Home | History | Annotate | Download | only in Analysis
      1 //===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // The ScalarEvolution class is an LLVM pass which can be used to analyze and
     11 // categorize scalar expressions in loops.  It specializes in recognizing
     12 // general induction variables, representing them with the abstract and opaque
     13 // SCEV class.  Given this analysis, trip counts of loops and other important
     14 // properties can be obtained.
     15 //
     16 // This analysis is primarily useful for induction variable substitution and
     17 // strength reduction.
     18 //
     19 //===----------------------------------------------------------------------===//
     20 
     21 #ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H
     22 #define LLVM_ANALYSIS_SCALAREVOLUTION_H
     23 
     24 #include "llvm/Pass.h"
     25 #include "llvm/Instructions.h"
     26 #include "llvm/Function.h"
     27 #include "llvm/Operator.h"
     28 #include "llvm/Support/DataTypes.h"
     29 #include "llvm/Support/ValueHandle.h"
     30 #include "llvm/Support/Allocator.h"
     31 #include "llvm/Support/ConstantRange.h"
     32 #include "llvm/ADT/FoldingSet.h"
     33 #include "llvm/ADT/DenseSet.h"
     34 #include <map>
     35 
     36 namespace llvm {
     37   class APInt;
     38   class Constant;
     39   class ConstantInt;
     40   class DominatorTree;
     41   class Type;
     42   class ScalarEvolution;
     43   class TargetData;
     44   class TargetLibraryInfo;
     45   class LLVMContext;
     46   class Loop;
     47   class LoopInfo;
     48   class Operator;
     49   class SCEVUnknown;
     50   class SCEV;
     51   template<> struct FoldingSetTrait<SCEV>;
     52 
     53   /// SCEV - This class represents an analyzed expression in the program.  These
     54   /// are opaque objects that the client is not allowed to do much with
     55   /// directly.
     56   ///
     57   class SCEV : public FoldingSetNode {
     58     friend struct FoldingSetTrait<SCEV>;
     59 
     60     /// FastID - A reference to an Interned FoldingSetNodeID for this node.
     61     /// The ScalarEvolution's BumpPtrAllocator holds the data.
     62     FoldingSetNodeIDRef FastID;
     63 
     64     // The SCEV baseclass this node corresponds to
     65     const unsigned short SCEVType;
     66 
     67   protected:
     68     /// SubclassData - This field is initialized to zero and may be used in
     69     /// subclasses to store miscellaneous information.
     70     unsigned short SubclassData;
     71 
     72   private:
     73     SCEV(const SCEV &);            // DO NOT IMPLEMENT
     74     void operator=(const SCEV &);  // DO NOT IMPLEMENT
     75 
     76   public:
     77     /// NoWrapFlags are bitfield indices into SubclassData.
     78     ///
     79     /// Add and Mul expressions may have no-unsigned-wrap <NUW> or
     80     /// no-signed-wrap <NSW> properties, which are derived from the IR
     81     /// operator. NSW is a misnomer that we use to mean no signed overflow or
     82     /// underflow.
     83     ///
     84     /// AddRec expression may have a no-self-wraparound <NW> property if the
     85     /// result can never reach the start value. This property is independent of
     86     /// the actual start value and step direction. Self-wraparound is defined
     87     /// purely in terms of the recurrence's loop, step size, and
     88     /// bitwidth. Formally, a recurrence with no self-wraparound satisfies:
     89     /// abs(step) * max-iteration(loop) <= unsigned-max(bitwidth).
     90     ///
     91     /// Note that NUW and NSW are also valid properties of a recurrence, and
     92     /// either implies NW. For convenience, NW will be set for a recurrence
     93     /// whenever either NUW or NSW are set.
     94     enum NoWrapFlags { FlagAnyWrap = 0,          // No guarantee.
     95                        FlagNW      = (1 << 0),   // No self-wrap.
     96                        FlagNUW     = (1 << 1),   // No unsigned wrap.
     97                        FlagNSW     = (1 << 2),   // No signed wrap.
     98                        NoWrapMask  = (1 << 3) -1 };
     99 
    100     explicit SCEV(const FoldingSetNodeIDRef ID, unsigned SCEVTy) :
    101       FastID(ID), SCEVType(SCEVTy), SubclassData(0) {}
    102 
    103     unsigned getSCEVType() const { return SCEVType; }
    104 
    105     /// getType - Return the LLVM type of this SCEV expression.
    106     ///
    107     Type *getType() const;
    108 
    109     /// isZero - Return true if the expression is a constant zero.
    110     ///
    111     bool isZero() const;
    112 
    113     /// isOne - Return true if the expression is a constant one.
    114     ///
    115     bool isOne() const;
    116 
    117     /// isAllOnesValue - Return true if the expression is a constant
    118     /// all-ones value.
    119     ///
    120     bool isAllOnesValue() const;
    121 
    122     /// isNonConstantNegative - Return true if the specified scev is negated,
    123     /// but not a constant.
    124     bool isNonConstantNegative() const;
    125 
    126     /// print - Print out the internal representation of this scalar to the
    127     /// specified stream.  This should really only be used for debugging
    128     /// purposes.
    129     void print(raw_ostream &OS) const;
    130 
    131     /// dump - This method is used for debugging.
    132     ///
    133     void dump() const;
    134   };
    135 
    136   // Specialize FoldingSetTrait for SCEV to avoid needing to compute
    137   // temporary FoldingSetNodeID values.
    138   template<> struct FoldingSetTrait<SCEV> : DefaultFoldingSetTrait<SCEV> {
    139     static void Profile(const SCEV &X, FoldingSetNodeID& ID) {
    140       ID = X.FastID;
    141     }
    142     static bool Equals(const SCEV &X, const FoldingSetNodeID &ID,
    143                        unsigned IDHash, FoldingSetNodeID &TempID) {
    144       return ID == X.FastID;
    145     }
    146     static unsigned ComputeHash(const SCEV &X, FoldingSetNodeID &TempID) {
    147       return X.FastID.ComputeHash();
    148     }
    149   };
    150 
    151   inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) {
    152     S.print(OS);
    153     return OS;
    154   }
    155 
    156   /// SCEVCouldNotCompute - An object of this class is returned by queries that
    157   /// could not be answered.  For example, if you ask for the number of
    158   /// iterations of a linked-list traversal loop, you will get one of these.
    159   /// None of the standard SCEV operations are valid on this class, it is just a
    160   /// marker.
    161   struct SCEVCouldNotCompute : public SCEV {
    162     SCEVCouldNotCompute();
    163 
    164     /// Methods for support type inquiry through isa, cast, and dyn_cast:
    165     static inline bool classof(const SCEVCouldNotCompute *S) { return true; }
    166     static bool classof(const SCEV *S);
    167   };
    168 
    169   /// ScalarEvolution - This class is the main scalar evolution driver.  Because
    170   /// client code (intentionally) can't do much with the SCEV objects directly,
    171   /// they must ask this class for services.
    172   ///
    173   class ScalarEvolution : public FunctionPass {
    174   public:
    175     /// LoopDisposition - An enum describing the relationship between a
    176     /// SCEV and a loop.
    177     enum LoopDisposition {
    178       LoopVariant,    ///< The SCEV is loop-variant (unknown).
    179       LoopInvariant,  ///< The SCEV is loop-invariant.
    180       LoopComputable  ///< The SCEV varies predictably with the loop.
    181     };
    182 
    183     /// BlockDisposition - An enum describing the relationship between a
    184     /// SCEV and a basic block.
    185     enum BlockDisposition {
    186       DoesNotDominateBlock,  ///< The SCEV does not dominate the block.
    187       DominatesBlock,        ///< The SCEV dominates the block.
    188       ProperlyDominatesBlock ///< The SCEV properly dominates the block.
    189     };
    190 
    191     /// Convenient NoWrapFlags manipulation that hides enum casts and is
    192     /// visible in the ScalarEvolution name space.
    193     static SCEV::NoWrapFlags maskFlags(SCEV::NoWrapFlags Flags, int Mask) {
    194       return (SCEV::NoWrapFlags)(Flags & Mask);
    195     }
    196     static SCEV::NoWrapFlags setFlags(SCEV::NoWrapFlags Flags,
    197                                       SCEV::NoWrapFlags OnFlags) {
    198       return (SCEV::NoWrapFlags)(Flags | OnFlags);
    199     }
    200     static SCEV::NoWrapFlags clearFlags(SCEV::NoWrapFlags Flags,
    201                                         SCEV::NoWrapFlags OffFlags) {
    202       return (SCEV::NoWrapFlags)(Flags & ~OffFlags);
    203     }
    204 
    205   private:
    206     /// SCEVCallbackVH - A CallbackVH to arrange for ScalarEvolution to be
    207     /// notified whenever a Value is deleted.
    208     class SCEVCallbackVH : public CallbackVH {
    209       ScalarEvolution *SE;
    210       virtual void deleted();
    211       virtual void allUsesReplacedWith(Value *New);
    212     public:
    213       SCEVCallbackVH(Value *V, ScalarEvolution *SE = 0);
    214     };
    215 
    216     friend class SCEVCallbackVH;
    217     friend class SCEVExpander;
    218     friend class SCEVUnknown;
    219 
    220     /// F - The function we are analyzing.
    221     ///
    222     Function *F;
    223 
    224     /// LI - The loop information for the function we are currently analyzing.
    225     ///
    226     LoopInfo *LI;
    227 
    228     /// TD - The target data information for the target we are targeting.
    229     ///
    230     TargetData *TD;
    231 
    232     /// TLI - The target library information for the target we are targeting.
    233     ///
    234     TargetLibraryInfo *TLI;
    235 
    236     /// DT - The dominator tree.
    237     ///
    238     DominatorTree *DT;
    239 
    240     /// CouldNotCompute - This SCEV is used to represent unknown trip
    241     /// counts and things.
    242     SCEVCouldNotCompute CouldNotCompute;
    243 
    244     /// ValueExprMapType - The typedef for ValueExprMap.
    245     ///
    246     typedef DenseMap<SCEVCallbackVH, const SCEV *, DenseMapInfo<Value *> >
    247       ValueExprMapType;
    248 
    249     /// ValueExprMap - This is a cache of the values we have analyzed so far.
    250     ///
    251     ValueExprMapType ValueExprMap;
    252 
    253     /// Mark predicate values currently being processed by isImpliedCond.
    254     DenseSet<Value*> PendingLoopPredicates;
    255 
    256     /// ExitLimit - Information about the number of loop iterations for
    257     /// which a loop exit's branch condition evaluates to the not-taken path.
    258     /// This is a temporary pair of exact and max expressions that are
    259     /// eventually summarized in ExitNotTakenInfo and BackedgeTakenInfo.
    260     struct ExitLimit {
    261       const SCEV *Exact;
    262       const SCEV *Max;
    263 
    264       /*implicit*/ ExitLimit(const SCEV *E) : Exact(E), Max(E) {}
    265 
    266       ExitLimit(const SCEV *E, const SCEV *M) : Exact(E), Max(M) {}
    267 
    268       /// hasAnyInfo - Test whether this ExitLimit contains any computed
    269       /// information, or whether it's all SCEVCouldNotCompute values.
    270       bool hasAnyInfo() const {
    271         return !isa<SCEVCouldNotCompute>(Exact) ||
    272           !isa<SCEVCouldNotCompute>(Max);
    273       }
    274     };
    275 
    276     /// ExitNotTakenInfo - Information about the number of times a particular
    277     /// loop exit may be reached before exiting the loop.
    278     struct ExitNotTakenInfo {
    279       AssertingVH<BasicBlock> ExitingBlock;
    280       const SCEV *ExactNotTaken;
    281       PointerIntPair<ExitNotTakenInfo*, 1> NextExit;
    282 
    283       ExitNotTakenInfo() : ExitingBlock(0), ExactNotTaken(0) {}
    284 
    285       /// isCompleteList - Return true if all loop exits are computable.
    286       bool isCompleteList() const {
    287         return NextExit.getInt() == 0;
    288       }
    289 
    290       void setIncomplete() { NextExit.setInt(1); }
    291 
    292       /// getNextExit - Return a pointer to the next exit's not-taken info.
    293       ExitNotTakenInfo *getNextExit() const {
    294         return NextExit.getPointer();
    295       }
    296 
    297       void setNextExit(ExitNotTakenInfo *ENT) { NextExit.setPointer(ENT); }
    298     };
    299 
    300     /// BackedgeTakenInfo - Information about the backedge-taken count
    301     /// of a loop. This currently includes an exact count and a maximum count.
    302     ///
    303     class BackedgeTakenInfo {
    304       /// ExitNotTaken - A list of computable exits and their not-taken counts.
    305       /// Loops almost never have more than one computable exit.
    306       ExitNotTakenInfo ExitNotTaken;
    307 
    308       /// Max - An expression indicating the least maximum backedge-taken
    309       /// count of the loop that is known, or a SCEVCouldNotCompute.
    310       const SCEV *Max;
    311 
    312     public:
    313       BackedgeTakenInfo() : Max(0) {}
    314 
    315       /// Initialize BackedgeTakenInfo from a list of exact exit counts.
    316       BackedgeTakenInfo(
    317         SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
    318         bool Complete, const SCEV *MaxCount);
    319 
    320       /// hasAnyInfo - Test whether this BackedgeTakenInfo contains any
    321       /// computed information, or whether it's all SCEVCouldNotCompute
    322       /// values.
    323       bool hasAnyInfo() const {
    324         return ExitNotTaken.ExitingBlock || !isa<SCEVCouldNotCompute>(Max);
    325       }
    326 
    327       /// getExact - Return an expression indicating the exact backedge-taken
    328       /// count of the loop if it is known, or SCEVCouldNotCompute
    329       /// otherwise. This is the number of times the loop header can be
    330       /// guaranteed to execute, minus one.
    331       const SCEV *getExact(ScalarEvolution *SE) const;
    332 
    333       /// getExact - Return the number of times this loop exit may fall through
    334       /// to the back edge, or SCEVCouldNotCompute. The loop is guaranteed not
    335       /// to exit via this block before this number of iterations, but may exit
    336       /// via another block.
    337       const SCEV *getExact(BasicBlock *ExitingBlock, ScalarEvolution *SE) const;
    338 
    339       /// getMax - Get the max backedge taken count for the loop.
    340       const SCEV *getMax(ScalarEvolution *SE) const;
    341 
    342       /// clear - Invalidate this result and free associated memory.
    343       void clear();
    344     };
    345 
    346     /// BackedgeTakenCounts - Cache the backedge-taken count of the loops for
    347     /// this function as they are computed.
    348     DenseMap<const Loop*, BackedgeTakenInfo> BackedgeTakenCounts;
    349 
    350     /// ConstantEvolutionLoopExitValue - This map contains entries for all of
    351     /// the PHI instructions that we attempt to compute constant evolutions for.
    352     /// This allows us to avoid potentially expensive recomputation of these
    353     /// properties.  An instruction maps to null if we are unable to compute its
    354     /// exit value.
    355     DenseMap<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
    356 
    357     /// ValuesAtScopes - This map contains entries for all the expressions
    358     /// that we attempt to compute getSCEVAtScope information for, which can
    359     /// be expensive in extreme cases.
    360     DenseMap<const SCEV *,
    361              std::map<const Loop *, const SCEV *> > ValuesAtScopes;
    362 
    363     /// LoopDispositions - Memoized computeLoopDisposition results.
    364     DenseMap<const SCEV *,
    365              std::map<const Loop *, LoopDisposition> > LoopDispositions;
    366 
    367     /// computeLoopDisposition - Compute a LoopDisposition value.
    368     LoopDisposition computeLoopDisposition(const SCEV *S, const Loop *L);
    369 
    370     /// BlockDispositions - Memoized computeBlockDisposition results.
    371     DenseMap<const SCEV *,
    372              std::map<const BasicBlock *, BlockDisposition> > BlockDispositions;
    373 
    374     /// computeBlockDisposition - Compute a BlockDisposition value.
    375     BlockDisposition computeBlockDisposition(const SCEV *S, const BasicBlock *BB);
    376 
    377     /// UnsignedRanges - Memoized results from getUnsignedRange
    378     DenseMap<const SCEV *, ConstantRange> UnsignedRanges;
    379 
    380     /// SignedRanges - Memoized results from getSignedRange
    381     DenseMap<const SCEV *, ConstantRange> SignedRanges;
    382 
    383     /// setUnsignedRange - Set the memoized unsigned range for the given SCEV.
    384     const ConstantRange &setUnsignedRange(const SCEV *S,
    385                                           const ConstantRange &CR) {
    386       std::pair<DenseMap<const SCEV *, ConstantRange>::iterator, bool> Pair =
    387         UnsignedRanges.insert(std::make_pair(S, CR));
    388       if (!Pair.second)
    389         Pair.first->second = CR;
    390       return Pair.first->second;
    391     }
    392 
    393     /// setUnsignedRange - Set the memoized signed range for the given SCEV.
    394     const ConstantRange &setSignedRange(const SCEV *S,
    395                                         const ConstantRange &CR) {
    396       std::pair<DenseMap<const SCEV *, ConstantRange>::iterator, bool> Pair =
    397         SignedRanges.insert(std::make_pair(S, CR));
    398       if (!Pair.second)
    399         Pair.first->second = CR;
    400       return Pair.first->second;
    401     }
    402 
    403     /// createSCEV - We know that there is no SCEV for the specified value.
    404     /// Analyze the expression.
    405     const SCEV *createSCEV(Value *V);
    406 
    407     /// createNodeForPHI - Provide the special handling we need to analyze PHI
    408     /// SCEVs.
    409     const SCEV *createNodeForPHI(PHINode *PN);
    410 
    411     /// createNodeForGEP - Provide the special handling we need to analyze GEP
    412     /// SCEVs.
    413     const SCEV *createNodeForGEP(GEPOperator *GEP);
    414 
    415     /// computeSCEVAtScope - Implementation code for getSCEVAtScope; called
    416     /// at most once for each SCEV+Loop pair.
    417     ///
    418     const SCEV *computeSCEVAtScope(const SCEV *S, const Loop *L);
    419 
    420     /// ForgetSymbolicValue - This looks up computed SCEV values for all
    421     /// instructions that depend on the given instruction and removes them from
    422     /// the ValueExprMap map if they reference SymName. This is used during PHI
    423     /// resolution.
    424     void ForgetSymbolicName(Instruction *I, const SCEV *SymName);
    425 
    426     /// getBECount - Subtract the end and start values and divide by the step,
    427     /// rounding up, to get the number of times the backedge is executed. Return
    428     /// CouldNotCompute if an intermediate computation overflows.
    429     const SCEV *getBECount(const SCEV *Start,
    430                            const SCEV *End,
    431                            const SCEV *Step,
    432                            bool NoWrap);
    433 
    434     /// getBackedgeTakenInfo - Return the BackedgeTakenInfo for the given
    435     /// loop, lazily computing new values if the loop hasn't been analyzed
    436     /// yet.
    437     const BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L);
    438 
    439     /// ComputeBackedgeTakenCount - Compute the number of times the specified
    440     /// loop will iterate.
    441     BackedgeTakenInfo ComputeBackedgeTakenCount(const Loop *L);
    442 
    443     /// ComputeExitLimit - Compute the number of times the backedge of the
    444     /// specified loop will execute if it exits via the specified block.
    445     ExitLimit ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock);
    446 
    447     /// ComputeExitLimitFromCond - Compute the number of times the backedge of
    448     /// the specified loop will execute if its exit condition were a conditional
    449     /// branch of ExitCond, TBB, and FBB.
    450     ExitLimit ComputeExitLimitFromCond(const Loop *L,
    451                                        Value *ExitCond,
    452                                        BasicBlock *TBB,
    453                                        BasicBlock *FBB);
    454 
    455     /// ComputeExitLimitFromICmp - Compute the number of times the backedge of
    456     /// the specified loop will execute if its exit condition were a conditional
    457     /// branch of the ICmpInst ExitCond, TBB, and FBB.
    458     ExitLimit ComputeExitLimitFromICmp(const Loop *L,
    459                                        ICmpInst *ExitCond,
    460                                        BasicBlock *TBB,
    461                                        BasicBlock *FBB);
    462 
    463     /// ComputeLoadConstantCompareExitLimit - Given an exit condition
    464     /// of 'icmp op load X, cst', try to see if we can compute the
    465     /// backedge-taken count.
    466     ExitLimit ComputeLoadConstantCompareExitLimit(LoadInst *LI,
    467                                                   Constant *RHS,
    468                                                   const Loop *L,
    469                                                   ICmpInst::Predicate p);
    470 
    471     /// ComputeExitCountExhaustively - If the loop is known to execute a
    472     /// constant number of times (the condition evolves only from constants),
    473     /// try to evaluate a few iterations of the loop until we get the exit
    474     /// condition gets a value of ExitWhen (true or false).  If we cannot
    475     /// evaluate the exit count of the loop, return CouldNotCompute.
    476     const SCEV *ComputeExitCountExhaustively(const Loop *L,
    477                                              Value *Cond,
    478                                              bool ExitWhen);
    479 
    480     /// HowFarToZero - Return the number of times an exit condition comparing
    481     /// the specified value to zero will execute.  If not computable, return
    482     /// CouldNotCompute.
    483     ExitLimit HowFarToZero(const SCEV *V, const Loop *L);
    484 
    485     /// HowFarToNonZero - Return the number of times an exit condition checking
    486     /// the specified value for nonzero will execute.  If not computable, return
    487     /// CouldNotCompute.
    488     ExitLimit HowFarToNonZero(const SCEV *V, const Loop *L);
    489 
    490     /// HowManyLessThans - Return the number of times an exit condition
    491     /// containing the specified less-than comparison will execute.  If not
    492     /// computable, return CouldNotCompute. isSigned specifies whether the
    493     /// less-than is signed.
    494     ExitLimit HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
    495                                const Loop *L, bool isSigned);
    496 
    497     /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
    498     /// (which may not be an immediate predecessor) which has exactly one
    499     /// successor from which BB is reachable, or null if no such block is
    500     /// found.
    501     std::pair<BasicBlock *, BasicBlock *>
    502     getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB);
    503 
    504     /// isImpliedCond - Test whether the condition described by Pred, LHS, and
    505     /// RHS is true whenever the given FoundCondValue value evaluates to true.
    506     bool isImpliedCond(ICmpInst::Predicate Pred,
    507                        const SCEV *LHS, const SCEV *RHS,
    508                        Value *FoundCondValue,
    509                        bool Inverse);
    510 
    511     /// isImpliedCondOperands - Test whether the condition described by Pred,
    512     /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
    513     /// and FoundRHS is true.
    514     bool isImpliedCondOperands(ICmpInst::Predicate Pred,
    515                                const SCEV *LHS, const SCEV *RHS,
    516                                const SCEV *FoundLHS, const SCEV *FoundRHS);
    517 
    518     /// isImpliedCondOperandsHelper - Test whether the condition described by
    519     /// Pred, LHS, and RHS is true whenever the condition described by Pred,
    520     /// FoundLHS, and FoundRHS is true.
    521     bool isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
    522                                      const SCEV *LHS, const SCEV *RHS,
    523                                      const SCEV *FoundLHS,
    524                                      const SCEV *FoundRHS);
    525 
    526     /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
    527     /// in the header of its containing loop, we know the loop executes a
    528     /// constant number of times, and the PHI node is just a recurrence
    529     /// involving constants, fold it.
    530     Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs,
    531                                                 const Loop *L);
    532 
    533     /// isKnownPredicateWithRanges - Test if the given expression is known to
    534     /// satisfy the condition described by Pred and the known constant ranges
    535     /// of LHS and RHS.
    536     ///
    537     bool isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
    538                                     const SCEV *LHS, const SCEV *RHS);
    539 
    540     /// forgetMemoizedResults - Drop memoized information computed for S.
    541     void forgetMemoizedResults(const SCEV *S);
    542 
    543   public:
    544     static char ID; // Pass identification, replacement for typeid
    545     ScalarEvolution();
    546 
    547     LLVMContext &getContext() const { return F->getContext(); }
    548 
    549     /// isSCEVable - Test if values of the given type are analyzable within
    550     /// the SCEV framework. This primarily includes integer types, and it
    551     /// can optionally include pointer types if the ScalarEvolution class
    552     /// has access to target-specific information.
    553     bool isSCEVable(Type *Ty) const;
    554 
    555     /// getTypeSizeInBits - Return the size in bits of the specified type,
    556     /// for which isSCEVable must return true.
    557     uint64_t getTypeSizeInBits(Type *Ty) const;
    558 
    559     /// getEffectiveSCEVType - Return a type with the same bitwidth as
    560     /// the given type and which represents how SCEV will treat the given
    561     /// type, for which isSCEVable must return true. For pointer types,
    562     /// this is the pointer-sized integer type.
    563     Type *getEffectiveSCEVType(Type *Ty) const;
    564 
    565     /// getSCEV - Return a SCEV expression for the full generality of the
    566     /// specified expression.
    567     const SCEV *getSCEV(Value *V);
    568 
    569     const SCEV *getConstant(ConstantInt *V);
    570     const SCEV *getConstant(const APInt& Val);
    571     const SCEV *getConstant(Type *Ty, uint64_t V, bool isSigned = false);
    572     const SCEV *getTruncateExpr(const SCEV *Op, Type *Ty);
    573     const SCEV *getZeroExtendExpr(const SCEV *Op, Type *Ty);
    574     const SCEV *getSignExtendExpr(const SCEV *Op, Type *Ty);
    575     const SCEV *getAnyExtendExpr(const SCEV *Op, Type *Ty);
    576     const SCEV *getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
    577                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
    578     const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS,
    579                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
    580       SmallVector<const SCEV *, 2> Ops;
    581       Ops.push_back(LHS);
    582       Ops.push_back(RHS);
    583       return getAddExpr(Ops, Flags);
    584     }
    585     const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
    586                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
    587       SmallVector<const SCEV *, 3> Ops;
    588       Ops.push_back(Op0);
    589       Ops.push_back(Op1);
    590       Ops.push_back(Op2);
    591       return getAddExpr(Ops, Flags);
    592     }
    593     const SCEV *getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
    594                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
    595     const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS,
    596                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap)
    597     {
    598       SmallVector<const SCEV *, 2> Ops;
    599       Ops.push_back(LHS);
    600       Ops.push_back(RHS);
    601       return getMulExpr(Ops, Flags);
    602     }
    603     const SCEV *getMulExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
    604                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
    605       SmallVector<const SCEV *, 3> Ops;
    606       Ops.push_back(Op0);
    607       Ops.push_back(Op1);
    608       Ops.push_back(Op2);
    609       return getMulExpr(Ops, Flags);
    610     }
    611     const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS);
    612     const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step,
    613                               const Loop *L, SCEV::NoWrapFlags Flags);
    614     const SCEV *getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
    615                               const Loop *L, SCEV::NoWrapFlags Flags);
    616     const SCEV *getAddRecExpr(const SmallVectorImpl<const SCEV *> &Operands,
    617                               const Loop *L, SCEV::NoWrapFlags Flags) {
    618       SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end());
    619       return getAddRecExpr(NewOp, L, Flags);
    620     }
    621     const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS);
    622     const SCEV *getSMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
    623     const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS);
    624     const SCEV *getUMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
    625     const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS);
    626     const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS);
    627     const SCEV *getUnknown(Value *V);
    628     const SCEV *getCouldNotCompute();
    629 
    630     /// getSizeOfExpr - Return an expression for sizeof on the given type.
    631     ///
    632     const SCEV *getSizeOfExpr(Type *AllocTy);
    633 
    634     /// getAlignOfExpr - Return an expression for alignof on the given type.
    635     ///
    636     const SCEV *getAlignOfExpr(Type *AllocTy);
    637 
    638     /// getOffsetOfExpr - Return an expression for offsetof on the given field.
    639     ///
    640     const SCEV *getOffsetOfExpr(StructType *STy, unsigned FieldNo);
    641 
    642     /// getOffsetOfExpr - Return an expression for offsetof on the given field.
    643     ///
    644     const SCEV *getOffsetOfExpr(Type *CTy, Constant *FieldNo);
    645 
    646     /// getNegativeSCEV - Return the SCEV object corresponding to -V.
    647     ///
    648     const SCEV *getNegativeSCEV(const SCEV *V);
    649 
    650     /// getNotSCEV - Return the SCEV object corresponding to ~V.
    651     ///
    652     const SCEV *getNotSCEV(const SCEV *V);
    653 
    654     /// getMinusSCEV - Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
    655     const SCEV *getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
    656                              SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
    657 
    658     /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion
    659     /// of the input value to the specified type.  If the type must be
    660     /// extended, it is zero extended.
    661     const SCEV *getTruncateOrZeroExtend(const SCEV *V, Type *Ty);
    662 
    663     /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion
    664     /// of the input value to the specified type.  If the type must be
    665     /// extended, it is sign extended.
    666     const SCEV *getTruncateOrSignExtend(const SCEV *V, Type *Ty);
    667 
    668     /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of
    669     /// the input value to the specified type.  If the type must be extended,
    670     /// it is zero extended.  The conversion must not be narrowing.
    671     const SCEV *getNoopOrZeroExtend(const SCEV *V, Type *Ty);
    672 
    673     /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of
    674     /// the input value to the specified type.  If the type must be extended,
    675     /// it is sign extended.  The conversion must not be narrowing.
    676     const SCEV *getNoopOrSignExtend(const SCEV *V, Type *Ty);
    677 
    678     /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
    679     /// the input value to the specified type. If the type must be extended,
    680     /// it is extended with unspecified bits. The conversion must not be
    681     /// narrowing.
    682     const SCEV *getNoopOrAnyExtend(const SCEV *V, Type *Ty);
    683 
    684     /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
    685     /// input value to the specified type.  The conversion must not be
    686     /// widening.
    687     const SCEV *getTruncateOrNoop(const SCEV *V, Type *Ty);
    688 
    689     /// getUMaxFromMismatchedTypes - Promote the operands to the wider of
    690     /// the types using zero-extension, and then perform a umax operation
    691     /// with them.
    692     const SCEV *getUMaxFromMismatchedTypes(const SCEV *LHS,
    693                                            const SCEV *RHS);
    694 
    695     /// getUMinFromMismatchedTypes - Promote the operands to the wider of
    696     /// the types using zero-extension, and then perform a umin operation
    697     /// with them.
    698     const SCEV *getUMinFromMismatchedTypes(const SCEV *LHS,
    699                                            const SCEV *RHS);
    700 
    701     /// getPointerBase - Transitively follow the chain of pointer-type operands
    702     /// until reaching a SCEV that does not have a single pointer operand. This
    703     /// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
    704     /// but corner cases do exist.
    705     const SCEV *getPointerBase(const SCEV *V);
    706 
    707     /// getSCEVAtScope - Return a SCEV expression for the specified value
    708     /// at the specified scope in the program.  The L value specifies a loop
    709     /// nest to evaluate the expression at, where null is the top-level or a
    710     /// specified loop is immediately inside of the loop.
    711     ///
    712     /// This method can be used to compute the exit value for a variable defined
    713     /// in a loop by querying what the value will hold in the parent loop.
    714     ///
    715     /// In the case that a relevant loop exit value cannot be computed, the
    716     /// original value V is returned.
    717     const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L);
    718 
    719     /// getSCEVAtScope - This is a convenience function which does
    720     /// getSCEVAtScope(getSCEV(V), L).
    721     const SCEV *getSCEVAtScope(Value *V, const Loop *L);
    722 
    723     /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
    724     /// by a conditional between LHS and RHS.  This is used to help avoid max
    725     /// expressions in loop trip counts, and to eliminate casts.
    726     bool isLoopEntryGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
    727                                   const SCEV *LHS, const SCEV *RHS);
    728 
    729     /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
    730     /// protected by a conditional between LHS and RHS.  This is used to
    731     /// to eliminate casts.
    732     bool isLoopBackedgeGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
    733                                      const SCEV *LHS, const SCEV *RHS);
    734 
    735     /// getSmallConstantTripCount - Returns the maximum trip count of this loop
    736     /// as a normal unsigned value. Returns 0 if the trip count is unknown or
    737     /// not constant. This "trip count" assumes that control exits via
    738     /// ExitingBlock. More precisely, it is the number of times that control may
    739     /// reach ExitingBlock before taking the branch. For loops with multiple
    740     /// exits, it may not be the number times that the loop header executes if
    741     /// the loop exits prematurely via another branch.
    742     unsigned getSmallConstantTripCount(Loop *L, BasicBlock *ExitingBlock);
    743 
    744     /// getSmallConstantTripMultiple - Returns the largest constant divisor of
    745     /// the trip count of this loop as a normal unsigned value, if
    746     /// possible. This means that the actual trip count is always a multiple of
    747     /// the returned value (don't forget the trip count could very well be zero
    748     /// as well!). As explained in the comments for getSmallConstantTripCount,
    749     /// this assumes that control exits the loop via ExitingBlock.
    750     unsigned getSmallConstantTripMultiple(Loop *L, BasicBlock *ExitingBlock);
    751 
    752     // getExitCount - Get the expression for the number of loop iterations for
    753     // which this loop is guaranteed not to exit via ExitingBlock. Otherwise
    754     // return SCEVCouldNotCompute.
    755     const SCEV *getExitCount(Loop *L, BasicBlock *ExitingBlock);
    756 
    757     /// getBackedgeTakenCount - If the specified loop has a predictable
    758     /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
    759     /// object. The backedge-taken count is the number of times the loop header
    760     /// will be branched to from within the loop. This is one less than the
    761     /// trip count of the loop, since it doesn't count the first iteration,
    762     /// when the header is branched to from outside the loop.
    763     ///
    764     /// Note that it is not valid to call this method on a loop without a
    765     /// loop-invariant backedge-taken count (see
    766     /// hasLoopInvariantBackedgeTakenCount).
    767     ///
    768     const SCEV *getBackedgeTakenCount(const Loop *L);
    769 
    770     /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
    771     /// return the least SCEV value that is known never to be less than the
    772     /// actual backedge taken count.
    773     const SCEV *getMaxBackedgeTakenCount(const Loop *L);
    774 
    775     /// hasLoopInvariantBackedgeTakenCount - Return true if the specified loop
    776     /// has an analyzable loop-invariant backedge-taken count.
    777     bool hasLoopInvariantBackedgeTakenCount(const Loop *L);
    778 
    779     /// forgetLoop - This method should be called by the client when it has
    780     /// changed a loop in a way that may effect ScalarEvolution's ability to
    781     /// compute a trip count, or if the loop is deleted.
    782     void forgetLoop(const Loop *L);
    783 
    784     /// forgetValue - This method should be called by the client when it has
    785     /// changed a value in a way that may effect its value, or which may
    786     /// disconnect it from a def-use chain linking it to a loop.
    787     void forgetValue(Value *V);
    788 
    789     /// GetMinTrailingZeros - Determine the minimum number of zero bits that S
    790     /// is guaranteed to end in (at every loop iteration).  It is, at the same
    791     /// time, the minimum number of times S is divisible by 2.  For example,
    792     /// given {4,+,8} it returns 2.  If S is guaranteed to be 0, it returns the
    793     /// bitwidth of S.
    794     uint32_t GetMinTrailingZeros(const SCEV *S);
    795 
    796     /// getUnsignedRange - Determine the unsigned range for a particular SCEV.
    797     ///
    798     ConstantRange getUnsignedRange(const SCEV *S);
    799 
    800     /// getSignedRange - Determine the signed range for a particular SCEV.
    801     ///
    802     ConstantRange getSignedRange(const SCEV *S);
    803 
    804     /// isKnownNegative - Test if the given expression is known to be negative.
    805     ///
    806     bool isKnownNegative(const SCEV *S);
    807 
    808     /// isKnownPositive - Test if the given expression is known to be positive.
    809     ///
    810     bool isKnownPositive(const SCEV *S);
    811 
    812     /// isKnownNonNegative - Test if the given expression is known to be
    813     /// non-negative.
    814     ///
    815     bool isKnownNonNegative(const SCEV *S);
    816 
    817     /// isKnownNonPositive - Test if the given expression is known to be
    818     /// non-positive.
    819     ///
    820     bool isKnownNonPositive(const SCEV *S);
    821 
    822     /// isKnownNonZero - Test if the given expression is known to be
    823     /// non-zero.
    824     ///
    825     bool isKnownNonZero(const SCEV *S);
    826 
    827     /// isKnownPredicate - Test if the given expression is known to satisfy
    828     /// the condition described by Pred, LHS, and RHS.
    829     ///
    830     bool isKnownPredicate(ICmpInst::Predicate Pred,
    831                           const SCEV *LHS, const SCEV *RHS);
    832 
    833     /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
    834     /// predicate Pred. Return true iff any changes were made. If the
    835     /// operands are provably equal or inequal, LHS and RHS are set to
    836     /// the same value and Pred is set to either ICMP_EQ or ICMP_NE.
    837     ///
    838     bool SimplifyICmpOperands(ICmpInst::Predicate &Pred,
    839                               const SCEV *&LHS,
    840                               const SCEV *&RHS,
    841                               unsigned Depth = 0);
    842 
    843     /// getLoopDisposition - Return the "disposition" of the given SCEV with
    844     /// respect to the given loop.
    845     LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L);
    846 
    847     /// isLoopInvariant - Return true if the value of the given SCEV is
    848     /// unchanging in the specified loop.
    849     bool isLoopInvariant(const SCEV *S, const Loop *L);
    850 
    851     /// hasComputableLoopEvolution - Return true if the given SCEV changes value
    852     /// in a known way in the specified loop.  This property being true implies
    853     /// that the value is variant in the loop AND that we can emit an expression
    854     /// to compute the value of the expression at any particular loop iteration.
    855     bool hasComputableLoopEvolution(const SCEV *S, const Loop *L);
    856 
    857     /// getLoopDisposition - Return the "disposition" of the given SCEV with
    858     /// respect to the given block.
    859     BlockDisposition getBlockDisposition(const SCEV *S, const BasicBlock *BB);
    860 
    861     /// dominates - Return true if elements that makes up the given SCEV
    862     /// dominate the specified basic block.
    863     bool dominates(const SCEV *S, const BasicBlock *BB);
    864 
    865     /// properlyDominates - Return true if elements that makes up the given SCEV
    866     /// properly dominate the specified basic block.
    867     bool properlyDominates(const SCEV *S, const BasicBlock *BB);
    868 
    869     /// hasOperand - Test whether the given SCEV has Op as a direct or
    870     /// indirect operand.
    871     bool hasOperand(const SCEV *S, const SCEV *Op) const;
    872 
    873     virtual bool runOnFunction(Function &F);
    874     virtual void releaseMemory();
    875     virtual void getAnalysisUsage(AnalysisUsage &AU) const;
    876     virtual void print(raw_ostream &OS, const Module* = 0) const;
    877 
    878   private:
    879     FoldingSet<SCEV> UniqueSCEVs;
    880     BumpPtrAllocator SCEVAllocator;
    881 
    882     /// FirstUnknown - The head of a linked list of all SCEVUnknown
    883     /// values that have been allocated. This is used by releaseMemory
    884     /// to locate them all and call their destructors.
    885     SCEVUnknown *FirstUnknown;
    886   };
    887 }
    888 
    889 #endif
    890