1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into simpler forms suitable for subsequent 12 // analysis and transformation. 13 // 14 // If the trip count of a loop is computable, this pass also makes the following 15 // changes: 16 // 1. The exit condition for the loop is canonicalized to compare the 17 // induction value against the exit value. This turns loops like: 18 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' 19 // 2. Any use outside of the loop of an expression derived from the indvar 20 // is changed to compute the derived value outside of the loop, eliminating 21 // the dependence on the exit value of the induction variable. If the only 22 // purpose of the loop is to compute the exit value of some derived 23 // expression, this transformation will make the loop dead. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #define DEBUG_TYPE "indvars" 28 #include "llvm/Transforms/Scalar.h" 29 #include "llvm/BasicBlock.h" 30 #include "llvm/Constants.h" 31 #include "llvm/Instructions.h" 32 #include "llvm/IntrinsicInst.h" 33 #include "llvm/LLVMContext.h" 34 #include "llvm/Type.h" 35 #include "llvm/Analysis/Dominators.h" 36 #include "llvm/Analysis/ScalarEvolutionExpander.h" 37 #include "llvm/Analysis/LoopInfo.h" 38 #include "llvm/Analysis/LoopPass.h" 39 #include "llvm/Support/CFG.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Transforms/Utils/Local.h" 44 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 45 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 46 #include "llvm/Target/TargetData.h" 47 #include "llvm/Target/TargetLibraryInfo.h" 48 #include "llvm/ADT/DenseMap.h" 49 #include "llvm/ADT/SmallVector.h" 50 #include "llvm/ADT/Statistic.h" 51 using namespace llvm; 52 53 STATISTIC(NumWidened , "Number of indvars widened"); 54 STATISTIC(NumReplaced , "Number of exit values replaced"); 55 STATISTIC(NumLFTR , "Number of loop exit tests replaced"); 56 STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated"); 57 STATISTIC(NumElimIV , "Number of congruent IVs eliminated"); 58 59 // Trip count verification can be enabled by default under NDEBUG if we 60 // implement a strong expression equivalence checker in SCEV. Until then, we 61 // use the verify-indvars flag, which may assert in some cases. 62 static cl::opt<bool> VerifyIndvars( 63 "verify-indvars", cl::Hidden, 64 cl::desc("Verify the ScalarEvolution result after running indvars")); 65 66 namespace { 67 class IndVarSimplify : public LoopPass { 68 LoopInfo *LI; 69 ScalarEvolution *SE; 70 DominatorTree *DT; 71 TargetData *TD; 72 TargetLibraryInfo *TLI; 73 74 SmallVector<WeakVH, 16> DeadInsts; 75 bool Changed; 76 public: 77 78 static char ID; // Pass identification, replacement for typeid 79 IndVarSimplify() : LoopPass(ID), LI(0), SE(0), DT(0), TD(0), 80 Changed(false) { 81 initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry()); 82 } 83 84 virtual bool runOnLoop(Loop *L, LPPassManager &LPM); 85 86 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 87 AU.addRequired<DominatorTree>(); 88 AU.addRequired<LoopInfo>(); 89 AU.addRequired<ScalarEvolution>(); 90 AU.addRequiredID(LoopSimplifyID); 91 AU.addRequiredID(LCSSAID); 92 AU.addPreserved<ScalarEvolution>(); 93 AU.addPreservedID(LoopSimplifyID); 94 AU.addPreservedID(LCSSAID); 95 AU.setPreservesCFG(); 96 } 97 98 private: 99 virtual void releaseMemory() { 100 DeadInsts.clear(); 101 } 102 103 bool isValidRewrite(Value *FromVal, Value *ToVal); 104 105 void HandleFloatingPointIV(Loop *L, PHINode *PH); 106 void RewriteNonIntegerIVs(Loop *L); 107 108 void SimplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LPPassManager &LPM); 109 110 void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter); 111 112 Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, 113 PHINode *IndVar, SCEVExpander &Rewriter); 114 115 void SinkUnusedInvariants(Loop *L); 116 }; 117 } 118 119 char IndVarSimplify::ID = 0; 120 INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars", 121 "Induction Variable Simplification", false, false) 122 INITIALIZE_PASS_DEPENDENCY(DominatorTree) 123 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 124 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 125 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 126 INITIALIZE_PASS_DEPENDENCY(LCSSA) 127 INITIALIZE_PASS_END(IndVarSimplify, "indvars", 128 "Induction Variable Simplification", false, false) 129 130 Pass *llvm::createIndVarSimplifyPass() { 131 return new IndVarSimplify(); 132 } 133 134 /// isValidRewrite - Return true if the SCEV expansion generated by the 135 /// rewriter can replace the original value. SCEV guarantees that it 136 /// produces the same value, but the way it is produced may be illegal IR. 137 /// Ideally, this function will only be called for verification. 138 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) { 139 // If an SCEV expression subsumed multiple pointers, its expansion could 140 // reassociate the GEP changing the base pointer. This is illegal because the 141 // final address produced by a GEP chain must be inbounds relative to its 142 // underlying object. Otherwise basic alias analysis, among other things, 143 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid 144 // producing an expression involving multiple pointers. Until then, we must 145 // bail out here. 146 // 147 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject 148 // because it understands lcssa phis while SCEV does not. 149 Value *FromPtr = FromVal; 150 Value *ToPtr = ToVal; 151 if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) { 152 FromPtr = GEP->getPointerOperand(); 153 } 154 if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) { 155 ToPtr = GEP->getPointerOperand(); 156 } 157 if (FromPtr != FromVal || ToPtr != ToVal) { 158 // Quickly check the common case 159 if (FromPtr == ToPtr) 160 return true; 161 162 // SCEV may have rewritten an expression that produces the GEP's pointer 163 // operand. That's ok as long as the pointer operand has the same base 164 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the 165 // base of a recurrence. This handles the case in which SCEV expansion 166 // converts a pointer type recurrence into a nonrecurrent pointer base 167 // indexed by an integer recurrence. 168 169 // If the GEP base pointer is a vector of pointers, abort. 170 if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy()) 171 return false; 172 173 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr)); 174 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr)); 175 if (FromBase == ToBase) 176 return true; 177 178 DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " 179 << *FromBase << " != " << *ToBase << "\n"); 180 181 return false; 182 } 183 return true; 184 } 185 186 /// Determine the insertion point for this user. By default, insert immediately 187 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the 188 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest 189 /// common dominator for the incoming blocks. 190 static Instruction *getInsertPointForUses(Instruction *User, Value *Def, 191 DominatorTree *DT) { 192 PHINode *PHI = dyn_cast<PHINode>(User); 193 if (!PHI) 194 return User; 195 196 Instruction *InsertPt = 0; 197 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { 198 if (PHI->getIncomingValue(i) != Def) 199 continue; 200 201 BasicBlock *InsertBB = PHI->getIncomingBlock(i); 202 if (!InsertPt) { 203 InsertPt = InsertBB->getTerminator(); 204 continue; 205 } 206 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB); 207 InsertPt = InsertBB->getTerminator(); 208 } 209 assert(InsertPt && "Missing phi operand"); 210 assert((!isa<Instruction>(Def) || 211 DT->dominates(cast<Instruction>(Def), InsertPt)) && 212 "def does not dominate all uses"); 213 return InsertPt; 214 } 215 216 //===----------------------------------------------------------------------===// 217 // RewriteNonIntegerIVs and helpers. Prefer integer IVs. 218 //===----------------------------------------------------------------------===// 219 220 /// ConvertToSInt - Convert APF to an integer, if possible. 221 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { 222 bool isExact = false; 223 if (&APF.getSemantics() == &APFloat::PPCDoubleDouble) 224 return false; 225 // See if we can convert this to an int64_t 226 uint64_t UIntVal; 227 if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero, 228 &isExact) != APFloat::opOK || !isExact) 229 return false; 230 IntVal = UIntVal; 231 return true; 232 } 233 234 /// HandleFloatingPointIV - If the loop has floating induction variable 235 /// then insert corresponding integer induction variable if possible. 236 /// For example, 237 /// for(double i = 0; i < 10000; ++i) 238 /// bar(i) 239 /// is converted into 240 /// for(int i = 0; i < 10000; ++i) 241 /// bar((double)i); 242 /// 243 void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) { 244 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 245 unsigned BackEdge = IncomingEdge^1; 246 247 // Check incoming value. 248 ConstantFP *InitValueVal = 249 dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); 250 251 int64_t InitValue; 252 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) 253 return; 254 255 // Check IV increment. Reject this PN if increment operation is not 256 // an add or increment value can not be represented by an integer. 257 BinaryOperator *Incr = 258 dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); 259 if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return; 260 261 // If this is not an add of the PHI with a constantfp, or if the constant fp 262 // is not an integer, bail out. 263 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); 264 int64_t IncValue; 265 if (IncValueVal == 0 || Incr->getOperand(0) != PN || 266 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) 267 return; 268 269 // Check Incr uses. One user is PN and the other user is an exit condition 270 // used by the conditional terminator. 271 Value::use_iterator IncrUse = Incr->use_begin(); 272 Instruction *U1 = cast<Instruction>(*IncrUse++); 273 if (IncrUse == Incr->use_end()) return; 274 Instruction *U2 = cast<Instruction>(*IncrUse++); 275 if (IncrUse != Incr->use_end()) return; 276 277 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't 278 // only used by a branch, we can't transform it. 279 FCmpInst *Compare = dyn_cast<FCmpInst>(U1); 280 if (!Compare) 281 Compare = dyn_cast<FCmpInst>(U2); 282 if (Compare == 0 || !Compare->hasOneUse() || 283 !isa<BranchInst>(Compare->use_back())) 284 return; 285 286 BranchInst *TheBr = cast<BranchInst>(Compare->use_back()); 287 288 // We need to verify that the branch actually controls the iteration count 289 // of the loop. If not, the new IV can overflow and no one will notice. 290 // The branch block must be in the loop and one of the successors must be out 291 // of the loop. 292 assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); 293 if (!L->contains(TheBr->getParent()) || 294 (L->contains(TheBr->getSuccessor(0)) && 295 L->contains(TheBr->getSuccessor(1)))) 296 return; 297 298 299 // If it isn't a comparison with an integer-as-fp (the exit value), we can't 300 // transform it. 301 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); 302 int64_t ExitValue; 303 if (ExitValueVal == 0 || 304 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) 305 return; 306 307 // Find new predicate for integer comparison. 308 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; 309 switch (Compare->getPredicate()) { 310 default: return; // Unknown comparison. 311 case CmpInst::FCMP_OEQ: 312 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; 313 case CmpInst::FCMP_ONE: 314 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; 315 case CmpInst::FCMP_OGT: 316 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; 317 case CmpInst::FCMP_OGE: 318 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; 319 case CmpInst::FCMP_OLT: 320 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; 321 case CmpInst::FCMP_OLE: 322 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; 323 } 324 325 // We convert the floating point induction variable to a signed i32 value if 326 // we can. This is only safe if the comparison will not overflow in a way 327 // that won't be trapped by the integer equivalent operations. Check for this 328 // now. 329 // TODO: We could use i64 if it is native and the range requires it. 330 331 // The start/stride/exit values must all fit in signed i32. 332 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) 333 return; 334 335 // If not actually striding (add x, 0.0), avoid touching the code. 336 if (IncValue == 0) 337 return; 338 339 // Positive and negative strides have different safety conditions. 340 if (IncValue > 0) { 341 // If we have a positive stride, we require the init to be less than the 342 // exit value. 343 if (InitValue >= ExitValue) 344 return; 345 346 uint32_t Range = uint32_t(ExitValue-InitValue); 347 // Check for infinite loop, either: 348 // while (i <= Exit) or until (i > Exit) 349 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) { 350 if (++Range == 0) return; // Range overflows. 351 } 352 353 unsigned Leftover = Range % uint32_t(IncValue); 354 355 // If this is an equality comparison, we require that the strided value 356 // exactly land on the exit value, otherwise the IV condition will wrap 357 // around and do things the fp IV wouldn't. 358 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 359 Leftover != 0) 360 return; 361 362 // If the stride would wrap around the i32 before exiting, we can't 363 // transform the IV. 364 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) 365 return; 366 367 } else { 368 // If we have a negative stride, we require the init to be greater than the 369 // exit value. 370 if (InitValue <= ExitValue) 371 return; 372 373 uint32_t Range = uint32_t(InitValue-ExitValue); 374 // Check for infinite loop, either: 375 // while (i >= Exit) or until (i < Exit) 376 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) { 377 if (++Range == 0) return; // Range overflows. 378 } 379 380 unsigned Leftover = Range % uint32_t(-IncValue); 381 382 // If this is an equality comparison, we require that the strided value 383 // exactly land on the exit value, otherwise the IV condition will wrap 384 // around and do things the fp IV wouldn't. 385 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 386 Leftover != 0) 387 return; 388 389 // If the stride would wrap around the i32 before exiting, we can't 390 // transform the IV. 391 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) 392 return; 393 } 394 395 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); 396 397 // Insert new integer induction variable. 398 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN); 399 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), 400 PN->getIncomingBlock(IncomingEdge)); 401 402 Value *NewAdd = 403 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), 404 Incr->getName()+".int", Incr); 405 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); 406 407 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, 408 ConstantInt::get(Int32Ty, ExitValue), 409 Compare->getName()); 410 411 // In the following deletions, PN may become dead and may be deleted. 412 // Use a WeakVH to observe whether this happens. 413 WeakVH WeakPH = PN; 414 415 // Delete the old floating point exit comparison. The branch starts using the 416 // new comparison. 417 NewCompare->takeName(Compare); 418 Compare->replaceAllUsesWith(NewCompare); 419 RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI); 420 421 // Delete the old floating point increment. 422 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType())); 423 RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI); 424 425 // If the FP induction variable still has uses, this is because something else 426 // in the loop uses its value. In order to canonicalize the induction 427 // variable, we chose to eliminate the IV and rewrite it in terms of an 428 // int->fp cast. 429 // 430 // We give preference to sitofp over uitofp because it is faster on most 431 // platforms. 432 if (WeakPH) { 433 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", 434 PN->getParent()->getFirstInsertionPt()); 435 PN->replaceAllUsesWith(Conv); 436 RecursivelyDeleteTriviallyDeadInstructions(PN, TLI); 437 } 438 Changed = true; 439 } 440 441 void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) { 442 // First step. Check to see if there are any floating-point recurrences. 443 // If there are, change them into integer recurrences, permitting analysis by 444 // the SCEV routines. 445 // 446 BasicBlock *Header = L->getHeader(); 447 448 SmallVector<WeakVH, 8> PHIs; 449 for (BasicBlock::iterator I = Header->begin(); 450 PHINode *PN = dyn_cast<PHINode>(I); ++I) 451 PHIs.push_back(PN); 452 453 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 454 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i])) 455 HandleFloatingPointIV(L, PN); 456 457 // If the loop previously had floating-point IV, ScalarEvolution 458 // may not have been able to compute a trip count. Now that we've done some 459 // re-writing, the trip count may be computable. 460 if (Changed) 461 SE->forgetLoop(L); 462 } 463 464 //===----------------------------------------------------------------------===// 465 // RewriteLoopExitValues - Optimize IV users outside the loop. 466 // As a side effect, reduces the amount of IV processing within the loop. 467 //===----------------------------------------------------------------------===// 468 469 /// RewriteLoopExitValues - Check to see if this loop has a computable 470 /// loop-invariant execution count. If so, this means that we can compute the 471 /// final value of any expressions that are recurrent in the loop, and 472 /// substitute the exit values from the loop into any instructions outside of 473 /// the loop that use the final values of the current expressions. 474 /// 475 /// This is mostly redundant with the regular IndVarSimplify activities that 476 /// happen later, except that it's more powerful in some cases, because it's 477 /// able to brute-force evaluate arbitrary instructions as long as they have 478 /// constant operands at the beginning of the loop. 479 void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) { 480 // Verify the input to the pass in already in LCSSA form. 481 assert(L->isLCSSAForm(*DT)); 482 483 SmallVector<BasicBlock*, 8> ExitBlocks; 484 L->getUniqueExitBlocks(ExitBlocks); 485 486 // Find all values that are computed inside the loop, but used outside of it. 487 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 488 // the exit blocks of the loop to find them. 489 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { 490 BasicBlock *ExitBB = ExitBlocks[i]; 491 492 // If there are no PHI nodes in this exit block, then no values defined 493 // inside the loop are used on this path, skip it. 494 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 495 if (!PN) continue; 496 497 unsigned NumPreds = PN->getNumIncomingValues(); 498 499 // Iterate over all of the PHI nodes. 500 BasicBlock::iterator BBI = ExitBB->begin(); 501 while ((PN = dyn_cast<PHINode>(BBI++))) { 502 if (PN->use_empty()) 503 continue; // dead use, don't replace it 504 505 // SCEV only supports integer expressions for now. 506 if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy()) 507 continue; 508 509 // It's necessary to tell ScalarEvolution about this explicitly so that 510 // it can walk the def-use list and forget all SCEVs, as it may not be 511 // watching the PHI itself. Once the new exit value is in place, there 512 // may not be a def-use connection between the loop and every instruction 513 // which got a SCEVAddRecExpr for that loop. 514 SE->forgetValue(PN); 515 516 // Iterate over all of the values in all the PHI nodes. 517 for (unsigned i = 0; i != NumPreds; ++i) { 518 // If the value being merged in is not integer or is not defined 519 // in the loop, skip it. 520 Value *InVal = PN->getIncomingValue(i); 521 if (!isa<Instruction>(InVal)) 522 continue; 523 524 // If this pred is for a subloop, not L itself, skip it. 525 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 526 continue; // The Block is in a subloop, skip it. 527 528 // Check that InVal is defined in the loop. 529 Instruction *Inst = cast<Instruction>(InVal); 530 if (!L->contains(Inst)) 531 continue; 532 533 // Okay, this instruction has a user outside of the current loop 534 // and varies predictably *inside* the loop. Evaluate the value it 535 // contains when the loop exits, if possible. 536 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 537 if (!SE->isLoopInvariant(ExitValue, L)) 538 continue; 539 540 Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst); 541 542 DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n' 543 << " LoopVal = " << *Inst << "\n"); 544 545 if (!isValidRewrite(Inst, ExitVal)) { 546 DeadInsts.push_back(ExitVal); 547 continue; 548 } 549 Changed = true; 550 ++NumReplaced; 551 552 PN->setIncomingValue(i, ExitVal); 553 554 // If this instruction is dead now, delete it. 555 RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI); 556 557 if (NumPreds == 1) { 558 // Completely replace a single-pred PHI. This is safe, because the 559 // NewVal won't be variant in the loop, so we don't need an LCSSA phi 560 // node anymore. 561 PN->replaceAllUsesWith(ExitVal); 562 RecursivelyDeleteTriviallyDeadInstructions(PN, TLI); 563 } 564 } 565 if (NumPreds != 1) { 566 // Clone the PHI and delete the original one. This lets IVUsers and 567 // any other maps purge the original user from their records. 568 PHINode *NewPN = cast<PHINode>(PN->clone()); 569 NewPN->takeName(PN); 570 NewPN->insertBefore(PN); 571 PN->replaceAllUsesWith(NewPN); 572 PN->eraseFromParent(); 573 } 574 } 575 } 576 577 // The insertion point instruction may have been deleted; clear it out 578 // so that the rewriter doesn't trip over it later. 579 Rewriter.clearInsertPoint(); 580 } 581 582 //===----------------------------------------------------------------------===// 583 // IV Widening - Extend the width of an IV to cover its widest uses. 584 //===----------------------------------------------------------------------===// 585 586 namespace { 587 // Collect information about induction variables that are used by sign/zero 588 // extend operations. This information is recorded by CollectExtend and 589 // provides the input to WidenIV. 590 struct WideIVInfo { 591 PHINode *NarrowIV; 592 Type *WidestNativeType; // Widest integer type created [sz]ext 593 bool IsSigned; // Was an sext user seen before a zext? 594 595 WideIVInfo() : NarrowIV(0), WidestNativeType(0), IsSigned(false) {} 596 }; 597 598 class WideIVVisitor : public IVVisitor { 599 ScalarEvolution *SE; 600 const TargetData *TD; 601 602 public: 603 WideIVInfo WI; 604 605 WideIVVisitor(PHINode *NarrowIV, ScalarEvolution *SCEV, 606 const TargetData *TData) : 607 SE(SCEV), TD(TData) { WI.NarrowIV = NarrowIV; } 608 609 // Implement the interface used by simplifyUsersOfIV. 610 virtual void visitCast(CastInst *Cast); 611 }; 612 } 613 614 /// visitCast - Update information about the induction variable that is 615 /// extended by this sign or zero extend operation. This is used to determine 616 /// the final width of the IV before actually widening it. 617 void WideIVVisitor::visitCast(CastInst *Cast) { 618 bool IsSigned = Cast->getOpcode() == Instruction::SExt; 619 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt) 620 return; 621 622 Type *Ty = Cast->getType(); 623 uint64_t Width = SE->getTypeSizeInBits(Ty); 624 if (TD && !TD->isLegalInteger(Width)) 625 return; 626 627 if (!WI.WidestNativeType) { 628 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 629 WI.IsSigned = IsSigned; 630 return; 631 } 632 633 // We extend the IV to satisfy the sign of its first user, arbitrarily. 634 if (WI.IsSigned != IsSigned) 635 return; 636 637 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType)) 638 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 639 } 640 641 namespace { 642 643 /// NarrowIVDefUse - Record a link in the Narrow IV def-use chain along with the 644 /// WideIV that computes the same value as the Narrow IV def. This avoids 645 /// caching Use* pointers. 646 struct NarrowIVDefUse { 647 Instruction *NarrowDef; 648 Instruction *NarrowUse; 649 Instruction *WideDef; 650 651 NarrowIVDefUse(): NarrowDef(0), NarrowUse(0), WideDef(0) {} 652 653 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD): 654 NarrowDef(ND), NarrowUse(NU), WideDef(WD) {} 655 }; 656 657 /// WidenIV - The goal of this transform is to remove sign and zero extends 658 /// without creating any new induction variables. To do this, it creates a new 659 /// phi of the wider type and redirects all users, either removing extends or 660 /// inserting truncs whenever we stop propagating the type. 661 /// 662 class WidenIV { 663 // Parameters 664 PHINode *OrigPhi; 665 Type *WideType; 666 bool IsSigned; 667 668 // Context 669 LoopInfo *LI; 670 Loop *L; 671 ScalarEvolution *SE; 672 DominatorTree *DT; 673 674 // Result 675 PHINode *WidePhi; 676 Instruction *WideInc; 677 const SCEV *WideIncExpr; 678 SmallVectorImpl<WeakVH> &DeadInsts; 679 680 SmallPtrSet<Instruction*,16> Widened; 681 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers; 682 683 public: 684 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, 685 ScalarEvolution *SEv, DominatorTree *DTree, 686 SmallVectorImpl<WeakVH> &DI) : 687 OrigPhi(WI.NarrowIV), 688 WideType(WI.WidestNativeType), 689 IsSigned(WI.IsSigned), 690 LI(LInfo), 691 L(LI->getLoopFor(OrigPhi->getParent())), 692 SE(SEv), 693 DT(DTree), 694 WidePhi(0), 695 WideInc(0), 696 WideIncExpr(0), 697 DeadInsts(DI) { 698 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV"); 699 } 700 701 PHINode *CreateWideIV(SCEVExpander &Rewriter); 702 703 protected: 704 Value *getExtend(Value *NarrowOper, Type *WideType, bool IsSigned, 705 Instruction *Use); 706 707 Instruction *CloneIVUser(NarrowIVDefUse DU); 708 709 const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse); 710 711 const SCEVAddRecExpr* GetExtendedOperandRecurrence(NarrowIVDefUse DU); 712 713 Instruction *WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter); 714 715 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); 716 }; 717 } // anonymous namespace 718 719 /// isLoopInvariant - Perform a quick domtree based check for loop invariance 720 /// assuming that V is used within the loop. LoopInfo::isLoopInvariant() seems 721 /// gratuitous for this purpose. 722 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) { 723 Instruction *Inst = dyn_cast<Instruction>(V); 724 if (!Inst) 725 return true; 726 727 return DT->properlyDominates(Inst->getParent(), L->getHeader()); 728 } 729 730 Value *WidenIV::getExtend(Value *NarrowOper, Type *WideType, bool IsSigned, 731 Instruction *Use) { 732 // Set the debug location and conservative insertion point. 733 IRBuilder<> Builder(Use); 734 // Hoist the insertion point into loop preheaders as far as possible. 735 for (const Loop *L = LI->getLoopFor(Use->getParent()); 736 L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT); 737 L = L->getParentLoop()) 738 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); 739 740 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) : 741 Builder.CreateZExt(NarrowOper, WideType); 742 } 743 744 /// CloneIVUser - Instantiate a wide operation to replace a narrow 745 /// operation. This only needs to handle operations that can evaluation to 746 /// SCEVAddRec. It can safely return 0 for any operation we decide not to clone. 747 Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) { 748 unsigned Opcode = DU.NarrowUse->getOpcode(); 749 switch (Opcode) { 750 default: 751 return 0; 752 case Instruction::Add: 753 case Instruction::Mul: 754 case Instruction::UDiv: 755 case Instruction::Sub: 756 case Instruction::And: 757 case Instruction::Or: 758 case Instruction::Xor: 759 case Instruction::Shl: 760 case Instruction::LShr: 761 case Instruction::AShr: 762 DEBUG(dbgs() << "Cloning IVUser: " << *DU.NarrowUse << "\n"); 763 764 // Replace NarrowDef operands with WideDef. Otherwise, we don't know 765 // anything about the narrow operand yet so must insert a [sz]ext. It is 766 // probably loop invariant and will be folded or hoisted. If it actually 767 // comes from a widened IV, it should be removed during a future call to 768 // WidenIVUse. 769 Value *LHS = (DU.NarrowUse->getOperand(0) == DU.NarrowDef) ? DU.WideDef : 770 getExtend(DU.NarrowUse->getOperand(0), WideType, IsSigned, DU.NarrowUse); 771 Value *RHS = (DU.NarrowUse->getOperand(1) == DU.NarrowDef) ? DU.WideDef : 772 getExtend(DU.NarrowUse->getOperand(1), WideType, IsSigned, DU.NarrowUse); 773 774 BinaryOperator *NarrowBO = cast<BinaryOperator>(DU.NarrowUse); 775 BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), 776 LHS, RHS, 777 NarrowBO->getName()); 778 IRBuilder<> Builder(DU.NarrowUse); 779 Builder.Insert(WideBO); 780 if (const OverflowingBinaryOperator *OBO = 781 dyn_cast<OverflowingBinaryOperator>(NarrowBO)) { 782 if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap(); 783 if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap(); 784 } 785 return WideBO; 786 } 787 } 788 789 /// No-wrap operations can transfer sign extension of their result to their 790 /// operands. Generate the SCEV value for the widened operation without 791 /// actually modifying the IR yet. If the expression after extending the 792 /// operands is an AddRec for this loop, return it. 793 const SCEVAddRecExpr* WidenIV::GetExtendedOperandRecurrence(NarrowIVDefUse DU) { 794 // Handle the common case of add<nsw/nuw> 795 if (DU.NarrowUse->getOpcode() != Instruction::Add) 796 return 0; 797 798 // One operand (NarrowDef) has already been extended to WideDef. Now determine 799 // if extending the other will lead to a recurrence. 800 unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0; 801 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU"); 802 803 const SCEV *ExtendOperExpr = 0; 804 const OverflowingBinaryOperator *OBO = 805 cast<OverflowingBinaryOperator>(DU.NarrowUse); 806 if (IsSigned && OBO->hasNoSignedWrap()) 807 ExtendOperExpr = SE->getSignExtendExpr( 808 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 809 else if(!IsSigned && OBO->hasNoUnsignedWrap()) 810 ExtendOperExpr = SE->getZeroExtendExpr( 811 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 812 else 813 return 0; 814 815 // When creating this AddExpr, don't apply the current operations NSW or NUW 816 // flags. This instruction may be guarded by control flow that the no-wrap 817 // behavior depends on. Non-control-equivalent instructions can be mapped to 818 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW 819 // semantics to those operations. 820 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>( 821 SE->getAddExpr(SE->getSCEV(DU.WideDef), ExtendOperExpr)); 822 823 if (!AddRec || AddRec->getLoop() != L) 824 return 0; 825 return AddRec; 826 } 827 828 /// GetWideRecurrence - Is this instruction potentially interesting from 829 /// IVUsers' perspective after widening it's type? In other words, can the 830 /// extend be safely hoisted out of the loop with SCEV reducing the value to a 831 /// recurrence on the same loop. If so, return the sign or zero extended 832 /// recurrence. Otherwise return NULL. 833 const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) { 834 if (!SE->isSCEVable(NarrowUse->getType())) 835 return 0; 836 837 const SCEV *NarrowExpr = SE->getSCEV(NarrowUse); 838 if (SE->getTypeSizeInBits(NarrowExpr->getType()) 839 >= SE->getTypeSizeInBits(WideType)) { 840 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow 841 // index. So don't follow this use. 842 return 0; 843 } 844 845 const SCEV *WideExpr = IsSigned ? 846 SE->getSignExtendExpr(NarrowExpr, WideType) : 847 SE->getZeroExtendExpr(NarrowExpr, WideType); 848 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr); 849 if (!AddRec || AddRec->getLoop() != L) 850 return 0; 851 return AddRec; 852 } 853 854 /// WidenIVUse - Determine whether an individual user of the narrow IV can be 855 /// widened. If so, return the wide clone of the user. 856 Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) { 857 858 // Stop traversing the def-use chain at inner-loop phis or post-loop phis. 859 if (isa<PHINode>(DU.NarrowUse) && 860 LI->getLoopFor(DU.NarrowUse->getParent()) != L) 861 return 0; 862 863 // Our raison d'etre! Eliminate sign and zero extension. 864 if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) { 865 Value *NewDef = DU.WideDef; 866 if (DU.NarrowUse->getType() != WideType) { 867 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType()); 868 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 869 if (CastWidth < IVWidth) { 870 // The cast isn't as wide as the IV, so insert a Trunc. 871 IRBuilder<> Builder(DU.NarrowUse); 872 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType()); 873 } 874 else { 875 // A wider extend was hidden behind a narrower one. This may induce 876 // another round of IV widening in which the intermediate IV becomes 877 // dead. It should be very rare. 878 DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi 879 << " not wide enough to subsume " << *DU.NarrowUse << "\n"); 880 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 881 NewDef = DU.NarrowUse; 882 } 883 } 884 if (NewDef != DU.NarrowUse) { 885 DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse 886 << " replaced by " << *DU.WideDef << "\n"); 887 ++NumElimExt; 888 DU.NarrowUse->replaceAllUsesWith(NewDef); 889 DeadInsts.push_back(DU.NarrowUse); 890 } 891 // Now that the extend is gone, we want to expose it's uses for potential 892 // further simplification. We don't need to directly inform SimplifyIVUsers 893 // of the new users, because their parent IV will be processed later as a 894 // new loop phi. If we preserved IVUsers analysis, we would also want to 895 // push the uses of WideDef here. 896 897 // No further widening is needed. The deceased [sz]ext had done it for us. 898 return 0; 899 } 900 901 // Does this user itself evaluate to a recurrence after widening? 902 const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(DU.NarrowUse); 903 if (!WideAddRec) { 904 WideAddRec = GetExtendedOperandRecurrence(DU); 905 } 906 if (!WideAddRec) { 907 // This user does not evaluate to a recurence after widening, so don't 908 // follow it. Instead insert a Trunc to kill off the original use, 909 // eventually isolating the original narrow IV so it can be removed. 910 IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT)); 911 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType()); 912 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc); 913 return 0; 914 } 915 // Assume block terminators cannot evaluate to a recurrence. We can't to 916 // insert a Trunc after a terminator if there happens to be a critical edge. 917 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() && 918 "SCEV is not expected to evaluate a block terminator"); 919 920 // Reuse the IV increment that SCEVExpander created as long as it dominates 921 // NarrowUse. 922 Instruction *WideUse = 0; 923 if (WideAddRec == WideIncExpr 924 && Rewriter.hoistIVInc(WideInc, DU.NarrowUse)) 925 WideUse = WideInc; 926 else { 927 WideUse = CloneIVUser(DU); 928 if (!WideUse) 929 return 0; 930 } 931 // Evaluation of WideAddRec ensured that the narrow expression could be 932 // extended outside the loop without overflow. This suggests that the wide use 933 // evaluates to the same expression as the extended narrow use, but doesn't 934 // absolutely guarantee it. Hence the following failsafe check. In rare cases 935 // where it fails, we simply throw away the newly created wide use. 936 if (WideAddRec != SE->getSCEV(WideUse)) { 937 DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse 938 << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n"); 939 DeadInsts.push_back(WideUse); 940 return 0; 941 } 942 943 // Returning WideUse pushes it on the worklist. 944 return WideUse; 945 } 946 947 /// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers. 948 /// 949 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) { 950 for (Value::use_iterator UI = NarrowDef->use_begin(), 951 UE = NarrowDef->use_end(); UI != UE; ++UI) { 952 Instruction *NarrowUse = cast<Instruction>(*UI); 953 954 // Handle data flow merges and bizarre phi cycles. 955 if (!Widened.insert(NarrowUse)) 956 continue; 957 958 NarrowIVUsers.push_back(NarrowIVDefUse(NarrowDef, NarrowUse, WideDef)); 959 } 960 } 961 962 /// CreateWideIV - Process a single induction variable. First use the 963 /// SCEVExpander to create a wide induction variable that evaluates to the same 964 /// recurrence as the original narrow IV. Then use a worklist to forward 965 /// traverse the narrow IV's def-use chain. After WidenIVUse has processed all 966 /// interesting IV users, the narrow IV will be isolated for removal by 967 /// DeleteDeadPHIs. 968 /// 969 /// It would be simpler to delete uses as they are processed, but we must avoid 970 /// invalidating SCEV expressions. 971 /// 972 PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) { 973 // Is this phi an induction variable? 974 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi)); 975 if (!AddRec) 976 return NULL; 977 978 // Widen the induction variable expression. 979 const SCEV *WideIVExpr = IsSigned ? 980 SE->getSignExtendExpr(AddRec, WideType) : 981 SE->getZeroExtendExpr(AddRec, WideType); 982 983 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && 984 "Expect the new IV expression to preserve its type"); 985 986 // Can the IV be extended outside the loop without overflow? 987 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr); 988 if (!AddRec || AddRec->getLoop() != L) 989 return NULL; 990 991 // An AddRec must have loop-invariant operands. Since this AddRec is 992 // materialized by a loop header phi, the expression cannot have any post-loop 993 // operands, so they must dominate the loop header. 994 assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) && 995 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) 996 && "Loop header phi recurrence inputs do not dominate the loop"); 997 998 // The rewriter provides a value for the desired IV expression. This may 999 // either find an existing phi or materialize a new one. Either way, we 1000 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part 1001 // of the phi-SCC dominates the loop entry. 1002 Instruction *InsertPt = L->getHeader()->begin(); 1003 WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt)); 1004 1005 // Remembering the WideIV increment generated by SCEVExpander allows 1006 // WidenIVUse to reuse it when widening the narrow IV's increment. We don't 1007 // employ a general reuse mechanism because the call above is the only call to 1008 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. 1009 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1010 WideInc = 1011 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock)); 1012 WideIncExpr = SE->getSCEV(WideInc); 1013 } 1014 1015 DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n"); 1016 ++NumWidened; 1017 1018 // Traverse the def-use chain using a worklist starting at the original IV. 1019 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" ); 1020 1021 Widened.insert(OrigPhi); 1022 pushNarrowIVUsers(OrigPhi, WidePhi); 1023 1024 while (!NarrowIVUsers.empty()) { 1025 NarrowIVDefUse DU = NarrowIVUsers.pop_back_val(); 1026 1027 // Process a def-use edge. This may replace the use, so don't hold a 1028 // use_iterator across it. 1029 Instruction *WideUse = WidenIVUse(DU, Rewriter); 1030 1031 // Follow all def-use edges from the previous narrow use. 1032 if (WideUse) 1033 pushNarrowIVUsers(DU.NarrowUse, WideUse); 1034 1035 // WidenIVUse may have removed the def-use edge. 1036 if (DU.NarrowDef->use_empty()) 1037 DeadInsts.push_back(DU.NarrowDef); 1038 } 1039 return WidePhi; 1040 } 1041 1042 //===----------------------------------------------------------------------===// 1043 // Simplification of IV users based on SCEV evaluation. 1044 //===----------------------------------------------------------------------===// 1045 1046 1047 /// SimplifyAndExtend - Iteratively perform simplification on a worklist of IV 1048 /// users. Each successive simplification may push more users which may 1049 /// themselves be candidates for simplification. 1050 /// 1051 /// Sign/Zero extend elimination is interleaved with IV simplification. 1052 /// 1053 void IndVarSimplify::SimplifyAndExtend(Loop *L, 1054 SCEVExpander &Rewriter, 1055 LPPassManager &LPM) { 1056 SmallVector<WideIVInfo, 8> WideIVs; 1057 1058 SmallVector<PHINode*, 8> LoopPhis; 1059 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1060 LoopPhis.push_back(cast<PHINode>(I)); 1061 } 1062 // Each round of simplification iterates through the SimplifyIVUsers worklist 1063 // for all current phis, then determines whether any IVs can be 1064 // widened. Widening adds new phis to LoopPhis, inducing another round of 1065 // simplification on the wide IVs. 1066 while (!LoopPhis.empty()) { 1067 // Evaluate as many IV expressions as possible before widening any IVs. This 1068 // forces SCEV to set no-wrap flags before evaluating sign/zero 1069 // extension. The first time SCEV attempts to normalize sign/zero extension, 1070 // the result becomes final. So for the most predictable results, we delay 1071 // evaluation of sign/zero extend evaluation until needed, and avoid running 1072 // other SCEV based analysis prior to SimplifyAndExtend. 1073 do { 1074 PHINode *CurrIV = LoopPhis.pop_back_val(); 1075 1076 // Information about sign/zero extensions of CurrIV. 1077 WideIVVisitor WIV(CurrIV, SE, TD); 1078 1079 Changed |= simplifyUsersOfIV(CurrIV, SE, &LPM, DeadInsts, &WIV); 1080 1081 if (WIV.WI.WidestNativeType) { 1082 WideIVs.push_back(WIV.WI); 1083 } 1084 } while(!LoopPhis.empty()); 1085 1086 for (; !WideIVs.empty(); WideIVs.pop_back()) { 1087 WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts); 1088 if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) { 1089 Changed = true; 1090 LoopPhis.push_back(WidePhi); 1091 } 1092 } 1093 } 1094 } 1095 1096 //===----------------------------------------------------------------------===// 1097 // LinearFunctionTestReplace and its kin. Rewrite the loop exit condition. 1098 //===----------------------------------------------------------------------===// 1099 1100 /// Check for expressions that ScalarEvolution generates to compute 1101 /// BackedgeTakenInfo. If these expressions have not been reduced, then 1102 /// expanding them may incur additional cost (albeit in the loop preheader). 1103 static bool isHighCostExpansion(const SCEV *S, BranchInst *BI, 1104 SmallPtrSet<const SCEV*, 8> &Processed, 1105 ScalarEvolution *SE) { 1106 if (!Processed.insert(S)) 1107 return false; 1108 1109 // If the backedge-taken count is a UDiv, it's very likely a UDiv that 1110 // ScalarEvolution's HowFarToZero or HowManyLessThans produced to compute a 1111 // precise expression, rather than a UDiv from the user's code. If we can't 1112 // find a UDiv in the code with some simple searching, assume the former and 1113 // forego rewriting the loop. 1114 if (isa<SCEVUDivExpr>(S)) { 1115 ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition()); 1116 if (!OrigCond) return true; 1117 const SCEV *R = SE->getSCEV(OrigCond->getOperand(1)); 1118 R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1)); 1119 if (R != S) { 1120 const SCEV *L = SE->getSCEV(OrigCond->getOperand(0)); 1121 L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1)); 1122 if (L != S) 1123 return true; 1124 } 1125 } 1126 1127 // Recurse past add expressions, which commonly occur in the 1128 // BackedgeTakenCount. They may already exist in program code, and if not, 1129 // they are not too expensive rematerialize. 1130 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 1131 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 1132 I != E; ++I) { 1133 if (isHighCostExpansion(*I, BI, Processed, SE)) 1134 return true; 1135 } 1136 return false; 1137 } 1138 1139 // HowManyLessThans uses a Max expression whenever the loop is not guarded by 1140 // the exit condition. 1141 if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S)) 1142 return true; 1143 1144 // If we haven't recognized an expensive SCEV pattern, assume it's an 1145 // expression produced by program code. 1146 return false; 1147 } 1148 1149 /// canExpandBackedgeTakenCount - Return true if this loop's backedge taken 1150 /// count expression can be safely and cheaply expanded into an instruction 1151 /// sequence that can be used by LinearFunctionTestReplace. 1152 /// 1153 /// TODO: This fails for pointer-type loop counters with greater than one byte 1154 /// strides, consequently preventing LFTR from running. For the purpose of LFTR 1155 /// we could skip this check in the case that the LFTR loop counter (chosen by 1156 /// FindLoopCounter) is also pointer type. Instead, we could directly convert 1157 /// the loop test to an inequality test by checking the target data's alignment 1158 /// of element types (given that the initial pointer value originates from or is 1159 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint). 1160 /// However, we don't yet have a strong motivation for converting loop tests 1161 /// into inequality tests. 1162 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) { 1163 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1164 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) || 1165 BackedgeTakenCount->isZero()) 1166 return false; 1167 1168 if (!L->getExitingBlock()) 1169 return false; 1170 1171 // Can't rewrite non-branch yet. 1172 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1173 if (!BI) 1174 return false; 1175 1176 SmallPtrSet<const SCEV*, 8> Processed; 1177 if (isHighCostExpansion(BackedgeTakenCount, BI, Processed, SE)) 1178 return false; 1179 1180 return true; 1181 } 1182 1183 /// getLoopPhiForCounter - Return the loop header phi IFF IncV adds a loop 1184 /// invariant value to the phi. 1185 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) { 1186 Instruction *IncI = dyn_cast<Instruction>(IncV); 1187 if (!IncI) 1188 return 0; 1189 1190 switch (IncI->getOpcode()) { 1191 case Instruction::Add: 1192 case Instruction::Sub: 1193 break; 1194 case Instruction::GetElementPtr: 1195 // An IV counter must preserve its type. 1196 if (IncI->getNumOperands() == 2) 1197 break; 1198 default: 1199 return 0; 1200 } 1201 1202 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0)); 1203 if (Phi && Phi->getParent() == L->getHeader()) { 1204 if (isLoopInvariant(IncI->getOperand(1), L, DT)) 1205 return Phi; 1206 return 0; 1207 } 1208 if (IncI->getOpcode() == Instruction::GetElementPtr) 1209 return 0; 1210 1211 // Allow add/sub to be commuted. 1212 Phi = dyn_cast<PHINode>(IncI->getOperand(1)); 1213 if (Phi && Phi->getParent() == L->getHeader()) { 1214 if (isLoopInvariant(IncI->getOperand(0), L, DT)) 1215 return Phi; 1216 } 1217 return 0; 1218 } 1219 1220 /// Return the compare guarding the loop latch, or NULL for unrecognized tests. 1221 static ICmpInst *getLoopTest(Loop *L) { 1222 assert(L->getExitingBlock() && "expected loop exit"); 1223 1224 BasicBlock *LatchBlock = L->getLoopLatch(); 1225 // Don't bother with LFTR if the loop is not properly simplified. 1226 if (!LatchBlock) 1227 return 0; 1228 1229 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1230 assert(BI && "expected exit branch"); 1231 1232 return dyn_cast<ICmpInst>(BI->getCondition()); 1233 } 1234 1235 /// needsLFTR - LinearFunctionTestReplace policy. Return true unless we can show 1236 /// that the current exit test is already sufficiently canonical. 1237 static bool needsLFTR(Loop *L, DominatorTree *DT) { 1238 // Do LFTR to simplify the exit condition to an ICMP. 1239 ICmpInst *Cond = getLoopTest(L); 1240 if (!Cond) 1241 return true; 1242 1243 // Do LFTR to simplify the exit ICMP to EQ/NE 1244 ICmpInst::Predicate Pred = Cond->getPredicate(); 1245 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) 1246 return true; 1247 1248 // Look for a loop invariant RHS 1249 Value *LHS = Cond->getOperand(0); 1250 Value *RHS = Cond->getOperand(1); 1251 if (!isLoopInvariant(RHS, L, DT)) { 1252 if (!isLoopInvariant(LHS, L, DT)) 1253 return true; 1254 std::swap(LHS, RHS); 1255 } 1256 // Look for a simple IV counter LHS 1257 PHINode *Phi = dyn_cast<PHINode>(LHS); 1258 if (!Phi) 1259 Phi = getLoopPhiForCounter(LHS, L, DT); 1260 1261 if (!Phi) 1262 return true; 1263 1264 // Do LFTR if the exit condition's IV is *not* a simple counter. 1265 Value *IncV = Phi->getIncomingValueForBlock(L->getLoopLatch()); 1266 return Phi != getLoopPhiForCounter(IncV, L, DT); 1267 } 1268 1269 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils 1270 /// down to checking that all operands are constant and listing instructions 1271 /// that may hide undef. 1272 static bool hasConcreteDefImpl(Value *V, SmallPtrSet<Value*, 8> &Visited, 1273 unsigned Depth) { 1274 if (isa<Constant>(V)) 1275 return !isa<UndefValue>(V); 1276 1277 if (Depth >= 6) 1278 return false; 1279 1280 // Conservatively handle non-constant non-instructions. For example, Arguments 1281 // may be undef. 1282 Instruction *I = dyn_cast<Instruction>(V); 1283 if (!I) 1284 return false; 1285 1286 // Load and return values may be undef. 1287 if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I)) 1288 return false; 1289 1290 // Optimistically handle other instructions. 1291 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) { 1292 if (!Visited.insert(*OI)) 1293 continue; 1294 if (!hasConcreteDefImpl(*OI, Visited, Depth+1)) 1295 return false; 1296 } 1297 return true; 1298 } 1299 1300 /// Return true if the given value is concrete. We must prove that undef can 1301 /// never reach it. 1302 /// 1303 /// TODO: If we decide that this is a good approach to checking for undef, we 1304 /// may factor it into a common location. 1305 static bool hasConcreteDef(Value *V) { 1306 SmallPtrSet<Value*, 8> Visited; 1307 Visited.insert(V); 1308 return hasConcreteDefImpl(V, Visited, 0); 1309 } 1310 1311 /// AlmostDeadIV - Return true if this IV has any uses other than the (soon to 1312 /// be rewritten) loop exit test. 1313 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) { 1314 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 1315 Value *IncV = Phi->getIncomingValue(LatchIdx); 1316 1317 for (Value::use_iterator UI = Phi->use_begin(), UE = Phi->use_end(); 1318 UI != UE; ++UI) { 1319 if (*UI != Cond && *UI != IncV) return false; 1320 } 1321 1322 for (Value::use_iterator UI = IncV->use_begin(), UE = IncV->use_end(); 1323 UI != UE; ++UI) { 1324 if (*UI != Cond && *UI != Phi) return false; 1325 } 1326 return true; 1327 } 1328 1329 /// FindLoopCounter - Find an affine IV in canonical form. 1330 /// 1331 /// BECount may be an i8* pointer type. The pointer difference is already 1332 /// valid count without scaling the address stride, so it remains a pointer 1333 /// expression as far as SCEV is concerned. 1334 /// 1335 /// Currently only valid for LFTR. See the comments on hasConcreteDef below. 1336 /// 1337 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount 1338 /// 1339 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride. 1340 /// This is difficult in general for SCEV because of potential overflow. But we 1341 /// could at least handle constant BECounts. 1342 static PHINode * 1343 FindLoopCounter(Loop *L, const SCEV *BECount, 1344 ScalarEvolution *SE, DominatorTree *DT, const TargetData *TD) { 1345 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType()); 1346 1347 Value *Cond = 1348 cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition(); 1349 1350 // Loop over all of the PHI nodes, looking for a simple counter. 1351 PHINode *BestPhi = 0; 1352 const SCEV *BestInit = 0; 1353 BasicBlock *LatchBlock = L->getLoopLatch(); 1354 assert(LatchBlock && "needsLFTR should guarantee a loop latch"); 1355 1356 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1357 PHINode *Phi = cast<PHINode>(I); 1358 if (!SE->isSCEVable(Phi->getType())) 1359 continue; 1360 1361 // Avoid comparing an integer IV against a pointer Limit. 1362 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy()) 1363 continue; 1364 1365 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 1366 if (!AR || AR->getLoop() != L || !AR->isAffine()) 1367 continue; 1368 1369 // AR may be a pointer type, while BECount is an integer type. 1370 // AR may be wider than BECount. With eq/ne tests overflow is immaterial. 1371 // AR may not be a narrower type, or we may never exit. 1372 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType()); 1373 if (PhiWidth < BCWidth || (TD && !TD->isLegalInteger(PhiWidth))) 1374 continue; 1375 1376 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)); 1377 if (!Step || !Step->isOne()) 1378 continue; 1379 1380 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 1381 Value *IncV = Phi->getIncomingValue(LatchIdx); 1382 if (getLoopPhiForCounter(IncV, L, DT) != Phi) 1383 continue; 1384 1385 // Avoid reusing a potentially undef value to compute other values that may 1386 // have originally had a concrete definition. 1387 if (!hasConcreteDef(Phi)) { 1388 // We explicitly allow unknown phis as long as they are already used by 1389 // the loop test. In this case we assume that performing LFTR could not 1390 // increase the number of undef users. 1391 if (ICmpInst *Cond = getLoopTest(L)) { 1392 if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT) 1393 && Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) { 1394 continue; 1395 } 1396 } 1397 } 1398 const SCEV *Init = AR->getStart(); 1399 1400 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) { 1401 // Don't force a live loop counter if another IV can be used. 1402 if (AlmostDeadIV(Phi, LatchBlock, Cond)) 1403 continue; 1404 1405 // Prefer to count-from-zero. This is a more "canonical" counter form. It 1406 // also prefers integer to pointer IVs. 1407 if (BestInit->isZero() != Init->isZero()) { 1408 if (BestInit->isZero()) 1409 continue; 1410 } 1411 // If two IVs both count from zero or both count from nonzero then the 1412 // narrower is likely a dead phi that has been widened. Use the wider phi 1413 // to allow the other to be eliminated. 1414 else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType())) 1415 continue; 1416 } 1417 BestPhi = Phi; 1418 BestInit = Init; 1419 } 1420 return BestPhi; 1421 } 1422 1423 /// genLoopLimit - Help LinearFunctionTestReplace by generating a value that 1424 /// holds the RHS of the new loop test. 1425 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L, 1426 SCEVExpander &Rewriter, ScalarEvolution *SE) { 1427 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 1428 assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter"); 1429 const SCEV *IVInit = AR->getStart(); 1430 1431 // IVInit may be a pointer while IVCount is an integer when FindLoopCounter 1432 // finds a valid pointer IV. Sign extend BECount in order to materialize a 1433 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing 1434 // the existing GEPs whenever possible. 1435 if (IndVar->getType()->isPointerTy() 1436 && !IVCount->getType()->isPointerTy()) { 1437 1438 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType()); 1439 const SCEV *IVOffset = SE->getTruncateOrSignExtend(IVCount, OfsTy); 1440 1441 // Expand the code for the iteration count. 1442 assert(SE->isLoopInvariant(IVOffset, L) && 1443 "Computed iteration count is not loop invariant!"); 1444 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1445 Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI); 1446 1447 Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader()); 1448 assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter"); 1449 // We could handle pointer IVs other than i8*, but we need to compensate for 1450 // gep index scaling. See canExpandBackedgeTakenCount comments. 1451 assert(SE->getSizeOfExpr( 1452 cast<PointerType>(GEPBase->getType())->getElementType())->isOne() 1453 && "unit stride pointer IV must be i8*"); 1454 1455 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 1456 return Builder.CreateGEP(GEPBase, GEPOffset, "lftr.limit"); 1457 } 1458 else { 1459 // In any other case, convert both IVInit and IVCount to integers before 1460 // comparing. This may result in SCEV expension of pointers, but in practice 1461 // SCEV will fold the pointer arithmetic away as such: 1462 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc). 1463 // 1464 // Valid Cases: (1) both integers is most common; (2) both may be pointers 1465 // for simple memset-style loops; (3) IVInit is an integer and IVCount is a 1466 // pointer may occur when enable-iv-rewrite generates a canonical IV on top 1467 // of case #2. 1468 1469 const SCEV *IVLimit = 0; 1470 // For unit stride, IVCount = Start + BECount with 2's complement overflow. 1471 // For non-zero Start, compute IVCount here. 1472 if (AR->getStart()->isZero()) 1473 IVLimit = IVCount; 1474 else { 1475 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); 1476 const SCEV *IVInit = AR->getStart(); 1477 1478 // For integer IVs, truncate the IV before computing IVInit + BECount. 1479 if (SE->getTypeSizeInBits(IVInit->getType()) 1480 > SE->getTypeSizeInBits(IVCount->getType())) 1481 IVInit = SE->getTruncateExpr(IVInit, IVCount->getType()); 1482 1483 IVLimit = SE->getAddExpr(IVInit, IVCount); 1484 } 1485 // Expand the code for the iteration count. 1486 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1487 IRBuilder<> Builder(BI); 1488 assert(SE->isLoopInvariant(IVLimit, L) && 1489 "Computed iteration count is not loop invariant!"); 1490 // Ensure that we generate the same type as IndVar, or a smaller integer 1491 // type. In the presence of null pointer values, we have an integer type 1492 // SCEV expression (IVInit) for a pointer type IV value (IndVar). 1493 Type *LimitTy = IVCount->getType()->isPointerTy() ? 1494 IndVar->getType() : IVCount->getType(); 1495 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI); 1496 } 1497 } 1498 1499 /// LinearFunctionTestReplace - This method rewrites the exit condition of the 1500 /// loop to be a canonical != comparison against the incremented loop induction 1501 /// variable. This pass is able to rewrite the exit tests of any loop where the 1502 /// SCEV analysis can determine a loop-invariant trip count of the loop, which 1503 /// is actually a much broader range than just linear tests. 1504 Value *IndVarSimplify:: 1505 LinearFunctionTestReplace(Loop *L, 1506 const SCEV *BackedgeTakenCount, 1507 PHINode *IndVar, 1508 SCEVExpander &Rewriter) { 1509 assert(canExpandBackedgeTakenCount(L, SE) && "precondition"); 1510 1511 // LFTR can ignore IV overflow and truncate to the width of 1512 // BECount. This avoids materializing the add(zext(add)) expression. 1513 Type *CntTy = BackedgeTakenCount->getType(); 1514 1515 const SCEV *IVCount = BackedgeTakenCount; 1516 1517 // If the exiting block is the same as the backedge block, we prefer to 1518 // compare against the post-incremented value, otherwise we must compare 1519 // against the preincremented value. 1520 Value *CmpIndVar; 1521 if (L->getExitingBlock() == L->getLoopLatch()) { 1522 // Add one to the "backedge-taken" count to get the trip count. 1523 // If this addition may overflow, we have to be more pessimistic and 1524 // cast the induction variable before doing the add. 1525 const SCEV *N = 1526 SE->getAddExpr(IVCount, SE->getConstant(IVCount->getType(), 1)); 1527 if (CntTy == IVCount->getType()) 1528 IVCount = N; 1529 else { 1530 const SCEV *Zero = SE->getConstant(IVCount->getType(), 0); 1531 if ((isa<SCEVConstant>(N) && !N->isZero()) || 1532 SE->isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) { 1533 // No overflow. Cast the sum. 1534 IVCount = SE->getTruncateOrZeroExtend(N, CntTy); 1535 } else { 1536 // Potential overflow. Cast before doing the add. 1537 IVCount = SE->getTruncateOrZeroExtend(IVCount, CntTy); 1538 IVCount = SE->getAddExpr(IVCount, SE->getConstant(CntTy, 1)); 1539 } 1540 } 1541 // The BackedgeTaken expression contains the number of times that the 1542 // backedge branches to the loop header. This is one less than the 1543 // number of times the loop executes, so use the incremented indvar. 1544 CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock()); 1545 } else { 1546 // We must use the preincremented value... 1547 IVCount = SE->getTruncateOrZeroExtend(IVCount, CntTy); 1548 CmpIndVar = IndVar; 1549 } 1550 1551 Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE); 1552 assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy() 1553 && "genLoopLimit missed a cast"); 1554 1555 // Insert a new icmp_ne or icmp_eq instruction before the branch. 1556 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1557 ICmpInst::Predicate P; 1558 if (L->contains(BI->getSuccessor(0))) 1559 P = ICmpInst::ICMP_NE; 1560 else 1561 P = ICmpInst::ICMP_EQ; 1562 1563 DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" 1564 << " LHS:" << *CmpIndVar << '\n' 1565 << " op:\t" 1566 << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n" 1567 << " RHS:\t" << *ExitCnt << "\n" 1568 << " IVCount:\t" << *IVCount << "\n"); 1569 1570 IRBuilder<> Builder(BI); 1571 if (SE->getTypeSizeInBits(CmpIndVar->getType()) 1572 > SE->getTypeSizeInBits(ExitCnt->getType())) { 1573 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(), 1574 "lftr.wideiv"); 1575 } 1576 1577 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond"); 1578 Value *OrigCond = BI->getCondition(); 1579 // It's tempting to use replaceAllUsesWith here to fully replace the old 1580 // comparison, but that's not immediately safe, since users of the old 1581 // comparison may not be dominated by the new comparison. Instead, just 1582 // update the branch to use the new comparison; in the common case this 1583 // will make old comparison dead. 1584 BI->setCondition(Cond); 1585 DeadInsts.push_back(OrigCond); 1586 1587 ++NumLFTR; 1588 Changed = true; 1589 return Cond; 1590 } 1591 1592 //===----------------------------------------------------------------------===// 1593 // SinkUnusedInvariants. A late subpass to cleanup loop preheaders. 1594 //===----------------------------------------------------------------------===// 1595 1596 /// If there's a single exit block, sink any loop-invariant values that 1597 /// were defined in the preheader but not used inside the loop into the 1598 /// exit block to reduce register pressure in the loop. 1599 void IndVarSimplify::SinkUnusedInvariants(Loop *L) { 1600 BasicBlock *ExitBlock = L->getExitBlock(); 1601 if (!ExitBlock) return; 1602 1603 BasicBlock *Preheader = L->getLoopPreheader(); 1604 if (!Preheader) return; 1605 1606 Instruction *InsertPt = ExitBlock->getFirstInsertionPt(); 1607 BasicBlock::iterator I = Preheader->getTerminator(); 1608 while (I != Preheader->begin()) { 1609 --I; 1610 // New instructions were inserted at the end of the preheader. 1611 if (isa<PHINode>(I)) 1612 break; 1613 1614 // Don't move instructions which might have side effects, since the side 1615 // effects need to complete before instructions inside the loop. Also don't 1616 // move instructions which might read memory, since the loop may modify 1617 // memory. Note that it's okay if the instruction might have undefined 1618 // behavior: LoopSimplify guarantees that the preheader dominates the exit 1619 // block. 1620 if (I->mayHaveSideEffects() || I->mayReadFromMemory()) 1621 continue; 1622 1623 // Skip debug info intrinsics. 1624 if (isa<DbgInfoIntrinsic>(I)) 1625 continue; 1626 1627 // Skip landingpad instructions. 1628 if (isa<LandingPadInst>(I)) 1629 continue; 1630 1631 // Don't sink alloca: we never want to sink static alloca's out of the 1632 // entry block, and correctly sinking dynamic alloca's requires 1633 // checks for stacksave/stackrestore intrinsics. 1634 // FIXME: Refactor this check somehow? 1635 if (isa<AllocaInst>(I)) 1636 continue; 1637 1638 // Determine if there is a use in or before the loop (direct or 1639 // otherwise). 1640 bool UsedInLoop = false; 1641 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); 1642 UI != UE; ++UI) { 1643 User *U = *UI; 1644 BasicBlock *UseBB = cast<Instruction>(U)->getParent(); 1645 if (PHINode *P = dyn_cast<PHINode>(U)) { 1646 unsigned i = 1647 PHINode::getIncomingValueNumForOperand(UI.getOperandNo()); 1648 UseBB = P->getIncomingBlock(i); 1649 } 1650 if (UseBB == Preheader || L->contains(UseBB)) { 1651 UsedInLoop = true; 1652 break; 1653 } 1654 } 1655 1656 // If there is, the def must remain in the preheader. 1657 if (UsedInLoop) 1658 continue; 1659 1660 // Otherwise, sink it to the exit block. 1661 Instruction *ToMove = I; 1662 bool Done = false; 1663 1664 if (I != Preheader->begin()) { 1665 // Skip debug info intrinsics. 1666 do { 1667 --I; 1668 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin()); 1669 1670 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin()) 1671 Done = true; 1672 } else { 1673 Done = true; 1674 } 1675 1676 ToMove->moveBefore(InsertPt); 1677 if (Done) break; 1678 InsertPt = ToMove; 1679 } 1680 } 1681 1682 //===----------------------------------------------------------------------===// 1683 // IndVarSimplify driver. Manage several subpasses of IV simplification. 1684 //===----------------------------------------------------------------------===// 1685 1686 bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) { 1687 // If LoopSimplify form is not available, stay out of trouble. Some notes: 1688 // - LSR currently only supports LoopSimplify-form loops. Indvars' 1689 // canonicalization can be a pessimization without LSR to "clean up" 1690 // afterwards. 1691 // - We depend on having a preheader; in particular, 1692 // Loop::getCanonicalInductionVariable only supports loops with preheaders, 1693 // and we're in trouble if we can't find the induction variable even when 1694 // we've manually inserted one. 1695 if (!L->isLoopSimplifyForm()) 1696 return false; 1697 1698 LI = &getAnalysis<LoopInfo>(); 1699 SE = &getAnalysis<ScalarEvolution>(); 1700 DT = &getAnalysis<DominatorTree>(); 1701 TD = getAnalysisIfAvailable<TargetData>(); 1702 TLI = getAnalysisIfAvailable<TargetLibraryInfo>(); 1703 1704 DeadInsts.clear(); 1705 Changed = false; 1706 1707 // If there are any floating-point recurrences, attempt to 1708 // transform them to use integer recurrences. 1709 RewriteNonIntegerIVs(L); 1710 1711 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1712 1713 // Create a rewriter object which we'll use to transform the code with. 1714 SCEVExpander Rewriter(*SE, "indvars"); 1715 #ifndef NDEBUG 1716 Rewriter.setDebugType(DEBUG_TYPE); 1717 #endif 1718 1719 // Eliminate redundant IV users. 1720 // 1721 // Simplification works best when run before other consumers of SCEV. We 1722 // attempt to avoid evaluating SCEVs for sign/zero extend operations until 1723 // other expressions involving loop IVs have been evaluated. This helps SCEV 1724 // set no-wrap flags before normalizing sign/zero extension. 1725 Rewriter.disableCanonicalMode(); 1726 SimplifyAndExtend(L, Rewriter, LPM); 1727 1728 // Check to see if this loop has a computable loop-invariant execution count. 1729 // If so, this means that we can compute the final value of any expressions 1730 // that are recurrent in the loop, and substitute the exit values from the 1731 // loop into any instructions outside of the loop that use the final values of 1732 // the current expressions. 1733 // 1734 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1735 RewriteLoopExitValues(L, Rewriter); 1736 1737 // Eliminate redundant IV cycles. 1738 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts); 1739 1740 // If we have a trip count expression, rewrite the loop's exit condition 1741 // using it. We can currently only handle loops with a single exit. 1742 if (canExpandBackedgeTakenCount(L, SE) && needsLFTR(L, DT)) { 1743 PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT, TD); 1744 if (IndVar) { 1745 // Check preconditions for proper SCEVExpander operation. SCEV does not 1746 // express SCEVExpander's dependencies, such as LoopSimplify. Instead any 1747 // pass that uses the SCEVExpander must do it. This does not work well for 1748 // loop passes because SCEVExpander makes assumptions about all loops, while 1749 // LoopPassManager only forces the current loop to be simplified. 1750 // 1751 // FIXME: SCEV expansion has no way to bail out, so the caller must 1752 // explicitly check any assumptions made by SCEV. Brittle. 1753 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount); 1754 if (!AR || AR->getLoop()->getLoopPreheader()) 1755 (void)LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar, 1756 Rewriter); 1757 } 1758 } 1759 // Clear the rewriter cache, because values that are in the rewriter's cache 1760 // can be deleted in the loop below, causing the AssertingVH in the cache to 1761 // trigger. 1762 Rewriter.clear(); 1763 1764 // Now that we're done iterating through lists, clean up any instructions 1765 // which are now dead. 1766 while (!DeadInsts.empty()) 1767 if (Instruction *Inst = 1768 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val())) 1769 RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI); 1770 1771 // The Rewriter may not be used from this point on. 1772 1773 // Loop-invariant instructions in the preheader that aren't used in the 1774 // loop may be sunk below the loop to reduce register pressure. 1775 SinkUnusedInvariants(L); 1776 1777 // Clean up dead instructions. 1778 Changed |= DeleteDeadPHIs(L->getHeader(), TLI); 1779 // Check a post-condition. 1780 assert(L->isLCSSAForm(*DT) && 1781 "Indvars did not leave the loop in lcssa form!"); 1782 1783 // Verify that LFTR, and any other change have not interfered with SCEV's 1784 // ability to compute trip count. 1785 #ifndef NDEBUG 1786 if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 1787 SE->forgetLoop(L); 1788 const SCEV *NewBECount = SE->getBackedgeTakenCount(L); 1789 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) < 1790 SE->getTypeSizeInBits(NewBECount->getType())) 1791 NewBECount = SE->getTruncateOrNoop(NewBECount, 1792 BackedgeTakenCount->getType()); 1793 else 1794 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, 1795 NewBECount->getType()); 1796 assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV"); 1797 } 1798 #endif 1799 1800 return Changed; 1801 } 1802