if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
   8032       if (!FD->getAttr<FormatAttr>()) {
   8033         const char *fmt = "printf";
   8034         unsigned int NumParams = FD->getNumParams();
   8035         if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
   8036             FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
   8037           fmt = "NSString";
   8038         FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
   8039                                                fmt, FormatIdx+1,
   8040                                                HasVAListArg ? 0 : FormatIdx+2));
   8041       }
   8042     }
   8043     if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
   8044                                              HasVAListArg)) {
   8045      if (!FD->getAttr<FormatAttr>())
   8046        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
   8047                                               "scanf", FormatIdx+1,
   8048                                               HasVAListArg ? 0 : FormatIdx+2));
   8049     }
   8050 
   8051     // Mark const if we don't care about errno and that is the only
   8052     // thing preventing the function from being const. This allows
   8053     // IRgen to use LLVM intrinsics for such functions.
   8054     if (!getLangOpts().MathErrno &&
   8055         Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
   8056       if (!FD->getAttr<ConstAttr>())
   8057         FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
   8058     }
   8059 
   8060     if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
   8061         !FD->getAttr<ReturnsTwiceAttr>())
   8062       FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
   8063     if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
   8064       FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
   8065     if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
   8066       FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
   8067   }
   8068 
   8069   IdentifierInfo *Name = FD->getIdentifier();
   8070   if (!Name)
   8071     return;
   8072   if ((!getLangOpts().CPlusPlus &&
   8073        FD->getDeclContext()->isTranslationUnit()) ||
   8074       (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
   8075        cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
   8076        LinkageSpecDecl::lang_c)) {
   8077     // Okay: this could be a libc/libm/Objective-C function we know
   8078     // about.
   8079   } else
   8080     return;
   8081 
   8082   if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
   8083     // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
   8084     // target-specific builtins, perhaps?
   8085     if (!FD->getAttr<FormatAttr>())
   8086       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
   8087                                              "printf", 2,
   8088                                              Name->isStr("vasprintf") ? 0 : 3));
   8089   }
   8090 
   8091   if (Name->isStr("__CFStringMakeConstantString")) {
   8092     // We already have a __builtin___CFStringMakeConstantString,
   8093     // but builds that use -fno-constant-cfstrings don't go through that.
   8094     if (!FD->getAttr<FormatArgAttr>())
   8095       FD->addAttr(::new (Context) FormatArgAttr(FD->getLocation(), Context, 1));
   8096   }
   8097 }
   8098 
   8099 TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
   8100                                     TypeSourceInfo *TInfo) {
   8101   assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
   8102   assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
   8103 
   8104   if (!TInfo) {
   8105     assert(D.isInvalidType() && "no declarator info for valid type");
   8106     TInfo = Context.getTrivialTypeSourceInfo(T);
   8107   }
   8108 
   8109   // Scope manipulation handled by caller.
   8110   TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
   8111                                            D.getLocStart(),
   8112                                            D.getIdentifierLoc(),
   8113                                            D.getIdentifier(),
   8114                                            TInfo);
   8115 
   8116   // Bail out immediately if we have an invalid declaration.
   8117   if (D.isInvalidType()) {
   8118     NewTD->setInvalidDecl();
   8119     return NewTD;
   8120   }
   8121 
   8122   if (D.getDeclSpec().isModulePrivateSpecified()) {
   8123     if (CurContext->isFunctionOrMethod())
   8124       Diag(NewTD->getLocation(), diag::err_module_private_local)
   8125         << 2 << NewTD->getDeclName()
   8126         << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
   8127         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
   8128     else
   8129       NewTD->setModulePrivate();
   8130   }
   8131 
   8132   // C++ [dcl.typedef]p8:
   8133   //   If the typedef declaration defines an unnamed class (or
   8134   //   enum), the first typedef-name declared by the declaration
   8135   //   to be that class type (or enum type) is used to denote the
   8136   //   class type (or enum type) for linkage purposes only.
   8137   // We need to check whether the type was declared in the declaration.
   8138   switch (D.getDeclSpec().getTypeSpecType()) {
   8139   case TST_enum:
   8140   case TST_struct:
   8141   case TST_interface:
   8142   case TST_union:
   8143   case TST_class: {
   8144     TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
   8145 
   8146     // Do nothing if the tag is not anonymous or already has an
   8147     // associated typedef (from an earlier typedef in this decl group).
   8148     if (tagFromDeclSpec->getIdentifier()) break;
   8149     if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
   8150 
   8151     // A well-formed anonymous tag must always be a TUK_Definition.
   8152     assert(tagFromDeclSpec->isThisDeclarationADefinition());
   8153 
   8154     // The type must match the tag exactly;  no qualifiers allowed.
   8155     if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
   8156       break;
   8157 
   8158     // Otherwise, set this is the anon-decl typedef for the tag.
   8159     tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
   8160     break;
   8161   }
   8162 
   8163   default:
   8164     break;
   8165   }
   8166 
   8167   return NewTD;
   8168 }
   8169 
   8170 
   8171 /// \brief Check that this is a valid underlying type for an enum declaration.
   8172 bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
   8173   SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
   8174   QualType T = TI->getType();
   8175 
   8176   if (T->isDependentType() || T->isIntegralType(Context))
   8177     return false;
   8178 
   8179   Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
   8180   return true;
   8181 }
   8182 
   8183 /// Check whether this is a valid redeclaration of a previous enumeration.
   8184 /// \return true if the redeclaration was invalid.
   8185 bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
   8186                                   QualType EnumUnderlyingTy,
   8187                                   const EnumDecl *Prev) {
   8188   bool IsFixed = !EnumUnderlyingTy.isNull();
   8189 
   8190   if (IsScoped != Prev->isScoped()) {
   8191     Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
   8192       << Prev->isScoped();
   8193     Diag(Prev->getLocation(), diag::note_previous_use);
   8194     return true;
   8195   }
   8196 
   8197   if (IsFixed && Prev->isFixed()) {
   8198     if (!EnumUnderlyingTy->isDependentType() &&
   8199         !Prev->getIntegerType()->isDependentType() &&
   8200         !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
   8201                                         Prev->getIntegerType())) {
   8202       Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
   8203         << EnumUnderlyingTy << Prev->getIntegerType();
   8204       Diag(Prev->getLocation(), diag::note_previous_use);
   8205       return true;
   8206     }
   8207   } else if (IsFixed != Prev->isFixed()) {
   8208     Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
   8209       << Prev->isFixed();
   8210     Diag(Prev->getLocation(), diag::note_previous_use);
   8211     return true;
   8212   }
   8213 
   8214   return false;
   8215 }
   8216 
   8217 /// \brief Get diagnostic %select index for tag kind for
   8218 /// redeclaration diagnostic message.
   8219 /// WARNING: Indexes apply to particular diagnostics only!
   8220 ///
   8221 /// \returns diagnostic %select index.
   8222 static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
   8223   switch (Tag) {
   8224   case TTK_Struct: return 0;
   8225   case TTK_Interface: return 1;
   8226   case TTK_Class:  return 2;
   8227   default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
   8228   }
   8229 }
   8230 
   8231 /// \brief Determine if tag kind is a class-key compatible with
   8232 /// class for redeclaration (class, struct, or __interface).
   8233 ///
   8234 /// \returns true iff the tag kind is compatible.
   8235 static bool isClassCompatTagKind(TagTypeKind Tag)
   8236 {
   8237   return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
   8238 }
   8239 
   8240 /// \brief Determine whether a tag with a given kind is acceptable
   8241 /// as a redeclaration of the given tag declaration.
   8242 ///
   8243 /// \returns true if the new tag kind is acceptable, false otherwise.
   8244 bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
   8245                                         TagTypeKind NewTag, bool isDefinition,
   8246                                         SourceLocation NewTagLoc,
   8247                                         const IdentifierInfo &Name) {
   8248   // C++ [dcl.type.elab]p3:
   8249   //   The class-key or enum keyword present in the
   8250   //   elaborated-type-specifier shall agree in kind with the
   8251   //   declaration to which the name in the elaborated-type-specifier
   8252   //   refers. This rule also applies to the form of
   8253   //   elaborated-type-specifier that declares a class-name or
   8254   //   friend class since it can be construed as referring to the
   8255   //   definition of the class. Thus, in any
   8256   //   elaborated-type-specifier, the enum keyword shall be used to
   8257   //   refer to an enumeration (7.2), the union class-key shall be
   8258   //   used to refer to a union (clause 9), and either the class or
   8259   //   struct class-key shall be used to refer to a class (clause 9)
   8260   //   declared using the class or struct class-key.
   8261   TagTypeKind OldTag = Previous->getTagKind();
   8262   if (!isDefinition || !isClassCompatTagKind(NewTag))
   8263     if (OldTag == NewTag)
   8264       return true;
   8265 
   8266   if (isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)) {
   8267     // Warn about the struct/class tag mismatch.
   8268     bool isTemplate = false;
   8269     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
   8270       isTemplate = Record->getDescribedClassTemplate();
   8271 
   8272     if (!ActiveTemplateInstantiations.empty()) {
   8273       // In a template instantiation, do not offer fix-its for tag mismatches
   8274       // since they usually mess up the template instead of fixing the problem.
   8275       Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
   8276         << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
   8277         << getRedeclDiagFromTagKind(OldTag);
   8278       return true;
   8279     }
   8280 
   8281     if (isDefinition) {
   8282       // On definitions, check previous tags and issue a fix-it for each
   8283       // one that doesn't match the current tag.
   8284       if (Previous->getDefinition()) {
   8285         // Don't suggest fix-its for redefinitions.
   8286         return true;
   8287       }
   8288 
   8289       bool previousMismatch = false;
   8290       for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
   8291            E(Previous->redecls_end()); I != E; ++I) {
   8292         if (I->getTagKind() != NewTag) {
   8293           if (!previousMismatch) {
   8294             previousMismatch = true;
   8295             Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
   8296               << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
   8297               << getRedeclDiagFromTagKind(I->getTagKind());
   8298           }
   8299           Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
   8300             << getRedeclDiagFromTagKind(NewTag)
   8301             << FixItHint::CreateReplacement(I->getInnerLocStart(),
   8302                  TypeWithKeyword::getTagTypeKindName(NewTag));
   8303         }
   8304       }
   8305       return true;
   8306     }
   8307 
   8308     // Check for a previous definition.  If current tag and definition
   8309     // are same type, do nothing.  If no definition, but disagree with
   8310     // with previous tag type, give a warning, but no fix-it.
   8311     const TagDecl *Redecl = Previous->getDefinition() ?
   8312                             Previous->getDefinition() : Previous;
   8313     if (Redecl->getTagKind() == NewTag) {
   8314       return true;
   8315     }
   8316 
   8317     Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
   8318       << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
   8319       << getRedeclDiagFromTagKind(OldTag);
   8320     Diag(Redecl->getLocation(), diag::note_previous_use);
   8321 
   8322     // If there is a previous defintion, suggest a fix-it.
   8323     if (Previous->getDefinition()) {
   8324         Diag(NewTagLoc, diag::note_struct_class_suggestion)
   8325           << getRedeclDiagFromTagKind(Redecl->getTagKind())
   8326           << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
   8327                TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
   8328     }
   8329 
   8330     return true;
   8331   }
   8332   return false;
   8333 }
   8334 
   8335 /// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
   8336 /// former case, Name will be non-null.  In the later case, Name will be null.
   8337 /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
   8338 /// reference/declaration/definition of a tag.
   8339 Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
   8340                      SourceLocation KWLoc, CXXScopeSpec &SS,
   8341                      IdentifierInfo *Name, SourceLocation NameLoc,
   8342                      AttributeList *Attr, AccessSpecifier AS,
   8343                      SourceLocation ModulePrivateLoc,
   8344                      MultiTemplateParamsArg TemplateParameterLists,
   8345                      bool &OwnedDecl, bool &IsDependent,
   8346                      SourceLocation ScopedEnumKWLoc,
   8347                      bool ScopedEnumUsesClassTag,
   8348                      TypeResult UnderlyingType) {
   8349   // If this is not a definition, it must have a name.
   8350   IdentifierInfo *OrigName = Name;
   8351   assert((Name != 0 || TUK == TUK_Definition) &&
   8352          "Nameless record must be a definition!");
   8353   assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
   8354 
   8355   OwnedDecl = false;
   8356   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
   8357   bool ScopedEnum = ScopedEnumKWLoc.isValid();
   8358 
   8359   // FIXME: Check explicit specializations more carefully.
   8360   bool isExplicitSpecialization = false;
   8361   bool Invalid = false;
   8362 
   8363   // We only need to do this matching if we have template parameters
   8364   // or a scope specifier, which also conveniently avoids this work
   8365   // for non-C++ cases.
   8366   if (TemplateParameterLists.size() > 0 ||
   8367       (SS.isNotEmpty() && TUK != TUK_Reference)) {
   8368     if (TemplateParameterList *TemplateParams
   8369           = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
   8370                                                 TemplateParameterLists.data(),
   8371                                                 TemplateParameterLists.size(),
   8372                                                     TUK == TUK_Friend,
   8373                                                     isExplicitSpecialization,
   8374                                                     Invalid)) {
   8375       if (TemplateParams->size() > 0) {
   8376         // This is a declaration or definition of a class template (which may
   8377         // be a member of another template).
   8378 
   8379         if (Invalid)
   8380           return 0;
   8381 
   8382         OwnedDecl = false;
   8383         DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
   8384                                                SS, Name, NameLoc, Attr,
   8385                                                TemplateParams, AS,
   8386                                                ModulePrivateLoc,
   8387                                                TemplateParameterLists.size()-1,
   8388                                                TemplateParameterLists.data());
   8389         return Result.get();
   8390       } else {
   8391         // The "template<>" header is extraneous.
   8392         Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
   8393           << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
   8394         isExplicitSpecialization = true;
   8395       }
   8396     }
   8397   }
   8398 
   8399   // Figure out the underlying type if this a enum declaration. We need to do
   8400   // this early, because it's needed to detect if this is an incompatible
   8401   // redeclaration.
   8402   llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
   8403 
   8404   if (Kind == TTK_Enum) {
   8405     if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
   8406       // No underlying type explicitly specified, or we failed to parse the
   8407       // type, default to int.
   8408       EnumUnderlying = Context.IntTy.getTypePtr();
   8409     else if (UnderlyingType.get()) {
   8410       // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
   8411       // integral type; any cv-qualification is ignored.
   8412       TypeSourceInfo *TI = 0;
   8413       GetTypeFromParser(UnderlyingType.get(), &TI);
   8414       EnumUnderlying = TI;
   8415 
   8416       if (CheckEnumUnderlyingType(TI))
   8417         // Recover by falling back to int.
   8418         EnumUnderlying = Context.IntTy.getTypePtr();
   8419 
   8420       if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
   8421                                           UPPC_FixedUnderlyingType))
   8422         EnumUnderlying = Context.IntTy.getTypePtr();
   8423 
   8424     } else if (getLangOpts().MicrosoftMode)
   8425       // Microsoft enums are always of int type.
   8426       EnumUnderlying = Context.IntTy.getTypePtr();
   8427   }
   8428 
   8429   DeclContext *SearchDC = CurContext;
   8430   DeclContext *DC = CurContext;
   8431   bool isStdBadAlloc = false;
   8432 
   8433   RedeclarationKind Redecl = ForRedeclaration;
   8434   if (TUK == TUK_Friend || TUK == TUK_Reference)
   8435     Redecl = NotForRedeclaration;
   8436 
   8437   LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
   8438 
   8439   if (Name && SS.isNotEmpty()) {
   8440     // We have a nested-name tag ('struct foo::bar').
   8441 
   8442     // Check for invalid 'foo::'.
   8443     if (SS.isInvalid()) {
   8444       Name = 0;
   8445       goto CreateNewDecl;
   8446     }
   8447 
   8448     // If this is a friend or a reference to a class in a dependent
   8449     // context, don't try to make a decl for it.
   8450     if (TUK == TUK_Friend || TUK == TUK_Reference) {
   8451       DC = computeDeclContext(SS, false);
   8452       if (!DC) {
   8453         IsDependent = true;
   8454         return 0;
   8455       }
   8456     } else {
   8457       DC = computeDeclContext(SS, true);
   8458       if (!DC) {
   8459         Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
   8460           << SS.getRange();
   8461         return 0;
   8462       }
   8463     }
   8464 
   8465     if (RequireCompleteDeclContext(SS, DC))
   8466       return 0;
   8467 
   8468     SearchDC = DC;
   8469     // Look-up name inside 'foo::'.
   8470     LookupQualifiedName(Previous, DC);
   8471 
   8472     if (Previous.isAmbiguous())
   8473       return 0;
   8474 
   8475     if (Previous.empty()) {
   8476       // Name lookup did not find anything. However, if the
   8477       // nested-name-specifier refers to the current instantiation,
   8478       // and that current instantiation has any dependent base
   8479       // classes, we might find something at instantiation time: treat
   8480       // this as a dependent elaborated-type-specifier.
   8481       // But this only makes any sense for reference-like lookups.
   8482       if (Previous.wasNotFoundInCurrentInstantiation() &&
   8483           (TUK == TUK_Reference || TUK == TUK_Friend)) {
   8484         IsDependent = true;
   8485         return 0;
   8486       }
   8487 
   8488       // A tag 'foo::bar' must already exist.
   8489       Diag(NameLoc, diag::err_not_tag_in_scope)
   8490         << Kind << Name << DC << SS.getRange();
   8491       Name = 0;
   8492       Invalid = true;
   8493       goto CreateNewDecl;
   8494     }
   8495   } else if (Name) {
   8496     // If this is a named struct, check to see if there was a previous forward
   8497     // declaration or definition.
   8498     // FIXME: We're looking into outer scopes here, even when we
   8499     // shouldn't be. Doing so can result in ambiguities that we
   8500     // shouldn't be diagnosing.
   8501     LookupName(Previous, S);
   8502 
   8503     if (Previous.isAmbiguous() &&
   8504         (TUK == TUK_Definition || TUK == TUK_Declaration)) {
   8505       LookupResult::Filter F = Previous.makeFilter();
   8506       while (F.hasNext()) {
   8507         NamedDecl *ND = F.next();
   8508         if (ND->getDeclContext()->getRedeclContext() != SearchDC)
   8509           F.erase();
   8510       }
   8511       F.done();
   8512     }
   8513 
   8514     // Note:  there used to be some attempt at recovery here.
   8515     if (Previous.isAmbiguous())
   8516       return 0;
   8517 
   8518     if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
   8519       // FIXME: This makes sure that we ignore the contexts associated
   8520       // with C structs, unions, and enums when looking for a matching
   8521       // tag declaration or definition. See the similar lookup tweak
   8522       // in Sema::LookupName; is there a better way to deal with this?
   8523       while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
   8524         SearchDC = SearchDC->getParent();
   8525     }
   8526   } else if (S->isFunctionPrototypeScope()) {
   8527     // If this is an enum declaration in function prototype scope, set its
   8528     // initial context to the translation unit.
   8529     // FIXME: [citation needed]
   8530     SearchDC = Context.getTranslationUnitDecl();
   8531   }
   8532 
   8533   if (Previous.isSingleResult() &&
   8534       Previous.getFoundDecl()->isTemplateParameter()) {
   8535     // Maybe we will complain about the shadowed template parameter.
   8536     DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
   8537     // Just pretend that we didn't see the previous declaration.
   8538     Previous.clear();
   8539   }
   8540 
   8541   if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
   8542       DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
   8543     // This is a declaration of or a reference to "std::bad_alloc".
   8544     isStdBadAlloc = true;
   8545 
   8546     if (Previous.empty() && StdBadAlloc) {
   8547       // std::bad_alloc has been implicitly declared (but made invisible to
   8548       // name lookup). Fill in this implicit declaration as the previous
   8549       // declaration, so that the declarations get chained appropriately.
   8550       Previous.addDecl(getStdBadAlloc());
   8551     }
   8552   }
   8553 
   8554   // If we didn't find a previous declaration, and this is a reference
   8555   // (or friend reference), move to the correct scope.  In C++, we
   8556   // also need to do a redeclaration lookup there, just in case
   8557   // there's a shadow friend decl.
   8558   if (Name && Previous.empty() &&
   8559       (TUK == TUK_Reference || TUK == TUK_Friend)) {
   8560     if (Invalid) goto CreateNewDecl;
   8561     assert(SS.isEmpty());
   8562 
   8563     if (TUK == TUK_Reference) {
   8564       // C++ [basic.scope.pdecl]p5:
   8565       //   -- for an elaborated-type-specifier of the form
   8566       //
   8567       //          class-key identifier
   8568       //
   8569       //      if the elaborated-type-specifier is used in the
   8570       //      decl-specifier-seq or parameter-declaration-clause of a
   8571       //      function defined in namespace scope, the identifier is
   8572       //      declared as a class-name in the namespace that contains
   8573       //      the declaration; otherwise, except as a friend
   8574       //      declaration, the identifier is declared in the smallest
   8575       //      non-class, non-function-prototype scope that contains the
   8576       //      declaration.
   8577       //
   8578       // C99 6.7.2.3p8 has a similar (but not identical!) provision for
   8579       // C structs and unions.
   8580       //
   8581       // It is an error in C++ to declare (rather than define) an enum
   8582       // type, including via an elaborated type specifier.  We'll
   8583       // diagnose that later; for now, declare the enum in the same
   8584       // scope as we would have picked for any other tag type.
   8585       //
   8586       // GNU C also supports this behavior as part of its incomplete
   8587       // enum types extension, while GNU C++ does not.
   8588       //
   8589       // Find the context where we'll be declaring the tag.
   8590       // FIXME: We would like to maintain the current DeclContext as the
   8591       // lexical context,
   8592       while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
   8593         SearchDC = SearchDC->getParent();
   8594 
   8595       // Find the scope where we'll be declaring the tag.
   8596       while (S->isClassScope() ||
   8597              (getLangOpts().CPlusPlus &&
   8598               S->isFunctionPrototypeScope()) ||
   8599              ((S->getFlags() & Scope::DeclScope) == 0) ||
   8600              (S->getEntity() &&
   8601               ((DeclContext *)S->getEntity())->isTransparentContext()))
   8602         S = S->getParent();
   8603     } else {
   8604       assert(TUK == TUK_Friend);
   8605       // C++ [namespace.memdef]p3:
   8606       //   If a friend declaration in a non-local class first declares a
   8607       //   class or function, the friend class or function is a member of
   8608       //   the innermost enclosing namespace.
   8609       SearchDC = SearchDC->getEnclosingNamespaceContext();
   8610     }
   8611 
   8612     // In C++, we need to do a redeclaration lookup to properly
   8613     // diagnose some problems.
   8614     if (getLangOpts().CPlusPlus) {
   8615       Previous.setRedeclarationKind(ForRedeclaration);
   8616       LookupQualifiedName(Previous, SearchDC);
   8617     }
   8618   }
   8619 
   8620   if (!Previous.empty()) {
   8621     NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
   8622 
   8623     // It's okay to have a tag decl in the same scope as a typedef
   8624     // which hides a tag decl in the same scope.  Finding this
   8625     // insanity with a redeclaration lookup can only actually happen
   8626     // in C++.
   8627     //
   8628     // This is also okay for elaborated-type-specifiers, which is
   8629     // technically forbidden by the current standard but which is
   8630     // okay according to the likely resolution of an open issue;
   8631     // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
   8632     if (getLangOpts().CPlusPlus) {
   8633       if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
   8634         if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
   8635           TagDecl *Tag = TT->getDecl();
   8636           if (Tag->getDeclName() == Name &&
   8637               Tag->getDeclContext()->getRedeclContext()
   8638                           ->Equals(TD->getDeclContext()->getRedeclContext())) {
   8639             PrevDecl = Tag;
   8640             Previous.clear();
   8641             Previous.addDecl(Tag);
   8642             Previous.resolveKind();
   8643           }
   8644         }
   8645       }
   8646     }
   8647 
   8648     if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
   8649       // If this is a use of a previous tag, or if the tag is already declared
   8650       // in the same scope (so that the definition/declaration completes or
   8651       // rementions the tag), reuse the decl.
   8652       if (TUK == TUK_Reference || TUK == TUK_Friend ||
   8653           isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
   8654         // Make sure that this wasn't declared as an enum and now used as a
   8655         // struct or something similar.
   8656         if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
   8657                                           TUK == TUK_Definition, KWLoc,
   8658                                           *Name)) {
   8659           bool SafeToContinue
   8660             = (PrevTagDecl->getTagKind() != TTK_Enum &&
   8661                Kind != TTK_Enum);
   8662           if (SafeToContinue)
   8663             Diag(KWLoc, diag::err_use_with_wrong_tag)
   8664               << Name
   8665               << FixItHint::CreateReplacement(SourceRange(KWLoc),
   8666                                               PrevTagDecl->getKindName());
   8667           else
   8668             Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
   8669           Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
   8670 
   8671           if (SafeToContinue)
   8672             Kind = PrevTagDecl->getTagKind();
   8673           else {
   8674             // Recover by making this an anonymous redefinition.
   8675             Name = 0;
   8676             Previous.clear();
   8677             Invalid = true;
   8678           }
   8679         }
   8680 
   8681         if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
   8682           const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
   8683 
   8684           // If this is an elaborated-type-specifier for a scoped enumeration,
   8685           // the 'class' keyword is not necessary and not permitted.
   8686           if (TUK == TUK_Reference || TUK == TUK_Friend) {
   8687             if (ScopedEnum)
   8688               Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
   8689                 << PrevEnum->isScoped()
   8690                 << FixItHint::CreateRemoval(ScopedEnumKWLoc);
   8691             return PrevTagDecl;
   8692           }
   8693 
   8694           QualType EnumUnderlyingTy;
   8695           if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
   8696             EnumUnderlyingTy = TI->getType();
   8697           else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
   8698             EnumUnderlyingTy = QualType(T, 0);
   8699 
   8700           // All conflicts with previous declarations are recovered by
   8701           // returning the previous declaration, unless this is a definition,
   8702           // in which case we want the caller to bail out.
   8703           if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
   8704                                      ScopedEnum, EnumUnderlyingTy, PrevEnum))
   8705             return TUK == TUK_Declaration ? PrevTagDecl : 0;
   8706         }
   8707 
   8708         if (!Invalid) {
   8709           // If this is a use, just return the declaration we found.
   8710 
   8711           // FIXME: In the future, return a variant or some other clue
   8712           // for the consumer of this Decl to know it doesn't own it.
   8713           // For our current ASTs this shouldn't be a problem, but will
   8714           // need to be changed with DeclGroups.
   8715           if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
   8716                getLangOpts().MicrosoftExt)) || TUK == TUK_Friend)
   8717             return PrevTagDecl;
   8718 
   8719           // Diagnose attempts to redefine a tag.
   8720           if (TUK == TUK_Definition) {
   8721             if (TagDecl *Def = PrevTagDecl->getDefinition()) {
   8722               // If we're defining a specialization and the previous definition
   8723               // is from an implicit instantiation, don't emit an error
   8724               // here; we'll catch this in the general case below.
   8725               bool IsExplicitSpecializationAfterInstantiation = false;
   8726               if (isExplicitSpecialization) {
   8727                 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
   8728                   IsExplicitSpecializationAfterInstantiation =
   8729                     RD->getTemplateSpecializationKind() !=
   8730                     TSK_ExplicitSpecialization;
   8731                 else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
   8732                   IsExplicitSpecializationAfterInstantiation =
   8733                     ED->getTemplateSpecializationKind() !=
   8734                     TSK_ExplicitSpecialization;
   8735               }
   8736 
   8737               if (!IsExplicitSpecializationAfterInstantiation) {
   8738                 // A redeclaration in function prototype scope in C isn't
   8739                 // visible elsewhere, so merely issue a warning.
   8740                 if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
   8741                   Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
   8742                 else
   8743                   Diag(NameLoc, diag::err_redefinition) << Name;
   8744                 Diag(Def->getLocation(), diag::note_previous_definition);
   8745                 // If this is a redefinition, recover by making this
   8746                 // struct be anonymous, which will make any later
   8747                 // references get the previous definition.
   8748                 Name = 0;
   8749                 Previous.clear();
   8750                 Invalid = true;
   8751               }
   8752             } else {
   8753               // If the type is currently being defined, complain
   8754               // about a nested redefinition.
   8755               const TagType *Tag
   8756                 = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
   8757               if (Tag->isBeingDefined()) {
   8758                 Diag(NameLoc, diag::err_nested_redefinition) << Name;
   8759                 Diag(PrevTagDecl->getLocation(),
   8760                      diag::note_previous_definition);
   8761                 Name = 0;
   8762                 Previous.clear();
   8763                 Invalid = true;
   8764               }
   8765             }
   8766 
   8767             // Okay, this is definition of a previously declared or referenced
   8768             // tag PrevDecl. We're going to create a new Decl for it.
   8769           }
   8770         }
   8771         // If we get here we have (another) forward declaration or we
   8772         // have a definition.  Just create a new decl.
   8773 
   8774       } else {
   8775         // If we get here, this is a definition of a new tag type in a nested
   8776         // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
   8777         // new decl/type.  We set PrevDecl to NULL so that the entities
   8778         // have distinct types.
   8779         Previous.clear();
   8780       }
   8781       // If we get here, we're going to create a new Decl. If PrevDecl
   8782       // is non-NULL, it's a definition of the tag declared by
   8783       // PrevDecl. If it's NULL, we have a new definition.
   8784 
   8785 
   8786     // Otherwise, PrevDecl is not a tag, but was found with tag
   8787     // lookup.  This is only actually possible in C++, where a few
   8788     // things like templates still live in the tag namespace.
   8789     } else {
   8790       // Use a better diagnostic if an elaborated-type-specifier
   8791       // found the wrong kind of type on the first
   8792       // (non-redeclaration) lookup.
   8793       if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
   8794           !Previous.isForRedeclaration()) {
   8795         unsigned Kind = 0;
   8796         if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
   8797         else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
   8798         else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
   8799         Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
   8800         Diag(PrevDecl->getLocation(), diag::note_declared_at);
   8801         Invalid = true;
   8802 
   8803       // Otherwise, only diagnose if the declaration is in scope.
   8804       } else if (!isDeclInScope(PrevDecl, SearchDC, S,
   8805                                 isExplicitSpecialization)) {
   8806         // do nothing
   8807 
   8808       // Diagnose implicit declarations introduced by elaborated types.
   8809       } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
   8810         unsigned Kind = 0;
   8811         if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
   8812         else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
   8813         else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
   8814         Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
   8815         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
   8816         Invalid = true;
   8817 
   8818       // Otherwise it's a declaration.  Call out a particularly common
   8819       // case here.
   8820       } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
   8821         unsigned Kind = 0;
   8822         if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
   8823         Diag(NameLoc, diag::err_tag_definition_of_typedef)
   8824           << Name << Kind << TND->getUnderlyingType();
   8825         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
   8826         Invalid = true;
   8827 
   8828       // Otherwise, diagnose.
   8829       } else {
   8830         // The tag name clashes with something else in the target scope,
   8831         // issue an error and recover by making this tag be anonymous.
   8832         Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
   8833         Diag(PrevDecl->getLocation(), diag::note_previous_definition);
   8834         Name = 0;
   8835         Invalid = true;
   8836       }
   8837 
   8838       // The existing declaration isn't relevant to us; we're in a
   8839       // new scope, so clear out the previous declaration.
   8840       Previous.clear();
   8841     }
   8842   }
   8843 
   8844 CreateNewDecl:
   8845 
   8846   TagDecl *PrevDecl = 0;
   8847   if (Previous.isSingleResult())
   8848     PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
   8849 
   8850   // If there is an identifier, use the location of the identifier as the
   8851   // location of the decl, otherwise use the location of the struct/union
   8852   // keyword.
   8853   SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
   8854 
   8855   // Otherwise, create a new declaration. If there is a previous
   8856   // declaration of the same entity, the two will be linked via
   8857   // PrevDecl.
   8858   TagDecl *New;
   8859 
   8860   bool IsForwardReference = false;
   8861   if (Kind == TTK_Enum) {
   8862     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
   8863     // enum X { A, B, C } D;    D should chain to X.
   8864     New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
   8865                            cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
   8866                            ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
   8867     // If this is an undefined enum, warn.
   8868     if (TUK != TUK_Definition && !Invalid) {
   8869       TagDecl *Def;
   8870       if (getLangOpts().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
   8871         // C++0x: 7.2p2: opaque-enum-declaration.
   8872         // Conflicts are diagnosed above. Do nothing.
   8873       }
   8874       else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
   8875         Diag(Loc, diag::ext_forward_ref_enum_def)
   8876           << New;
   8877         Diag(Def->getLocation(), diag::note_previous_definition);
   8878       } else {
   8879         unsigned DiagID = diag::ext_forward_ref_enum;
   8880         if (getLangOpts().MicrosoftMode)
   8881           DiagID = diag::ext_ms_forward_ref_enum;
   8882         else if (getLangOpts().CPlusPlus)
   8883           DiagID = diag::err_forward_ref_enum;
   8884         Diag(Loc, DiagID);
   8885 
   8886         // If this is a forward-declared reference to an enumeration, make a
   8887         // note of it; we won't actually be introducing the declaration into
   8888         // the declaration context.
   8889         if (TUK == TUK_Reference)
   8890           IsForwardReference = true;
   8891       }
   8892     }
   8893 
   8894     if (EnumUnderlying) {
   8895       EnumDecl *ED = cast<EnumDecl>(New);
   8896       if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
   8897         ED->setIntegerTypeSourceInfo(TI);
   8898       else
   8899         ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
   8900       ED->setPromotionType(ED->getIntegerType());
   8901     }
   8902 
   8903   } else {
   8904     // struct/union/class
   8905 
   8906     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
   8907     // struct X { int A; } D;    D should chain to X.
   8908     if (getLangOpts().CPlusPlus) {
   8909       // FIXME: Look for a way to use RecordDecl for simple structs.
   8910       New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
   8911                                   cast_or_null<CXXRecordDecl>(PrevDecl));
   8912 
   8913       if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
   8914         StdBadAlloc = cast<CXXRecordDecl>(New);
   8915     } else
   8916       New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
   8917                                cast_or_null<RecordDecl>(PrevDecl));
   8918   }
   8919 
   8920   // Maybe add qualifier info.
   8921   if (SS.isNotEmpty()) {
   8922     if (SS.isSet()) {
   8923       // If this is either a declaration or a definition, check the
   8924       // nested-name-specifier against the current context. We don't do this
   8925       // for explicit specializations, because they have similar checking
   8926       // (with more specific diagnostics) in the call to
   8927       // CheckMemberSpecialization, below.
   8928       if (!isExplicitSpecialization &&
   8929           (TUK == TUK_Definition || TUK == TUK_Declaration) &&
   8930           diagnoseQualifiedDeclaration(SS, DC, OrigName, NameLoc))
   8931         Invalid = true;
   8932 
   8933       New->setQualifierInfo(SS.getWithLocInContext(Context));
   8934       if (TemplateParameterLists.size() > 0) {
   8935         New->setTemplateParameterListsInfo(Context,
   8936                                            TemplateParameterLists.size(),
   8937                                            TemplateParameterLists.data());
   8938       }
   8939     }
   8940     else
   8941       Invalid = true;
   8942   }
   8943 
   8944   if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
   8945     // Add alignment attributes if necessary; these attributes are checked when
   8946     // the ASTContext lays out the structure.
   8947     //
   8948     // It is important for implementing the correct semantics that this
   8949     // happen here (in act on tag decl). The #pragma pack stack is
   8950     // maintained as a result of parser callbacks which can occur at
   8951     // many points during the parsing of a struct declaration (because
   8952     // the #pragma tokens are effectively skipped over during the
   8953     // parsing of the struct).
   8954     if (TUK == TUK_Definition) {
   8955       AddAlignmentAttributesForRecord(RD);
   8956       AddMsStructLayoutForRecord(RD);
   8957     }
   8958   }
   8959 
   8960   if (ModulePrivateLoc.isValid()) {
   8961     if (isExplicitSpecialization)
   8962       Diag(New->getLocation(), diag::err_module_private_specialization)
   8963         << 2
   8964         << FixItHint::CreateRemoval(ModulePrivateLoc);
   8965     // __module_private__ does not apply to local classes. However, we only
   8966     // diagnose this as an error when the declaration specifiers are
   8967     // freestanding. Here, we just ignore the __module_private__.
   8968     else if (!SearchDC->isFunctionOrMethod())
   8969       New->setModulePrivate();
   8970   }
   8971 
   8972   // If this is a specialization of a member class (of a class template),
   8973   // check the specialization.
   8974   if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
   8975     Invalid = true;
   8976 
   8977   if (Invalid)
   8978     New->setInvalidDecl();
   8979 
   8980   if (Attr)
   8981     ProcessDeclAttributeList(S, New, Attr);
   8982 
   8983   // If we're declaring or defining a tag in function prototype scope
   8984   // in C, note that this type can only be used within the function.
   8985   if (Name && S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus)
   8986     Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
   8987 
   8988   // Set the lexical context. If the tag has a C++ scope specifier, the
   8989   // lexical context will be different from the semantic context.
   8990   New->setLexicalDeclContext(CurContext);
   8991 
   8992   // Mark this as a friend decl if applicable.
   8993   // In Microsoft mode, a friend declaration also acts as a forward
   8994   // declaration so we always pass true to setObjectOfFriendDecl to make
   8995   // the tag name visible.
   8996   if (TUK == TUK_Friend)
   8997     New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
   8998                                getLangOpts().MicrosoftExt);
   8999 
   9000   // Set the access specifier.
   9001   if (!Invalid && SearchDC->isRecord())
   9002     SetMemberAccessSpecifier(New, PrevDecl, AS);
   9003 
   9004   if (TUK == TUK_Definition)
   9005     New->startDefinition();
   9006 
   9007   // If this has an identifier, add it to the scope stack.
   9008   if (TUK == TUK_Friend) {
   9009     // We might be replacing an existing declaration in the lookup tables;
   9010     // if so, borrow its access specifier.
   9011     if (PrevDecl)
   9012       New->setAccess(PrevDecl->getAccess());
   9013 
   9014     DeclContext *DC = New->getDeclContext()->getRedeclContext();
   9015     DC->makeDeclVisibleInContext(New);
   9016     if (Name) // can be null along some error paths
   9017       if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
   9018         PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
   9019   } else if (Name) {
   9020     S = getNonFieldDeclScope(S);
   9021     PushOnScopeChains(New, S, !IsForwardReference);
   9022     if (IsForwardReference)
   9023       SearchDC->makeDeclVisibleInContext(New);
   9024 
   9025   } else {
   9026     CurContext->addDecl(New);
   9027   }
   9028 
   9029   // If this is the C FILE type, notify the AST context.
   9030   if (IdentifierInfo *II = New->getIdentifier())
   9031     if (!New->isInvalidDecl() &&
   9032         New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
   9033         II->isStr("FILE"))
   9034       Context.setFILEDecl(New);
   9035 
   9036   // If we were in function prototype scope (and not in C++ mode), add this
   9037   // tag to the list of decls to inject into the function definition scope.
   9038   if (S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus &&
   9039       InFunctionDeclarator && Name)
   9040     DeclsInPrototypeScope.push_back(New);
   9041 
   9042   if (PrevDecl)
   9043     mergeDeclAttributes(New, PrevDecl);
   9044 
   9045   // If there's a #pragma GCC visibility in scope, set the visibility of this
   9046   // record.
   9047   AddPushedVisibilityAttribute(New);
   9048 
   9049   OwnedDecl = true;
   9050   return New;
   9051 }
   9052 
   9053 void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
   9054   AdjustDeclIfTemplate(TagD);
   9055   TagDecl *Tag = cast<TagDecl>(TagD);
   9056 
   9057   // Enter the tag context.
   9058   PushDeclContext(S, Tag);
   9059 
   9060   ActOnDocumentableDecl(TagD);
   9061 
   9062   // If there's a #pragma GCC visibility in scope, set the visibility of this
   9063   // record.
   9064   AddPushedVisibilityAttribute(Tag);
   9065 }
   9066 
   9067 Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
   9068   assert(isa<ObjCContainerDecl>(IDecl) &&
   9069          "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
   9070   DeclContext *OCD = cast<DeclContext>(IDecl);
   9071   assert(getContainingDC(OCD) == CurContext &&
   9072       "The next DeclContext should be lexically contained in the current one.");
   9073   CurContext = OCD;
   9074   return IDecl;
   9075 }
   9076 
   9077 void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
   9078                                            SourceLocation FinalLoc,
   9079                                            SourceLocation LBraceLoc) {
   9080   AdjustDeclIfTemplate(TagD);
   9081   CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
   9082 
   9083   FieldCollector->StartClass();
   9084 
   9085   if (!Record->getIdentifier())
   9086     return;
   9087 
   9088   if (FinalLoc.isValid())
   9089     Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
   9090 
   9091   // C++ [class]p2:
   9092   //   [...] The class-name is also inserted into the scope of the
   9093   //   class itself; this is known as the injected-class-name. For
   9094   //   purposes of access checking, the injected-class-name is treated
   9095   //   as if it were a public member name.
   9096   CXXRecordDecl *InjectedClassName
   9097     = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
   9098                             Record->getLocStart(), Record->getLocation(),
   9099                             Record->getIdentifier(),
   9100                             /*PrevDecl=*/0,
   9101                             /*DelayTypeCreation=*/true);
   9102   Context.getTypeDeclType(InjectedClassName, Record);
   9103   InjectedClassName->setImplicit();
   9104   InjectedClassName->setAccess(AS_public);
   9105   if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
   9106       InjectedClassName->setDescribedClassTemplate(Template);
   9107   PushOnScopeChains(InjectedClassName, S);
   9108   assert(InjectedClassName->isInjectedClassName() &&
   9109          "Broken injected-class-name");
   9110 }
   9111 
   9112 void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
   9113                                     SourceLocation RBraceLoc) {
   9114   AdjustDeclIfTemplate(TagD);
   9115   TagDecl *Tag = cast<TagDecl>(TagD);
   9116   Tag->setRBraceLoc(RBraceLoc);
   9117 
   9118   // Make sure we "complete" the definition even it is invalid.
   9119   if (Tag->isBeingDefined()) {
   9120     assert(Tag->isInvalidDecl() && "We should already have completed it");
   9121     if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
   9122       RD->completeDefinition();
   9123   }
   9124 
   9125   if (isa<CXXRecordDecl>(Tag))
   9126     FieldCollector->FinishClass();
   9127 
   9128   // Exit this scope of this tag's definition.
   9129   PopDeclContext();
   9130 
   9131   // Notify the consumer that we've defined a tag.
   9132   Consumer.HandleTagDeclDefinition(Tag);
   9133 }
   9134 
   9135 void Sema::ActOnObjCContainerFinishDefinition() {
   9136   // Exit this scope of this interface definition.
   9137   PopDeclContext();
   9138 }
   9139 
   9140 void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
   9141   assert(DC == CurContext && "Mismatch of container contexts");
   9142   OriginalLexicalContext = DC;
   9143   ActOnObjCContainerFinishDefinition();
   9144 }
   9145 
   9146 void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
   9147   ActOnObjCContainerStartDefinition(cast<Decl>(DC));
   9148   OriginalLexicalContext = 0;
   9149 }
   9150 
   9151 void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
   9152   AdjustDeclIfTemplate(TagD);
   9153   TagDecl *Tag = cast<TagDecl>(TagD);
   9154   Tag->setInvalidDecl();
   9155 
   9156   // Make sure we "complete" the definition even it is invalid.
   9157   if (Tag->isBeingDefined()) {
   9158     if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
   9159       RD->completeDefinition();
   9160   }
   9161 
   9162   // We're undoing ActOnTagStartDefinition here, not
   9163   // ActOnStartCXXMemberDeclarations, so we don't have to mess with
   9164   // the FieldCollector.
   9165 
   9166   PopDeclContext();
   9167 }
   9168 
   9169 // Note that FieldName may be null for anonymous bitfields.
   9170 ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
   9171                                 IdentifierInfo *FieldName,
   9172                                 QualType FieldTy, Expr *BitWidth,
   9173                                 bool *ZeroWidth) {
   9174   // Default to true; that shouldn't confuse checks for emptiness
   9175   if (ZeroWidth)
   9176     *ZeroWidth = true;
   9177 
   9178   // C99 6.7.2.1p4 - verify the field type.
   9179   // C++ 9.6p3: A bit-field shall have integral or enumeration type.
   9180   if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
   9181     // Handle incomplete types with specific error.
   9182     if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
   9183       return ExprError();
   9184     if (FieldName)
   9185       return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
   9186         << FieldName << FieldTy << BitWidth->getSourceRange();
   9187     return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
   9188       << FieldTy << BitWidth->getSourceRange();
   9189   } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
   9190                                              UPPC_BitFieldWidth))
   9191     return ExprError();
   9192 
   9193   // If the bit-width is type- or value-dependent, don't try to check
   9194   // it now.
   9195   if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
   9196     return Owned(BitWidth);
   9197 
   9198   llvm::APSInt Value;
   9199   ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
   9200   if (ICE.isInvalid())
   9201     return ICE;
   9202   BitWidth = ICE.take();
   9203 
   9204   if (Value != 0 && ZeroWidth)
   9205     *ZeroWidth = false;
   9206 
   9207   // Zero-width bitfield is ok for anonymous field.
   9208   if (Value == 0 && FieldName)
   9209     return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
   9210 
   9211   if (Value.isSigned() && Value.isNegative()) {
   9212     if (FieldName)
   9213       return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
   9214                << FieldName << Value.toString(10);
   9215     return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
   9216       << Value.toString(10);
   9217   }
   9218 
   9219   if (!FieldTy->isDependentType()) {
   9220     uint64_t TypeSize = Context.getTypeSize(FieldTy);
   9221     if (Value.getZExtValue() > TypeSize) {
   9222       if (!getLangOpts().CPlusPlus) {
   9223         if (FieldName)
   9224           return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
   9225             << FieldName << (unsigned)Value.getZExtValue()
   9226             << (unsigned)TypeSize;
   9227 
   9228         return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
   9229           << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
   9230       }
   9231 
   9232       if (FieldName)
   9233         Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
   9234           << FieldName << (unsigned)Value.getZExtValue()
   9235           << (unsigned)TypeSize;
   9236       else
   9237         Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
   9238           << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
   9239     }
   9240   }
   9241 
   9242   return Owned(BitWidth);
   9243 }
   9244 
   9245 /// ActOnField - Each field of a C struct/union is passed into this in order
   9246 /// to create a FieldDecl object for it.
   9247 Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
   9248                        Declarator &D, Expr *BitfieldWidth) {
   9249   FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
   9250                                DeclStart, D, static_cast<Expr*>(BitfieldWidth),
   9251                                /*InitStyle=*/ICIS_NoInit, AS_public);
   9252   return Res;
   9253 }
   9254 
   9255 /// HandleField - Analyze a field of a C struct or a C++ data member.
   9256 ///
   9257 FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
   9258                              SourceLocation DeclStart,
   9259                              Declarator &D, Expr *BitWidth,
   9260                              InClassInitStyle InitStyle,
   9261                              AccessSpecifier AS) {
   9262   IdentifierInfo *II = D.getIdentifier();
   9263   SourceLocation Loc = DeclStart;
   9264   if (II) Loc = D.getIdentifierLoc();
   9265 
   9266   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
   9267   QualType T = TInfo->getType();
   9268   if (getLangOpts().CPlusPlus) {
   9269     CheckExtraCXXDefaultArguments(D);
   9270 
   9271     if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
   9272                                         UPPC_DataMemberType)) {
   9273       D.setInvalidType();
   9274       T = Context.IntTy;
   9275       TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
   9276     }
   9277   }
   9278 
   9279   DiagnoseFunctionSpecifiers(D);
   9280 
   9281   if (D.getDeclSpec().isThreadSpecified())
   9282     Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
   9283   if (D.getDeclSpec().isConstexprSpecified())
   9284     Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
   9285       << 2;
   9286 
   9287   // Check to see if this name was declared as a member previously
   9288   NamedDecl *PrevDecl = 0;
   9289   LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
   9290   LookupName(Previous, S);
   9291   switch (Previous.getResultKind()) {
   9292     case LookupResult::Found:
   9293     case LookupResult::FoundUnresolvedValue:
   9294       PrevDecl = Previous.getAsSingle<NamedDecl>();
   9295       break;
   9296 
   9297     case LookupResult::FoundOverloaded:
   9298       PrevDecl = Previous.getRepresentativeDecl();
   9299       break;
   9300 
   9301     case LookupResult::NotFound:
   9302     case LookupResult::NotFoundInCurrentInstantiation:
   9303     case LookupResult::Ambiguous:
   9304       break;
   9305   }
   9306   Previous.suppressDiagnostics();
   9307 
   9308   if (PrevDecl && PrevDecl->isTemplateParameter()) {
   9309     // Maybe we will complain about the shadowed template parameter.
   9310     DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
   9311     // Just pretend that we didn't see the previous declaration.
   9312     PrevDecl = 0;
   9313   }
   9314 
   9315   if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
   9316     PrevDecl = 0;
   9317 
   9318   bool Mutable
   9319     = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
   9320   SourceLocation TSSL = D.getLocStart();
   9321   FieldDecl *NewFD
   9322     = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
   9323                      TSSL, AS, PrevDecl, &D);
   9324 
   9325   if (NewFD->isInvalidDecl())
   9326     Record->setInvalidDecl();
   9327 
   9328   if (D.getDeclSpec().isModulePrivateSpecified())
   9329     NewFD->setModulePrivate();
   9330 
   9331   if (NewFD->isInvalidDecl() && PrevDecl) {
   9332     // Don't introduce NewFD into scope; there's already something
   9333     // with the same name in the same scope.
   9334   } else if (II) {
   9335     PushOnScopeChains(NewFD, S);
   9336   } else
   9337     Record->addDecl(NewFD);
   9338 
   9339   return NewFD;
   9340 }
   9341 
   9342 /// \brief Build a new FieldDecl and check its well-formedness.
   9343 ///
   9344 /// This routine builds a new FieldDecl given the fields name, type,
   9345 /// record, etc. \p PrevDecl should refer to any previous declaration
   9346 /// with the same name and in the same scope as the field to be
   9347 /// created.
   9348 ///
   9349 /// \returns a new FieldDecl.
   9350 ///
   9351 /// \todo The Declarator argument is a hack. It will be removed once
   9352 FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
   9353                                 TypeSourceInfo *TInfo,
   9354                                 RecordDecl *Record, SourceLocation Loc,
   9355                                 bool Mutable, Expr *BitWidth,
   9356                                 InClassInitStyle InitStyle,
   9357                                 SourceLocation TSSL,
   9358                                 AccessSpecifier AS, NamedDecl *PrevDecl,
   9359                                 Declarator *D) {
   9360   IdentifierInfo *II = Name.getAsIdentifierInfo();
   9361   bool InvalidDecl = false;
   9362   if (D) InvalidDecl = D->isInvalidType();
   9363 
   9364   // If we receive a broken type, recover by assuming 'int' and
   9365   // marking this declaration as invalid.
   9366   if (T.isNull()) {
   9367     InvalidDecl = true;
   9368     T = Context.IntTy;
   9369   }
   9370 
   9371   QualType EltTy = Context.getBaseElementType(T);
   9372   if (!EltTy->isDependentType()) {
   9373     if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
   9374       // Fields of incomplete type force their record to be invalid.
   9375       Record->setInvalidDecl();
   9376       InvalidDecl = true;
   9377     } else {
   9378       NamedDecl *Def;
   9379       EltTy->isIncompleteType(&Def);
   9380       if (Def && Def->isInvalidDecl()) {
   9381         Record->setInvalidDecl();
   9382         InvalidDecl = true;
   9383       }
   9384     }
   9385   }
   9386 
   9387   // C99 6.7.2.1p8: A member of a structure or union may have any type other
   9388   // than a variably modified type.
   9389   if (!InvalidDecl && T->isVariablyModifiedType()) {
   9390     bool SizeIsNegative;
   9391     llvm::APSInt Oversized;
   9392     QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
   9393                                                            SizeIsNegative,
   9394                                                            Oversized);
   9395     if (!FixedTy.isNull()) {
   9396       Diag(Loc, diag::warn_illegal_constant_array_size);
   9397       T = FixedTy;
   9398     } else {
   9399       if (SizeIsNegative)
   9400         Diag(Loc, diag::err_typecheck_negative_array_size);
   9401       else if (Oversized.getBoolValue())
   9402         Diag(Loc, diag::err_array_too_large)
   9403           << Oversized.toString(10);
   9404       else
   9405         Diag(Loc, diag::err_typecheck_field_variable_size);
   9406       InvalidDecl = true;
   9407     }
   9408   }
   9409 
   9410   // Fields can not have abstract class types
   9411   if (!InvalidDecl && RequireNonAbstractType(Loc, T,
   9412                                              diag::err_abstract_type_in_decl,
   9413                                              AbstractFieldType))
   9414     InvalidDecl = true;
   9415 
   9416   bool ZeroWidth = false;
   9417   // If this is declared as a bit-field, check the bit-field.
   9418   if (!InvalidDecl && BitWidth) {
   9419     BitWidth = VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth).take();
   9420     if (!BitWidth) {
   9421       InvalidDecl = true;
   9422       BitWidth = 0;
   9423       ZeroWidth = false;
   9424     }
   9425   }
   9426 
   9427   // Check that 'mutable' is consistent with the type of the declaration.
   9428   if (!InvalidDecl && Mutable) {
   9429     unsigned DiagID = 0;
   9430     if (T->isReferenceType())
   9431       DiagID = diag::err_mutable_reference;
   9432     else if (T.isConstQualified())
   9433       DiagID = diag::err_mutable_const;
   9434 
   9435     if (DiagID) {
   9436       SourceLocation ErrLoc = Loc;
   9437       if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
   9438         ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
   9439       Diag(ErrLoc, DiagID);
   9440       Mutable = false;
   9441       InvalidDecl = true;
   9442     }
   9443   }
   9444 
   9445   FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
   9446                                        BitWidth, Mutable, InitStyle);
   9447   if (InvalidDecl)
   9448     NewFD->setInvalidDecl();
   9449 
   9450   if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
   9451     Diag(Loc, diag::err_duplicate_member) << II;
   9452     Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
   9453     NewFD->setInvalidDecl();
   9454   }
   9455 
   9456   if (!InvalidDecl && getLangOpts().CPlusPlus) {
   9457     if (Record->isUnion()) {
   9458       if (const RecordType *RT = EltTy->getAs<RecordType>()) {
   9459         CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
   9460         if (RDecl->getDefinition()) {
   9461           // C++ [class.union]p1: An object of a class with a non-trivial
   9462           // constructor, a non-trivial copy constructor, a non-trivial
   9463           // destructor, or a non-trivial copy assignment operator
   9464           // cannot be a member of a union, nor can an array of such
   9465           // objects.
   9466           if (CheckNontrivialField(NewFD))
   9467             NewFD->setInvalidDecl();
   9468         }
   9469       }
   9470 
   9471       // C++ [class.union]p1: If a union contains a member of reference type,
   9472       // the program is ill-formed.
   9473       if (EltTy->isReferenceType()) {
   9474         Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
   9475           << NewFD->getDeclName() << EltTy;
   9476         NewFD->setInvalidDecl();
   9477       }
   9478     }
   9479   }
   9480 
   9481   // FIXME: We need to pass in the attributes given an AST
   9482   // representation, not a parser representation.
   9483   if (D)
   9484     // FIXME: What to pass instead of TUScope?
   9485     ProcessDeclAttributes(TUScope, NewFD, *D);
   9486 
   9487   // In auto-retain/release, infer strong retension for fields of
   9488   // retainable type.
   9489   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
   9490     NewFD->setInvalidDecl();
   9491 
   9492   if (T.isObjCGCWeak())
   9493     Diag(Loc, diag::warn_attribute_weak_on_field);
   9494 
   9495   NewFD->setAccess(AS);
   9496   return NewFD;
   9497 }
   9498 
   9499 bool Sema::CheckNontrivialField(FieldDecl *FD) {
   9500   assert(FD);
   9501   assert(getLangOpts().CPlusPlus && "valid check only for C++");
   9502 
   9503   if (FD->isInvalidDecl())
   9504     return true;
   9505 
   9506   QualType EltTy = Context.getBaseElementType(FD->getType());
   9507   if (const RecordType *RT = EltTy->getAs<RecordType>()) {
   9508     CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
   9509     if (RDecl->getDefinition()) {
   9510       // We check for copy constructors before constructors
   9511       // because otherwise we'll never get complaints about
   9512       // copy constructors.
   9513 
   9514       CXXSpecialMember member = CXXInvalid;
   9515       if (!RDecl->hasTrivialCopyConstructor())
   9516         member = CXXCopyConstructor;
   9517       else if (!RDecl->hasTrivialDefaultConstructor())
   9518         member = CXXDefaultConstructor;
   9519       else if (!RDecl->hasTrivialCopyAssignment())
   9520         member = CXXCopyAssignment;
   9521       else if (!RDecl->hasTrivialDestructor())
   9522         member = CXXDestructor;
   9523 
   9524       if (member != CXXInvalid) {
   9525         if (!getLangOpts().CPlusPlus0x &&
   9526             getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
   9527           // Objective-C++ ARC: it is an error to have a non-trivial field of
   9528           // a union. However, system headers in Objective-C programs
   9529           // occasionally have Objective-C lifetime objects within unions,
   9530           // and rather than cause the program to fail, we make those
   9531           // members unavailable.
   9532           SourceLocation Loc = FD->getLocation();
   9533           if (getSourceManager().isInSystemHeader(Loc)) {
   9534             if (!FD->hasAttr<UnavailableAttr>())
   9535               FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
   9536                                   "this system field has retaining ownership"));
   9537             return false;
   9538           }
   9539         }
   9540 
   9541         Diag(FD->getLocation(), getLangOpts().CPlusPlus0x ?
   9542                diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
   9543                diag::err_illegal_union_or_anon_struct_member)
   9544           << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
   9545         DiagnoseNontrivial(RT, member);
   9546         return !getLangOpts().CPlusPlus0x;
   9547       }
   9548     }
   9549   }
   9550 
   9551   return false;
   9552 }
   9553 
   9554 /// If the given constructor is user-declared, produce a diagnostic explaining
   9555 /// that it makes the class non-trivial.
   9556 static bool diagnoseNonTrivialUserDeclaredCtor(Sema &S, QualType QT,
   9557                                                CXXConstructorDecl *CD,
   9558                                                Sema::CXXSpecialMember CSM) {
   9559   if (CD->isImplicit())
   9560     return false;
   9561 
   9562   SourceLocation CtorLoc = CD->getLocation();
   9563   S.Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << CSM;
   9564   return true;
   9565 }
   9566 
   9567 /// DiagnoseNontrivial - Given that a class has a non-trivial
   9568 /// special member, figure out why.
   9569 void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
   9570   QualType QT(T, 0U);
   9571   CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
   9572 
   9573   // Check whether the member was user-declared.
   9574   switch (member) {
   9575   case CXXInvalid:
   9576     break;
   9577 
   9578   case CXXDefaultConstructor:
   9579     if (RD->hasUserDeclaredConstructor()) {
   9580       typedef CXXRecordDecl::ctor_iterator ctor_iter;
   9581       for (ctor_iter CI = RD->ctor_begin(), CE = RD->ctor_end(); CI != CE; ++CI)
   9582         if (diagnoseNonTrivialUserDeclaredCtor(*this, QT, *CI, member))
   9583           return;
   9584 
   9585       // No user-delcared constructors; look for constructor templates.
   9586       typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl>
   9587           tmpl_iter;
   9588       for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end());
   9589            TI != TE; ++TI) {
   9590         CXXConstructorDecl *CD =
   9591             dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl());
   9592         if (CD && diagnoseNonTrivialUserDeclaredCtor(*this, QT, CD, member))
   9593           return;
   9594       }
   9595     }
   9596     break;
   9597 
   9598   case CXXCopyConstructor:
   9599     if (RD->hasUserDeclaredCopyConstructor()) {
   9600       SourceLocation CtorLoc =
   9601         RD->getCopyConstructor(0)->getLocation();
   9602       Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
   9603       return;
   9604     }
   9605     break;
   9606 
   9607   case CXXMoveConstructor:
   9608     if (RD->hasUserDeclaredMoveConstructor()) {
   9609       SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
   9610       Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
   9611       return;
   9612     }
   9613     break;
   9614 
   9615   case CXXCopyAssignment:
   9616     if (RD->hasUserDeclaredCopyAssignment()) {
   9617       SourceLocation AssignLoc =
   9618         RD->getCopyAssignmentOperator(0)->getLocation();
   9619       Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
   9620       return;
   9621     }
   9622     break;
   9623 
   9624   case CXXMoveAssignment:
   9625     if (RD->hasUserDeclaredMoveAssignment()) {
   9626       SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
   9627       Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
   9628       return;
   9629     }
   9630     break;
   9631 
   9632   case CXXDestructor:
   9633     if (RD->hasUserDeclaredDestructor()) {
   9634       SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
   9635       Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
   9636       return;
   9637     }
   9638     break;
   9639   }
   9640 
   9641   typedef CXXRecordDecl::base_class_iterator base_iter;
   9642 
   9643   // Virtual bases and members inhibit trivial copying/construction,
   9644   // but not trivial destruction.
   9645   if (member != CXXDestructor) {
   9646     // Check for virtual bases.  vbases includes indirect virtual bases,
   9647     // so we just iterate through the direct bases.
   9648     for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
   9649       if (bi->isVirtual()) {
   9650         SourceLocation BaseLoc = bi->getLocStart();
   9651         Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
   9652         return;
   9653       }
   9654 
   9655     // Check for virtual methods.
   9656     typedef CXXRecordDecl::method_iterator meth_iter;
   9657     for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
   9658          ++mi) {
   9659       if (mi->isVirtual()) {
   9660         SourceLocation MLoc = mi->getLocStart();
   9661         Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
   9662         return;
   9663       }
   9664     }
   9665   }
   9666 
   9667   bool (CXXRecordDecl::*hasTrivial)() const;
   9668   switch (member) {
   9669   case CXXDefaultConstructor:
   9670     hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
   9671   case CXXCopyConstructor:
   9672     hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
   9673   case CXXCopyAssignment:
   9674     hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
   9675   case CXXDestructor:
   9676     hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
   9677   default:
   9678     llvm_unreachable("unexpected special member");
   9679   }
   9680 
   9681   // Check for nontrivial bases (and recurse).
   9682   for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
   9683     const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
   9684     assert(BaseRT && "Don't know how to handle dependent bases");
   9685     CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
   9686     if (!(BaseRecTy->*hasTrivial)()) {
   9687       SourceLocation BaseLoc = bi->getLocStart();
   9688       Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
   9689       DiagnoseNontrivial(BaseRT, member);
   9690       return;
   9691     }
   9692   }
   9693 
   9694   // Check for nontrivial members (and recurse).
   9695   typedef RecordDecl::field_iterator field_iter;
   9696   for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
   9697        ++fi) {
   9698     QualType EltTy = Context.getBaseElementType(fi->getType());
   9699     if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
   9700       CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
   9701 
   9702       if (!(EltRD->*hasTrivial)()) {
   9703         SourceLocation FLoc = fi->getLocation();
   9704         Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
   9705         DiagnoseNontrivial(EltRT, member);
   9706         return;
   9707       }
   9708     }
   9709 
   9710     if (EltTy->isObjCLifetimeType()) {
   9711       switch (EltTy.getObjCLifetime()) {
   9712       case Qualifiers::OCL_None:
   9713       case Qualifiers::OCL_ExplicitNone:
   9714         break;
   9715 
   9716       case Qualifiers::OCL_Autoreleasing:
   9717       case Qualifiers::OCL_Weak:
   9718       case Qualifiers::OCL_Strong:
   9719         Diag(fi->getLocation(), diag::note_nontrivial_objc_ownership)
   9720           << QT << EltTy.getObjCLifetime();
   9721         return;
   9722       }
   9723     }
   9724   }
   9725 
   9726   llvm_unreachable("found no explanation for non-trivial member");
   9727 }
   9728 
   9729 /// TranslateIvarVisibility - Translate visibility from a token ID to an
   9730 ///  AST enum value.
   9731 static ObjCIvarDecl::AccessControl
   9732 TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
   9733   switch (ivarVisibility) {
   9734   default: llvm_unreachable("Unknown visitibility kind");
   9735   case tok::objc_private: return ObjCIvarDecl::Private;
   9736   case tok::objc_public: return ObjCIvarDecl::Public;
   9737   case tok::objc_protected: return ObjCIvarDecl::Protected;
   9738   case tok::objc_package: return ObjCIvarDecl::Package;
   9739   }
   9740 }
   9741 
   9742 /// ActOnIvar - Each ivar field of an objective-c class is passed into this
   9743 /// in order to create an IvarDecl object for it.
   9744 Decl *Sema::ActOnIvar(Scope *S,
   9745                                 SourceLocation DeclStart,
   9746                                 Declarator &D, Expr *BitfieldWidth,
   9747                                 tok::ObjCKeywordKind Visibility) {
   9748 
   9749   IdentifierInfo *II = D.getIdentifier();
   9750   Expr *BitWidth = (Expr*)BitfieldWidth;
   9751   SourceLocation Loc = DeclStart;
   9752   if (II) Loc = D.getIdentifierLoc();
   9753 
   9754   // FIXME: Unnamed fields can be handled in various different ways, for
   9755   // example, unnamed unions inject all members into the struct namespace!
   9756 
   9757   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
   9758   QualType T = TInfo->getType();
   9759 
   9760   if (BitWidth) {
   9761     // 6.7.2.1p3, 6.7.2.1p4
   9762     BitWidth = VerifyBitField(Loc, II, T, BitWidth).take();
   9763     if (!BitWidth)
   9764       D.setInvalidType();
   9765   } else {
   9766     // Not a bitfield.
   9767 
   9768     // validate II.
   9769 
   9770   }
   9771   if (T->isReferenceType()) {
   9772     Diag(Loc, diag::err_ivar_reference_type);
   9773     D.setInvalidType();
   9774   }
   9775   // C99 6.7.2.1p8: A member of a structure or union may have any type other
   9776   // than a variably modified type.
   9777   else if (T->isVariablyModifiedType()) {
   9778     Diag(Loc, diag::err_typecheck_ivar_variable_size);
   9779     D.setInvalidType();
   9780   }
   9781 
   9782   // Get the visibility (access control) for this ivar.
   9783   ObjCIvarDecl::AccessControl ac =
   9784     Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
   9785                                         : ObjCIvarDecl::None;
   9786   // Must set ivar's DeclContext to its enclosing interface.
   9787   ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
   9788   if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
   9789     return 0;
   9790   ObjCContainerDecl *EnclosingContext;
   9791   if (ObjCImplementationDecl *IMPDecl =
   9792       dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
   9793     if (LangOpts.ObjCRuntime.isFragile()) {
   9794     // Case of ivar declared in an implementation. Context is that of its class.
   9795       EnclosingContext = IMPDecl->getClassInterface();
   9796       assert(EnclosingContext && "Implementation has no class interface!");
   9797     }
   9798     else
   9799       EnclosingContext = EnclosingDecl;
   9800   } else {
   9801     if (ObjCCategoryDecl *CDecl =
   9802         dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
   9803       if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
   9804         Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
   9805         return 0;
   9806       }
   9807     }
   9808     EnclosingContext = EnclosingDecl;
   9809   }
   9810 
   9811   // Construct the decl.
   9812   ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
   9813                                              DeclStart, Loc, II, T,
   9814                                              TInfo, ac, (Expr *)BitfieldWidth);
   9815 
   9816   if (II) {
   9817     NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
   9818                                            ForRedeclaration);
   9819     if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
   9820         && !isa<TagDecl>(PrevDecl)) {
   9821       Diag(Loc, diag::err_duplicate_member) << II;
   9822       Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
   9823       NewID->setInvalidDecl();
   9824     }
   9825   }
   9826 
   9827   // Process attributes attached to the ivar.
   9828   ProcessDeclAttributes(S, NewID, D);
   9829 
   9830   if (D.isInvalidType())
   9831     NewID->setInvalidDecl();
   9832 
   9833   // In ARC, infer 'retaining' for ivars of retainable type.
   9834   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
   9835     NewID->setInvalidDecl();
   9836 
   9837   if (D.getDeclSpec().isModulePrivateSpecified())
   9838     NewID->setModulePrivate();
   9839 
   9840   if (II) {
   9841     // FIXME: When interfaces are DeclContexts, we'll need to add
   9842     // these to the interface.
   9843     S->AddDecl(NewID);
   9844     IdResolver.AddDecl(NewID);
   9845   }
   9846 
   9847   if (LangOpts.ObjCRuntime.isNonFragile() &&
   9848       !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
   9849     Diag(Loc, diag::warn_ivars_in_interface);
   9850 
   9851   return NewID;
   9852 }
   9853 
   9854 /// ActOnLastBitfield - This routine handles synthesized bitfields rules for
   9855 /// class and class extensions. For every class @interface and class
   9856 /// extension @interface, if the last ivar is a bitfield of any type,
   9857 /// then add an implicit `char :0` ivar to the end of that interface.
   9858 void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
   9859                              SmallVectorImpl<Decl *> &AllIvarDecls) {
   9860   if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
   9861     return;
   9862 
   9863   Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
   9864   ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
   9865 
   9866   if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
   9867     return;
   9868   ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
   9869   if (!ID) {
   9870     if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
   9871       if (!CD->IsClassExtension())
   9872         return;
   9873     }
   9874     // No need to add this to end of @implementation.
   9875     else
   9876       return;
   9877   }
   9878   // All conditions are met. Add a new bitfield to the tail end of ivars.
   9879   llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
   9880   Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
   9881 
   9882   Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
   9883                               DeclLoc, DeclLoc, 0,
   9884                               Context.CharTy,
   9885                               Context.getTrivialTypeSourceInfo(Context.CharTy,
   9886                                                                DeclLoc),
   9887                               ObjCIvarDecl::Private, BW,
   9888                               true);
   9889   AllIvarDecls.push_back(Ivar);
   9890 }
   9891 
   9892 void Sema::ActOnFields(Scope* S,
   9893                        SourceLocation RecLoc, Decl *EnclosingDecl,
   9894                        llvm::ArrayRef<Decl *> Fields,
   9895                        SourceLocation LBrac, SourceLocation RBrac,
   9896                        AttributeList *Attr) {
   9897   assert(EnclosingDecl && "missing record or interface decl");
   9898 
   9899   // If this is an Objective-C @implementation or category and we have
   9900   // new fields here we should reset the layout of the interface since
   9901   // it will now change.
   9902   if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
   9903     ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
   9904     switch (DC->getKind()) {
   9905     default: break;
   9906     case Decl::ObjCCategory:
   9907       Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
   9908       break;
   9909     case Decl::ObjCImplementation:
   9910       Context.
   9911         ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
   9912       break;
   9913     }
   9914   }
   9915 
   9916   RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
   9917 
   9918   // Start counting up the number of named members; make sure to include
   9919   // members of anonymous structs and unions in the total.
   9920   unsigned NumNamedMembers = 0;
   9921   if (Record) {
   9922     for (RecordDecl::decl_iterator i = Record->decls_begin(),
   9923                                    e = Record->decls_end(); i != e; i++) {
   9924       if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*i))
   9925         if (IFD->getDeclName())
   9926           ++NumNamedMembers;
   9927     }
   9928   }
   9929 
   9930   // Verify that all the fields are okay.
   9931   SmallVector<FieldDecl*, 32> RecFields;
   9932 
   9933   bool ARCErrReported = false;
   9934   for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
   9935        i != end; ++i) {
   9936     FieldDecl *FD = cast<FieldDecl>(*i);
   9937 
   9938     // Get the type for the field.
   9939     const Type *FDTy = FD->getType().getTypePtr();
   9940 
   9941     if (!FD->isAnonymousStructOrUnion()) {
   9942       // Remember all fields written by the user.
   9943       RecFields.push_back(FD);
   9944     }
   9945 
   9946     // If the field is already invalid for some reason, don't emit more
   9947     // diagnostics about it.
   9948     if (FD->isInvalidDecl()) {
   9949       EnclosingDecl->setInvalidDecl();
   9950       continue;
   9951     }
   9952 
   9953     // C99 6.7.2.1p2:
   9954     //   A structure or union shall not contain a member with
   9955     //   incomplete or function type (hence, a structure shall not
   9956     //   contain an instance of itself, but may contain a pointer to
   9957     //   an instance of itself), except that the last member of a
   9958     //   structure with more than one named member may have incomplete
   9959     //   array type; such a structure (and any union containing,
   9960     //   possibly recursively, a member that is such a structure)
   9961     //   shall not be a member of a structure or an element of an
   9962     //   array.
   9963     if (FDTy->isFunctionType()) {
   9964       // Field declared as a function.
   9965       Diag(FD->getLocation(), diag::err_field_declared_as_function)
   9966         << FD->getDeclName();
   9967       FD->setInvalidDecl();
   9968       EnclosingDecl->setInvalidDecl();
   9969       continue;
   9970     } else if (FDTy->isIncompleteArrayType() && Record &&
   9971                ((i + 1 == Fields.end() && !Record->isUnion()) ||
   9972                 ((getLangOpts().MicrosoftExt ||
   9973                   getLangOpts().CPlusPlus) &&
   9974                  (i + 1 == Fields.end() || Record->isUnion())))) {
   9975       // Flexible array member.
   9976       // Microsoft and g++ is more permissive regarding flexible array.
   9977       // It will accept flexible array in union and also
   9978       // as the sole element of a struct/class.
   9979       if (getLangOpts().MicrosoftExt) {
   9980         if (Record->isUnion())
   9981           Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
   9982             << FD->getDeclName();
   9983         else if (Fields.size() == 1)
   9984           Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
   9985             << FD->getDeclName() << Record->getTagKind();
   9986       } else if (getLangOpts().CPlusPlus) {
   9987         if (Record->isUnion())
   9988           Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
   9989             << FD->getDeclName();
   9990         else if (Fields.size() == 1)
   9991           Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
   9992             << FD->getDeclName() << Record->getTagKind();
   9993       } else if (!getLangOpts().C99) {
   9994       if (Record->isUnion())
   9995         Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
   9996           << FD->getDeclName();
   9997       else
   9998         Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
   9999           << FD->getDeclName() << Record->getTagKind();
   10000       } else if (NumNamedMembers < 1) {
   10001         Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
   10002           << FD->getDeclName();
   10003         FD->setInvalidDecl();
   10004         EnclosingDecl->setInvalidDecl();
   10005         continue;
   10006       }
   10007       if (!FD->getType()->isDependentType() &&
   10008           !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
   10009         Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
   10010           << FD->getDeclName() << FD->getType();
   10011         FD->setInvalidDecl();
   10012         EnclosingDecl->setInvalidDecl();
   10013         continue;
   10014       }
   10015       // Okay, we have a legal flexible array member at the end of the struct.
   10016       if (Record)
   10017         Record->setHasFlexibleArrayMember(true);
   10018     } else if (!FDTy->isDependentType() &&
   10019                RequireCompleteType(FD->getLocation(), FD->getType(),
   10020                                    diag::err_field_incomplete)) {
   10021       // Incomplete type
   10022       FD->setInvalidDecl();
   10023       EnclosingDecl->setInvalidDecl();
   10024       continue;
   10025     } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
   10026       if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
   10027         // If this is a member of a union, then entire union becomes "flexible".
   10028         if (Record && Record->isUnion()) {
   10029           Record->setHasFlexibleArrayMember(true);
   10030         } else {
   10031           // If this is a struct/class and this is not the last element, reject
   10032           // it.  Note that GCC supports variable sized arrays in the middle of
   10033           // structures.
   10034           if (i + 1 != Fields.end())
   10035             Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
   10036               << FD->getDeclName() << FD->getType();
   10037           else {
   10038             // We support flexible arrays at the end of structs in
   10039             // other structs as an extension.
   10040             Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
   10041               << FD->getDeclName();
   10042             if (Record)
   10043               Record->setHasFlexibleArrayMember(true);
   10044           }
   10045         }
   10046       }
   10047       if (isa<ObjCContainerDecl>(EnclosingDecl) &&
   10048           RequireNonAbstractType(FD->getLocation(), FD->getType(),
   10049                                  diag::err_abstract_type_in_decl,
   10050                                  AbstractIvarType)) {
   10051         // Ivars can not have abstract class types
   10052         FD->setInvalidDecl();
   10053       }
   10054       if (Record && FDTTy->getDecl()->hasObjectMember())
   10055         Record->setHasObjectMember(true);
   10056     } else if (FDTy->isObjCObjectType()) {
   10057       /// A field cannot be an Objective-c object
   10058       Diag(FD->getLocation(), diag::err_statically_allocated_object)
   10059         << FixItHint::CreateInsertion(FD->getLocation(), "*");
   10060       QualType T = Context.getObjCObjectPointerType(FD->getType());
   10061       FD->setType(T);
   10062     } else if (!getLangOpts().CPlusPlus) {
   10063       if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported) {
   10064         // It's an error in ARC if a field has lifetime.
   10065         // We don't want to report this in a system header, though,
   10066         // so we just make the field unavailable.
   10067         // FIXME: that's really not sufficient; we need to make the type
   10068         // itself invalid to, say, initialize or copy.
   10069         QualType T = FD->getType();
   10070         Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
   10071         if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
   10072           SourceLocation loc = FD->getLocation();
   10073           if (getSourceManager().isInSystemHeader(loc)) {
   10074             if (!FD->hasAttr<UnavailableAttr>()) {
   10075               FD->addAttr(new (Context) UnavailableAttr(loc, Context,
   10076                                 "this system field has retaining ownership"));
   10077             }
   10078           } else {
   10079             Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct)
   10080               << T->isBlockPointerType();
   10081           }
   10082           ARCErrReported = true;
   10083         }
   10084       }
   10085       else if (getLangOpts().ObjC1 &&
   10086                getLangOpts().getGC() != LangOptions::NonGC &&
   10087                Record && !Record->hasObjectMember()) {
   10088         if (FD->getType()->isObjCObjectPointerType() ||
   10089             FD->getType().isObjCGCStrong())
   10090           Record->setHasObjectMember(true);
   10091         else if (Context.getAsArrayType(FD->getType())) {
   10092           QualType BaseType = Context.getBaseElementType(FD->getType());
   10093           if (BaseType->isRecordType() &&
   10094               BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
   10095             Record->setHasObjectMember(true);
   10096           else if (BaseType->isObjCObjectPointerType() ||
   10097                    BaseType.isObjCGCStrong())
   10098                  Record->setHasObjectMember(true);
   10099         }
   10100       }
   10101     }
   10102     // Keep track of the number of named members.
   10103     if (FD->getIdentifier())
   10104       ++NumNamedMembers;
   10105   }
   10106 
   10107   // Okay, we successfully defined 'Record'.
   10108   if (Record) {
   10109     bool Completed = false;
   10110     if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
   10111       if (!CXXRecord->isInvalidDecl()) {
   10112         // Set access bits correctly on the directly-declared conversions.
   10113         UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
   10114         for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
   10115              I != E; ++I)
   10116           Convs->setAccess(I, (*I)->getAccess());
   10117 
   10118         if (!CXXRecord->isDependentType()) {
   10119           // Objective-C Automatic Reference Counting:
   10120           //   If a class has a non-static data member of Objective-C pointer
   10121           //   type (or array thereof), it is a non-POD type and its
   10122           //   default constructor (if any), copy constructor, copy assignment
   10123           //   operator, and destructor are non-trivial.
   10124           //
   10125           // This rule is also handled by CXXRecordDecl::completeDefinition().
   10126           // However, here we check whether this particular class is only
   10127           // non-POD because of the presence of an Objective-C pointer member.
   10128           // If so, objects of this type cannot be shared between code compiled
   10129           // with ARC and code compiled with manual retain/release.
   10130           if (getLangOpts().ObjCAutoRefCount &&
   10131               CXXRecord->hasObjectMember() &&
   10132               CXXRecord->getLinkage() == ExternalLinkage) {
   10133             if (CXXRecord->isPOD()) {
   10134               Diag(CXXRecord->getLocation(),
   10135                    diag::warn_arc_non_pod_class_with_object_member)
   10136                << CXXRecord;
   10137             } else {
   10138               // FIXME: Fix-Its would be nice here, but finding a good location
   10139               // for them is going to be tricky.
   10140               if (CXXRecord->hasTrivialCopyConstructor())
   10141                 Diag(CXXRecord->getLocation(),
   10142                      diag::warn_arc_trivial_member_function_with_object_member)
   10143                   << CXXRecord << 0;
   10144               if (CXXRecord->hasTrivialCopyAssignment())
   10145                 Diag(CXXRecord->getLocation(),
   10146                      diag::warn_arc_trivial_member_function_with_object_member)
   10147                 << CXXRecord << 1;
   10148               if (CXXRecord->hasTrivialDestructor())
   10149                 Diag(CXXRecord->getLocation(),
   10150                      diag::warn_arc_trivial_member_function_with_object_member)
   10151                 << CXXRecord << 2;
   10152             }
   10153           }
   10154 
   10155           // Adjust user-defined destructor exception spec.
   10156           if (getLangOpts().CPlusPlus0x &&
   10157               CXXRecord->hasUserDeclaredDestructor())
   10158             AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
   10159 
   10160           // Add any implicitly-declared members to this class.
   10161           AddImplicitlyDeclaredMembersToClass(CXXRecord);
   10162 
   10163           // If we have virtual base classes, we may end up finding multiple
   10164           // final overriders for a given virtual function. Check for this
   10165           // problem now.
   10166           if (CXXRecord->getNumVBases()) {
   10167             CXXFinalOverriderMap FinalOverriders;
   10168             CXXRecord->getFinalOverriders(FinalOverriders);
   10169 
   10170             for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
   10171                                              MEnd = FinalOverriders.end();
   10172                  M != MEnd; ++M) {
   10173               for (OverridingMethods::iterator SO = M->second.begin(),
   10174                                             SOEnd = M->second.end();
   10175                    SO != SOEnd; ++SO) {
   10176                 assert(SO->second.size() > 0 &&
   10177                        "Virtual function without overridding functions?");
   10178                 if (SO->second.size() == 1)
   10179                   continue;
   10180 
   10181                 // C++ [class.virtual]p2:
   10182                 //   In a derived class, if a virtual member function of a base
   10183                 //   class subobject has more than one final overrider the
   10184                 //   program is ill-formed.
   10185                 Diag(Record->getLocation(), diag::err_multiple_final_overriders)
   10186                   << (const NamedDecl *)M->first << Record;
   10187                 Diag(M->first->getLocation(),
   10188                      diag::note_overridden_virtual_function);
   10189                 for (OverridingMethods::overriding_iterator
   10190                           OM = SO->second.begin(),
   10191                        OMEnd = SO->second.end();
   10192                      OM != OMEnd; ++OM)
   10193                   Diag(OM->Method->getLocation(), diag::note_final_overrider)
   10194                     << (const NamedDecl *)M->first << OM->Method->getParent();
   10195 
   10196                 Record->setInvalidDecl();
   10197               }
   10198             }
   10199             CXXRecord->completeDefinition(&FinalOverriders);
   10200             Completed = true;
   10201           }
   10202         }
   10203       }
   10204     }
   10205 
   10206     if (!Completed)
   10207       Record->completeDefinition();
   10208 
   10209   } else {
   10210     ObjCIvarDecl **ClsFields =
   10211       reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
   10212     if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
   10213       ID->setEndOfDefinitionLoc(RBrac);
   10214       // Add ivar's to class's DeclContext.
   10215       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
   10216         ClsFields[i]->setLexicalDeclContext(ID);
   10217         ID->addDecl(ClsFields[i]);
   10218       }
   10219       // Must enforce the rule that ivars in the base classes may not be
   10220       // duplicates.
   10221       if (ID->getSuperClass())
   10222         DiagnoseDuplicateIvars(ID, ID->getSuperClass());
   10223     } else if (ObjCImplementationDecl *IMPDecl =
   10224                   dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
   10225       assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
   10226       for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
   10227         // Ivar declared in @implementation never belongs to the implementation.
   10228         // Only it is in implementation's lexical context.
   10229         ClsFields[I]->setLexicalDeclContext(IMPDecl);
   10230       CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
   10231       IMPDecl->setIvarLBraceLoc(LBrac);
   10232       IMPDecl->setIvarRBraceLoc(RBrac);
   10233     } else if (ObjCCategoryDecl *CDecl =
   10234                 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
   10235       // case of ivars in class extension; all other cases have been
   10236       // reported as errors elsewhere.
   10237       // FIXME. Class extension does not have a LocEnd field.
   10238       // CDecl->setLocEnd(RBrac);
   10239       // Add ivar's to class extension's DeclContext.
   10240       // Diagnose redeclaration of private ivars.
   10241       ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
   10242       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
   10243         if (IDecl) {
   10244           if (const ObjCIvarDecl *ClsIvar =
   10245               IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
   10246             Diag(ClsFields[i]->getLocation(),
   10247                  diag::err_duplicate_ivar_declaration);
   10248             Diag(ClsIvar->getLocation(), diag::note_previous_definition);
   10249             continue;
   10250           }
   10251           for (const ObjCCategoryDecl *ClsExtDecl =
   10252                 IDecl->getFirstClassExtension();
   10253                ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) {
   10254             if (const ObjCIvarDecl *ClsExtIvar =
   10255                 ClsExtDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
   10256               Diag(ClsFields[i]->getLocation(),
   10257                    diag::err_duplicate_ivar_declaration);
   10258               Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
   10259               continue;
   10260             }
   10261           }
   10262         }
   10263         ClsFields[i]->setLexicalDeclContext(CDecl);
   10264         CDecl->addDecl(ClsFields[i]);
   10265       }
   10266       CDecl->setIvarLBraceLoc(LBrac);
   10267       CDecl->setIvarRBraceLoc(RBrac);
   10268     }
   10269   }
   10270 
   10271   if (Attr)
   10272     ProcessDeclAttributeList(S, Record, Attr);
   10273 }
   10274 
   10275 /// \brief Determine whether the given integral value is representable within
   10276 /// the given type T.
   10277 static bool isRepresentableIntegerValue(ASTContext &Context,
   10278                                         llvm::APSInt &Value,
   10279                                         QualType T) {
   10280   assert(T->isIntegralType(Context) && "Integral type required!");
   10281   unsigned BitWidth = Context.getIntWidth(T);
   10282 
   10283   if (Value.isUnsigned() || Value.isNonNegative()) {
   10284     if (T->isSignedIntegerOrEnumerationType())
   10285       --BitWidth;
   10286     return Value.getActiveBits() <= BitWidth;
   10287   }
   10288   return Value.getMinSignedBits() <= BitWidth;
   10289 }
   10290 
   10291 // \brief Given an integral type, return the next larger integral type
   10292 // (or a NULL type of no such type exists).
   10293 static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
   10294   // FIXME: Int128/UInt128 support, which also needs to be introduced into
   10295   // enum checking below.
   10296   assert(T->isIntegralType(Context) && "Integral type required!");
   10297   const unsigned NumTypes = 4;
   10298   QualType SignedIntegralTypes[NumTypes] = {
   10299     Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
   10300   };
   10301   QualType UnsignedIntegralTypes[NumTypes] = {
   10302     Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
   10303     Context.UnsignedLongLongTy
   10304   };
   10305 
   10306   unsigned BitWidth = Context.getTypeSize(T);
   10307   QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
   10308                                                         : UnsignedIntegralTypes;
   10309   for (unsigned I = 0; I != NumTypes; ++I)
   10310     if (Context.getTypeSize(Types[I]) > BitWidth)
   10311       return Types[I];
   10312 
   10313   return QualType();
   10314 }
   10315 
   10316 EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
   10317                                           EnumConstantDecl *LastEnumConst,
   10318                                           SourceLocation IdLoc,
   10319                                           IdentifierInfo *Id,
   10320                                           Expr *Val) {
   10321   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
   10322   llvm::APSInt EnumVal(IntWidth);
   10323   QualType EltTy;
   10324 
   10325   if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
   10326     Val = 0;
   10327 
   10328   if (Val)
   10329     Val = DefaultLvalueConversion(Val).take();
   10330 
   10331   if (Val) {
   10332     if (Enum->isDependentType() || Val->isTypeDependent())
   10333       EltTy = Context.DependentTy;
   10334     else {
   10335       SourceLocation ExpLoc;
   10336       if (getLangOpts().CPlusPlus0x && Enum->isFixed() &&
   10337           !getLangOpts().MicrosoftMode) {
   10338         // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
   10339         // constant-expression in the enumerator-definition shall be a converted
   10340         // constant expression of the underlying type.
   10341         EltTy = Enum->getIntegerType();
   10342         ExprResult Converted =
   10343           CheckConvertedConstantExpression(Val, EltTy, EnumVal,
   10344                                            CCEK_Enumerator);
   10345         if (Converted.isInvalid())
   10346           Val = 0;
   10347         else
   10348           Val = Converted.take();
   10349       } else if (!Val->isValueDependent() &&
   10350                  !(Val = VerifyIntegerConstantExpression(Val,
   10351                                                          &EnumVal).take())) {
   10352         // C99 6.7.2.2p2: Make sure we have an integer constant expression.
   10353       } else {
   10354         if (Enum->isFixed()) {
   10355           EltTy = Enum->getIntegerType();
   10356 
   10357           // In Obj-C and Microsoft mode, require the enumeration value to be
   10358           // representable in the underlying type of the enumeration. In C++11,
   10359           // we perform a non-narrowing conversion as part of converted constant
   10360           // expression checking.
   10361           if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
   10362             if (getLangOpts().MicrosoftMode) {
   10363               Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
   10364               Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
   10365             } else
   10366               Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
   10367           } else
   10368             Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
   10369         } else if (getLangOpts().CPlusPlus) {
   10370           // C++11 [dcl.enum]p5:
   10371           //   If the underlying type is not fixed, the type of each enumerator
   10372           //   is the type of its initializing value:
   10373           //     - If an initializer is specified for an enumerator, the
   10374           //       initializing value has the same type as the expression.
   10375           EltTy = Val->getType();
   10376         } else {
   10377           // C99 6.7.2.2p2:
   10378           //   The expression that defines the value of an enumeration constant
   10379           //   shall be an integer constant expression that has a value
   10380           //   representable as an int.
   10381 
   10382           // Complain if the value is not representable in an int.
   10383           if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
   10384             Diag(IdLoc, diag::ext_enum_value_not_int)
   10385               << EnumVal.toString(10) << Val->getSourceRange()
   10386               << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
   10387           else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
   10388             // Force the type of the expression to 'int'.
   10389             Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
   10390           }
   10391           EltTy = Val->getType();
   10392         }
   10393       }
   10394     }
   10395   }
   10396 
   10397   if (!Val) {
   10398     if (Enum->isDependentType())
   10399       EltTy = Context.DependentTy;
   10400     else if (!LastEnumConst) {
   10401       // C++0x [dcl.enum]p5:
   10402       //   If the underlying type is not fixed, the type of each enumerator
   10403       //   is the type of its initializing value:
   10404       //     - If no initializer is specified for the first enumerator, the
   10405       //       initializing value has an unspecified integral type.
   10406       //
   10407       // GCC uses 'int' for its unspecified integral type, as does
   10408       // C99 6.7.2.2p3.
   10409       if (Enum->isFixed()) {
   10410         EltTy = Enum->getIntegerType();
   10411       }
   10412       else {
   10413         EltTy = Context.IntTy;
   10414       }
   10415     } else {
   10416       // Assign the last value + 1.
   10417       EnumVal = LastEnumConst->getInitVal();
   10418       ++EnumVal;
   10419       EltTy = LastEnumConst->getType();
   10420 
   10421       // Check for overflow on increment.
   10422       if (EnumVal < LastEnumConst->getInitVal()) {
   10423         // C++0x [dcl.enum]p5:
   10424         //   If the underlying type is not fixed, the type of each enumerator
   10425         //   is the type of its initializing value:
   10426         //
   10427         //     - Otherwise the type of the initializing value is the same as
   10428         //       the type of the initializing value of the preceding enumerator
   10429         //       unless the incremented value is not representable in that type,
   10430         //       in which case the type is an unspecified integral type
   10431         //       sufficient to contain the incremented value. If no such type
   10432         //       exists, the program is ill-formed.
   10433         QualType T = getNextLargerIntegralType(Context, EltTy);
   10434         if (T.isNull() || Enum->isFixed()) {
   10435           // There is no integral type larger enough to represent this
   10436           // value. Complain, then allow the value to wrap around.
   10437           EnumVal = LastEnumConst->getInitVal();
   10438           EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
   10439           ++EnumVal;
   10440           if (Enum->isFixed())
   10441             // When the underlying type is fixed, this is ill-formed.
   10442             Diag(IdLoc, diag::err_enumerator_wrapped)
   10443               << EnumVal.toString(10)
   10444               << EltTy;
   10445           else
   10446             Diag(IdLoc, diag::warn_enumerator_too_large)
   10447               << EnumVal.toString(10);
   10448         } else {
   10449           EltTy = T;
   10450         }
   10451 
   10452         // Retrieve the last enumerator's value, extent that type to the
   10453         // type that is supposed to be large enough to represent the incremented
   10454         // value, then increment.
   10455         EnumVal = LastEnumConst->getInitVal();
   10456         EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
   10457         EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
   10458         ++EnumVal;
   10459 
   10460         // If we're not in C++, diagnose the overflow of enumerator values,
   10461         // which in C99 means that the enumerator value is not representable in
   10462         // an int (C99 6.7.2.2p2). However, we support GCC's extension that
   10463         // permits enumerator values that are representable in some larger
   10464         // integral type.
   10465         if (!getLangOpts().CPlusPlus && !T.isNull())
   10466           Diag(IdLoc, diag::warn_enum_value_overflow);
   10467       } else if (!getLangOpts().CPlusPlus &&
   10468                  !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
   10469         // Enforce C99 6.7.2.2p2 even when we compute the next value.
   10470         Diag(IdLoc, diag::ext_enum_value_not_int)
   10471           << EnumVal.toString(10) << 1;
   10472       }
   10473     }
   10474   }
   10475 
   10476   if (!EltTy->isDependentType()) {
   10477     // Make the enumerator value match the signedness and size of the
   10478     // enumerator's type.
   10479     EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
   10480     EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
   10481   }
   10482 
   10483   return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
   10484                                   Val, EnumVal);
   10485 }
   10486 
   10487 
   10488 Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
   10489                               SourceLocation IdLoc, IdentifierInfo *Id,
   10490                               AttributeList *Attr,
   10491                               SourceLocation EqualLoc, Expr *Val) {
   10492   EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
   10493   EnumConstantDecl *LastEnumConst =
   10494     cast_or_null<EnumConstantDecl>(lastEnumConst);
   10495 
   10496   // The scope passed in may not be a decl scope.  Zip up the scope tree until
   10497   // we find one that is.
   10498   S = getNonFieldDeclScope(S);
   10499 
   10500   // Verify that there isn't already something declared with this name in this
   10501   // scope.
   10502   NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
   10503                                          ForRedeclaration);
   10504   if (PrevDecl && PrevDecl->isTemplateParameter()) {
   10505     // Maybe we will complain about the shadowed template parameter.
   10506     DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
   10507     // Just pretend that we didn't see the previous declaration.
   10508     PrevDecl = 0;
   10509   }
   10510 
   10511   if (PrevDecl) {
   10512     // When in C++, we may get a TagDecl with the same name; in this case the
   10513     // enum constant will 'hide' the tag.
   10514     assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
   10515            "Received TagDecl when not in C++!");
   10516     if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
   10517       if (isa<EnumConstantDecl>(PrevDecl))
   10518         Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
   10519       else
   10520         Diag(IdLoc, diag::err_redefinition) << Id;
   10521       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
   10522       return 0;
   10523     }
   10524   }
   10525 
   10526   // C++ [class.mem]p15:
   10527   // If T is the name of a class, then each of the following shall have a name
   10528   // different from T:
   10529   // - every enumerator of every member of class T that is an unscoped
   10530   // enumerated type
   10531   if (CXXRecordDecl *Record
   10532                       = dyn_cast<CXXRecordDecl>(
   10533                              TheEnumDecl->getDeclContext()->getRedeclContext()))
   10534     if (!TheEnumDecl->isScoped() &&
   10535         Record->getIdentifier() && Record->getIdentifier() == Id)
   10536       Diag(IdLoc, diag::err_member_name_of_class) << Id;
   10537 
   10538   EnumConstantDecl *New =
   10539     CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
   10540 
   10541   if (New) {
   10542     // Process attributes.
   10543     if (Attr) ProcessDeclAttributeList(S, New, Attr);
   10544 
   10545     // Register this decl in the current scope stack.
   10546     New->setAccess(TheEnumDecl->getAccess());
   10547     PushOnScopeChains(New, S);
   10548   }
   10549 
   10550   ActOnDocumentableDecl(New);
   10551 
   10552   return New;
   10553 }
   10554 
   10555 // Emits a warning if every element in the enum is the same value and if
   10556 // every element is initialized with a integer or boolean literal.
   10557 static void CheckForUniqueEnumValues(Sema &S, Decl **Elements,
   10558                                      unsigned NumElements, EnumDecl *Enum,
   10559                                      QualType EnumType) {
   10560   if (S.Diags.getDiagnosticLevel(diag::warn_identical_enum_values,
   10561                                  Enum->getLocation()) ==
   10562       DiagnosticsEngine::Ignored)
   10563     return;
   10564 
   10565   if (NumElements < 2)
   10566     return;
   10567 
   10568   if (!Enum->getIdentifier())
   10569     return;
   10570 
   10571   llvm::APSInt FirstVal;
   10572 
   10573   for (unsigned i = 0; i != NumElements; ++i) {
   10574     EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
   10575     if (!ECD)
   10576       return;
   10577 
   10578     Expr *InitExpr = ECD->getInitExpr();
   10579     if (!InitExpr)
   10580       return;
   10581     InitExpr = InitExpr->IgnoreImpCasts();
   10582     if (!isa<IntegerLiteral>(InitExpr) && !isa<CXXBoolLiteralExpr>(InitExpr))
   10583       return;
   10584 
   10585     if (i == 0) {
   10586       FirstVal = ECD->getInitVal();
   10587       continue;
   10588     }
   10589 
   10590     if (!llvm::APSInt::isSameValue(FirstVal, ECD->getInitVal()))
   10591       return;
   10592   }
   10593 
   10594   S.Diag(Enum->getLocation(), diag::warn_identical_enum_values)
   10595       << EnumType << FirstVal.toString(10)
   10596       << Enum->getSourceRange();
   10597 
   10598   EnumConstantDecl *Last = cast<EnumConstantDecl>(Elements[NumElements - 1]),
   10599                    *Next = cast<EnumConstantDecl>(Elements[NumElements - 2]);
   10600 
   10601   S.Diag(Last->getLocation(), diag::note_identical_enum_values)
   10602     << FixItHint::CreateReplacement(Last->getInitExpr()->getSourceRange(),
   10603                                     Next->getName());
   10604 }
   10605 
   10606 // Returns true when the enum initial expression does not trigger the
   10607 // duplicate enum warning.  A few common cases are exempted as follows:
   10608 // Element2 = Element1
   10609 // Element2 = Element1 + 1
   10610 // Element2 = Element1 - 1
   10611 // Where Element2 and Element1 are from the same enum.
   10612 static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
   10613   Expr *InitExpr = ECD->getInitExpr();
   10614   if (!InitExpr)
   10615     return true;
   10616   InitExpr = InitExpr->IgnoreImpCasts();
   10617 
   10618   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
   10619     if (!BO->isAdditiveOp())
   10620       return true;
   10621     IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
   10622     if (!IL)
   10623       return true;
   10624     if (IL->getValue() != 1)
   10625       return true;
   10626 
   10627     InitExpr = BO->getLHS();
   10628   }
   10629 
   10630   // This checks if the elements are from the same enum.
   10631   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
   10632   if (!DRE)
   10633     return true;
   10634 
   10635   EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
   10636   if (!EnumConstant)
   10637     return true;
   10638 
   10639   if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
   10640       Enum)
   10641     return true;
   10642 
   10643   return false;
   10644 }
   10645 
   10646 struct DupKey {
   10647   int64_t val;
   10648   bool isTombstoneOrEmptyKey;
   10649   DupKey(int64_t val, bool isTombstoneOrEmptyKey)
   10650     : val(val), isTombstoneOrEmptyKey(isTombstoneOrEmptyKey) {}
   10651 };
   10652 
   10653 static DupKey GetDupKey(const llvm::APSInt& Val) {
   10654   return DupKey(Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(),
   10655                 false);
   10656 }
   10657 
   10658 struct DenseMapInfoDupKey {
   10659   static DupKey getEmptyKey() { return DupKey(0, true); }
   10660   static DupKey getTombstoneKey() { return DupKey(1, true); }
   10661   static unsigned getHashValue(const DupKey Key) {
   10662     return (unsigned)(Key.val * 37);
   10663   }
   10664   static bool isEqual(const DupKey& LHS, const DupKey& RHS) {
   10665     return LHS.isTombstoneOrEmptyKey == RHS.isTombstoneOrEmptyKey &&
   10666            LHS.val == RHS.val;
   10667   }
   10668 };
   10669 
   10670 // Emits a warning when an element is implicitly set a value that
   10671 // a previous element has already been set to.
   10672 static void CheckForDuplicateEnumValues(Sema &S, Decl **Elements,
   10673                                         unsigned NumElements, EnumDecl *Enum,
   10674                                         QualType EnumType) {
   10675   if (S.Diags.getDiagnosticLevel(diag::warn_duplicate_enum_values,
   10676                                  Enum->getLocation()) ==
   10677       DiagnosticsEngine::Ignored)
   10678     return;
   10679   // Avoid anonymous enums
   10680   if (!Enum->getIdentifier())
   10681     return;
   10682 
   10683   // Only check for small enums.
   10684   if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
   10685     return;
   10686 
   10687   typedef llvm::SmallVector<EnumConstantDecl*, 3> ECDVector;
   10688   typedef llvm::SmallVector<ECDVector*, 3> DuplicatesVector;
   10689 
   10690   typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
   10691   typedef llvm::DenseMap<DupKey, DeclOrVector, DenseMapInfoDupKey>
   10692           ValueToVectorMap;
   10693 
   10694   DuplicatesVector DupVector;
   10695   ValueToVectorMap EnumMap;
   10696 
   10697   // Populate the EnumMap with all values represented by enum constants without
   10698   // an initialier.
   10699   for (unsigned i = 0; i < NumElements; ++i) {
   10700     EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
   10701 
   10702     // Null EnumConstantDecl means a previous diagnostic has been emitted for
   10703     // this constant.  Skip this enum since it may be ill-formed.
   10704     if (!ECD) {
   10705       return;
   10706     }
   10707 
   10708     if (ECD->getInitExpr())
   10709       continue;
   10710 
   10711     DupKey Key = GetDupKey(ECD->getInitVal());
   10712     DeclOrVector &Entry = EnumMap[Key];
   10713 
   10714     // First time encountering this value.
   10715     if (Entry.isNull())
   10716       Entry = ECD;
   10717   }
   10718 
   10719   // Create vectors for any values that has duplicates.
   10720   for (unsigned i = 0; i < NumElements; ++i) {
   10721     EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
   10722     if (!ValidDuplicateEnum(ECD, Enum))
   10723       continue;
   10724 
   10725     DupKey Key = GetDupKey(ECD->getInitVal());
   10726 
   10727     DeclOrVector& Entry = EnumMap[Key];
   10728     if (Entry.isNull())
   10729       continue;
   10730 
   10731     if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
   10732       // Ensure constants are different.
   10733       if (D == ECD)
   10734         continue;
   10735 
   10736       // Create new vector and push values onto it.
   10737       ECDVector *Vec = new ECDVector();
   10738       Vec->push_back(D);
   10739       Vec->push_back(ECD);
   10740 
   10741       // Update entry to point to the duplicates vector.
   10742       Entry = Vec;
   10743 
   10744       // Store the vector somewhere we can consult later for quick emission of
   10745       // diagnostics.
   10746       DupVector.push_back(Vec);
   10747       continue;
   10748     }
   10749 
   10750     ECDVector *Vec = Entry.get<ECDVector*>();
   10751     // Make sure constants are not added more than once.
   10752     if (*Vec->begin() == ECD)
   10753       continue;
   10754 
   10755     Vec->push_back(ECD);
   10756   }
   10757 
   10758   // Emit diagnostics.
   10759   for (DuplicatesVector::iterator DupVectorIter = DupVector.begin(),
   10760                                   DupVectorEnd = DupVector.end();
   10761        DupVectorIter != DupVectorEnd; ++DupVectorIter) {
   10762     ECDVector *Vec = *DupVectorIter;
   10763     assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
   10764 
   10765     // Emit warning for one enum constant.
   10766     ECDVector::iterator I = Vec->begin();
   10767     S.Diag((*I)->getLocation(), diag::warn_duplicate_enum_values)
   10768       << (*I)->getName() << (*I)->getInitVal().toString(10)
   10769       << (*I)->getSourceRange();
   10770     ++I;
   10771 
   10772     // Emit one note for each of the remaining enum constants with
   10773     // the same value.
   10774     for (ECDVector::iterator E = Vec->end(); I != E; ++I)
   10775       S.Diag((*I)->getLocation(), diag::note_duplicate_element)
   10776         << (*I)->getName() << (*I)->getInitVal().toString(10)
   10777         << (*I)->getSourceRange();
   10778     delete Vec;
   10779   }
   10780 }
   10781 
   10782 void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
   10783                          SourceLocation RBraceLoc, Decl *EnumDeclX,
   10784                          Decl **Elements, unsigned NumElements,
   10785                          Scope *S, AttributeList *Attr) {
   10786   EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
   10787   QualType EnumType = Context.getTypeDeclType(Enum);
   10788 
   10789   if (Attr)
   10790     ProcessDeclAttributeList(S, Enum, Attr);
   10791 
   10792   if (Enum->isDependentType()) {
   10793     for (unsigned i = 0; i != NumElements; ++i) {
   10794       EnumConstantDecl *ECD =
   10795         cast_or_null<EnumConstantDecl>(Elements[i]);
   10796       if (!ECD) continue;
   10797 
   10798       ECD->setType(EnumType);
   10799     }
   10800 
   10801     Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
   10802     return;
   10803   }
   10804 
   10805   // TODO: If the result value doesn't fit in an int, it must be a long or long
   10806   // long value.  ISO C does not support this, but GCC does as an extension,
   10807   // emit a warning.
   10808   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
   10809   unsigned CharWidth = Context.getTargetInfo().getCharWidth();
   10810   unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
   10811 
   10812   // Verify that all the values are okay, compute the size of the values, and
   10813   // reverse the list.
   10814   unsigned NumNegativeBits = 0;
   10815   unsigned NumPositiveBits = 0;
   10816 
   10817   // Keep track of whether all elements have type int.
   10818   bool AllElementsInt = true;
   10819 
   10820   for (unsigned i = 0; i != NumElements; ++i) {
   10821     EnumConstantDecl *ECD =
   10822       cast_or_null<EnumConstantDecl>(Elements[i]);
   10823     if (!ECD) continue;  // Already issued a diagnostic.
   10824 
   10825     const llvm::APSInt &InitVal = ECD->getInitVal();
   10826 
   10827     // Keep track of the size of positive and negative values.
   10828     if (InitVal.isUnsigned() || InitVal.isNonNegative())
   10829       NumPositiveBits = std::max(NumPositiveBits,
   10830                                  (unsigned)InitVal.getActiveBits());
   10831     else
   10832       NumNegativeBits = std::max(NumNegativeBits,
   10833                                  (unsigned)InitVal.getMinSignedBits());
   10834 
   10835     // Keep track of whether every enum element has type int (very commmon).
   10836     if (AllElementsInt)
   10837       AllElementsInt = ECD->getType() == Context.IntTy;
   10838   }
   10839 
   10840   // Figure out the type that should be used for this enum.
   10841   QualType BestType;
   10842   unsigned BestWidth;
   10843 
   10844   // C++0x N3000 [conv.prom]p3:
   10845   //   An rvalue of an unscoped enumeration type whose underlying
   10846   //   type is not fixed can be converted to an rvalue of the first
   10847   //   of the following types that can represent all the values of
   10848   //   the enumeration: int, unsigned int, long int, unsigned long
   10849   //   int, long long int, or unsigned long long int.
   10850   // C99 6.4.4.3p2:
   10851   //   An identifier declared as an enumeration constant has type int.
   10852   // The C99 rule is modified by a gcc extension
   10853   QualType BestPromotionType;
   10854 
   10855   bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
   10856   // -fshort-enums is the equivalent to specifying the packed attribute on all
   10857   // enum definitions.
   10858   if (LangOpts.ShortEnums)
   10859     Packed = true;
   10860 
   10861   if (Enum->isFixed()) {
   10862     BestType = Enum->getIntegerType();
   10863     if (BestType->isPromotableIntegerType())
   10864       BestPromotionType = Context.getPromotedIntegerType(BestType);
   10865     else
   10866       BestPromotionType = BestType;
   10867     // We don't need to set BestWidth, because BestType is going to be the type
   10868     // of the enumerators, but we do anyway because otherwise some compilers
   10869     // warn that it might be used uninitialized.
   10870     BestWidth = CharWidth;
   10871   }
   10872   else if (NumNegativeBits) {
   10873     // If there is a negative value, figure out the smallest integer type (of
   10874     // int/long/longlong) that fits.
   10875     // If it's packed, check also if it fits a char or a short.
   10876     if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
   10877       BestType = Context.SignedCharTy;
   10878       BestWidth = CharWidth;
   10879     } else if (Packed && NumNegativeBits <= ShortWidth &&
   10880                NumPositiveBits < ShortWidth) {
   10881       BestType = Context.ShortTy;
   10882       BestWidth = ShortWidth;
   10883     } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
   10884       BestType = Context.IntTy;
   10885       BestWidth = IntWidth;
   10886     } else {
   10887       BestWidth = Context.getTargetInfo().getLongWidth();
   10888 
   10889       if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
   10890         BestType = Context.LongTy;
   10891       } else {
   10892         BestWidth = Context.getTargetInfo().getLongLongWidth();
   10893 
   10894         if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
   10895           Diag(Enum->getLocation(), diag::warn_enum_too_large);
   10896         BestType = Context.LongLongTy;
   10897       }
   10898     }
   10899     BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
   10900   } else {
   10901     // If there is no negative value, figure out the smallest type that fits
   10902     // all of the enumerator values.
   10903     // If it's packed, check also if it fits a char or a short.
   10904     if (Packed && NumPositiveBits <= CharWidth) {
   10905       BestType = Context.UnsignedCharTy;
   10906       BestPromotionType = Context.IntTy;
   10907       BestWidth = CharWidth;
   10908     } else if (Packed && NumPositiveBits <= ShortWidth) {
   10909       BestType = Context.UnsignedShortTy;
   10910       BestPromotionType = Context.IntTy;
   10911       BestWidth = ShortWidth;
   10912     } else if (NumPositiveBits <= IntWidth) {
   10913       BestType = Context.UnsignedIntTy;
   10914       BestWidth = IntWidth;
   10915       BestPromotionType
   10916         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
   10917                            ? Context.UnsignedIntTy : Context.IntTy;
   10918     } else if (NumPositiveBits <=
   10919                (BestWidth = Context.getTargetInfo().getLongWidth())) {
   10920       BestType = Context.UnsignedLongTy;
   10921       BestPromotionType
   10922         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
   10923                            ? Context.UnsignedLongTy : Context.LongTy;
   10924     } else {
   10925       BestWidth = Context.getTargetInfo().getLongLongWidth();
   10926       assert(NumPositiveBits <= BestWidth &&
   10927              "How could an initializer get larger than ULL?");
   10928       BestType = Context.UnsignedLongLongTy;
   10929       BestPromotionType
   10930         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
   10931                            ? Context.UnsignedLongLongTy : Context.LongLongTy;
   10932     }
   10933   }
   10934 
   10935   // Loop over all of the enumerator constants, changing their types to match
   10936   // the type of the enum if needed.
   10937   for (unsigned i = 0; i != NumElements; ++i) {
   10938     EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
   10939     if (!ECD) continue;  // Already issued a diagnostic.
   10940 
   10941     // Standard C says the enumerators have int type, but we allow, as an
   10942     // extension, the enumerators to be larger than int size.  If each
   10943     // enumerator value fits in an int, type it as an int, otherwise type it the
   10944     // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
   10945     // that X has type 'int', not 'unsigned'.
   10946 
   10947     // Determine whether the value fits into an int.
   10948     llvm::APSInt InitVal = ECD->getInitVal();
   10949 
   10950     // If it fits into an integer type, force it.  Otherwise force it to match
   10951     // the enum decl type.
   10952     QualType NewTy;
   10953     unsigned NewWidth;
   10954     bool NewSign;
   10955     if (!getLangOpts().CPlusPlus &&
   10956         !Enum->isFixed() &&
   10957         isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
   10958       NewTy = Context.IntTy;
   10959       NewWidth = IntWidth;
   10960       NewSign = true;
   10961     } else if (ECD->getType() == BestType) {
   10962       // Already the right type!
   10963       if (getLangOpts().CPlusPlus)
   10964         // C++ [dcl.enum]p4: Following the closing brace of an
   10965         // enum-specifier, each enumerator has the type of its
   10966         // enumeration.
   10967         ECD->setType(EnumType);
   10968       continue;
   10969     } else {
   10970       NewTy = BestType;
   10971       NewWidth = BestWidth;
   10972       NewSign = BestType->isSignedIntegerOrEnumerationType();
   10973     }
   10974 
   10975     // Adjust the APSInt value.
   10976     InitVal = InitVal.extOrTrunc(NewWidth);
   10977     InitVal.setIsSigned(NewSign);
   10978     ECD->setInitVal(InitVal);
   10979 
   10980     // Adjust the Expr initializer and type.
   10981     if (ECD->getInitExpr() &&
   10982         !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
   10983       ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
   10984                                                 CK_IntegralCast,
   10985                                                 ECD->getInitExpr(),
   10986                                                 /*base paths*/ 0,
   10987                                                 VK_RValue));
   10988     if (getLangOpts().CPlusPlus)
   10989       // C++ [dcl.enum]p4: Following the closing brace of an
   10990       // enum-specifier, each enumerator has the type of its
   10991       // enumeration.
   10992       ECD->setType(EnumType);
   10993     else
   10994       ECD->setType(NewTy);
   10995   }
   10996 
   10997   Enum->completeDefinition(BestType, BestPromotionType,
   10998                            NumPositiveBits, NumNegativeBits);
   10999 
   11000   // If we're declaring a function, ensure this decl isn't forgotten about -
   11001   // it needs to go into the function scope.
   11002   if (InFunctionDeclarator)
   11003     DeclsInPrototypeScope.push_back(Enum);
   11004 
   11005   CheckForUniqueEnumValues(*this, Elements, NumElements, Enum, EnumType);
   11006   CheckForDuplicateEnumValues(*this, Elements, NumElements, Enum, EnumType);
   11007 }
   11008 
   11009 Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
   11010                                   SourceLocation StartLoc,
   11011                                   SourceLocation EndLoc) {
   11012   StringLiteral *AsmString = cast<StringLiteral>(expr);
   11013 
   11014   FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
   11015                                                    AsmString, StartLoc,
   11016                                                    EndLoc);
   11017   CurContext->addDecl(New);
   11018   return New;
   11019 }
   11020 
   11021 DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
   11022                                    SourceLocation ImportLoc,
   11023                                    ModuleIdPath Path) {
   11024   Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
   11025                                                 Module::AllVisible,
   11026                                                 /*IsIncludeDirective=*/false);
   11027   if (!Mod)
   11028     return true;
   11029 
   11030   llvm::SmallVector<SourceLocation, 2> IdentifierLocs;
   11031   Module *ModCheck = Mod;
   11032   for (unsigned I = 0, N = Path.size(); I != N; ++I) {
   11033     // If we've run out of module parents, just drop the remaining identifiers.
   11034     // We need the length to be consistent.
   11035     if (!ModCheck)
   11036       break;
   11037     ModCheck = ModCheck->Parent;
   11038 
   11039     IdentifierLocs.push_back(Path[I].second);
   11040   }
   11041 
   11042   ImportDecl *Import = ImportDecl::Create(Context,
   11043                                           Context.getTranslationUnitDecl(),
   11044                                           AtLoc.isValid()? AtLoc : ImportLoc,
   11045                                           Mod, IdentifierLocs);
   11046   Context.getTranslationUnitDecl()->addDecl(Import);
   11047   return Import;
   11048 }
   11049 
   11050 void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
   11051                                       IdentifierInfo* AliasName,
   11052                                       SourceLocation PragmaLoc,
   11053                                       SourceLocation NameLoc,
   11054                                       SourceLocation AliasNameLoc) {
   11055   Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
   11056                                     LookupOrdinaryName);
   11057   AsmLabelAttr *Attr =
   11058      ::new (Context) AsmLabelAttr(AliasNameLoc, Context, AliasName->getName());
   11059 
   11060   if (PrevDecl)
   11061     PrevDecl->addAttr(Attr);
   11062   else
   11063     (void)ExtnameUndeclaredIdentifiers.insert(
   11064       std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr));
   11065 }
   11066 
   11067 void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
   11068                              SourceLocation PragmaLoc,
   11069                              SourceLocation NameLoc) {
   11070   Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
   11071 
   11072   if (PrevDecl) {
   11073     PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
   11074   } else {
   11075     (void)WeakUndeclaredIdentifiers.insert(
   11076       std::pair<IdentifierInfo*,WeakInfo>
   11077         (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
   11078   }
   11079 }
   11080 
   11081 void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
   11082                                 IdentifierInfo* AliasName,
   11083                                 SourceLocation PragmaLoc,
   11084                                 SourceLocation NameLoc,
   11085                                 SourceLocation AliasNameLoc) {
   11086   Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
   11087                                     LookupOrdinaryName);
   11088   WeakInfo W = WeakInfo(Name, NameLoc);
   11089 
   11090   if (PrevDecl) {
   11091     if (!PrevDecl->hasAttr<AliasAttr>())
   11092       if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
   11093         DeclApplyPragmaWeak(TUScope, ND, W);
   11094   } else {
   11095     (void)WeakUndeclaredIdentifiers.insert(
   11096       std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
   11097   }
   11098 }
   11099 
   11100 Decl *Sema::getObjCDeclContext() const {
   11101   return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
   11102 }
   11103 
   11104 AvailabilityResult Sema::getCurContextAvailability() const {
   11105   const Decl *D = cast<Decl>(getCurObjCLexicalContext());
   11106   return D->getAvailability();
   11107 }
   11108