Home | History | Annotate | Download | only in CodeGen
      1 //===-- MachineCSE.cpp - Machine Common Subexpression Elimination Pass ----===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass performs global common subexpression elimination on machine
     11 // instructions using a scoped hash table based value numbering scheme. It
     12 // must be run while the machine function is still in SSA form.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #define DEBUG_TYPE "machine-cse"
     17 #include "llvm/CodeGen/Passes.h"
     18 #include "llvm/CodeGen/MachineDominators.h"
     19 #include "llvm/CodeGen/MachineInstr.h"
     20 #include "llvm/CodeGen/MachineRegisterInfo.h"
     21 #include "llvm/Analysis/AliasAnalysis.h"
     22 #include "llvm/Target/TargetInstrInfo.h"
     23 #include "llvm/ADT/DenseMap.h"
     24 #include "llvm/ADT/ScopedHashTable.h"
     25 #include "llvm/ADT/SmallSet.h"
     26 #include "llvm/ADT/Statistic.h"
     27 #include "llvm/Support/Debug.h"
     28 #include "llvm/Support/RecyclingAllocator.h"
     29 using namespace llvm;
     30 
     31 STATISTIC(NumCoalesces, "Number of copies coalesced");
     32 STATISTIC(NumCSEs,      "Number of common subexpression eliminated");
     33 STATISTIC(NumPhysCSEs,
     34           "Number of physreg referencing common subexpr eliminated");
     35 STATISTIC(NumCrossBBCSEs,
     36           "Number of cross-MBB physreg referencing CS eliminated");
     37 STATISTIC(NumCommutes,  "Number of copies coalesced after commuting");
     38 
     39 namespace {
     40   class MachineCSE : public MachineFunctionPass {
     41     const TargetInstrInfo *TII;
     42     const TargetRegisterInfo *TRI;
     43     AliasAnalysis *AA;
     44     MachineDominatorTree *DT;
     45     MachineRegisterInfo *MRI;
     46   public:
     47     static char ID; // Pass identification
     48     MachineCSE() : MachineFunctionPass(ID), LookAheadLimit(5), CurrVN(0) {
     49       initializeMachineCSEPass(*PassRegistry::getPassRegistry());
     50     }
     51 
     52     virtual bool runOnMachineFunction(MachineFunction &MF);
     53 
     54     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
     55       AU.setPreservesCFG();
     56       MachineFunctionPass::getAnalysisUsage(AU);
     57       AU.addRequired<AliasAnalysis>();
     58       AU.addPreservedID(MachineLoopInfoID);
     59       AU.addRequired<MachineDominatorTree>();
     60       AU.addPreserved<MachineDominatorTree>();
     61     }
     62 
     63     virtual void releaseMemory() {
     64       ScopeMap.clear();
     65       Exps.clear();
     66       AllocatableRegs.clear();
     67       ReservedRegs.clear();
     68     }
     69 
     70   private:
     71     const unsigned LookAheadLimit;
     72     typedef RecyclingAllocator<BumpPtrAllocator,
     73         ScopedHashTableVal<MachineInstr*, unsigned> > AllocatorTy;
     74     typedef ScopedHashTable<MachineInstr*, unsigned,
     75         MachineInstrExpressionTrait, AllocatorTy> ScopedHTType;
     76     typedef ScopedHTType::ScopeTy ScopeType;
     77     DenseMap<MachineBasicBlock*, ScopeType*> ScopeMap;
     78     ScopedHTType VNT;
     79     SmallVector<MachineInstr*, 64> Exps;
     80     unsigned CurrVN;
     81     BitVector AllocatableRegs;
     82     BitVector ReservedRegs;
     83 
     84     bool PerformTrivialCoalescing(MachineInstr *MI, MachineBasicBlock *MBB);
     85     bool isPhysDefTriviallyDead(unsigned Reg,
     86                                 MachineBasicBlock::const_iterator I,
     87                                 MachineBasicBlock::const_iterator E) const;
     88     bool hasLivePhysRegDefUses(const MachineInstr *MI,
     89                                const MachineBasicBlock *MBB,
     90                                SmallSet<unsigned,8> &PhysRefs,
     91                                SmallVector<unsigned,2> &PhysDefs) const;
     92     bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
     93                           SmallSet<unsigned,8> &PhysRefs,
     94                           SmallVector<unsigned,2> &PhysDefs,
     95                           bool &NonLocal) const;
     96     bool isCSECandidate(MachineInstr *MI);
     97     bool isProfitableToCSE(unsigned CSReg, unsigned Reg,
     98                            MachineInstr *CSMI, MachineInstr *MI);
     99     void EnterScope(MachineBasicBlock *MBB);
    100     void ExitScope(MachineBasicBlock *MBB);
    101     bool ProcessBlock(MachineBasicBlock *MBB);
    102     void ExitScopeIfDone(MachineDomTreeNode *Node,
    103                          DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren);
    104     bool PerformCSE(MachineDomTreeNode *Node);
    105   };
    106 } // end anonymous namespace
    107 
    108 char MachineCSE::ID = 0;
    109 char &llvm::MachineCSEID = MachineCSE::ID;
    110 INITIALIZE_PASS_BEGIN(MachineCSE, "machine-cse",
    111                 "Machine Common Subexpression Elimination", false, false)
    112 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
    113 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
    114 INITIALIZE_PASS_END(MachineCSE, "machine-cse",
    115                 "Machine Common Subexpression Elimination", false, false)
    116 
    117 bool MachineCSE::PerformTrivialCoalescing(MachineInstr *MI,
    118                                           MachineBasicBlock *MBB) {
    119   bool Changed = false;
    120   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    121     MachineOperand &MO = MI->getOperand(i);
    122     if (!MO.isReg() || !MO.isUse())
    123       continue;
    124     unsigned Reg = MO.getReg();
    125     if (!TargetRegisterInfo::isVirtualRegister(Reg))
    126       continue;
    127     if (!MRI->hasOneNonDBGUse(Reg))
    128       // Only coalesce single use copies. This ensure the copy will be
    129       // deleted.
    130       continue;
    131     MachineInstr *DefMI = MRI->getVRegDef(Reg);
    132     if (DefMI->getParent() != MBB)
    133       continue;
    134     if (!DefMI->isCopy())
    135       continue;
    136     unsigned SrcReg = DefMI->getOperand(1).getReg();
    137     if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
    138       continue;
    139     if (DefMI->getOperand(0).getSubReg() || DefMI->getOperand(1).getSubReg())
    140       continue;
    141     if (!MRI->constrainRegClass(SrcReg, MRI->getRegClass(Reg)))
    142       continue;
    143     DEBUG(dbgs() << "Coalescing: " << *DefMI);
    144     DEBUG(dbgs() << "***     to: " << *MI);
    145     MO.setReg(SrcReg);
    146     MRI->clearKillFlags(SrcReg);
    147     DefMI->eraseFromParent();
    148     ++NumCoalesces;
    149     Changed = true;
    150   }
    151 
    152   return Changed;
    153 }
    154 
    155 bool
    156 MachineCSE::isPhysDefTriviallyDead(unsigned Reg,
    157                                    MachineBasicBlock::const_iterator I,
    158                                    MachineBasicBlock::const_iterator E) const {
    159   unsigned LookAheadLeft = LookAheadLimit;
    160   while (LookAheadLeft) {
    161     // Skip over dbg_value's.
    162     while (I != E && I->isDebugValue())
    163       ++I;
    164 
    165     if (I == E)
    166       // Reached end of block, register is obviously dead.
    167       return true;
    168 
    169     bool SeenDef = false;
    170     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
    171       const MachineOperand &MO = I->getOperand(i);
    172       if (MO.isRegMask() && MO.clobbersPhysReg(Reg))
    173         SeenDef = true;
    174       if (!MO.isReg() || !MO.getReg())
    175         continue;
    176       if (!TRI->regsOverlap(MO.getReg(), Reg))
    177         continue;
    178       if (MO.isUse())
    179         // Found a use!
    180         return false;
    181       SeenDef = true;
    182     }
    183     if (SeenDef)
    184       // See a def of Reg (or an alias) before encountering any use, it's
    185       // trivially dead.
    186       return true;
    187 
    188     --LookAheadLeft;
    189     ++I;
    190   }
    191   return false;
    192 }
    193 
    194 /// hasLivePhysRegDefUses - Return true if the specified instruction read/write
    195 /// physical registers (except for dead defs of physical registers). It also
    196 /// returns the physical register def by reference if it's the only one and the
    197 /// instruction does not uses a physical register.
    198 bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI,
    199                                        const MachineBasicBlock *MBB,
    200                                        SmallSet<unsigned,8> &PhysRefs,
    201                                        SmallVector<unsigned,2> &PhysDefs) const{
    202   MachineBasicBlock::const_iterator I = MI; I = llvm::next(I);
    203   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    204     const MachineOperand &MO = MI->getOperand(i);
    205     if (!MO.isReg())
    206       continue;
    207     unsigned Reg = MO.getReg();
    208     if (!Reg)
    209       continue;
    210     if (TargetRegisterInfo::isVirtualRegister(Reg))
    211       continue;
    212     // If the def is dead, it's ok. But the def may not marked "dead". That's
    213     // common since this pass is run before livevariables. We can scan
    214     // forward a few instructions and check if it is obviously dead.
    215     if (MO.isDef() &&
    216         (MO.isDead() || isPhysDefTriviallyDead(Reg, I, MBB->end())))
    217       continue;
    218     // Reading constant physregs is ok.
    219     if (!MRI->isConstantPhysReg(Reg, *MBB->getParent()))
    220       for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
    221         PhysRefs.insert(*AI);
    222     if (MO.isDef())
    223       PhysDefs.push_back(Reg);
    224   }
    225 
    226   return !PhysRefs.empty();
    227 }
    228 
    229 bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
    230                                   SmallSet<unsigned,8> &PhysRefs,
    231                                   SmallVector<unsigned,2> &PhysDefs,
    232                                   bool &NonLocal) const {
    233   // For now conservatively returns false if the common subexpression is
    234   // not in the same basic block as the given instruction. The only exception
    235   // is if the common subexpression is in the sole predecessor block.
    236   const MachineBasicBlock *MBB = MI->getParent();
    237   const MachineBasicBlock *CSMBB = CSMI->getParent();
    238 
    239   bool CrossMBB = false;
    240   if (CSMBB != MBB) {
    241     if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB)
    242       return false;
    243 
    244     for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) {
    245       if (AllocatableRegs.test(PhysDefs[i]) || ReservedRegs.test(PhysDefs[i]))
    246         // Avoid extending live range of physical registers if they are
    247         //allocatable or reserved.
    248         return false;
    249     }
    250     CrossMBB = true;
    251   }
    252   MachineBasicBlock::const_iterator I = CSMI; I = llvm::next(I);
    253   MachineBasicBlock::const_iterator E = MI;
    254   MachineBasicBlock::const_iterator EE = CSMBB->end();
    255   unsigned LookAheadLeft = LookAheadLimit;
    256   while (LookAheadLeft) {
    257     // Skip over dbg_value's.
    258     while (I != E && I != EE && I->isDebugValue())
    259       ++I;
    260 
    261     if (I == EE) {
    262       assert(CrossMBB && "Reaching end-of-MBB without finding MI?");
    263       (void)CrossMBB;
    264       CrossMBB = false;
    265       NonLocal = true;
    266       I = MBB->begin();
    267       EE = MBB->end();
    268       continue;
    269     }
    270 
    271     if (I == E)
    272       return true;
    273 
    274     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
    275       const MachineOperand &MO = I->getOperand(i);
    276       // RegMasks go on instructions like calls that clobber lots of physregs.
    277       // Don't attempt to CSE across such an instruction.
    278       if (MO.isRegMask())
    279         return false;
    280       if (!MO.isReg() || !MO.isDef())
    281         continue;
    282       unsigned MOReg = MO.getReg();
    283       if (TargetRegisterInfo::isVirtualRegister(MOReg))
    284         continue;
    285       if (PhysRefs.count(MOReg))
    286         return false;
    287     }
    288 
    289     --LookAheadLeft;
    290     ++I;
    291   }
    292 
    293   return false;
    294 }
    295 
    296 bool MachineCSE::isCSECandidate(MachineInstr *MI) {
    297   if (MI->isLabel() || MI->isPHI() || MI->isImplicitDef() ||
    298       MI->isKill() || MI->isInlineAsm() || MI->isDebugValue())
    299     return false;
    300 
    301   // Ignore copies.
    302   if (MI->isCopyLike())
    303     return false;
    304 
    305   // Ignore stuff that we obviously can't move.
    306   if (MI->mayStore() || MI->isCall() || MI->isTerminator() ||
    307       MI->hasUnmodeledSideEffects())
    308     return false;
    309 
    310   if (MI->mayLoad()) {
    311     // Okay, this instruction does a load. As a refinement, we allow the target
    312     // to decide whether the loaded value is actually a constant. If so, we can
    313     // actually use it as a load.
    314     if (!MI->isInvariantLoad(AA))
    315       // FIXME: we should be able to hoist loads with no other side effects if
    316       // there are no other instructions which can change memory in this loop.
    317       // This is a trivial form of alias analysis.
    318       return false;
    319   }
    320   return true;
    321 }
    322 
    323 /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a
    324 /// common expression that defines Reg.
    325 bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg,
    326                                    MachineInstr *CSMI, MachineInstr *MI) {
    327   // FIXME: Heuristics that works around the lack the live range splitting.
    328 
    329   // If CSReg is used at all uses of Reg, CSE should not increase register
    330   // pressure of CSReg.
    331   bool MayIncreasePressure = true;
    332   if (TargetRegisterInfo::isVirtualRegister(CSReg) &&
    333       TargetRegisterInfo::isVirtualRegister(Reg)) {
    334     MayIncreasePressure = false;
    335     SmallPtrSet<MachineInstr*, 8> CSUses;
    336     for (MachineRegisterInfo::use_nodbg_iterator I =MRI->use_nodbg_begin(CSReg),
    337          E = MRI->use_nodbg_end(); I != E; ++I) {
    338       MachineInstr *Use = &*I;
    339       CSUses.insert(Use);
    340     }
    341     for (MachineRegisterInfo::use_nodbg_iterator I = MRI->use_nodbg_begin(Reg),
    342          E = MRI->use_nodbg_end(); I != E; ++I) {
    343       MachineInstr *Use = &*I;
    344       if (!CSUses.count(Use)) {
    345         MayIncreasePressure = true;
    346         break;
    347       }
    348     }
    349   }
    350   if (!MayIncreasePressure) return true;
    351 
    352   // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in
    353   // an immediate predecessor. We don't want to increase register pressure and
    354   // end up causing other computation to be spilled.
    355   if (MI->isAsCheapAsAMove()) {
    356     MachineBasicBlock *CSBB = CSMI->getParent();
    357     MachineBasicBlock *BB = MI->getParent();
    358     if (CSBB != BB && !CSBB->isSuccessor(BB))
    359       return false;
    360   }
    361 
    362   // Heuristics #2: If the expression doesn't not use a vr and the only use
    363   // of the redundant computation are copies, do not cse.
    364   bool HasVRegUse = false;
    365   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    366     const MachineOperand &MO = MI->getOperand(i);
    367     if (MO.isReg() && MO.isUse() &&
    368         TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
    369       HasVRegUse = true;
    370       break;
    371     }
    372   }
    373   if (!HasVRegUse) {
    374     bool HasNonCopyUse = false;
    375     for (MachineRegisterInfo::use_nodbg_iterator I =  MRI->use_nodbg_begin(Reg),
    376            E = MRI->use_nodbg_end(); I != E; ++I) {
    377       MachineInstr *Use = &*I;
    378       // Ignore copies.
    379       if (!Use->isCopyLike()) {
    380         HasNonCopyUse = true;
    381         break;
    382       }
    383     }
    384     if (!HasNonCopyUse)
    385       return false;
    386   }
    387 
    388   // Heuristics #3: If the common subexpression is used by PHIs, do not reuse
    389   // it unless the defined value is already used in the BB of the new use.
    390   bool HasPHI = false;
    391   SmallPtrSet<MachineBasicBlock*, 4> CSBBs;
    392   for (MachineRegisterInfo::use_nodbg_iterator I =  MRI->use_nodbg_begin(CSReg),
    393        E = MRI->use_nodbg_end(); I != E; ++I) {
    394     MachineInstr *Use = &*I;
    395     HasPHI |= Use->isPHI();
    396     CSBBs.insert(Use->getParent());
    397   }
    398 
    399   if (!HasPHI)
    400     return true;
    401   return CSBBs.count(MI->getParent());
    402 }
    403 
    404 void MachineCSE::EnterScope(MachineBasicBlock *MBB) {
    405   DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n');
    406   ScopeType *Scope = new ScopeType(VNT);
    407   ScopeMap[MBB] = Scope;
    408 }
    409 
    410 void MachineCSE::ExitScope(MachineBasicBlock *MBB) {
    411   DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n');
    412   DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB);
    413   assert(SI != ScopeMap.end());
    414   ScopeMap.erase(SI);
    415   delete SI->second;
    416 }
    417 
    418 bool MachineCSE::ProcessBlock(MachineBasicBlock *MBB) {
    419   bool Changed = false;
    420 
    421   SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs;
    422   SmallVector<unsigned, 2> ImplicitDefsToUpdate;
    423   for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) {
    424     MachineInstr *MI = &*I;
    425     ++I;
    426 
    427     if (!isCSECandidate(MI))
    428       continue;
    429 
    430     bool FoundCSE = VNT.count(MI);
    431     if (!FoundCSE) {
    432       // Look for trivial copy coalescing opportunities.
    433       if (PerformTrivialCoalescing(MI, MBB)) {
    434         Changed = true;
    435 
    436         // After coalescing MI itself may become a copy.
    437         if (MI->isCopyLike())
    438           continue;
    439         FoundCSE = VNT.count(MI);
    440       }
    441     }
    442 
    443     // Commute commutable instructions.
    444     bool Commuted = false;
    445     if (!FoundCSE && MI->isCommutable()) {
    446       MachineInstr *NewMI = TII->commuteInstruction(MI);
    447       if (NewMI) {
    448         Commuted = true;
    449         FoundCSE = VNT.count(NewMI);
    450         if (NewMI != MI) {
    451           // New instruction. It doesn't need to be kept.
    452           NewMI->eraseFromParent();
    453           Changed = true;
    454         } else if (!FoundCSE)
    455           // MI was changed but it didn't help, commute it back!
    456           (void)TII->commuteInstruction(MI);
    457       }
    458     }
    459 
    460     // If the instruction defines physical registers and the values *may* be
    461     // used, then it's not safe to replace it with a common subexpression.
    462     // It's also not safe if the instruction uses physical registers.
    463     bool CrossMBBPhysDef = false;
    464     SmallSet<unsigned, 8> PhysRefs;
    465     SmallVector<unsigned, 2> PhysDefs;
    466     if (FoundCSE && hasLivePhysRegDefUses(MI, MBB, PhysRefs, PhysDefs)) {
    467       FoundCSE = false;
    468 
    469       // ... Unless the CS is local or is in the sole predecessor block
    470       // and it also defines the physical register which is not clobbered
    471       // in between and the physical register uses were not clobbered.
    472       unsigned CSVN = VNT.lookup(MI);
    473       MachineInstr *CSMI = Exps[CSVN];
    474       if (PhysRegDefsReach(CSMI, MI, PhysRefs, PhysDefs, CrossMBBPhysDef))
    475         FoundCSE = true;
    476     }
    477 
    478     if (!FoundCSE) {
    479       VNT.insert(MI, CurrVN++);
    480       Exps.push_back(MI);
    481       continue;
    482     }
    483 
    484     // Found a common subexpression, eliminate it.
    485     unsigned CSVN = VNT.lookup(MI);
    486     MachineInstr *CSMI = Exps[CSVN];
    487     DEBUG(dbgs() << "Examining: " << *MI);
    488     DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI);
    489 
    490     // Check if it's profitable to perform this CSE.
    491     bool DoCSE = true;
    492     unsigned NumDefs = MI->getDesc().getNumDefs() +
    493                        MI->getDesc().getNumImplicitDefs();
    494 
    495     for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) {
    496       MachineOperand &MO = MI->getOperand(i);
    497       if (!MO.isReg() || !MO.isDef())
    498         continue;
    499       unsigned OldReg = MO.getReg();
    500       unsigned NewReg = CSMI->getOperand(i).getReg();
    501 
    502       // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
    503       // we should make sure it is not dead at CSMI.
    504       if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead())
    505         ImplicitDefsToUpdate.push_back(i);
    506       if (OldReg == NewReg) {
    507         --NumDefs;
    508         continue;
    509       }
    510 
    511       assert(TargetRegisterInfo::isVirtualRegister(OldReg) &&
    512              TargetRegisterInfo::isVirtualRegister(NewReg) &&
    513              "Do not CSE physical register defs!");
    514 
    515       if (!isProfitableToCSE(NewReg, OldReg, CSMI, MI)) {
    516         DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n");
    517         DoCSE = false;
    518         break;
    519       }
    520 
    521       // Don't perform CSE if the result of the old instruction cannot exist
    522       // within the register class of the new instruction.
    523       const TargetRegisterClass *OldRC = MRI->getRegClass(OldReg);
    524       if (!MRI->constrainRegClass(NewReg, OldRC)) {
    525         DEBUG(dbgs() << "*** Not the same register class, avoid CSE!\n");
    526         DoCSE = false;
    527         break;
    528       }
    529 
    530       CSEPairs.push_back(std::make_pair(OldReg, NewReg));
    531       --NumDefs;
    532     }
    533 
    534     // Actually perform the elimination.
    535     if (DoCSE) {
    536       for (unsigned i = 0, e = CSEPairs.size(); i != e; ++i) {
    537         MRI->replaceRegWith(CSEPairs[i].first, CSEPairs[i].second);
    538         MRI->clearKillFlags(CSEPairs[i].second);
    539       }
    540 
    541       // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
    542       // we should make sure it is not dead at CSMI.
    543       for (unsigned i = 0, e = ImplicitDefsToUpdate.size(); i != e; ++i)
    544         CSMI->getOperand(ImplicitDefsToUpdate[i]).setIsDead(false);
    545 
    546       if (CrossMBBPhysDef) {
    547         // Add physical register defs now coming in from a predecessor to MBB
    548         // livein list.
    549         while (!PhysDefs.empty()) {
    550           unsigned LiveIn = PhysDefs.pop_back_val();
    551           if (!MBB->isLiveIn(LiveIn))
    552             MBB->addLiveIn(LiveIn);
    553         }
    554         ++NumCrossBBCSEs;
    555       }
    556 
    557       MI->eraseFromParent();
    558       ++NumCSEs;
    559       if (!PhysRefs.empty())
    560         ++NumPhysCSEs;
    561       if (Commuted)
    562         ++NumCommutes;
    563       Changed = true;
    564     } else {
    565       VNT.insert(MI, CurrVN++);
    566       Exps.push_back(MI);
    567     }
    568     CSEPairs.clear();
    569     ImplicitDefsToUpdate.clear();
    570   }
    571 
    572   return Changed;
    573 }
    574 
    575 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
    576 /// dominator tree node if its a leaf or all of its children are done. Walk
    577 /// up the dominator tree to destroy ancestors which are now done.
    578 void
    579 MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node,
    580                         DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren) {
    581   if (OpenChildren[Node])
    582     return;
    583 
    584   // Pop scope.
    585   ExitScope(Node->getBlock());
    586 
    587   // Now traverse upwards to pop ancestors whose offsprings are all done.
    588   while (MachineDomTreeNode *Parent = Node->getIDom()) {
    589     unsigned Left = --OpenChildren[Parent];
    590     if (Left != 0)
    591       break;
    592     ExitScope(Parent->getBlock());
    593     Node = Parent;
    594   }
    595 }
    596 
    597 bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) {
    598   SmallVector<MachineDomTreeNode*, 32> Scopes;
    599   SmallVector<MachineDomTreeNode*, 8> WorkList;
    600   DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
    601 
    602   CurrVN = 0;
    603 
    604   // Perform a DFS walk to determine the order of visit.
    605   WorkList.push_back(Node);
    606   do {
    607     Node = WorkList.pop_back_val();
    608     Scopes.push_back(Node);
    609     const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
    610     unsigned NumChildren = Children.size();
    611     OpenChildren[Node] = NumChildren;
    612     for (unsigned i = 0; i != NumChildren; ++i) {
    613       MachineDomTreeNode *Child = Children[i];
    614       WorkList.push_back(Child);
    615     }
    616   } while (!WorkList.empty());
    617 
    618   // Now perform CSE.
    619   bool Changed = false;
    620   for (unsigned i = 0, e = Scopes.size(); i != e; ++i) {
    621     MachineDomTreeNode *Node = Scopes[i];
    622     MachineBasicBlock *MBB = Node->getBlock();
    623     EnterScope(MBB);
    624     Changed |= ProcessBlock(MBB);
    625     // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
    626     ExitScopeIfDone(Node, OpenChildren);
    627   }
    628 
    629   return Changed;
    630 }
    631 
    632 bool MachineCSE::runOnMachineFunction(MachineFunction &MF) {
    633   TII = MF.getTarget().getInstrInfo();
    634   TRI = MF.getTarget().getRegisterInfo();
    635   MRI = &MF.getRegInfo();
    636   AA = &getAnalysis<AliasAnalysis>();
    637   DT = &getAnalysis<MachineDominatorTree>();
    638   AllocatableRegs = TRI->getAllocatableSet(MF);
    639   ReservedRegs = TRI->getReservedRegs(MF);
    640   return PerformCSE(DT->getRootNode());
    641 }
    642