Home | History | Annotate | Download | only in CodeGen
      1 //===-- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the VirtRegMap class.
     11 //
     12 // It also contains implementations of the Spiller interface, which, given a
     13 // virtual register map and a machine function, eliminates all virtual
     14 // references by replacing them with physical register references - adding spill
     15 // code as necessary.
     16 //
     17 //===----------------------------------------------------------------------===//
     18 
     19 #define DEBUG_TYPE "regalloc"
     20 #include "VirtRegMap.h"
     21 #include "LiveDebugVariables.h"
     22 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     23 #include "llvm/CodeGen/MachineFrameInfo.h"
     24 #include "llvm/CodeGen/MachineFunction.h"
     25 #include "llvm/CodeGen/MachineInstrBuilder.h"
     26 #include "llvm/CodeGen/MachineRegisterInfo.h"
     27 #include "llvm/CodeGen/Passes.h"
     28 #include "llvm/Target/TargetMachine.h"
     29 #include "llvm/Target/TargetInstrInfo.h"
     30 #include "llvm/Target/TargetRegisterInfo.h"
     31 #include "llvm/Support/CommandLine.h"
     32 #include "llvm/Support/Compiler.h"
     33 #include "llvm/Support/Debug.h"
     34 #include "llvm/Support/raw_ostream.h"
     35 #include "llvm/ADT/Statistic.h"
     36 #include "llvm/ADT/STLExtras.h"
     37 #include <algorithm>
     38 using namespace llvm;
     39 
     40 STATISTIC(NumSpillSlots, "Number of spill slots allocated");
     41 STATISTIC(NumIdCopies,   "Number of identity moves eliminated after rewriting");
     42 
     43 //===----------------------------------------------------------------------===//
     44 //  VirtRegMap implementation
     45 //===----------------------------------------------------------------------===//
     46 
     47 char VirtRegMap::ID = 0;
     48 
     49 INITIALIZE_PASS(VirtRegMap, "virtregmap", "Virtual Register Map", false, false)
     50 
     51 bool VirtRegMap::runOnMachineFunction(MachineFunction &mf) {
     52   MRI = &mf.getRegInfo();
     53   TII = mf.getTarget().getInstrInfo();
     54   TRI = mf.getTarget().getRegisterInfo();
     55   MF = &mf;
     56 
     57   Virt2PhysMap.clear();
     58   Virt2StackSlotMap.clear();
     59   Virt2SplitMap.clear();
     60 
     61   grow();
     62   return false;
     63 }
     64 
     65 void VirtRegMap::grow() {
     66   unsigned NumRegs = MF->getRegInfo().getNumVirtRegs();
     67   Virt2PhysMap.resize(NumRegs);
     68   Virt2StackSlotMap.resize(NumRegs);
     69   Virt2SplitMap.resize(NumRegs);
     70 }
     71 
     72 unsigned VirtRegMap::createSpillSlot(const TargetRegisterClass *RC) {
     73   int SS = MF->getFrameInfo()->CreateSpillStackObject(RC->getSize(),
     74                                                       RC->getAlignment());
     75   ++NumSpillSlots;
     76   return SS;
     77 }
     78 
     79 unsigned VirtRegMap::getRegAllocPref(unsigned virtReg) {
     80   std::pair<unsigned, unsigned> Hint = MRI->getRegAllocationHint(virtReg);
     81   unsigned physReg = Hint.second;
     82   if (TargetRegisterInfo::isVirtualRegister(physReg) && hasPhys(physReg))
     83     physReg = getPhys(physReg);
     84   if (Hint.first == 0)
     85     return (TargetRegisterInfo::isPhysicalRegister(physReg))
     86       ? physReg : 0;
     87   return TRI->ResolveRegAllocHint(Hint.first, physReg, *MF);
     88 }
     89 
     90 int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) {
     91   assert(TargetRegisterInfo::isVirtualRegister(virtReg));
     92   assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
     93          "attempt to assign stack slot to already spilled register");
     94   const TargetRegisterClass* RC = MF->getRegInfo().getRegClass(virtReg);
     95   return Virt2StackSlotMap[virtReg] = createSpillSlot(RC);
     96 }
     97 
     98 void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int SS) {
     99   assert(TargetRegisterInfo::isVirtualRegister(virtReg));
    100   assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
    101          "attempt to assign stack slot to already spilled register");
    102   assert((SS >= 0 ||
    103           (SS >= MF->getFrameInfo()->getObjectIndexBegin())) &&
    104          "illegal fixed frame index");
    105   Virt2StackSlotMap[virtReg] = SS;
    106 }
    107 
    108 void VirtRegMap::print(raw_ostream &OS, const Module*) const {
    109   OS << "********** REGISTER MAP **********\n";
    110   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
    111     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
    112     if (Virt2PhysMap[Reg] != (unsigned)VirtRegMap::NO_PHYS_REG) {
    113       OS << '[' << PrintReg(Reg, TRI) << " -> "
    114          << PrintReg(Virt2PhysMap[Reg], TRI) << "] "
    115          << MRI->getRegClass(Reg)->getName() << "\n";
    116     }
    117   }
    118 
    119   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
    120     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
    121     if (Virt2StackSlotMap[Reg] != VirtRegMap::NO_STACK_SLOT) {
    122       OS << '[' << PrintReg(Reg, TRI) << " -> fi#" << Virt2StackSlotMap[Reg]
    123          << "] " << MRI->getRegClass(Reg)->getName() << "\n";
    124     }
    125   }
    126   OS << '\n';
    127 }
    128 
    129 #ifndef NDEBUG
    130 void VirtRegMap::dump() const {
    131   print(dbgs());
    132 }
    133 #endif
    134 
    135 //===----------------------------------------------------------------------===//
    136 //                              VirtRegRewriter
    137 //===----------------------------------------------------------------------===//
    138 //
    139 // The VirtRegRewriter is the last of the register allocator passes.
    140 // It rewrites virtual registers to physical registers as specified in the
    141 // VirtRegMap analysis. It also updates live-in information on basic blocks
    142 // according to LiveIntervals.
    143 //
    144 namespace {
    145 class VirtRegRewriter : public MachineFunctionPass {
    146   MachineFunction *MF;
    147   const TargetMachine *TM;
    148   const TargetRegisterInfo *TRI;
    149   const TargetInstrInfo *TII;
    150   MachineRegisterInfo *MRI;
    151   SlotIndexes *Indexes;
    152   LiveIntervals *LIS;
    153   VirtRegMap *VRM;
    154 
    155   void rewrite();
    156   void addMBBLiveIns();
    157 public:
    158   static char ID;
    159   VirtRegRewriter() : MachineFunctionPass(ID) {}
    160 
    161   virtual void getAnalysisUsage(AnalysisUsage &AU) const;
    162 
    163   virtual bool runOnMachineFunction(MachineFunction&);
    164 };
    165 } // end anonymous namespace
    166 
    167 char &llvm::VirtRegRewriterID = VirtRegRewriter::ID;
    168 
    169 INITIALIZE_PASS_BEGIN(VirtRegRewriter, "virtregrewriter",
    170                       "Virtual Register Rewriter", false, false)
    171 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
    172 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
    173 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
    174 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
    175 INITIALIZE_PASS_END(VirtRegRewriter, "virtregrewriter",
    176                     "Virtual Register Rewriter", false, false)
    177 
    178 char VirtRegRewriter::ID = 0;
    179 
    180 void VirtRegRewriter::getAnalysisUsage(AnalysisUsage &AU) const {
    181   AU.setPreservesCFG();
    182   AU.addRequired<LiveIntervals>();
    183   AU.addRequired<SlotIndexes>();
    184   AU.addPreserved<SlotIndexes>();
    185   AU.addRequired<LiveDebugVariables>();
    186   AU.addRequired<VirtRegMap>();
    187   MachineFunctionPass::getAnalysisUsage(AU);
    188 }
    189 
    190 bool VirtRegRewriter::runOnMachineFunction(MachineFunction &fn) {
    191   MF = &fn;
    192   TM = &MF->getTarget();
    193   TRI = TM->getRegisterInfo();
    194   TII = TM->getInstrInfo();
    195   MRI = &MF->getRegInfo();
    196   Indexes = &getAnalysis<SlotIndexes>();
    197   LIS = &getAnalysis<LiveIntervals>();
    198   VRM = &getAnalysis<VirtRegMap>();
    199   DEBUG(dbgs() << "********** REWRITE VIRTUAL REGISTERS **********\n"
    200                << "********** Function: "
    201                << MF->getName() << '\n');
    202   DEBUG(VRM->dump());
    203 
    204   // Add kill flags while we still have virtual registers.
    205   LIS->addKillFlags(VRM);
    206 
    207   // Live-in lists on basic blocks are required for physregs.
    208   addMBBLiveIns();
    209 
    210   // Rewrite virtual registers.
    211   rewrite();
    212 
    213   // Write out new DBG_VALUE instructions.
    214   getAnalysis<LiveDebugVariables>().emitDebugValues(VRM);
    215 
    216   // All machine operands and other references to virtual registers have been
    217   // replaced. Remove the virtual registers and release all the transient data.
    218   VRM->clearAllVirt();
    219   MRI->clearVirtRegs();
    220   return true;
    221 }
    222 
    223 // Compute MBB live-in lists from virtual register live ranges and their
    224 // assignments.
    225 void VirtRegRewriter::addMBBLiveIns() {
    226   SmallVector<MachineBasicBlock*, 16> LiveIn;
    227   for (unsigned Idx = 0, IdxE = MRI->getNumVirtRegs(); Idx != IdxE; ++Idx) {
    228     unsigned VirtReg = TargetRegisterInfo::index2VirtReg(Idx);
    229     if (MRI->reg_nodbg_empty(VirtReg))
    230       continue;
    231     LiveInterval &LI = LIS->getInterval(VirtReg);
    232     if (LI.empty() || LIS->intervalIsInOneMBB(LI))
    233       continue;
    234     // This is a virtual register that is live across basic blocks. Its
    235     // assigned PhysReg must be marked as live-in to those blocks.
    236     unsigned PhysReg = VRM->getPhys(VirtReg);
    237     assert(PhysReg != VirtRegMap::NO_PHYS_REG && "Unmapped virtual register.");
    238 
    239     // Scan the segments of LI.
    240     for (LiveInterval::const_iterator I = LI.begin(), E = LI.end(); I != E;
    241          ++I) {
    242       if (!Indexes->findLiveInMBBs(I->start, I->end, LiveIn))
    243         continue;
    244       for (unsigned i = 0, e = LiveIn.size(); i != e; ++i)
    245         if (!LiveIn[i]->isLiveIn(PhysReg))
    246           LiveIn[i]->addLiveIn(PhysReg);
    247       LiveIn.clear();
    248     }
    249   }
    250 }
    251 
    252 void VirtRegRewriter::rewrite() {
    253   SmallVector<unsigned, 8> SuperDeads;
    254   SmallVector<unsigned, 8> SuperDefs;
    255   SmallVector<unsigned, 8> SuperKills;
    256 #ifndef NDEBUG
    257   BitVector Reserved = TRI->getReservedRegs(*MF);
    258 #endif
    259 
    260   for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end();
    261        MBBI != MBBE; ++MBBI) {
    262     DEBUG(MBBI->print(dbgs(), Indexes));
    263     for (MachineBasicBlock::instr_iterator
    264            MII = MBBI->instr_begin(), MIE = MBBI->instr_end(); MII != MIE;) {
    265       MachineInstr *MI = MII;
    266       ++MII;
    267 
    268       for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
    269            MOE = MI->operands_end(); MOI != MOE; ++MOI) {
    270         MachineOperand &MO = *MOI;
    271 
    272         // Make sure MRI knows about registers clobbered by regmasks.
    273         if (MO.isRegMask())
    274           MRI->addPhysRegsUsedFromRegMask(MO.getRegMask());
    275 
    276         if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
    277           continue;
    278         unsigned VirtReg = MO.getReg();
    279         unsigned PhysReg = VRM->getPhys(VirtReg);
    280         assert(PhysReg != VirtRegMap::NO_PHYS_REG &&
    281                "Instruction uses unmapped VirtReg");
    282         assert(!Reserved.test(PhysReg) && "Reserved register assignment");
    283 
    284         // Preserve semantics of sub-register operands.
    285         if (MO.getSubReg()) {
    286           // A virtual register kill refers to the whole register, so we may
    287           // have to add <imp-use,kill> operands for the super-register.  A
    288           // partial redef always kills and redefines the super-register.
    289           if (MO.readsReg() && (MO.isDef() || MO.isKill()))
    290             SuperKills.push_back(PhysReg);
    291 
    292           if (MO.isDef()) {
    293             // The <def,undef> flag only makes sense for sub-register defs, and
    294             // we are substituting a full physreg.  An <imp-use,kill> operand
    295             // from the SuperKills list will represent the partial read of the
    296             // super-register.
    297             MO.setIsUndef(false);
    298 
    299             // Also add implicit defs for the super-register.
    300             if (MO.isDead())
    301               SuperDeads.push_back(PhysReg);
    302             else
    303               SuperDefs.push_back(PhysReg);
    304           }
    305 
    306           // PhysReg operands cannot have subregister indexes.
    307           PhysReg = TRI->getSubReg(PhysReg, MO.getSubReg());
    308           assert(PhysReg && "Invalid SubReg for physical register");
    309           MO.setSubReg(0);
    310         }
    311         // Rewrite. Note we could have used MachineOperand::substPhysReg(), but
    312         // we need the inlining here.
    313         MO.setReg(PhysReg);
    314       }
    315 
    316       // Add any missing super-register kills after rewriting the whole
    317       // instruction.
    318       while (!SuperKills.empty())
    319         MI->addRegisterKilled(SuperKills.pop_back_val(), TRI, true);
    320 
    321       while (!SuperDeads.empty())
    322         MI->addRegisterDead(SuperDeads.pop_back_val(), TRI, true);
    323 
    324       while (!SuperDefs.empty())
    325         MI->addRegisterDefined(SuperDefs.pop_back_val(), TRI);
    326 
    327       DEBUG(dbgs() << "> " << *MI);
    328 
    329       // Finally, remove any identity copies.
    330       if (MI->isIdentityCopy()) {
    331         ++NumIdCopies;
    332         if (MI->getNumOperands() == 2) {
    333           DEBUG(dbgs() << "Deleting identity copy.\n");
    334           if (Indexes)
    335             Indexes->removeMachineInstrFromMaps(MI);
    336           // It's safe to erase MI because MII has already been incremented.
    337           MI->eraseFromParent();
    338         } else {
    339           // Transform identity copy to a KILL to deal with subregisters.
    340           MI->setDesc(TII->get(TargetOpcode::KILL));
    341           DEBUG(dbgs() << "Identity copy: " << *MI);
    342         }
    343       }
    344     }
    345   }
    346 
    347   // Tell MRI about physical registers in use.
    348   for (unsigned Reg = 1, RegE = TRI->getNumRegs(); Reg != RegE; ++Reg)
    349     if (!MRI->reg_nodbg_empty(Reg))
    350       MRI->setPhysRegUsed(Reg);
    351 }
    352