Home | History | Annotate | Download | only in Scalar
      1 //===-- LoopIdiomRecognize.cpp - Loop idiom recognition -------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass implements an idiom recognizer that transforms simple loops into a
     11 // non-loop form.  In cases that this kicks in, it can be a significant
     12 // performance win.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 //
     16 // TODO List:
     17 //
     18 // Future loop memory idioms to recognize:
     19 //   memcmp, memmove, strlen, etc.
     20 // Future floating point idioms to recognize in -ffast-math mode:
     21 //   fpowi
     22 // Future integer operation idioms to recognize:
     23 //   ctpop, ctlz, cttz
     24 //
     25 // Beware that isel's default lowering for ctpop is highly inefficient for
     26 // i64 and larger types when i64 is legal and the value has few bits set.  It
     27 // would be good to enhance isel to emit a loop for ctpop in this case.
     28 //
     29 // We should enhance the memset/memcpy recognition to handle multiple stores in
     30 // the loop.  This would handle things like:
     31 //   void foo(_Complex float *P)
     32 //     for (i) { __real__(*P) = 0;  __imag__(*P) = 0; }
     33 //
     34 // We should enhance this to handle negative strides through memory.
     35 // Alternatively (and perhaps better) we could rely on an earlier pass to force
     36 // forward iteration through memory, which is generally better for cache
     37 // behavior.  Negative strides *do* happen for memset/memcpy loops.
     38 //
     39 // This could recognize common matrix multiplies and dot product idioms and
     40 // replace them with calls to BLAS (if linked in??).
     41 //
     42 //===----------------------------------------------------------------------===//
     43 
     44 #define DEBUG_TYPE "loop-idiom"
     45 #include "llvm/Transforms/Scalar.h"
     46 #include "llvm/IRBuilder.h"
     47 #include "llvm/IntrinsicInst.h"
     48 #include "llvm/Module.h"
     49 #include "llvm/ADT/Statistic.h"
     50 #include "llvm/Analysis/AliasAnalysis.h"
     51 #include "llvm/Analysis/LoopPass.h"
     52 #include "llvm/Analysis/ScalarEvolutionExpander.h"
     53 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
     54 #include "llvm/Analysis/ValueTracking.h"
     55 #include "llvm/Support/Debug.h"
     56 #include "llvm/Support/raw_ostream.h"
     57 #include "llvm/Target/TargetData.h"
     58 #include "llvm/Target/TargetLibraryInfo.h"
     59 #include "llvm/Transforms/Utils/Local.h"
     60 using namespace llvm;
     61 
     62 STATISTIC(NumMemSet, "Number of memset's formed from loop stores");
     63 STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores");
     64 
     65 namespace {
     66   class LoopIdiomRecognize : public LoopPass {
     67     Loop *CurLoop;
     68     const TargetData *TD;
     69     DominatorTree *DT;
     70     ScalarEvolution *SE;
     71     TargetLibraryInfo *TLI;
     72   public:
     73     static char ID;
     74     explicit LoopIdiomRecognize() : LoopPass(ID) {
     75       initializeLoopIdiomRecognizePass(*PassRegistry::getPassRegistry());
     76     }
     77 
     78     bool runOnLoop(Loop *L, LPPassManager &LPM);
     79     bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
     80                         SmallVectorImpl<BasicBlock*> &ExitBlocks);
     81 
     82     bool processLoopStore(StoreInst *SI, const SCEV *BECount);
     83     bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount);
     84 
     85     bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
     86                                  unsigned StoreAlignment,
     87                                  Value *SplatValue, Instruction *TheStore,
     88                                  const SCEVAddRecExpr *Ev,
     89                                  const SCEV *BECount);
     90     bool processLoopStoreOfLoopLoad(StoreInst *SI, unsigned StoreSize,
     91                                     const SCEVAddRecExpr *StoreEv,
     92                                     const SCEVAddRecExpr *LoadEv,
     93                                     const SCEV *BECount);
     94 
     95     /// This transformation requires natural loop information & requires that
     96     /// loop preheaders be inserted into the CFG.
     97     ///
     98     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
     99       AU.addRequired<LoopInfo>();
    100       AU.addPreserved<LoopInfo>();
    101       AU.addRequiredID(LoopSimplifyID);
    102       AU.addPreservedID(LoopSimplifyID);
    103       AU.addRequiredID(LCSSAID);
    104       AU.addPreservedID(LCSSAID);
    105       AU.addRequired<AliasAnalysis>();
    106       AU.addPreserved<AliasAnalysis>();
    107       AU.addRequired<ScalarEvolution>();
    108       AU.addPreserved<ScalarEvolution>();
    109       AU.addPreserved<DominatorTree>();
    110       AU.addRequired<DominatorTree>();
    111       AU.addRequired<TargetLibraryInfo>();
    112     }
    113   };
    114 }
    115 
    116 char LoopIdiomRecognize::ID = 0;
    117 INITIALIZE_PASS_BEGIN(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms",
    118                       false, false)
    119 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
    120 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
    121 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
    122 INITIALIZE_PASS_DEPENDENCY(LCSSA)
    123 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
    124 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
    125 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
    126 INITIALIZE_PASS_END(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms",
    127                     false, false)
    128 
    129 Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognize(); }
    130 
    131 /// deleteDeadInstruction - Delete this instruction.  Before we do, go through
    132 /// and zero out all the operands of this instruction.  If any of them become
    133 /// dead, delete them and the computation tree that feeds them.
    134 ///
    135 static void deleteDeadInstruction(Instruction *I, ScalarEvolution &SE,
    136                                   const TargetLibraryInfo *TLI) {
    137   SmallVector<Instruction*, 32> NowDeadInsts;
    138 
    139   NowDeadInsts.push_back(I);
    140 
    141   // Before we touch this instruction, remove it from SE!
    142   do {
    143     Instruction *DeadInst = NowDeadInsts.pop_back_val();
    144 
    145     // This instruction is dead, zap it, in stages.  Start by removing it from
    146     // SCEV.
    147     SE.forgetValue(DeadInst);
    148 
    149     for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) {
    150       Value *Op = DeadInst->getOperand(op);
    151       DeadInst->setOperand(op, 0);
    152 
    153       // If this operand just became dead, add it to the NowDeadInsts list.
    154       if (!Op->use_empty()) continue;
    155 
    156       if (Instruction *OpI = dyn_cast<Instruction>(Op))
    157         if (isInstructionTriviallyDead(OpI, TLI))
    158           NowDeadInsts.push_back(OpI);
    159     }
    160 
    161     DeadInst->eraseFromParent();
    162 
    163   } while (!NowDeadInsts.empty());
    164 }
    165 
    166 /// deleteIfDeadInstruction - If the specified value is a dead instruction,
    167 /// delete it and any recursively used instructions.
    168 static void deleteIfDeadInstruction(Value *V, ScalarEvolution &SE,
    169                                     const TargetLibraryInfo *TLI) {
    170   if (Instruction *I = dyn_cast<Instruction>(V))
    171     if (isInstructionTriviallyDead(I, TLI))
    172       deleteDeadInstruction(I, SE, TLI);
    173 }
    174 
    175 bool LoopIdiomRecognize::runOnLoop(Loop *L, LPPassManager &LPM) {
    176   CurLoop = L;
    177 
    178   // Disable loop idiom recognition if the function's name is a common idiom.
    179   StringRef Name = L->getHeader()->getParent()->getName();
    180   if (Name == "memset" || Name == "memcpy")
    181     return false;
    182 
    183   // The trip count of the loop must be analyzable.
    184   SE = &getAnalysis<ScalarEvolution>();
    185   if (!SE->hasLoopInvariantBackedgeTakenCount(L))
    186     return false;
    187   const SCEV *BECount = SE->getBackedgeTakenCount(L);
    188   if (isa<SCEVCouldNotCompute>(BECount)) return false;
    189 
    190   // If this loop executes exactly one time, then it should be peeled, not
    191   // optimized by this pass.
    192   if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
    193     if (BECst->getValue()->getValue() == 0)
    194       return false;
    195 
    196   // We require target data for now.
    197   TD = getAnalysisIfAvailable<TargetData>();
    198   if (TD == 0) return false;
    199 
    200   DT = &getAnalysis<DominatorTree>();
    201   LoopInfo &LI = getAnalysis<LoopInfo>();
    202   TLI = &getAnalysis<TargetLibraryInfo>();
    203 
    204   SmallVector<BasicBlock*, 8> ExitBlocks;
    205   CurLoop->getUniqueExitBlocks(ExitBlocks);
    206 
    207   DEBUG(dbgs() << "loop-idiom Scanning: F["
    208                << L->getHeader()->getParent()->getName()
    209                << "] Loop %" << L->getHeader()->getName() << "\n");
    210 
    211   bool MadeChange = false;
    212   // Scan all the blocks in the loop that are not in subloops.
    213   for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E;
    214        ++BI) {
    215     // Ignore blocks in subloops.
    216     if (LI.getLoopFor(*BI) != CurLoop)
    217       continue;
    218 
    219     MadeChange |= runOnLoopBlock(*BI, BECount, ExitBlocks);
    220   }
    221   return MadeChange;
    222 }
    223 
    224 /// runOnLoopBlock - Process the specified block, which lives in a counted loop
    225 /// with the specified backedge count.  This block is known to be in the current
    226 /// loop and not in any subloops.
    227 bool LoopIdiomRecognize::runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
    228                                      SmallVectorImpl<BasicBlock*> &ExitBlocks) {
    229   // We can only promote stores in this block if they are unconditionally
    230   // executed in the loop.  For a block to be unconditionally executed, it has
    231   // to dominate all the exit blocks of the loop.  Verify this now.
    232   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
    233     if (!DT->dominates(BB, ExitBlocks[i]))
    234       return false;
    235 
    236   bool MadeChange = false;
    237   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
    238     Instruction *Inst = I++;
    239     // Look for store instructions, which may be optimized to memset/memcpy.
    240     if (StoreInst *SI = dyn_cast<StoreInst>(Inst))  {
    241       WeakVH InstPtr(I);
    242       if (!processLoopStore(SI, BECount)) continue;
    243       MadeChange = true;
    244 
    245       // If processing the store invalidated our iterator, start over from the
    246       // top of the block.
    247       if (InstPtr == 0)
    248         I = BB->begin();
    249       continue;
    250     }
    251 
    252     // Look for memset instructions, which may be optimized to a larger memset.
    253     if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst))  {
    254       WeakVH InstPtr(I);
    255       if (!processLoopMemSet(MSI, BECount)) continue;
    256       MadeChange = true;
    257 
    258       // If processing the memset invalidated our iterator, start over from the
    259       // top of the block.
    260       if (InstPtr == 0)
    261         I = BB->begin();
    262       continue;
    263     }
    264   }
    265 
    266   return MadeChange;
    267 }
    268 
    269 
    270 /// processLoopStore - See if this store can be promoted to a memset or memcpy.
    271 bool LoopIdiomRecognize::processLoopStore(StoreInst *SI, const SCEV *BECount) {
    272   if (!SI->isSimple()) return false;
    273 
    274   Value *StoredVal = SI->getValueOperand();
    275   Value *StorePtr = SI->getPointerOperand();
    276 
    277   // Reject stores that are so large that they overflow an unsigned.
    278   uint64_t SizeInBits = TD->getTypeSizeInBits(StoredVal->getType());
    279   if ((SizeInBits & 7) || (SizeInBits >> 32) != 0)
    280     return false;
    281 
    282   // See if the pointer expression is an AddRec like {base,+,1} on the current
    283   // loop, which indicates a strided store.  If we have something else, it's a
    284   // random store we can't handle.
    285   const SCEVAddRecExpr *StoreEv =
    286     dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
    287   if (StoreEv == 0 || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
    288     return false;
    289 
    290   // Check to see if the stride matches the size of the store.  If so, then we
    291   // know that every byte is touched in the loop.
    292   unsigned StoreSize = (unsigned)SizeInBits >> 3;
    293   const SCEVConstant *Stride = dyn_cast<SCEVConstant>(StoreEv->getOperand(1));
    294 
    295   if (Stride == 0 || StoreSize != Stride->getValue()->getValue()) {
    296     // TODO: Could also handle negative stride here someday, that will require
    297     // the validity check in mayLoopAccessLocation to be updated though.
    298     // Enable this to print exact negative strides.
    299     if (0 && Stride && StoreSize == -Stride->getValue()->getValue()) {
    300       dbgs() << "NEGATIVE STRIDE: " << *SI << "\n";
    301       dbgs() << "BB: " << *SI->getParent();
    302     }
    303 
    304     return false;
    305   }
    306 
    307   // See if we can optimize just this store in isolation.
    308   if (processLoopStridedStore(StorePtr, StoreSize, SI->getAlignment(),
    309                               StoredVal, SI, StoreEv, BECount))
    310     return true;
    311 
    312   // If the stored value is a strided load in the same loop with the same stride
    313   // this this may be transformable into a memcpy.  This kicks in for stuff like
    314   //   for (i) A[i] = B[i];
    315   if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
    316     const SCEVAddRecExpr *LoadEv =
    317       dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getOperand(0)));
    318     if (LoadEv && LoadEv->getLoop() == CurLoop && LoadEv->isAffine() &&
    319         StoreEv->getOperand(1) == LoadEv->getOperand(1) && LI->isSimple())
    320       if (processLoopStoreOfLoopLoad(SI, StoreSize, StoreEv, LoadEv, BECount))
    321         return true;
    322   }
    323   //errs() << "UNHANDLED strided store: " << *StoreEv << " - " << *SI << "\n";
    324 
    325   return false;
    326 }
    327 
    328 /// processLoopMemSet - See if this memset can be promoted to a large memset.
    329 bool LoopIdiomRecognize::
    330 processLoopMemSet(MemSetInst *MSI, const SCEV *BECount) {
    331   // We can only handle non-volatile memsets with a constant size.
    332   if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength())) return false;
    333 
    334   // If we're not allowed to hack on memset, we fail.
    335   if (!TLI->has(LibFunc::memset))
    336     return false;
    337 
    338   Value *Pointer = MSI->getDest();
    339 
    340   // See if the pointer expression is an AddRec like {base,+,1} on the current
    341   // loop, which indicates a strided store.  If we have something else, it's a
    342   // random store we can't handle.
    343   const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer));
    344   if (Ev == 0 || Ev->getLoop() != CurLoop || !Ev->isAffine())
    345     return false;
    346 
    347   // Reject memsets that are so large that they overflow an unsigned.
    348   uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
    349   if ((SizeInBytes >> 32) != 0)
    350     return false;
    351 
    352   // Check to see if the stride matches the size of the memset.  If so, then we
    353   // know that every byte is touched in the loop.
    354   const SCEVConstant *Stride = dyn_cast<SCEVConstant>(Ev->getOperand(1));
    355 
    356   // TODO: Could also handle negative stride here someday, that will require the
    357   // validity check in mayLoopAccessLocation to be updated though.
    358   if (Stride == 0 || MSI->getLength() != Stride->getValue())
    359     return false;
    360 
    361   return processLoopStridedStore(Pointer, (unsigned)SizeInBytes,
    362                                  MSI->getAlignment(), MSI->getValue(),
    363                                  MSI, Ev, BECount);
    364 }
    365 
    366 
    367 /// mayLoopAccessLocation - Return true if the specified loop might access the
    368 /// specified pointer location, which is a loop-strided access.  The 'Access'
    369 /// argument specifies what the verboten forms of access are (read or write).
    370 static bool mayLoopAccessLocation(Value *Ptr,AliasAnalysis::ModRefResult Access,
    371                                   Loop *L, const SCEV *BECount,
    372                                   unsigned StoreSize, AliasAnalysis &AA,
    373                                   Instruction *IgnoredStore) {
    374   // Get the location that may be stored across the loop.  Since the access is
    375   // strided positively through memory, we say that the modified location starts
    376   // at the pointer and has infinite size.
    377   uint64_t AccessSize = AliasAnalysis::UnknownSize;
    378 
    379   // If the loop iterates a fixed number of times, we can refine the access size
    380   // to be exactly the size of the memset, which is (BECount+1)*StoreSize
    381   if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
    382     AccessSize = (BECst->getValue()->getZExtValue()+1)*StoreSize;
    383 
    384   // TODO: For this to be really effective, we have to dive into the pointer
    385   // operand in the store.  Store to &A[i] of 100 will always return may alias
    386   // with store of &A[100], we need to StoreLoc to be "A" with size of 100,
    387   // which will then no-alias a store to &A[100].
    388   AliasAnalysis::Location StoreLoc(Ptr, AccessSize);
    389 
    390   for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E;
    391        ++BI)
    392     for (BasicBlock::iterator I = (*BI)->begin(), E = (*BI)->end(); I != E; ++I)
    393       if (&*I != IgnoredStore &&
    394           (AA.getModRefInfo(I, StoreLoc) & Access))
    395         return true;
    396 
    397   return false;
    398 }
    399 
    400 /// getMemSetPatternValue - If a strided store of the specified value is safe to
    401 /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should
    402 /// be passed in.  Otherwise, return null.
    403 ///
    404 /// Note that we don't ever attempt to use memset_pattern8 or 4, because these
    405 /// just replicate their input array and then pass on to memset_pattern16.
    406 static Constant *getMemSetPatternValue(Value *V, const TargetData &TD) {
    407   // If the value isn't a constant, we can't promote it to being in a constant
    408   // array.  We could theoretically do a store to an alloca or something, but
    409   // that doesn't seem worthwhile.
    410   Constant *C = dyn_cast<Constant>(V);
    411   if (C == 0) return 0;
    412 
    413   // Only handle simple values that are a power of two bytes in size.
    414   uint64_t Size = TD.getTypeSizeInBits(V->getType());
    415   if (Size == 0 || (Size & 7) || (Size & (Size-1)))
    416     return 0;
    417 
    418   // Don't care enough about darwin/ppc to implement this.
    419   if (TD.isBigEndian())
    420     return 0;
    421 
    422   // Convert to size in bytes.
    423   Size /= 8;
    424 
    425   // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see
    426   // if the top and bottom are the same (e.g. for vectors and large integers).
    427   if (Size > 16) return 0;
    428 
    429   // If the constant is exactly 16 bytes, just use it.
    430   if (Size == 16) return C;
    431 
    432   // Otherwise, we'll use an array of the constants.
    433   unsigned ArraySize = 16/Size;
    434   ArrayType *AT = ArrayType::get(V->getType(), ArraySize);
    435   return ConstantArray::get(AT, std::vector<Constant*>(ArraySize, C));
    436 }
    437 
    438 
    439 /// processLoopStridedStore - We see a strided store of some value.  If we can
    440 /// transform this into a memset or memset_pattern in the loop preheader, do so.
    441 bool LoopIdiomRecognize::
    442 processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
    443                         unsigned StoreAlignment, Value *StoredVal,
    444                         Instruction *TheStore, const SCEVAddRecExpr *Ev,
    445                         const SCEV *BECount) {
    446 
    447   // If the stored value is a byte-wise value (like i32 -1), then it may be
    448   // turned into a memset of i8 -1, assuming that all the consecutive bytes
    449   // are stored.  A store of i32 0x01020304 can never be turned into a memset,
    450   // but it can be turned into memset_pattern if the target supports it.
    451   Value *SplatValue = isBytewiseValue(StoredVal);
    452   Constant *PatternValue = 0;
    453 
    454   // If we're allowed to form a memset, and the stored value would be acceptable
    455   // for memset, use it.
    456   if (SplatValue && TLI->has(LibFunc::memset) &&
    457       // Verify that the stored value is loop invariant.  If not, we can't
    458       // promote the memset.
    459       CurLoop->isLoopInvariant(SplatValue)) {
    460     // Keep and use SplatValue.
    461     PatternValue = 0;
    462   } else if (TLI->has(LibFunc::memset_pattern16) &&
    463              (PatternValue = getMemSetPatternValue(StoredVal, *TD))) {
    464     // It looks like we can use PatternValue!
    465     SplatValue = 0;
    466   } else {
    467     // Otherwise, this isn't an idiom we can transform.  For example, we can't
    468     // do anything with a 3-byte store.
    469     return false;
    470   }
    471 
    472   // The trip count of the loop and the base pointer of the addrec SCEV is
    473   // guaranteed to be loop invariant, which means that it should dominate the
    474   // header.  This allows us to insert code for it in the preheader.
    475   BasicBlock *Preheader = CurLoop->getLoopPreheader();
    476   IRBuilder<> Builder(Preheader->getTerminator());
    477   SCEVExpander Expander(*SE, "loop-idiom");
    478 
    479   // Okay, we have a strided store "p[i]" of a splattable value.  We can turn
    480   // this into a memset in the loop preheader now if we want.  However, this
    481   // would be unsafe to do if there is anything else in the loop that may read
    482   // or write to the aliased location.  Check for any overlap by generating the
    483   // base pointer and checking the region.
    484   unsigned AddrSpace = cast<PointerType>(DestPtr->getType())->getAddressSpace();
    485   Value *BasePtr =
    486     Expander.expandCodeFor(Ev->getStart(), Builder.getInt8PtrTy(AddrSpace),
    487                            Preheader->getTerminator());
    488 
    489 
    490   if (mayLoopAccessLocation(BasePtr, AliasAnalysis::ModRef,
    491                             CurLoop, BECount,
    492                             StoreSize, getAnalysis<AliasAnalysis>(), TheStore)){
    493     Expander.clear();
    494     // If we generated new code for the base pointer, clean up.
    495     deleteIfDeadInstruction(BasePtr, *SE, TLI);
    496     return false;
    497   }
    498 
    499   // Okay, everything looks good, insert the memset.
    500 
    501   // The # stored bytes is (BECount+1)*Size.  Expand the trip count out to
    502   // pointer size if it isn't already.
    503   Type *IntPtr = TD->getIntPtrType(DestPtr->getContext());
    504   BECount = SE->getTruncateOrZeroExtend(BECount, IntPtr);
    505 
    506   const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getConstant(IntPtr, 1),
    507                                          SCEV::FlagNUW);
    508   if (StoreSize != 1)
    509     NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize),
    510                                SCEV::FlagNUW);
    511 
    512   Value *NumBytes =
    513     Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator());
    514 
    515   CallInst *NewCall;
    516   if (SplatValue)
    517     NewCall = Builder.CreateMemSet(BasePtr, SplatValue,NumBytes,StoreAlignment);
    518   else {
    519     Module *M = TheStore->getParent()->getParent()->getParent();
    520     Value *MSP = M->getOrInsertFunction("memset_pattern16",
    521                                         Builder.getVoidTy(),
    522                                         Builder.getInt8PtrTy(),
    523                                         Builder.getInt8PtrTy(), IntPtr,
    524                                         (void*)0);
    525 
    526     // Otherwise we should form a memset_pattern16.  PatternValue is known to be
    527     // an constant array of 16-bytes.  Plop the value into a mergable global.
    528     GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true,
    529                                             GlobalValue::InternalLinkage,
    530                                             PatternValue, ".memset_pattern");
    531     GV->setUnnamedAddr(true); // Ok to merge these.
    532     GV->setAlignment(16);
    533     Value *PatternPtr = ConstantExpr::getBitCast(GV, Builder.getInt8PtrTy());
    534     NewCall = Builder.CreateCall3(MSP, BasePtr, PatternPtr, NumBytes);
    535   }
    536 
    537   DEBUG(dbgs() << "  Formed memset: " << *NewCall << "\n"
    538                << "    from store to: " << *Ev << " at: " << *TheStore << "\n");
    539   NewCall->setDebugLoc(TheStore->getDebugLoc());
    540 
    541   // Okay, the memset has been formed.  Zap the original store and anything that
    542   // feeds into it.
    543   deleteDeadInstruction(TheStore, *SE, TLI);
    544   ++NumMemSet;
    545   return true;
    546 }
    547 
    548 /// processLoopStoreOfLoopLoad - We see a strided store whose value is a
    549 /// same-strided load.
    550 bool LoopIdiomRecognize::
    551 processLoopStoreOfLoopLoad(StoreInst *SI, unsigned StoreSize,
    552                            const SCEVAddRecExpr *StoreEv,
    553                            const SCEVAddRecExpr *LoadEv,
    554                            const SCEV *BECount) {
    555   // If we're not allowed to form memcpy, we fail.
    556   if (!TLI->has(LibFunc::memcpy))
    557     return false;
    558 
    559   LoadInst *LI = cast<LoadInst>(SI->getValueOperand());
    560 
    561   // The trip count of the loop and the base pointer of the addrec SCEV is
    562   // guaranteed to be loop invariant, which means that it should dominate the
    563   // header.  This allows us to insert code for it in the preheader.
    564   BasicBlock *Preheader = CurLoop->getLoopPreheader();
    565   IRBuilder<> Builder(Preheader->getTerminator());
    566   SCEVExpander Expander(*SE, "loop-idiom");
    567 
    568   // Okay, we have a strided store "p[i]" of a loaded value.  We can turn
    569   // this into a memcpy in the loop preheader now if we want.  However, this
    570   // would be unsafe to do if there is anything else in the loop that may read
    571   // or write the memory region we're storing to.  This includes the load that
    572   // feeds the stores.  Check for an alias by generating the base address and
    573   // checking everything.
    574   Value *StoreBasePtr =
    575     Expander.expandCodeFor(StoreEv->getStart(),
    576                            Builder.getInt8PtrTy(SI->getPointerAddressSpace()),
    577                            Preheader->getTerminator());
    578 
    579   if (mayLoopAccessLocation(StoreBasePtr, AliasAnalysis::ModRef,
    580                             CurLoop, BECount, StoreSize,
    581                             getAnalysis<AliasAnalysis>(), SI)) {
    582     Expander.clear();
    583     // If we generated new code for the base pointer, clean up.
    584     deleteIfDeadInstruction(StoreBasePtr, *SE, TLI);
    585     return false;
    586   }
    587 
    588   // For a memcpy, we have to make sure that the input array is not being
    589   // mutated by the loop.
    590   Value *LoadBasePtr =
    591     Expander.expandCodeFor(LoadEv->getStart(),
    592                            Builder.getInt8PtrTy(LI->getPointerAddressSpace()),
    593                            Preheader->getTerminator());
    594 
    595   if (mayLoopAccessLocation(LoadBasePtr, AliasAnalysis::Mod, CurLoop, BECount,
    596                             StoreSize, getAnalysis<AliasAnalysis>(), SI)) {
    597     Expander.clear();
    598     // If we generated new code for the base pointer, clean up.
    599     deleteIfDeadInstruction(LoadBasePtr, *SE, TLI);
    600     deleteIfDeadInstruction(StoreBasePtr, *SE, TLI);
    601     return false;
    602   }
    603 
    604   // Okay, everything is safe, we can transform this!
    605 
    606 
    607   // The # stored bytes is (BECount+1)*Size.  Expand the trip count out to
    608   // pointer size if it isn't already.
    609   Type *IntPtr = TD->getIntPtrType(SI->getContext());
    610   BECount = SE->getTruncateOrZeroExtend(BECount, IntPtr);
    611 
    612   const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getConstant(IntPtr, 1),
    613                                          SCEV::FlagNUW);
    614   if (StoreSize != 1)
    615     NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize),
    616                                SCEV::FlagNUW);
    617 
    618   Value *NumBytes =
    619     Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator());
    620 
    621   CallInst *NewCall =
    622     Builder.CreateMemCpy(StoreBasePtr, LoadBasePtr, NumBytes,
    623                          std::min(SI->getAlignment(), LI->getAlignment()));
    624   NewCall->setDebugLoc(SI->getDebugLoc());
    625 
    626   DEBUG(dbgs() << "  Formed memcpy: " << *NewCall << "\n"
    627                << "    from load ptr=" << *LoadEv << " at: " << *LI << "\n"
    628                << "    from store ptr=" << *StoreEv << " at: " << *SI << "\n");
    629 
    630 
    631   // Okay, the memset has been formed.  Zap the original store and anything that
    632   // feeds into it.
    633   deleteDeadInstruction(SI, *SE, TLI);
    634   ++NumMemCpy;
    635   return true;
    636 }
    637