Home | History | Annotate | Download | only in Analysis
      1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the implementation of the scalar evolution analysis
     11 // engine, which is used primarily to analyze expressions involving induction
     12 // variables in loops.
     13 //
     14 // There are several aspects to this library.  First is the representation of
     15 // scalar expressions, which are represented as subclasses of the SCEV class.
     16 // These classes are used to represent certain types of subexpressions that we
     17 // can handle. We only create one SCEV of a particular shape, so
     18 // pointer-comparisons for equality are legal.
     19 //
     20 // One important aspect of the SCEV objects is that they are never cyclic, even
     21 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
     22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
     23 // recurrence) then we represent it directly as a recurrence node, otherwise we
     24 // represent it as a SCEVUnknown node.
     25 //
     26 // In addition to being able to represent expressions of various types, we also
     27 // have folders that are used to build the *canonical* representation for a
     28 // particular expression.  These folders are capable of using a variety of
     29 // rewrite rules to simplify the expressions.
     30 //
     31 // Once the folders are defined, we can implement the more interesting
     32 // higher-level code, such as the code that recognizes PHI nodes of various
     33 // types, computes the execution count of a loop, etc.
     34 //
     35 // TODO: We should use these routines and value representations to implement
     36 // dependence analysis!
     37 //
     38 //===----------------------------------------------------------------------===//
     39 //
     40 // There are several good references for the techniques used in this analysis.
     41 //
     42 //  Chains of recurrences -- a method to expedite the evaluation
     43 //  of closed-form functions
     44 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
     45 //
     46 //  On computational properties of chains of recurrences
     47 //  Eugene V. Zima
     48 //
     49 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
     50 //  Robert A. van Engelen
     51 //
     52 //  Efficient Symbolic Analysis for Optimizing Compilers
     53 //  Robert A. van Engelen
     54 //
     55 //  Using the chains of recurrences algebra for data dependence testing and
     56 //  induction variable substitution
     57 //  MS Thesis, Johnie Birch
     58 //
     59 //===----------------------------------------------------------------------===//
     60 
     61 #define DEBUG_TYPE "scalar-evolution"
     62 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
     63 #include "llvm/Constants.h"
     64 #include "llvm/DerivedTypes.h"
     65 #include "llvm/GlobalVariable.h"
     66 #include "llvm/GlobalAlias.h"
     67 #include "llvm/Instructions.h"
     68 #include "llvm/LLVMContext.h"
     69 #include "llvm/Operator.h"
     70 #include "llvm/Analysis/ConstantFolding.h"
     71 #include "llvm/Analysis/Dominators.h"
     72 #include "llvm/Analysis/InstructionSimplify.h"
     73 #include "llvm/Analysis/LoopInfo.h"
     74 #include "llvm/Analysis/ValueTracking.h"
     75 #include "llvm/Assembly/Writer.h"
     76 #include "llvm/Target/TargetData.h"
     77 #include "llvm/Target/TargetLibraryInfo.h"
     78 #include "llvm/Support/CommandLine.h"
     79 #include "llvm/Support/ConstantRange.h"
     80 #include "llvm/Support/Debug.h"
     81 #include "llvm/Support/ErrorHandling.h"
     82 #include "llvm/Support/GetElementPtrTypeIterator.h"
     83 #include "llvm/Support/InstIterator.h"
     84 #include "llvm/Support/MathExtras.h"
     85 #include "llvm/Support/raw_ostream.h"
     86 #include "llvm/ADT/Statistic.h"
     87 #include "llvm/ADT/STLExtras.h"
     88 #include "llvm/ADT/SmallPtrSet.h"
     89 #include <algorithm>
     90 using namespace llvm;
     91 
     92 STATISTIC(NumArrayLenItCounts,
     93           "Number of trip counts computed with array length");
     94 STATISTIC(NumTripCountsComputed,
     95           "Number of loops with predictable loop counts");
     96 STATISTIC(NumTripCountsNotComputed,
     97           "Number of loops without predictable loop counts");
     98 STATISTIC(NumBruteForceTripCountsComputed,
     99           "Number of loops with trip counts computed by force");
    100 
    101 static cl::opt<unsigned>
    102 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
    103                         cl::desc("Maximum number of iterations SCEV will "
    104                                  "symbolically execute a constant "
    105                                  "derived loop"),
    106                         cl::init(100));
    107 
    108 INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
    109                 "Scalar Evolution Analysis", false, true)
    110 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
    111 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
    112 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
    113 INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
    114                 "Scalar Evolution Analysis", false, true)
    115 char ScalarEvolution::ID = 0;
    116 
    117 //===----------------------------------------------------------------------===//
    118 //                           SCEV class definitions
    119 //===----------------------------------------------------------------------===//
    120 
    121 //===----------------------------------------------------------------------===//
    122 // Implementation of the SCEV class.
    123 //
    124 
    125 #ifndef NDEBUG
    126 void SCEV::dump() const {
    127   print(dbgs());
    128   dbgs() << '\n';
    129 }
    130 #endif
    131 
    132 void SCEV::print(raw_ostream &OS) const {
    133   switch (getSCEVType()) {
    134   case scConstant:
    135     WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false);
    136     return;
    137   case scTruncate: {
    138     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
    139     const SCEV *Op = Trunc->getOperand();
    140     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
    141        << *Trunc->getType() << ")";
    142     return;
    143   }
    144   case scZeroExtend: {
    145     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
    146     const SCEV *Op = ZExt->getOperand();
    147     OS << "(zext " << *Op->getType() << " " << *Op << " to "
    148        << *ZExt->getType() << ")";
    149     return;
    150   }
    151   case scSignExtend: {
    152     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
    153     const SCEV *Op = SExt->getOperand();
    154     OS << "(sext " << *Op->getType() << " " << *Op << " to "
    155        << *SExt->getType() << ")";
    156     return;
    157   }
    158   case scAddRecExpr: {
    159     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
    160     OS << "{" << *AR->getOperand(0);
    161     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
    162       OS << ",+," << *AR->getOperand(i);
    163     OS << "}<";
    164     if (AR->getNoWrapFlags(FlagNUW))
    165       OS << "nuw><";
    166     if (AR->getNoWrapFlags(FlagNSW))
    167       OS << "nsw><";
    168     if (AR->getNoWrapFlags(FlagNW) &&
    169         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
    170       OS << "nw><";
    171     WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false);
    172     OS << ">";
    173     return;
    174   }
    175   case scAddExpr:
    176   case scMulExpr:
    177   case scUMaxExpr:
    178   case scSMaxExpr: {
    179     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
    180     const char *OpStr = 0;
    181     switch (NAry->getSCEVType()) {
    182     case scAddExpr: OpStr = " + "; break;
    183     case scMulExpr: OpStr = " * "; break;
    184     case scUMaxExpr: OpStr = " umax "; break;
    185     case scSMaxExpr: OpStr = " smax "; break;
    186     }
    187     OS << "(";
    188     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
    189          I != E; ++I) {
    190       OS << **I;
    191       if (llvm::next(I) != E)
    192         OS << OpStr;
    193     }
    194     OS << ")";
    195     switch (NAry->getSCEVType()) {
    196     case scAddExpr:
    197     case scMulExpr:
    198       if (NAry->getNoWrapFlags(FlagNUW))
    199         OS << "<nuw>";
    200       if (NAry->getNoWrapFlags(FlagNSW))
    201         OS << "<nsw>";
    202     }
    203     return;
    204   }
    205   case scUDivExpr: {
    206     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
    207     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
    208     return;
    209   }
    210   case scUnknown: {
    211     const SCEVUnknown *U = cast<SCEVUnknown>(this);
    212     Type *AllocTy;
    213     if (U->isSizeOf(AllocTy)) {
    214       OS << "sizeof(" << *AllocTy << ")";
    215       return;
    216     }
    217     if (U->isAlignOf(AllocTy)) {
    218       OS << "alignof(" << *AllocTy << ")";
    219       return;
    220     }
    221 
    222     Type *CTy;
    223     Constant *FieldNo;
    224     if (U->isOffsetOf(CTy, FieldNo)) {
    225       OS << "offsetof(" << *CTy << ", ";
    226       WriteAsOperand(OS, FieldNo, false);
    227       OS << ")";
    228       return;
    229     }
    230 
    231     // Otherwise just print it normally.
    232     WriteAsOperand(OS, U->getValue(), false);
    233     return;
    234   }
    235   case scCouldNotCompute:
    236     OS << "***COULDNOTCOMPUTE***";
    237     return;
    238   default: break;
    239   }
    240   llvm_unreachable("Unknown SCEV kind!");
    241 }
    242 
    243 Type *SCEV::getType() const {
    244   switch (getSCEVType()) {
    245   case scConstant:
    246     return cast<SCEVConstant>(this)->getType();
    247   case scTruncate:
    248   case scZeroExtend:
    249   case scSignExtend:
    250     return cast<SCEVCastExpr>(this)->getType();
    251   case scAddRecExpr:
    252   case scMulExpr:
    253   case scUMaxExpr:
    254   case scSMaxExpr:
    255     return cast<SCEVNAryExpr>(this)->getType();
    256   case scAddExpr:
    257     return cast<SCEVAddExpr>(this)->getType();
    258   case scUDivExpr:
    259     return cast<SCEVUDivExpr>(this)->getType();
    260   case scUnknown:
    261     return cast<SCEVUnknown>(this)->getType();
    262   case scCouldNotCompute:
    263     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
    264   default:
    265     llvm_unreachable("Unknown SCEV kind!");
    266   }
    267 }
    268 
    269 bool SCEV::isZero() const {
    270   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
    271     return SC->getValue()->isZero();
    272   return false;
    273 }
    274 
    275 bool SCEV::isOne() const {
    276   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
    277     return SC->getValue()->isOne();
    278   return false;
    279 }
    280 
    281 bool SCEV::isAllOnesValue() const {
    282   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
    283     return SC->getValue()->isAllOnesValue();
    284   return false;
    285 }
    286 
    287 /// isNonConstantNegative - Return true if the specified scev is negated, but
    288 /// not a constant.
    289 bool SCEV::isNonConstantNegative() const {
    290   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
    291   if (!Mul) return false;
    292 
    293   // If there is a constant factor, it will be first.
    294   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
    295   if (!SC) return false;
    296 
    297   // Return true if the value is negative, this matches things like (-42 * V).
    298   return SC->getValue()->getValue().isNegative();
    299 }
    300 
    301 SCEVCouldNotCompute::SCEVCouldNotCompute() :
    302   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
    303 
    304 bool SCEVCouldNotCompute::classof(const SCEV *S) {
    305   return S->getSCEVType() == scCouldNotCompute;
    306 }
    307 
    308 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
    309   FoldingSetNodeID ID;
    310   ID.AddInteger(scConstant);
    311   ID.AddPointer(V);
    312   void *IP = 0;
    313   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
    314   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
    315   UniqueSCEVs.InsertNode(S, IP);
    316   return S;
    317 }
    318 
    319 const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
    320   return getConstant(ConstantInt::get(getContext(), Val));
    321 }
    322 
    323 const SCEV *
    324 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
    325   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
    326   return getConstant(ConstantInt::get(ITy, V, isSigned));
    327 }
    328 
    329 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
    330                            unsigned SCEVTy, const SCEV *op, Type *ty)
    331   : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
    332 
    333 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
    334                                    const SCEV *op, Type *ty)
    335   : SCEVCastExpr(ID, scTruncate, op, ty) {
    336   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
    337          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
    338          "Cannot truncate non-integer value!");
    339 }
    340 
    341 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
    342                                        const SCEV *op, Type *ty)
    343   : SCEVCastExpr(ID, scZeroExtend, op, ty) {
    344   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
    345          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
    346          "Cannot zero extend non-integer value!");
    347 }
    348 
    349 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
    350                                        const SCEV *op, Type *ty)
    351   : SCEVCastExpr(ID, scSignExtend, op, ty) {
    352   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
    353          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
    354          "Cannot sign extend non-integer value!");
    355 }
    356 
    357 void SCEVUnknown::deleted() {
    358   // Clear this SCEVUnknown from various maps.
    359   SE->forgetMemoizedResults(this);
    360 
    361   // Remove this SCEVUnknown from the uniquing map.
    362   SE->UniqueSCEVs.RemoveNode(this);
    363 
    364   // Release the value.
    365   setValPtr(0);
    366 }
    367 
    368 void SCEVUnknown::allUsesReplacedWith(Value *New) {
    369   // Clear this SCEVUnknown from various maps.
    370   SE->forgetMemoizedResults(this);
    371 
    372   // Remove this SCEVUnknown from the uniquing map.
    373   SE->UniqueSCEVs.RemoveNode(this);
    374 
    375   // Update this SCEVUnknown to point to the new value. This is needed
    376   // because there may still be outstanding SCEVs which still point to
    377   // this SCEVUnknown.
    378   setValPtr(New);
    379 }
    380 
    381 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
    382   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
    383     if (VCE->getOpcode() == Instruction::PtrToInt)
    384       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
    385         if (CE->getOpcode() == Instruction::GetElementPtr &&
    386             CE->getOperand(0)->isNullValue() &&
    387             CE->getNumOperands() == 2)
    388           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
    389             if (CI->isOne()) {
    390               AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
    391                                  ->getElementType();
    392               return true;
    393             }
    394 
    395   return false;
    396 }
    397 
    398 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
    399   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
    400     if (VCE->getOpcode() == Instruction::PtrToInt)
    401       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
    402         if (CE->getOpcode() == Instruction::GetElementPtr &&
    403             CE->getOperand(0)->isNullValue()) {
    404           Type *Ty =
    405             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
    406           if (StructType *STy = dyn_cast<StructType>(Ty))
    407             if (!STy->isPacked() &&
    408                 CE->getNumOperands() == 3 &&
    409                 CE->getOperand(1)->isNullValue()) {
    410               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
    411                 if (CI->isOne() &&
    412                     STy->getNumElements() == 2 &&
    413                     STy->getElementType(0)->isIntegerTy(1)) {
    414                   AllocTy = STy->getElementType(1);
    415                   return true;
    416                 }
    417             }
    418         }
    419 
    420   return false;
    421 }
    422 
    423 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
    424   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
    425     if (VCE->getOpcode() == Instruction::PtrToInt)
    426       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
    427         if (CE->getOpcode() == Instruction::GetElementPtr &&
    428             CE->getNumOperands() == 3 &&
    429             CE->getOperand(0)->isNullValue() &&
    430             CE->getOperand(1)->isNullValue()) {
    431           Type *Ty =
    432             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
    433           // Ignore vector types here so that ScalarEvolutionExpander doesn't
    434           // emit getelementptrs that index into vectors.
    435           if (Ty->isStructTy() || Ty->isArrayTy()) {
    436             CTy = Ty;
    437             FieldNo = CE->getOperand(2);
    438             return true;
    439           }
    440         }
    441 
    442   return false;
    443 }
    444 
    445 //===----------------------------------------------------------------------===//
    446 //                               SCEV Utilities
    447 //===----------------------------------------------------------------------===//
    448 
    449 namespace {
    450   /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
    451   /// than the complexity of the RHS.  This comparator is used to canonicalize
    452   /// expressions.
    453   class SCEVComplexityCompare {
    454     const LoopInfo *const LI;
    455   public:
    456     explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
    457 
    458     // Return true or false if LHS is less than, or at least RHS, respectively.
    459     bool operator()(const SCEV *LHS, const SCEV *RHS) const {
    460       return compare(LHS, RHS) < 0;
    461     }
    462 
    463     // Return negative, zero, or positive, if LHS is less than, equal to, or
    464     // greater than RHS, respectively. A three-way result allows recursive
    465     // comparisons to be more efficient.
    466     int compare(const SCEV *LHS, const SCEV *RHS) const {
    467       // Fast-path: SCEVs are uniqued so we can do a quick equality check.
    468       if (LHS == RHS)
    469         return 0;
    470 
    471       // Primarily, sort the SCEVs by their getSCEVType().
    472       unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
    473       if (LType != RType)
    474         return (int)LType - (int)RType;
    475 
    476       // Aside from the getSCEVType() ordering, the particular ordering
    477       // isn't very important except that it's beneficial to be consistent,
    478       // so that (a + b) and (b + a) don't end up as different expressions.
    479       switch (LType) {
    480       case scUnknown: {
    481         const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
    482         const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
    483 
    484         // Sort SCEVUnknown values with some loose heuristics. TODO: This is
    485         // not as complete as it could be.
    486         const Value *LV = LU->getValue(), *RV = RU->getValue();
    487 
    488         // Order pointer values after integer values. This helps SCEVExpander
    489         // form GEPs.
    490         bool LIsPointer = LV->getType()->isPointerTy(),
    491              RIsPointer = RV->getType()->isPointerTy();
    492         if (LIsPointer != RIsPointer)
    493           return (int)LIsPointer - (int)RIsPointer;
    494 
    495         // Compare getValueID values.
    496         unsigned LID = LV->getValueID(),
    497                  RID = RV->getValueID();
    498         if (LID != RID)
    499           return (int)LID - (int)RID;
    500 
    501         // Sort arguments by their position.
    502         if (const Argument *LA = dyn_cast<Argument>(LV)) {
    503           const Argument *RA = cast<Argument>(RV);
    504           unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
    505           return (int)LArgNo - (int)RArgNo;
    506         }
    507 
    508         // For instructions, compare their loop depth, and their operand
    509         // count.  This is pretty loose.
    510         if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
    511           const Instruction *RInst = cast<Instruction>(RV);
    512 
    513           // Compare loop depths.
    514           const BasicBlock *LParent = LInst->getParent(),
    515                            *RParent = RInst->getParent();
    516           if (LParent != RParent) {
    517             unsigned LDepth = LI->getLoopDepth(LParent),
    518                      RDepth = LI->getLoopDepth(RParent);
    519             if (LDepth != RDepth)
    520               return (int)LDepth - (int)RDepth;
    521           }
    522 
    523           // Compare the number of operands.
    524           unsigned LNumOps = LInst->getNumOperands(),
    525                    RNumOps = RInst->getNumOperands();
    526           return (int)LNumOps - (int)RNumOps;
    527         }
    528 
    529         return 0;
    530       }
    531 
    532       case scConstant: {
    533         const SCEVConstant *LC = cast<SCEVConstant>(LHS);
    534         const SCEVConstant *RC = cast<SCEVConstant>(RHS);
    535 
    536         // Compare constant values.
    537         const APInt &LA = LC->getValue()->getValue();
    538         const APInt &RA = RC->getValue()->getValue();
    539         unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
    540         if (LBitWidth != RBitWidth)
    541           return (int)LBitWidth - (int)RBitWidth;
    542         return LA.ult(RA) ? -1 : 1;
    543       }
    544 
    545       case scAddRecExpr: {
    546         const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
    547         const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
    548 
    549         // Compare addrec loop depths.
    550         const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
    551         if (LLoop != RLoop) {
    552           unsigned LDepth = LLoop->getLoopDepth(),
    553                    RDepth = RLoop->getLoopDepth();
    554           if (LDepth != RDepth)
    555             return (int)LDepth - (int)RDepth;
    556         }
    557 
    558         // Addrec complexity grows with operand count.
    559         unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
    560         if (LNumOps != RNumOps)
    561           return (int)LNumOps - (int)RNumOps;
    562 
    563         // Lexicographically compare.
    564         for (unsigned i = 0; i != LNumOps; ++i) {
    565           long X = compare(LA->getOperand(i), RA->getOperand(i));
    566           if (X != 0)
    567             return X;
    568         }
    569 
    570         return 0;
    571       }
    572 
    573       case scAddExpr:
    574       case scMulExpr:
    575       case scSMaxExpr:
    576       case scUMaxExpr: {
    577         const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
    578         const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
    579 
    580         // Lexicographically compare n-ary expressions.
    581         unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
    582         for (unsigned i = 0; i != LNumOps; ++i) {
    583           if (i >= RNumOps)
    584             return 1;
    585           long X = compare(LC->getOperand(i), RC->getOperand(i));
    586           if (X != 0)
    587             return X;
    588         }
    589         return (int)LNumOps - (int)RNumOps;
    590       }
    591 
    592       case scUDivExpr: {
    593         const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
    594         const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
    595 
    596         // Lexicographically compare udiv expressions.
    597         long X = compare(LC->getLHS(), RC->getLHS());
    598         if (X != 0)
    599           return X;
    600         return compare(LC->getRHS(), RC->getRHS());
    601       }
    602 
    603       case scTruncate:
    604       case scZeroExtend:
    605       case scSignExtend: {
    606         const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
    607         const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
    608 
    609         // Compare cast expressions by operand.
    610         return compare(LC->getOperand(), RC->getOperand());
    611       }
    612 
    613       default:
    614         llvm_unreachable("Unknown SCEV kind!");
    615       }
    616     }
    617   };
    618 }
    619 
    620 /// GroupByComplexity - Given a list of SCEV objects, order them by their
    621 /// complexity, and group objects of the same complexity together by value.
    622 /// When this routine is finished, we know that any duplicates in the vector are
    623 /// consecutive and that complexity is monotonically increasing.
    624 ///
    625 /// Note that we go take special precautions to ensure that we get deterministic
    626 /// results from this routine.  In other words, we don't want the results of
    627 /// this to depend on where the addresses of various SCEV objects happened to
    628 /// land in memory.
    629 ///
    630 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
    631                               LoopInfo *LI) {
    632   if (Ops.size() < 2) return;  // Noop
    633   if (Ops.size() == 2) {
    634     // This is the common case, which also happens to be trivially simple.
    635     // Special case it.
    636     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
    637     if (SCEVComplexityCompare(LI)(RHS, LHS))
    638       std::swap(LHS, RHS);
    639     return;
    640   }
    641 
    642   // Do the rough sort by complexity.
    643   std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
    644 
    645   // Now that we are sorted by complexity, group elements of the same
    646   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
    647   // be extremely short in practice.  Note that we take this approach because we
    648   // do not want to depend on the addresses of the objects we are grouping.
    649   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
    650     const SCEV *S = Ops[i];
    651     unsigned Complexity = S->getSCEVType();
    652 
    653     // If there are any objects of the same complexity and same value as this
    654     // one, group them.
    655     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
    656       if (Ops[j] == S) { // Found a duplicate.
    657         // Move it to immediately after i'th element.
    658         std::swap(Ops[i+1], Ops[j]);
    659         ++i;   // no need to rescan it.
    660         if (i == e-2) return;  // Done!
    661       }
    662     }
    663   }
    664 }
    665 
    666 
    667 
    668 //===----------------------------------------------------------------------===//
    669 //                      Simple SCEV method implementations
    670 //===----------------------------------------------------------------------===//
    671 
    672 /// BinomialCoefficient - Compute BC(It, K).  The result has width W.
    673 /// Assume, K > 0.
    674 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
    675                                        ScalarEvolution &SE,
    676                                        Type *ResultTy) {
    677   // Handle the simplest case efficiently.
    678   if (K == 1)
    679     return SE.getTruncateOrZeroExtend(It, ResultTy);
    680 
    681   // We are using the following formula for BC(It, K):
    682   //
    683   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
    684   //
    685   // Suppose, W is the bitwidth of the return value.  We must be prepared for
    686   // overflow.  Hence, we must assure that the result of our computation is
    687   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
    688   // safe in modular arithmetic.
    689   //
    690   // However, this code doesn't use exactly that formula; the formula it uses
    691   // is something like the following, where T is the number of factors of 2 in
    692   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
    693   // exponentiation:
    694   //
    695   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
    696   //
    697   // This formula is trivially equivalent to the previous formula.  However,
    698   // this formula can be implemented much more efficiently.  The trick is that
    699   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
    700   // arithmetic.  To do exact division in modular arithmetic, all we have
    701   // to do is multiply by the inverse.  Therefore, this step can be done at
    702   // width W.
    703   //
    704   // The next issue is how to safely do the division by 2^T.  The way this
    705   // is done is by doing the multiplication step at a width of at least W + T
    706   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
    707   // when we perform the division by 2^T (which is equivalent to a right shift
    708   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
    709   // truncated out after the division by 2^T.
    710   //
    711   // In comparison to just directly using the first formula, this technique
    712   // is much more efficient; using the first formula requires W * K bits,
    713   // but this formula less than W + K bits. Also, the first formula requires
    714   // a division step, whereas this formula only requires multiplies and shifts.
    715   //
    716   // It doesn't matter whether the subtraction step is done in the calculation
    717   // width or the input iteration count's width; if the subtraction overflows,
    718   // the result must be zero anyway.  We prefer here to do it in the width of
    719   // the induction variable because it helps a lot for certain cases; CodeGen
    720   // isn't smart enough to ignore the overflow, which leads to much less
    721   // efficient code if the width of the subtraction is wider than the native
    722   // register width.
    723   //
    724   // (It's possible to not widen at all by pulling out factors of 2 before
    725   // the multiplication; for example, K=2 can be calculated as
    726   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
    727   // extra arithmetic, so it's not an obvious win, and it gets
    728   // much more complicated for K > 3.)
    729 
    730   // Protection from insane SCEVs; this bound is conservative,
    731   // but it probably doesn't matter.
    732   if (K > 1000)
    733     return SE.getCouldNotCompute();
    734 
    735   unsigned W = SE.getTypeSizeInBits(ResultTy);
    736 
    737   // Calculate K! / 2^T and T; we divide out the factors of two before
    738   // multiplying for calculating K! / 2^T to avoid overflow.
    739   // Other overflow doesn't matter because we only care about the bottom
    740   // W bits of the result.
    741   APInt OddFactorial(W, 1);
    742   unsigned T = 1;
    743   for (unsigned i = 3; i <= K; ++i) {
    744     APInt Mult(W, i);
    745     unsigned TwoFactors = Mult.countTrailingZeros();
    746     T += TwoFactors;
    747     Mult = Mult.lshr(TwoFactors);
    748     OddFactorial *= Mult;
    749   }
    750 
    751   // We need at least W + T bits for the multiplication step
    752   unsigned CalculationBits = W + T;
    753 
    754   // Calculate 2^T, at width T+W.
    755   APInt DivFactor = APInt(CalculationBits, 1).shl(T);
    756 
    757   // Calculate the multiplicative inverse of K! / 2^T;
    758   // this multiplication factor will perform the exact division by
    759   // K! / 2^T.
    760   APInt Mod = APInt::getSignedMinValue(W+1);
    761   APInt MultiplyFactor = OddFactorial.zext(W+1);
    762   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
    763   MultiplyFactor = MultiplyFactor.trunc(W);
    764 
    765   // Calculate the product, at width T+W
    766   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
    767                                                       CalculationBits);
    768   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
    769   for (unsigned i = 1; i != K; ++i) {
    770     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
    771     Dividend = SE.getMulExpr(Dividend,
    772                              SE.getTruncateOrZeroExtend(S, CalculationTy));
    773   }
    774 
    775   // Divide by 2^T
    776   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
    777 
    778   // Truncate the result, and divide by K! / 2^T.
    779 
    780   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
    781                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
    782 }
    783 
    784 /// evaluateAtIteration - Return the value of this chain of recurrences at
    785 /// the specified iteration number.  We can evaluate this recurrence by
    786 /// multiplying each element in the chain by the binomial coefficient
    787 /// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
    788 ///
    789 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
    790 ///
    791 /// where BC(It, k) stands for binomial coefficient.
    792 ///
    793 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
    794                                                 ScalarEvolution &SE) const {
    795   const SCEV *Result = getStart();
    796   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
    797     // The computation is correct in the face of overflow provided that the
    798     // multiplication is performed _after_ the evaluation of the binomial
    799     // coefficient.
    800     const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
    801     if (isa<SCEVCouldNotCompute>(Coeff))
    802       return Coeff;
    803 
    804     Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
    805   }
    806   return Result;
    807 }
    808 
    809 //===----------------------------------------------------------------------===//
    810 //                    SCEV Expression folder implementations
    811 //===----------------------------------------------------------------------===//
    812 
    813 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
    814                                              Type *Ty) {
    815   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
    816          "This is not a truncating conversion!");
    817   assert(isSCEVable(Ty) &&
    818          "This is not a conversion to a SCEVable type!");
    819   Ty = getEffectiveSCEVType(Ty);
    820 
    821   FoldingSetNodeID ID;
    822   ID.AddInteger(scTruncate);
    823   ID.AddPointer(Op);
    824   ID.AddPointer(Ty);
    825   void *IP = 0;
    826   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
    827 
    828   // Fold if the operand is constant.
    829   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
    830     return getConstant(
    831       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
    832 
    833   // trunc(trunc(x)) --> trunc(x)
    834   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
    835     return getTruncateExpr(ST->getOperand(), Ty);
    836 
    837   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
    838   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
    839     return getTruncateOrSignExtend(SS->getOperand(), Ty);
    840 
    841   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
    842   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
    843     return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
    844 
    845   // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
    846   // eliminate all the truncates.
    847   if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
    848     SmallVector<const SCEV *, 4> Operands;
    849     bool hasTrunc = false;
    850     for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
    851       const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
    852       hasTrunc = isa<SCEVTruncateExpr>(S);
    853       Operands.push_back(S);
    854     }
    855     if (!hasTrunc)
    856       return getAddExpr(Operands);
    857     UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
    858   }
    859 
    860   // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
    861   // eliminate all the truncates.
    862   if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
    863     SmallVector<const SCEV *, 4> Operands;
    864     bool hasTrunc = false;
    865     for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
    866       const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
    867       hasTrunc = isa<SCEVTruncateExpr>(S);
    868       Operands.push_back(S);
    869     }
    870     if (!hasTrunc)
    871       return getMulExpr(Operands);
    872     UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
    873   }
    874 
    875   // If the input value is a chrec scev, truncate the chrec's operands.
    876   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
    877     SmallVector<const SCEV *, 4> Operands;
    878     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
    879       Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
    880     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
    881   }
    882 
    883   // The cast wasn't folded; create an explicit cast node. We can reuse
    884   // the existing insert position since if we get here, we won't have
    885   // made any changes which would invalidate it.
    886   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
    887                                                  Op, Ty);
    888   UniqueSCEVs.InsertNode(S, IP);
    889   return S;
    890 }
    891 
    892 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
    893                                                Type *Ty) {
    894   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
    895          "This is not an extending conversion!");
    896   assert(isSCEVable(Ty) &&
    897          "This is not a conversion to a SCEVable type!");
    898   Ty = getEffectiveSCEVType(Ty);
    899 
    900   // Fold if the operand is constant.
    901   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
    902     return getConstant(
    903       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
    904 
    905   // zext(zext(x)) --> zext(x)
    906   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
    907     return getZeroExtendExpr(SZ->getOperand(), Ty);
    908 
    909   // Before doing any expensive analysis, check to see if we've already
    910   // computed a SCEV for this Op and Ty.
    911   FoldingSetNodeID ID;
    912   ID.AddInteger(scZeroExtend);
    913   ID.AddPointer(Op);
    914   ID.AddPointer(Ty);
    915   void *IP = 0;
    916   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
    917 
    918   // zext(trunc(x)) --> zext(x) or x or trunc(x)
    919   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
    920     // It's possible the bits taken off by the truncate were all zero bits. If
    921     // so, we should be able to simplify this further.
    922     const SCEV *X = ST->getOperand();
    923     ConstantRange CR = getUnsignedRange(X);
    924     unsigned TruncBits = getTypeSizeInBits(ST->getType());
    925     unsigned NewBits = getTypeSizeInBits(Ty);
    926     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
    927             CR.zextOrTrunc(NewBits)))
    928       return getTruncateOrZeroExtend(X, Ty);
    929   }
    930 
    931   // If the input value is a chrec scev, and we can prove that the value
    932   // did not overflow the old, smaller, value, we can zero extend all of the
    933   // operands (often constants).  This allows analysis of something like
    934   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
    935   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
    936     if (AR->isAffine()) {
    937       const SCEV *Start = AR->getStart();
    938       const SCEV *Step = AR->getStepRecurrence(*this);
    939       unsigned BitWidth = getTypeSizeInBits(AR->getType());
    940       const Loop *L = AR->getLoop();
    941 
    942       // If we have special knowledge that this addrec won't overflow,
    943       // we don't need to do any further analysis.
    944       if (AR->getNoWrapFlags(SCEV::FlagNUW))
    945         return getAddRecExpr(getZeroExtendExpr(Start, Ty),
    946                              getZeroExtendExpr(Step, Ty),
    947                              L, AR->getNoWrapFlags());
    948 
    949       // Check whether the backedge-taken count is SCEVCouldNotCompute.
    950       // Note that this serves two purposes: It filters out loops that are
    951       // simply not analyzable, and it covers the case where this code is
    952       // being called from within backedge-taken count analysis, such that
    953       // attempting to ask for the backedge-taken count would likely result
    954       // in infinite recursion. In the later case, the analysis code will
    955       // cope with a conservative value, and it will take care to purge
    956       // that value once it has finished.
    957       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
    958       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
    959         // Manually compute the final value for AR, checking for
    960         // overflow.
    961 
    962         // Check whether the backedge-taken count can be losslessly casted to
    963         // the addrec's type. The count is always unsigned.
    964         const SCEV *CastedMaxBECount =
    965           getTruncateOrZeroExtend(MaxBECount, Start->getType());
    966         const SCEV *RecastedMaxBECount =
    967           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
    968         if (MaxBECount == RecastedMaxBECount) {
    969           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
    970           // Check whether Start+Step*MaxBECount has no unsigned overflow.
    971           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
    972           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
    973           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
    974           const SCEV *WideMaxBECount =
    975             getZeroExtendExpr(CastedMaxBECount, WideTy);
    976           const SCEV *OperandExtendedAdd =
    977             getAddExpr(WideStart,
    978                        getMulExpr(WideMaxBECount,
    979                                   getZeroExtendExpr(Step, WideTy)));
    980           if (ZAdd == OperandExtendedAdd) {
    981             // Cache knowledge of AR NUW, which is propagated to this AddRec.
    982             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
    983             // Return the expression with the addrec on the outside.
    984             return getAddRecExpr(getZeroExtendExpr(Start, Ty),
    985                                  getZeroExtendExpr(Step, Ty),
    986                                  L, AR->getNoWrapFlags());
    987           }
    988           // Similar to above, only this time treat the step value as signed.
    989           // This covers loops that count down.
    990           OperandExtendedAdd =
    991             getAddExpr(WideStart,
    992                        getMulExpr(WideMaxBECount,
    993                                   getSignExtendExpr(Step, WideTy)));
    994           if (ZAdd == OperandExtendedAdd) {
    995             // Cache knowledge of AR NW, which is propagated to this AddRec.
    996             // Negative step causes unsigned wrap, but it still can't self-wrap.
    997             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
    998             // Return the expression with the addrec on the outside.
    999             return getAddRecExpr(getZeroExtendExpr(Start, Ty),
   1000                                  getSignExtendExpr(Step, Ty),
   1001                                  L, AR->getNoWrapFlags());
   1002           }
   1003         }
   1004 
   1005         // If the backedge is guarded by a comparison with the pre-inc value
   1006         // the addrec is safe. Also, if the entry is guarded by a comparison
   1007         // with the start value and the backedge is guarded by a comparison
   1008         // with the post-inc value, the addrec is safe.
   1009         if (isKnownPositive(Step)) {
   1010           const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
   1011                                       getUnsignedRange(Step).getUnsignedMax());
   1012           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
   1013               (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
   1014                isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
   1015                                            AR->getPostIncExpr(*this), N))) {
   1016             // Cache knowledge of AR NUW, which is propagated to this AddRec.
   1017             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
   1018             // Return the expression with the addrec on the outside.
   1019             return getAddRecExpr(getZeroExtendExpr(Start, Ty),
   1020                                  getZeroExtendExpr(Step, Ty),
   1021                                  L, AR->getNoWrapFlags());
   1022           }
   1023         } else if (isKnownNegative(Step)) {
   1024           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
   1025                                       getSignedRange(Step).getSignedMin());
   1026           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
   1027               (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
   1028                isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
   1029                                            AR->getPostIncExpr(*this), N))) {
   1030             // Cache knowledge of AR NW, which is propagated to this AddRec.
   1031             // Negative step causes unsigned wrap, but it still can't self-wrap.
   1032             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
   1033             // Return the expression with the addrec on the outside.
   1034             return getAddRecExpr(getZeroExtendExpr(Start, Ty),
   1035                                  getSignExtendExpr(Step, Ty),
   1036                                  L, AR->getNoWrapFlags());
   1037           }
   1038         }
   1039       }
   1040     }
   1041 
   1042   // The cast wasn't folded; create an explicit cast node.
   1043   // Recompute the insert position, as it may have been invalidated.
   1044   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
   1045   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
   1046                                                    Op, Ty);
   1047   UniqueSCEVs.InsertNode(S, IP);
   1048   return S;
   1049 }
   1050 
   1051 // Get the limit of a recurrence such that incrementing by Step cannot cause
   1052 // signed overflow as long as the value of the recurrence within the loop does
   1053 // not exceed this limit before incrementing.
   1054 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
   1055                                            ICmpInst::Predicate *Pred,
   1056                                            ScalarEvolution *SE) {
   1057   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
   1058   if (SE->isKnownPositive(Step)) {
   1059     *Pred = ICmpInst::ICMP_SLT;
   1060     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
   1061                            SE->getSignedRange(Step).getSignedMax());
   1062   }
   1063   if (SE->isKnownNegative(Step)) {
   1064     *Pred = ICmpInst::ICMP_SGT;
   1065     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
   1066                        SE->getSignedRange(Step).getSignedMin());
   1067   }
   1068   return 0;
   1069 }
   1070 
   1071 // The recurrence AR has been shown to have no signed wrap. Typically, if we can
   1072 // prove NSW for AR, then we can just as easily prove NSW for its preincrement
   1073 // or postincrement sibling. This allows normalizing a sign extended AddRec as
   1074 // such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a
   1075 // result, the expression "Step + sext(PreIncAR)" is congruent with
   1076 // "sext(PostIncAR)"
   1077 static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR,
   1078                                             Type *Ty,
   1079                                             ScalarEvolution *SE) {
   1080   const Loop *L = AR->getLoop();
   1081   const SCEV *Start = AR->getStart();
   1082   const SCEV *Step = AR->getStepRecurrence(*SE);
   1083 
   1084   // Check for a simple looking step prior to loop entry.
   1085   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
   1086   if (!SA)
   1087     return 0;
   1088 
   1089   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
   1090   // subtraction is expensive. For this purpose, perform a quick and dirty
   1091   // difference, by checking for Step in the operand list.
   1092   SmallVector<const SCEV *, 4> DiffOps;
   1093   for (SCEVAddExpr::op_iterator I = SA->op_begin(), E = SA->op_end();
   1094        I != E; ++I) {
   1095     if (*I != Step)
   1096       DiffOps.push_back(*I);
   1097   }
   1098   if (DiffOps.size() == SA->getNumOperands())
   1099     return 0;
   1100 
   1101   // This is a postinc AR. Check for overflow on the preinc recurrence using the
   1102   // same three conditions that getSignExtendedExpr checks.
   1103 
   1104   // 1. NSW flags on the step increment.
   1105   const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
   1106   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
   1107     SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
   1108 
   1109   if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW))
   1110     return PreStart;
   1111 
   1112   // 2. Direct overflow check on the step operation's expression.
   1113   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
   1114   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
   1115   const SCEV *OperandExtendedStart =
   1116     SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy),
   1117                    SE->getSignExtendExpr(Step, WideTy));
   1118   if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) {
   1119     // Cache knowledge of PreAR NSW.
   1120     if (PreAR)
   1121       const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW);
   1122     // FIXME: this optimization needs a unit test
   1123     DEBUG(dbgs() << "SCEV: untested prestart overflow check\n");
   1124     return PreStart;
   1125   }
   1126 
   1127   // 3. Loop precondition.
   1128   ICmpInst::Predicate Pred;
   1129   const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE);
   1130 
   1131   if (OverflowLimit &&
   1132       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
   1133     return PreStart;
   1134   }
   1135   return 0;
   1136 }
   1137 
   1138 // Get the normalized sign-extended expression for this AddRec's Start.
   1139 static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR,
   1140                                             Type *Ty,
   1141                                             ScalarEvolution *SE) {
   1142   const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE);
   1143   if (!PreStart)
   1144     return SE->getSignExtendExpr(AR->getStart(), Ty);
   1145 
   1146   return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty),
   1147                         SE->getSignExtendExpr(PreStart, Ty));
   1148 }
   1149 
   1150 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
   1151                                                Type *Ty) {
   1152   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
   1153          "This is not an extending conversion!");
   1154   assert(isSCEVable(Ty) &&
   1155          "This is not a conversion to a SCEVable type!");
   1156   Ty = getEffectiveSCEVType(Ty);
   1157 
   1158   // Fold if the operand is constant.
   1159   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
   1160     return getConstant(
   1161       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
   1162 
   1163   // sext(sext(x)) --> sext(x)
   1164   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
   1165     return getSignExtendExpr(SS->getOperand(), Ty);
   1166 
   1167   // sext(zext(x)) --> zext(x)
   1168   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
   1169     return getZeroExtendExpr(SZ->getOperand(), Ty);
   1170 
   1171   // Before doing any expensive analysis, check to see if we've already
   1172   // computed a SCEV for this Op and Ty.
   1173   FoldingSetNodeID ID;
   1174   ID.AddInteger(scSignExtend);
   1175   ID.AddPointer(Op);
   1176   ID.AddPointer(Ty);
   1177   void *IP = 0;
   1178   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
   1179 
   1180   // If the input value is provably positive, build a zext instead.
   1181   if (isKnownNonNegative(Op))
   1182     return getZeroExtendExpr(Op, Ty);
   1183 
   1184   // sext(trunc(x)) --> sext(x) or x or trunc(x)
   1185   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
   1186     // It's possible the bits taken off by the truncate were all sign bits. If
   1187     // so, we should be able to simplify this further.
   1188     const SCEV *X = ST->getOperand();
   1189     ConstantRange CR = getSignedRange(X);
   1190     unsigned TruncBits = getTypeSizeInBits(ST->getType());
   1191     unsigned NewBits = getTypeSizeInBits(Ty);
   1192     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
   1193             CR.sextOrTrunc(NewBits)))
   1194       return getTruncateOrSignExtend(X, Ty);
   1195   }
   1196 
   1197   // If the input value is a chrec scev, and we can prove that the value
   1198   // did not overflow the old, smaller, value, we can sign extend all of the
   1199   // operands (often constants).  This allows analysis of something like
   1200   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
   1201   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
   1202     if (AR->isAffine()) {
   1203       const SCEV *Start = AR->getStart();
   1204       const SCEV *Step = AR->getStepRecurrence(*this);
   1205       unsigned BitWidth = getTypeSizeInBits(AR->getType());
   1206       const Loop *L = AR->getLoop();
   1207 
   1208       // If we have special knowledge that this addrec won't overflow,
   1209       // we don't need to do any further analysis.
   1210       if (AR->getNoWrapFlags(SCEV::FlagNSW))
   1211         return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
   1212                              getSignExtendExpr(Step, Ty),
   1213                              L, SCEV::FlagNSW);
   1214 
   1215       // Check whether the backedge-taken count is SCEVCouldNotCompute.
   1216       // Note that this serves two purposes: It filters out loops that are
   1217       // simply not analyzable, and it covers the case where this code is
   1218       // being called from within backedge-taken count analysis, such that
   1219       // attempting to ask for the backedge-taken count would likely result
   1220       // in infinite recursion. In the later case, the analysis code will
   1221       // cope with a conservative value, and it will take care to purge
   1222       // that value once it has finished.
   1223       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
   1224       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
   1225         // Manually compute the final value for AR, checking for
   1226         // overflow.
   1227 
   1228         // Check whether the backedge-taken count can be losslessly casted to
   1229         // the addrec's type. The count is always unsigned.
   1230         const SCEV *CastedMaxBECount =
   1231           getTruncateOrZeroExtend(MaxBECount, Start->getType());
   1232         const SCEV *RecastedMaxBECount =
   1233           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
   1234         if (MaxBECount == RecastedMaxBECount) {
   1235           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
   1236           // Check whether Start+Step*MaxBECount has no signed overflow.
   1237           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
   1238           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
   1239           const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
   1240           const SCEV *WideMaxBECount =
   1241             getZeroExtendExpr(CastedMaxBECount, WideTy);
   1242           const SCEV *OperandExtendedAdd =
   1243             getAddExpr(WideStart,
   1244                        getMulExpr(WideMaxBECount,
   1245                                   getSignExtendExpr(Step, WideTy)));
   1246           if (SAdd == OperandExtendedAdd) {
   1247             // Cache knowledge of AR NSW, which is propagated to this AddRec.
   1248             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
   1249             // Return the expression with the addrec on the outside.
   1250             return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
   1251                                  getSignExtendExpr(Step, Ty),
   1252                                  L, AR->getNoWrapFlags());
   1253           }
   1254           // Similar to above, only this time treat the step value as unsigned.
   1255           // This covers loops that count up with an unsigned step.
   1256           OperandExtendedAdd =
   1257             getAddExpr(WideStart,
   1258                        getMulExpr(WideMaxBECount,
   1259                                   getZeroExtendExpr(Step, WideTy)));
   1260           if (SAdd == OperandExtendedAdd) {
   1261             // Cache knowledge of AR NSW, which is propagated to this AddRec.
   1262             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
   1263             // Return the expression with the addrec on the outside.
   1264             return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
   1265                                  getZeroExtendExpr(Step, Ty),
   1266                                  L, AR->getNoWrapFlags());
   1267           }
   1268         }
   1269 
   1270         // If the backedge is guarded by a comparison with the pre-inc value
   1271         // the addrec is safe. Also, if the entry is guarded by a comparison
   1272         // with the start value and the backedge is guarded by a comparison
   1273         // with the post-inc value, the addrec is safe.
   1274         ICmpInst::Predicate Pred;
   1275         const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this);
   1276         if (OverflowLimit &&
   1277             (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
   1278              (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
   1279               isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
   1280                                           OverflowLimit)))) {
   1281           // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
   1282           const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
   1283           return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
   1284                                getSignExtendExpr(Step, Ty),
   1285                                L, AR->getNoWrapFlags());
   1286         }
   1287       }
   1288     }
   1289 
   1290   // The cast wasn't folded; create an explicit cast node.
   1291   // Recompute the insert position, as it may have been invalidated.
   1292   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
   1293   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
   1294                                                    Op, Ty);
   1295   UniqueSCEVs.InsertNode(S, IP);
   1296   return S;
   1297 }
   1298 
   1299 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
   1300 /// unspecified bits out to the given type.
   1301 ///
   1302 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
   1303                                               Type *Ty) {
   1304   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
   1305          "This is not an extending conversion!");
   1306   assert(isSCEVable(Ty) &&
   1307          "This is not a conversion to a SCEVable type!");
   1308   Ty = getEffectiveSCEVType(Ty);
   1309 
   1310   // Sign-extend negative constants.
   1311   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
   1312     if (SC->getValue()->getValue().isNegative())
   1313       return getSignExtendExpr(Op, Ty);
   1314 
   1315   // Peel off a truncate cast.
   1316   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
   1317     const SCEV *NewOp = T->getOperand();
   1318     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
   1319       return getAnyExtendExpr(NewOp, Ty);
   1320     return getTruncateOrNoop(NewOp, Ty);
   1321   }
   1322 
   1323   // Next try a zext cast. If the cast is folded, use it.
   1324   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
   1325   if (!isa<SCEVZeroExtendExpr>(ZExt))
   1326     return ZExt;
   1327 
   1328   // Next try a sext cast. If the cast is folded, use it.
   1329   const SCEV *SExt = getSignExtendExpr(Op, Ty);
   1330   if (!isa<SCEVSignExtendExpr>(SExt))
   1331     return SExt;
   1332 
   1333   // Force the cast to be folded into the operands of an addrec.
   1334   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
   1335     SmallVector<const SCEV *, 4> Ops;
   1336     for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
   1337          I != E; ++I)
   1338       Ops.push_back(getAnyExtendExpr(*I, Ty));
   1339     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
   1340   }
   1341 
   1342   // If the expression is obviously signed, use the sext cast value.
   1343   if (isa<SCEVSMaxExpr>(Op))
   1344     return SExt;
   1345 
   1346   // Absent any other information, use the zext cast value.
   1347   return ZExt;
   1348 }
   1349 
   1350 /// CollectAddOperandsWithScales - Process the given Ops list, which is
   1351 /// a list of operands to be added under the given scale, update the given
   1352 /// map. This is a helper function for getAddRecExpr. As an example of
   1353 /// what it does, given a sequence of operands that would form an add
   1354 /// expression like this:
   1355 ///
   1356 ///    m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
   1357 ///
   1358 /// where A and B are constants, update the map with these values:
   1359 ///
   1360 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
   1361 ///
   1362 /// and add 13 + A*B*29 to AccumulatedConstant.
   1363 /// This will allow getAddRecExpr to produce this:
   1364 ///
   1365 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
   1366 ///
   1367 /// This form often exposes folding opportunities that are hidden in
   1368 /// the original operand list.
   1369 ///
   1370 /// Return true iff it appears that any interesting folding opportunities
   1371 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
   1372 /// the common case where no interesting opportunities are present, and
   1373 /// is also used as a check to avoid infinite recursion.
   1374 ///
   1375 static bool
   1376 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
   1377                              SmallVector<const SCEV *, 8> &NewOps,
   1378                              APInt &AccumulatedConstant,
   1379                              const SCEV *const *Ops, size_t NumOperands,
   1380                              const APInt &Scale,
   1381                              ScalarEvolution &SE) {
   1382   bool Interesting = false;
   1383 
   1384   // Iterate over the add operands. They are sorted, with constants first.
   1385   unsigned i = 0;
   1386   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
   1387     ++i;
   1388     // Pull a buried constant out to the outside.
   1389     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
   1390       Interesting = true;
   1391     AccumulatedConstant += Scale * C->getValue()->getValue();
   1392   }
   1393 
   1394   // Next comes everything else. We're especially interested in multiplies
   1395   // here, but they're in the middle, so just visit the rest with one loop.
   1396   for (; i != NumOperands; ++i) {
   1397     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
   1398     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
   1399       APInt NewScale =
   1400         Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
   1401       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
   1402         // A multiplication of a constant with another add; recurse.
   1403         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
   1404         Interesting |=
   1405           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
   1406                                        Add->op_begin(), Add->getNumOperands(),
   1407                                        NewScale, SE);
   1408       } else {
   1409         // A multiplication of a constant with some other value. Update
   1410         // the map.
   1411         SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
   1412         const SCEV *Key = SE.getMulExpr(MulOps);
   1413         std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
   1414           M.insert(std::make_pair(Key, NewScale));
   1415         if (Pair.second) {
   1416           NewOps.push_back(Pair.first->first);
   1417         } else {
   1418           Pair.first->second += NewScale;
   1419           // The map already had an entry for this value, which may indicate
   1420           // a folding opportunity.
   1421           Interesting = true;
   1422         }
   1423       }
   1424     } else {
   1425       // An ordinary operand. Update the map.
   1426       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
   1427         M.insert(std::make_pair(Ops[i], Scale));
   1428       if (Pair.second) {
   1429         NewOps.push_back(Pair.first->first);
   1430       } else {
   1431         Pair.first->second += Scale;
   1432         // The map already had an entry for this value, which may indicate
   1433         // a folding opportunity.
   1434         Interesting = true;
   1435       }
   1436     }
   1437   }
   1438 
   1439   return Interesting;
   1440 }
   1441 
   1442 namespace {
   1443   struct APIntCompare {
   1444     bool operator()(const APInt &LHS, const APInt &RHS) const {
   1445       return LHS.ult(RHS);
   1446     }
   1447   };
   1448 }
   1449 
   1450 /// getAddExpr - Get a canonical add expression, or something simpler if
   1451 /// possible.
   1452 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
   1453                                         SCEV::NoWrapFlags Flags) {
   1454   assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
   1455          "only nuw or nsw allowed");
   1456   assert(!Ops.empty() && "Cannot get empty add!");
   1457   if (Ops.size() == 1) return Ops[0];
   1458 #ifndef NDEBUG
   1459   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
   1460   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
   1461     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
   1462            "SCEVAddExpr operand types don't match!");
   1463 #endif
   1464 
   1465   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
   1466   // And vice-versa.
   1467   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
   1468   SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
   1469   if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
   1470     bool All = true;
   1471     for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
   1472          E = Ops.end(); I != E; ++I)
   1473       if (!isKnownNonNegative(*I)) {
   1474         All = false;
   1475         break;
   1476       }
   1477     if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
   1478   }
   1479 
   1480   // Sort by complexity, this groups all similar expression types together.
   1481   GroupByComplexity(Ops, LI);
   1482 
   1483   // If there are any constants, fold them together.
   1484   unsigned Idx = 0;
   1485   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
   1486     ++Idx;
   1487     assert(Idx < Ops.size());
   1488     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
   1489       // We found two constants, fold them together!
   1490       Ops[0] = getConstant(LHSC->getValue()->getValue() +
   1491                            RHSC->getValue()->getValue());
   1492       if (Ops.size() == 2) return Ops[0];
   1493       Ops.erase(Ops.begin()+1);  // Erase the folded element
   1494       LHSC = cast<SCEVConstant>(Ops[0]);
   1495     }
   1496 
   1497     // If we are left with a constant zero being added, strip it off.
   1498     if (LHSC->getValue()->isZero()) {
   1499       Ops.erase(Ops.begin());
   1500       --Idx;
   1501     }
   1502 
   1503     if (Ops.size() == 1) return Ops[0];
   1504   }
   1505 
   1506   // Okay, check to see if the same value occurs in the operand list more than
   1507   // once.  If so, merge them together into an multiply expression.  Since we
   1508   // sorted the list, these values are required to be adjacent.
   1509   Type *Ty = Ops[0]->getType();
   1510   bool FoundMatch = false;
   1511   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
   1512     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
   1513       // Scan ahead to count how many equal operands there are.
   1514       unsigned Count = 2;
   1515       while (i+Count != e && Ops[i+Count] == Ops[i])
   1516         ++Count;
   1517       // Merge the values into a multiply.
   1518       const SCEV *Scale = getConstant(Ty, Count);
   1519       const SCEV *Mul = getMulExpr(Scale, Ops[i]);
   1520       if (Ops.size() == Count)
   1521         return Mul;
   1522       Ops[i] = Mul;
   1523       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
   1524       --i; e -= Count - 1;
   1525       FoundMatch = true;
   1526     }
   1527   if (FoundMatch)
   1528     return getAddExpr(Ops, Flags);
   1529 
   1530   // Check for truncates. If all the operands are truncated from the same
   1531   // type, see if factoring out the truncate would permit the result to be
   1532   // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
   1533   // if the contents of the resulting outer trunc fold to something simple.
   1534   for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
   1535     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
   1536     Type *DstType = Trunc->getType();
   1537     Type *SrcType = Trunc->getOperand()->getType();
   1538     SmallVector<const SCEV *, 8> LargeOps;
   1539     bool Ok = true;
   1540     // Check all the operands to see if they can be represented in the
   1541     // source type of the truncate.
   1542     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
   1543       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
   1544         if (T->getOperand()->getType() != SrcType) {
   1545           Ok = false;
   1546           break;
   1547         }
   1548         LargeOps.push_back(T->getOperand());
   1549       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
   1550         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
   1551       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
   1552         SmallVector<const SCEV *, 8> LargeMulOps;
   1553         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
   1554           if (const SCEVTruncateExpr *T =
   1555                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
   1556             if (T->getOperand()->getType() != SrcType) {
   1557               Ok = false;
   1558               break;
   1559             }
   1560             LargeMulOps.push_back(T->getOperand());
   1561           } else if (const SCEVConstant *C =
   1562                        dyn_cast<SCEVConstant>(M->getOperand(j))) {
   1563             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
   1564           } else {
   1565             Ok = false;
   1566             break;
   1567           }
   1568         }
   1569         if (Ok)
   1570           LargeOps.push_back(getMulExpr(LargeMulOps));
   1571       } else {
   1572         Ok = false;
   1573         break;
   1574       }
   1575     }
   1576     if (Ok) {
   1577       // Evaluate the expression in the larger type.
   1578       const SCEV *Fold = getAddExpr(LargeOps, Flags);
   1579       // If it folds to something simple, use it. Otherwise, don't.
   1580       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
   1581         return getTruncateExpr(Fold, DstType);
   1582     }
   1583   }
   1584 
   1585   // Skip past any other cast SCEVs.
   1586   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
   1587     ++Idx;
   1588 
   1589   // If there are add operands they would be next.
   1590   if (Idx < Ops.size()) {
   1591     bool DeletedAdd = false;
   1592     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
   1593       // If we have an add, expand the add operands onto the end of the operands
   1594       // list.
   1595       Ops.erase(Ops.begin()+Idx);
   1596       Ops.append(Add->op_begin(), Add->op_end());
   1597       DeletedAdd = true;
   1598     }
   1599 
   1600     // If we deleted at least one add, we added operands to the end of the list,
   1601     // and they are not necessarily sorted.  Recurse to resort and resimplify
   1602     // any operands we just acquired.
   1603     if (DeletedAdd)
   1604       return getAddExpr(Ops);
   1605   }
   1606 
   1607   // Skip over the add expression until we get to a multiply.
   1608   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
   1609     ++Idx;
   1610 
   1611   // Check to see if there are any folding opportunities present with
   1612   // operands multiplied by constant values.
   1613   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
   1614     uint64_t BitWidth = getTypeSizeInBits(Ty);
   1615     DenseMap<const SCEV *, APInt> M;
   1616     SmallVector<const SCEV *, 8> NewOps;
   1617     APInt AccumulatedConstant(BitWidth, 0);
   1618     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
   1619                                      Ops.data(), Ops.size(),
   1620                                      APInt(BitWidth, 1), *this)) {
   1621       // Some interesting folding opportunity is present, so its worthwhile to
   1622       // re-generate the operands list. Group the operands by constant scale,
   1623       // to avoid multiplying by the same constant scale multiple times.
   1624       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
   1625       for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
   1626            E = NewOps.end(); I != E; ++I)
   1627         MulOpLists[M.find(*I)->second].push_back(*I);
   1628       // Re-generate the operands list.
   1629       Ops.clear();
   1630       if (AccumulatedConstant != 0)
   1631         Ops.push_back(getConstant(AccumulatedConstant));
   1632       for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
   1633            I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
   1634         if (I->first != 0)
   1635           Ops.push_back(getMulExpr(getConstant(I->first),
   1636                                    getAddExpr(I->second)));
   1637       if (Ops.empty())
   1638         return getConstant(Ty, 0);
   1639       if (Ops.size() == 1)
   1640         return Ops[0];
   1641       return getAddExpr(Ops);
   1642     }
   1643   }
   1644 
   1645   // If we are adding something to a multiply expression, make sure the
   1646   // something is not already an operand of the multiply.  If so, merge it into
   1647   // the multiply.
   1648   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
   1649     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
   1650     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
   1651       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
   1652       if (isa<SCEVConstant>(MulOpSCEV))
   1653         continue;
   1654       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
   1655         if (MulOpSCEV == Ops[AddOp]) {
   1656           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
   1657           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
   1658           if (Mul->getNumOperands() != 2) {
   1659             // If the multiply has more than two operands, we must get the
   1660             // Y*Z term.
   1661             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
   1662                                                 Mul->op_begin()+MulOp);
   1663             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
   1664             InnerMul = getMulExpr(MulOps);
   1665           }
   1666           const SCEV *One = getConstant(Ty, 1);
   1667           const SCEV *AddOne = getAddExpr(One, InnerMul);
   1668           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
   1669           if (Ops.size() == 2) return OuterMul;
   1670           if (AddOp < Idx) {
   1671             Ops.erase(Ops.begin()+AddOp);
   1672             Ops.erase(Ops.begin()+Idx-1);
   1673           } else {
   1674             Ops.erase(Ops.begin()+Idx);
   1675             Ops.erase(Ops.begin()+AddOp-1);
   1676           }
   1677           Ops.push_back(OuterMul);
   1678           return getAddExpr(Ops);
   1679         }
   1680 
   1681       // Check this multiply against other multiplies being added together.
   1682       for (unsigned OtherMulIdx = Idx+1;
   1683            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
   1684            ++OtherMulIdx) {
   1685         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
   1686         // If MulOp occurs in OtherMul, we can fold the two multiplies
   1687         // together.
   1688         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
   1689              OMulOp != e; ++OMulOp)
   1690           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
   1691             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
   1692             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
   1693             if (Mul->getNumOperands() != 2) {
   1694               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
   1695                                                   Mul->op_begin()+MulOp);
   1696               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
   1697               InnerMul1 = getMulExpr(MulOps);
   1698             }
   1699             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
   1700             if (OtherMul->getNumOperands() != 2) {
   1701               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
   1702                                                   OtherMul->op_begin()+OMulOp);
   1703               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
   1704               InnerMul2 = getMulExpr(MulOps);
   1705             }
   1706             const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
   1707             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
   1708             if (Ops.size() == 2) return OuterMul;
   1709             Ops.erase(Ops.begin()+Idx);
   1710             Ops.erase(Ops.begin()+OtherMulIdx-1);
   1711             Ops.push_back(OuterMul);
   1712             return getAddExpr(Ops);
   1713           }
   1714       }
   1715     }
   1716   }
   1717 
   1718   // If there are any add recurrences in the operands list, see if any other
   1719   // added values are loop invariant.  If so, we can fold them into the
   1720   // recurrence.
   1721   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
   1722     ++Idx;
   1723 
   1724   // Scan over all recurrences, trying to fold loop invariants into them.
   1725   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
   1726     // Scan all of the other operands to this add and add them to the vector if
   1727     // they are loop invariant w.r.t. the recurrence.
   1728     SmallVector<const SCEV *, 8> LIOps;
   1729     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
   1730     const Loop *AddRecLoop = AddRec->getLoop();
   1731     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
   1732       if (isLoopInvariant(Ops[i], AddRecLoop)) {
   1733         LIOps.push_back(Ops[i]);
   1734         Ops.erase(Ops.begin()+i);
   1735         --i; --e;
   1736       }
   1737 
   1738     // If we found some loop invariants, fold them into the recurrence.
   1739     if (!LIOps.empty()) {
   1740       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
   1741       LIOps.push_back(AddRec->getStart());
   1742 
   1743       SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
   1744                                              AddRec->op_end());
   1745       AddRecOps[0] = getAddExpr(LIOps);
   1746 
   1747       // Build the new addrec. Propagate the NUW and NSW flags if both the
   1748       // outer add and the inner addrec are guaranteed to have no overflow.
   1749       // Always propagate NW.
   1750       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
   1751       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
   1752 
   1753       // If all of the other operands were loop invariant, we are done.
   1754       if (Ops.size() == 1) return NewRec;
   1755 
   1756       // Otherwise, add the folded AddRec by the non-invariant parts.
   1757       for (unsigned i = 0;; ++i)
   1758         if (Ops[i] == AddRec) {
   1759           Ops[i] = NewRec;
   1760           break;
   1761         }
   1762       return getAddExpr(Ops);
   1763     }
   1764 
   1765     // Okay, if there weren't any loop invariants to be folded, check to see if
   1766     // there are multiple AddRec's with the same loop induction variable being
   1767     // added together.  If so, we can fold them.
   1768     for (unsigned OtherIdx = Idx+1;
   1769          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
   1770          ++OtherIdx)
   1771       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
   1772         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
   1773         SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
   1774                                                AddRec->op_end());
   1775         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
   1776              ++OtherIdx)
   1777           if (const SCEVAddRecExpr *OtherAddRec =
   1778                 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
   1779             if (OtherAddRec->getLoop() == AddRecLoop) {
   1780               for (unsigned i = 0, e = OtherAddRec->getNumOperands();
   1781                    i != e; ++i) {
   1782                 if (i >= AddRecOps.size()) {
   1783                   AddRecOps.append(OtherAddRec->op_begin()+i,
   1784                                    OtherAddRec->op_end());
   1785                   break;
   1786                 }
   1787                 AddRecOps[i] = getAddExpr(AddRecOps[i],
   1788                                           OtherAddRec->getOperand(i));
   1789               }
   1790               Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
   1791             }
   1792         // Step size has changed, so we cannot guarantee no self-wraparound.
   1793         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
   1794         return getAddExpr(Ops);
   1795       }
   1796 
   1797     // Otherwise couldn't fold anything into this recurrence.  Move onto the
   1798     // next one.
   1799   }
   1800 
   1801   // Okay, it looks like we really DO need an add expr.  Check to see if we
   1802   // already have one, otherwise create a new one.
   1803   FoldingSetNodeID ID;
   1804   ID.AddInteger(scAddExpr);
   1805   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
   1806     ID.AddPointer(Ops[i]);
   1807   void *IP = 0;
   1808   SCEVAddExpr *S =
   1809     static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
   1810   if (!S) {
   1811     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
   1812     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
   1813     S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
   1814                                         O, Ops.size());
   1815     UniqueSCEVs.InsertNode(S, IP);
   1816   }
   1817   S->setNoWrapFlags(Flags);
   1818   return S;
   1819 }
   1820 
   1821 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
   1822   uint64_t k = i*j;
   1823   if (j > 1 && k / j != i) Overflow = true;
   1824   return k;
   1825 }
   1826 
   1827 /// Compute the result of "n choose k", the binomial coefficient.  If an
   1828 /// intermediate computation overflows, Overflow will be set and the return will
   1829 /// be garbage. Overflow is not cleared on absence of overflow.
   1830 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
   1831   // We use the multiplicative formula:
   1832   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
   1833   // At each iteration, we take the n-th term of the numeral and divide by the
   1834   // (k-n)th term of the denominator.  This division will always produce an
   1835   // integral result, and helps reduce the chance of overflow in the
   1836   // intermediate computations. However, we can still overflow even when the
   1837   // final result would fit.
   1838 
   1839   if (n == 0 || n == k) return 1;
   1840   if (k > n) return 0;
   1841 
   1842   if (k > n/2)
   1843     k = n-k;
   1844 
   1845   uint64_t r = 1;
   1846   for (uint64_t i = 1; i <= k; ++i) {
   1847     r = umul_ov(r, n-(i-1), Overflow);
   1848     r /= i;
   1849   }
   1850   return r;
   1851 }
   1852 
   1853 /// getMulExpr - Get a canonical multiply expression, or something simpler if
   1854 /// possible.
   1855 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
   1856                                         SCEV::NoWrapFlags Flags) {
   1857   assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
   1858          "only nuw or nsw allowed");
   1859   assert(!Ops.empty() && "Cannot get empty mul!");
   1860   if (Ops.size() == 1) return Ops[0];
   1861 #ifndef NDEBUG
   1862   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
   1863   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
   1864     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
   1865            "SCEVMulExpr operand types don't match!");
   1866 #endif
   1867 
   1868   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
   1869   // And vice-versa.
   1870   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
   1871   SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
   1872   if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
   1873     bool All = true;
   1874     for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
   1875          E = Ops.end(); I != E; ++I)
   1876       if (!isKnownNonNegative(*I)) {
   1877         All = false;
   1878         break;
   1879       }
   1880     if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
   1881   }
   1882 
   1883   // Sort by complexity, this groups all similar expression types together.
   1884   GroupByComplexity(Ops, LI);
   1885 
   1886   // If there are any constants, fold them together.
   1887   unsigned Idx = 0;
   1888   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
   1889 
   1890     // C1*(C2+V) -> C1*C2 + C1*V
   1891     if (Ops.size() == 2)
   1892       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
   1893         if (Add->getNumOperands() == 2 &&
   1894             isa<SCEVConstant>(Add->getOperand(0)))
   1895           return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
   1896                             getMulExpr(LHSC, Add->getOperand(1)));
   1897 
   1898     ++Idx;
   1899     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
   1900       // We found two constants, fold them together!
   1901       ConstantInt *Fold = ConstantInt::get(getContext(),
   1902                                            LHSC->getValue()->getValue() *
   1903                                            RHSC->getValue()->getValue());
   1904       Ops[0] = getConstant(Fold);
   1905       Ops.erase(Ops.begin()+1);  // Erase the folded element
   1906       if (Ops.size() == 1) return Ops[0];
   1907       LHSC = cast<SCEVConstant>(Ops[0]);
   1908     }
   1909 
   1910     // If we are left with a constant one being multiplied, strip it off.
   1911     if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
   1912       Ops.erase(Ops.begin());
   1913       --Idx;
   1914     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
   1915       // If we have a multiply of zero, it will always be zero.
   1916       return Ops[0];
   1917     } else if (Ops[0]->isAllOnesValue()) {
   1918       // If we have a mul by -1 of an add, try distributing the -1 among the
   1919       // add operands.
   1920       if (Ops.size() == 2) {
   1921         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
   1922           SmallVector<const SCEV *, 4> NewOps;
   1923           bool AnyFolded = false;
   1924           for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
   1925                  E = Add->op_end(); I != E; ++I) {
   1926             const SCEV *Mul = getMulExpr(Ops[0], *I);
   1927             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
   1928             NewOps.push_back(Mul);
   1929           }
   1930           if (AnyFolded)
   1931             return getAddExpr(NewOps);
   1932         }
   1933         else if (const SCEVAddRecExpr *
   1934                  AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
   1935           // Negation preserves a recurrence's no self-wrap property.
   1936           SmallVector<const SCEV *, 4> Operands;
   1937           for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
   1938                  E = AddRec->op_end(); I != E; ++I) {
   1939             Operands.push_back(getMulExpr(Ops[0], *I));
   1940           }
   1941           return getAddRecExpr(Operands, AddRec->getLoop(),
   1942                                AddRec->getNoWrapFlags(SCEV::FlagNW));
   1943         }
   1944       }
   1945     }
   1946 
   1947     if (Ops.size() == 1)
   1948       return Ops[0];
   1949   }
   1950 
   1951   // Skip over the add expression until we get to a multiply.
   1952   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
   1953     ++Idx;
   1954 
   1955   // If there are mul operands inline them all into this expression.
   1956   if (Idx < Ops.size()) {
   1957     bool DeletedMul = false;
   1958     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
   1959       // If we have an mul, expand the mul operands onto the end of the operands
   1960       // list.
   1961       Ops.erase(Ops.begin()+Idx);
   1962       Ops.append(Mul->op_begin(), Mul->op_end());
   1963       DeletedMul = true;
   1964     }
   1965 
   1966     // If we deleted at least one mul, we added operands to the end of the list,
   1967     // and they are not necessarily sorted.  Recurse to resort and resimplify
   1968     // any operands we just acquired.
   1969     if (DeletedMul)
   1970       return getMulExpr(Ops);
   1971   }
   1972 
   1973   // If there are any add recurrences in the operands list, see if any other
   1974   // added values are loop invariant.  If so, we can fold them into the
   1975   // recurrence.
   1976   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
   1977     ++Idx;
   1978 
   1979   // Scan over all recurrences, trying to fold loop invariants into them.
   1980   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
   1981     // Scan all of the other operands to this mul and add them to the vector if
   1982     // they are loop invariant w.r.t. the recurrence.
   1983     SmallVector<const SCEV *, 8> LIOps;
   1984     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
   1985     const Loop *AddRecLoop = AddRec->getLoop();
   1986     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
   1987       if (isLoopInvariant(Ops[i], AddRecLoop)) {
   1988         LIOps.push_back(Ops[i]);
   1989         Ops.erase(Ops.begin()+i);
   1990         --i; --e;
   1991       }
   1992 
   1993     // If we found some loop invariants, fold them into the recurrence.
   1994     if (!LIOps.empty()) {
   1995       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
   1996       SmallVector<const SCEV *, 4> NewOps;
   1997       NewOps.reserve(AddRec->getNumOperands());
   1998       const SCEV *Scale = getMulExpr(LIOps);
   1999       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
   2000         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
   2001 
   2002       // Build the new addrec. Propagate the NUW and NSW flags if both the
   2003       // outer mul and the inner addrec are guaranteed to have no overflow.
   2004       //
   2005       // No self-wrap cannot be guaranteed after changing the step size, but
   2006       // will be inferred if either NUW or NSW is true.
   2007       Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
   2008       const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
   2009 
   2010       // If all of the other operands were loop invariant, we are done.
   2011       if (Ops.size() == 1) return NewRec;
   2012 
   2013       // Otherwise, multiply the folded AddRec by the non-invariant parts.
   2014       for (unsigned i = 0;; ++i)
   2015         if (Ops[i] == AddRec) {
   2016           Ops[i] = NewRec;
   2017           break;
   2018         }
   2019       return getMulExpr(Ops);
   2020     }
   2021 
   2022     // Okay, if there weren't any loop invariants to be folded, check to see if
   2023     // there are multiple AddRec's with the same loop induction variable being
   2024     // multiplied together.  If so, we can fold them.
   2025     for (unsigned OtherIdx = Idx+1;
   2026          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
   2027          ++OtherIdx) {
   2028       if (AddRecLoop != cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop())
   2029         continue;
   2030 
   2031       // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
   2032       // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
   2033       //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
   2034       //   ]]],+,...up to x=2n}.
   2035       // Note that the arguments to choose() are always integers with values
   2036       // known at compile time, never SCEV objects.
   2037       //
   2038       // The implementation avoids pointless extra computations when the two
   2039       // addrec's are of different length (mathematically, it's equivalent to
   2040       // an infinite stream of zeros on the right).
   2041       bool OpsModified = false;
   2042       for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
   2043            ++OtherIdx) {
   2044         const SCEVAddRecExpr *OtherAddRec =
   2045           dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
   2046         if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
   2047           continue;
   2048 
   2049         bool Overflow = false;
   2050         Type *Ty = AddRec->getType();
   2051         bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
   2052         SmallVector<const SCEV*, 7> AddRecOps;
   2053         for (int x = 0, xe = AddRec->getNumOperands() +
   2054                OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
   2055           const SCEV *Term = getConstant(Ty, 0);
   2056           for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
   2057             uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
   2058             for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
   2059                    ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
   2060                  z < ze && !Overflow; ++z) {
   2061               uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
   2062               uint64_t Coeff;
   2063               if (LargerThan64Bits)
   2064                 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
   2065               else
   2066                 Coeff = Coeff1*Coeff2;
   2067               const SCEV *CoeffTerm = getConstant(Ty, Coeff);
   2068               const SCEV *Term1 = AddRec->getOperand(y-z);
   2069               const SCEV *Term2 = OtherAddRec->getOperand(z);
   2070               Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
   2071             }
   2072           }
   2073           AddRecOps.push_back(Term);
   2074         }
   2075         if (!Overflow) {
   2076           const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
   2077                                                 SCEV::FlagAnyWrap);
   2078           if (Ops.size() == 2) return NewAddRec;
   2079           Ops[Idx] = NewAddRec;
   2080           Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
   2081           OpsModified = true;
   2082           AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
   2083           if (!AddRec)
   2084             break;
   2085         }
   2086       }
   2087       if (OpsModified)
   2088         return getMulExpr(Ops);
   2089     }
   2090 
   2091     // Otherwise couldn't fold anything into this recurrence.  Move onto the
   2092     // next one.
   2093   }
   2094 
   2095   // Okay, it looks like we really DO need an mul expr.  Check to see if we
   2096   // already have one, otherwise create a new one.
   2097   FoldingSetNodeID ID;
   2098   ID.AddInteger(scMulExpr);
   2099   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
   2100     ID.AddPointer(Ops[i]);
   2101   void *IP = 0;
   2102   SCEVMulExpr *S =
   2103     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
   2104   if (!S) {
   2105     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
   2106     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
   2107     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
   2108                                         O, Ops.size());
   2109     UniqueSCEVs.InsertNode(S, IP);
   2110   }
   2111   S->setNoWrapFlags(Flags);
   2112   return S;
   2113 }
   2114 
   2115 /// getUDivExpr - Get a canonical unsigned division expression, or something
   2116 /// simpler if possible.
   2117 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
   2118                                          const SCEV *RHS) {
   2119   assert(getEffectiveSCEVType(LHS->getType()) ==
   2120          getEffectiveSCEVType(RHS->getType()) &&
   2121          "SCEVUDivExpr operand types don't match!");
   2122 
   2123   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
   2124     if (RHSC->getValue()->equalsInt(1))
   2125       return LHS;                               // X udiv 1 --> x
   2126     // If the denominator is zero, the result of the udiv is undefined. Don't
   2127     // try to analyze it, because the resolution chosen here may differ from
   2128     // the resolution chosen in other parts of the compiler.
   2129     if (!RHSC->getValue()->isZero()) {
   2130       // Determine if the division can be folded into the operands of
   2131       // its operands.
   2132       // TODO: Generalize this to non-constants by using known-bits information.
   2133       Type *Ty = LHS->getType();
   2134       unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
   2135       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
   2136       // For non-power-of-two values, effectively round the value up to the
   2137       // nearest power of two.
   2138       if (!RHSC->getValue()->getValue().isPowerOf2())
   2139         ++MaxShiftAmt;
   2140       IntegerType *ExtTy =
   2141         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
   2142       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
   2143         if (const SCEVConstant *Step =
   2144             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
   2145           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
   2146           const APInt &StepInt = Step->getValue()->getValue();
   2147           const APInt &DivInt = RHSC->getValue()->getValue();
   2148           if (!StepInt.urem(DivInt) &&
   2149               getZeroExtendExpr(AR, ExtTy) ==
   2150               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
   2151                             getZeroExtendExpr(Step, ExtTy),
   2152                             AR->getLoop(), SCEV::FlagAnyWrap)) {
   2153             SmallVector<const SCEV *, 4> Operands;
   2154             for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
   2155               Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
   2156             return getAddRecExpr(Operands, AR->getLoop(),
   2157                                  SCEV::FlagNW);
   2158           }
   2159           /// Get a canonical UDivExpr for a recurrence.
   2160           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
   2161           // We can currently only fold X%N if X is constant.
   2162           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
   2163           if (StartC && !DivInt.urem(StepInt) &&
   2164               getZeroExtendExpr(AR, ExtTy) ==
   2165               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
   2166                             getZeroExtendExpr(Step, ExtTy),
   2167                             AR->getLoop(), SCEV::FlagAnyWrap)) {
   2168             const APInt &StartInt = StartC->getValue()->getValue();
   2169             const APInt &StartRem = StartInt.urem(StepInt);
   2170             if (StartRem != 0)
   2171               LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
   2172                                   AR->getLoop(), SCEV::FlagNW);
   2173           }
   2174         }
   2175       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
   2176       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
   2177         SmallVector<const SCEV *, 4> Operands;
   2178         for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
   2179           Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
   2180         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
   2181           // Find an operand that's safely divisible.
   2182           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
   2183             const SCEV *Op = M->getOperand(i);
   2184             const SCEV *Div = getUDivExpr(Op, RHSC);
   2185             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
   2186               Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
   2187                                                       M->op_end());
   2188               Operands[i] = Div;
   2189               return getMulExpr(Operands);
   2190             }
   2191           }
   2192       }
   2193       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
   2194       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
   2195         SmallVector<const SCEV *, 4> Operands;
   2196         for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
   2197           Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
   2198         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
   2199           Operands.clear();
   2200           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
   2201             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
   2202             if (isa<SCEVUDivExpr>(Op) ||
   2203                 getMulExpr(Op, RHS) != A->getOperand(i))
   2204               break;
   2205             Operands.push_back(Op);
   2206           }
   2207           if (Operands.size() == A->getNumOperands())
   2208             return getAddExpr(Operands);
   2209         }
   2210       }
   2211 
   2212       // Fold if both operands are constant.
   2213       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
   2214         Constant *LHSCV = LHSC->getValue();
   2215         Constant *RHSCV = RHSC->getValue();
   2216         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
   2217                                                                    RHSCV)));
   2218       }
   2219     }
   2220   }
   2221 
   2222   FoldingSetNodeID ID;
   2223   ID.AddInteger(scUDivExpr);
   2224   ID.AddPointer(LHS);
   2225   ID.AddPointer(RHS);
   2226   void *IP = 0;
   2227   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
   2228   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
   2229                                              LHS, RHS);
   2230   UniqueSCEVs.InsertNode(S, IP);
   2231   return S;
   2232 }
   2233 
   2234 
   2235 /// getAddRecExpr - Get an add recurrence expression for the specified loop.
   2236 /// Simplify the expression as much as possible.
   2237 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
   2238                                            const Loop *L,
   2239                                            SCEV::NoWrapFlags Flags) {
   2240   SmallVector<const SCEV *, 4> Operands;
   2241   Operands.push_back(Start);
   2242   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
   2243     if (StepChrec->getLoop() == L) {
   2244       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
   2245       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
   2246     }
   2247 
   2248   Operands.push_back(Step);
   2249   return getAddRecExpr(Operands, L, Flags);
   2250 }
   2251 
   2252 /// getAddRecExpr - Get an add recurrence expression for the specified loop.
   2253 /// Simplify the expression as much as possible.
   2254 const SCEV *
   2255 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
   2256                                const Loop *L, SCEV::NoWrapFlags Flags) {
   2257   if (Operands.size() == 1) return Operands[0];
   2258 #ifndef NDEBUG
   2259   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
   2260   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
   2261     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
   2262            "SCEVAddRecExpr operand types don't match!");
   2263   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
   2264     assert(isLoopInvariant(Operands[i], L) &&
   2265            "SCEVAddRecExpr operand is not loop-invariant!");
   2266 #endif
   2267 
   2268   if (Operands.back()->isZero()) {
   2269     Operands.pop_back();
   2270     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
   2271   }
   2272 
   2273   // It's tempting to want to call getMaxBackedgeTakenCount count here and
   2274   // use that information to infer NUW and NSW flags. However, computing a
   2275   // BE count requires calling getAddRecExpr, so we may not yet have a
   2276   // meaningful BE count at this point (and if we don't, we'd be stuck
   2277   // with a SCEVCouldNotCompute as the cached BE count).
   2278 
   2279   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
   2280   // And vice-versa.
   2281   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
   2282   SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
   2283   if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
   2284     bool All = true;
   2285     for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
   2286          E = Operands.end(); I != E; ++I)
   2287       if (!isKnownNonNegative(*I)) {
   2288         All = false;
   2289         break;
   2290       }
   2291     if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
   2292   }
   2293 
   2294   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
   2295   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
   2296     const Loop *NestedLoop = NestedAR->getLoop();
   2297     if (L->contains(NestedLoop) ?
   2298         (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
   2299         (!NestedLoop->contains(L) &&
   2300          DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
   2301       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
   2302                                                   NestedAR->op_end());
   2303       Operands[0] = NestedAR->getStart();
   2304       // AddRecs require their operands be loop-invariant with respect to their
   2305       // loops. Don't perform this transformation if it would break this
   2306       // requirement.
   2307       bool AllInvariant = true;
   2308       for (unsigned i = 0, e = Operands.size(); i != e; ++i)
   2309         if (!isLoopInvariant(Operands[i], L)) {
   2310           AllInvariant = false;
   2311           break;
   2312         }
   2313       if (AllInvariant) {
   2314         // Create a recurrence for the outer loop with the same step size.
   2315         //
   2316         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
   2317         // inner recurrence has the same property.
   2318         SCEV::NoWrapFlags OuterFlags =
   2319           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
   2320 
   2321         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
   2322         AllInvariant = true;
   2323         for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
   2324           if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
   2325             AllInvariant = false;
   2326             break;
   2327           }
   2328         if (AllInvariant) {
   2329           // Ok, both add recurrences are valid after the transformation.
   2330           //
   2331           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
   2332           // the outer recurrence has the same property.
   2333           SCEV::NoWrapFlags InnerFlags =
   2334             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
   2335           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
   2336         }
   2337       }
   2338       // Reset Operands to its original state.
   2339       Operands[0] = NestedAR;
   2340     }
   2341   }
   2342 
   2343   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
   2344   // already have one, otherwise create a new one.
   2345   FoldingSetNodeID ID;
   2346   ID.AddInteger(scAddRecExpr);
   2347   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
   2348     ID.AddPointer(Operands[i]);
   2349   ID.AddPointer(L);
   2350   void *IP = 0;
   2351   SCEVAddRecExpr *S =
   2352     static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
   2353   if (!S) {
   2354     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
   2355     std::uninitialized_copy(Operands.begin(), Operands.end(), O);
   2356     S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
   2357                                            O, Operands.size(), L);
   2358     UniqueSCEVs.InsertNode(S, IP);
   2359   }
   2360   S->setNoWrapFlags(Flags);
   2361   return S;
   2362 }
   2363 
   2364 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
   2365                                          const SCEV *RHS) {
   2366   SmallVector<const SCEV *, 2> Ops;
   2367   Ops.push_back(LHS);
   2368   Ops.push_back(RHS);
   2369   return getSMaxExpr(Ops);
   2370 }
   2371 
   2372 const SCEV *
   2373 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
   2374   assert(!Ops.empty() && "Cannot get empty smax!");
   2375   if (Ops.size() == 1) return Ops[0];
   2376 #ifndef NDEBUG
   2377   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
   2378   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
   2379     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
   2380            "SCEVSMaxExpr operand types don't match!");
   2381 #endif
   2382 
   2383   // Sort by complexity, this groups all similar expression types together.
   2384   GroupByComplexity(Ops, LI);
   2385 
   2386   // If there are any constants, fold them together.
   2387   unsigned Idx = 0;
   2388   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
   2389     ++Idx;
   2390     assert(Idx < Ops.size());
   2391     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
   2392       // We found two constants, fold them together!
   2393       ConstantInt *Fold = ConstantInt::get(getContext(),
   2394                               APIntOps::smax(LHSC->getValue()->getValue(),
   2395                                              RHSC->getValue()->getValue()));
   2396       Ops[0] = getConstant(Fold);
   2397       Ops.erase(Ops.begin()+1);  // Erase the folded element
   2398       if (Ops.size() == 1) return Ops[0];
   2399       LHSC = cast<SCEVConstant>(Ops[0]);
   2400     }
   2401 
   2402     // If we are left with a constant minimum-int, strip it off.
   2403     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
   2404       Ops.erase(Ops.begin());
   2405       --Idx;
   2406     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
   2407       // If we have an smax with a constant maximum-int, it will always be
   2408       // maximum-int.
   2409       return Ops[0];
   2410     }
   2411 
   2412     if (Ops.size() == 1) return Ops[0];
   2413   }
   2414 
   2415   // Find the first SMax
   2416   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
   2417     ++Idx;
   2418 
   2419   // Check to see if one of the operands is an SMax. If so, expand its operands
   2420   // onto our operand list, and recurse to simplify.
   2421   if (Idx < Ops.size()) {
   2422     bool DeletedSMax = false;
   2423     while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
   2424       Ops.erase(Ops.begin()+Idx);
   2425       Ops.append(SMax->op_begin(), SMax->op_end());
   2426       DeletedSMax = true;
   2427     }
   2428 
   2429     if (DeletedSMax)
   2430       return getSMaxExpr(Ops);
   2431   }
   2432 
   2433   // Okay, check to see if the same value occurs in the operand list twice.  If
   2434   // so, delete one.  Since we sorted the list, these values are required to
   2435   // be adjacent.
   2436   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
   2437     //  X smax Y smax Y  -->  X smax Y
   2438     //  X smax Y         -->  X, if X is always greater than Y
   2439     if (Ops[i] == Ops[i+1] ||
   2440         isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
   2441       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
   2442       --i; --e;
   2443     } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
   2444       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
   2445       --i; --e;
   2446     }
   2447 
   2448   if (Ops.size() == 1) return Ops[0];
   2449 
   2450   assert(!Ops.empty() && "Reduced smax down to nothing!");
   2451 
   2452   // Okay, it looks like we really DO need an smax expr.  Check to see if we
   2453   // already have one, otherwise create a new one.
   2454   FoldingSetNodeID ID;
   2455   ID.AddInteger(scSMaxExpr);
   2456   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
   2457     ID.AddPointer(Ops[i]);
   2458   void *IP = 0;
   2459   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
   2460   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
   2461   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
   2462   SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
   2463                                              O, Ops.size());
   2464   UniqueSCEVs.InsertNode(S, IP);
   2465   return S;
   2466 }
   2467 
   2468 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
   2469                                          const SCEV *RHS) {
   2470   SmallVector<const SCEV *, 2> Ops;
   2471   Ops.push_back(LHS);
   2472   Ops.push_back(RHS);
   2473   return getUMaxExpr(Ops);
   2474 }
   2475 
   2476 const SCEV *
   2477 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
   2478   assert(!Ops.empty() && "Cannot get empty umax!");
   2479   if (Ops.size() == 1) return Ops[0];
   2480 #ifndef NDEBUG
   2481   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
   2482   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
   2483     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
   2484            "SCEVUMaxExpr operand types don't match!");
   2485 #endif
   2486 
   2487   // Sort by complexity, this groups all similar expression types together.
   2488   GroupByComplexity(Ops, LI);
   2489 
   2490   // If there are any constants, fold them together.
   2491   unsigned Idx = 0;
   2492   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
   2493     ++Idx;
   2494     assert(Idx < Ops.size());
   2495     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
   2496       // We found two constants, fold them together!
   2497       ConstantInt *Fold = ConstantInt::get(getContext(),
   2498                               APIntOps::umax(LHSC->getValue()->getValue(),
   2499                                              RHSC->getValue()->getValue()));
   2500       Ops[0] = getConstant(Fold);
   2501       Ops.erase(Ops.begin()+1);  // Erase the folded element
   2502       if (Ops.size() == 1) return Ops[0];
   2503       LHSC = cast<SCEVConstant>(Ops[0]);
   2504     }
   2505 
   2506     // If we are left with a constant minimum-int, strip it off.
   2507     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
   2508       Ops.erase(Ops.begin());
   2509       --Idx;
   2510     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
   2511       // If we have an umax with a constant maximum-int, it will always be
   2512       // maximum-int.
   2513       return Ops[0];
   2514     }
   2515 
   2516     if (Ops.size() == 1) return Ops[0];
   2517   }
   2518 
   2519   // Find the first UMax
   2520   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
   2521     ++Idx;
   2522 
   2523   // Check to see if one of the operands is a UMax. If so, expand its operands
   2524   // onto our operand list, and recurse to simplify.
   2525   if (Idx < Ops.size()) {
   2526     bool DeletedUMax = false;
   2527     while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
   2528       Ops.erase(Ops.begin()+Idx);
   2529       Ops.append(UMax->op_begin(), UMax->op_end());
   2530       DeletedUMax = true;
   2531     }
   2532 
   2533     if (DeletedUMax)
   2534       return getUMaxExpr(Ops);
   2535   }
   2536 
   2537   // Okay, check to see if the same value occurs in the operand list twice.  If
   2538   // so, delete one.  Since we sorted the list, these values are required to
   2539   // be adjacent.
   2540   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
   2541     //  X umax Y umax Y  -->  X umax Y
   2542     //  X umax Y         -->  X, if X is always greater than Y
   2543     if (Ops[i] == Ops[i+1] ||
   2544         isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
   2545       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
   2546       --i; --e;
   2547     } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
   2548       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
   2549       --i; --e;
   2550     }
   2551 
   2552   if (Ops.size() == 1) return Ops[0];
   2553 
   2554   assert(!Ops.empty() && "Reduced umax down to nothing!");
   2555 
   2556   // Okay, it looks like we really DO need a umax expr.  Check to see if we
   2557   // already have one, otherwise create a new one.
   2558   FoldingSetNodeID ID;
   2559   ID.AddInteger(scUMaxExpr);
   2560   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
   2561     ID.AddPointer(Ops[i]);
   2562   void *IP = 0;
   2563   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
   2564   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
   2565   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
   2566   SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
   2567                                              O, Ops.size());
   2568   UniqueSCEVs.InsertNode(S, IP);
   2569   return S;
   2570 }
   2571 
   2572 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
   2573                                          const SCEV *RHS) {
   2574   // ~smax(~x, ~y) == smin(x, y).
   2575   return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
   2576 }
   2577 
   2578 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
   2579                                          const SCEV *RHS) {
   2580   // ~umax(~x, ~y) == umin(x, y)
   2581   return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
   2582 }
   2583 
   2584 const SCEV *ScalarEvolution::getSizeOfExpr(Type *AllocTy) {
   2585   // If we have TargetData, we can bypass creating a target-independent
   2586   // constant expression and then folding it back into a ConstantInt.
   2587   // This is just a compile-time optimization.
   2588   if (TD)
   2589     return getConstant(TD->getIntPtrType(getContext()),
   2590                        TD->getTypeAllocSize(AllocTy));
   2591 
   2592   Constant *C = ConstantExpr::getSizeOf(AllocTy);
   2593   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
   2594     if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
   2595       C = Folded;
   2596   Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
   2597   return getTruncateOrZeroExtend(getSCEV(C), Ty);
   2598 }
   2599 
   2600 const SCEV *ScalarEvolution::getAlignOfExpr(Type *AllocTy) {
   2601   Constant *C = ConstantExpr::getAlignOf(AllocTy);
   2602   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
   2603     if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
   2604       C = Folded;
   2605   Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
   2606   return getTruncateOrZeroExtend(getSCEV(C), Ty);
   2607 }
   2608 
   2609 const SCEV *ScalarEvolution::getOffsetOfExpr(StructType *STy,
   2610                                              unsigned FieldNo) {
   2611   // If we have TargetData, we can bypass creating a target-independent
   2612   // constant expression and then folding it back into a ConstantInt.
   2613   // This is just a compile-time optimization.
   2614   if (TD)
   2615     return getConstant(TD->getIntPtrType(getContext()),
   2616                        TD->getStructLayout(STy)->getElementOffset(FieldNo));
   2617 
   2618   Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
   2619   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
   2620     if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
   2621       C = Folded;
   2622   Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
   2623   return getTruncateOrZeroExtend(getSCEV(C), Ty);
   2624 }
   2625 
   2626 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *CTy,
   2627                                              Constant *FieldNo) {
   2628   Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
   2629   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
   2630     if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
   2631       C = Folded;
   2632   Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
   2633   return getTruncateOrZeroExtend(getSCEV(C), Ty);
   2634 }
   2635 
   2636 const SCEV *ScalarEvolution::getUnknown(Value *V) {
   2637   // Don't attempt to do anything other than create a SCEVUnknown object
   2638   // here.  createSCEV only calls getUnknown after checking for all other
   2639   // interesting possibilities, and any other code that calls getUnknown
   2640   // is doing so in order to hide a value from SCEV canonicalization.
   2641 
   2642   FoldingSetNodeID ID;
   2643   ID.AddInteger(scUnknown);
   2644   ID.AddPointer(V);
   2645   void *IP = 0;
   2646   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
   2647     assert(cast<SCEVUnknown>(S)->getValue() == V &&
   2648            "Stale SCEVUnknown in uniquing map!");
   2649     return S;
   2650   }
   2651   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
   2652                                             FirstUnknown);
   2653   FirstUnknown = cast<SCEVUnknown>(S);
   2654   UniqueSCEVs.InsertNode(S, IP);
   2655   return S;
   2656 }
   2657 
   2658 //===----------------------------------------------------------------------===//
   2659 //            Basic SCEV Analysis and PHI Idiom Recognition Code
   2660 //
   2661 
   2662 /// isSCEVable - Test if values of the given type are analyzable within
   2663 /// the SCEV framework. This primarily includes integer types, and it
   2664 /// can optionally include pointer types if the ScalarEvolution class
   2665 /// has access to target-specific information.
   2666 bool ScalarEvolution::isSCEVable(Type *Ty) const {
   2667   // Integers and pointers are always SCEVable.
   2668   return Ty->isIntegerTy() || Ty->isPointerTy();
   2669 }
   2670 
   2671 /// getTypeSizeInBits - Return the size in bits of the specified type,
   2672 /// for which isSCEVable must return true.
   2673 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
   2674   assert(isSCEVable(Ty) && "Type is not SCEVable!");
   2675 
   2676   // If we have a TargetData, use it!
   2677   if (TD)
   2678     return TD->getTypeSizeInBits(Ty);
   2679 
   2680   // Integer types have fixed sizes.
   2681   if (Ty->isIntegerTy())
   2682     return Ty->getPrimitiveSizeInBits();
   2683 
   2684   // The only other support type is pointer. Without TargetData, conservatively
   2685   // assume pointers are 64-bit.
   2686   assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
   2687   return 64;
   2688 }
   2689 
   2690 /// getEffectiveSCEVType - Return a type with the same bitwidth as
   2691 /// the given type and which represents how SCEV will treat the given
   2692 /// type, for which isSCEVable must return true. For pointer types,
   2693 /// this is the pointer-sized integer type.
   2694 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
   2695   assert(isSCEVable(Ty) && "Type is not SCEVable!");
   2696 
   2697   if (Ty->isIntegerTy())
   2698     return Ty;
   2699 
   2700   // The only other support type is pointer.
   2701   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
   2702   if (TD) return TD->getIntPtrType(getContext());
   2703 
   2704   // Without TargetData, conservatively assume pointers are 64-bit.
   2705   return Type::getInt64Ty(getContext());
   2706 }
   2707 
   2708 const SCEV *ScalarEvolution::getCouldNotCompute() {
   2709   return &CouldNotCompute;
   2710 }
   2711 
   2712 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
   2713 /// expression and create a new one.
   2714 const SCEV *ScalarEvolution::getSCEV(Value *V) {
   2715   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
   2716 
   2717   ValueExprMapType::const_iterator I = ValueExprMap.find_as(V);
   2718   if (I != ValueExprMap.end()) return I->second;
   2719   const SCEV *S = createSCEV(V);
   2720 
   2721   // The process of creating a SCEV for V may have caused other SCEVs
   2722   // to have been created, so it's necessary to insert the new entry
   2723   // from scratch, rather than trying to remember the insert position
   2724   // above.
   2725   ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
   2726   return S;
   2727 }
   2728 
   2729 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
   2730 ///
   2731 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
   2732   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
   2733     return getConstant(
   2734                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
   2735 
   2736   Type *Ty = V->getType();
   2737   Ty = getEffectiveSCEVType(Ty);
   2738   return getMulExpr(V,
   2739                   getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
   2740 }
   2741 
   2742 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
   2743 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
   2744   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
   2745     return getConstant(
   2746                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
   2747 
   2748   Type *Ty = V->getType();
   2749   Ty = getEffectiveSCEVType(Ty);
   2750   const SCEV *AllOnes =
   2751                    getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
   2752   return getMinusSCEV(AllOnes, V);
   2753 }
   2754 
   2755 /// getMinusSCEV - Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
   2756 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
   2757                                           SCEV::NoWrapFlags Flags) {
   2758   assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
   2759 
   2760   // Fast path: X - X --> 0.
   2761   if (LHS == RHS)
   2762     return getConstant(LHS->getType(), 0);
   2763 
   2764   // X - Y --> X + -Y
   2765   return getAddExpr(LHS, getNegativeSCEV(RHS), Flags);
   2766 }
   2767 
   2768 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
   2769 /// input value to the specified type.  If the type must be extended, it is zero
   2770 /// extended.
   2771 const SCEV *
   2772 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
   2773   Type *SrcTy = V->getType();
   2774   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
   2775          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
   2776          "Cannot truncate or zero extend with non-integer arguments!");
   2777   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
   2778     return V;  // No conversion
   2779   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
   2780     return getTruncateExpr(V, Ty);
   2781   return getZeroExtendExpr(V, Ty);
   2782 }
   2783 
   2784 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
   2785 /// input value to the specified type.  If the type must be extended, it is sign
   2786 /// extended.
   2787 const SCEV *
   2788 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
   2789                                          Type *Ty) {
   2790   Type *SrcTy = V->getType();
   2791   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
   2792          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
   2793          "Cannot truncate or zero extend with non-integer arguments!");
   2794   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
   2795     return V;  // No conversion
   2796   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
   2797     return getTruncateExpr(V, Ty);
   2798   return getSignExtendExpr(V, Ty);
   2799 }
   2800 
   2801 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
   2802 /// input value to the specified type.  If the type must be extended, it is zero
   2803 /// extended.  The conversion must not be narrowing.
   2804 const SCEV *
   2805 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
   2806   Type *SrcTy = V->getType();
   2807   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
   2808          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
   2809          "Cannot noop or zero extend with non-integer arguments!");
   2810   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
   2811          "getNoopOrZeroExtend cannot truncate!");
   2812   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
   2813     return V;  // No conversion
   2814   return getZeroExtendExpr(V, Ty);
   2815 }
   2816 
   2817 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
   2818 /// input value to the specified type.  If the type must be extended, it is sign
   2819 /// extended.  The conversion must not be narrowing.
   2820 const SCEV *
   2821 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
   2822   Type *SrcTy = V->getType();
   2823   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
   2824          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
   2825          "Cannot noop or sign extend with non-integer arguments!");
   2826   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
   2827          "getNoopOrSignExtend cannot truncate!");
   2828   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
   2829     return V;  // No conversion
   2830   return getSignExtendExpr(V, Ty);
   2831 }
   2832 
   2833 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
   2834 /// the input value to the specified type. If the type must be extended,
   2835 /// it is extended with unspecified bits. The conversion must not be
   2836 /// narrowing.
   2837 const SCEV *
   2838 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
   2839   Type *SrcTy = V->getType();
   2840   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
   2841          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
   2842          "Cannot noop or any extend with non-integer arguments!");
   2843   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
   2844          "getNoopOrAnyExtend cannot truncate!");
   2845   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
   2846     return V;  // No conversion
   2847   return getAnyExtendExpr(V, Ty);
   2848 }
   2849 
   2850 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
   2851 /// input value to the specified type.  The conversion must not be widening.
   2852 const SCEV *
   2853 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
   2854   Type *SrcTy = V->getType();
   2855   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
   2856          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
   2857          "Cannot truncate or noop with non-integer arguments!");
   2858   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
   2859          "getTruncateOrNoop cannot extend!");
   2860   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
   2861     return V;  // No conversion
   2862   return getTruncateExpr(V, Ty);
   2863 }
   2864 
   2865 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of
   2866 /// the types using zero-extension, and then perform a umax operation
   2867 /// with them.
   2868 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
   2869                                                         const SCEV *RHS) {
   2870   const SCEV *PromotedLHS = LHS;
   2871   const SCEV *PromotedRHS = RHS;
   2872 
   2873   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
   2874     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
   2875   else
   2876     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
   2877 
   2878   return getUMaxExpr(PromotedLHS, PromotedRHS);
   2879 }
   2880 
   2881 /// getUMinFromMismatchedTypes - Promote the operands to the wider of
   2882 /// the types using zero-extension, and then perform a umin operation
   2883 /// with them.
   2884 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
   2885                                                         const SCEV *RHS) {
   2886   const SCEV *PromotedLHS = LHS;
   2887   const SCEV *PromotedRHS = RHS;
   2888 
   2889   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
   2890     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
   2891   else
   2892     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
   2893 
   2894   return getUMinExpr(PromotedLHS, PromotedRHS);
   2895 }
   2896 
   2897 /// getPointerBase - Transitively follow the chain of pointer-type operands
   2898 /// until reaching a SCEV that does not have a single pointer operand. This
   2899 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
   2900 /// but corner cases do exist.
   2901 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
   2902   // A pointer operand may evaluate to a nonpointer expression, such as null.
   2903   if (!V->getType()->isPointerTy())
   2904     return V;
   2905 
   2906   if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
   2907     return getPointerBase(Cast->getOperand());
   2908   }
   2909   else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
   2910     const SCEV *PtrOp = 0;
   2911     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
   2912          I != E; ++I) {
   2913       if ((*I)->getType()->isPointerTy()) {
   2914         // Cannot find the base of an expression with multiple pointer operands.
   2915         if (PtrOp)
   2916           return V;
   2917         PtrOp = *I;
   2918       }
   2919     }
   2920     if (!PtrOp)
   2921       return V;
   2922     return getPointerBase(PtrOp);
   2923   }
   2924   return V;
   2925 }
   2926 
   2927 /// PushDefUseChildren - Push users of the given Instruction
   2928 /// onto the given Worklist.
   2929 static void
   2930 PushDefUseChildren(Instruction *I,
   2931                    SmallVectorImpl<Instruction *> &Worklist) {
   2932   // Push the def-use children onto the Worklist stack.
   2933   for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
   2934        UI != UE; ++UI)
   2935     Worklist.push_back(cast<Instruction>(*UI));
   2936 }
   2937 
   2938 /// ForgetSymbolicValue - This looks up computed SCEV values for all
   2939 /// instructions that depend on the given instruction and removes them from
   2940 /// the ValueExprMapType map if they reference SymName. This is used during PHI
   2941 /// resolution.
   2942 void
   2943 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
   2944   SmallVector<Instruction *, 16> Worklist;
   2945   PushDefUseChildren(PN, Worklist);
   2946 
   2947   SmallPtrSet<Instruction *, 8> Visited;
   2948   Visited.insert(PN);
   2949   while (!Worklist.empty()) {
   2950     Instruction *I = Worklist.pop_back_val();
   2951     if (!Visited.insert(I)) continue;
   2952 
   2953     ValueExprMapType::iterator It =
   2954       ValueExprMap.find_as(static_cast<Value *>(I));
   2955     if (It != ValueExprMap.end()) {
   2956       const SCEV *Old = It->second;
   2957 
   2958       // Short-circuit the def-use traversal if the symbolic name
   2959       // ceases to appear in expressions.
   2960       if (Old != SymName && !hasOperand(Old, SymName))
   2961         continue;
   2962 
   2963       // SCEVUnknown for a PHI either means that it has an unrecognized
   2964       // structure, it's a PHI that's in the progress of being computed
   2965       // by createNodeForPHI, or it's a single-value PHI. In the first case,
   2966       // additional loop trip count information isn't going to change anything.
   2967       // In the second case, createNodeForPHI will perform the necessary
   2968       // updates on its own when it gets to that point. In the third, we do
   2969       // want to forget the SCEVUnknown.
   2970       if (!isa<PHINode>(I) ||
   2971           !isa<SCEVUnknown>(Old) ||
   2972           (I != PN && Old == SymName)) {
   2973         forgetMemoizedResults(Old);
   2974         ValueExprMap.erase(It);
   2975       }
   2976     }
   2977 
   2978     PushDefUseChildren(I, Worklist);
   2979   }
   2980 }
   2981 
   2982 /// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
   2983 /// a loop header, making it a potential recurrence, or it doesn't.
   2984 ///
   2985 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
   2986   if (const Loop *L = LI->getLoopFor(PN->getParent()))
   2987     if (L->getHeader() == PN->getParent()) {
   2988       // The loop may have multiple entrances or multiple exits; we can analyze
   2989       // this phi as an addrec if it has a unique entry value and a unique
   2990       // backedge value.
   2991       Value *BEValueV = 0, *StartValueV = 0;
   2992       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
   2993         Value *V = PN->getIncomingValue(i);
   2994         if (L->contains(PN->getIncomingBlock(i))) {
   2995           if (!BEValueV) {
   2996             BEValueV = V;
   2997           } else if (BEValueV != V) {
   2998             BEValueV = 0;
   2999             break;
   3000           }
   3001         } else if (!StartValueV) {
   3002           StartValueV = V;
   3003         } else if (StartValueV != V) {
   3004           StartValueV = 0;
   3005           break;
   3006         }
   3007       }
   3008       if (BEValueV && StartValueV) {
   3009         // While we are analyzing this PHI node, handle its value symbolically.
   3010         const SCEV *SymbolicName = getUnknown(PN);
   3011         assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
   3012                "PHI node already processed?");
   3013         ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
   3014 
   3015         // Using this symbolic name for the PHI, analyze the value coming around
   3016         // the back-edge.
   3017         const SCEV *BEValue = getSCEV(BEValueV);
   3018 
   3019         // NOTE: If BEValue is loop invariant, we know that the PHI node just
   3020         // has a special value for the first iteration of the loop.
   3021 
   3022         // If the value coming around the backedge is an add with the symbolic
   3023         // value we just inserted, then we found a simple induction variable!
   3024         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
   3025           // If there is a single occurrence of the symbolic value, replace it
   3026           // with a recurrence.
   3027           unsigned FoundIndex = Add->getNumOperands();
   3028           for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
   3029             if (Add->getOperand(i) == SymbolicName)
   3030               if (FoundIndex == e) {
   3031                 FoundIndex = i;
   3032                 break;
   3033               }
   3034 
   3035           if (FoundIndex != Add->getNumOperands()) {
   3036             // Create an add with everything but the specified operand.
   3037             SmallVector<const SCEV *, 8> Ops;
   3038             for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
   3039               if (i != FoundIndex)
   3040                 Ops.push_back(Add->getOperand(i));
   3041             const SCEV *Accum = getAddExpr(Ops);
   3042 
   3043             // This is not a valid addrec if the step amount is varying each
   3044             // loop iteration, but is not itself an addrec in this loop.
   3045             if (isLoopInvariant(Accum, L) ||
   3046                 (isa<SCEVAddRecExpr>(Accum) &&
   3047                  cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
   3048               SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
   3049 
   3050               // If the increment doesn't overflow, then neither the addrec nor
   3051               // the post-increment will overflow.
   3052               if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
   3053                 if (OBO->hasNoUnsignedWrap())
   3054                   Flags = setFlags(Flags, SCEV::FlagNUW);
   3055                 if (OBO->hasNoSignedWrap())
   3056                   Flags = setFlags(Flags, SCEV::FlagNSW);
   3057               } else if (const GEPOperator *GEP =
   3058                          dyn_cast<GEPOperator>(BEValueV)) {
   3059                 // If the increment is an inbounds GEP, then we know the address
   3060                 // space cannot be wrapped around. We cannot make any guarantee
   3061                 // about signed or unsigned overflow because pointers are
   3062                 // unsigned but we may have a negative index from the base
   3063                 // pointer.
   3064                 if (GEP->isInBounds())
   3065                   Flags = setFlags(Flags, SCEV::FlagNW);
   3066               }
   3067 
   3068               const SCEV *StartVal = getSCEV(StartValueV);
   3069               const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
   3070 
   3071               // Since the no-wrap flags are on the increment, they apply to the
   3072               // post-incremented value as well.
   3073               if (isLoopInvariant(Accum, L))
   3074                 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
   3075                                     Accum, L, Flags);
   3076 
   3077               // Okay, for the entire analysis of this edge we assumed the PHI
   3078               // to be symbolic.  We now need to go back and purge all of the
   3079               // entries for the scalars that use the symbolic expression.
   3080               ForgetSymbolicName(PN, SymbolicName);
   3081               ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
   3082               return PHISCEV;
   3083             }
   3084           }
   3085         } else if (const SCEVAddRecExpr *AddRec =
   3086                      dyn_cast<SCEVAddRecExpr>(BEValue)) {
   3087           // Otherwise, this could be a loop like this:
   3088           //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
   3089           // In this case, j = {1,+,1}  and BEValue is j.
   3090           // Because the other in-value of i (0) fits the evolution of BEValue
   3091           // i really is an addrec evolution.
   3092           if (AddRec->getLoop() == L && AddRec->isAffine()) {
   3093             const SCEV *StartVal = getSCEV(StartValueV);
   3094 
   3095             // If StartVal = j.start - j.stride, we can use StartVal as the
   3096             // initial step of the addrec evolution.
   3097             if (StartVal == getMinusSCEV(AddRec->getOperand(0),
   3098                                          AddRec->getOperand(1))) {
   3099               // FIXME: For constant StartVal, we should be able to infer
   3100               // no-wrap flags.
   3101               const SCEV *PHISCEV =
   3102                 getAddRecExpr(StartVal, AddRec->getOperand(1), L,
   3103                               SCEV::FlagAnyWrap);
   3104 
   3105               // Okay, for the entire analysis of this edge we assumed the PHI
   3106               // to be symbolic.  We now need to go back and purge all of the
   3107               // entries for the scalars that use the symbolic expression.
   3108               ForgetSymbolicName(PN, SymbolicName);
   3109               ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
   3110               return PHISCEV;
   3111             }
   3112           }
   3113         }
   3114       }
   3115     }
   3116 
   3117   // If the PHI has a single incoming value, follow that value, unless the
   3118   // PHI's incoming blocks are in a different loop, in which case doing so
   3119   // risks breaking LCSSA form. Instcombine would normally zap these, but
   3120   // it doesn't have DominatorTree information, so it may miss cases.
   3121   if (Value *V = SimplifyInstruction(PN, TD, TLI, DT))
   3122     if (LI->replacementPreservesLCSSAForm(PN, V))
   3123       return getSCEV(V);
   3124 
   3125   // If it's not a loop phi, we can't handle it yet.
   3126   return getUnknown(PN);
   3127 }
   3128 
   3129 /// createNodeForGEP - Expand GEP instructions into add and multiply
   3130 /// operations. This allows them to be analyzed by regular SCEV code.
   3131 ///
   3132 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
   3133 
   3134   // Don't blindly transfer the inbounds flag from the GEP instruction to the
   3135   // Add expression, because the Instruction may be guarded by control flow
   3136   // and the no-overflow bits may not be valid for the expression in any
   3137   // context.
   3138   bool isInBounds = GEP->isInBounds();
   3139 
   3140   Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
   3141   Value *Base = GEP->getOperand(0);
   3142   // Don't attempt to analyze GEPs over unsized objects.
   3143   if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
   3144     return getUnknown(GEP);
   3145   const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
   3146   gep_type_iterator GTI = gep_type_begin(GEP);
   3147   for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
   3148                                       E = GEP->op_end();
   3149        I != E; ++I) {
   3150     Value *Index = *I;
   3151     // Compute the (potentially symbolic) offset in bytes for this index.
   3152     if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
   3153       // For a struct, add the member offset.
   3154       unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
   3155       const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
   3156 
   3157       // Add the field offset to the running total offset.
   3158       TotalOffset = getAddExpr(TotalOffset, FieldOffset);
   3159     } else {
   3160       // For an array, add the element offset, explicitly scaled.
   3161       const SCEV *ElementSize = getSizeOfExpr(*GTI);
   3162       const SCEV *IndexS = getSCEV(Index);
   3163       // Getelementptr indices are signed.
   3164       IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
   3165 
   3166       // Multiply the index by the element size to compute the element offset.
   3167       const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize,
   3168                                            isInBounds ? SCEV::FlagNSW :
   3169                                            SCEV::FlagAnyWrap);
   3170 
   3171       // Add the element offset to the running total offset.
   3172       TotalOffset = getAddExpr(TotalOffset, LocalOffset);
   3173     }
   3174   }
   3175 
   3176   // Get the SCEV for the GEP base.
   3177   const SCEV *BaseS = getSCEV(Base);
   3178 
   3179   // Add the total offset from all the GEP indices to the base.
   3180   return getAddExpr(BaseS, TotalOffset,
   3181                     isInBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap);
   3182 }
   3183 
   3184 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
   3185 /// guaranteed to end in (at every loop iteration).  It is, at the same time,
   3186 /// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
   3187 /// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
   3188 uint32_t
   3189 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
   3190   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
   3191     return C->getValue()->getValue().countTrailingZeros();
   3192 
   3193   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
   3194     return std::min(GetMinTrailingZeros(T->getOperand()),
   3195                     (uint32_t)getTypeSizeInBits(T->getType()));
   3196 
   3197   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
   3198     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
   3199     return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
   3200              getTypeSizeInBits(E->getType()) : OpRes;
   3201   }
   3202 
   3203   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
   3204     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
   3205     return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
   3206              getTypeSizeInBits(E->getType()) : OpRes;
   3207   }
   3208 
   3209   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
   3210     // The result is the min of all operands results.
   3211     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
   3212     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
   3213       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
   3214     return MinOpRes;
   3215   }
   3216 
   3217   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
   3218     // The result is the sum of all operands results.
   3219     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
   3220     uint32_t BitWidth = getTypeSizeInBits(M->getType());
   3221     for (unsigned i = 1, e = M->getNumOperands();
   3222          SumOpRes != BitWidth && i != e; ++i)
   3223       SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
   3224                           BitWidth);
   3225     return SumOpRes;
   3226   }
   3227 
   3228   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
   3229     // The result is the min of all operands results.
   3230     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
   3231     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
   3232       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
   3233     return MinOpRes;
   3234   }
   3235 
   3236   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
   3237     // The result is the min of all operands results.
   3238     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
   3239     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
   3240       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
   3241     return MinOpRes;
   3242   }
   3243 
   3244   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
   3245     // The result is the min of all operands results.
   3246     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
   3247     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
   3248       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
   3249     return MinOpRes;
   3250   }
   3251 
   3252   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
   3253     // For a SCEVUnknown, ask ValueTracking.
   3254     unsigned BitWidth = getTypeSizeInBits(U->getType());
   3255     APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
   3256     ComputeMaskedBits(U->getValue(), Zeros, Ones);
   3257     return Zeros.countTrailingOnes();
   3258   }
   3259 
   3260   // SCEVUDivExpr
   3261   return 0;
   3262 }
   3263 
   3264 /// getUnsignedRange - Determine the unsigned range for a particular SCEV.
   3265 ///
   3266 ConstantRange
   3267 ScalarEvolution::getUnsignedRange(const SCEV *S) {
   3268   // See if we've computed this range already.
   3269   DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
   3270   if (I != UnsignedRanges.end())
   3271     return I->second;
   3272 
   3273   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
   3274     return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
   3275 
   3276   unsigned BitWidth = getTypeSizeInBits(S->getType());
   3277   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
   3278 
   3279   // If the value has known zeros, the maximum unsigned value will have those
   3280   // known zeros as well.
   3281   uint32_t TZ = GetMinTrailingZeros(S);
   3282   if (TZ != 0)
   3283     ConservativeResult =
   3284       ConstantRange(APInt::getMinValue(BitWidth),
   3285                     APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
   3286 
   3287   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
   3288     ConstantRange X = getUnsignedRange(Add->getOperand(0));
   3289     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
   3290       X = X.add(getUnsignedRange(Add->getOperand(i)));
   3291     return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
   3292   }
   3293 
   3294   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
   3295     ConstantRange X = getUnsignedRange(Mul->getOperand(0));
   3296     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
   3297       X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
   3298     return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
   3299   }
   3300 
   3301   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
   3302     ConstantRange X = getUnsignedRange(SMax->getOperand(0));
   3303     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
   3304       X = X.smax(getUnsignedRange(SMax->getOperand(i)));
   3305     return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
   3306   }
   3307 
   3308   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
   3309     ConstantRange X = getUnsignedRange(UMax->getOperand(0));
   3310     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
   3311       X = X.umax(getUnsignedRange(UMax->getOperand(i)));
   3312     return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
   3313   }
   3314 
   3315   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
   3316     ConstantRange X = getUnsignedRange(UDiv->getLHS());
   3317     ConstantRange Y = getUnsignedRange(UDiv->getRHS());
   3318     return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
   3319   }
   3320 
   3321   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
   3322     ConstantRange X = getUnsignedRange(ZExt->getOperand());
   3323     return setUnsignedRange(ZExt,
   3324       ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
   3325   }
   3326 
   3327   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
   3328     ConstantRange X = getUnsignedRange(SExt->getOperand());
   3329     return setUnsignedRange(SExt,
   3330       ConservativeResult.intersectWith(X.signExtend(BitWidth)));
   3331   }
   3332 
   3333   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
   3334     ConstantRange X = getUnsignedRange(Trunc->getOperand());
   3335     return setUnsignedRange(Trunc,
   3336       ConservativeResult.intersectWith(X.truncate(BitWidth)));
   3337   }
   3338 
   3339   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
   3340     // If there's no unsigned wrap, the value will never be less than its
   3341     // initial value.
   3342     if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
   3343       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
   3344         if (!C->getValue()->isZero())
   3345           ConservativeResult =
   3346             ConservativeResult.intersectWith(
   3347               ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
   3348 
   3349     // TODO: non-affine addrec
   3350     if (AddRec->isAffine()) {
   3351       Type *Ty = AddRec->getType();
   3352       const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
   3353       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
   3354           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
   3355         MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
   3356 
   3357         const SCEV *Start = AddRec->getStart();
   3358         const SCEV *Step = AddRec->getStepRecurrence(*this);
   3359 
   3360         ConstantRange StartRange = getUnsignedRange(Start);
   3361         ConstantRange StepRange = getSignedRange(Step);
   3362         ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
   3363         ConstantRange EndRange =
   3364           StartRange.add(MaxBECountRange.multiply(StepRange));
   3365 
   3366         // Check for overflow. This must be done with ConstantRange arithmetic
   3367         // because we could be called from within the ScalarEvolution overflow
   3368         // checking code.
   3369         ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
   3370         ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
   3371         ConstantRange ExtMaxBECountRange =
   3372           MaxBECountRange.zextOrTrunc(BitWidth*2+1);
   3373         ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
   3374         if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
   3375             ExtEndRange)
   3376           return setUnsignedRange(AddRec, ConservativeResult);
   3377 
   3378         APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
   3379                                    EndRange.getUnsignedMin());
   3380         APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
   3381                                    EndRange.getUnsignedMax());
   3382         if (Min.isMinValue() && Max.isMaxValue())
   3383           return setUnsignedRange(AddRec, ConservativeResult);
   3384         return setUnsignedRange(AddRec,
   3385           ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
   3386       }
   3387     }
   3388 
   3389     return setUnsignedRange(AddRec, ConservativeResult);
   3390   }
   3391 
   3392   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
   3393     // For a SCEVUnknown, ask ValueTracking.
   3394     APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
   3395     ComputeMaskedBits(U->getValue(), Zeros, Ones, TD);
   3396     if (Ones == ~Zeros + 1)
   3397       return setUnsignedRange(U, ConservativeResult);
   3398     return setUnsignedRange(U,
   3399       ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
   3400   }
   3401 
   3402   return setUnsignedRange(S, ConservativeResult);
   3403 }
   3404 
   3405 /// getSignedRange - Determine the signed range for a particular SCEV.
   3406 ///
   3407 ConstantRange
   3408 ScalarEvolution::getSignedRange(const SCEV *S) {
   3409   // See if we've computed this range already.
   3410   DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
   3411   if (I != SignedRanges.end())
   3412     return I->second;
   3413 
   3414   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
   3415     return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
   3416 
   3417   unsigned BitWidth = getTypeSizeInBits(S->getType());
   3418   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
   3419 
   3420   // If the value has known zeros, the maximum signed value will have those
   3421   // known zeros as well.
   3422   uint32_t TZ = GetMinTrailingZeros(S);
   3423   if (TZ != 0)
   3424     ConservativeResult =
   3425       ConstantRange(APInt::getSignedMinValue(BitWidth),
   3426                     APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
   3427 
   3428   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
   3429     ConstantRange X = getSignedRange(Add->getOperand(0));
   3430     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
   3431       X = X.add(getSignedRange(Add->getOperand(i)));
   3432     return setSignedRange(Add, ConservativeResult.intersectWith(X));
   3433   }
   3434 
   3435   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
   3436     ConstantRange X = getSignedRange(Mul->getOperand(0));
   3437     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
   3438       X = X.multiply(getSignedRange(Mul->getOperand(i)));
   3439     return setSignedRange(Mul, ConservativeResult.intersectWith(X));
   3440   }
   3441 
   3442   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
   3443     ConstantRange X = getSignedRange(SMax->getOperand(0));
   3444     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
   3445       X = X.smax(getSignedRange(SMax->getOperand(i)));
   3446     return setSignedRange(SMax, ConservativeResult.intersectWith(X));
   3447   }
   3448 
   3449   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
   3450     ConstantRange X = getSignedRange(UMax->getOperand(0));
   3451     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
   3452       X = X.umax(getSignedRange(UMax->getOperand(i)));
   3453     return setSignedRange(UMax, ConservativeResult.intersectWith(X));
   3454   }
   3455 
   3456   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
   3457     ConstantRange X = getSignedRange(UDiv->getLHS());
   3458     ConstantRange Y = getSignedRange(UDiv->getRHS());
   3459     return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
   3460   }
   3461 
   3462   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
   3463     ConstantRange X = getSignedRange(ZExt->getOperand());
   3464     return setSignedRange(ZExt,
   3465       ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
   3466   }
   3467 
   3468   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
   3469     ConstantRange X = getSignedRange(SExt->getOperand());
   3470     return setSignedRange(SExt,
   3471       ConservativeResult.intersectWith(X.signExtend(BitWidth)));
   3472   }
   3473 
   3474   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
   3475     ConstantRange X = getSignedRange(Trunc->getOperand());
   3476     return setSignedRange(Trunc,
   3477       ConservativeResult.intersectWith(X.truncate(BitWidth)));
   3478   }
   3479 
   3480   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
   3481     // If there's no signed wrap, and all the operands have the same sign or
   3482     // zero, the value won't ever change sign.
   3483     if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
   3484       bool AllNonNeg = true;
   3485       bool AllNonPos = true;
   3486       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
   3487         if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
   3488         if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
   3489       }
   3490       if (AllNonNeg)
   3491         ConservativeResult = ConservativeResult.intersectWith(
   3492           ConstantRange(APInt(BitWidth, 0),
   3493                         APInt::getSignedMinValue(BitWidth)));
   3494       else if (AllNonPos)
   3495         ConservativeResult = ConservativeResult.intersectWith(
   3496           ConstantRange(APInt::getSignedMinValue(BitWidth),
   3497                         APInt(BitWidth, 1)));
   3498     }
   3499 
   3500     // TODO: non-affine addrec
   3501     if (AddRec->isAffine()) {
   3502       Type *Ty = AddRec->getType();
   3503       const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
   3504       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
   3505           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
   3506         MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
   3507 
   3508         const SCEV *Start = AddRec->getStart();
   3509         const SCEV *Step = AddRec->getStepRecurrence(*this);
   3510 
   3511         ConstantRange StartRange = getSignedRange(Start);
   3512         ConstantRange StepRange = getSignedRange(Step);
   3513         ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
   3514         ConstantRange EndRange =
   3515           StartRange.add(MaxBECountRange.multiply(StepRange));
   3516 
   3517         // Check for overflow. This must be done with ConstantRange arithmetic
   3518         // because we could be called from within the ScalarEvolution overflow
   3519         // checking code.
   3520         ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
   3521         ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
   3522         ConstantRange ExtMaxBECountRange =
   3523           MaxBECountRange.zextOrTrunc(BitWidth*2+1);
   3524         ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
   3525         if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
   3526             ExtEndRange)
   3527           return setSignedRange(AddRec, ConservativeResult);
   3528 
   3529         APInt Min = APIntOps::smin(StartRange.getSignedMin(),
   3530                                    EndRange.getSignedMin());
   3531         APInt Max = APIntOps::smax(StartRange.getSignedMax(),
   3532                                    EndRange.getSignedMax());
   3533         if (Min.isMinSignedValue() && Max.isMaxSignedValue())
   3534           return setSignedRange(AddRec, ConservativeResult);
   3535         return setSignedRange(AddRec,
   3536           ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
   3537       }
   3538     }
   3539 
   3540     return setSignedRange(AddRec, ConservativeResult);
   3541   }
   3542 
   3543   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
   3544     // For a SCEVUnknown, ask ValueTracking.
   3545     if (!U->getValue()->getType()->isIntegerTy() && !TD)
   3546       return setSignedRange(U, ConservativeResult);
   3547     unsigned NS = ComputeNumSignBits(U->getValue(), TD);
   3548     if (NS == 1)
   3549       return setSignedRange(U, ConservativeResult);
   3550     return setSignedRange(U, ConservativeResult.intersectWith(
   3551       ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
   3552                     APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
   3553   }
   3554 
   3555   return setSignedRange(S, ConservativeResult);
   3556 }
   3557 
   3558 /// createSCEV - We know that there is no SCEV for the specified value.
   3559 /// Analyze the expression.
   3560 ///
   3561 const SCEV *ScalarEvolution::createSCEV(Value *V) {
   3562   if (!isSCEVable(V->getType()))
   3563     return getUnknown(V);
   3564 
   3565   unsigned Opcode = Instruction::UserOp1;
   3566   if (Instruction *I = dyn_cast<Instruction>(V)) {
   3567     Opcode = I->getOpcode();
   3568 
   3569     // Don't attempt to analyze instructions in blocks that aren't
   3570     // reachable. Such instructions don't matter, and they aren't required
   3571     // to obey basic rules for definitions dominating uses which this
   3572     // analysis depends on.
   3573     if (!DT->isReachableFromEntry(I->getParent()))
   3574       return getUnknown(V);
   3575   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
   3576     Opcode = CE->getOpcode();
   3577   else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
   3578     return getConstant(CI);
   3579   else if (isa<ConstantPointerNull>(V))
   3580     return getConstant(V->getType(), 0);
   3581   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
   3582     return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
   3583   else
   3584     return getUnknown(V);
   3585 
   3586   Operator *U = cast<Operator>(V);
   3587   switch (Opcode) {
   3588   case Instruction::Add: {
   3589     // The simple thing to do would be to just call getSCEV on both operands
   3590     // and call getAddExpr with the result. However if we're looking at a
   3591     // bunch of things all added together, this can be quite inefficient,
   3592     // because it leads to N-1 getAddExpr calls for N ultimate operands.
   3593     // Instead, gather up all the operands and make a single getAddExpr call.
   3594     // LLVM IR canonical form means we need only traverse the left operands.
   3595     //
   3596     // Don't apply this instruction's NSW or NUW flags to the new
   3597     // expression. The instruction may be guarded by control flow that the
   3598     // no-wrap behavior depends on. Non-control-equivalent instructions can be
   3599     // mapped to the same SCEV expression, and it would be incorrect to transfer
   3600     // NSW/NUW semantics to those operations.
   3601     SmallVector<const SCEV *, 4> AddOps;
   3602     AddOps.push_back(getSCEV(U->getOperand(1)));
   3603     for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
   3604       unsigned Opcode = Op->getValueID() - Value::InstructionVal;
   3605       if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
   3606         break;
   3607       U = cast<Operator>(Op);
   3608       const SCEV *Op1 = getSCEV(U->getOperand(1));
   3609       if (Opcode == Instruction::Sub)
   3610         AddOps.push_back(getNegativeSCEV(Op1));
   3611       else
   3612         AddOps.push_back(Op1);
   3613     }
   3614     AddOps.push_back(getSCEV(U->getOperand(0)));
   3615     return getAddExpr(AddOps);
   3616   }
   3617   case Instruction::Mul: {
   3618     // Don't transfer NSW/NUW for the same reason as AddExpr.
   3619     SmallVector<const SCEV *, 4> MulOps;
   3620     MulOps.push_back(getSCEV(U->getOperand(1)));
   3621     for (Value *Op = U->getOperand(0);
   3622          Op->getValueID() == Instruction::Mul + Value::InstructionVal;
   3623          Op = U->getOperand(0)) {
   3624       U = cast<Operator>(Op);
   3625       MulOps.push_back(getSCEV(U->getOperand(1)));
   3626     }
   3627     MulOps.push_back(getSCEV(U->getOperand(0)));
   3628     return getMulExpr(MulOps);
   3629   }
   3630   case Instruction::UDiv:
   3631     return getUDivExpr(getSCEV(U->getOperand(0)),
   3632                        getSCEV(U->getOperand(1)));
   3633   case Instruction::Sub:
   3634     return getMinusSCEV(getSCEV(U->getOperand(0)),
   3635                         getSCEV(U->getOperand(1)));
   3636   case Instruction::And:
   3637     // For an expression like x&255 that merely masks off the high bits,
   3638     // use zext(trunc(x)) as the SCEV expression.
   3639     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
   3640       if (CI->isNullValue())
   3641         return getSCEV(U->getOperand(1));
   3642       if (CI->isAllOnesValue())
   3643         return getSCEV(U->getOperand(0));
   3644       const APInt &A = CI->getValue();
   3645 
   3646       // Instcombine's ShrinkDemandedConstant may strip bits out of
   3647       // constants, obscuring what would otherwise be a low-bits mask.
   3648       // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
   3649       // knew about to reconstruct a low-bits mask value.
   3650       unsigned LZ = A.countLeadingZeros();
   3651       unsigned BitWidth = A.getBitWidth();
   3652       APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
   3653       ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, TD);
   3654 
   3655       APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
   3656 
   3657       if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
   3658         return
   3659           getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
   3660                                 IntegerType::get(getContext(), BitWidth - LZ)),
   3661                             U->getType());
   3662     }
   3663     break;
   3664 
   3665   case Instruction::Or:
   3666     // If the RHS of the Or is a constant, we may have something like:
   3667     // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
   3668     // optimizations will transparently handle this case.
   3669     //
   3670     // In order for this transformation to be safe, the LHS must be of the
   3671     // form X*(2^n) and the Or constant must be less than 2^n.
   3672     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
   3673       const SCEV *LHS = getSCEV(U->getOperand(0));
   3674       const APInt &CIVal = CI->getValue();
   3675       if (GetMinTrailingZeros(LHS) >=
   3676           (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
   3677         // Build a plain add SCEV.
   3678         const SCEV *S = getAddExpr(LHS, getSCEV(CI));
   3679         // If the LHS of the add was an addrec and it has no-wrap flags,
   3680         // transfer the no-wrap flags, since an or won't introduce a wrap.
   3681         if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
   3682           const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
   3683           const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
   3684             OldAR->getNoWrapFlags());
   3685         }
   3686         return S;
   3687       }
   3688     }
   3689     break;
   3690   case Instruction::Xor:
   3691     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
   3692       // If the RHS of the xor is a signbit, then this is just an add.
   3693       // Instcombine turns add of signbit into xor as a strength reduction step.
   3694       if (CI->getValue().isSignBit())
   3695         return getAddExpr(getSCEV(U->getOperand(0)),
   3696                           getSCEV(U->getOperand(1)));
   3697 
   3698       // If the RHS of xor is -1, then this is a not operation.
   3699       if (CI->isAllOnesValue())
   3700         return getNotSCEV(getSCEV(U->getOperand(0)));
   3701 
   3702       // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
   3703       // This is a variant of the check for xor with -1, and it handles
   3704       // the case where instcombine has trimmed non-demanded bits out
   3705       // of an xor with -1.
   3706       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
   3707         if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
   3708           if (BO->getOpcode() == Instruction::And &&
   3709               LCI->getValue() == CI->getValue())
   3710             if (const SCEVZeroExtendExpr *Z =
   3711                   dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
   3712               Type *UTy = U->getType();
   3713               const SCEV *Z0 = Z->getOperand();
   3714               Type *Z0Ty = Z0->getType();
   3715               unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
   3716 
   3717               // If C is a low-bits mask, the zero extend is serving to
   3718               // mask off the high bits. Complement the operand and
   3719               // re-apply the zext.
   3720               if (APIntOps::isMask(Z0TySize, CI->getValue()))
   3721                 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
   3722 
   3723               // If C is a single bit, it may be in the sign-bit position
   3724               // before the zero-extend. In this case, represent the xor
   3725               // using an add, which is equivalent, and re-apply the zext.
   3726               APInt Trunc = CI->getValue().trunc(Z0TySize);
   3727               if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
   3728                   Trunc.isSignBit())
   3729                 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
   3730                                          UTy);
   3731             }
   3732     }
   3733     break;
   3734 
   3735   case Instruction::Shl:
   3736     // Turn shift left of a constant amount into a multiply.
   3737     if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
   3738       uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
   3739 
   3740       // If the shift count is not less than the bitwidth, the result of
   3741       // the shift is undefined. Don't try to analyze it, because the
   3742       // resolution chosen here may differ from the resolution chosen in
   3743       // other parts of the compiler.
   3744       if (SA->getValue().uge(BitWidth))
   3745         break;
   3746 
   3747       Constant *X = ConstantInt::get(getContext(),
   3748         APInt(BitWidth, 1).shl(SA->getZExtValue()));
   3749       return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
   3750     }
   3751     break;
   3752 
   3753   case Instruction::LShr:
   3754     // Turn logical shift right of a constant into a unsigned divide.
   3755     if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
   3756       uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
   3757 
   3758       // If the shift count is not less than the bitwidth, the result of
   3759       // the shift is undefined. Don't try to analyze it, because the
   3760       // resolution chosen here may differ from the resolution chosen in
   3761       // other parts of the compiler.
   3762       if (SA->getValue().uge(BitWidth))
   3763         break;
   3764 
   3765       Constant *X = ConstantInt::get(getContext(),
   3766         APInt(BitWidth, 1).shl(SA->getZExtValue()));
   3767       return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
   3768     }
   3769     break;
   3770 
   3771   case Instruction::AShr:
   3772     // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
   3773     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
   3774       if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
   3775         if (L->getOpcode() == Instruction::Shl &&
   3776             L->getOperand(1) == U->getOperand(1)) {
   3777           uint64_t BitWidth = getTypeSizeInBits(U->getType());
   3778 
   3779           // If the shift count is not less than the bitwidth, the result of
   3780           // the shift is undefined. Don't try to analyze it, because the
   3781           // resolution chosen here may differ from the resolution chosen in
   3782           // other parts of the compiler.
   3783           if (CI->getValue().uge(BitWidth))
   3784             break;
   3785 
   3786           uint64_t Amt = BitWidth - CI->getZExtValue();
   3787           if (Amt == BitWidth)
   3788             return getSCEV(L->getOperand(0));       // shift by zero --> noop
   3789           return
   3790             getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
   3791                                               IntegerType::get(getContext(),
   3792                                                                Amt)),
   3793                               U->getType());
   3794         }
   3795     break;
   3796 
   3797   case Instruction::Trunc:
   3798     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
   3799 
   3800   case Instruction::ZExt:
   3801     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
   3802 
   3803   case Instruction::SExt:
   3804     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
   3805 
   3806   case Instruction::BitCast:
   3807     // BitCasts are no-op casts so we just eliminate the cast.
   3808     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
   3809       return getSCEV(U->getOperand(0));
   3810     break;
   3811 
   3812   // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
   3813   // lead to pointer expressions which cannot safely be expanded to GEPs,
   3814   // because ScalarEvolution doesn't respect the GEP aliasing rules when
   3815   // simplifying integer expressions.
   3816 
   3817   case Instruction::GetElementPtr:
   3818     return createNodeForGEP(cast<GEPOperator>(U));
   3819 
   3820   case Instruction::PHI:
   3821     return createNodeForPHI(cast<PHINode>(U));
   3822 
   3823   case Instruction::Select:
   3824     // This could be a smax or umax that was lowered earlier.
   3825     // Try to recover it.
   3826     if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
   3827       Value *LHS = ICI->getOperand(0);
   3828       Value *RHS = ICI->getOperand(1);
   3829       switch (ICI->getPredicate()) {
   3830       case ICmpInst::ICMP_SLT:
   3831       case ICmpInst::ICMP_SLE:
   3832         std::swap(LHS, RHS);
   3833         // fall through
   3834       case ICmpInst::ICMP_SGT:
   3835       case ICmpInst::ICMP_SGE:
   3836         // a >s b ? a+x : b+x  ->  smax(a, b)+x
   3837         // a >s b ? b+x : a+x  ->  smin(a, b)+x
   3838         if (LHS->getType() == U->getType()) {
   3839           const SCEV *LS = getSCEV(LHS);
   3840           const SCEV *RS = getSCEV(RHS);
   3841           const SCEV *LA = getSCEV(U->getOperand(1));
   3842           const SCEV *RA = getSCEV(U->getOperand(2));
   3843           const SCEV *LDiff = getMinusSCEV(LA, LS);
   3844           const SCEV *RDiff = getMinusSCEV(RA, RS);
   3845           if (LDiff == RDiff)
   3846             return getAddExpr(getSMaxExpr(LS, RS), LDiff);
   3847           LDiff = getMinusSCEV(LA, RS);
   3848           RDiff = getMinusSCEV(RA, LS);
   3849           if (LDiff == RDiff)
   3850             return getAddExpr(getSMinExpr(LS, RS), LDiff);
   3851         }
   3852         break;
   3853       case ICmpInst::ICMP_ULT:
   3854       case ICmpInst::ICMP_ULE:
   3855         std::swap(LHS, RHS);
   3856         // fall through
   3857       case ICmpInst::ICMP_UGT:
   3858       case ICmpInst::ICMP_UGE:
   3859         // a >u b ? a+x : b+x  ->  umax(a, b)+x
   3860         // a >u b ? b+x : a+x  ->  umin(a, b)+x
   3861         if (LHS->getType() == U->getType()) {
   3862           const SCEV *LS = getSCEV(LHS);
   3863           const SCEV *RS = getSCEV(RHS);
   3864           const SCEV *LA = getSCEV(U->getOperand(1));
   3865           const SCEV *RA = getSCEV(U->getOperand(2));
   3866           const SCEV *LDiff = getMinusSCEV(LA, LS);
   3867           const SCEV *RDiff = getMinusSCEV(RA, RS);
   3868           if (LDiff == RDiff)
   3869             return getAddExpr(getUMaxExpr(LS, RS), LDiff);
   3870           LDiff = getMinusSCEV(LA, RS);
   3871           RDiff = getMinusSCEV(RA, LS);
   3872           if (LDiff == RDiff)
   3873             return getAddExpr(getUMinExpr(LS, RS), LDiff);
   3874         }
   3875         break;
   3876       case ICmpInst::ICMP_NE:
   3877         // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
   3878         if (LHS->getType() == U->getType() &&
   3879             isa<ConstantInt>(RHS) &&
   3880             cast<ConstantInt>(RHS)->isZero()) {
   3881           const SCEV *One = getConstant(LHS->getType(), 1);
   3882           const SCEV *LS = getSCEV(LHS);
   3883           const SCEV *LA = getSCEV(U->getOperand(1));
   3884           const SCEV *RA = getSCEV(U->getOperand(2));
   3885           const SCEV *LDiff = getMinusSCEV(LA, LS);
   3886           const SCEV *RDiff = getMinusSCEV(RA, One);
   3887           if (LDiff == RDiff)
   3888             return getAddExpr(getUMaxExpr(One, LS), LDiff);
   3889         }
   3890         break;
   3891       case ICmpInst::ICMP_EQ:
   3892         // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
   3893         if (LHS->getType() == U->getType() &&
   3894             isa<ConstantInt>(RHS) &&
   3895             cast<ConstantInt>(RHS)->isZero()) {
   3896           const SCEV *One = getConstant(LHS->getType(), 1);
   3897           const SCEV *LS = getSCEV(LHS);
   3898           const SCEV *LA = getSCEV(U->getOperand(1));
   3899           const SCEV *RA = getSCEV(U->getOperand(2));
   3900           const SCEV *LDiff = getMinusSCEV(LA, One);
   3901           const SCEV *RDiff = getMinusSCEV(RA, LS);
   3902           if (LDiff == RDiff)
   3903             return getAddExpr(getUMaxExpr(One, LS), LDiff);
   3904         }
   3905         break;
   3906       default:
   3907         break;
   3908       }
   3909     }
   3910 
   3911   default: // We cannot analyze this expression.
   3912     break;
   3913   }
   3914 
   3915   return getUnknown(V);
   3916 }
   3917 
   3918 
   3919 
   3920 //===----------------------------------------------------------------------===//
   3921 //                   Iteration Count Computation Code
   3922 //
   3923 
   3924 /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
   3925 /// normal unsigned value. Returns 0 if the trip count is unknown or not
   3926 /// constant. Will also return 0 if the maximum trip count is very large (>=
   3927 /// 2^32).
   3928 ///
   3929 /// This "trip count" assumes that control exits via ExitingBlock. More
   3930 /// precisely, it is the number of times that control may reach ExitingBlock
   3931 /// before taking the branch. For loops with multiple exits, it may not be the
   3932 /// number times that the loop header executes because the loop may exit
   3933 /// prematurely via another branch.
   3934 unsigned ScalarEvolution::
   3935 getSmallConstantTripCount(Loop *L, BasicBlock *ExitingBlock) {
   3936   const SCEVConstant *ExitCount =
   3937     dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
   3938   if (!ExitCount)
   3939     return 0;
   3940 
   3941   ConstantInt *ExitConst = ExitCount->getValue();
   3942 
   3943   // Guard against huge trip counts.
   3944   if (ExitConst->getValue().getActiveBits() > 32)
   3945     return 0;
   3946 
   3947   // In case of integer overflow, this returns 0, which is correct.
   3948   return ((unsigned)ExitConst->getZExtValue()) + 1;
   3949 }
   3950 
   3951 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the
   3952 /// trip count of this loop as a normal unsigned value, if possible. This
   3953 /// means that the actual trip count is always a multiple of the returned
   3954 /// value (don't forget the trip count could very well be zero as well!).
   3955 ///
   3956 /// Returns 1 if the trip count is unknown or not guaranteed to be the
   3957 /// multiple of a constant (which is also the case if the trip count is simply
   3958 /// constant, use getSmallConstantTripCount for that case), Will also return 1
   3959 /// if the trip count is very large (>= 2^32).
   3960 ///
   3961 /// As explained in the comments for getSmallConstantTripCount, this assumes
   3962 /// that control exits the loop via ExitingBlock.
   3963 unsigned ScalarEvolution::
   3964 getSmallConstantTripMultiple(Loop *L, BasicBlock *ExitingBlock) {
   3965   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
   3966   if (ExitCount == getCouldNotCompute())
   3967     return 1;
   3968 
   3969   // Get the trip count from the BE count by adding 1.
   3970   const SCEV *TCMul = getAddExpr(ExitCount,
   3971                                  getConstant(ExitCount->getType(), 1));
   3972   // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
   3973   // to factor simple cases.
   3974   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
   3975     TCMul = Mul->getOperand(0);
   3976 
   3977   const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
   3978   if (!MulC)
   3979     return 1;
   3980 
   3981   ConstantInt *Result = MulC->getValue();
   3982 
   3983   // Guard against huge trip counts.
   3984   if (!Result || Result->getValue().getActiveBits() > 32)
   3985     return 1;
   3986 
   3987   return (unsigned)Result->getZExtValue();
   3988 }
   3989 
   3990 // getExitCount - Get the expression for the number of loop iterations for which
   3991 // this loop is guaranteed not to exit via ExitintBlock. Otherwise return
   3992 // SCEVCouldNotCompute.
   3993 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
   3994   return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
   3995 }
   3996 
   3997 /// getBackedgeTakenCount - If the specified loop has a predictable
   3998 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
   3999 /// object. The backedge-taken count is the number of times the loop header
   4000 /// will be branched to from within the loop. This is one less than the
   4001 /// trip count of the loop, since it doesn't count the first iteration,
   4002 /// when the header is branched to from outside the loop.
   4003 ///
   4004 /// Note that it is not valid to call this method on a loop without a
   4005 /// loop-invariant backedge-taken count (see
   4006 /// hasLoopInvariantBackedgeTakenCount).
   4007 ///
   4008 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
   4009   return getBackedgeTakenInfo(L).getExact(this);
   4010 }
   4011 
   4012 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
   4013 /// return the least SCEV value that is known never to be less than the
   4014 /// actual backedge taken count.
   4015 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
   4016   return getBackedgeTakenInfo(L).getMax(this);
   4017 }
   4018 
   4019 /// PushLoopPHIs - Push PHI nodes in the header of the given loop
   4020 /// onto the given Worklist.
   4021 static void
   4022 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
   4023   BasicBlock *Header = L->getHeader();
   4024 
   4025   // Push all Loop-header PHIs onto the Worklist stack.
   4026   for (BasicBlock::iterator I = Header->begin();
   4027        PHINode *PN = dyn_cast<PHINode>(I); ++I)
   4028     Worklist.push_back(PN);
   4029 }
   4030 
   4031 const ScalarEvolution::BackedgeTakenInfo &
   4032 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
   4033   // Initially insert an invalid entry for this loop. If the insertion
   4034   // succeeds, proceed to actually compute a backedge-taken count and
   4035   // update the value. The temporary CouldNotCompute value tells SCEV
   4036   // code elsewhere that it shouldn't attempt to request a new
   4037   // backedge-taken count, which could result in infinite recursion.
   4038   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
   4039     BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
   4040   if (!Pair.second)
   4041     return Pair.first->second;
   4042 
   4043   // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
   4044   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
   4045   // must be cleared in this scope.
   4046   BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
   4047 
   4048   if (Result.getExact(this) != getCouldNotCompute()) {
   4049     assert(isLoopInvariant(Result.getExact(this), L) &&
   4050            isLoopInvariant(Result.getMax(this), L) &&
   4051            "Computed backedge-taken count isn't loop invariant for loop!");
   4052     ++NumTripCountsComputed;
   4053   }
   4054   else if (Result.getMax(this) == getCouldNotCompute() &&
   4055            isa<PHINode>(L->getHeader()->begin())) {
   4056     // Only count loops that have phi nodes as not being computable.
   4057     ++NumTripCountsNotComputed;
   4058   }
   4059 
   4060   // Now that we know more about the trip count for this loop, forget any
   4061   // existing SCEV values for PHI nodes in this loop since they are only
   4062   // conservative estimates made without the benefit of trip count
   4063   // information. This is similar to the code in forgetLoop, except that
   4064   // it handles SCEVUnknown PHI nodes specially.
   4065   if (Result.hasAnyInfo()) {
   4066     SmallVector<Instruction *, 16> Worklist;
   4067     PushLoopPHIs(L, Worklist);
   4068 
   4069     SmallPtrSet<Instruction *, 8> Visited;
   4070     while (!Worklist.empty()) {
   4071       Instruction *I = Worklist.pop_back_val();
   4072       if (!Visited.insert(I)) continue;
   4073 
   4074       ValueExprMapType::iterator It =
   4075         ValueExprMap.find_as(static_cast<Value *>(I));
   4076       if (It != ValueExprMap.end()) {
   4077         const SCEV *Old = It->second;
   4078 
   4079         // SCEVUnknown for a PHI either means that it has an unrecognized
   4080         // structure, or it's a PHI that's in the progress of being computed
   4081         // by createNodeForPHI.  In the former case, additional loop trip
   4082         // count information isn't going to change anything. In the later
   4083         // case, createNodeForPHI will perform the necessary updates on its
   4084         // own when it gets to that point.
   4085         if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
   4086           forgetMemoizedResults(Old);
   4087           ValueExprMap.erase(It);
   4088         }
   4089         if (PHINode *PN = dyn_cast<PHINode>(I))
   4090           ConstantEvolutionLoopExitValue.erase(PN);
   4091       }
   4092 
   4093       PushDefUseChildren(I, Worklist);
   4094     }
   4095   }
   4096 
   4097   // Re-lookup the insert position, since the call to
   4098   // ComputeBackedgeTakenCount above could result in a
   4099   // recusive call to getBackedgeTakenInfo (on a different
   4100   // loop), which would invalidate the iterator computed
   4101   // earlier.
   4102   return BackedgeTakenCounts.find(L)->second = Result;
   4103 }
   4104 
   4105 /// forgetLoop - This method should be called by the client when it has
   4106 /// changed a loop in a way that may effect ScalarEvolution's ability to
   4107 /// compute a trip count, or if the loop is deleted.
   4108 void ScalarEvolution::forgetLoop(const Loop *L) {
   4109   // Drop any stored trip count value.
   4110   DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
   4111     BackedgeTakenCounts.find(L);
   4112   if (BTCPos != BackedgeTakenCounts.end()) {
   4113     BTCPos->second.clear();
   4114     BackedgeTakenCounts.erase(BTCPos);
   4115   }
   4116 
   4117   // Drop information about expressions based on loop-header PHIs.
   4118   SmallVector<Instruction *, 16> Worklist;
   4119   PushLoopPHIs(L, Worklist);
   4120 
   4121   SmallPtrSet<Instruction *, 8> Visited;
   4122   while (!Worklist.empty()) {
   4123     Instruction *I = Worklist.pop_back_val();
   4124     if (!Visited.insert(I)) continue;
   4125 
   4126     ValueExprMapType::iterator It =
   4127       ValueExprMap.find_as(static_cast<Value *>(I));
   4128     if (It != ValueExprMap.end()) {
   4129       forgetMemoizedResults(It->second);
   4130       ValueExprMap.erase(It);
   4131       if (PHINode *PN = dyn_cast<PHINode>(I))
   4132         ConstantEvolutionLoopExitValue.erase(PN);
   4133     }
   4134 
   4135     PushDefUseChildren(I, Worklist);
   4136   }
   4137 
   4138   // Forget all contained loops too, to avoid dangling entries in the
   4139   // ValuesAtScopes map.
   4140   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
   4141     forgetLoop(*I);
   4142 }
   4143 
   4144 /// forgetValue - This method should be called by the client when it has
   4145 /// changed a value in a way that may effect its value, or which may
   4146 /// disconnect it from a def-use chain linking it to a loop.
   4147 void ScalarEvolution::forgetValue(Value *V) {
   4148   Instruction *I = dyn_cast<Instruction>(V);
   4149   if (!I) return;
   4150 
   4151   // Drop information about expressions based on loop-header PHIs.
   4152   SmallVector<Instruction *, 16> Worklist;
   4153   Worklist.push_back(I);
   4154 
   4155   SmallPtrSet<Instruction *, 8> Visited;
   4156   while (!Worklist.empty()) {
   4157     I = Worklist.pop_back_val();
   4158     if (!Visited.insert(I)) continue;
   4159 
   4160     ValueExprMapType::iterator It =
   4161       ValueExprMap.find_as(static_cast<Value *>(I));
   4162     if (It != ValueExprMap.end()) {
   4163       forgetMemoizedResults(It->second);
   4164       ValueExprMap.erase(It);
   4165       if (PHINode *PN = dyn_cast<PHINode>(I))
   4166         ConstantEvolutionLoopExitValue.erase(PN);
   4167     }
   4168 
   4169     PushDefUseChildren(I, Worklist);
   4170   }
   4171 }
   4172 
   4173 /// getExact - Get the exact loop backedge taken count considering all loop
   4174 /// exits. A computable result can only be return for loops with a single exit.
   4175 /// Returning the minimum taken count among all exits is incorrect because one
   4176 /// of the loop's exit limit's may have been skipped. HowFarToZero assumes that
   4177 /// the limit of each loop test is never skipped. This is a valid assumption as
   4178 /// long as the loop exits via that test. For precise results, it is the
   4179 /// caller's responsibility to specify the relevant loop exit using
   4180 /// getExact(ExitingBlock, SE).
   4181 const SCEV *
   4182 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
   4183   // If any exits were not computable, the loop is not computable.
   4184   if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
   4185 
   4186   // We need exactly one computable exit.
   4187   if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
   4188   assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
   4189 
   4190   const SCEV *BECount = 0;
   4191   for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
   4192        ENT != 0; ENT = ENT->getNextExit()) {
   4193 
   4194     assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
   4195 
   4196     if (!BECount)
   4197       BECount = ENT->ExactNotTaken;
   4198     else if (BECount != ENT->ExactNotTaken)
   4199       return SE->getCouldNotCompute();
   4200   }
   4201   assert(BECount && "Invalid not taken count for loop exit");
   4202   return BECount;
   4203 }
   4204 
   4205 /// getExact - Get the exact not taken count for this loop exit.
   4206 const SCEV *
   4207 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
   4208                                              ScalarEvolution *SE) const {
   4209   for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
   4210        ENT != 0; ENT = ENT->getNextExit()) {
   4211 
   4212     if (ENT->ExitingBlock == ExitingBlock)
   4213       return ENT->ExactNotTaken;
   4214   }
   4215   return SE->getCouldNotCompute();
   4216 }
   4217 
   4218 /// getMax - Get the max backedge taken count for the loop.
   4219 const SCEV *
   4220 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
   4221   return Max ? Max : SE->getCouldNotCompute();
   4222 }
   4223 
   4224 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
   4225 /// computable exit into a persistent ExitNotTakenInfo array.
   4226 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
   4227   SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
   4228   bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
   4229 
   4230   if (!Complete)
   4231     ExitNotTaken.setIncomplete();
   4232 
   4233   unsigned NumExits = ExitCounts.size();
   4234   if (NumExits == 0) return;
   4235 
   4236   ExitNotTaken.ExitingBlock = ExitCounts[0].first;
   4237   ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
   4238   if (NumExits == 1) return;
   4239 
   4240   // Handle the rare case of multiple computable exits.
   4241   ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
   4242 
   4243   ExitNotTakenInfo *PrevENT = &ExitNotTaken;
   4244   for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
   4245     PrevENT->setNextExit(ENT);
   4246     ENT->ExitingBlock = ExitCounts[i].first;
   4247     ENT->ExactNotTaken = ExitCounts[i].second;
   4248   }
   4249 }
   4250 
   4251 /// clear - Invalidate this result and free the ExitNotTakenInfo array.
   4252 void ScalarEvolution::BackedgeTakenInfo::clear() {
   4253   ExitNotTaken.ExitingBlock = 0;
   4254   ExitNotTaken.ExactNotTaken = 0;
   4255   delete[] ExitNotTaken.getNextExit();
   4256 }
   4257 
   4258 /// ComputeBackedgeTakenCount - Compute the number of times the backedge
   4259 /// of the specified loop will execute.
   4260 ScalarEvolution::BackedgeTakenInfo
   4261 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
   4262   SmallVector<BasicBlock *, 8> ExitingBlocks;
   4263   L->getExitingBlocks(ExitingBlocks);
   4264 
   4265   // Examine all exits and pick the most conservative values.
   4266   const SCEV *MaxBECount = getCouldNotCompute();
   4267   bool CouldComputeBECount = true;
   4268   SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
   4269   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
   4270     ExitLimit EL = ComputeExitLimit(L, ExitingBlocks[i]);
   4271     if (EL.Exact == getCouldNotCompute())
   4272       // We couldn't compute an exact value for this exit, so
   4273       // we won't be able to compute an exact value for the loop.
   4274       CouldComputeBECount = false;
   4275     else
   4276       ExitCounts.push_back(std::make_pair(ExitingBlocks[i], EL.Exact));
   4277 
   4278     if (MaxBECount == getCouldNotCompute())
   4279       MaxBECount = EL.Max;
   4280     else if (EL.Max != getCouldNotCompute()) {
   4281       // We cannot take the "min" MaxBECount, because non-unit stride loops may
   4282       // skip some loop tests. Taking the max over the exits is sufficiently
   4283       // conservative.  TODO: We could do better taking into consideration
   4284       // that (1) the loop has unit stride (2) the last loop test is
   4285       // less-than/greater-than (3) any loop test is less-than/greater-than AND
   4286       // falls-through some constant times less then the other tests.
   4287       MaxBECount = getUMaxFromMismatchedTypes(MaxBECount, EL.Max);
   4288     }
   4289   }
   4290 
   4291   return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
   4292 }
   4293 
   4294 /// ComputeExitLimit - Compute the number of times the backedge of the specified
   4295 /// loop will execute if it exits via the specified block.
   4296 ScalarEvolution::ExitLimit
   4297 ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
   4298 
   4299   // Okay, we've chosen an exiting block.  See what condition causes us to
   4300   // exit at this block.
   4301   //
   4302   // FIXME: we should be able to handle switch instructions (with a single exit)
   4303   BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
   4304   if (ExitBr == 0) return getCouldNotCompute();
   4305   assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
   4306 
   4307   // At this point, we know we have a conditional branch that determines whether
   4308   // the loop is exited.  However, we don't know if the branch is executed each
   4309   // time through the loop.  If not, then the execution count of the branch will
   4310   // not be equal to the trip count of the loop.
   4311   //
   4312   // Currently we check for this by checking to see if the Exit branch goes to
   4313   // the loop header.  If so, we know it will always execute the same number of
   4314   // times as the loop.  We also handle the case where the exit block *is* the
   4315   // loop header.  This is common for un-rotated loops.
   4316   //
   4317   // If both of those tests fail, walk up the unique predecessor chain to the
   4318   // header, stopping if there is an edge that doesn't exit the loop. If the
   4319   // header is reached, the execution count of the branch will be equal to the
   4320   // trip count of the loop.
   4321   //
   4322   //  More extensive analysis could be done to handle more cases here.
   4323   //
   4324   if (ExitBr->getSuccessor(0) != L->getHeader() &&
   4325       ExitBr->getSuccessor(1) != L->getHeader() &&
   4326       ExitBr->getParent() != L->getHeader()) {
   4327     // The simple checks failed, try climbing the unique predecessor chain
   4328     // up to the header.
   4329     bool Ok = false;
   4330     for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
   4331       BasicBlock *Pred = BB->getUniquePredecessor();
   4332       if (!Pred)
   4333         return getCouldNotCompute();
   4334       TerminatorInst *PredTerm = Pred->getTerminator();
   4335       for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
   4336         BasicBlock *PredSucc = PredTerm->getSuccessor(i);
   4337         if (PredSucc == BB)
   4338           continue;
   4339         // If the predecessor has a successor that isn't BB and isn't
   4340         // outside the loop, assume the worst.
   4341         if (L->contains(PredSucc))
   4342           return getCouldNotCompute();
   4343       }
   4344       if (Pred == L->getHeader()) {
   4345         Ok = true;
   4346         break;
   4347       }
   4348       BB = Pred;
   4349     }
   4350     if (!Ok)
   4351       return getCouldNotCompute();
   4352   }
   4353 
   4354   // Proceed to the next level to examine the exit condition expression.
   4355   return ComputeExitLimitFromCond(L, ExitBr->getCondition(),
   4356                                   ExitBr->getSuccessor(0),
   4357                                   ExitBr->getSuccessor(1));
   4358 }
   4359 
   4360 /// ComputeExitLimitFromCond - Compute the number of times the
   4361 /// backedge of the specified loop will execute if its exit condition
   4362 /// were a conditional branch of ExitCond, TBB, and FBB.
   4363 ScalarEvolution::ExitLimit
   4364 ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
   4365                                           Value *ExitCond,
   4366                                           BasicBlock *TBB,
   4367                                           BasicBlock *FBB) {
   4368   // Check if the controlling expression for this loop is an And or Or.
   4369   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
   4370     if (BO->getOpcode() == Instruction::And) {
   4371       // Recurse on the operands of the and.
   4372       ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB);
   4373       ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB);
   4374       const SCEV *BECount = getCouldNotCompute();
   4375       const SCEV *MaxBECount = getCouldNotCompute();
   4376       if (L->contains(TBB)) {
   4377         // Both conditions must be true for the loop to continue executing.
   4378         // Choose the less conservative count.
   4379         if (EL0.Exact == getCouldNotCompute() ||
   4380             EL1.Exact == getCouldNotCompute())
   4381           BECount = getCouldNotCompute();
   4382         else
   4383           BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
   4384         if (EL0.Max == getCouldNotCompute())
   4385           MaxBECount = EL1.Max;
   4386         else if (EL1.Max == getCouldNotCompute())
   4387           MaxBECount = EL0.Max;
   4388         else
   4389           MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
   4390       } else {
   4391         // Both conditions must be true at the same time for the loop to exit.
   4392         // For now, be conservative.
   4393         assert(L->contains(FBB) && "Loop block has no successor in loop!");
   4394         if (EL0.Max == EL1.Max)
   4395           MaxBECount = EL0.Max;
   4396         if (EL0.Exact == EL1.Exact)
   4397           BECount = EL0.Exact;
   4398       }
   4399 
   4400       return ExitLimit(BECount, MaxBECount);
   4401     }
   4402     if (BO->getOpcode() == Instruction::Or) {
   4403       // Recurse on the operands of the or.
   4404       ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB);
   4405       ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB);
   4406       const SCEV *BECount = getCouldNotCompute();
   4407       const SCEV *MaxBECount = getCouldNotCompute();
   4408       if (L->contains(FBB)) {
   4409         // Both conditions must be false for the loop to continue executing.
   4410         // Choose the less conservative count.
   4411         if (EL0.Exact == getCouldNotCompute() ||
   4412             EL1.Exact == getCouldNotCompute())
   4413           BECount = getCouldNotCompute();
   4414         else
   4415           BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
   4416         if (EL0.Max == getCouldNotCompute())
   4417           MaxBECount = EL1.Max;
   4418         else if (EL1.Max == getCouldNotCompute())
   4419           MaxBECount = EL0.Max;
   4420         else
   4421           MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
   4422       } else {
   4423         // Both conditions must be false at the same time for the loop to exit.
   4424         // For now, be conservative.
   4425         assert(L->contains(TBB) && "Loop block has no successor in loop!");
   4426         if (EL0.Max == EL1.Max)
   4427           MaxBECount = EL0.Max;
   4428         if (EL0.Exact == EL1.Exact)
   4429           BECount = EL0.Exact;
   4430       }
   4431 
   4432       return ExitLimit(BECount, MaxBECount);
   4433     }
   4434   }
   4435 
   4436   // With an icmp, it may be feasible to compute an exact backedge-taken count.
   4437   // Proceed to the next level to examine the icmp.
   4438   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
   4439     return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB);
   4440 
   4441   // Check for a constant condition. These are normally stripped out by
   4442   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
   4443   // preserve the CFG and is temporarily leaving constant conditions
   4444   // in place.
   4445   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
   4446     if (L->contains(FBB) == !CI->getZExtValue())
   4447       // The backedge is always taken.
   4448       return getCouldNotCompute();
   4449     else
   4450       // The backedge is never taken.
   4451       return getConstant(CI->getType(), 0);
   4452   }
   4453 
   4454   // If it's not an integer or pointer comparison then compute it the hard way.
   4455   return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
   4456 }
   4457 
   4458 /// ComputeExitLimitFromICmp - Compute the number of times the
   4459 /// backedge of the specified loop will execute if its exit condition
   4460 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
   4461 ScalarEvolution::ExitLimit
   4462 ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
   4463                                           ICmpInst *ExitCond,
   4464                                           BasicBlock *TBB,
   4465                                           BasicBlock *FBB) {
   4466 
   4467   // If the condition was exit on true, convert the condition to exit on false
   4468   ICmpInst::Predicate Cond;
   4469   if (!L->contains(FBB))
   4470     Cond = ExitCond->getPredicate();
   4471   else
   4472     Cond = ExitCond->getInversePredicate();
   4473 
   4474   // Handle common loops like: for (X = "string"; *X; ++X)
   4475   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
   4476     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
   4477       ExitLimit ItCnt =
   4478         ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
   4479       if (ItCnt.hasAnyInfo())
   4480         return ItCnt;
   4481     }
   4482 
   4483   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
   4484   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
   4485 
   4486   // Try to evaluate any dependencies out of the loop.
   4487   LHS = getSCEVAtScope(LHS, L);
   4488   RHS = getSCEVAtScope(RHS, L);
   4489 
   4490   // At this point, we would like to compute how many iterations of the
   4491   // loop the predicate will return true for these inputs.
   4492   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
   4493     // If there is a loop-invariant, force it into the RHS.
   4494     std::swap(LHS, RHS);
   4495     Cond = ICmpInst::getSwappedPredicate(Cond);
   4496   }
   4497 
   4498   // Simplify the operands before analyzing them.
   4499   (void)SimplifyICmpOperands(Cond, LHS, RHS);
   4500 
   4501   // If we have a comparison of a chrec against a constant, try to use value
   4502   // ranges to answer this query.
   4503   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
   4504     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
   4505       if (AddRec->getLoop() == L) {
   4506         // Form the constant range.
   4507         ConstantRange CompRange(
   4508             ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
   4509 
   4510         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
   4511         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
   4512       }
   4513 
   4514   switch (Cond) {
   4515   case ICmpInst::ICMP_NE: {                     // while (X != Y)
   4516     // Convert to: while (X-Y != 0)
   4517     ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L);
   4518     if (EL.hasAnyInfo()) return EL;
   4519     break;
   4520   }
   4521   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
   4522     // Convert to: while (X-Y == 0)
   4523     ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
   4524     if (EL.hasAnyInfo()) return EL;
   4525     break;
   4526   }
   4527   case ICmpInst::ICMP_SLT: {
   4528     ExitLimit EL = HowManyLessThans(LHS, RHS, L, true);
   4529     if (EL.hasAnyInfo()) return EL;
   4530     break;
   4531   }
   4532   case ICmpInst::ICMP_SGT: {
   4533     ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
   4534                                              getNotSCEV(RHS), L, true);
   4535     if (EL.hasAnyInfo()) return EL;
   4536     break;
   4537   }
   4538   case ICmpInst::ICMP_ULT: {
   4539     ExitLimit EL = HowManyLessThans(LHS, RHS, L, false);
   4540     if (EL.hasAnyInfo()) return EL;
   4541     break;
   4542   }
   4543   case ICmpInst::ICMP_UGT: {
   4544     ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
   4545                                              getNotSCEV(RHS), L, false);
   4546     if (EL.hasAnyInfo()) return EL;
   4547     break;
   4548   }
   4549   default:
   4550 #if 0
   4551     dbgs() << "ComputeBackedgeTakenCount ";
   4552     if (ExitCond->getOperand(0)->getType()->isUnsigned())
   4553       dbgs() << "[unsigned] ";
   4554     dbgs() << *LHS << "   "
   4555          << Instruction::getOpcodeName(Instruction::ICmp)
   4556          << "   " << *RHS << "\n";
   4557 #endif
   4558     break;
   4559   }
   4560   return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
   4561 }
   4562 
   4563 static ConstantInt *
   4564 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
   4565                                 ScalarEvolution &SE) {
   4566   const SCEV *InVal = SE.getConstant(C);
   4567   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
   4568   assert(isa<SCEVConstant>(Val) &&
   4569          "Evaluation of SCEV at constant didn't fold correctly?");
   4570   return cast<SCEVConstant>(Val)->getValue();
   4571 }
   4572 
   4573 /// ComputeLoadConstantCompareExitLimit - Given an exit condition of
   4574 /// 'icmp op load X, cst', try to see if we can compute the backedge
   4575 /// execution count.
   4576 ScalarEvolution::ExitLimit
   4577 ScalarEvolution::ComputeLoadConstantCompareExitLimit(
   4578   LoadInst *LI,
   4579   Constant *RHS,
   4580   const Loop *L,
   4581   ICmpInst::Predicate predicate) {
   4582 
   4583   if (LI->isVolatile()) return getCouldNotCompute();
   4584 
   4585   // Check to see if the loaded pointer is a getelementptr of a global.
   4586   // TODO: Use SCEV instead of manually grubbing with GEPs.
   4587   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
   4588   if (!GEP) return getCouldNotCompute();
   4589 
   4590   // Make sure that it is really a constant global we are gepping, with an
   4591   // initializer, and make sure the first IDX is really 0.
   4592   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
   4593   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
   4594       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
   4595       !cast<Constant>(GEP->getOperand(1))->isNullValue())
   4596     return getCouldNotCompute();
   4597 
   4598   // Okay, we allow one non-constant index into the GEP instruction.
   4599   Value *VarIdx = 0;
   4600   std::vector<Constant*> Indexes;
   4601   unsigned VarIdxNum = 0;
   4602   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
   4603     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
   4604       Indexes.push_back(CI);
   4605     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
   4606       if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
   4607       VarIdx = GEP->getOperand(i);
   4608       VarIdxNum = i-2;
   4609       Indexes.push_back(0);
   4610     }
   4611 
   4612   // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
   4613   if (!VarIdx)
   4614     return getCouldNotCompute();
   4615 
   4616   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
   4617   // Check to see if X is a loop variant variable value now.
   4618   const SCEV *Idx = getSCEV(VarIdx);
   4619   Idx = getSCEVAtScope(Idx, L);
   4620 
   4621   // We can only recognize very limited forms of loop index expressions, in
   4622   // particular, only affine AddRec's like {C1,+,C2}.
   4623   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
   4624   if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
   4625       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
   4626       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
   4627     return getCouldNotCompute();
   4628 
   4629   unsigned MaxSteps = MaxBruteForceIterations;
   4630   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
   4631     ConstantInt *ItCst = ConstantInt::get(
   4632                            cast<IntegerType>(IdxExpr->getType()), IterationNum);
   4633     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
   4634 
   4635     // Form the GEP offset.
   4636     Indexes[VarIdxNum] = Val;
   4637 
   4638     Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
   4639                                                          Indexes);
   4640     if (Result == 0) break;  // Cannot compute!
   4641 
   4642     // Evaluate the condition for this iteration.
   4643     Result = ConstantExpr::getICmp(predicate, Result, RHS);
   4644     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
   4645     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
   4646 #if 0
   4647       dbgs() << "\n***\n*** Computed loop count " << *ItCst
   4648              << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
   4649              << "***\n";
   4650 #endif
   4651       ++NumArrayLenItCounts;
   4652       return getConstant(ItCst);   // Found terminating iteration!
   4653     }
   4654   }
   4655   return getCouldNotCompute();
   4656 }
   4657 
   4658 
   4659 /// CanConstantFold - Return true if we can constant fold an instruction of the
   4660 /// specified type, assuming that all operands were constants.
   4661 static bool CanConstantFold(const Instruction *I) {
   4662   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
   4663       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
   4664       isa<LoadInst>(I))
   4665     return true;
   4666 
   4667   if (const CallInst *CI = dyn_cast<CallInst>(I))
   4668     if (const Function *F = CI->getCalledFunction())
   4669       return canConstantFoldCallTo(F);
   4670   return false;
   4671 }
   4672 
   4673 /// Determine whether this instruction can constant evolve within this loop
   4674 /// assuming its operands can all constant evolve.
   4675 static bool canConstantEvolve(Instruction *I, const Loop *L) {
   4676   // An instruction outside of the loop can't be derived from a loop PHI.
   4677   if (!L->contains(I)) return false;
   4678 
   4679   if (isa<PHINode>(I)) {
   4680     if (L->getHeader() == I->getParent())
   4681       return true;
   4682     else
   4683       // We don't currently keep track of the control flow needed to evaluate
   4684       // PHIs, so we cannot handle PHIs inside of loops.
   4685       return false;
   4686   }
   4687 
   4688   // If we won't be able to constant fold this expression even if the operands
   4689   // are constants, bail early.
   4690   return CanConstantFold(I);
   4691 }
   4692 
   4693 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
   4694 /// recursing through each instruction operand until reaching a loop header phi.
   4695 static PHINode *
   4696 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
   4697                                DenseMap<Instruction *, PHINode *> &PHIMap) {
   4698 
   4699   // Otherwise, we can evaluate this instruction if all of its operands are
   4700   // constant or derived from a PHI node themselves.
   4701   PHINode *PHI = 0;
   4702   for (Instruction::op_iterator OpI = UseInst->op_begin(),
   4703          OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
   4704 
   4705     if (isa<Constant>(*OpI)) continue;
   4706 
   4707     Instruction *OpInst = dyn_cast<Instruction>(*OpI);
   4708     if (!OpInst || !canConstantEvolve(OpInst, L)) return 0;
   4709 
   4710     PHINode *P = dyn_cast<PHINode>(OpInst);
   4711     if (!P)
   4712       // If this operand is already visited, reuse the prior result.
   4713       // We may have P != PHI if this is the deepest point at which the
   4714       // inconsistent paths meet.
   4715       P = PHIMap.lookup(OpInst);
   4716     if (!P) {
   4717       // Recurse and memoize the results, whether a phi is found or not.
   4718       // This recursive call invalidates pointers into PHIMap.
   4719       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
   4720       PHIMap[OpInst] = P;
   4721     }
   4722     if (P == 0) return 0;        // Not evolving from PHI
   4723     if (PHI && PHI != P) return 0;  // Evolving from multiple different PHIs.
   4724     PHI = P;
   4725   }
   4726   // This is a expression evolving from a constant PHI!
   4727   return PHI;
   4728 }
   4729 
   4730 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
   4731 /// in the loop that V is derived from.  We allow arbitrary operations along the
   4732 /// way, but the operands of an operation must either be constants or a value
   4733 /// derived from a constant PHI.  If this expression does not fit with these
   4734 /// constraints, return null.
   4735 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
   4736   Instruction *I = dyn_cast<Instruction>(V);
   4737   if (I == 0 || !canConstantEvolve(I, L)) return 0;
   4738 
   4739   if (PHINode *PN = dyn_cast<PHINode>(I)) {
   4740     return PN;
   4741   }
   4742 
   4743   // Record non-constant instructions contained by the loop.
   4744   DenseMap<Instruction *, PHINode *> PHIMap;
   4745   return getConstantEvolvingPHIOperands(I, L, PHIMap);
   4746 }
   4747 
   4748 /// EvaluateExpression - Given an expression that passes the
   4749 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
   4750 /// in the loop has the value PHIVal.  If we can't fold this expression for some
   4751 /// reason, return null.
   4752 static Constant *EvaluateExpression(Value *V, const Loop *L,
   4753                                     DenseMap<Instruction *, Constant *> &Vals,
   4754                                     const TargetData *TD,
   4755                                     const TargetLibraryInfo *TLI) {
   4756   // Convenient constant check, but redundant for recursive calls.
   4757   if (Constant *C = dyn_cast<Constant>(V)) return C;
   4758   Instruction *I = dyn_cast<Instruction>(V);
   4759   if (!I) return 0;
   4760 
   4761   if (Constant *C = Vals.lookup(I)) return C;
   4762 
   4763   // An instruction inside the loop depends on a value outside the loop that we
   4764   // weren't given a mapping for, or a value such as a call inside the loop.
   4765   if (!canConstantEvolve(I, L)) return 0;
   4766 
   4767   // An unmapped PHI can be due to a branch or another loop inside this loop,
   4768   // or due to this not being the initial iteration through a loop where we
   4769   // couldn't compute the evolution of this particular PHI last time.
   4770   if (isa<PHINode>(I)) return 0;
   4771 
   4772   std::vector<Constant*> Operands(I->getNumOperands());
   4773 
   4774   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
   4775     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
   4776     if (!Operand) {
   4777       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
   4778       if (!Operands[i]) return 0;
   4779       continue;
   4780     }
   4781     Constant *C = EvaluateExpression(Operand, L, Vals, TD, TLI);
   4782     Vals[Operand] = C;
   4783     if (!C) return 0;
   4784     Operands[i] = C;
   4785   }
   4786 
   4787   if (CmpInst *CI = dyn_cast<CmpInst>(I))
   4788     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
   4789                                            Operands[1], TD, TLI);
   4790   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
   4791     if (!LI->isVolatile())
   4792       return ConstantFoldLoadFromConstPtr(Operands[0], TD);
   4793   }
   4794   return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, TD,
   4795                                   TLI);
   4796 }
   4797 
   4798 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
   4799 /// in the header of its containing loop, we know the loop executes a
   4800 /// constant number of times, and the PHI node is just a recurrence
   4801 /// involving constants, fold it.
   4802 Constant *
   4803 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
   4804                                                    const APInt &BEs,
   4805                                                    const Loop *L) {
   4806   DenseMap<PHINode*, Constant*>::const_iterator I =
   4807     ConstantEvolutionLoopExitValue.find(PN);
   4808   if (I != ConstantEvolutionLoopExitValue.end())
   4809     return I->second;
   4810 
   4811   if (BEs.ugt(MaxBruteForceIterations))
   4812     return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
   4813 
   4814   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
   4815 
   4816   DenseMap<Instruction *, Constant *> CurrentIterVals;
   4817   BasicBlock *Header = L->getHeader();
   4818   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
   4819 
   4820   // Since the loop is canonicalized, the PHI node must have two entries.  One
   4821   // entry must be a constant (coming in from outside of the loop), and the
   4822   // second must be derived from the same PHI.
   4823   bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
   4824   PHINode *PHI = 0;
   4825   for (BasicBlock::iterator I = Header->begin();
   4826        (PHI = dyn_cast<PHINode>(I)); ++I) {
   4827     Constant *StartCST =
   4828       dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
   4829     if (StartCST == 0) continue;
   4830     CurrentIterVals[PHI] = StartCST;
   4831   }
   4832   if (!CurrentIterVals.count(PN))
   4833     return RetVal = 0;
   4834 
   4835   Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
   4836 
   4837   // Execute the loop symbolically to determine the exit value.
   4838   if (BEs.getActiveBits() >= 32)
   4839     return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
   4840 
   4841   unsigned NumIterations = BEs.getZExtValue(); // must be in range
   4842   unsigned IterationNum = 0;
   4843   for (; ; ++IterationNum) {
   4844     if (IterationNum == NumIterations)
   4845       return RetVal = CurrentIterVals[PN];  // Got exit value!
   4846 
   4847     // Compute the value of the PHIs for the next iteration.
   4848     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
   4849     DenseMap<Instruction *, Constant *> NextIterVals;
   4850     Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD,
   4851                                            TLI);
   4852     if (NextPHI == 0)
   4853       return 0;        // Couldn't evaluate!
   4854     NextIterVals[PN] = NextPHI;
   4855 
   4856     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
   4857 
   4858     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
   4859     // cease to be able to evaluate one of them or if they stop evolving,
   4860     // because that doesn't necessarily prevent us from computing PN.
   4861     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
   4862     for (DenseMap<Instruction *, Constant *>::const_iterator
   4863            I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
   4864       PHINode *PHI = dyn_cast<PHINode>(I->first);
   4865       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
   4866       PHIsToCompute.push_back(std::make_pair(PHI, I->second));
   4867     }
   4868     // We use two distinct loops because EvaluateExpression may invalidate any
   4869     // iterators into CurrentIterVals.
   4870     for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator
   4871              I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) {
   4872       PHINode *PHI = I->first;
   4873       Constant *&NextPHI = NextIterVals[PHI];
   4874       if (!NextPHI) {   // Not already computed.
   4875         Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
   4876         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI);
   4877       }
   4878       if (NextPHI != I->second)
   4879         StoppedEvolving = false;
   4880     }
   4881 
   4882     // If all entries in CurrentIterVals == NextIterVals then we can stop
   4883     // iterating, the loop can't continue to change.
   4884     if (StoppedEvolving)
   4885       return RetVal = CurrentIterVals[PN];
   4886 
   4887     CurrentIterVals.swap(NextIterVals);
   4888   }
   4889 }
   4890 
   4891 /// ComputeExitCountExhaustively - If the loop is known to execute a
   4892 /// constant number of times (the condition evolves only from constants),
   4893 /// try to evaluate a few iterations of the loop until we get the exit
   4894 /// condition gets a value of ExitWhen (true or false).  If we cannot
   4895 /// evaluate the trip count of the loop, return getCouldNotCompute().
   4896 const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
   4897                                                           Value *Cond,
   4898                                                           bool ExitWhen) {
   4899   PHINode *PN = getConstantEvolvingPHI(Cond, L);
   4900   if (PN == 0) return getCouldNotCompute();
   4901 
   4902   // If the loop is canonicalized, the PHI will have exactly two entries.
   4903   // That's the only form we support here.
   4904   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
   4905 
   4906   DenseMap<Instruction *, Constant *> CurrentIterVals;
   4907   BasicBlock *Header = L->getHeader();
   4908   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
   4909 
   4910   // One entry must be a constant (coming in from outside of the loop), and the
   4911   // second must be derived from the same PHI.
   4912   bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
   4913   PHINode *PHI = 0;
   4914   for (BasicBlock::iterator I = Header->begin();
   4915        (PHI = dyn_cast<PHINode>(I)); ++I) {
   4916     Constant *StartCST =
   4917       dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
   4918     if (StartCST == 0) continue;
   4919     CurrentIterVals[PHI] = StartCST;
   4920   }
   4921   if (!CurrentIterVals.count(PN))
   4922     return getCouldNotCompute();
   4923 
   4924   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
   4925   // the loop symbolically to determine when the condition gets a value of
   4926   // "ExitWhen".
   4927 
   4928   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
   4929   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
   4930     ConstantInt *CondVal =
   4931       dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals,
   4932                                                        TD, TLI));
   4933 
   4934     // Couldn't symbolically evaluate.
   4935     if (!CondVal) return getCouldNotCompute();
   4936 
   4937     if (CondVal->getValue() == uint64_t(ExitWhen)) {
   4938       ++NumBruteForceTripCountsComputed;
   4939       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
   4940     }
   4941 
   4942     // Update all the PHI nodes for the next iteration.
   4943     DenseMap<Instruction *, Constant *> NextIterVals;
   4944 
   4945     // Create a list of which PHIs we need to compute. We want to do this before
   4946     // calling EvaluateExpression on them because that may invalidate iterators
   4947     // into CurrentIterVals.
   4948     SmallVector<PHINode *, 8> PHIsToCompute;
   4949     for (DenseMap<Instruction *, Constant *>::const_iterator
   4950            I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
   4951       PHINode *PHI = dyn_cast<PHINode>(I->first);
   4952       if (!PHI || PHI->getParent() != Header) continue;
   4953       PHIsToCompute.push_back(PHI);
   4954     }
   4955     for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(),
   4956              E = PHIsToCompute.end(); I != E; ++I) {
   4957       PHINode *PHI = *I;
   4958       Constant *&NextPHI = NextIterVals[PHI];
   4959       if (NextPHI) continue;    // Already computed!
   4960 
   4961       Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
   4962       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI);
   4963     }
   4964     CurrentIterVals.swap(NextIterVals);
   4965   }
   4966 
   4967   // Too many iterations were needed to evaluate.
   4968   return getCouldNotCompute();
   4969 }
   4970 
   4971 /// getSCEVAtScope - Return a SCEV expression for the specified value
   4972 /// at the specified scope in the program.  The L value specifies a loop
   4973 /// nest to evaluate the expression at, where null is the top-level or a
   4974 /// specified loop is immediately inside of the loop.
   4975 ///
   4976 /// This method can be used to compute the exit value for a variable defined
   4977 /// in a loop by querying what the value will hold in the parent loop.
   4978 ///
   4979 /// In the case that a relevant loop exit value cannot be computed, the
   4980 /// original value V is returned.
   4981 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
   4982   // Check to see if we've folded this expression at this loop before.
   4983   std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
   4984   std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
   4985     Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
   4986   if (!Pair.second)
   4987     return Pair.first->second ? Pair.first->second : V;
   4988 
   4989   // Otherwise compute it.
   4990   const SCEV *C = computeSCEVAtScope(V, L);
   4991   ValuesAtScopes[V][L] = C;
   4992   return C;
   4993 }
   4994 
   4995 /// This builds up a Constant using the ConstantExpr interface.  That way, we
   4996 /// will return Constants for objects which aren't represented by a
   4997 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
   4998 /// Returns NULL if the SCEV isn't representable as a Constant.
   4999 static Constant *BuildConstantFromSCEV(const SCEV *V) {
   5000   switch (V->getSCEVType()) {
   5001     default:  // TODO: smax, umax.
   5002     case scCouldNotCompute:
   5003     case scAddRecExpr:
   5004       break;
   5005     case scConstant:
   5006       return cast<SCEVConstant>(V)->getValue();
   5007     case scUnknown:
   5008       return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
   5009     case scSignExtend: {
   5010       const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
   5011       if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
   5012         return ConstantExpr::getSExt(CastOp, SS->getType());
   5013       break;
   5014     }
   5015     case scZeroExtend: {
   5016       const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
   5017       if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
   5018         return ConstantExpr::getZExt(CastOp, SZ->getType());
   5019       break;
   5020     }
   5021     case scTruncate: {
   5022       const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
   5023       if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
   5024         return ConstantExpr::getTrunc(CastOp, ST->getType());
   5025       break;
   5026     }
   5027     case scAddExpr: {
   5028       const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
   5029       if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
   5030         if (C->getType()->isPointerTy())
   5031           C = ConstantExpr::getBitCast(C, Type::getInt8PtrTy(C->getContext()));
   5032         for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
   5033           Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
   5034           if (!C2) return 0;
   5035 
   5036           // First pointer!
   5037           if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
   5038             std::swap(C, C2);
   5039             // The offsets have been converted to bytes.  We can add bytes to an
   5040             // i8* by GEP with the byte count in the first index.
   5041             C = ConstantExpr::getBitCast(C,Type::getInt8PtrTy(C->getContext()));
   5042           }
   5043 
   5044           // Don't bother trying to sum two pointers. We probably can't
   5045           // statically compute a load that results from it anyway.
   5046           if (C2->getType()->isPointerTy())
   5047             return 0;
   5048 
   5049           if (C->getType()->isPointerTy()) {
   5050             if (cast<PointerType>(C->getType())->getElementType()->isStructTy())
   5051               C2 = ConstantExpr::getIntegerCast(
   5052                   C2, Type::getInt32Ty(C->getContext()), true);
   5053             C = ConstantExpr::getGetElementPtr(C, C2);
   5054           } else
   5055             C = ConstantExpr::getAdd(C, C2);
   5056         }
   5057         return C;
   5058       }
   5059       break;
   5060     }
   5061     case scMulExpr: {
   5062       const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
   5063       if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
   5064         // Don't bother with pointers at all.
   5065         if (C->getType()->isPointerTy()) return 0;
   5066         for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
   5067           Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
   5068           if (!C2 || C2->getType()->isPointerTy()) return 0;
   5069           C = ConstantExpr::getMul(C, C2);
   5070         }
   5071         return C;
   5072       }
   5073       break;
   5074     }
   5075     case scUDivExpr: {
   5076       const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
   5077       if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
   5078         if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
   5079           if (LHS->getType() == RHS->getType())
   5080             return ConstantExpr::getUDiv(LHS, RHS);
   5081       break;
   5082     }
   5083   }
   5084   return 0;
   5085 }
   5086 
   5087 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
   5088   if (isa<SCEVConstant>(V)) return V;
   5089 
   5090   // If this instruction is evolved from a constant-evolving PHI, compute the
   5091   // exit value from the loop without using SCEVs.
   5092   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
   5093     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
   5094       const Loop *LI = (*this->LI)[I->getParent()];
   5095       if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
   5096         if (PHINode *PN = dyn_cast<PHINode>(I))
   5097           if (PN->getParent() == LI->getHeader()) {
   5098             // Okay, there is no closed form solution for the PHI node.  Check
   5099             // to see if the loop that contains it has a known backedge-taken
   5100             // count.  If so, we may be able to force computation of the exit
   5101             // value.
   5102             const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
   5103             if (const SCEVConstant *BTCC =
   5104                   dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
   5105               // Okay, we know how many times the containing loop executes.  If
   5106               // this is a constant evolving PHI node, get the final value at
   5107               // the specified iteration number.
   5108               Constant *RV = getConstantEvolutionLoopExitValue(PN,
   5109                                                    BTCC->getValue()->getValue(),
   5110                                                                LI);
   5111               if (RV) return getSCEV(RV);
   5112             }
   5113           }
   5114 
   5115       // Okay, this is an expression that we cannot symbolically evaluate
   5116       // into a SCEV.  Check to see if it's possible to symbolically evaluate
   5117       // the arguments into constants, and if so, try to constant propagate the
   5118       // result.  This is particularly useful for computing loop exit values.
   5119       if (CanConstantFold(I)) {
   5120         SmallVector<Constant *, 4> Operands;
   5121         bool MadeImprovement = false;
   5122         for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
   5123           Value *Op = I->getOperand(i);
   5124           if (Constant *C = dyn_cast<Constant>(Op)) {
   5125             Operands.push_back(C);
   5126             continue;
   5127           }
   5128 
   5129           // If any of the operands is non-constant and if they are
   5130           // non-integer and non-pointer, don't even try to analyze them
   5131           // with scev techniques.
   5132           if (!isSCEVable(Op->getType()))
   5133             return V;
   5134 
   5135           const SCEV *OrigV = getSCEV(Op);
   5136           const SCEV *OpV = getSCEVAtScope(OrigV, L);
   5137           MadeImprovement |= OrigV != OpV;
   5138 
   5139           Constant *C = BuildConstantFromSCEV(OpV);
   5140           if (!C) return V;
   5141           if (C->getType() != Op->getType())
   5142             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
   5143                                                               Op->getType(),
   5144                                                               false),
   5145                                       C, Op->getType());
   5146           Operands.push_back(C);
   5147         }
   5148 
   5149         // Check to see if getSCEVAtScope actually made an improvement.
   5150         if (MadeImprovement) {
   5151           Constant *C = 0;
   5152           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
   5153             C = ConstantFoldCompareInstOperands(CI->getPredicate(),
   5154                                                 Operands[0], Operands[1], TD,
   5155                                                 TLI);
   5156           else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
   5157             if (!LI->isVolatile())
   5158               C = ConstantFoldLoadFromConstPtr(Operands[0], TD);
   5159           } else
   5160             C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
   5161                                          Operands, TD, TLI);
   5162           if (!C) return V;
   5163           return getSCEV(C);
   5164         }
   5165       }
   5166     }
   5167 
   5168     // This is some other type of SCEVUnknown, just return it.
   5169     return V;
   5170   }
   5171 
   5172   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
   5173     // Avoid performing the look-up in the common case where the specified
   5174     // expression has no loop-variant portions.
   5175     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
   5176       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
   5177       if (OpAtScope != Comm->getOperand(i)) {
   5178         // Okay, at least one of these operands is loop variant but might be
   5179         // foldable.  Build a new instance of the folded commutative expression.
   5180         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
   5181                                             Comm->op_begin()+i);
   5182         NewOps.push_back(OpAtScope);
   5183 
   5184         for (++i; i != e; ++i) {
   5185           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
   5186           NewOps.push_back(OpAtScope);
   5187         }
   5188         if (isa<SCEVAddExpr>(Comm))
   5189           return getAddExpr(NewOps);
   5190         if (isa<SCEVMulExpr>(Comm))
   5191           return getMulExpr(NewOps);
   5192         if (isa<SCEVSMaxExpr>(Comm))
   5193           return getSMaxExpr(NewOps);
   5194         if (isa<SCEVUMaxExpr>(Comm))
   5195           return getUMaxExpr(NewOps);
   5196         llvm_unreachable("Unknown commutative SCEV type!");
   5197       }
   5198     }
   5199     // If we got here, all operands are loop invariant.
   5200     return Comm;
   5201   }
   5202 
   5203   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
   5204     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
   5205     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
   5206     if (LHS == Div->getLHS() && RHS == Div->getRHS())
   5207       return Div;   // must be loop invariant
   5208     return getUDivExpr(LHS, RHS);
   5209   }
   5210 
   5211   // If this is a loop recurrence for a loop that does not contain L, then we
   5212   // are dealing with the final value computed by the loop.
   5213   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
   5214     // First, attempt to evaluate each operand.
   5215     // Avoid performing the look-up in the common case where the specified
   5216     // expression has no loop-variant portions.
   5217     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
   5218       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
   5219       if (OpAtScope == AddRec->getOperand(i))
   5220         continue;
   5221 
   5222       // Okay, at least one of these operands is loop variant but might be
   5223       // foldable.  Build a new instance of the folded commutative expression.
   5224       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
   5225                                           AddRec->op_begin()+i);
   5226       NewOps.push_back(OpAtScope);
   5227       for (++i; i != e; ++i)
   5228         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
   5229 
   5230       const SCEV *FoldedRec =
   5231         getAddRecExpr(NewOps, AddRec->getLoop(),
   5232                       AddRec->getNoWrapFlags(SCEV::FlagNW));
   5233       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
   5234       // The addrec may be folded to a nonrecurrence, for example, if the
   5235       // induction variable is multiplied by zero after constant folding. Go
   5236       // ahead and return the folded value.
   5237       if (!AddRec)
   5238         return FoldedRec;
   5239       break;
   5240     }
   5241 
   5242     // If the scope is outside the addrec's loop, evaluate it by using the
   5243     // loop exit value of the addrec.
   5244     if (!AddRec->getLoop()->contains(L)) {
   5245       // To evaluate this recurrence, we need to know how many times the AddRec
   5246       // loop iterates.  Compute this now.
   5247       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
   5248       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
   5249 
   5250       // Then, evaluate the AddRec.
   5251       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
   5252     }
   5253 
   5254     return AddRec;
   5255   }
   5256 
   5257   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
   5258     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
   5259     if (Op == Cast->getOperand())
   5260       return Cast;  // must be loop invariant
   5261     return getZeroExtendExpr(Op, Cast->getType());
   5262   }
   5263 
   5264   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
   5265     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
   5266     if (Op == Cast->getOperand())
   5267       return Cast;  // must be loop invariant
   5268     return getSignExtendExpr(Op, Cast->getType());
   5269   }
   5270 
   5271   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
   5272     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
   5273     if (Op == Cast->getOperand())
   5274       return Cast;  // must be loop invariant
   5275     return getTruncateExpr(Op, Cast->getType());
   5276   }
   5277 
   5278   llvm_unreachable("Unknown SCEV type!");
   5279 }
   5280 
   5281 /// getSCEVAtScope - This is a convenience function which does
   5282 /// getSCEVAtScope(getSCEV(V), L).
   5283 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
   5284   return getSCEVAtScope(getSCEV(V), L);
   5285 }
   5286 
   5287 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
   5288 /// following equation:
   5289 ///
   5290 ///     A * X = B (mod N)
   5291 ///
   5292 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
   5293 /// A and B isn't important.
   5294 ///
   5295 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
   5296 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
   5297                                                ScalarEvolution &SE) {
   5298   uint32_t BW = A.getBitWidth();
   5299   assert(BW == B.getBitWidth() && "Bit widths must be the same.");
   5300   assert(A != 0 && "A must be non-zero.");
   5301 
   5302   // 1. D = gcd(A, N)
   5303   //
   5304   // The gcd of A and N may have only one prime factor: 2. The number of
   5305   // trailing zeros in A is its multiplicity
   5306   uint32_t Mult2 = A.countTrailingZeros();
   5307   // D = 2^Mult2
   5308 
   5309   // 2. Check if B is divisible by D.
   5310   //
   5311   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
   5312   // is not less than multiplicity of this prime factor for D.
   5313   if (B.countTrailingZeros() < Mult2)
   5314     return SE.getCouldNotCompute();
   5315 
   5316   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
   5317   // modulo (N / D).
   5318   //
   5319   // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
   5320   // bit width during computations.
   5321   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
   5322   APInt Mod(BW + 1, 0);
   5323   Mod.setBit(BW - Mult2);  // Mod = N / D
   5324   APInt I = AD.multiplicativeInverse(Mod);
   5325 
   5326   // 4. Compute the minimum unsigned root of the equation:
   5327   // I * (B / D) mod (N / D)
   5328   APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
   5329 
   5330   // The result is guaranteed to be less than 2^BW so we may truncate it to BW
   5331   // bits.
   5332   return SE.getConstant(Result.trunc(BW));
   5333 }
   5334 
   5335 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the
   5336 /// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
   5337 /// might be the same) or two SCEVCouldNotCompute objects.
   5338 ///
   5339 static std::pair<const SCEV *,const SCEV *>
   5340 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
   5341   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
   5342   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
   5343   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
   5344   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
   5345 
   5346   // We currently can only solve this if the coefficients are constants.
   5347   if (!LC || !MC || !NC) {
   5348     const SCEV *CNC = SE.getCouldNotCompute();
   5349     return std::make_pair(CNC, CNC);
   5350   }
   5351 
   5352   uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
   5353   const APInt &L = LC->getValue()->getValue();
   5354   const APInt &M = MC->getValue()->getValue();
   5355   const APInt &N = NC->getValue()->getValue();
   5356   APInt Two(BitWidth, 2);
   5357   APInt Four(BitWidth, 4);
   5358 
   5359   {
   5360     using namespace APIntOps;
   5361     const APInt& C = L;
   5362     // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
   5363     // The B coefficient is M-N/2
   5364     APInt B(M);
   5365     B -= sdiv(N,Two);
   5366 
   5367     // The A coefficient is N/2
   5368     APInt A(N.sdiv(Two));
   5369 
   5370     // Compute the B^2-4ac term.
   5371     APInt SqrtTerm(B);
   5372     SqrtTerm *= B;
   5373     SqrtTerm -= Four * (A * C);
   5374 
   5375     if (SqrtTerm.isNegative()) {
   5376       // The loop is provably infinite.
   5377       const SCEV *CNC = SE.getCouldNotCompute();
   5378       return std::make_pair(CNC, CNC);
   5379     }
   5380 
   5381     // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
   5382     // integer value or else APInt::sqrt() will assert.
   5383     APInt SqrtVal(SqrtTerm.sqrt());
   5384 
   5385     // Compute the two solutions for the quadratic formula.
   5386     // The divisions must be performed as signed divisions.
   5387     APInt NegB(-B);
   5388     APInt TwoA(A << 1);
   5389     if (TwoA.isMinValue()) {
   5390       const SCEV *CNC = SE.getCouldNotCompute();
   5391       return std::make_pair(CNC, CNC);
   5392     }
   5393 
   5394     LLVMContext &Context = SE.getContext();
   5395 
   5396     ConstantInt *Solution1 =
   5397       ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
   5398     ConstantInt *Solution2 =
   5399       ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
   5400 
   5401     return std::make_pair(SE.getConstant(Solution1),
   5402                           SE.getConstant(Solution2));
   5403   } // end APIntOps namespace
   5404 }
   5405 
   5406 /// HowFarToZero - Return the number of times a backedge comparing the specified
   5407 /// value to zero will execute.  If not computable, return CouldNotCompute.
   5408 ///
   5409 /// This is only used for loops with a "x != y" exit test. The exit condition is
   5410 /// now expressed as a single expression, V = x-y. So the exit test is
   5411 /// effectively V != 0.  We know and take advantage of the fact that this
   5412 /// expression only being used in a comparison by zero context.
   5413 ScalarEvolution::ExitLimit
   5414 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
   5415   // If the value is a constant
   5416   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
   5417     // If the value is already zero, the branch will execute zero times.
   5418     if (C->getValue()->isZero()) return C;
   5419     return getCouldNotCompute();  // Otherwise it will loop infinitely.
   5420   }
   5421 
   5422   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
   5423   if (!AddRec || AddRec->getLoop() != L)
   5424     return getCouldNotCompute();
   5425 
   5426   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
   5427   // the quadratic equation to solve it.
   5428   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
   5429     std::pair<const SCEV *,const SCEV *> Roots =
   5430       SolveQuadraticEquation(AddRec, *this);
   5431     const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
   5432     const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
   5433     if (R1 && R2) {
   5434 #if 0
   5435       dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
   5436              << "  sol#2: " << *R2 << "\n";
   5437 #endif
   5438       // Pick the smallest positive root value.
   5439       if (ConstantInt *CB =
   5440           dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
   5441                                                       R1->getValue(),
   5442                                                       R2->getValue()))) {
   5443         if (CB->getZExtValue() == false)
   5444           std::swap(R1, R2);   // R1 is the minimum root now.
   5445 
   5446         // We can only use this value if the chrec ends up with an exact zero
   5447         // value at this index.  When solving for "X*X != 5", for example, we
   5448         // should not accept a root of 2.
   5449         const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
   5450         if (Val->isZero())
   5451           return R1;  // We found a quadratic root!
   5452       }
   5453     }
   5454     return getCouldNotCompute();
   5455   }
   5456 
   5457   // Otherwise we can only handle this if it is affine.
   5458   if (!AddRec->isAffine())
   5459     return getCouldNotCompute();
   5460 
   5461   // If this is an affine expression, the execution count of this branch is
   5462   // the minimum unsigned root of the following equation:
   5463   //
   5464   //     Start + Step*N = 0 (mod 2^BW)
   5465   //
   5466   // equivalent to:
   5467   //
   5468   //             Step*N = -Start (mod 2^BW)
   5469   //
   5470   // where BW is the common bit width of Start and Step.
   5471 
   5472   // Get the initial value for the loop.
   5473   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
   5474   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
   5475 
   5476   // For now we handle only constant steps.
   5477   //
   5478   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
   5479   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
   5480   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
   5481   // We have not yet seen any such cases.
   5482   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
   5483   if (StepC == 0 || StepC->getValue()->equalsInt(0))
   5484     return getCouldNotCompute();
   5485 
   5486   // For positive steps (counting up until unsigned overflow):
   5487   //   N = -Start/Step (as unsigned)
   5488   // For negative steps (counting down to zero):
   5489   //   N = Start/-Step
   5490   // First compute the unsigned distance from zero in the direction of Step.
   5491   bool CountDown = StepC->getValue()->getValue().isNegative();
   5492   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
   5493 
   5494   // Handle unitary steps, which cannot wraparound.
   5495   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
   5496   //   N = Distance (as unsigned)
   5497   if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
   5498     ConstantRange CR = getUnsignedRange(Start);
   5499     const SCEV *MaxBECount;
   5500     if (!CountDown && CR.getUnsignedMin().isMinValue())
   5501       // When counting up, the worst starting value is 1, not 0.
   5502       MaxBECount = CR.getUnsignedMax().isMinValue()
   5503         ? getConstant(APInt::getMinValue(CR.getBitWidth()))
   5504         : getConstant(APInt::getMaxValue(CR.getBitWidth()));
   5505     else
   5506       MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
   5507                                          : -CR.getUnsignedMin());
   5508     return ExitLimit(Distance, MaxBECount);
   5509   }
   5510 
   5511   // If the recurrence is known not to wraparound, unsigned divide computes the
   5512   // back edge count. We know that the value will either become zero (and thus
   5513   // the loop terminates), that the loop will terminate through some other exit
   5514   // condition first, or that the loop has undefined behavior.  This means
   5515   // we can't "miss" the exit value, even with nonunit stride.
   5516   //
   5517   // FIXME: Prove that loops always exhibits *acceptable* undefined
   5518   // behavior. Loops must exhibit defined behavior until a wrapped value is
   5519   // actually used. So the trip count computed by udiv could be smaller than the
   5520   // number of well-defined iterations.
   5521   if (AddRec->getNoWrapFlags(SCEV::FlagNW)) {
   5522     // FIXME: We really want an "isexact" bit for udiv.
   5523     return getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
   5524   }
   5525   // Then, try to solve the above equation provided that Start is constant.
   5526   if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
   5527     return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
   5528                                         -StartC->getValue()->getValue(),
   5529                                         *this);
   5530   return getCouldNotCompute();
   5531 }
   5532 
   5533 /// HowFarToNonZero - Return the number of times a backedge checking the
   5534 /// specified value for nonzero will execute.  If not computable, return
   5535 /// CouldNotCompute
   5536 ScalarEvolution::ExitLimit
   5537 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
   5538   // Loops that look like: while (X == 0) are very strange indeed.  We don't
   5539   // handle them yet except for the trivial case.  This could be expanded in the
   5540   // future as needed.
   5541 
   5542   // If the value is a constant, check to see if it is known to be non-zero
   5543   // already.  If so, the backedge will execute zero times.
   5544   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
   5545     if (!C->getValue()->isNullValue())
   5546       return getConstant(C->getType(), 0);
   5547     return getCouldNotCompute();  // Otherwise it will loop infinitely.
   5548   }
   5549 
   5550   // We could implement others, but I really doubt anyone writes loops like
   5551   // this, and if they did, they would already be constant folded.
   5552   return getCouldNotCompute();
   5553 }
   5554 
   5555 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
   5556 /// (which may not be an immediate predecessor) which has exactly one
   5557 /// successor from which BB is reachable, or null if no such block is
   5558 /// found.
   5559 ///
   5560 std::pair<BasicBlock *, BasicBlock *>
   5561 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
   5562   // If the block has a unique predecessor, then there is no path from the
   5563   // predecessor to the block that does not go through the direct edge
   5564   // from the predecessor to the block.
   5565   if (BasicBlock *Pred = BB->getSinglePredecessor())
   5566     return std::make_pair(Pred, BB);
   5567 
   5568   // A loop's header is defined to be a block that dominates the loop.
   5569   // If the header has a unique predecessor outside the loop, it must be
   5570   // a block that has exactly one successor that can reach the loop.
   5571   if (Loop *L = LI->getLoopFor(BB))
   5572     return std::make_pair(L->getLoopPredecessor(), L->getHeader());
   5573 
   5574   return std::pair<BasicBlock *, BasicBlock *>();
   5575 }
   5576 
   5577 /// HasSameValue - SCEV structural equivalence is usually sufficient for
   5578 /// testing whether two expressions are equal, however for the purposes of
   5579 /// looking for a condition guarding a loop, it can be useful to be a little
   5580 /// more general, since a front-end may have replicated the controlling
   5581 /// expression.
   5582 ///
   5583 static bool HasSameValue(const SCEV *A, const SCEV *B) {
   5584   // Quick check to see if they are the same SCEV.
   5585   if (A == B) return true;
   5586 
   5587   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
   5588   // two different instructions with the same value. Check for this case.
   5589   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
   5590     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
   5591       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
   5592         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
   5593           if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
   5594             return true;
   5595 
   5596   // Otherwise assume they may have a different value.
   5597   return false;
   5598 }
   5599 
   5600 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
   5601 /// predicate Pred. Return true iff any changes were made.
   5602 ///
   5603 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
   5604                                            const SCEV *&LHS, const SCEV *&RHS,
   5605                                            unsigned Depth) {
   5606   bool Changed = false;
   5607 
   5608   // If we hit the max recursion limit bail out.
   5609   if (Depth >= 3)
   5610     return false;
   5611 
   5612   // Canonicalize a constant to the right side.
   5613   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
   5614     // Check for both operands constant.
   5615     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
   5616       if (ConstantExpr::getICmp(Pred,
   5617                                 LHSC->getValue(),
   5618                                 RHSC->getValue())->isNullValue())
   5619         goto trivially_false;
   5620       else
   5621         goto trivially_true;
   5622     }
   5623     // Otherwise swap the operands to put the constant on the right.
   5624     std::swap(LHS, RHS);
   5625     Pred = ICmpInst::getSwappedPredicate(Pred);
   5626     Changed = true;
   5627   }
   5628 
   5629   // If we're comparing an addrec with a value which is loop-invariant in the
   5630   // addrec's loop, put the addrec on the left. Also make a dominance check,
   5631   // as both operands could be addrecs loop-invariant in each other's loop.
   5632   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
   5633     const Loop *L = AR->getLoop();
   5634     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
   5635       std::swap(LHS, RHS);
   5636       Pred = ICmpInst::getSwappedPredicate(Pred);
   5637       Changed = true;
   5638     }
   5639   }
   5640 
   5641   // If there's a constant operand, canonicalize comparisons with boundary
   5642   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
   5643   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
   5644     const APInt &RA = RC->getValue()->getValue();
   5645     switch (Pred) {
   5646     default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
   5647     case ICmpInst::ICMP_EQ:
   5648     case ICmpInst::ICMP_NE:
   5649       // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
   5650       if (!RA)
   5651         if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
   5652           if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
   5653             if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
   5654                 ME->getOperand(0)->isAllOnesValue()) {
   5655               RHS = AE->getOperand(1);
   5656               LHS = ME->getOperand(1);
   5657               Changed = true;
   5658             }
   5659       break;
   5660     case ICmpInst::ICMP_UGE:
   5661       if ((RA - 1).isMinValue()) {
   5662         Pred = ICmpInst::ICMP_NE;
   5663         RHS = getConstant(RA - 1);
   5664         Changed = true;
   5665         break;
   5666       }
   5667       if (RA.isMaxValue()) {
   5668         Pred = ICmpInst::ICMP_EQ;
   5669         Changed = true;
   5670         break;
   5671       }
   5672       if (RA.isMinValue()) goto trivially_true;
   5673 
   5674       Pred = ICmpInst::ICMP_UGT;
   5675       RHS = getConstant(RA - 1);
   5676       Changed = true;
   5677       break;
   5678     case ICmpInst::ICMP_ULE:
   5679       if ((RA + 1).isMaxValue()) {
   5680         Pred = ICmpInst::ICMP_NE;
   5681         RHS = getConstant(RA + 1);
   5682         Changed = true;
   5683         break;
   5684       }
   5685       if (RA.isMinValue()) {
   5686         Pred = ICmpInst::ICMP_EQ;
   5687         Changed = true;
   5688         break;
   5689       }
   5690       if (RA.isMaxValue()) goto trivially_true;
   5691 
   5692       Pred = ICmpInst::ICMP_ULT;
   5693       RHS = getConstant(RA + 1);
   5694       Changed = true;
   5695       break;
   5696     case ICmpInst::ICMP_SGE:
   5697       if ((RA - 1).isMinSignedValue()) {
   5698         Pred = ICmpInst::ICMP_NE;
   5699         RHS = getConstant(RA - 1);
   5700         Changed = true;
   5701         break;
   5702       }
   5703       if (RA.isMaxSignedValue()) {
   5704         Pred = ICmpInst::ICMP_EQ;
   5705         Changed = true;
   5706         break;
   5707       }
   5708       if (RA.isMinSignedValue()) goto trivially_true;
   5709 
   5710       Pred = ICmpInst::ICMP_SGT;
   5711       RHS = getConstant(RA - 1);
   5712       Changed = true;
   5713       break;
   5714     case ICmpInst::ICMP_SLE:
   5715       if ((RA + 1).isMaxSignedValue()) {
   5716         Pred = ICmpInst::ICMP_NE;
   5717         RHS = getConstant(RA + 1);
   5718         Changed = true;
   5719         break;
   5720       }
   5721       if (RA.isMinSignedValue()) {
   5722         Pred = ICmpInst::ICMP_EQ;
   5723         Changed = true;
   5724         break;
   5725       }
   5726       if (RA.isMaxSignedValue()) goto trivially_true;
   5727 
   5728       Pred = ICmpInst::ICMP_SLT;
   5729       RHS = getConstant(RA + 1);
   5730       Changed = true;
   5731       break;
   5732     case ICmpInst::ICMP_UGT:
   5733       if (RA.isMinValue()) {
   5734         Pred = ICmpInst::ICMP_NE;
   5735         Changed = true;
   5736         break;
   5737       }
   5738       if ((RA + 1).isMaxValue()) {
   5739         Pred = ICmpInst::ICMP_EQ;
   5740         RHS = getConstant(RA + 1);
   5741         Changed = true;
   5742         break;
   5743       }
   5744       if (RA.isMaxValue()) goto trivially_false;
   5745       break;
   5746     case ICmpInst::ICMP_ULT:
   5747       if (RA.isMaxValue()) {
   5748         Pred = ICmpInst::ICMP_NE;
   5749         Changed = true;
   5750         break;
   5751       }
   5752       if ((RA - 1).isMinValue()) {
   5753         Pred = ICmpInst::ICMP_EQ;
   5754         RHS = getConstant(RA - 1);
   5755         Changed = true;
   5756         break;
   5757       }
   5758       if (RA.isMinValue()) goto trivially_false;
   5759       break;
   5760     case ICmpInst::ICMP_SGT:
   5761       if (RA.isMinSignedValue()) {
   5762         Pred = ICmpInst::ICMP_NE;
   5763         Changed = true;
   5764         break;
   5765       }
   5766       if ((RA + 1).isMaxSignedValue()) {
   5767         Pred = ICmpInst::ICMP_EQ;
   5768         RHS = getConstant(RA + 1);
   5769         Changed = true;
   5770         break;
   5771       }
   5772       if (RA.isMaxSignedValue()) goto trivially_false;
   5773       break;
   5774     case ICmpInst::ICMP_SLT:
   5775       if (RA.isMaxSignedValue()) {
   5776         Pred = ICmpInst::ICMP_NE;
   5777         Changed = true;
   5778         break;
   5779       }
   5780       if ((RA - 1).isMinSignedValue()) {
   5781        Pred = ICmpInst::ICMP_EQ;
   5782        RHS = getConstant(RA - 1);
   5783         Changed = true;
   5784        break;
   5785       }
   5786       if (RA.isMinSignedValue()) goto trivially_false;
   5787       break;
   5788     }
   5789   }
   5790 
   5791   // Check for obvious equality.
   5792   if (HasSameValue(LHS, RHS)) {
   5793     if (ICmpInst::isTrueWhenEqual(Pred))
   5794       goto trivially_true;
   5795     if (ICmpInst::isFalseWhenEqual(Pred))
   5796       goto trivially_false;
   5797   }
   5798 
   5799   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
   5800   // adding or subtracting 1 from one of the operands.
   5801   switch (Pred) {
   5802   case ICmpInst::ICMP_SLE:
   5803     if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
   5804       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
   5805                        SCEV::FlagNSW);
   5806       Pred = ICmpInst::ICMP_SLT;
   5807       Changed = true;
   5808     } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
   5809       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
   5810                        SCEV::FlagNSW);
   5811       Pred = ICmpInst::ICMP_SLT;
   5812       Changed = true;
   5813     }
   5814     break;
   5815   case ICmpInst::ICMP_SGE:
   5816     if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
   5817       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
   5818                        SCEV::FlagNSW);
   5819       Pred = ICmpInst::ICMP_SGT;
   5820       Changed = true;
   5821     } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
   5822       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
   5823                        SCEV::FlagNSW);
   5824       Pred = ICmpInst::ICMP_SGT;
   5825       Changed = true;
   5826     }
   5827     break;
   5828   case ICmpInst::ICMP_ULE:
   5829     if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
   5830       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
   5831                        SCEV::FlagNUW);
   5832       Pred = ICmpInst::ICMP_ULT;
   5833       Changed = true;
   5834     } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
   5835       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
   5836                        SCEV::FlagNUW);
   5837       Pred = ICmpInst::ICMP_ULT;
   5838       Changed = true;
   5839     }
   5840     break;
   5841   case ICmpInst::ICMP_UGE:
   5842     if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
   5843       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
   5844                        SCEV::FlagNUW);
   5845       Pred = ICmpInst::ICMP_UGT;
   5846       Changed = true;
   5847     } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
   5848       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
   5849                        SCEV::FlagNUW);
   5850       Pred = ICmpInst::ICMP_UGT;
   5851       Changed = true;
   5852     }
   5853     break;
   5854   default:
   5855     break;
   5856   }
   5857 
   5858   // TODO: More simplifications are possible here.
   5859 
   5860   // Recursively simplify until we either hit a recursion limit or nothing
   5861   // changes.
   5862   if (Changed)
   5863     return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
   5864 
   5865   return Changed;
   5866 
   5867 trivially_true:
   5868   // Return 0 == 0.
   5869   LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
   5870   Pred = ICmpInst::ICMP_EQ;
   5871   return true;
   5872 
   5873 trivially_false:
   5874   // Return 0 != 0.
   5875   LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
   5876   Pred = ICmpInst::ICMP_NE;
   5877   return true;
   5878 }
   5879 
   5880 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
   5881   return getSignedRange(S).getSignedMax().isNegative();
   5882 }
   5883 
   5884 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
   5885   return getSignedRange(S).getSignedMin().isStrictlyPositive();
   5886 }
   5887 
   5888 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
   5889   return !getSignedRange(S).getSignedMin().isNegative();
   5890 }
   5891 
   5892 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
   5893   return !getSignedRange(S).getSignedMax().isStrictlyPositive();
   5894 }
   5895 
   5896 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
   5897   return isKnownNegative(S) || isKnownPositive(S);
   5898 }
   5899 
   5900 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
   5901                                        const SCEV *LHS, const SCEV *RHS) {
   5902   // Canonicalize the inputs first.
   5903   (void)SimplifyICmpOperands(Pred, LHS, RHS);
   5904 
   5905   // If LHS or RHS is an addrec, check to see if the condition is true in
   5906   // every iteration of the loop.
   5907   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
   5908     if (isLoopEntryGuardedByCond(
   5909           AR->getLoop(), Pred, AR->getStart(), RHS) &&
   5910         isLoopBackedgeGuardedByCond(
   5911           AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
   5912       return true;
   5913   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
   5914     if (isLoopEntryGuardedByCond(
   5915           AR->getLoop(), Pred, LHS, AR->getStart()) &&
   5916         isLoopBackedgeGuardedByCond(
   5917           AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
   5918       return true;
   5919 
   5920   // Otherwise see what can be done with known constant ranges.
   5921   return isKnownPredicateWithRanges(Pred, LHS, RHS);
   5922 }
   5923 
   5924 bool
   5925 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
   5926                                             const SCEV *LHS, const SCEV *RHS) {
   5927   if (HasSameValue(LHS, RHS))
   5928     return ICmpInst::isTrueWhenEqual(Pred);
   5929 
   5930   // This code is split out from isKnownPredicate because it is called from
   5931   // within isLoopEntryGuardedByCond.
   5932   switch (Pred) {
   5933   default:
   5934     llvm_unreachable("Unexpected ICmpInst::Predicate value!");
   5935   case ICmpInst::ICMP_SGT:
   5936     Pred = ICmpInst::ICMP_SLT;
   5937     std::swap(LHS, RHS);
   5938   case ICmpInst::ICMP_SLT: {
   5939     ConstantRange LHSRange = getSignedRange(LHS);
   5940     ConstantRange RHSRange = getSignedRange(RHS);
   5941     if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
   5942       return true;
   5943     if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
   5944       return false;
   5945     break;
   5946   }
   5947   case ICmpInst::ICMP_SGE:
   5948     Pred = ICmpInst::ICMP_SLE;
   5949     std::swap(LHS, RHS);
   5950   case ICmpInst::ICMP_SLE: {
   5951     ConstantRange LHSRange = getSignedRange(LHS);
   5952     ConstantRange RHSRange = getSignedRange(RHS);
   5953     if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
   5954       return true;
   5955     if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
   5956       return false;
   5957     break;
   5958   }
   5959   case ICmpInst::ICMP_UGT:
   5960     Pred = ICmpInst::ICMP_ULT;
   5961     std::swap(LHS, RHS);
   5962   case ICmpInst::ICMP_ULT: {
   5963     ConstantRange LHSRange = getUnsignedRange(LHS);
   5964     ConstantRange RHSRange = getUnsignedRange(RHS);
   5965     if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
   5966       return true;
   5967     if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
   5968       return false;
   5969     break;
   5970   }
   5971   case ICmpInst::ICMP_UGE:
   5972     Pred = ICmpInst::ICMP_ULE;
   5973     std::swap(LHS, RHS);
   5974   case ICmpInst::ICMP_ULE: {
   5975     ConstantRange LHSRange = getUnsignedRange(LHS);
   5976     ConstantRange RHSRange = getUnsignedRange(RHS);
   5977     if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
   5978       return true;
   5979     if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
   5980       return false;
   5981     break;
   5982   }
   5983   case ICmpInst::ICMP_NE: {
   5984     if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
   5985       return true;
   5986     if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
   5987       return true;
   5988 
   5989     const SCEV *Diff = getMinusSCEV(LHS, RHS);
   5990     if (isKnownNonZero(Diff))
   5991       return true;
   5992     break;
   5993   }
   5994   case ICmpInst::ICMP_EQ:
   5995     // The check at the top of the function catches the case where
   5996     // the values are known to be equal.
   5997     break;
   5998   }
   5999   return false;
   6000 }
   6001 
   6002 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
   6003 /// protected by a conditional between LHS and RHS.  This is used to
   6004 /// to eliminate casts.
   6005 bool
   6006 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
   6007                                              ICmpInst::Predicate Pred,
   6008                                              const SCEV *LHS, const SCEV *RHS) {
   6009   // Interpret a null as meaning no loop, where there is obviously no guard
   6010   // (interprocedural conditions notwithstanding).
   6011   if (!L) return true;
   6012 
   6013   BasicBlock *Latch = L->getLoopLatch();
   6014   if (!Latch)
   6015     return false;
   6016 
   6017   BranchInst *LoopContinuePredicate =
   6018     dyn_cast<BranchInst>(Latch->getTerminator());
   6019   if (!LoopContinuePredicate ||
   6020       LoopContinuePredicate->isUnconditional())
   6021     return false;
   6022 
   6023   return isImpliedCond(Pred, LHS, RHS,
   6024                        LoopContinuePredicate->getCondition(),
   6025                        LoopContinuePredicate->getSuccessor(0) != L->getHeader());
   6026 }
   6027 
   6028 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
   6029 /// by a conditional between LHS and RHS.  This is used to help avoid max
   6030 /// expressions in loop trip counts, and to eliminate casts.
   6031 bool
   6032 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
   6033                                           ICmpInst::Predicate Pred,
   6034                                           const SCEV *LHS, const SCEV *RHS) {
   6035   // Interpret a null as meaning no loop, where there is obviously no guard
   6036   // (interprocedural conditions notwithstanding).
   6037   if (!L) return false;
   6038 
   6039   // Starting at the loop predecessor, climb up the predecessor chain, as long
   6040   // as there are predecessors that can be found that have unique successors
   6041   // leading to the original header.
   6042   for (std::pair<BasicBlock *, BasicBlock *>
   6043          Pair(L->getLoopPredecessor(), L->getHeader());
   6044        Pair.first;
   6045        Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
   6046 
   6047     BranchInst *LoopEntryPredicate =
   6048       dyn_cast<BranchInst>(Pair.first->getTerminator());
   6049     if (!LoopEntryPredicate ||
   6050         LoopEntryPredicate->isUnconditional())
   6051       continue;
   6052 
   6053     if (isImpliedCond(Pred, LHS, RHS,
   6054                       LoopEntryPredicate->getCondition(),
   6055                       LoopEntryPredicate->getSuccessor(0) != Pair.second))
   6056       return true;
   6057   }
   6058 
   6059   return false;
   6060 }
   6061 
   6062 /// RAII wrapper to prevent recursive application of isImpliedCond.
   6063 /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
   6064 /// currently evaluating isImpliedCond.
   6065 struct MarkPendingLoopPredicate {
   6066   Value *Cond;
   6067   DenseSet<Value*> &LoopPreds;
   6068   bool Pending;
   6069 
   6070   MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
   6071     : Cond(C), LoopPreds(LP) {
   6072     Pending = !LoopPreds.insert(Cond).second;
   6073   }
   6074   ~MarkPendingLoopPredicate() {
   6075     if (!Pending)
   6076       LoopPreds.erase(Cond);
   6077   }
   6078 };
   6079 
   6080 /// isImpliedCond - Test whether the condition described by Pred, LHS,
   6081 /// and RHS is true whenever the given Cond value evaluates to true.
   6082 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
   6083                                     const SCEV *LHS, const SCEV *RHS,
   6084                                     Value *FoundCondValue,
   6085                                     bool Inverse) {
   6086   MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
   6087   if (Mark.Pending)
   6088     return false;
   6089 
   6090   // Recursively handle And and Or conditions.
   6091   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
   6092     if (BO->getOpcode() == Instruction::And) {
   6093       if (!Inverse)
   6094         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
   6095                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
   6096     } else if (BO->getOpcode() == Instruction::Or) {
   6097       if (Inverse)
   6098         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
   6099                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
   6100     }
   6101   }
   6102 
   6103   ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
   6104   if (!ICI) return false;
   6105 
   6106   // Bail if the ICmp's operands' types are wider than the needed type
   6107   // before attempting to call getSCEV on them. This avoids infinite
   6108   // recursion, since the analysis of widening casts can require loop
   6109   // exit condition information for overflow checking, which would
   6110   // lead back here.
   6111   if (getTypeSizeInBits(LHS->getType()) <
   6112       getTypeSizeInBits(ICI->getOperand(0)->getType()))
   6113     return false;
   6114 
   6115   // Now that we found a conditional branch that dominates the loop, check to
   6116   // see if it is the comparison we are looking for.
   6117   ICmpInst::Predicate FoundPred;
   6118   if (Inverse)
   6119     FoundPred = ICI->getInversePredicate();
   6120   else
   6121     FoundPred = ICI->getPredicate();
   6122 
   6123   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
   6124   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
   6125 
   6126   // Balance the types. The case where FoundLHS' type is wider than
   6127   // LHS' type is checked for above.
   6128   if (getTypeSizeInBits(LHS->getType()) >
   6129       getTypeSizeInBits(FoundLHS->getType())) {
   6130     if (CmpInst::isSigned(Pred)) {
   6131       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
   6132       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
   6133     } else {
   6134       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
   6135       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
   6136     }
   6137   }
   6138 
   6139   // Canonicalize the query to match the way instcombine will have
   6140   // canonicalized the comparison.
   6141   if (SimplifyICmpOperands(Pred, LHS, RHS))
   6142     if (LHS == RHS)
   6143       return CmpInst::isTrueWhenEqual(Pred);
   6144   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
   6145     if (FoundLHS == FoundRHS)
   6146       return CmpInst::isFalseWhenEqual(Pred);
   6147 
   6148   // Check to see if we can make the LHS or RHS match.
   6149   if (LHS == FoundRHS || RHS == FoundLHS) {
   6150     if (isa<SCEVConstant>(RHS)) {
   6151       std::swap(FoundLHS, FoundRHS);
   6152       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
   6153     } else {
   6154       std::swap(LHS, RHS);
   6155       Pred = ICmpInst::getSwappedPredicate(Pred);
   6156     }
   6157   }
   6158 
   6159   // Check whether the found predicate is the same as the desired predicate.
   6160   if (FoundPred == Pred)
   6161     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
   6162 
   6163   // Check whether swapping the found predicate makes it the same as the
   6164   // desired predicate.
   6165   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
   6166     if (isa<SCEVConstant>(RHS))
   6167       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
   6168     else
   6169       return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
   6170                                    RHS, LHS, FoundLHS, FoundRHS);
   6171   }
   6172 
   6173   // Check whether the actual condition is beyond sufficient.
   6174   if (FoundPred == ICmpInst::ICMP_EQ)
   6175     if (ICmpInst::isTrueWhenEqual(Pred))
   6176       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
   6177         return true;
   6178   if (Pred == ICmpInst::ICMP_NE)
   6179     if (!ICmpInst::isTrueWhenEqual(FoundPred))
   6180       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
   6181         return true;
   6182 
   6183   // Otherwise assume the worst.
   6184   return false;
   6185 }
   6186 
   6187 /// isImpliedCondOperands - Test whether the condition described by Pred,
   6188 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
   6189 /// and FoundRHS is true.
   6190 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
   6191                                             const SCEV *LHS, const SCEV *RHS,
   6192                                             const SCEV *FoundLHS,
   6193                                             const SCEV *FoundRHS) {
   6194   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
   6195                                      FoundLHS, FoundRHS) ||
   6196          // ~x < ~y --> x > y
   6197          isImpliedCondOperandsHelper(Pred, LHS, RHS,
   6198                                      getNotSCEV(FoundRHS),
   6199                                      getNotSCEV(FoundLHS));
   6200 }
   6201 
   6202 /// isImpliedCondOperandsHelper - Test whether the condition described by
   6203 /// Pred, LHS, and RHS is true whenever the condition described by Pred,
   6204 /// FoundLHS, and FoundRHS is true.
   6205 bool
   6206 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
   6207                                              const SCEV *LHS, const SCEV *RHS,
   6208                                              const SCEV *FoundLHS,
   6209                                              const SCEV *FoundRHS) {
   6210   switch (Pred) {
   6211   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
   6212   case ICmpInst::ICMP_EQ:
   6213   case ICmpInst::ICMP_NE:
   6214     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
   6215       return true;
   6216     break;
   6217   case ICmpInst::ICMP_SLT:
   6218   case ICmpInst::ICMP_SLE:
   6219     if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
   6220         isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
   6221       return true;
   6222     break;
   6223   case ICmpInst::ICMP_SGT:
   6224   case ICmpInst::ICMP_SGE:
   6225     if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
   6226         isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
   6227       return true;
   6228     break;
   6229   case ICmpInst::ICMP_ULT:
   6230   case ICmpInst::ICMP_ULE:
   6231     if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
   6232         isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
   6233       return true;
   6234     break;
   6235   case ICmpInst::ICMP_UGT:
   6236   case ICmpInst::ICMP_UGE:
   6237     if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
   6238         isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
   6239       return true;
   6240     break;
   6241   }
   6242 
   6243   return false;
   6244 }
   6245 
   6246 /// getBECount - Subtract the end and start values and divide by the step,
   6247 /// rounding up, to get the number of times the backedge is executed. Return
   6248 /// CouldNotCompute if an intermediate computation overflows.
   6249 const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
   6250                                         const SCEV *End,
   6251                                         const SCEV *Step,
   6252                                         bool NoWrap) {
   6253   assert(!isKnownNegative(Step) &&
   6254          "This code doesn't handle negative strides yet!");
   6255 
   6256   Type *Ty = Start->getType();
   6257 
   6258   // When Start == End, we have an exact BECount == 0. Short-circuit this case
   6259   // here because SCEV may not be able to determine that the unsigned division
   6260   // after rounding is zero.
   6261   if (Start == End)
   6262     return getConstant(Ty, 0);
   6263 
   6264   const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
   6265   const SCEV *Diff = getMinusSCEV(End, Start);
   6266   const SCEV *RoundUp = getAddExpr(Step, NegOne);
   6267 
   6268   // Add an adjustment to the difference between End and Start so that
   6269   // the division will effectively round up.
   6270   const SCEV *Add = getAddExpr(Diff, RoundUp);
   6271 
   6272   if (!NoWrap) {
   6273     // Check Add for unsigned overflow.
   6274     // TODO: More sophisticated things could be done here.
   6275     Type *WideTy = IntegerType::get(getContext(),
   6276                                           getTypeSizeInBits(Ty) + 1);
   6277     const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
   6278     const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
   6279     const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
   6280     if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
   6281       return getCouldNotCompute();
   6282   }
   6283 
   6284   return getUDivExpr(Add, Step);
   6285 }
   6286 
   6287 /// HowManyLessThans - Return the number of times a backedge containing the
   6288 /// specified less-than comparison will execute.  If not computable, return
   6289 /// CouldNotCompute.
   6290 ScalarEvolution::ExitLimit
   6291 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
   6292                                   const Loop *L, bool isSigned) {
   6293   // Only handle:  "ADDREC < LoopInvariant".
   6294   if (!isLoopInvariant(RHS, L)) return getCouldNotCompute();
   6295 
   6296   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
   6297   if (!AddRec || AddRec->getLoop() != L)
   6298     return getCouldNotCompute();
   6299 
   6300   // Check to see if we have a flag which makes analysis easy.
   6301   bool NoWrap = isSigned ?
   6302     AddRec->getNoWrapFlags((SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNW)) :
   6303     AddRec->getNoWrapFlags((SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNW));
   6304 
   6305   if (AddRec->isAffine()) {
   6306     unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
   6307     const SCEV *Step = AddRec->getStepRecurrence(*this);
   6308 
   6309     if (Step->isZero())
   6310       return getCouldNotCompute();
   6311     if (Step->isOne()) {
   6312       // With unit stride, the iteration never steps past the limit value.
   6313     } else if (isKnownPositive(Step)) {
   6314       // Test whether a positive iteration can step past the limit
   6315       // value and past the maximum value for its type in a single step.
   6316       // Note that it's not sufficient to check NoWrap here, because even
   6317       // though the value after a wrap is undefined, it's not undefined
   6318       // behavior, so if wrap does occur, the loop could either terminate or
   6319       // loop infinitely, but in either case, the loop is guaranteed to
   6320       // iterate at least until the iteration where the wrapping occurs.
   6321       const SCEV *One = getConstant(Step->getType(), 1);
   6322       if (isSigned) {
   6323         APInt Max = APInt::getSignedMaxValue(BitWidth);
   6324         if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
   6325               .slt(getSignedRange(RHS).getSignedMax()))
   6326           return getCouldNotCompute();
   6327       } else {
   6328         APInt Max = APInt::getMaxValue(BitWidth);
   6329         if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
   6330               .ult(getUnsignedRange(RHS).getUnsignedMax()))
   6331           return getCouldNotCompute();
   6332       }
   6333     } else
   6334       // TODO: Handle negative strides here and below.
   6335       return getCouldNotCompute();
   6336 
   6337     // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
   6338     // m.  So, we count the number of iterations in which {n,+,s} < m is true.
   6339     // Note that we cannot simply return max(m-n,0)/s because it's not safe to
   6340     // treat m-n as signed nor unsigned due to overflow possibility.
   6341 
   6342     // First, we get the value of the LHS in the first iteration: n
   6343     const SCEV *Start = AddRec->getOperand(0);
   6344 
   6345     // Determine the minimum constant start value.
   6346     const SCEV *MinStart = getConstant(isSigned ?
   6347       getSignedRange(Start).getSignedMin() :
   6348       getUnsignedRange(Start).getUnsignedMin());
   6349 
   6350     // If we know that the condition is true in order to enter the loop,
   6351     // then we know that it will run exactly (m-n)/s times. Otherwise, we
   6352     // only know that it will execute (max(m,n)-n)/s times. In both cases,
   6353     // the division must round up.
   6354     const SCEV *End = RHS;
   6355     if (!isLoopEntryGuardedByCond(L,
   6356                                   isSigned ? ICmpInst::ICMP_SLT :
   6357                                              ICmpInst::ICMP_ULT,
   6358                                   getMinusSCEV(Start, Step), RHS))
   6359       End = isSigned ? getSMaxExpr(RHS, Start)
   6360                      : getUMaxExpr(RHS, Start);
   6361 
   6362     // Determine the maximum constant end value.
   6363     const SCEV *MaxEnd = getConstant(isSigned ?
   6364       getSignedRange(End).getSignedMax() :
   6365       getUnsignedRange(End).getUnsignedMax());
   6366 
   6367     // If MaxEnd is within a step of the maximum integer value in its type,
   6368     // adjust it down to the minimum value which would produce the same effect.
   6369     // This allows the subsequent ceiling division of (N+(step-1))/step to
   6370     // compute the correct value.
   6371     const SCEV *StepMinusOne = getMinusSCEV(Step,
   6372                                             getConstant(Step->getType(), 1));
   6373     MaxEnd = isSigned ?
   6374       getSMinExpr(MaxEnd,
   6375                   getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
   6376                                StepMinusOne)) :
   6377       getUMinExpr(MaxEnd,
   6378                   getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
   6379                                StepMinusOne));
   6380 
   6381     // Finally, we subtract these two values and divide, rounding up, to get
   6382     // the number of times the backedge is executed.
   6383     const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
   6384 
   6385     // The maximum backedge count is similar, except using the minimum start
   6386     // value and the maximum end value.
   6387     // If we already have an exact constant BECount, use it instead.
   6388     const SCEV *MaxBECount = isa<SCEVConstant>(BECount) ? BECount
   6389       : getBECount(MinStart, MaxEnd, Step, NoWrap);
   6390 
   6391     // If the stride is nonconstant, and NoWrap == true, then
   6392     // getBECount(MinStart, MaxEnd) may not compute. This would result in an
   6393     // exact BECount and invalid MaxBECount, which should be avoided to catch
   6394     // more optimization opportunities.
   6395     if (isa<SCEVCouldNotCompute>(MaxBECount))
   6396       MaxBECount = BECount;
   6397 
   6398     return ExitLimit(BECount, MaxBECount);
   6399   }
   6400 
   6401   return getCouldNotCompute();
   6402 }
   6403 
   6404 /// getNumIterationsInRange - Return the number of iterations of this loop that
   6405 /// produce values in the specified constant range.  Another way of looking at
   6406 /// this is that it returns the first iteration number where the value is not in
   6407 /// the condition, thus computing the exit count. If the iteration count can't
   6408 /// be computed, an instance of SCEVCouldNotCompute is returned.
   6409 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
   6410                                                     ScalarEvolution &SE) const {
   6411   if (Range.isFullSet())  // Infinite loop.
   6412     return SE.getCouldNotCompute();
   6413 
   6414   // If the start is a non-zero constant, shift the range to simplify things.
   6415   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
   6416     if (!SC->getValue()->isZero()) {
   6417       SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
   6418       Operands[0] = SE.getConstant(SC->getType(), 0);
   6419       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
   6420                                              getNoWrapFlags(FlagNW));
   6421       if (const SCEVAddRecExpr *ShiftedAddRec =
   6422             dyn_cast<SCEVAddRecExpr>(Shifted))
   6423         return ShiftedAddRec->getNumIterationsInRange(
   6424                            Range.subtract(SC->getValue()->getValue()), SE);
   6425       // This is strange and shouldn't happen.
   6426       return SE.getCouldNotCompute();
   6427     }
   6428 
   6429   // The only time we can solve this is when we have all constant indices.
   6430   // Otherwise, we cannot determine the overflow conditions.
   6431   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
   6432     if (!isa<SCEVConstant>(getOperand(i)))
   6433       return SE.getCouldNotCompute();
   6434 
   6435 
   6436   // Okay at this point we know that all elements of the chrec are constants and
   6437   // that the start element is zero.
   6438 
   6439   // First check to see if the range contains zero.  If not, the first
   6440   // iteration exits.
   6441   unsigned BitWidth = SE.getTypeSizeInBits(getType());
   6442   if (!Range.contains(APInt(BitWidth, 0)))
   6443     return SE.getConstant(getType(), 0);
   6444 
   6445   if (isAffine()) {
   6446     // If this is an affine expression then we have this situation:
   6447     //   Solve {0,+,A} in Range  ===  Ax in Range
   6448 
   6449     // We know that zero is in the range.  If A is positive then we know that
   6450     // the upper value of the range must be the first possible exit value.
   6451     // If A is negative then the lower of the range is the last possible loop
   6452     // value.  Also note that we already checked for a full range.
   6453     APInt One(BitWidth,1);
   6454     APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
   6455     APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
   6456 
   6457     // The exit value should be (End+A)/A.
   6458     APInt ExitVal = (End + A).udiv(A);
   6459     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
   6460 
   6461     // Evaluate at the exit value.  If we really did fall out of the valid
   6462     // range, then we computed our trip count, otherwise wrap around or other
   6463     // things must have happened.
   6464     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
   6465     if (Range.contains(Val->getValue()))
   6466       return SE.getCouldNotCompute();  // Something strange happened
   6467 
   6468     // Ensure that the previous value is in the range.  This is a sanity check.
   6469     assert(Range.contains(
   6470            EvaluateConstantChrecAtConstant(this,
   6471            ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
   6472            "Linear scev computation is off in a bad way!");
   6473     return SE.getConstant(ExitValue);
   6474   } else if (isQuadratic()) {
   6475     // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
   6476     // quadratic equation to solve it.  To do this, we must frame our problem in
   6477     // terms of figuring out when zero is crossed, instead of when
   6478     // Range.getUpper() is crossed.
   6479     SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
   6480     NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
   6481     const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
   6482                                              // getNoWrapFlags(FlagNW)
   6483                                              FlagAnyWrap);
   6484 
   6485     // Next, solve the constructed addrec
   6486     std::pair<const SCEV *,const SCEV *> Roots =
   6487       SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
   6488     const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
   6489     const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
   6490     if (R1) {
   6491       // Pick the smallest positive root value.
   6492       if (ConstantInt *CB =
   6493           dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
   6494                          R1->getValue(), R2->getValue()))) {
   6495         if (CB->getZExtValue() == false)
   6496           std::swap(R1, R2);   // R1 is the minimum root now.
   6497 
   6498         // Make sure the root is not off by one.  The returned iteration should
   6499         // not be in the range, but the previous one should be.  When solving
   6500         // for "X*X < 5", for example, we should not return a root of 2.
   6501         ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
   6502                                                              R1->getValue(),
   6503                                                              SE);
   6504         if (Range.contains(R1Val->getValue())) {
   6505           // The next iteration must be out of the range...
   6506           ConstantInt *NextVal =
   6507                 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
   6508 
   6509           R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
   6510           if (!Range.contains(R1Val->getValue()))
   6511             return SE.getConstant(NextVal);
   6512           return SE.getCouldNotCompute();  // Something strange happened
   6513         }
   6514 
   6515         // If R1 was not in the range, then it is a good return value.  Make
   6516         // sure that R1-1 WAS in the range though, just in case.
   6517         ConstantInt *NextVal =
   6518                ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
   6519         R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
   6520         if (Range.contains(R1Val->getValue()))
   6521           return R1;
   6522         return SE.getCouldNotCompute();  // Something strange happened
   6523       }
   6524     }
   6525   }
   6526 
   6527   return SE.getCouldNotCompute();
   6528 }
   6529 
   6530 
   6531 
   6532 //===----------------------------------------------------------------------===//
   6533 //                   SCEVCallbackVH Class Implementation
   6534 //===----------------------------------------------------------------------===//
   6535 
   6536 void ScalarEvolution::SCEVCallbackVH::deleted() {
   6537   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
   6538   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
   6539     SE->ConstantEvolutionLoopExitValue.erase(PN);
   6540   SE->ValueExprMap.erase(getValPtr());
   6541   // this now dangles!
   6542 }
   6543 
   6544 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
   6545   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
   6546 
   6547   // Forget all the expressions associated with users of the old value,
   6548   // so that future queries will recompute the expressions using the new
   6549   // value.
   6550   Value *Old = getValPtr();
   6551   SmallVector<User *, 16> Worklist;
   6552   SmallPtrSet<User *, 8> Visited;
   6553   for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
   6554        UI != UE; ++UI)
   6555     Worklist.push_back(*UI);
   6556   while (!Worklist.empty()) {
   6557     User *U = Worklist.pop_back_val();
   6558     // Deleting the Old value will cause this to dangle. Postpone
   6559     // that until everything else is done.
   6560     if (U == Old)
   6561       continue;
   6562     if (!Visited.insert(U))
   6563       continue;
   6564     if (PHINode *PN = dyn_cast<PHINode>(U))
   6565       SE->ConstantEvolutionLoopExitValue.erase(PN);
   6566     SE->ValueExprMap.erase(U);
   6567     for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
   6568          UI != UE; ++UI)
   6569       Worklist.push_back(*UI);
   6570   }
   6571   // Delete the Old value.
   6572   if (PHINode *PN = dyn_cast<PHINode>(Old))
   6573     SE->ConstantEvolutionLoopExitValue.erase(PN);
   6574   SE->ValueExprMap.erase(Old);
   6575   // this now dangles!
   6576 }
   6577 
   6578 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
   6579   : CallbackVH(V), SE(se) {}
   6580 
   6581 //===----------------------------------------------------------------------===//
   6582 //                   ScalarEvolution Class Implementation
   6583 //===----------------------------------------------------------------------===//
   6584 
   6585 ScalarEvolution::ScalarEvolution()
   6586   : FunctionPass(ID), FirstUnknown(0) {
   6587   initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
   6588 }
   6589 
   6590 bool ScalarEvolution::runOnFunction(Function &F) {
   6591   this->F = &F;
   6592   LI = &getAnalysis<LoopInfo>();
   6593   TD = getAnalysisIfAvailable<TargetData>();
   6594   TLI = &getAnalysis<TargetLibraryInfo>();
   6595   DT = &getAnalysis<DominatorTree>();
   6596   return false;
   6597 }
   6598 
   6599 void ScalarEvolution::releaseMemory() {
   6600   // Iterate through all the SCEVUnknown instances and call their
   6601   // destructors, so that they release their references to their values.
   6602   for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
   6603     U->~SCEVUnknown();
   6604   FirstUnknown = 0;
   6605 
   6606   ValueExprMap.clear();
   6607 
   6608   // Free any extra memory created for ExitNotTakenInfo in the unlikely event
   6609   // that a loop had multiple computable exits.
   6610   for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
   6611          BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
   6612        I != E; ++I) {
   6613     I->second.clear();
   6614   }
   6615 
   6616   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
   6617 
   6618   BackedgeTakenCounts.clear();
   6619   ConstantEvolutionLoopExitValue.clear();
   6620   ValuesAtScopes.clear();
   6621   LoopDispositions.clear();
   6622   BlockDispositions.clear();
   6623   UnsignedRanges.clear();
   6624   SignedRanges.clear();
   6625   UniqueSCEVs.clear();
   6626   SCEVAllocator.Reset();
   6627 }
   6628 
   6629 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
   6630   AU.setPreservesAll();
   6631   AU.addRequiredTransitive<LoopInfo>();
   6632   AU.addRequiredTransitive<DominatorTree>();
   6633   AU.addRequired<TargetLibraryInfo>();
   6634 }
   6635 
   6636 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
   6637   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
   6638 }
   6639 
   6640 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
   6641                           const Loop *L) {
   6642   // Print all inner loops first
   6643   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
   6644     PrintLoopInfo(OS, SE, *I);
   6645 
   6646   OS << "Loop ";
   6647   WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
   6648   OS << ": ";
   6649 
   6650   SmallVector<BasicBlock *, 8> ExitBlocks;
   6651   L->getExitBlocks(ExitBlocks);
   6652   if (ExitBlocks.size() != 1)
   6653     OS << "<multiple exits> ";
   6654 
   6655   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
   6656     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
   6657   } else {
   6658     OS << "Unpredictable backedge-taken count. ";
   6659   }
   6660 
   6661   OS << "\n"
   6662         "Loop ";
   6663   WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
   6664   OS << ": ";
   6665 
   6666   if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
   6667     OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
   6668   } else {
   6669     OS << "Unpredictable max backedge-taken count. ";
   6670   }
   6671 
   6672   OS << "\n";
   6673 }
   6674 
   6675 void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
   6676   // ScalarEvolution's implementation of the print method is to print
   6677   // out SCEV values of all instructions that are interesting. Doing
   6678   // this potentially causes it to create new SCEV objects though,
   6679   // which technically conflicts with the const qualifier. This isn't
   6680   // observable from outside the class though, so casting away the
   6681   // const isn't dangerous.
   6682   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
   6683 
   6684   OS << "Classifying expressions for: ";
   6685   WriteAsOperand(OS, F, /*PrintType=*/false);
   6686   OS << "\n";
   6687   for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
   6688     if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
   6689       OS << *I << '\n';
   6690       OS << "  -->  ";
   6691       const SCEV *SV = SE.getSCEV(&*I);
   6692       SV->print(OS);
   6693 
   6694       const Loop *L = LI->getLoopFor((*I).getParent());
   6695 
   6696       const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
   6697       if (AtUse != SV) {
   6698         OS << "  -->  ";
   6699         AtUse->print(OS);
   6700       }
   6701 
   6702       if (L) {
   6703         OS << "\t\t" "Exits: ";
   6704         const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
   6705         if (!SE.isLoopInvariant(ExitValue, L)) {
   6706           OS << "<<Unknown>>";
   6707         } else {
   6708           OS << *ExitValue;
   6709         }
   6710       }
   6711 
   6712       OS << "\n";
   6713     }
   6714 
   6715   OS << "Determining loop execution counts for: ";
   6716   WriteAsOperand(OS, F, /*PrintType=*/false);
   6717   OS << "\n";
   6718   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
   6719     PrintLoopInfo(OS, &SE, *I);
   6720 }
   6721 
   6722 ScalarEvolution::LoopDisposition
   6723 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
   6724   std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S];
   6725   std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair =
   6726     Values.insert(std::make_pair(L, LoopVariant));
   6727   if (!Pair.second)
   6728     return Pair.first->second;
   6729 
   6730   LoopDisposition D = computeLoopDisposition(S, L);
   6731   return LoopDispositions[S][L] = D;
   6732 }
   6733 
   6734 ScalarEvolution::LoopDisposition
   6735 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
   6736   switch (S->getSCEVType()) {
   6737   case scConstant:
   6738     return LoopInvariant;
   6739   case scTruncate:
   6740   case scZeroExtend:
   6741   case scSignExtend:
   6742     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
   6743   case scAddRecExpr: {
   6744     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
   6745 
   6746     // If L is the addrec's loop, it's computable.
   6747     if (AR->getLoop() == L)
   6748       return LoopComputable;
   6749 
   6750     // Add recurrences are never invariant in the function-body (null loop).
   6751     if (!L)
   6752       return LoopVariant;
   6753 
   6754     // This recurrence is variant w.r.t. L if L contains AR's loop.
   6755     if (L->contains(AR->getLoop()))
   6756       return LoopVariant;
   6757 
   6758     // This recurrence is invariant w.r.t. L if AR's loop contains L.
   6759     if (AR->getLoop()->contains(L))
   6760       return LoopInvariant;
   6761 
   6762     // This recurrence is variant w.r.t. L if any of its operands
   6763     // are variant.
   6764     for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
   6765          I != E; ++I)
   6766       if (!isLoopInvariant(*I, L))
   6767         return LoopVariant;
   6768 
   6769     // Otherwise it's loop-invariant.
   6770     return LoopInvariant;
   6771   }
   6772   case scAddExpr:
   6773   case scMulExpr:
   6774   case scUMaxExpr:
   6775   case scSMaxExpr: {
   6776     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
   6777     bool HasVarying = false;
   6778     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
   6779          I != E; ++I) {
   6780       LoopDisposition D = getLoopDisposition(*I, L);
   6781       if (D == LoopVariant)
   6782         return LoopVariant;
   6783       if (D == LoopComputable)
   6784         HasVarying = true;
   6785     }
   6786     return HasVarying ? LoopComputable : LoopInvariant;
   6787   }
   6788   case scUDivExpr: {
   6789     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
   6790     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
   6791     if (LD == LoopVariant)
   6792       return LoopVariant;
   6793     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
   6794     if (RD == LoopVariant)
   6795       return LoopVariant;
   6796     return (LD == LoopInvariant && RD == LoopInvariant) ?
   6797            LoopInvariant : LoopComputable;
   6798   }
   6799   case scUnknown:
   6800     // All non-instruction values are loop invariant.  All instructions are loop
   6801     // invariant if they are not contained in the specified loop.
   6802     // Instructions are never considered invariant in the function body
   6803     // (null loop) because they are defined within the "loop".
   6804     if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
   6805       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
   6806     return LoopInvariant;
   6807   case scCouldNotCompute:
   6808     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
   6809   default: llvm_unreachable("Unknown SCEV kind!");
   6810   }
   6811 }
   6812 
   6813 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
   6814   return getLoopDisposition(S, L) == LoopInvariant;
   6815 }
   6816 
   6817 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
   6818   return getLoopDisposition(S, L) == LoopComputable;
   6819 }
   6820 
   6821 ScalarEvolution::BlockDisposition
   6822 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
   6823   std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S];
   6824   std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool>
   6825     Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock));
   6826   if (!Pair.second)
   6827     return Pair.first->second;
   6828 
   6829   BlockDisposition D = computeBlockDisposition(S, BB);
   6830   return BlockDispositions[S][BB] = D;
   6831 }
   6832 
   6833 ScalarEvolution::BlockDisposition
   6834 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
   6835   switch (S->getSCEVType()) {
   6836   case scConstant:
   6837     return ProperlyDominatesBlock;
   6838   case scTruncate:
   6839   case scZeroExtend:
   6840   case scSignExtend:
   6841     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
   6842   case scAddRecExpr: {
   6843     // This uses a "dominates" query instead of "properly dominates" query
   6844     // to test for proper dominance too, because the instruction which
   6845     // produces the addrec's value is a PHI, and a PHI effectively properly
   6846     // dominates its entire containing block.
   6847     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
   6848     if (!DT->dominates(AR->getLoop()->getHeader(), BB))
   6849       return DoesNotDominateBlock;
   6850   }
   6851   // FALL THROUGH into SCEVNAryExpr handling.
   6852   case scAddExpr:
   6853   case scMulExpr:
   6854   case scUMaxExpr:
   6855   case scSMaxExpr: {
   6856     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
   6857     bool Proper = true;
   6858     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
   6859          I != E; ++I) {
   6860       BlockDisposition D = getBlockDisposition(*I, BB);
   6861       if (D == DoesNotDominateBlock)
   6862         return DoesNotDominateBlock;
   6863       if (D == DominatesBlock)
   6864         Proper = false;
   6865     }
   6866     return Proper ? ProperlyDominatesBlock : DominatesBlock;
   6867   }
   6868   case scUDivExpr: {
   6869     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
   6870     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
   6871     BlockDisposition LD = getBlockDisposition(LHS, BB);
   6872     if (LD == DoesNotDominateBlock)
   6873       return DoesNotDominateBlock;
   6874     BlockDisposition RD = getBlockDisposition(RHS, BB);
   6875     if (RD == DoesNotDominateBlock)
   6876       return DoesNotDominateBlock;
   6877     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
   6878       ProperlyDominatesBlock : DominatesBlock;
   6879   }
   6880   case scUnknown:
   6881     if (Instruction *I =
   6882           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
   6883       if (I->getParent() == BB)
   6884         return DominatesBlock;
   6885       if (DT->properlyDominates(I->getParent(), BB))
   6886         return ProperlyDominatesBlock;
   6887       return DoesNotDominateBlock;
   6888     }
   6889     return ProperlyDominatesBlock;
   6890   case scCouldNotCompute:
   6891     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
   6892   default:
   6893     llvm_unreachable("Unknown SCEV kind!");
   6894   }
   6895 }
   6896 
   6897 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
   6898   return getBlockDisposition(S, BB) >= DominatesBlock;
   6899 }
   6900 
   6901 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
   6902   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
   6903 }
   6904 
   6905 namespace {
   6906 // Search for a SCEV expression node within an expression tree.
   6907 // Implements SCEVTraversal::Visitor.
   6908 struct SCEVSearch {
   6909   const SCEV *Node;
   6910   bool IsFound;
   6911 
   6912   SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
   6913 
   6914   bool follow(const SCEV *S) {
   6915     IsFound |= (S == Node);
   6916     return !IsFound;
   6917   }
   6918   bool isDone() const { return IsFound; }
   6919 };
   6920 }
   6921 
   6922 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
   6923   SCEVSearch Search(Op);
   6924   visitAll(S, Search);
   6925   return Search.IsFound;
   6926 }
   6927 
   6928 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
   6929   ValuesAtScopes.erase(S);
   6930   LoopDispositions.erase(S);
   6931   BlockDispositions.erase(S);
   6932   UnsignedRanges.erase(S);
   6933   SignedRanges.erase(S);
   6934 }
   6935