Home | History | Annotate | Download | only in Scalar
      1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This transformation analyzes and transforms the induction variables (and
     11 // computations derived from them) into simpler forms suitable for subsequent
     12 // analysis and transformation.
     13 //
     14 // If the trip count of a loop is computable, this pass also makes the following
     15 // changes:
     16 //   1. The exit condition for the loop is canonicalized to compare the
     17 //      induction value against the exit value.  This turns loops like:
     18 //        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
     19 //   2. Any use outside of the loop of an expression derived from the indvar
     20 //      is changed to compute the derived value outside of the loop, eliminating
     21 //      the dependence on the exit value of the induction variable.  If the only
     22 //      purpose of the loop is to compute the exit value of some derived
     23 //      expression, this transformation will make the loop dead.
     24 //
     25 //===----------------------------------------------------------------------===//
     26 
     27 #define DEBUG_TYPE "indvars"
     28 #include "llvm/Transforms/Scalar.h"
     29 #include "llvm/BasicBlock.h"
     30 #include "llvm/Constants.h"
     31 #include "llvm/Instructions.h"
     32 #include "llvm/IntrinsicInst.h"
     33 #include "llvm/LLVMContext.h"
     34 #include "llvm/Type.h"
     35 #include "llvm/Analysis/Dominators.h"
     36 #include "llvm/Analysis/ScalarEvolutionExpander.h"
     37 #include "llvm/Analysis/LoopInfo.h"
     38 #include "llvm/Analysis/LoopPass.h"
     39 #include "llvm/Support/CFG.h"
     40 #include "llvm/Support/CommandLine.h"
     41 #include "llvm/Support/Debug.h"
     42 #include "llvm/Support/raw_ostream.h"
     43 #include "llvm/Transforms/Utils/Local.h"
     44 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     45 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
     46 #include "llvm/Target/TargetData.h"
     47 #include "llvm/Target/TargetLibraryInfo.h"
     48 #include "llvm/ADT/DenseMap.h"
     49 #include "llvm/ADT/SmallVector.h"
     50 #include "llvm/ADT/Statistic.h"
     51 using namespace llvm;
     52 
     53 STATISTIC(NumWidened     , "Number of indvars widened");
     54 STATISTIC(NumReplaced    , "Number of exit values replaced");
     55 STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
     56 STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
     57 STATISTIC(NumElimIV      , "Number of congruent IVs eliminated");
     58 
     59 // Trip count verification can be enabled by default under NDEBUG if we
     60 // implement a strong expression equivalence checker in SCEV. Until then, we
     61 // use the verify-indvars flag, which may assert in some cases.
     62 static cl::opt<bool> VerifyIndvars(
     63   "verify-indvars", cl::Hidden,
     64   cl::desc("Verify the ScalarEvolution result after running indvars"));
     65 
     66 namespace {
     67   class IndVarSimplify : public LoopPass {
     68     LoopInfo        *LI;
     69     ScalarEvolution *SE;
     70     DominatorTree   *DT;
     71     TargetData      *TD;
     72     TargetLibraryInfo *TLI;
     73 
     74     SmallVector<WeakVH, 16> DeadInsts;
     75     bool Changed;
     76   public:
     77 
     78     static char ID; // Pass identification, replacement for typeid
     79     IndVarSimplify() : LoopPass(ID), LI(0), SE(0), DT(0), TD(0),
     80                        Changed(false) {
     81       initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
     82     }
     83 
     84     virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
     85 
     86     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
     87       AU.addRequired<DominatorTree>();
     88       AU.addRequired<LoopInfo>();
     89       AU.addRequired<ScalarEvolution>();
     90       AU.addRequiredID(LoopSimplifyID);
     91       AU.addRequiredID(LCSSAID);
     92       AU.addPreserved<ScalarEvolution>();
     93       AU.addPreservedID(LoopSimplifyID);
     94       AU.addPreservedID(LCSSAID);
     95       AU.setPreservesCFG();
     96     }
     97 
     98   private:
     99     virtual void releaseMemory() {
    100       DeadInsts.clear();
    101     }
    102 
    103     bool isValidRewrite(Value *FromVal, Value *ToVal);
    104 
    105     void HandleFloatingPointIV(Loop *L, PHINode *PH);
    106     void RewriteNonIntegerIVs(Loop *L);
    107 
    108     void SimplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LPPassManager &LPM);
    109 
    110     void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
    111 
    112     Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
    113                                      PHINode *IndVar, SCEVExpander &Rewriter);
    114 
    115     void SinkUnusedInvariants(Loop *L);
    116   };
    117 }
    118 
    119 char IndVarSimplify::ID = 0;
    120 INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars",
    121                 "Induction Variable Simplification", false, false)
    122 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
    123 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
    124 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
    125 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
    126 INITIALIZE_PASS_DEPENDENCY(LCSSA)
    127 INITIALIZE_PASS_END(IndVarSimplify, "indvars",
    128                 "Induction Variable Simplification", false, false)
    129 
    130 Pass *llvm::createIndVarSimplifyPass() {
    131   return new IndVarSimplify();
    132 }
    133 
    134 /// isValidRewrite - Return true if the SCEV expansion generated by the
    135 /// rewriter can replace the original value. SCEV guarantees that it
    136 /// produces the same value, but the way it is produced may be illegal IR.
    137 /// Ideally, this function will only be called for verification.
    138 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
    139   // If an SCEV expression subsumed multiple pointers, its expansion could
    140   // reassociate the GEP changing the base pointer. This is illegal because the
    141   // final address produced by a GEP chain must be inbounds relative to its
    142   // underlying object. Otherwise basic alias analysis, among other things,
    143   // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
    144   // producing an expression involving multiple pointers. Until then, we must
    145   // bail out here.
    146   //
    147   // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
    148   // because it understands lcssa phis while SCEV does not.
    149   Value *FromPtr = FromVal;
    150   Value *ToPtr = ToVal;
    151   if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) {
    152     FromPtr = GEP->getPointerOperand();
    153   }
    154   if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) {
    155     ToPtr = GEP->getPointerOperand();
    156   }
    157   if (FromPtr != FromVal || ToPtr != ToVal) {
    158     // Quickly check the common case
    159     if (FromPtr == ToPtr)
    160       return true;
    161 
    162     // SCEV may have rewritten an expression that produces the GEP's pointer
    163     // operand. That's ok as long as the pointer operand has the same base
    164     // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
    165     // base of a recurrence. This handles the case in which SCEV expansion
    166     // converts a pointer type recurrence into a nonrecurrent pointer base
    167     // indexed by an integer recurrence.
    168 
    169     // If the GEP base pointer is a vector of pointers, abort.
    170     if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
    171       return false;
    172 
    173     const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
    174     const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
    175     if (FromBase == ToBase)
    176       return true;
    177 
    178     DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
    179           << *FromBase << " != " << *ToBase << "\n");
    180 
    181     return false;
    182   }
    183   return true;
    184 }
    185 
    186 /// Determine the insertion point for this user. By default, insert immediately
    187 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the
    188 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest
    189 /// common dominator for the incoming blocks.
    190 static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
    191                                           DominatorTree *DT) {
    192   PHINode *PHI = dyn_cast<PHINode>(User);
    193   if (!PHI)
    194     return User;
    195 
    196   Instruction *InsertPt = 0;
    197   for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
    198     if (PHI->getIncomingValue(i) != Def)
    199       continue;
    200 
    201     BasicBlock *InsertBB = PHI->getIncomingBlock(i);
    202     if (!InsertPt) {
    203       InsertPt = InsertBB->getTerminator();
    204       continue;
    205     }
    206     InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
    207     InsertPt = InsertBB->getTerminator();
    208   }
    209   assert(InsertPt && "Missing phi operand");
    210   assert((!isa<Instruction>(Def) ||
    211           DT->dominates(cast<Instruction>(Def), InsertPt)) &&
    212          "def does not dominate all uses");
    213   return InsertPt;
    214 }
    215 
    216 //===----------------------------------------------------------------------===//
    217 // RewriteNonIntegerIVs and helpers. Prefer integer IVs.
    218 //===----------------------------------------------------------------------===//
    219 
    220 /// ConvertToSInt - Convert APF to an integer, if possible.
    221 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
    222   bool isExact = false;
    223   if (&APF.getSemantics() == &APFloat::PPCDoubleDouble)
    224     return false;
    225   // See if we can convert this to an int64_t
    226   uint64_t UIntVal;
    227   if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
    228                            &isExact) != APFloat::opOK || !isExact)
    229     return false;
    230   IntVal = UIntVal;
    231   return true;
    232 }
    233 
    234 /// HandleFloatingPointIV - If the loop has floating induction variable
    235 /// then insert corresponding integer induction variable if possible.
    236 /// For example,
    237 /// for(double i = 0; i < 10000; ++i)
    238 ///   bar(i)
    239 /// is converted into
    240 /// for(int i = 0; i < 10000; ++i)
    241 ///   bar((double)i);
    242 ///
    243 void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
    244   unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
    245   unsigned BackEdge     = IncomingEdge^1;
    246 
    247   // Check incoming value.
    248   ConstantFP *InitValueVal =
    249     dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
    250 
    251   int64_t InitValue;
    252   if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
    253     return;
    254 
    255   // Check IV increment. Reject this PN if increment operation is not
    256   // an add or increment value can not be represented by an integer.
    257   BinaryOperator *Incr =
    258     dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
    259   if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return;
    260 
    261   // If this is not an add of the PHI with a constantfp, or if the constant fp
    262   // is not an integer, bail out.
    263   ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
    264   int64_t IncValue;
    265   if (IncValueVal == 0 || Incr->getOperand(0) != PN ||
    266       !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
    267     return;
    268 
    269   // Check Incr uses. One user is PN and the other user is an exit condition
    270   // used by the conditional terminator.
    271   Value::use_iterator IncrUse = Incr->use_begin();
    272   Instruction *U1 = cast<Instruction>(*IncrUse++);
    273   if (IncrUse == Incr->use_end()) return;
    274   Instruction *U2 = cast<Instruction>(*IncrUse++);
    275   if (IncrUse != Incr->use_end()) return;
    276 
    277   // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
    278   // only used by a branch, we can't transform it.
    279   FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
    280   if (!Compare)
    281     Compare = dyn_cast<FCmpInst>(U2);
    282   if (Compare == 0 || !Compare->hasOneUse() ||
    283       !isa<BranchInst>(Compare->use_back()))
    284     return;
    285 
    286   BranchInst *TheBr = cast<BranchInst>(Compare->use_back());
    287 
    288   // We need to verify that the branch actually controls the iteration count
    289   // of the loop.  If not, the new IV can overflow and no one will notice.
    290   // The branch block must be in the loop and one of the successors must be out
    291   // of the loop.
    292   assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
    293   if (!L->contains(TheBr->getParent()) ||
    294       (L->contains(TheBr->getSuccessor(0)) &&
    295        L->contains(TheBr->getSuccessor(1))))
    296     return;
    297 
    298 
    299   // If it isn't a comparison with an integer-as-fp (the exit value), we can't
    300   // transform it.
    301   ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
    302   int64_t ExitValue;
    303   if (ExitValueVal == 0 ||
    304       !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
    305     return;
    306 
    307   // Find new predicate for integer comparison.
    308   CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
    309   switch (Compare->getPredicate()) {
    310   default: return;  // Unknown comparison.
    311   case CmpInst::FCMP_OEQ:
    312   case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
    313   case CmpInst::FCMP_ONE:
    314   case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
    315   case CmpInst::FCMP_OGT:
    316   case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
    317   case CmpInst::FCMP_OGE:
    318   case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
    319   case CmpInst::FCMP_OLT:
    320   case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
    321   case CmpInst::FCMP_OLE:
    322   case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
    323   }
    324 
    325   // We convert the floating point induction variable to a signed i32 value if
    326   // we can.  This is only safe if the comparison will not overflow in a way
    327   // that won't be trapped by the integer equivalent operations.  Check for this
    328   // now.
    329   // TODO: We could use i64 if it is native and the range requires it.
    330 
    331   // The start/stride/exit values must all fit in signed i32.
    332   if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
    333     return;
    334 
    335   // If not actually striding (add x, 0.0), avoid touching the code.
    336   if (IncValue == 0)
    337     return;
    338 
    339   // Positive and negative strides have different safety conditions.
    340   if (IncValue > 0) {
    341     // If we have a positive stride, we require the init to be less than the
    342     // exit value.
    343     if (InitValue >= ExitValue)
    344       return;
    345 
    346     uint32_t Range = uint32_t(ExitValue-InitValue);
    347     // Check for infinite loop, either:
    348     // while (i <= Exit) or until (i > Exit)
    349     if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
    350       if (++Range == 0) return;  // Range overflows.
    351     }
    352 
    353     unsigned Leftover = Range % uint32_t(IncValue);
    354 
    355     // If this is an equality comparison, we require that the strided value
    356     // exactly land on the exit value, otherwise the IV condition will wrap
    357     // around and do things the fp IV wouldn't.
    358     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
    359         Leftover != 0)
    360       return;
    361 
    362     // If the stride would wrap around the i32 before exiting, we can't
    363     // transform the IV.
    364     if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
    365       return;
    366 
    367   } else {
    368     // If we have a negative stride, we require the init to be greater than the
    369     // exit value.
    370     if (InitValue <= ExitValue)
    371       return;
    372 
    373     uint32_t Range = uint32_t(InitValue-ExitValue);
    374     // Check for infinite loop, either:
    375     // while (i >= Exit) or until (i < Exit)
    376     if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
    377       if (++Range == 0) return;  // Range overflows.
    378     }
    379 
    380     unsigned Leftover = Range % uint32_t(-IncValue);
    381 
    382     // If this is an equality comparison, we require that the strided value
    383     // exactly land on the exit value, otherwise the IV condition will wrap
    384     // around and do things the fp IV wouldn't.
    385     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
    386         Leftover != 0)
    387       return;
    388 
    389     // If the stride would wrap around the i32 before exiting, we can't
    390     // transform the IV.
    391     if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
    392       return;
    393   }
    394 
    395   IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
    396 
    397   // Insert new integer induction variable.
    398   PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
    399   NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
    400                       PN->getIncomingBlock(IncomingEdge));
    401 
    402   Value *NewAdd =
    403     BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
    404                               Incr->getName()+".int", Incr);
    405   NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
    406 
    407   ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
    408                                       ConstantInt::get(Int32Ty, ExitValue),
    409                                       Compare->getName());
    410 
    411   // In the following deletions, PN may become dead and may be deleted.
    412   // Use a WeakVH to observe whether this happens.
    413   WeakVH WeakPH = PN;
    414 
    415   // Delete the old floating point exit comparison.  The branch starts using the
    416   // new comparison.
    417   NewCompare->takeName(Compare);
    418   Compare->replaceAllUsesWith(NewCompare);
    419   RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI);
    420 
    421   // Delete the old floating point increment.
    422   Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
    423   RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI);
    424 
    425   // If the FP induction variable still has uses, this is because something else
    426   // in the loop uses its value.  In order to canonicalize the induction
    427   // variable, we chose to eliminate the IV and rewrite it in terms of an
    428   // int->fp cast.
    429   //
    430   // We give preference to sitofp over uitofp because it is faster on most
    431   // platforms.
    432   if (WeakPH) {
    433     Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
    434                                  PN->getParent()->getFirstInsertionPt());
    435     PN->replaceAllUsesWith(Conv);
    436     RecursivelyDeleteTriviallyDeadInstructions(PN, TLI);
    437   }
    438   Changed = true;
    439 }
    440 
    441 void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
    442   // First step.  Check to see if there are any floating-point recurrences.
    443   // If there are, change them into integer recurrences, permitting analysis by
    444   // the SCEV routines.
    445   //
    446   BasicBlock *Header = L->getHeader();
    447 
    448   SmallVector<WeakVH, 8> PHIs;
    449   for (BasicBlock::iterator I = Header->begin();
    450        PHINode *PN = dyn_cast<PHINode>(I); ++I)
    451     PHIs.push_back(PN);
    452 
    453   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
    454     if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
    455       HandleFloatingPointIV(L, PN);
    456 
    457   // If the loop previously had floating-point IV, ScalarEvolution
    458   // may not have been able to compute a trip count. Now that we've done some
    459   // re-writing, the trip count may be computable.
    460   if (Changed)
    461     SE->forgetLoop(L);
    462 }
    463 
    464 //===----------------------------------------------------------------------===//
    465 // RewriteLoopExitValues - Optimize IV users outside the loop.
    466 // As a side effect, reduces the amount of IV processing within the loop.
    467 //===----------------------------------------------------------------------===//
    468 
    469 /// RewriteLoopExitValues - Check to see if this loop has a computable
    470 /// loop-invariant execution count.  If so, this means that we can compute the
    471 /// final value of any expressions that are recurrent in the loop, and
    472 /// substitute the exit values from the loop into any instructions outside of
    473 /// the loop that use the final values of the current expressions.
    474 ///
    475 /// This is mostly redundant with the regular IndVarSimplify activities that
    476 /// happen later, except that it's more powerful in some cases, because it's
    477 /// able to brute-force evaluate arbitrary instructions as long as they have
    478 /// constant operands at the beginning of the loop.
    479 void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
    480   // Verify the input to the pass in already in LCSSA form.
    481   assert(L->isLCSSAForm(*DT));
    482 
    483   SmallVector<BasicBlock*, 8> ExitBlocks;
    484   L->getUniqueExitBlocks(ExitBlocks);
    485 
    486   // Find all values that are computed inside the loop, but used outside of it.
    487   // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
    488   // the exit blocks of the loop to find them.
    489   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
    490     BasicBlock *ExitBB = ExitBlocks[i];
    491 
    492     // If there are no PHI nodes in this exit block, then no values defined
    493     // inside the loop are used on this path, skip it.
    494     PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
    495     if (!PN) continue;
    496 
    497     unsigned NumPreds = PN->getNumIncomingValues();
    498 
    499     // Iterate over all of the PHI nodes.
    500     BasicBlock::iterator BBI = ExitBB->begin();
    501     while ((PN = dyn_cast<PHINode>(BBI++))) {
    502       if (PN->use_empty())
    503         continue; // dead use, don't replace it
    504 
    505       // SCEV only supports integer expressions for now.
    506       if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
    507         continue;
    508 
    509       // It's necessary to tell ScalarEvolution about this explicitly so that
    510       // it can walk the def-use list and forget all SCEVs, as it may not be
    511       // watching the PHI itself. Once the new exit value is in place, there
    512       // may not be a def-use connection between the loop and every instruction
    513       // which got a SCEVAddRecExpr for that loop.
    514       SE->forgetValue(PN);
    515 
    516       // Iterate over all of the values in all the PHI nodes.
    517       for (unsigned i = 0; i != NumPreds; ++i) {
    518         // If the value being merged in is not integer or is not defined
    519         // in the loop, skip it.
    520         Value *InVal = PN->getIncomingValue(i);
    521         if (!isa<Instruction>(InVal))
    522           continue;
    523 
    524         // If this pred is for a subloop, not L itself, skip it.
    525         if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
    526           continue; // The Block is in a subloop, skip it.
    527 
    528         // Check that InVal is defined in the loop.
    529         Instruction *Inst = cast<Instruction>(InVal);
    530         if (!L->contains(Inst))
    531           continue;
    532 
    533         // Okay, this instruction has a user outside of the current loop
    534         // and varies predictably *inside* the loop.  Evaluate the value it
    535         // contains when the loop exits, if possible.
    536         const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
    537         if (!SE->isLoopInvariant(ExitValue, L))
    538           continue;
    539 
    540         Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
    541 
    542         DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
    543                      << "  LoopVal = " << *Inst << "\n");
    544 
    545         if (!isValidRewrite(Inst, ExitVal)) {
    546           DeadInsts.push_back(ExitVal);
    547           continue;
    548         }
    549         Changed = true;
    550         ++NumReplaced;
    551 
    552         PN->setIncomingValue(i, ExitVal);
    553 
    554         // If this instruction is dead now, delete it.
    555         RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
    556 
    557         if (NumPreds == 1) {
    558           // Completely replace a single-pred PHI. This is safe, because the
    559           // NewVal won't be variant in the loop, so we don't need an LCSSA phi
    560           // node anymore.
    561           PN->replaceAllUsesWith(ExitVal);
    562           RecursivelyDeleteTriviallyDeadInstructions(PN, TLI);
    563         }
    564       }
    565       if (NumPreds != 1) {
    566         // Clone the PHI and delete the original one. This lets IVUsers and
    567         // any other maps purge the original user from their records.
    568         PHINode *NewPN = cast<PHINode>(PN->clone());
    569         NewPN->takeName(PN);
    570         NewPN->insertBefore(PN);
    571         PN->replaceAllUsesWith(NewPN);
    572         PN->eraseFromParent();
    573       }
    574     }
    575   }
    576 
    577   // The insertion point instruction may have been deleted; clear it out
    578   // so that the rewriter doesn't trip over it later.
    579   Rewriter.clearInsertPoint();
    580 }
    581 
    582 //===----------------------------------------------------------------------===//
    583 //  IV Widening - Extend the width of an IV to cover its widest uses.
    584 //===----------------------------------------------------------------------===//
    585 
    586 namespace {
    587   // Collect information about induction variables that are used by sign/zero
    588   // extend operations. This information is recorded by CollectExtend and
    589   // provides the input to WidenIV.
    590   struct WideIVInfo {
    591     PHINode *NarrowIV;
    592     Type *WidestNativeType; // Widest integer type created [sz]ext
    593     bool IsSigned;          // Was an sext user seen before a zext?
    594 
    595     WideIVInfo() : NarrowIV(0), WidestNativeType(0), IsSigned(false) {}
    596   };
    597 
    598   class WideIVVisitor : public IVVisitor {
    599     ScalarEvolution *SE;
    600     const TargetData *TD;
    601 
    602   public:
    603     WideIVInfo WI;
    604 
    605     WideIVVisitor(PHINode *NarrowIV, ScalarEvolution *SCEV,
    606                   const TargetData *TData) :
    607       SE(SCEV), TD(TData) { WI.NarrowIV = NarrowIV; }
    608 
    609     // Implement the interface used by simplifyUsersOfIV.
    610     virtual void visitCast(CastInst *Cast);
    611   };
    612 }
    613 
    614 /// visitCast - Update information about the induction variable that is
    615 /// extended by this sign or zero extend operation. This is used to determine
    616 /// the final width of the IV before actually widening it.
    617 void WideIVVisitor::visitCast(CastInst *Cast) {
    618   bool IsSigned = Cast->getOpcode() == Instruction::SExt;
    619   if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
    620     return;
    621 
    622   Type *Ty = Cast->getType();
    623   uint64_t Width = SE->getTypeSizeInBits(Ty);
    624   if (TD && !TD->isLegalInteger(Width))
    625     return;
    626 
    627   if (!WI.WidestNativeType) {
    628     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
    629     WI.IsSigned = IsSigned;
    630     return;
    631   }
    632 
    633   // We extend the IV to satisfy the sign of its first user, arbitrarily.
    634   if (WI.IsSigned != IsSigned)
    635     return;
    636 
    637   if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
    638     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
    639 }
    640 
    641 namespace {
    642 
    643 /// NarrowIVDefUse - Record a link in the Narrow IV def-use chain along with the
    644 /// WideIV that computes the same value as the Narrow IV def.  This avoids
    645 /// caching Use* pointers.
    646 struct NarrowIVDefUse {
    647   Instruction *NarrowDef;
    648   Instruction *NarrowUse;
    649   Instruction *WideDef;
    650 
    651   NarrowIVDefUse(): NarrowDef(0), NarrowUse(0), WideDef(0) {}
    652 
    653   NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD):
    654     NarrowDef(ND), NarrowUse(NU), WideDef(WD) {}
    655 };
    656 
    657 /// WidenIV - The goal of this transform is to remove sign and zero extends
    658 /// without creating any new induction variables. To do this, it creates a new
    659 /// phi of the wider type and redirects all users, either removing extends or
    660 /// inserting truncs whenever we stop propagating the type.
    661 ///
    662 class WidenIV {
    663   // Parameters
    664   PHINode *OrigPhi;
    665   Type *WideType;
    666   bool IsSigned;
    667 
    668   // Context
    669   LoopInfo        *LI;
    670   Loop            *L;
    671   ScalarEvolution *SE;
    672   DominatorTree   *DT;
    673 
    674   // Result
    675   PHINode *WidePhi;
    676   Instruction *WideInc;
    677   const SCEV *WideIncExpr;
    678   SmallVectorImpl<WeakVH> &DeadInsts;
    679 
    680   SmallPtrSet<Instruction*,16> Widened;
    681   SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
    682 
    683 public:
    684   WidenIV(const WideIVInfo &WI, LoopInfo *LInfo,
    685           ScalarEvolution *SEv, DominatorTree *DTree,
    686           SmallVectorImpl<WeakVH> &DI) :
    687     OrigPhi(WI.NarrowIV),
    688     WideType(WI.WidestNativeType),
    689     IsSigned(WI.IsSigned),
    690     LI(LInfo),
    691     L(LI->getLoopFor(OrigPhi->getParent())),
    692     SE(SEv),
    693     DT(DTree),
    694     WidePhi(0),
    695     WideInc(0),
    696     WideIncExpr(0),
    697     DeadInsts(DI) {
    698     assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
    699   }
    700 
    701   PHINode *CreateWideIV(SCEVExpander &Rewriter);
    702 
    703 protected:
    704   Value *getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
    705                    Instruction *Use);
    706 
    707   Instruction *CloneIVUser(NarrowIVDefUse DU);
    708 
    709   const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse);
    710 
    711   const SCEVAddRecExpr* GetExtendedOperandRecurrence(NarrowIVDefUse DU);
    712 
    713   Instruction *WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
    714 
    715   void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
    716 };
    717 } // anonymous namespace
    718 
    719 /// isLoopInvariant - Perform a quick domtree based check for loop invariance
    720 /// assuming that V is used within the loop. LoopInfo::isLoopInvariant() seems
    721 /// gratuitous for this purpose.
    722 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) {
    723   Instruction *Inst = dyn_cast<Instruction>(V);
    724   if (!Inst)
    725     return true;
    726 
    727   return DT->properlyDominates(Inst->getParent(), L->getHeader());
    728 }
    729 
    730 Value *WidenIV::getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
    731                           Instruction *Use) {
    732   // Set the debug location and conservative insertion point.
    733   IRBuilder<> Builder(Use);
    734   // Hoist the insertion point into loop preheaders as far as possible.
    735   for (const Loop *L = LI->getLoopFor(Use->getParent());
    736        L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT);
    737        L = L->getParentLoop())
    738     Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
    739 
    740   return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
    741                     Builder.CreateZExt(NarrowOper, WideType);
    742 }
    743 
    744 /// CloneIVUser - Instantiate a wide operation to replace a narrow
    745 /// operation. This only needs to handle operations that can evaluation to
    746 /// SCEVAddRec. It can safely return 0 for any operation we decide not to clone.
    747 Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) {
    748   unsigned Opcode = DU.NarrowUse->getOpcode();
    749   switch (Opcode) {
    750   default:
    751     return 0;
    752   case Instruction::Add:
    753   case Instruction::Mul:
    754   case Instruction::UDiv:
    755   case Instruction::Sub:
    756   case Instruction::And:
    757   case Instruction::Or:
    758   case Instruction::Xor:
    759   case Instruction::Shl:
    760   case Instruction::LShr:
    761   case Instruction::AShr:
    762     DEBUG(dbgs() << "Cloning IVUser: " << *DU.NarrowUse << "\n");
    763 
    764     // Replace NarrowDef operands with WideDef. Otherwise, we don't know
    765     // anything about the narrow operand yet so must insert a [sz]ext. It is
    766     // probably loop invariant and will be folded or hoisted. If it actually
    767     // comes from a widened IV, it should be removed during a future call to
    768     // WidenIVUse.
    769     Value *LHS = (DU.NarrowUse->getOperand(0) == DU.NarrowDef) ? DU.WideDef :
    770       getExtend(DU.NarrowUse->getOperand(0), WideType, IsSigned, DU.NarrowUse);
    771     Value *RHS = (DU.NarrowUse->getOperand(1) == DU.NarrowDef) ? DU.WideDef :
    772       getExtend(DU.NarrowUse->getOperand(1), WideType, IsSigned, DU.NarrowUse);
    773 
    774     BinaryOperator *NarrowBO = cast<BinaryOperator>(DU.NarrowUse);
    775     BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(),
    776                                                     LHS, RHS,
    777                                                     NarrowBO->getName());
    778     IRBuilder<> Builder(DU.NarrowUse);
    779     Builder.Insert(WideBO);
    780     if (const OverflowingBinaryOperator *OBO =
    781         dyn_cast<OverflowingBinaryOperator>(NarrowBO)) {
    782       if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap();
    783       if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap();
    784     }
    785     return WideBO;
    786   }
    787 }
    788 
    789 /// No-wrap operations can transfer sign extension of their result to their
    790 /// operands. Generate the SCEV value for the widened operation without
    791 /// actually modifying the IR yet. If the expression after extending the
    792 /// operands is an AddRec for this loop, return it.
    793 const SCEVAddRecExpr* WidenIV::GetExtendedOperandRecurrence(NarrowIVDefUse DU) {
    794   // Handle the common case of add<nsw/nuw>
    795   if (DU.NarrowUse->getOpcode() != Instruction::Add)
    796     return 0;
    797 
    798   // One operand (NarrowDef) has already been extended to WideDef. Now determine
    799   // if extending the other will lead to a recurrence.
    800   unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
    801   assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
    802 
    803   const SCEV *ExtendOperExpr = 0;
    804   const OverflowingBinaryOperator *OBO =
    805     cast<OverflowingBinaryOperator>(DU.NarrowUse);
    806   if (IsSigned && OBO->hasNoSignedWrap())
    807     ExtendOperExpr = SE->getSignExtendExpr(
    808       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
    809   else if(!IsSigned && OBO->hasNoUnsignedWrap())
    810     ExtendOperExpr = SE->getZeroExtendExpr(
    811       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
    812   else
    813     return 0;
    814 
    815   // When creating this AddExpr, don't apply the current operations NSW or NUW
    816   // flags. This instruction may be guarded by control flow that the no-wrap
    817   // behavior depends on. Non-control-equivalent instructions can be mapped to
    818   // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
    819   // semantics to those operations.
    820   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(
    821     SE->getAddExpr(SE->getSCEV(DU.WideDef), ExtendOperExpr));
    822 
    823   if (!AddRec || AddRec->getLoop() != L)
    824     return 0;
    825   return AddRec;
    826 }
    827 
    828 /// GetWideRecurrence - Is this instruction potentially interesting from
    829 /// IVUsers' perspective after widening it's type? In other words, can the
    830 /// extend be safely hoisted out of the loop with SCEV reducing the value to a
    831 /// recurrence on the same loop. If so, return the sign or zero extended
    832 /// recurrence. Otherwise return NULL.
    833 const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) {
    834   if (!SE->isSCEVable(NarrowUse->getType()))
    835     return 0;
    836 
    837   const SCEV *NarrowExpr = SE->getSCEV(NarrowUse);
    838   if (SE->getTypeSizeInBits(NarrowExpr->getType())
    839       >= SE->getTypeSizeInBits(WideType)) {
    840     // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
    841     // index. So don't follow this use.
    842     return 0;
    843   }
    844 
    845   const SCEV *WideExpr = IsSigned ?
    846     SE->getSignExtendExpr(NarrowExpr, WideType) :
    847     SE->getZeroExtendExpr(NarrowExpr, WideType);
    848   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
    849   if (!AddRec || AddRec->getLoop() != L)
    850     return 0;
    851   return AddRec;
    852 }
    853 
    854 /// WidenIVUse - Determine whether an individual user of the narrow IV can be
    855 /// widened. If so, return the wide clone of the user.
    856 Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
    857 
    858   // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
    859   if (isa<PHINode>(DU.NarrowUse) &&
    860       LI->getLoopFor(DU.NarrowUse->getParent()) != L)
    861     return 0;
    862 
    863   // Our raison d'etre! Eliminate sign and zero extension.
    864   if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) {
    865     Value *NewDef = DU.WideDef;
    866     if (DU.NarrowUse->getType() != WideType) {
    867       unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
    868       unsigned IVWidth = SE->getTypeSizeInBits(WideType);
    869       if (CastWidth < IVWidth) {
    870         // The cast isn't as wide as the IV, so insert a Trunc.
    871         IRBuilder<> Builder(DU.NarrowUse);
    872         NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
    873       }
    874       else {
    875         // A wider extend was hidden behind a narrower one. This may induce
    876         // another round of IV widening in which the intermediate IV becomes
    877         // dead. It should be very rare.
    878         DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
    879               << " not wide enough to subsume " << *DU.NarrowUse << "\n");
    880         DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
    881         NewDef = DU.NarrowUse;
    882       }
    883     }
    884     if (NewDef != DU.NarrowUse) {
    885       DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
    886             << " replaced by " << *DU.WideDef << "\n");
    887       ++NumElimExt;
    888       DU.NarrowUse->replaceAllUsesWith(NewDef);
    889       DeadInsts.push_back(DU.NarrowUse);
    890     }
    891     // Now that the extend is gone, we want to expose it's uses for potential
    892     // further simplification. We don't need to directly inform SimplifyIVUsers
    893     // of the new users, because their parent IV will be processed later as a
    894     // new loop phi. If we preserved IVUsers analysis, we would also want to
    895     // push the uses of WideDef here.
    896 
    897     // No further widening is needed. The deceased [sz]ext had done it for us.
    898     return 0;
    899   }
    900 
    901   // Does this user itself evaluate to a recurrence after widening?
    902   const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(DU.NarrowUse);
    903   if (!WideAddRec) {
    904       WideAddRec = GetExtendedOperandRecurrence(DU);
    905   }
    906   if (!WideAddRec) {
    907     // This user does not evaluate to a recurence after widening, so don't
    908     // follow it. Instead insert a Trunc to kill off the original use,
    909     // eventually isolating the original narrow IV so it can be removed.
    910     IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT));
    911     Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
    912     DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
    913     return 0;
    914   }
    915   // Assume block terminators cannot evaluate to a recurrence. We can't to
    916   // insert a Trunc after a terminator if there happens to be a critical edge.
    917   assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
    918          "SCEV is not expected to evaluate a block terminator");
    919 
    920   // Reuse the IV increment that SCEVExpander created as long as it dominates
    921   // NarrowUse.
    922   Instruction *WideUse = 0;
    923   if (WideAddRec == WideIncExpr
    924       && Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
    925     WideUse = WideInc;
    926   else {
    927     WideUse = CloneIVUser(DU);
    928     if (!WideUse)
    929       return 0;
    930   }
    931   // Evaluation of WideAddRec ensured that the narrow expression could be
    932   // extended outside the loop without overflow. This suggests that the wide use
    933   // evaluates to the same expression as the extended narrow use, but doesn't
    934   // absolutely guarantee it. Hence the following failsafe check. In rare cases
    935   // where it fails, we simply throw away the newly created wide use.
    936   if (WideAddRec != SE->getSCEV(WideUse)) {
    937     DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse
    938           << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n");
    939     DeadInsts.push_back(WideUse);
    940     return 0;
    941   }
    942 
    943   // Returning WideUse pushes it on the worklist.
    944   return WideUse;
    945 }
    946 
    947 /// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers.
    948 ///
    949 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
    950   for (Value::use_iterator UI = NarrowDef->use_begin(),
    951          UE = NarrowDef->use_end(); UI != UE; ++UI) {
    952     Instruction *NarrowUse = cast<Instruction>(*UI);
    953 
    954     // Handle data flow merges and bizarre phi cycles.
    955     if (!Widened.insert(NarrowUse))
    956       continue;
    957 
    958     NarrowIVUsers.push_back(NarrowIVDefUse(NarrowDef, NarrowUse, WideDef));
    959   }
    960 }
    961 
    962 /// CreateWideIV - Process a single induction variable. First use the
    963 /// SCEVExpander to create a wide induction variable that evaluates to the same
    964 /// recurrence as the original narrow IV. Then use a worklist to forward
    965 /// traverse the narrow IV's def-use chain. After WidenIVUse has processed all
    966 /// interesting IV users, the narrow IV will be isolated for removal by
    967 /// DeleteDeadPHIs.
    968 ///
    969 /// It would be simpler to delete uses as they are processed, but we must avoid
    970 /// invalidating SCEV expressions.
    971 ///
    972 PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) {
    973   // Is this phi an induction variable?
    974   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
    975   if (!AddRec)
    976     return NULL;
    977 
    978   // Widen the induction variable expression.
    979   const SCEV *WideIVExpr = IsSigned ?
    980     SE->getSignExtendExpr(AddRec, WideType) :
    981     SE->getZeroExtendExpr(AddRec, WideType);
    982 
    983   assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
    984          "Expect the new IV expression to preserve its type");
    985 
    986   // Can the IV be extended outside the loop without overflow?
    987   AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
    988   if (!AddRec || AddRec->getLoop() != L)
    989     return NULL;
    990 
    991   // An AddRec must have loop-invariant operands. Since this AddRec is
    992   // materialized by a loop header phi, the expression cannot have any post-loop
    993   // operands, so they must dominate the loop header.
    994   assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
    995          SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader())
    996          && "Loop header phi recurrence inputs do not dominate the loop");
    997 
    998   // The rewriter provides a value for the desired IV expression. This may
    999   // either find an existing phi or materialize a new one. Either way, we
   1000   // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
   1001   // of the phi-SCC dominates the loop entry.
   1002   Instruction *InsertPt = L->getHeader()->begin();
   1003   WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
   1004 
   1005   // Remembering the WideIV increment generated by SCEVExpander allows
   1006   // WidenIVUse to reuse it when widening the narrow IV's increment. We don't
   1007   // employ a general reuse mechanism because the call above is the only call to
   1008   // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
   1009   if (BasicBlock *LatchBlock = L->getLoopLatch()) {
   1010     WideInc =
   1011       cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
   1012     WideIncExpr = SE->getSCEV(WideInc);
   1013   }
   1014 
   1015   DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
   1016   ++NumWidened;
   1017 
   1018   // Traverse the def-use chain using a worklist starting at the original IV.
   1019   assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
   1020 
   1021   Widened.insert(OrigPhi);
   1022   pushNarrowIVUsers(OrigPhi, WidePhi);
   1023 
   1024   while (!NarrowIVUsers.empty()) {
   1025     NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
   1026 
   1027     // Process a def-use edge. This may replace the use, so don't hold a
   1028     // use_iterator across it.
   1029     Instruction *WideUse = WidenIVUse(DU, Rewriter);
   1030 
   1031     // Follow all def-use edges from the previous narrow use.
   1032     if (WideUse)
   1033       pushNarrowIVUsers(DU.NarrowUse, WideUse);
   1034 
   1035     // WidenIVUse may have removed the def-use edge.
   1036     if (DU.NarrowDef->use_empty())
   1037       DeadInsts.push_back(DU.NarrowDef);
   1038   }
   1039   return WidePhi;
   1040 }
   1041 
   1042 //===----------------------------------------------------------------------===//
   1043 //  Simplification of IV users based on SCEV evaluation.
   1044 //===----------------------------------------------------------------------===//
   1045 
   1046 
   1047 /// SimplifyAndExtend - Iteratively perform simplification on a worklist of IV
   1048 /// users. Each successive simplification may push more users which may
   1049 /// themselves be candidates for simplification.
   1050 ///
   1051 /// Sign/Zero extend elimination is interleaved with IV simplification.
   1052 ///
   1053 void IndVarSimplify::SimplifyAndExtend(Loop *L,
   1054                                        SCEVExpander &Rewriter,
   1055                                        LPPassManager &LPM) {
   1056   SmallVector<WideIVInfo, 8> WideIVs;
   1057 
   1058   SmallVector<PHINode*, 8> LoopPhis;
   1059   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
   1060     LoopPhis.push_back(cast<PHINode>(I));
   1061   }
   1062   // Each round of simplification iterates through the SimplifyIVUsers worklist
   1063   // for all current phis, then determines whether any IVs can be
   1064   // widened. Widening adds new phis to LoopPhis, inducing another round of
   1065   // simplification on the wide IVs.
   1066   while (!LoopPhis.empty()) {
   1067     // Evaluate as many IV expressions as possible before widening any IVs. This
   1068     // forces SCEV to set no-wrap flags before evaluating sign/zero
   1069     // extension. The first time SCEV attempts to normalize sign/zero extension,
   1070     // the result becomes final. So for the most predictable results, we delay
   1071     // evaluation of sign/zero extend evaluation until needed, and avoid running
   1072     // other SCEV based analysis prior to SimplifyAndExtend.
   1073     do {
   1074       PHINode *CurrIV = LoopPhis.pop_back_val();
   1075 
   1076       // Information about sign/zero extensions of CurrIV.
   1077       WideIVVisitor WIV(CurrIV, SE, TD);
   1078 
   1079       Changed |= simplifyUsersOfIV(CurrIV, SE, &LPM, DeadInsts, &WIV);
   1080 
   1081       if (WIV.WI.WidestNativeType) {
   1082         WideIVs.push_back(WIV.WI);
   1083       }
   1084     } while(!LoopPhis.empty());
   1085 
   1086     for (; !WideIVs.empty(); WideIVs.pop_back()) {
   1087       WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts);
   1088       if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) {
   1089         Changed = true;
   1090         LoopPhis.push_back(WidePhi);
   1091       }
   1092     }
   1093   }
   1094 }
   1095 
   1096 //===----------------------------------------------------------------------===//
   1097 //  LinearFunctionTestReplace and its kin. Rewrite the loop exit condition.
   1098 //===----------------------------------------------------------------------===//
   1099 
   1100 /// Check for expressions that ScalarEvolution generates to compute
   1101 /// BackedgeTakenInfo. If these expressions have not been reduced, then
   1102 /// expanding them may incur additional cost (albeit in the loop preheader).
   1103 static bool isHighCostExpansion(const SCEV *S, BranchInst *BI,
   1104                                 SmallPtrSet<const SCEV*, 8> &Processed,
   1105                                 ScalarEvolution *SE) {
   1106   if (!Processed.insert(S))
   1107     return false;
   1108 
   1109   // If the backedge-taken count is a UDiv, it's very likely a UDiv that
   1110   // ScalarEvolution's HowFarToZero or HowManyLessThans produced to compute a
   1111   // precise expression, rather than a UDiv from the user's code. If we can't
   1112   // find a UDiv in the code with some simple searching, assume the former and
   1113   // forego rewriting the loop.
   1114   if (isa<SCEVUDivExpr>(S)) {
   1115     ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition());
   1116     if (!OrigCond) return true;
   1117     const SCEV *R = SE->getSCEV(OrigCond->getOperand(1));
   1118     R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1));
   1119     if (R != S) {
   1120       const SCEV *L = SE->getSCEV(OrigCond->getOperand(0));
   1121       L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1));
   1122       if (L != S)
   1123         return true;
   1124     }
   1125   }
   1126 
   1127   // Recurse past add expressions, which commonly occur in the
   1128   // BackedgeTakenCount. They may already exist in program code, and if not,
   1129   // they are not too expensive rematerialize.
   1130   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
   1131     for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
   1132          I != E; ++I) {
   1133       if (isHighCostExpansion(*I, BI, Processed, SE))
   1134         return true;
   1135     }
   1136     return false;
   1137   }
   1138 
   1139   // HowManyLessThans uses a Max expression whenever the loop is not guarded by
   1140   // the exit condition.
   1141   if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S))
   1142     return true;
   1143 
   1144   // If we haven't recognized an expensive SCEV pattern, assume it's an
   1145   // expression produced by program code.
   1146   return false;
   1147 }
   1148 
   1149 /// canExpandBackedgeTakenCount - Return true if this loop's backedge taken
   1150 /// count expression can be safely and cheaply expanded into an instruction
   1151 /// sequence that can be used by LinearFunctionTestReplace.
   1152 ///
   1153 /// TODO: This fails for pointer-type loop counters with greater than one byte
   1154 /// strides, consequently preventing LFTR from running. For the purpose of LFTR
   1155 /// we could skip this check in the case that the LFTR loop counter (chosen by
   1156 /// FindLoopCounter) is also pointer type. Instead, we could directly convert
   1157 /// the loop test to an inequality test by checking the target data's alignment
   1158 /// of element types (given that the initial pointer value originates from or is
   1159 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint).
   1160 /// However, we don't yet have a strong motivation for converting loop tests
   1161 /// into inequality tests.
   1162 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) {
   1163   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
   1164   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
   1165       BackedgeTakenCount->isZero())
   1166     return false;
   1167 
   1168   if (!L->getExitingBlock())
   1169     return false;
   1170 
   1171   // Can't rewrite non-branch yet.
   1172   BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
   1173   if (!BI)
   1174     return false;
   1175 
   1176   SmallPtrSet<const SCEV*, 8> Processed;
   1177   if (isHighCostExpansion(BackedgeTakenCount, BI, Processed, SE))
   1178     return false;
   1179 
   1180   return true;
   1181 }
   1182 
   1183 /// getLoopPhiForCounter - Return the loop header phi IFF IncV adds a loop
   1184 /// invariant value to the phi.
   1185 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) {
   1186   Instruction *IncI = dyn_cast<Instruction>(IncV);
   1187   if (!IncI)
   1188     return 0;
   1189 
   1190   switch (IncI->getOpcode()) {
   1191   case Instruction::Add:
   1192   case Instruction::Sub:
   1193     break;
   1194   case Instruction::GetElementPtr:
   1195     // An IV counter must preserve its type.
   1196     if (IncI->getNumOperands() == 2)
   1197       break;
   1198   default:
   1199     return 0;
   1200   }
   1201 
   1202   PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
   1203   if (Phi && Phi->getParent() == L->getHeader()) {
   1204     if (isLoopInvariant(IncI->getOperand(1), L, DT))
   1205       return Phi;
   1206     return 0;
   1207   }
   1208   if (IncI->getOpcode() == Instruction::GetElementPtr)
   1209     return 0;
   1210 
   1211   // Allow add/sub to be commuted.
   1212   Phi = dyn_cast<PHINode>(IncI->getOperand(1));
   1213   if (Phi && Phi->getParent() == L->getHeader()) {
   1214     if (isLoopInvariant(IncI->getOperand(0), L, DT))
   1215       return Phi;
   1216   }
   1217   return 0;
   1218 }
   1219 
   1220 /// Return the compare guarding the loop latch, or NULL for unrecognized tests.
   1221 static ICmpInst *getLoopTest(Loop *L) {
   1222   assert(L->getExitingBlock() && "expected loop exit");
   1223 
   1224   BasicBlock *LatchBlock = L->getLoopLatch();
   1225   // Don't bother with LFTR if the loop is not properly simplified.
   1226   if (!LatchBlock)
   1227     return 0;
   1228 
   1229   BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
   1230   assert(BI && "expected exit branch");
   1231 
   1232   return dyn_cast<ICmpInst>(BI->getCondition());
   1233 }
   1234 
   1235 /// needsLFTR - LinearFunctionTestReplace policy. Return true unless we can show
   1236 /// that the current exit test is already sufficiently canonical.
   1237 static bool needsLFTR(Loop *L, DominatorTree *DT) {
   1238   // Do LFTR to simplify the exit condition to an ICMP.
   1239   ICmpInst *Cond = getLoopTest(L);
   1240   if (!Cond)
   1241     return true;
   1242 
   1243   // Do LFTR to simplify the exit ICMP to EQ/NE
   1244   ICmpInst::Predicate Pred = Cond->getPredicate();
   1245   if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
   1246     return true;
   1247 
   1248   // Look for a loop invariant RHS
   1249   Value *LHS = Cond->getOperand(0);
   1250   Value *RHS = Cond->getOperand(1);
   1251   if (!isLoopInvariant(RHS, L, DT)) {
   1252     if (!isLoopInvariant(LHS, L, DT))
   1253       return true;
   1254     std::swap(LHS, RHS);
   1255   }
   1256   // Look for a simple IV counter LHS
   1257   PHINode *Phi = dyn_cast<PHINode>(LHS);
   1258   if (!Phi)
   1259     Phi = getLoopPhiForCounter(LHS, L, DT);
   1260 
   1261   if (!Phi)
   1262     return true;
   1263 
   1264   // Do LFTR if the exit condition's IV is *not* a simple counter.
   1265   Value *IncV = Phi->getIncomingValueForBlock(L->getLoopLatch());
   1266   return Phi != getLoopPhiForCounter(IncV, L, DT);
   1267 }
   1268 
   1269 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
   1270 /// down to checking that all operands are constant and listing instructions
   1271 /// that may hide undef.
   1272 static bool hasConcreteDefImpl(Value *V, SmallPtrSet<Value*, 8> &Visited,
   1273                                unsigned Depth) {
   1274   if (isa<Constant>(V))
   1275     return !isa<UndefValue>(V);
   1276 
   1277   if (Depth >= 6)
   1278     return false;
   1279 
   1280   // Conservatively handle non-constant non-instructions. For example, Arguments
   1281   // may be undef.
   1282   Instruction *I = dyn_cast<Instruction>(V);
   1283   if (!I)
   1284     return false;
   1285 
   1286   // Load and return values may be undef.
   1287   if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
   1288     return false;
   1289 
   1290   // Optimistically handle other instructions.
   1291   for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) {
   1292     if (!Visited.insert(*OI))
   1293       continue;
   1294     if (!hasConcreteDefImpl(*OI, Visited, Depth+1))
   1295       return false;
   1296   }
   1297   return true;
   1298 }
   1299 
   1300 /// Return true if the given value is concrete. We must prove that undef can
   1301 /// never reach it.
   1302 ///
   1303 /// TODO: If we decide that this is a good approach to checking for undef, we
   1304 /// may factor it into a common location.
   1305 static bool hasConcreteDef(Value *V) {
   1306   SmallPtrSet<Value*, 8> Visited;
   1307   Visited.insert(V);
   1308   return hasConcreteDefImpl(V, Visited, 0);
   1309 }
   1310 
   1311 /// AlmostDeadIV - Return true if this IV has any uses other than the (soon to
   1312 /// be rewritten) loop exit test.
   1313 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
   1314   int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
   1315   Value *IncV = Phi->getIncomingValue(LatchIdx);
   1316 
   1317   for (Value::use_iterator UI = Phi->use_begin(), UE = Phi->use_end();
   1318        UI != UE; ++UI) {
   1319     if (*UI != Cond && *UI != IncV) return false;
   1320   }
   1321 
   1322   for (Value::use_iterator UI = IncV->use_begin(), UE = IncV->use_end();
   1323        UI != UE; ++UI) {
   1324     if (*UI != Cond && *UI != Phi) return false;
   1325   }
   1326   return true;
   1327 }
   1328 
   1329 /// FindLoopCounter - Find an affine IV in canonical form.
   1330 ///
   1331 /// BECount may be an i8* pointer type. The pointer difference is already
   1332 /// valid count without scaling the address stride, so it remains a pointer
   1333 /// expression as far as SCEV is concerned.
   1334 ///
   1335 /// Currently only valid for LFTR. See the comments on hasConcreteDef below.
   1336 ///
   1337 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount
   1338 ///
   1339 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
   1340 /// This is difficult in general for SCEV because of potential overflow. But we
   1341 /// could at least handle constant BECounts.
   1342 static PHINode *
   1343 FindLoopCounter(Loop *L, const SCEV *BECount,
   1344                 ScalarEvolution *SE, DominatorTree *DT, const TargetData *TD) {
   1345   uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
   1346 
   1347   Value *Cond =
   1348     cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition();
   1349 
   1350   // Loop over all of the PHI nodes, looking for a simple counter.
   1351   PHINode *BestPhi = 0;
   1352   const SCEV *BestInit = 0;
   1353   BasicBlock *LatchBlock = L->getLoopLatch();
   1354   assert(LatchBlock && "needsLFTR should guarantee a loop latch");
   1355 
   1356   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
   1357     PHINode *Phi = cast<PHINode>(I);
   1358     if (!SE->isSCEVable(Phi->getType()))
   1359       continue;
   1360 
   1361     // Avoid comparing an integer IV against a pointer Limit.
   1362     if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
   1363       continue;
   1364 
   1365     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
   1366     if (!AR || AR->getLoop() != L || !AR->isAffine())
   1367       continue;
   1368 
   1369     // AR may be a pointer type, while BECount is an integer type.
   1370     // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
   1371     // AR may not be a narrower type, or we may never exit.
   1372     uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
   1373     if (PhiWidth < BCWidth || (TD && !TD->isLegalInteger(PhiWidth)))
   1374       continue;
   1375 
   1376     const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
   1377     if (!Step || !Step->isOne())
   1378       continue;
   1379 
   1380     int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
   1381     Value *IncV = Phi->getIncomingValue(LatchIdx);
   1382     if (getLoopPhiForCounter(IncV, L, DT) != Phi)
   1383       continue;
   1384 
   1385     // Avoid reusing a potentially undef value to compute other values that may
   1386     // have originally had a concrete definition.
   1387     if (!hasConcreteDef(Phi)) {
   1388       // We explicitly allow unknown phis as long as they are already used by
   1389       // the loop test. In this case we assume that performing LFTR could not
   1390       // increase the number of undef users.
   1391       if (ICmpInst *Cond = getLoopTest(L)) {
   1392         if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT)
   1393             && Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) {
   1394           continue;
   1395         }
   1396       }
   1397     }
   1398     const SCEV *Init = AR->getStart();
   1399 
   1400     if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
   1401       // Don't force a live loop counter if another IV can be used.
   1402       if (AlmostDeadIV(Phi, LatchBlock, Cond))
   1403         continue;
   1404 
   1405       // Prefer to count-from-zero. This is a more "canonical" counter form. It
   1406       // also prefers integer to pointer IVs.
   1407       if (BestInit->isZero() != Init->isZero()) {
   1408         if (BestInit->isZero())
   1409           continue;
   1410       }
   1411       // If two IVs both count from zero or both count from nonzero then the
   1412       // narrower is likely a dead phi that has been widened. Use the wider phi
   1413       // to allow the other to be eliminated.
   1414       else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
   1415         continue;
   1416     }
   1417     BestPhi = Phi;
   1418     BestInit = Init;
   1419   }
   1420   return BestPhi;
   1421 }
   1422 
   1423 /// genLoopLimit - Help LinearFunctionTestReplace by generating a value that
   1424 /// holds the RHS of the new loop test.
   1425 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L,
   1426                            SCEVExpander &Rewriter, ScalarEvolution *SE) {
   1427   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
   1428   assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
   1429   const SCEV *IVInit = AR->getStart();
   1430 
   1431   // IVInit may be a pointer while IVCount is an integer when FindLoopCounter
   1432   // finds a valid pointer IV. Sign extend BECount in order to materialize a
   1433   // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
   1434   // the existing GEPs whenever possible.
   1435   if (IndVar->getType()->isPointerTy()
   1436       && !IVCount->getType()->isPointerTy()) {
   1437 
   1438     Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
   1439     const SCEV *IVOffset = SE->getTruncateOrSignExtend(IVCount, OfsTy);
   1440 
   1441     // Expand the code for the iteration count.
   1442     assert(SE->isLoopInvariant(IVOffset, L) &&
   1443            "Computed iteration count is not loop invariant!");
   1444     BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
   1445     Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI);
   1446 
   1447     Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
   1448     assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter");
   1449     // We could handle pointer IVs other than i8*, but we need to compensate for
   1450     // gep index scaling. See canExpandBackedgeTakenCount comments.
   1451     assert(SE->getSizeOfExpr(
   1452              cast<PointerType>(GEPBase->getType())->getElementType())->isOne()
   1453            && "unit stride pointer IV must be i8*");
   1454 
   1455     IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
   1456     return Builder.CreateGEP(GEPBase, GEPOffset, "lftr.limit");
   1457   }
   1458   else {
   1459     // In any other case, convert both IVInit and IVCount to integers before
   1460     // comparing. This may result in SCEV expension of pointers, but in practice
   1461     // SCEV will fold the pointer arithmetic away as such:
   1462     // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
   1463     //
   1464     // Valid Cases: (1) both integers is most common; (2) both may be pointers
   1465     // for simple memset-style loops; (3) IVInit is an integer and IVCount is a
   1466     // pointer may occur when enable-iv-rewrite generates a canonical IV on top
   1467     // of case #2.
   1468 
   1469     const SCEV *IVLimit = 0;
   1470     // For unit stride, IVCount = Start + BECount with 2's complement overflow.
   1471     // For non-zero Start, compute IVCount here.
   1472     if (AR->getStart()->isZero())
   1473       IVLimit = IVCount;
   1474     else {
   1475       assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
   1476       const SCEV *IVInit = AR->getStart();
   1477 
   1478       // For integer IVs, truncate the IV before computing IVInit + BECount.
   1479       if (SE->getTypeSizeInBits(IVInit->getType())
   1480           > SE->getTypeSizeInBits(IVCount->getType()))
   1481         IVInit = SE->getTruncateExpr(IVInit, IVCount->getType());
   1482 
   1483       IVLimit = SE->getAddExpr(IVInit, IVCount);
   1484     }
   1485     // Expand the code for the iteration count.
   1486     BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
   1487     IRBuilder<> Builder(BI);
   1488     assert(SE->isLoopInvariant(IVLimit, L) &&
   1489            "Computed iteration count is not loop invariant!");
   1490     // Ensure that we generate the same type as IndVar, or a smaller integer
   1491     // type. In the presence of null pointer values, we have an integer type
   1492     // SCEV expression (IVInit) for a pointer type IV value (IndVar).
   1493     Type *LimitTy = IVCount->getType()->isPointerTy() ?
   1494       IndVar->getType() : IVCount->getType();
   1495     return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
   1496   }
   1497 }
   1498 
   1499 /// LinearFunctionTestReplace - This method rewrites the exit condition of the
   1500 /// loop to be a canonical != comparison against the incremented loop induction
   1501 /// variable.  This pass is able to rewrite the exit tests of any loop where the
   1502 /// SCEV analysis can determine a loop-invariant trip count of the loop, which
   1503 /// is actually a much broader range than just linear tests.
   1504 Value *IndVarSimplify::
   1505 LinearFunctionTestReplace(Loop *L,
   1506                           const SCEV *BackedgeTakenCount,
   1507                           PHINode *IndVar,
   1508                           SCEVExpander &Rewriter) {
   1509   assert(canExpandBackedgeTakenCount(L, SE) && "precondition");
   1510 
   1511   // LFTR can ignore IV overflow and truncate to the width of
   1512   // BECount. This avoids materializing the add(zext(add)) expression.
   1513   Type *CntTy = BackedgeTakenCount->getType();
   1514 
   1515   const SCEV *IVCount = BackedgeTakenCount;
   1516 
   1517   // If the exiting block is the same as the backedge block, we prefer to
   1518   // compare against the post-incremented value, otherwise we must compare
   1519   // against the preincremented value.
   1520   Value *CmpIndVar;
   1521   if (L->getExitingBlock() == L->getLoopLatch()) {
   1522     // Add one to the "backedge-taken" count to get the trip count.
   1523     // If this addition may overflow, we have to be more pessimistic and
   1524     // cast the induction variable before doing the add.
   1525     const SCEV *N =
   1526       SE->getAddExpr(IVCount, SE->getConstant(IVCount->getType(), 1));
   1527     if (CntTy == IVCount->getType())
   1528       IVCount = N;
   1529     else {
   1530       const SCEV *Zero = SE->getConstant(IVCount->getType(), 0);
   1531       if ((isa<SCEVConstant>(N) && !N->isZero()) ||
   1532           SE->isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
   1533         // No overflow. Cast the sum.
   1534         IVCount = SE->getTruncateOrZeroExtend(N, CntTy);
   1535       } else {
   1536         // Potential overflow. Cast before doing the add.
   1537         IVCount = SE->getTruncateOrZeroExtend(IVCount, CntTy);
   1538         IVCount = SE->getAddExpr(IVCount, SE->getConstant(CntTy, 1));
   1539       }
   1540     }
   1541     // The BackedgeTaken expression contains the number of times that the
   1542     // backedge branches to the loop header.  This is one less than the
   1543     // number of times the loop executes, so use the incremented indvar.
   1544     CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
   1545   } else {
   1546     // We must use the preincremented value...
   1547     IVCount = SE->getTruncateOrZeroExtend(IVCount, CntTy);
   1548     CmpIndVar = IndVar;
   1549   }
   1550 
   1551   Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE);
   1552   assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy()
   1553          && "genLoopLimit missed a cast");
   1554 
   1555   // Insert a new icmp_ne or icmp_eq instruction before the branch.
   1556   BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
   1557   ICmpInst::Predicate P;
   1558   if (L->contains(BI->getSuccessor(0)))
   1559     P = ICmpInst::ICMP_NE;
   1560   else
   1561     P = ICmpInst::ICMP_EQ;
   1562 
   1563   DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
   1564                << "      LHS:" << *CmpIndVar << '\n'
   1565                << "       op:\t"
   1566                << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
   1567                << "      RHS:\t" << *ExitCnt << "\n"
   1568                << "  IVCount:\t" << *IVCount << "\n");
   1569 
   1570   IRBuilder<> Builder(BI);
   1571   if (SE->getTypeSizeInBits(CmpIndVar->getType())
   1572       > SE->getTypeSizeInBits(ExitCnt->getType())) {
   1573     CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
   1574                                     "lftr.wideiv");
   1575   }
   1576 
   1577   Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
   1578   Value *OrigCond = BI->getCondition();
   1579   // It's tempting to use replaceAllUsesWith here to fully replace the old
   1580   // comparison, but that's not immediately safe, since users of the old
   1581   // comparison may not be dominated by the new comparison. Instead, just
   1582   // update the branch to use the new comparison; in the common case this
   1583   // will make old comparison dead.
   1584   BI->setCondition(Cond);
   1585   DeadInsts.push_back(OrigCond);
   1586 
   1587   ++NumLFTR;
   1588   Changed = true;
   1589   return Cond;
   1590 }
   1591 
   1592 //===----------------------------------------------------------------------===//
   1593 //  SinkUnusedInvariants. A late subpass to cleanup loop preheaders.
   1594 //===----------------------------------------------------------------------===//
   1595 
   1596 /// If there's a single exit block, sink any loop-invariant values that
   1597 /// were defined in the preheader but not used inside the loop into the
   1598 /// exit block to reduce register pressure in the loop.
   1599 void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
   1600   BasicBlock *ExitBlock = L->getExitBlock();
   1601   if (!ExitBlock) return;
   1602 
   1603   BasicBlock *Preheader = L->getLoopPreheader();
   1604   if (!Preheader) return;
   1605 
   1606   Instruction *InsertPt = ExitBlock->getFirstInsertionPt();
   1607   BasicBlock::iterator I = Preheader->getTerminator();
   1608   while (I != Preheader->begin()) {
   1609     --I;
   1610     // New instructions were inserted at the end of the preheader.
   1611     if (isa<PHINode>(I))
   1612       break;
   1613 
   1614     // Don't move instructions which might have side effects, since the side
   1615     // effects need to complete before instructions inside the loop.  Also don't
   1616     // move instructions which might read memory, since the loop may modify
   1617     // memory. Note that it's okay if the instruction might have undefined
   1618     // behavior: LoopSimplify guarantees that the preheader dominates the exit
   1619     // block.
   1620     if (I->mayHaveSideEffects() || I->mayReadFromMemory())
   1621       continue;
   1622 
   1623     // Skip debug info intrinsics.
   1624     if (isa<DbgInfoIntrinsic>(I))
   1625       continue;
   1626 
   1627     // Skip landingpad instructions.
   1628     if (isa<LandingPadInst>(I))
   1629       continue;
   1630 
   1631     // Don't sink alloca: we never want to sink static alloca's out of the
   1632     // entry block, and correctly sinking dynamic alloca's requires
   1633     // checks for stacksave/stackrestore intrinsics.
   1634     // FIXME: Refactor this check somehow?
   1635     if (isa<AllocaInst>(I))
   1636       continue;
   1637 
   1638     // Determine if there is a use in or before the loop (direct or
   1639     // otherwise).
   1640     bool UsedInLoop = false;
   1641     for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
   1642          UI != UE; ++UI) {
   1643       User *U = *UI;
   1644       BasicBlock *UseBB = cast<Instruction>(U)->getParent();
   1645       if (PHINode *P = dyn_cast<PHINode>(U)) {
   1646         unsigned i =
   1647           PHINode::getIncomingValueNumForOperand(UI.getOperandNo());
   1648         UseBB = P->getIncomingBlock(i);
   1649       }
   1650       if (UseBB == Preheader || L->contains(UseBB)) {
   1651         UsedInLoop = true;
   1652         break;
   1653       }
   1654     }
   1655 
   1656     // If there is, the def must remain in the preheader.
   1657     if (UsedInLoop)
   1658       continue;
   1659 
   1660     // Otherwise, sink it to the exit block.
   1661     Instruction *ToMove = I;
   1662     bool Done = false;
   1663 
   1664     if (I != Preheader->begin()) {
   1665       // Skip debug info intrinsics.
   1666       do {
   1667         --I;
   1668       } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
   1669 
   1670       if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
   1671         Done = true;
   1672     } else {
   1673       Done = true;
   1674     }
   1675 
   1676     ToMove->moveBefore(InsertPt);
   1677     if (Done) break;
   1678     InsertPt = ToMove;
   1679   }
   1680 }
   1681 
   1682 //===----------------------------------------------------------------------===//
   1683 //  IndVarSimplify driver. Manage several subpasses of IV simplification.
   1684 //===----------------------------------------------------------------------===//
   1685 
   1686 bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
   1687   // If LoopSimplify form is not available, stay out of trouble. Some notes:
   1688   //  - LSR currently only supports LoopSimplify-form loops. Indvars'
   1689   //    canonicalization can be a pessimization without LSR to "clean up"
   1690   //    afterwards.
   1691   //  - We depend on having a preheader; in particular,
   1692   //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
   1693   //    and we're in trouble if we can't find the induction variable even when
   1694   //    we've manually inserted one.
   1695   if (!L->isLoopSimplifyForm())
   1696     return false;
   1697 
   1698   LI = &getAnalysis<LoopInfo>();
   1699   SE = &getAnalysis<ScalarEvolution>();
   1700   DT = &getAnalysis<DominatorTree>();
   1701   TD = getAnalysisIfAvailable<TargetData>();
   1702   TLI = getAnalysisIfAvailable<TargetLibraryInfo>();
   1703 
   1704   DeadInsts.clear();
   1705   Changed = false;
   1706 
   1707   // If there are any floating-point recurrences, attempt to
   1708   // transform them to use integer recurrences.
   1709   RewriteNonIntegerIVs(L);
   1710 
   1711   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
   1712 
   1713   // Create a rewriter object which we'll use to transform the code with.
   1714   SCEVExpander Rewriter(*SE, "indvars");
   1715 #ifndef NDEBUG
   1716   Rewriter.setDebugType(DEBUG_TYPE);
   1717 #endif
   1718 
   1719   // Eliminate redundant IV users.
   1720   //
   1721   // Simplification works best when run before other consumers of SCEV. We
   1722   // attempt to avoid evaluating SCEVs for sign/zero extend operations until
   1723   // other expressions involving loop IVs have been evaluated. This helps SCEV
   1724   // set no-wrap flags before normalizing sign/zero extension.
   1725   Rewriter.disableCanonicalMode();
   1726   SimplifyAndExtend(L, Rewriter, LPM);
   1727 
   1728   // Check to see if this loop has a computable loop-invariant execution count.
   1729   // If so, this means that we can compute the final value of any expressions
   1730   // that are recurrent in the loop, and substitute the exit values from the
   1731   // loop into any instructions outside of the loop that use the final values of
   1732   // the current expressions.
   1733   //
   1734   if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
   1735     RewriteLoopExitValues(L, Rewriter);
   1736 
   1737   // Eliminate redundant IV cycles.
   1738   NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
   1739 
   1740   // If we have a trip count expression, rewrite the loop's exit condition
   1741   // using it.  We can currently only handle loops with a single exit.
   1742   if (canExpandBackedgeTakenCount(L, SE) && needsLFTR(L, DT)) {
   1743     PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT, TD);
   1744     if (IndVar) {
   1745       // Check preconditions for proper SCEVExpander operation. SCEV does not
   1746       // express SCEVExpander's dependencies, such as LoopSimplify. Instead any
   1747       // pass that uses the SCEVExpander must do it. This does not work well for
   1748       // loop passes because SCEVExpander makes assumptions about all loops, while
   1749       // LoopPassManager only forces the current loop to be simplified.
   1750       //
   1751       // FIXME: SCEV expansion has no way to bail out, so the caller must
   1752       // explicitly check any assumptions made by SCEV. Brittle.
   1753       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount);
   1754       if (!AR || AR->getLoop()->getLoopPreheader())
   1755         (void)LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
   1756                                         Rewriter);
   1757     }
   1758   }
   1759   // Clear the rewriter cache, because values that are in the rewriter's cache
   1760   // can be deleted in the loop below, causing the AssertingVH in the cache to
   1761   // trigger.
   1762   Rewriter.clear();
   1763 
   1764   // Now that we're done iterating through lists, clean up any instructions
   1765   // which are now dead.
   1766   while (!DeadInsts.empty())
   1767     if (Instruction *Inst =
   1768           dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
   1769       RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
   1770 
   1771   // The Rewriter may not be used from this point on.
   1772 
   1773   // Loop-invariant instructions in the preheader that aren't used in the
   1774   // loop may be sunk below the loop to reduce register pressure.
   1775   SinkUnusedInvariants(L);
   1776 
   1777   // Clean up dead instructions.
   1778   Changed |= DeleteDeadPHIs(L->getHeader(), TLI);
   1779   // Check a post-condition.
   1780   assert(L->isLCSSAForm(*DT) &&
   1781          "Indvars did not leave the loop in lcssa form!");
   1782 
   1783   // Verify that LFTR, and any other change have not interfered with SCEV's
   1784   // ability to compute trip count.
   1785 #ifndef NDEBUG
   1786   if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
   1787     SE->forgetLoop(L);
   1788     const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
   1789     if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
   1790         SE->getTypeSizeInBits(NewBECount->getType()))
   1791       NewBECount = SE->getTruncateOrNoop(NewBECount,
   1792                                          BackedgeTakenCount->getType());
   1793     else
   1794       BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
   1795                                                  NewBECount->getType());
   1796     assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
   1797   }
   1798 #endif
   1799 
   1800   return Changed;
   1801 }
   1802