Home | History | Annotate | Download | only in IPO
      1 //===-- ArgumentPromotion.cpp - Promote by-reference arguments ------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass promotes "by reference" arguments to be "by value" arguments.  In
     11 // practice, this means looking for internal functions that have pointer
     12 // arguments.  If it can prove, through the use of alias analysis, that an
     13 // argument is *only* loaded, then it can pass the value into the function
     14 // instead of the address of the value.  This can cause recursive simplification
     15 // of code and lead to the elimination of allocas (especially in C++ template
     16 // code like the STL).
     17 //
     18 // This pass also handles aggregate arguments that are passed into a function,
     19 // scalarizing them if the elements of the aggregate are only loaded.  Note that
     20 // by default it refuses to scalarize aggregates which would require passing in
     21 // more than three operands to the function, because passing thousands of
     22 // operands for a large array or structure is unprofitable! This limit can be
     23 // configured or disabled, however.
     24 //
     25 // Note that this transformation could also be done for arguments that are only
     26 // stored to (returning the value instead), but does not currently.  This case
     27 // would be best handled when and if LLVM begins supporting multiple return
     28 // values from functions.
     29 //
     30 //===----------------------------------------------------------------------===//
     31 
     32 #define DEBUG_TYPE "argpromotion"
     33 #include "llvm/Transforms/IPO.h"
     34 #include "llvm/Constants.h"
     35 #include "llvm/DerivedTypes.h"
     36 #include "llvm/Module.h"
     37 #include "llvm/CallGraphSCCPass.h"
     38 #include "llvm/Instructions.h"
     39 #include "llvm/LLVMContext.h"
     40 #include "llvm/Analysis/AliasAnalysis.h"
     41 #include "llvm/Analysis/CallGraph.h"
     42 #include "llvm/Support/CallSite.h"
     43 #include "llvm/Support/CFG.h"
     44 #include "llvm/Support/Debug.h"
     45 #include "llvm/Support/raw_ostream.h"
     46 #include "llvm/ADT/DepthFirstIterator.h"
     47 #include "llvm/ADT/Statistic.h"
     48 #include "llvm/ADT/StringExtras.h"
     49 #include <set>
     50 using namespace llvm;
     51 
     52 STATISTIC(NumArgumentsPromoted , "Number of pointer arguments promoted");
     53 STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
     54 STATISTIC(NumByValArgsPromoted , "Number of byval arguments promoted");
     55 STATISTIC(NumArgumentsDead     , "Number of dead pointer args eliminated");
     56 
     57 namespace {
     58   /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
     59   ///
     60   struct ArgPromotion : public CallGraphSCCPass {
     61     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
     62       AU.addRequired<AliasAnalysis>();
     63       CallGraphSCCPass::getAnalysisUsage(AU);
     64     }
     65 
     66     virtual bool runOnSCC(CallGraphSCC &SCC);
     67     static char ID; // Pass identification, replacement for typeid
     68     explicit ArgPromotion(unsigned maxElements = 3)
     69         : CallGraphSCCPass(ID), maxElements(maxElements) {
     70       initializeArgPromotionPass(*PassRegistry::getPassRegistry());
     71     }
     72 
     73     /// A vector used to hold the indices of a single GEP instruction
     74     typedef std::vector<uint64_t> IndicesVector;
     75 
     76   private:
     77     CallGraphNode *PromoteArguments(CallGraphNode *CGN);
     78     bool isSafeToPromoteArgument(Argument *Arg, bool isByVal) const;
     79     CallGraphNode *DoPromotion(Function *F,
     80                                SmallPtrSet<Argument*, 8> &ArgsToPromote,
     81                                SmallPtrSet<Argument*, 8> &ByValArgsToTransform);
     82     /// The maximum number of elements to expand, or 0 for unlimited.
     83     unsigned maxElements;
     84   };
     85 }
     86 
     87 char ArgPromotion::ID = 0;
     88 INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion",
     89                 "Promote 'by reference' arguments to scalars", false, false)
     90 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
     91 INITIALIZE_AG_DEPENDENCY(CallGraph)
     92 INITIALIZE_PASS_END(ArgPromotion, "argpromotion",
     93                 "Promote 'by reference' arguments to scalars", false, false)
     94 
     95 Pass *llvm::createArgumentPromotionPass(unsigned maxElements) {
     96   return new ArgPromotion(maxElements);
     97 }
     98 
     99 bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) {
    100   bool Changed = false, LocalChange;
    101 
    102   do {  // Iterate until we stop promoting from this SCC.
    103     LocalChange = false;
    104     // Attempt to promote arguments from all functions in this SCC.
    105     for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
    106       if (CallGraphNode *CGN = PromoteArguments(*I)) {
    107         LocalChange = true;
    108         SCC.ReplaceNode(*I, CGN);
    109       }
    110     }
    111     Changed |= LocalChange;               // Remember that we changed something.
    112   } while (LocalChange);
    113 
    114   return Changed;
    115 }
    116 
    117 /// PromoteArguments - This method checks the specified function to see if there
    118 /// are any promotable arguments and if it is safe to promote the function (for
    119 /// example, all callers are direct).  If safe to promote some arguments, it
    120 /// calls the DoPromotion method.
    121 ///
    122 CallGraphNode *ArgPromotion::PromoteArguments(CallGraphNode *CGN) {
    123   Function *F = CGN->getFunction();
    124 
    125   // Make sure that it is local to this module.
    126   if (!F || !F->hasLocalLinkage()) return 0;
    127 
    128   // First check: see if there are any pointer arguments!  If not, quick exit.
    129   SmallVector<std::pair<Argument*, unsigned>, 16> PointerArgs;
    130   unsigned ArgNo = 0;
    131   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
    132        I != E; ++I, ++ArgNo)
    133     if (I->getType()->isPointerTy())
    134       PointerArgs.push_back(std::pair<Argument*, unsigned>(I, ArgNo));
    135   if (PointerArgs.empty()) return 0;
    136 
    137   // Second check: make sure that all callers are direct callers.  We can't
    138   // transform functions that have indirect callers.  Also see if the function
    139   // is self-recursive.
    140   bool isSelfRecursive = false;
    141   for (Value::use_iterator UI = F->use_begin(), E = F->use_end();
    142        UI != E; ++UI) {
    143     CallSite CS(*UI);
    144     // Must be a direct call.
    145     if (CS.getInstruction() == 0 || !CS.isCallee(UI)) return 0;
    146 
    147     if (CS.getInstruction()->getParent()->getParent() == F)
    148       isSelfRecursive = true;
    149   }
    150 
    151   // Check to see which arguments are promotable.  If an argument is promotable,
    152   // add it to ArgsToPromote.
    153   SmallPtrSet<Argument*, 8> ArgsToPromote;
    154   SmallPtrSet<Argument*, 8> ByValArgsToTransform;
    155   for (unsigned i = 0; i != PointerArgs.size(); ++i) {
    156     bool isByVal = F->paramHasAttr(PointerArgs[i].second+1, Attribute::ByVal);
    157     Argument *PtrArg = PointerArgs[i].first;
    158     Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
    159 
    160     // If this is a byval argument, and if the aggregate type is small, just
    161     // pass the elements, which is always safe.
    162     if (isByVal) {
    163       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
    164         if (maxElements > 0 && STy->getNumElements() > maxElements) {
    165           DEBUG(dbgs() << "argpromotion disable promoting argument '"
    166                 << PtrArg->getName() << "' because it would require adding more"
    167                 << " than " << maxElements << " arguments to the function.\n");
    168           continue;
    169         }
    170 
    171         // If all the elements are single-value types, we can promote it.
    172         bool AllSimple = true;
    173         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
    174           if (!STy->getElementType(i)->isSingleValueType()) {
    175             AllSimple = false;
    176             break;
    177           }
    178         }
    179 
    180         // Safe to transform, don't even bother trying to "promote" it.
    181         // Passing the elements as a scalar will allow scalarrepl to hack on
    182         // the new alloca we introduce.
    183         if (AllSimple) {
    184           ByValArgsToTransform.insert(PtrArg);
    185           continue;
    186         }
    187       }
    188     }
    189 
    190     // If the argument is a recursive type and we're in a recursive
    191     // function, we could end up infinitely peeling the function argument.
    192     if (isSelfRecursive) {
    193       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
    194         bool RecursiveType = false;
    195         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
    196           if (STy->getElementType(i) == PtrArg->getType()) {
    197             RecursiveType = true;
    198             break;
    199           }
    200         }
    201         if (RecursiveType)
    202           continue;
    203       }
    204     }
    205 
    206     // Otherwise, see if we can promote the pointer to its value.
    207     if (isSafeToPromoteArgument(PtrArg, isByVal))
    208       ArgsToPromote.insert(PtrArg);
    209   }
    210 
    211   // No promotable pointer arguments.
    212   if (ArgsToPromote.empty() && ByValArgsToTransform.empty())
    213     return 0;
    214 
    215   return DoPromotion(F, ArgsToPromote, ByValArgsToTransform);
    216 }
    217 
    218 /// AllCallersPassInValidPointerForArgument - Return true if we can prove that
    219 /// all callees pass in a valid pointer for the specified function argument.
    220 static bool AllCallersPassInValidPointerForArgument(Argument *Arg) {
    221   Function *Callee = Arg->getParent();
    222 
    223   unsigned ArgNo = std::distance(Callee->arg_begin(),
    224                                  Function::arg_iterator(Arg));
    225 
    226   // Look at all call sites of the function.  At this pointer we know we only
    227   // have direct callees.
    228   for (Value::use_iterator UI = Callee->use_begin(), E = Callee->use_end();
    229        UI != E; ++UI) {
    230     CallSite CS(*UI);
    231     assert(CS && "Should only have direct calls!");
    232 
    233     if (!CS.getArgument(ArgNo)->isDereferenceablePointer())
    234       return false;
    235   }
    236   return true;
    237 }
    238 
    239 /// Returns true if Prefix is a prefix of longer. That means, Longer has a size
    240 /// that is greater than or equal to the size of prefix, and each of the
    241 /// elements in Prefix is the same as the corresponding elements in Longer.
    242 ///
    243 /// This means it also returns true when Prefix and Longer are equal!
    244 static bool IsPrefix(const ArgPromotion::IndicesVector &Prefix,
    245                      const ArgPromotion::IndicesVector &Longer) {
    246   if (Prefix.size() > Longer.size())
    247     return false;
    248   return std::equal(Prefix.begin(), Prefix.end(), Longer.begin());
    249 }
    250 
    251 
    252 /// Checks if Indices, or a prefix of Indices, is in Set.
    253 static bool PrefixIn(const ArgPromotion::IndicesVector &Indices,
    254                      std::set<ArgPromotion::IndicesVector> &Set) {
    255     std::set<ArgPromotion::IndicesVector>::iterator Low;
    256     Low = Set.upper_bound(Indices);
    257     if (Low != Set.begin())
    258       Low--;
    259     // Low is now the last element smaller than or equal to Indices. This means
    260     // it points to a prefix of Indices (possibly Indices itself), if such
    261     // prefix exists.
    262     //
    263     // This load is safe if any prefix of its operands is safe to load.
    264     return Low != Set.end() && IsPrefix(*Low, Indices);
    265 }
    266 
    267 /// Mark the given indices (ToMark) as safe in the given set of indices
    268 /// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
    269 /// is already a prefix of Indices in Safe, Indices are implicitely marked safe
    270 /// already. Furthermore, any indices that Indices is itself a prefix of, are
    271 /// removed from Safe (since they are implicitely safe because of Indices now).
    272 static void MarkIndicesSafe(const ArgPromotion::IndicesVector &ToMark,
    273                             std::set<ArgPromotion::IndicesVector> &Safe) {
    274   std::set<ArgPromotion::IndicesVector>::iterator Low;
    275   Low = Safe.upper_bound(ToMark);
    276   // Guard against the case where Safe is empty
    277   if (Low != Safe.begin())
    278     Low--;
    279   // Low is now the last element smaller than or equal to Indices. This
    280   // means it points to a prefix of Indices (possibly Indices itself), if
    281   // such prefix exists.
    282   if (Low != Safe.end()) {
    283     if (IsPrefix(*Low, ToMark))
    284       // If there is already a prefix of these indices (or exactly these
    285       // indices) marked a safe, don't bother adding these indices
    286       return;
    287 
    288     // Increment Low, so we can use it as a "insert before" hint
    289     ++Low;
    290   }
    291   // Insert
    292   Low = Safe.insert(Low, ToMark);
    293   ++Low;
    294   // If there we're a prefix of longer index list(s), remove those
    295   std::set<ArgPromotion::IndicesVector>::iterator End = Safe.end();
    296   while (Low != End && IsPrefix(ToMark, *Low)) {
    297     std::set<ArgPromotion::IndicesVector>::iterator Remove = Low;
    298     ++Low;
    299     Safe.erase(Remove);
    300   }
    301 }
    302 
    303 /// isSafeToPromoteArgument - As you might guess from the name of this method,
    304 /// it checks to see if it is both safe and useful to promote the argument.
    305 /// This method limits promotion of aggregates to only promote up to three
    306 /// elements of the aggregate in order to avoid exploding the number of
    307 /// arguments passed in.
    308 bool ArgPromotion::isSafeToPromoteArgument(Argument *Arg, bool isByVal) const {
    309   typedef std::set<IndicesVector> GEPIndicesSet;
    310 
    311   // Quick exit for unused arguments
    312   if (Arg->use_empty())
    313     return true;
    314 
    315   // We can only promote this argument if all of the uses are loads, or are GEP
    316   // instructions (with constant indices) that are subsequently loaded.
    317   //
    318   // Promoting the argument causes it to be loaded in the caller
    319   // unconditionally. This is only safe if we can prove that either the load
    320   // would have happened in the callee anyway (ie, there is a load in the entry
    321   // block) or the pointer passed in at every call site is guaranteed to be
    322   // valid.
    323   // In the former case, invalid loads can happen, but would have happened
    324   // anyway, in the latter case, invalid loads won't happen. This prevents us
    325   // from introducing an invalid load that wouldn't have happened in the
    326   // original code.
    327   //
    328   // This set will contain all sets of indices that are loaded in the entry
    329   // block, and thus are safe to unconditionally load in the caller.
    330   GEPIndicesSet SafeToUnconditionallyLoad;
    331 
    332   // This set contains all the sets of indices that we are planning to promote.
    333   // This makes it possible to limit the number of arguments added.
    334   GEPIndicesSet ToPromote;
    335 
    336   // If the pointer is always valid, any load with first index 0 is valid.
    337   if (isByVal || AllCallersPassInValidPointerForArgument(Arg))
    338     SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
    339 
    340   // First, iterate the entry block and mark loads of (geps of) arguments as
    341   // safe.
    342   BasicBlock *EntryBlock = Arg->getParent()->begin();
    343   // Declare this here so we can reuse it
    344   IndicesVector Indices;
    345   for (BasicBlock::iterator I = EntryBlock->begin(), E = EntryBlock->end();
    346        I != E; ++I)
    347     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
    348       Value *V = LI->getPointerOperand();
    349       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
    350         V = GEP->getPointerOperand();
    351         if (V == Arg) {
    352           // This load actually loads (part of) Arg? Check the indices then.
    353           Indices.reserve(GEP->getNumIndices());
    354           for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
    355                II != IE; ++II)
    356             if (ConstantInt *CI = dyn_cast<ConstantInt>(*II))
    357               Indices.push_back(CI->getSExtValue());
    358             else
    359               // We found a non-constant GEP index for this argument? Bail out
    360               // right away, can't promote this argument at all.
    361               return false;
    362 
    363           // Indices checked out, mark them as safe
    364           MarkIndicesSafe(Indices, SafeToUnconditionallyLoad);
    365           Indices.clear();
    366         }
    367       } else if (V == Arg) {
    368         // Direct loads are equivalent to a GEP with a single 0 index.
    369         MarkIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad);
    370       }
    371     }
    372 
    373   // Now, iterate all uses of the argument to see if there are any uses that are
    374   // not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
    375   SmallVector<LoadInst*, 16> Loads;
    376   IndicesVector Operands;
    377   for (Value::use_iterator UI = Arg->use_begin(), E = Arg->use_end();
    378        UI != E; ++UI) {
    379     User *U = *UI;
    380     Operands.clear();
    381     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
    382       // Don't hack volatile/atomic loads
    383       if (!LI->isSimple()) return false;
    384       Loads.push_back(LI);
    385       // Direct loads are equivalent to a GEP with a zero index and then a load.
    386       Operands.push_back(0);
    387     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
    388       if (GEP->use_empty()) {
    389         // Dead GEP's cause trouble later.  Just remove them if we run into
    390         // them.
    391         getAnalysis<AliasAnalysis>().deleteValue(GEP);
    392         GEP->eraseFromParent();
    393         // TODO: This runs the above loop over and over again for dead GEPs
    394         // Couldn't we just do increment the UI iterator earlier and erase the
    395         // use?
    396         return isSafeToPromoteArgument(Arg, isByVal);
    397       }
    398 
    399       // Ensure that all of the indices are constants.
    400       for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end();
    401         i != e; ++i)
    402         if (ConstantInt *C = dyn_cast<ConstantInt>(*i))
    403           Operands.push_back(C->getSExtValue());
    404         else
    405           return false;  // Not a constant operand GEP!
    406 
    407       // Ensure that the only users of the GEP are load instructions.
    408       for (Value::use_iterator UI = GEP->use_begin(), E = GEP->use_end();
    409            UI != E; ++UI)
    410         if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
    411           // Don't hack volatile/atomic loads
    412           if (!LI->isSimple()) return false;
    413           Loads.push_back(LI);
    414         } else {
    415           // Other uses than load?
    416           return false;
    417         }
    418     } else {
    419       return false;  // Not a load or a GEP.
    420     }
    421 
    422     // Now, see if it is safe to promote this load / loads of this GEP. Loading
    423     // is safe if Operands, or a prefix of Operands, is marked as safe.
    424     if (!PrefixIn(Operands, SafeToUnconditionallyLoad))
    425       return false;
    426 
    427     // See if we are already promoting a load with these indices. If not, check
    428     // to make sure that we aren't promoting too many elements.  If so, nothing
    429     // to do.
    430     if (ToPromote.find(Operands) == ToPromote.end()) {
    431       if (maxElements > 0 && ToPromote.size() == maxElements) {
    432         DEBUG(dbgs() << "argpromotion not promoting argument '"
    433               << Arg->getName() << "' because it would require adding more "
    434               << "than " << maxElements << " arguments to the function.\n");
    435         // We limit aggregate promotion to only promoting up to a fixed number
    436         // of elements of the aggregate.
    437         return false;
    438       }
    439       ToPromote.insert(Operands);
    440     }
    441   }
    442 
    443   if (Loads.empty()) return true;  // No users, this is a dead argument.
    444 
    445   // Okay, now we know that the argument is only used by load instructions and
    446   // it is safe to unconditionally perform all of them. Use alias analysis to
    447   // check to see if the pointer is guaranteed to not be modified from entry of
    448   // the function to each of the load instructions.
    449 
    450   // Because there could be several/many load instructions, remember which
    451   // blocks we know to be transparent to the load.
    452   SmallPtrSet<BasicBlock*, 16> TranspBlocks;
    453 
    454   AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
    455 
    456   for (unsigned i = 0, e = Loads.size(); i != e; ++i) {
    457     // Check to see if the load is invalidated from the start of the block to
    458     // the load itself.
    459     LoadInst *Load = Loads[i];
    460     BasicBlock *BB = Load->getParent();
    461 
    462     AliasAnalysis::Location Loc = AA.getLocation(Load);
    463     if (AA.canInstructionRangeModify(BB->front(), *Load, Loc))
    464       return false;  // Pointer is invalidated!
    465 
    466     // Now check every path from the entry block to the load for transparency.
    467     // To do this, we perform a depth first search on the inverse CFG from the
    468     // loading block.
    469     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
    470       BasicBlock *P = *PI;
    471       for (idf_ext_iterator<BasicBlock*, SmallPtrSet<BasicBlock*, 16> >
    472              I = idf_ext_begin(P, TranspBlocks),
    473              E = idf_ext_end(P, TranspBlocks); I != E; ++I)
    474         if (AA.canBasicBlockModify(**I, Loc))
    475           return false;
    476     }
    477   }
    478 
    479   // If the path from the entry of the function to each load is free of
    480   // instructions that potentially invalidate the load, we can make the
    481   // transformation!
    482   return true;
    483 }
    484 
    485 /// DoPromotion - This method actually performs the promotion of the specified
    486 /// arguments, and returns the new function.  At this point, we know that it's
    487 /// safe to do so.
    488 CallGraphNode *ArgPromotion::DoPromotion(Function *F,
    489                                SmallPtrSet<Argument*, 8> &ArgsToPromote,
    490                               SmallPtrSet<Argument*, 8> &ByValArgsToTransform) {
    491 
    492   // Start by computing a new prototype for the function, which is the same as
    493   // the old function, but has modified arguments.
    494   FunctionType *FTy = F->getFunctionType();
    495   std::vector<Type*> Params;
    496 
    497   typedef std::set<IndicesVector> ScalarizeTable;
    498 
    499   // ScalarizedElements - If we are promoting a pointer that has elements
    500   // accessed out of it, keep track of which elements are accessed so that we
    501   // can add one argument for each.
    502   //
    503   // Arguments that are directly loaded will have a zero element value here, to
    504   // handle cases where there are both a direct load and GEP accesses.
    505   //
    506   std::map<Argument*, ScalarizeTable> ScalarizedElements;
    507 
    508   // OriginalLoads - Keep track of a representative load instruction from the
    509   // original function so that we can tell the alias analysis implementation
    510   // what the new GEP/Load instructions we are inserting look like.
    511   std::map<IndicesVector, LoadInst*> OriginalLoads;
    512 
    513   // Attributes - Keep track of the parameter attributes for the arguments
    514   // that we are *not* promoting. For the ones that we do promote, the parameter
    515   // attributes are lost
    516   SmallVector<AttributeWithIndex, 8> AttributesVec;
    517   const AttrListPtr &PAL = F->getAttributes();
    518 
    519   // Add any return attributes.
    520   if (Attributes attrs = PAL.getRetAttributes())
    521     AttributesVec.push_back(AttributeWithIndex::get(0, attrs));
    522 
    523   // First, determine the new argument list
    524   unsigned ArgIndex = 1;
    525   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
    526        ++I, ++ArgIndex) {
    527     if (ByValArgsToTransform.count(I)) {
    528       // Simple byval argument? Just add all the struct element types.
    529       Type *AgTy = cast<PointerType>(I->getType())->getElementType();
    530       StructType *STy = cast<StructType>(AgTy);
    531       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
    532         Params.push_back(STy->getElementType(i));
    533       ++NumByValArgsPromoted;
    534     } else if (!ArgsToPromote.count(I)) {
    535       // Unchanged argument
    536       Params.push_back(I->getType());
    537       if (Attributes attrs = PAL.getParamAttributes(ArgIndex))
    538         AttributesVec.push_back(AttributeWithIndex::get(Params.size(), attrs));
    539     } else if (I->use_empty()) {
    540       // Dead argument (which are always marked as promotable)
    541       ++NumArgumentsDead;
    542     } else {
    543       // Okay, this is being promoted. This means that the only uses are loads
    544       // or GEPs which are only used by loads
    545 
    546       // In this table, we will track which indices are loaded from the argument
    547       // (where direct loads are tracked as no indices).
    548       ScalarizeTable &ArgIndices = ScalarizedElements[I];
    549       for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
    550            ++UI) {
    551         Instruction *User = cast<Instruction>(*UI);
    552         assert(isa<LoadInst>(User) || isa<GetElementPtrInst>(User));
    553         IndicesVector Indices;
    554         Indices.reserve(User->getNumOperands() - 1);
    555         // Since loads will only have a single operand, and GEPs only a single
    556         // non-index operand, this will record direct loads without any indices,
    557         // and gep+loads with the GEP indices.
    558         for (User::op_iterator II = User->op_begin() + 1, IE = User->op_end();
    559              II != IE; ++II)
    560           Indices.push_back(cast<ConstantInt>(*II)->getSExtValue());
    561         // GEPs with a single 0 index can be merged with direct loads
    562         if (Indices.size() == 1 && Indices.front() == 0)
    563           Indices.clear();
    564         ArgIndices.insert(Indices);
    565         LoadInst *OrigLoad;
    566         if (LoadInst *L = dyn_cast<LoadInst>(User))
    567           OrigLoad = L;
    568         else
    569           // Take any load, we will use it only to update Alias Analysis
    570           OrigLoad = cast<LoadInst>(User->use_back());
    571         OriginalLoads[Indices] = OrigLoad;
    572       }
    573 
    574       // Add a parameter to the function for each element passed in.
    575       for (ScalarizeTable::iterator SI = ArgIndices.begin(),
    576              E = ArgIndices.end(); SI != E; ++SI) {
    577         // not allowed to dereference ->begin() if size() is 0
    578         Params.push_back(GetElementPtrInst::getIndexedType(I->getType(), *SI));
    579         assert(Params.back());
    580       }
    581 
    582       if (ArgIndices.size() == 1 && ArgIndices.begin()->empty())
    583         ++NumArgumentsPromoted;
    584       else
    585         ++NumAggregatesPromoted;
    586     }
    587   }
    588 
    589   // Add any function attributes.
    590   if (Attributes attrs = PAL.getFnAttributes())
    591     AttributesVec.push_back(AttributeWithIndex::get(~0, attrs));
    592 
    593   Type *RetTy = FTy->getReturnType();
    594 
    595   // Work around LLVM bug PR56: the CWriter cannot emit varargs functions which
    596   // have zero fixed arguments.
    597   bool ExtraArgHack = false;
    598   if (Params.empty() && FTy->isVarArg()) {
    599     ExtraArgHack = true;
    600     Params.push_back(Type::getInt32Ty(F->getContext()));
    601   }
    602 
    603   // Construct the new function type using the new arguments.
    604   FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
    605 
    606   // Create the new function body and insert it into the module.
    607   Function *NF = Function::Create(NFTy, F->getLinkage(), F->getName());
    608   NF->copyAttributesFrom(F);
    609 
    610 
    611   DEBUG(dbgs() << "ARG PROMOTION:  Promoting to:" << *NF << "\n"
    612         << "From: " << *F);
    613 
    614   // Recompute the parameter attributes list based on the new arguments for
    615   // the function.
    616   NF->setAttributes(AttrListPtr::get(AttributesVec));
    617   AttributesVec.clear();
    618 
    619   F->getParent()->getFunctionList().insert(F, NF);
    620   NF->takeName(F);
    621 
    622   // Get the alias analysis information that we need to update to reflect our
    623   // changes.
    624   AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
    625 
    626   // Get the callgraph information that we need to update to reflect our
    627   // changes.
    628   CallGraph &CG = getAnalysis<CallGraph>();
    629 
    630   // Get a new callgraph node for NF.
    631   CallGraphNode *NF_CGN = CG.getOrInsertFunction(NF);
    632 
    633   // Loop over all of the callers of the function, transforming the call sites
    634   // to pass in the loaded pointers.
    635   //
    636   SmallVector<Value*, 16> Args;
    637   while (!F->use_empty()) {
    638     CallSite CS(F->use_back());
    639     assert(CS.getCalledFunction() == F);
    640     Instruction *Call = CS.getInstruction();
    641     const AttrListPtr &CallPAL = CS.getAttributes();
    642 
    643     // Add any return attributes.
    644     if (Attributes attrs = CallPAL.getRetAttributes())
    645       AttributesVec.push_back(AttributeWithIndex::get(0, attrs));
    646 
    647     // Loop over the operands, inserting GEP and loads in the caller as
    648     // appropriate.
    649     CallSite::arg_iterator AI = CS.arg_begin();
    650     ArgIndex = 1;
    651     for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
    652          I != E; ++I, ++AI, ++ArgIndex)
    653       if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
    654         Args.push_back(*AI);          // Unmodified argument
    655 
    656         if (Attributes Attrs = CallPAL.getParamAttributes(ArgIndex))
    657           AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
    658 
    659       } else if (ByValArgsToTransform.count(I)) {
    660         // Emit a GEP and load for each element of the struct.
    661         Type *AgTy = cast<PointerType>(I->getType())->getElementType();
    662         StructType *STy = cast<StructType>(AgTy);
    663         Value *Idxs[2] = {
    664               ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), 0 };
    665         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
    666           Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
    667           Value *Idx = GetElementPtrInst::Create(*AI, Idxs,
    668                                                  (*AI)->getName()+"."+utostr(i),
    669                                                  Call);
    670           // TODO: Tell AA about the new values?
    671           Args.push_back(new LoadInst(Idx, Idx->getName()+".val", Call));
    672         }
    673       } else if (!I->use_empty()) {
    674         // Non-dead argument: insert GEPs and loads as appropriate.
    675         ScalarizeTable &ArgIndices = ScalarizedElements[I];
    676         // Store the Value* version of the indices in here, but declare it now
    677         // for reuse.
    678         std::vector<Value*> Ops;
    679         for (ScalarizeTable::iterator SI = ArgIndices.begin(),
    680                E = ArgIndices.end(); SI != E; ++SI) {
    681           Value *V = *AI;
    682           LoadInst *OrigLoad = OriginalLoads[*SI];
    683           if (!SI->empty()) {
    684             Ops.reserve(SI->size());
    685             Type *ElTy = V->getType();
    686             for (IndicesVector::const_iterator II = SI->begin(),
    687                  IE = SI->end(); II != IE; ++II) {
    688               // Use i32 to index structs, and i64 for others (pointers/arrays).
    689               // This satisfies GEP constraints.
    690               Type *IdxTy = (ElTy->isStructTy() ?
    691                     Type::getInt32Ty(F->getContext()) :
    692                     Type::getInt64Ty(F->getContext()));
    693               Ops.push_back(ConstantInt::get(IdxTy, *II));
    694               // Keep track of the type we're currently indexing.
    695               ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(*II);
    696             }
    697             // And create a GEP to extract those indices.
    698             V = GetElementPtrInst::Create(V, Ops, V->getName()+".idx", Call);
    699             Ops.clear();
    700             AA.copyValue(OrigLoad->getOperand(0), V);
    701           }
    702           // Since we're replacing a load make sure we take the alignment
    703           // of the previous load.
    704           LoadInst *newLoad = new LoadInst(V, V->getName()+".val", Call);
    705           newLoad->setAlignment(OrigLoad->getAlignment());
    706           // Transfer the TBAA info too.
    707           newLoad->setMetadata(LLVMContext::MD_tbaa,
    708                                OrigLoad->getMetadata(LLVMContext::MD_tbaa));
    709           Args.push_back(newLoad);
    710           AA.copyValue(OrigLoad, Args.back());
    711         }
    712       }
    713 
    714     if (ExtraArgHack)
    715       Args.push_back(Constant::getNullValue(Type::getInt32Ty(F->getContext())));
    716 
    717     // Push any varargs arguments on the list.
    718     for (; AI != CS.arg_end(); ++AI, ++ArgIndex) {
    719       Args.push_back(*AI);
    720       if (Attributes Attrs = CallPAL.getParamAttributes(ArgIndex))
    721         AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
    722     }
    723 
    724     // Add any function attributes.
    725     if (Attributes attrs = CallPAL.getFnAttributes())
    726       AttributesVec.push_back(AttributeWithIndex::get(~0, attrs));
    727 
    728     Instruction *New;
    729     if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
    730       New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
    731                                Args, "", Call);
    732       cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
    733       cast<InvokeInst>(New)->setAttributes(AttrListPtr::get(AttributesVec));
    734     } else {
    735       New = CallInst::Create(NF, Args, "", Call);
    736       cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
    737       cast<CallInst>(New)->setAttributes(AttrListPtr::get(AttributesVec));
    738       if (cast<CallInst>(Call)->isTailCall())
    739         cast<CallInst>(New)->setTailCall();
    740     }
    741     Args.clear();
    742     AttributesVec.clear();
    743 
    744     // Update the alias analysis implementation to know that we are replacing
    745     // the old call with a new one.
    746     AA.replaceWithNewValue(Call, New);
    747 
    748     // Update the callgraph to know that the callsite has been transformed.
    749     CallGraphNode *CalleeNode = CG[Call->getParent()->getParent()];
    750     CalleeNode->replaceCallEdge(Call, New, NF_CGN);
    751 
    752     if (!Call->use_empty()) {
    753       Call->replaceAllUsesWith(New);
    754       New->takeName(Call);
    755     }
    756 
    757     // Finally, remove the old call from the program, reducing the use-count of
    758     // F.
    759     Call->eraseFromParent();
    760   }
    761 
    762   // Since we have now created the new function, splice the body of the old
    763   // function right into the new function, leaving the old rotting hulk of the
    764   // function empty.
    765   NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
    766 
    767   // Loop over the argument list, transferring uses of the old arguments over to
    768   // the new arguments, also transferring over the names as well.
    769   //
    770   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
    771        I2 = NF->arg_begin(); I != E; ++I) {
    772     if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
    773       // If this is an unmodified argument, move the name and users over to the
    774       // new version.
    775       I->replaceAllUsesWith(I2);
    776       I2->takeName(I);
    777       AA.replaceWithNewValue(I, I2);
    778       ++I2;
    779       continue;
    780     }
    781 
    782     if (ByValArgsToTransform.count(I)) {
    783       // In the callee, we create an alloca, and store each of the new incoming
    784       // arguments into the alloca.
    785       Instruction *InsertPt = NF->begin()->begin();
    786 
    787       // Just add all the struct element types.
    788       Type *AgTy = cast<PointerType>(I->getType())->getElementType();
    789       Value *TheAlloca = new AllocaInst(AgTy, 0, "", InsertPt);
    790       StructType *STy = cast<StructType>(AgTy);
    791       Value *Idxs[2] = {
    792             ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), 0 };
    793 
    794       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
    795         Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
    796         Value *Idx =
    797           GetElementPtrInst::Create(TheAlloca, Idxs,
    798                                     TheAlloca->getName()+"."+Twine(i),
    799                                     InsertPt);
    800         I2->setName(I->getName()+"."+Twine(i));
    801         new StoreInst(I2++, Idx, InsertPt);
    802       }
    803 
    804       // Anything that used the arg should now use the alloca.
    805       I->replaceAllUsesWith(TheAlloca);
    806       TheAlloca->takeName(I);
    807       AA.replaceWithNewValue(I, TheAlloca);
    808       continue;
    809     }
    810 
    811     if (I->use_empty()) {
    812       AA.deleteValue(I);
    813       continue;
    814     }
    815 
    816     // Otherwise, if we promoted this argument, then all users are load
    817     // instructions (or GEPs with only load users), and all loads should be
    818     // using the new argument that we added.
    819     ScalarizeTable &ArgIndices = ScalarizedElements[I];
    820 
    821     while (!I->use_empty()) {
    822       if (LoadInst *LI = dyn_cast<LoadInst>(I->use_back())) {
    823         assert(ArgIndices.begin()->empty() &&
    824                "Load element should sort to front!");
    825         I2->setName(I->getName()+".val");
    826         LI->replaceAllUsesWith(I2);
    827         AA.replaceWithNewValue(LI, I2);
    828         LI->eraseFromParent();
    829         DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName()
    830               << "' in function '" << F->getName() << "'\n");
    831       } else {
    832         GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->use_back());
    833         IndicesVector Operands;
    834         Operands.reserve(GEP->getNumIndices());
    835         for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
    836              II != IE; ++II)
    837           Operands.push_back(cast<ConstantInt>(*II)->getSExtValue());
    838 
    839         // GEPs with a single 0 index can be merged with direct loads
    840         if (Operands.size() == 1 && Operands.front() == 0)
    841           Operands.clear();
    842 
    843         Function::arg_iterator TheArg = I2;
    844         for (ScalarizeTable::iterator It = ArgIndices.begin();
    845              *It != Operands; ++It, ++TheArg) {
    846           assert(It != ArgIndices.end() && "GEP not handled??");
    847         }
    848 
    849         std::string NewName = I->getName();
    850         for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
    851             NewName += "." + utostr(Operands[i]);
    852         }
    853         NewName += ".val";
    854         TheArg->setName(NewName);
    855 
    856         DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
    857               << "' of function '" << NF->getName() << "'\n");
    858 
    859         // All of the uses must be load instructions.  Replace them all with
    860         // the argument specified by ArgNo.
    861         while (!GEP->use_empty()) {
    862           LoadInst *L = cast<LoadInst>(GEP->use_back());
    863           L->replaceAllUsesWith(TheArg);
    864           AA.replaceWithNewValue(L, TheArg);
    865           L->eraseFromParent();
    866         }
    867         AA.deleteValue(GEP);
    868         GEP->eraseFromParent();
    869       }
    870     }
    871 
    872     // Increment I2 past all of the arguments added for this promoted pointer.
    873     for (unsigned i = 0, e = ArgIndices.size(); i != e; ++i)
    874       ++I2;
    875   }
    876 
    877   // Notify the alias analysis implementation that we inserted a new argument.
    878   if (ExtraArgHack)
    879     AA.copyValue(Constant::getNullValue(Type::getInt32Ty(F->getContext())),
    880                  NF->arg_begin());
    881 
    882 
    883   // Tell the alias analysis that the old function is about to disappear.
    884   AA.replaceWithNewValue(F, NF);
    885 
    886 
    887   NF_CGN->stealCalledFunctionsFrom(CG[F]);
    888 
    889   // Now that the old function is dead, delete it.  If there is a dangling
    890   // reference to the CallgraphNode, just leave the dead function around for
    891   // someone else to nuke.
    892   CallGraphNode *CGN = CG[F];
    893   if (CGN->getNumReferences() == 0)
    894     delete CG.removeFunctionFromModule(CGN);
    895   else
    896     F->setLinkage(Function::ExternalLinkage);
    897 
    898   return NF_CGN;
    899 }
    900