Home | History | Annotate | Download | only in CodeGen
      1 //===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains a Partitioned Boolean Quadratic Programming (PBQP) based
     11 // register allocator for LLVM. This allocator works by constructing a PBQP
     12 // problem representing the register allocation problem under consideration,
     13 // solving this using a PBQP solver, and mapping the solution back to a
     14 // register assignment. If any variables are selected for spilling then spill
     15 // code is inserted and the process repeated.
     16 //
     17 // The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned
     18 // for register allocation. For more information on PBQP for register
     19 // allocation, see the following papers:
     20 //
     21 //   (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with
     22 //   PBQP. In Proceedings of the 7th Joint Modular Languages Conference
     23 //   (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361.
     24 //
     25 //   (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular
     26 //   architectures. In Proceedings of the Joint Conference on Languages,
     27 //   Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York,
     28 //   NY, USA, 139-148.
     29 //
     30 //===----------------------------------------------------------------------===//
     31 
     32 #define DEBUG_TYPE "regalloc"
     33 
     34 #include "Spiller.h"
     35 #include "VirtRegMap.h"
     36 #include "RegisterCoalescer.h"
     37 #include "llvm/Module.h"
     38 #include "llvm/Analysis/AliasAnalysis.h"
     39 #include "llvm/CodeGen/CalcSpillWeights.h"
     40 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     41 #include "llvm/CodeGen/LiveRangeEdit.h"
     42 #include "llvm/CodeGen/LiveStackAnalysis.h"
     43 #include "llvm/CodeGen/RegAllocPBQP.h"
     44 #include "llvm/CodeGen/MachineDominators.h"
     45 #include "llvm/CodeGen/MachineFunctionPass.h"
     46 #include "llvm/CodeGen/MachineLoopInfo.h"
     47 #include "llvm/CodeGen/MachineRegisterInfo.h"
     48 #include "llvm/CodeGen/PBQP/HeuristicSolver.h"
     49 #include "llvm/CodeGen/PBQP/Graph.h"
     50 #include "llvm/CodeGen/PBQP/Heuristics/Briggs.h"
     51 #include "llvm/CodeGen/RegAllocRegistry.h"
     52 #include "llvm/Support/Debug.h"
     53 #include "llvm/Support/raw_ostream.h"
     54 #include "llvm/Target/TargetInstrInfo.h"
     55 #include "llvm/Target/TargetMachine.h"
     56 #include <limits>
     57 #include <memory>
     58 #include <set>
     59 #include <sstream>
     60 #include <vector>
     61 
     62 using namespace llvm;
     63 
     64 static RegisterRegAlloc
     65 registerPBQPRepAlloc("pbqp", "PBQP register allocator",
     66                        createDefaultPBQPRegisterAllocator);
     67 
     68 static cl::opt<bool>
     69 pbqpCoalescing("pbqp-coalescing",
     70                 cl::desc("Attempt coalescing during PBQP register allocation."),
     71                 cl::init(false), cl::Hidden);
     72 
     73 #ifndef NDEBUG
     74 static cl::opt<bool>
     75 pbqpDumpGraphs("pbqp-dump-graphs",
     76                cl::desc("Dump graphs for each function/round in the compilation unit."),
     77                cl::init(false), cl::Hidden);
     78 #endif
     79 
     80 namespace {
     81 
     82 ///
     83 /// PBQP based allocators solve the register allocation problem by mapping
     84 /// register allocation problems to Partitioned Boolean Quadratic
     85 /// Programming problems.
     86 class RegAllocPBQP : public MachineFunctionPass {
     87 public:
     88 
     89   static char ID;
     90 
     91   /// Construct a PBQP register allocator.
     92   RegAllocPBQP(std::auto_ptr<PBQPBuilder> b, char *cPassID=0)
     93       : MachineFunctionPass(ID), builder(b), customPassID(cPassID) {
     94     initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
     95     initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
     96     initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
     97     initializeLiveStacksPass(*PassRegistry::getPassRegistry());
     98     initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
     99     initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
    100   }
    101 
    102   /// Return the pass name.
    103   virtual const char* getPassName() const {
    104     return "PBQP Register Allocator";
    105   }
    106 
    107   /// PBQP analysis usage.
    108   virtual void getAnalysisUsage(AnalysisUsage &au) const;
    109 
    110   /// Perform register allocation
    111   virtual bool runOnMachineFunction(MachineFunction &MF);
    112 
    113 private:
    114 
    115   typedef std::map<const LiveInterval*, unsigned> LI2NodeMap;
    116   typedef std::vector<const LiveInterval*> Node2LIMap;
    117   typedef std::vector<unsigned> AllowedSet;
    118   typedef std::vector<AllowedSet> AllowedSetMap;
    119   typedef std::pair<unsigned, unsigned> RegPair;
    120   typedef std::map<RegPair, PBQP::PBQPNum> CoalesceMap;
    121   typedef std::vector<PBQP::Graph::NodeItr> NodeVector;
    122   typedef std::set<unsigned> RegSet;
    123 
    124 
    125   std::auto_ptr<PBQPBuilder> builder;
    126 
    127   char *customPassID;
    128 
    129   MachineFunction *mf;
    130   const TargetMachine *tm;
    131   const TargetRegisterInfo *tri;
    132   const TargetInstrInfo *tii;
    133   const MachineLoopInfo *loopInfo;
    134   MachineRegisterInfo *mri;
    135 
    136   std::auto_ptr<Spiller> spiller;
    137   LiveIntervals *lis;
    138   LiveStacks *lss;
    139   VirtRegMap *vrm;
    140 
    141   RegSet vregsToAlloc, emptyIntervalVRegs;
    142 
    143   /// \brief Finds the initial set of vreg intervals to allocate.
    144   void findVRegIntervalsToAlloc();
    145 
    146   /// \brief Given a solved PBQP problem maps this solution back to a register
    147   /// assignment.
    148   bool mapPBQPToRegAlloc(const PBQPRAProblem &problem,
    149                          const PBQP::Solution &solution);
    150 
    151   /// \brief Postprocessing before final spilling. Sets basic block "live in"
    152   /// variables.
    153   void finalizeAlloc() const;
    154 
    155 };
    156 
    157 char RegAllocPBQP::ID = 0;
    158 
    159 } // End anonymous namespace.
    160 
    161 unsigned PBQPRAProblem::getVRegForNode(PBQP::Graph::ConstNodeItr node) const {
    162   Node2VReg::const_iterator vregItr = node2VReg.find(node);
    163   assert(vregItr != node2VReg.end() && "No vreg for node.");
    164   return vregItr->second;
    165 }
    166 
    167 PBQP::Graph::NodeItr PBQPRAProblem::getNodeForVReg(unsigned vreg) const {
    168   VReg2Node::const_iterator nodeItr = vreg2Node.find(vreg);
    169   assert(nodeItr != vreg2Node.end() && "No node for vreg.");
    170   return nodeItr->second;
    171 
    172 }
    173 
    174 const PBQPRAProblem::AllowedSet&
    175   PBQPRAProblem::getAllowedSet(unsigned vreg) const {
    176   AllowedSetMap::const_iterator allowedSetItr = allowedSets.find(vreg);
    177   assert(allowedSetItr != allowedSets.end() && "No pregs for vreg.");
    178   const AllowedSet &allowedSet = allowedSetItr->second;
    179   return allowedSet;
    180 }
    181 
    182 unsigned PBQPRAProblem::getPRegForOption(unsigned vreg, unsigned option) const {
    183   assert(isPRegOption(vreg, option) && "Not a preg option.");
    184 
    185   const AllowedSet& allowedSet = getAllowedSet(vreg);
    186   assert(option <= allowedSet.size() && "Option outside allowed set.");
    187   return allowedSet[option - 1];
    188 }
    189 
    190 std::auto_ptr<PBQPRAProblem> PBQPBuilder::build(MachineFunction *mf,
    191                                                 const LiveIntervals *lis,
    192                                                 const MachineLoopInfo *loopInfo,
    193                                                 const RegSet &vregs) {
    194 
    195   LiveIntervals *LIS = const_cast<LiveIntervals*>(lis);
    196   MachineRegisterInfo *mri = &mf->getRegInfo();
    197   const TargetRegisterInfo *tri = mf->getTarget().getRegisterInfo();
    198 
    199   std::auto_ptr<PBQPRAProblem> p(new PBQPRAProblem());
    200   PBQP::Graph &g = p->getGraph();
    201   RegSet pregs;
    202 
    203   // Collect the set of preg intervals, record that they're used in the MF.
    204   for (unsigned Reg = 1, e = tri->getNumRegs(); Reg != e; ++Reg) {
    205     if (mri->def_empty(Reg))
    206       continue;
    207     pregs.insert(Reg);
    208     mri->setPhysRegUsed(Reg);
    209   }
    210 
    211   BitVector reservedRegs = tri->getReservedRegs(*mf);
    212 
    213   // Iterate over vregs.
    214   for (RegSet::const_iterator vregItr = vregs.begin(), vregEnd = vregs.end();
    215        vregItr != vregEnd; ++vregItr) {
    216     unsigned vreg = *vregItr;
    217     const TargetRegisterClass *trc = mri->getRegClass(vreg);
    218     LiveInterval *vregLI = &LIS->getInterval(vreg);
    219 
    220     // Record any overlaps with regmask operands.
    221     BitVector regMaskOverlaps(tri->getNumRegs());
    222     LIS->checkRegMaskInterference(*vregLI, regMaskOverlaps);
    223 
    224     // Compute an initial allowed set for the current vreg.
    225     typedef std::vector<unsigned> VRAllowed;
    226     VRAllowed vrAllowed;
    227     ArrayRef<uint16_t> rawOrder = trc->getRawAllocationOrder(*mf);
    228     for (unsigned i = 0; i != rawOrder.size(); ++i) {
    229       unsigned preg = rawOrder[i];
    230       if (reservedRegs.test(preg))
    231         continue;
    232 
    233       // vregLI crosses a regmask operand that clobbers preg.
    234       if (!regMaskOverlaps.empty() && !regMaskOverlaps.test(preg))
    235         continue;
    236 
    237       // vregLI overlaps fixed regunit interference.
    238       bool Interference = false;
    239       for (MCRegUnitIterator Units(preg, tri); Units.isValid(); ++Units) {
    240         if (vregLI->overlaps(LIS->getRegUnit(*Units))) {
    241           Interference = true;
    242           break;
    243         }
    244       }
    245       if (Interference)
    246         continue;
    247 
    248       // preg is usable for this virtual register.
    249       vrAllowed.push_back(preg);
    250     }
    251 
    252     // Construct the node.
    253     PBQP::Graph::NodeItr node =
    254       g.addNode(PBQP::Vector(vrAllowed.size() + 1, 0));
    255 
    256     // Record the mapping and allowed set in the problem.
    257     p->recordVReg(vreg, node, vrAllowed.begin(), vrAllowed.end());
    258 
    259     PBQP::PBQPNum spillCost = (vregLI->weight != 0.0) ?
    260         vregLI->weight : std::numeric_limits<PBQP::PBQPNum>::min();
    261 
    262     addSpillCosts(g.getNodeCosts(node), spillCost);
    263   }
    264 
    265   for (RegSet::const_iterator vr1Itr = vregs.begin(), vrEnd = vregs.end();
    266          vr1Itr != vrEnd; ++vr1Itr) {
    267     unsigned vr1 = *vr1Itr;
    268     const LiveInterval &l1 = lis->getInterval(vr1);
    269     const PBQPRAProblem::AllowedSet &vr1Allowed = p->getAllowedSet(vr1);
    270 
    271     for (RegSet::const_iterator vr2Itr = llvm::next(vr1Itr);
    272          vr2Itr != vrEnd; ++vr2Itr) {
    273       unsigned vr2 = *vr2Itr;
    274       const LiveInterval &l2 = lis->getInterval(vr2);
    275       const PBQPRAProblem::AllowedSet &vr2Allowed = p->getAllowedSet(vr2);
    276 
    277       assert(!l2.empty() && "Empty interval in vreg set?");
    278       if (l1.overlaps(l2)) {
    279         PBQP::Graph::EdgeItr edge =
    280           g.addEdge(p->getNodeForVReg(vr1), p->getNodeForVReg(vr2),
    281                     PBQP::Matrix(vr1Allowed.size()+1, vr2Allowed.size()+1, 0));
    282 
    283         addInterferenceCosts(g.getEdgeCosts(edge), vr1Allowed, vr2Allowed, tri);
    284       }
    285     }
    286   }
    287 
    288   return p;
    289 }
    290 
    291 void PBQPBuilder::addSpillCosts(PBQP::Vector &costVec,
    292                                 PBQP::PBQPNum spillCost) {
    293   costVec[0] = spillCost;
    294 }
    295 
    296 void PBQPBuilder::addInterferenceCosts(
    297                                     PBQP::Matrix &costMat,
    298                                     const PBQPRAProblem::AllowedSet &vr1Allowed,
    299                                     const PBQPRAProblem::AllowedSet &vr2Allowed,
    300                                     const TargetRegisterInfo *tri) {
    301   assert(costMat.getRows() == vr1Allowed.size() + 1 && "Matrix height mismatch.");
    302   assert(costMat.getCols() == vr2Allowed.size() + 1 && "Matrix width mismatch.");
    303 
    304   for (unsigned i = 0; i != vr1Allowed.size(); ++i) {
    305     unsigned preg1 = vr1Allowed[i];
    306 
    307     for (unsigned j = 0; j != vr2Allowed.size(); ++j) {
    308       unsigned preg2 = vr2Allowed[j];
    309 
    310       if (tri->regsOverlap(preg1, preg2)) {
    311         costMat[i + 1][j + 1] = std::numeric_limits<PBQP::PBQPNum>::infinity();
    312       }
    313     }
    314   }
    315 }
    316 
    317 std::auto_ptr<PBQPRAProblem> PBQPBuilderWithCoalescing::build(
    318                                                 MachineFunction *mf,
    319                                                 const LiveIntervals *lis,
    320                                                 const MachineLoopInfo *loopInfo,
    321                                                 const RegSet &vregs) {
    322 
    323   std::auto_ptr<PBQPRAProblem> p = PBQPBuilder::build(mf, lis, loopInfo, vregs);
    324   PBQP::Graph &g = p->getGraph();
    325 
    326   const TargetMachine &tm = mf->getTarget();
    327   CoalescerPair cp(*tm.getRegisterInfo());
    328 
    329   // Scan the machine function and add a coalescing cost whenever CoalescerPair
    330   // gives the Ok.
    331   for (MachineFunction::const_iterator mbbItr = mf->begin(),
    332                                        mbbEnd = mf->end();
    333        mbbItr != mbbEnd; ++mbbItr) {
    334     const MachineBasicBlock *mbb = &*mbbItr;
    335 
    336     for (MachineBasicBlock::const_iterator miItr = mbb->begin(),
    337                                            miEnd = mbb->end();
    338          miItr != miEnd; ++miItr) {
    339       const MachineInstr *mi = &*miItr;
    340 
    341       if (!cp.setRegisters(mi)) {
    342         continue; // Not coalescable.
    343       }
    344 
    345       if (cp.getSrcReg() == cp.getDstReg()) {
    346         continue; // Already coalesced.
    347       }
    348 
    349       unsigned dst = cp.getDstReg(),
    350                src = cp.getSrcReg();
    351 
    352       const float copyFactor = 0.5; // Cost of copy relative to load. Current
    353       // value plucked randomly out of the air.
    354 
    355       PBQP::PBQPNum cBenefit =
    356         copyFactor * LiveIntervals::getSpillWeight(false, true,
    357                                                    loopInfo->getLoopDepth(mbb));
    358 
    359       if (cp.isPhys()) {
    360         if (!lis->isAllocatable(dst)) {
    361           continue;
    362         }
    363 
    364         const PBQPRAProblem::AllowedSet &allowed = p->getAllowedSet(src);
    365         unsigned pregOpt = 0;
    366         while (pregOpt < allowed.size() && allowed[pregOpt] != dst) {
    367           ++pregOpt;
    368         }
    369         if (pregOpt < allowed.size()) {
    370           ++pregOpt; // +1 to account for spill option.
    371           PBQP::Graph::NodeItr node = p->getNodeForVReg(src);
    372           addPhysRegCoalesce(g.getNodeCosts(node), pregOpt, cBenefit);
    373         }
    374       } else {
    375         const PBQPRAProblem::AllowedSet *allowed1 = &p->getAllowedSet(dst);
    376         const PBQPRAProblem::AllowedSet *allowed2 = &p->getAllowedSet(src);
    377         PBQP::Graph::NodeItr node1 = p->getNodeForVReg(dst);
    378         PBQP::Graph::NodeItr node2 = p->getNodeForVReg(src);
    379         PBQP::Graph::EdgeItr edge = g.findEdge(node1, node2);
    380         if (edge == g.edgesEnd()) {
    381           edge = g.addEdge(node1, node2, PBQP::Matrix(allowed1->size() + 1,
    382                                                       allowed2->size() + 1,
    383                                                       0));
    384         } else {
    385           if (g.getEdgeNode1(edge) == node2) {
    386             std::swap(node1, node2);
    387             std::swap(allowed1, allowed2);
    388           }
    389         }
    390 
    391         addVirtRegCoalesce(g.getEdgeCosts(edge), *allowed1, *allowed2,
    392                            cBenefit);
    393       }
    394     }
    395   }
    396 
    397   return p;
    398 }
    399 
    400 void PBQPBuilderWithCoalescing::addPhysRegCoalesce(PBQP::Vector &costVec,
    401                                                    unsigned pregOption,
    402                                                    PBQP::PBQPNum benefit) {
    403   costVec[pregOption] += -benefit;
    404 }
    405 
    406 void PBQPBuilderWithCoalescing::addVirtRegCoalesce(
    407                                     PBQP::Matrix &costMat,
    408                                     const PBQPRAProblem::AllowedSet &vr1Allowed,
    409                                     const PBQPRAProblem::AllowedSet &vr2Allowed,
    410                                     PBQP::PBQPNum benefit) {
    411 
    412   assert(costMat.getRows() == vr1Allowed.size() + 1 && "Size mismatch.");
    413   assert(costMat.getCols() == vr2Allowed.size() + 1 && "Size mismatch.");
    414 
    415   for (unsigned i = 0; i != vr1Allowed.size(); ++i) {
    416     unsigned preg1 = vr1Allowed[i];
    417     for (unsigned j = 0; j != vr2Allowed.size(); ++j) {
    418       unsigned preg2 = vr2Allowed[j];
    419 
    420       if (preg1 == preg2) {
    421         costMat[i + 1][j + 1] += -benefit;
    422       }
    423     }
    424   }
    425 }
    426 
    427 
    428 void RegAllocPBQP::getAnalysisUsage(AnalysisUsage &au) const {
    429   au.setPreservesCFG();
    430   au.addRequired<AliasAnalysis>();
    431   au.addPreserved<AliasAnalysis>();
    432   au.addRequired<SlotIndexes>();
    433   au.addPreserved<SlotIndexes>();
    434   au.addRequired<LiveIntervals>();
    435   //au.addRequiredID(SplitCriticalEdgesID);
    436   if (customPassID)
    437     au.addRequiredID(*customPassID);
    438   au.addRequired<CalculateSpillWeights>();
    439   au.addRequired<LiveStacks>();
    440   au.addPreserved<LiveStacks>();
    441   au.addRequired<MachineDominatorTree>();
    442   au.addPreserved<MachineDominatorTree>();
    443   au.addRequired<MachineLoopInfo>();
    444   au.addPreserved<MachineLoopInfo>();
    445   au.addRequired<VirtRegMap>();
    446   MachineFunctionPass::getAnalysisUsage(au);
    447 }
    448 
    449 void RegAllocPBQP::findVRegIntervalsToAlloc() {
    450 
    451   // Iterate over all live ranges.
    452   for (unsigned i = 0, e = mri->getNumVirtRegs(); i != e; ++i) {
    453     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
    454     if (mri->reg_nodbg_empty(Reg))
    455       continue;
    456     LiveInterval *li = &lis->getInterval(Reg);
    457 
    458     // If this live interval is non-empty we will use pbqp to allocate it.
    459     // Empty intervals we allocate in a simple post-processing stage in
    460     // finalizeAlloc.
    461     if (!li->empty()) {
    462       vregsToAlloc.insert(li->reg);
    463     } else {
    464       emptyIntervalVRegs.insert(li->reg);
    465     }
    466   }
    467 }
    468 
    469 bool RegAllocPBQP::mapPBQPToRegAlloc(const PBQPRAProblem &problem,
    470                                      const PBQP::Solution &solution) {
    471   // Set to true if we have any spills
    472   bool anotherRoundNeeded = false;
    473 
    474   // Clear the existing allocation.
    475   vrm->clearAllVirt();
    476 
    477   const PBQP::Graph &g = problem.getGraph();
    478   // Iterate over the nodes mapping the PBQP solution to a register
    479   // assignment.
    480   for (PBQP::Graph::ConstNodeItr node = g.nodesBegin(),
    481                                  nodeEnd = g.nodesEnd();
    482        node != nodeEnd; ++node) {
    483     unsigned vreg = problem.getVRegForNode(node);
    484     unsigned alloc = solution.getSelection(node);
    485 
    486     if (problem.isPRegOption(vreg, alloc)) {
    487       unsigned preg = problem.getPRegForOption(vreg, alloc);
    488       DEBUG(dbgs() << "VREG " << PrintReg(vreg, tri) << " -> "
    489             << tri->getName(preg) << "\n");
    490       assert(preg != 0 && "Invalid preg selected.");
    491       vrm->assignVirt2Phys(vreg, preg);
    492     } else if (problem.isSpillOption(vreg, alloc)) {
    493       vregsToAlloc.erase(vreg);
    494       SmallVector<LiveInterval*, 8> newSpills;
    495       LiveRangeEdit LRE(&lis->getInterval(vreg), newSpills, *mf, *lis, vrm);
    496       spiller->spill(LRE);
    497 
    498       DEBUG(dbgs() << "VREG " << PrintReg(vreg, tri) << " -> SPILLED (Cost: "
    499                    << LRE.getParent().weight << ", New vregs: ");
    500 
    501       // Copy any newly inserted live intervals into the list of regs to
    502       // allocate.
    503       for (LiveRangeEdit::iterator itr = LRE.begin(), end = LRE.end();
    504            itr != end; ++itr) {
    505         assert(!(*itr)->empty() && "Empty spill range.");
    506         DEBUG(dbgs() << PrintReg((*itr)->reg, tri) << " ");
    507         vregsToAlloc.insert((*itr)->reg);
    508       }
    509 
    510       DEBUG(dbgs() << ")\n");
    511 
    512       // We need another round if spill intervals were added.
    513       anotherRoundNeeded |= !LRE.empty();
    514     } else {
    515       llvm_unreachable("Unknown allocation option.");
    516     }
    517   }
    518 
    519   return !anotherRoundNeeded;
    520 }
    521 
    522 
    523 void RegAllocPBQP::finalizeAlloc() const {
    524   // First allocate registers for the empty intervals.
    525   for (RegSet::const_iterator
    526          itr = emptyIntervalVRegs.begin(), end = emptyIntervalVRegs.end();
    527          itr != end; ++itr) {
    528     LiveInterval *li = &lis->getInterval(*itr);
    529 
    530     unsigned physReg = vrm->getRegAllocPref(li->reg);
    531 
    532     if (physReg == 0) {
    533       const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
    534       physReg = liRC->getRawAllocationOrder(*mf).front();
    535     }
    536 
    537     vrm->assignVirt2Phys(li->reg, physReg);
    538   }
    539 }
    540 
    541 bool RegAllocPBQP::runOnMachineFunction(MachineFunction &MF) {
    542 
    543   mf = &MF;
    544   tm = &mf->getTarget();
    545   tri = tm->getRegisterInfo();
    546   tii = tm->getInstrInfo();
    547   mri = &mf->getRegInfo();
    548 
    549   lis = &getAnalysis<LiveIntervals>();
    550   lss = &getAnalysis<LiveStacks>();
    551   loopInfo = &getAnalysis<MachineLoopInfo>();
    552 
    553   vrm = &getAnalysis<VirtRegMap>();
    554   spiller.reset(createInlineSpiller(*this, MF, *vrm));
    555 
    556   mri->freezeReservedRegs(MF);
    557 
    558   DEBUG(dbgs() << "PBQP Register Allocating for " << mf->getName() << "\n");
    559 
    560   // Allocator main loop:
    561   //
    562   // * Map current regalloc problem to a PBQP problem
    563   // * Solve the PBQP problem
    564   // * Map the solution back to a register allocation
    565   // * Spill if necessary
    566   //
    567   // This process is continued till no more spills are generated.
    568 
    569   // Find the vreg intervals in need of allocation.
    570   findVRegIntervalsToAlloc();
    571 
    572 #ifndef NDEBUG
    573   const Function* func = mf->getFunction();
    574   std::string fqn =
    575     func->getParent()->getModuleIdentifier() + "." +
    576     func->getName().str();
    577 #endif
    578 
    579   // If there are non-empty intervals allocate them using pbqp.
    580   if (!vregsToAlloc.empty()) {
    581 
    582     bool pbqpAllocComplete = false;
    583     unsigned round = 0;
    584 
    585     while (!pbqpAllocComplete) {
    586       DEBUG(dbgs() << "  PBQP Regalloc round " << round << ":\n");
    587 
    588       std::auto_ptr<PBQPRAProblem> problem =
    589         builder->build(mf, lis, loopInfo, vregsToAlloc);
    590 
    591 #ifndef NDEBUG
    592       if (pbqpDumpGraphs) {
    593         std::ostringstream rs;
    594         rs << round;
    595         std::string graphFileName(fqn + "." + rs.str() + ".pbqpgraph");
    596         std::string tmp;
    597         raw_fd_ostream os(graphFileName.c_str(), tmp);
    598         DEBUG(dbgs() << "Dumping graph for round " << round << " to \""
    599               << graphFileName << "\"\n");
    600         problem->getGraph().dump(os);
    601       }
    602 #endif
    603 
    604       PBQP::Solution solution =
    605         PBQP::HeuristicSolver<PBQP::Heuristics::Briggs>::solve(
    606           problem->getGraph());
    607 
    608       pbqpAllocComplete = mapPBQPToRegAlloc(*problem, solution);
    609 
    610       ++round;
    611     }
    612   }
    613 
    614   // Finalise allocation, allocate empty ranges.
    615   finalizeAlloc();
    616   vregsToAlloc.clear();
    617   emptyIntervalVRegs.clear();
    618 
    619   DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *vrm << "\n");
    620 
    621   return true;
    622 }
    623 
    624 FunctionPass* llvm::createPBQPRegisterAllocator(
    625                                            std::auto_ptr<PBQPBuilder> builder,
    626                                            char *customPassID) {
    627   return new RegAllocPBQP(builder, customPassID);
    628 }
    629 
    630 FunctionPass* llvm::createDefaultPBQPRegisterAllocator() {
    631   if (pbqpCoalescing) {
    632     return createPBQPRegisterAllocator(
    633              std::auto_ptr<PBQPBuilder>(new PBQPBuilderWithCoalescing()));
    634   } // else
    635   return createPBQPRegisterAllocator(
    636            std::auto_ptr<PBQPBuilder>(new PBQPBuilder()));
    637 }
    638 
    639 #undef DEBUG_TYPE
    640