Home | History | Annotate | Download | only in SelectionDAG
      1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements the TargetLowering class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Target/TargetLowering.h"
     15 #include "llvm/ADT/BitVector.h"
     16 #include "llvm/ADT/STLExtras.h"
     17 #include "llvm/CodeGen/Analysis.h"
     18 #include "llvm/CodeGen/MachineFrameInfo.h"
     19 #include "llvm/CodeGen/MachineFunction.h"
     20 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     21 #include "llvm/CodeGen/SelectionDAG.h"
     22 #include "llvm/IR/DataLayout.h"
     23 #include "llvm/IR/DerivedTypes.h"
     24 #include "llvm/IR/GlobalVariable.h"
     25 #include "llvm/MC/MCAsmInfo.h"
     26 #include "llvm/MC/MCExpr.h"
     27 #include "llvm/Support/CommandLine.h"
     28 #include "llvm/Support/ErrorHandling.h"
     29 #include "llvm/Support/MathExtras.h"
     30 #include "llvm/Target/TargetLoweringObjectFile.h"
     31 #include "llvm/Target/TargetMachine.h"
     32 #include "llvm/Target/TargetRegisterInfo.h"
     33 #include <cctype>
     34 using namespace llvm;
     35 
     36 /// NOTE: The constructor takes ownership of TLOF.
     37 TargetLowering::TargetLowering(const TargetMachine &tm,
     38                                const TargetLoweringObjectFile *tlof)
     39   : TargetLoweringBase(tm, tlof) {}
     40 
     41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
     42   return NULL;
     43 }
     44 
     45 /// Check whether a given call node is in tail position within its function. If
     46 /// so, it sets Chain to the input chain of the tail call.
     47 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
     48                                           SDValue &Chain) const {
     49   const Function *F = DAG.getMachineFunction().getFunction();
     50 
     51   // Conservatively require the attributes of the call to match those of
     52   // the return. Ignore noalias because it doesn't affect the call sequence.
     53   AttributeSet CallerAttrs = F->getAttributes();
     54   if (AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex)
     55       .removeAttribute(Attribute::NoAlias).hasAttributes())
     56     return false;
     57 
     58   // It's not safe to eliminate the sign / zero extension of the return value.
     59   if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) ||
     60       CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
     61     return false;
     62 
     63   // Check if the only use is a function return node.
     64   return isUsedByReturnOnly(Node, Chain);
     65 }
     66 
     67 
     68 /// Generate a libcall taking the given operands as arguments and returning a
     69 /// result of type RetVT.
     70 SDValue TargetLowering::makeLibCall(SelectionDAG &DAG,
     71                                     RTLIB::Libcall LC, EVT RetVT,
     72                                     const SDValue *Ops, unsigned NumOps,
     73                                     bool isSigned, DebugLoc dl) const {
     74   TargetLowering::ArgListTy Args;
     75   Args.reserve(NumOps);
     76 
     77   TargetLowering::ArgListEntry Entry;
     78   for (unsigned i = 0; i != NumOps; ++i) {
     79     Entry.Node = Ops[i];
     80     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
     81     Entry.isSExt = isSigned;
     82     Entry.isZExt = !isSigned;
     83     Args.push_back(Entry);
     84   }
     85   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), getPointerTy());
     86 
     87   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
     88   TargetLowering::
     89   CallLoweringInfo CLI(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false,
     90                     false, 0, getLibcallCallingConv(LC),
     91                     /*isTailCall=*/false,
     92                     /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
     93                     Callee, Args, DAG, dl);
     94   std::pair<SDValue,SDValue> CallInfo = LowerCallTo(CLI);
     95 
     96   return CallInfo.first;
     97 }
     98 
     99 
    100 /// SoftenSetCCOperands - Soften the operands of a comparison.  This code is
    101 /// shared among BR_CC, SELECT_CC, and SETCC handlers.
    102 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
    103                                          SDValue &NewLHS, SDValue &NewRHS,
    104                                          ISD::CondCode &CCCode,
    105                                          DebugLoc dl) const {
    106   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
    107          && "Unsupported setcc type!");
    108 
    109   // Expand into one or more soft-fp libcall(s).
    110   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
    111   switch (CCCode) {
    112   case ISD::SETEQ:
    113   case ISD::SETOEQ:
    114     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
    115           (VT == MVT::f64) ? RTLIB::OEQ_F64 : RTLIB::OEQ_F128;
    116     break;
    117   case ISD::SETNE:
    118   case ISD::SETUNE:
    119     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
    120           (VT == MVT::f64) ? RTLIB::UNE_F64 : RTLIB::UNE_F128;
    121     break;
    122   case ISD::SETGE:
    123   case ISD::SETOGE:
    124     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
    125           (VT == MVT::f64) ? RTLIB::OGE_F64 : RTLIB::OGE_F128;
    126     break;
    127   case ISD::SETLT:
    128   case ISD::SETOLT:
    129     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
    130           (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128;
    131     break;
    132   case ISD::SETLE:
    133   case ISD::SETOLE:
    134     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
    135           (VT == MVT::f64) ? RTLIB::OLE_F64 : RTLIB::OLE_F128;
    136     break;
    137   case ISD::SETGT:
    138   case ISD::SETOGT:
    139     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
    140           (VT == MVT::f64) ? RTLIB::OGT_F64 : RTLIB::OGT_F128;
    141     break;
    142   case ISD::SETUO:
    143     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
    144           (VT == MVT::f64) ? RTLIB::UO_F64 : RTLIB::UO_F128;
    145     break;
    146   case ISD::SETO:
    147     LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
    148           (VT == MVT::f64) ? RTLIB::O_F64 : RTLIB::O_F128;
    149     break;
    150   default:
    151     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
    152           (VT == MVT::f64) ? RTLIB::UO_F64 : RTLIB::UO_F128;
    153     switch (CCCode) {
    154     case ISD::SETONE:
    155       // SETONE = SETOLT | SETOGT
    156       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
    157             (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128;
    158       // Fallthrough
    159     case ISD::SETUGT:
    160       LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
    161             (VT == MVT::f64) ? RTLIB::OGT_F64 : RTLIB::OGT_F128;
    162       break;
    163     case ISD::SETUGE:
    164       LC2 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
    165             (VT == MVT::f64) ? RTLIB::OGE_F64 : RTLIB::OGE_F128;
    166       break;
    167     case ISD::SETULT:
    168       LC2 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
    169             (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128;
    170       break;
    171     case ISD::SETULE:
    172       LC2 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
    173             (VT == MVT::f64) ? RTLIB::OLE_F64 : RTLIB::OLE_F128;
    174       break;
    175     case ISD::SETUEQ:
    176       LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
    177             (VT == MVT::f64) ? RTLIB::OEQ_F64 : RTLIB::OEQ_F128;
    178       break;
    179     default: llvm_unreachable("Do not know how to soften this setcc!");
    180     }
    181   }
    182 
    183   // Use the target specific return value for comparions lib calls.
    184   EVT RetVT = getCmpLibcallReturnType();
    185   SDValue Ops[2] = { NewLHS, NewRHS };
    186   NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, 2, false/*sign irrelevant*/, dl);
    187   NewRHS = DAG.getConstant(0, RetVT);
    188   CCCode = getCmpLibcallCC(LC1);
    189   if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
    190     SDValue Tmp = DAG.getNode(ISD::SETCC, dl, getSetCCResultType(RetVT),
    191                               NewLHS, NewRHS, DAG.getCondCode(CCCode));
    192     NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, 2, false/*sign irrelevant*/, dl);
    193     NewLHS = DAG.getNode(ISD::SETCC, dl, getSetCCResultType(RetVT), NewLHS,
    194                          NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
    195     NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS);
    196     NewRHS = SDValue();
    197   }
    198 }
    199 
    200 /// getJumpTableEncoding - Return the entry encoding for a jump table in the
    201 /// current function.  The returned value is a member of the
    202 /// MachineJumpTableInfo::JTEntryKind enum.
    203 unsigned TargetLowering::getJumpTableEncoding() const {
    204   // In non-pic modes, just use the address of a block.
    205   if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
    206     return MachineJumpTableInfo::EK_BlockAddress;
    207 
    208   // In PIC mode, if the target supports a GPRel32 directive, use it.
    209   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0)
    210     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
    211 
    212   // Otherwise, use a label difference.
    213   return MachineJumpTableInfo::EK_LabelDifference32;
    214 }
    215 
    216 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
    217                                                  SelectionDAG &DAG) const {
    218   // If our PIC model is GP relative, use the global offset table as the base.
    219   unsigned JTEncoding = getJumpTableEncoding();
    220 
    221   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
    222       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
    223     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(0));
    224 
    225   return Table;
    226 }
    227 
    228 /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
    229 /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
    230 /// MCExpr.
    231 const MCExpr *
    232 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
    233                                              unsigned JTI,MCContext &Ctx) const{
    234   // The normal PIC reloc base is the label at the start of the jump table.
    235   return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx);
    236 }
    237 
    238 bool
    239 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
    240   // Assume that everything is safe in static mode.
    241   if (getTargetMachine().getRelocationModel() == Reloc::Static)
    242     return true;
    243 
    244   // In dynamic-no-pic mode, assume that known defined values are safe.
    245   if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
    246       GA &&
    247       !GA->getGlobal()->isDeclaration() &&
    248       !GA->getGlobal()->isWeakForLinker())
    249     return true;
    250 
    251   // Otherwise assume nothing is safe.
    252   return false;
    253 }
    254 
    255 //===----------------------------------------------------------------------===//
    256 //  Optimization Methods
    257 //===----------------------------------------------------------------------===//
    258 
    259 /// ShrinkDemandedConstant - Check to see if the specified operand of the
    260 /// specified instruction is a constant integer.  If so, check to see if there
    261 /// are any bits set in the constant that are not demanded.  If so, shrink the
    262 /// constant and return true.
    263 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
    264                                                         const APInt &Demanded) {
    265   DebugLoc dl = Op.getDebugLoc();
    266 
    267   // FIXME: ISD::SELECT, ISD::SELECT_CC
    268   switch (Op.getOpcode()) {
    269   default: break;
    270   case ISD::XOR:
    271   case ISD::AND:
    272   case ISD::OR: {
    273     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
    274     if (!C) return false;
    275 
    276     if (Op.getOpcode() == ISD::XOR &&
    277         (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
    278       return false;
    279 
    280     // if we can expand it to have all bits set, do it
    281     if (C->getAPIntValue().intersects(~Demanded)) {
    282       EVT VT = Op.getValueType();
    283       SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
    284                                 DAG.getConstant(Demanded &
    285                                                 C->getAPIntValue(),
    286                                                 VT));
    287       return CombineTo(Op, New);
    288     }
    289 
    290     break;
    291   }
    292   }
    293 
    294   return false;
    295 }
    296 
    297 /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
    298 /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
    299 /// cast, but it could be generalized for targets with other types of
    300 /// implicit widening casts.
    301 bool
    302 TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
    303                                                     unsigned BitWidth,
    304                                                     const APInt &Demanded,
    305                                                     DebugLoc dl) {
    306   assert(Op.getNumOperands() == 2 &&
    307          "ShrinkDemandedOp only supports binary operators!");
    308   assert(Op.getNode()->getNumValues() == 1 &&
    309          "ShrinkDemandedOp only supports nodes with one result!");
    310 
    311   // Don't do this if the node has another user, which may require the
    312   // full value.
    313   if (!Op.getNode()->hasOneUse())
    314     return false;
    315 
    316   // Search for the smallest integer type with free casts to and from
    317   // Op's type. For expedience, just check power-of-2 integer types.
    318   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
    319   unsigned DemandedSize = BitWidth - Demanded.countLeadingZeros();
    320   unsigned SmallVTBits = DemandedSize;
    321   if (!isPowerOf2_32(SmallVTBits))
    322     SmallVTBits = NextPowerOf2(SmallVTBits);
    323   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
    324     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
    325     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
    326         TLI.isZExtFree(SmallVT, Op.getValueType())) {
    327       // We found a type with free casts.
    328       SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
    329                               DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
    330                                           Op.getNode()->getOperand(0)),
    331                               DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
    332                                           Op.getNode()->getOperand(1)));
    333       bool NeedZext = DemandedSize > SmallVTBits;
    334       SDValue Z = DAG.getNode(NeedZext ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND,
    335                               dl, Op.getValueType(), X);
    336       return CombineTo(Op, Z);
    337     }
    338   }
    339   return false;
    340 }
    341 
    342 /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
    343 /// DemandedMask bits of the result of Op are ever used downstream.  If we can
    344 /// use this information to simplify Op, create a new simplified DAG node and
    345 /// return true, returning the original and new nodes in Old and New. Otherwise,
    346 /// analyze the expression and return a mask of KnownOne and KnownZero bits for
    347 /// the expression (used to simplify the caller).  The KnownZero/One bits may
    348 /// only be accurate for those bits in the DemandedMask.
    349 bool TargetLowering::SimplifyDemandedBits(SDValue Op,
    350                                           const APInt &DemandedMask,
    351                                           APInt &KnownZero,
    352                                           APInt &KnownOne,
    353                                           TargetLoweringOpt &TLO,
    354                                           unsigned Depth) const {
    355   unsigned BitWidth = DemandedMask.getBitWidth();
    356   assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
    357          "Mask size mismatches value type size!");
    358   APInt NewMask = DemandedMask;
    359   DebugLoc dl = Op.getDebugLoc();
    360 
    361   // Don't know anything.
    362   KnownZero = KnownOne = APInt(BitWidth, 0);
    363 
    364   // Other users may use these bits.
    365   if (!Op.getNode()->hasOneUse()) {
    366     if (Depth != 0) {
    367       // If not at the root, Just compute the KnownZero/KnownOne bits to
    368       // simplify things downstream.
    369       TLO.DAG.ComputeMaskedBits(Op, KnownZero, KnownOne, Depth);
    370       return false;
    371     }
    372     // If this is the root being simplified, allow it to have multiple uses,
    373     // just set the NewMask to all bits.
    374     NewMask = APInt::getAllOnesValue(BitWidth);
    375   } else if (DemandedMask == 0) {
    376     // Not demanding any bits from Op.
    377     if (Op.getOpcode() != ISD::UNDEF)
    378       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
    379     return false;
    380   } else if (Depth == 6) {        // Limit search depth.
    381     return false;
    382   }
    383 
    384   APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
    385   switch (Op.getOpcode()) {
    386   case ISD::Constant:
    387     // We know all of the bits for a constant!
    388     KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue();
    389     KnownZero = ~KnownOne;
    390     return false;   // Don't fall through, will infinitely loop.
    391   case ISD::AND:
    392     // If the RHS is a constant, check to see if the LHS would be zero without
    393     // using the bits from the RHS.  Below, we use knowledge about the RHS to
    394     // simplify the LHS, here we're using information from the LHS to simplify
    395     // the RHS.
    396     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
    397       APInt LHSZero, LHSOne;
    398       // Do not increment Depth here; that can cause an infinite loop.
    399       TLO.DAG.ComputeMaskedBits(Op.getOperand(0), LHSZero, LHSOne, Depth);
    400       // If the LHS already has zeros where RHSC does, this and is dead.
    401       if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
    402         return TLO.CombineTo(Op, Op.getOperand(0));
    403       // If any of the set bits in the RHS are known zero on the LHS, shrink
    404       // the constant.
    405       if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
    406         return true;
    407     }
    408 
    409     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
    410                              KnownOne, TLO, Depth+1))
    411       return true;
    412     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    413     if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
    414                              KnownZero2, KnownOne2, TLO, Depth+1))
    415       return true;
    416     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
    417 
    418     // If all of the demanded bits are known one on one side, return the other.
    419     // These bits cannot contribute to the result of the 'and'.
    420     if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
    421       return TLO.CombineTo(Op, Op.getOperand(0));
    422     if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
    423       return TLO.CombineTo(Op, Op.getOperand(1));
    424     // If all of the demanded bits in the inputs are known zeros, return zero.
    425     if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
    426       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
    427     // If the RHS is a constant, see if we can simplify it.
    428     if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
    429       return true;
    430     // If the operation can be done in a smaller type, do so.
    431     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
    432       return true;
    433 
    434     // Output known-1 bits are only known if set in both the LHS & RHS.
    435     KnownOne &= KnownOne2;
    436     // Output known-0 are known to be clear if zero in either the LHS | RHS.
    437     KnownZero |= KnownZero2;
    438     break;
    439   case ISD::OR:
    440     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
    441                              KnownOne, TLO, Depth+1))
    442       return true;
    443     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    444     if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
    445                              KnownZero2, KnownOne2, TLO, Depth+1))
    446       return true;
    447     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
    448 
    449     // If all of the demanded bits are known zero on one side, return the other.
    450     // These bits cannot contribute to the result of the 'or'.
    451     if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
    452       return TLO.CombineTo(Op, Op.getOperand(0));
    453     if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
    454       return TLO.CombineTo(Op, Op.getOperand(1));
    455     // If all of the potentially set bits on one side are known to be set on
    456     // the other side, just use the 'other' side.
    457     if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
    458       return TLO.CombineTo(Op, Op.getOperand(0));
    459     if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
    460       return TLO.CombineTo(Op, Op.getOperand(1));
    461     // If the RHS is a constant, see if we can simplify it.
    462     if (TLO.ShrinkDemandedConstant(Op, NewMask))
    463       return true;
    464     // If the operation can be done in a smaller type, do so.
    465     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
    466       return true;
    467 
    468     // Output known-0 bits are only known if clear in both the LHS & RHS.
    469     KnownZero &= KnownZero2;
    470     // Output known-1 are known to be set if set in either the LHS | RHS.
    471     KnownOne |= KnownOne2;
    472     break;
    473   case ISD::XOR:
    474     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
    475                              KnownOne, TLO, Depth+1))
    476       return true;
    477     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    478     if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
    479                              KnownOne2, TLO, Depth+1))
    480       return true;
    481     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
    482 
    483     // If all of the demanded bits are known zero on one side, return the other.
    484     // These bits cannot contribute to the result of the 'xor'.
    485     if ((KnownZero & NewMask) == NewMask)
    486       return TLO.CombineTo(Op, Op.getOperand(0));
    487     if ((KnownZero2 & NewMask) == NewMask)
    488       return TLO.CombineTo(Op, Op.getOperand(1));
    489     // If the operation can be done in a smaller type, do so.
    490     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
    491       return true;
    492 
    493     // If all of the unknown bits are known to be zero on one side or the other
    494     // (but not both) turn this into an *inclusive* or.
    495     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
    496     if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
    497       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
    498                                                Op.getOperand(0),
    499                                                Op.getOperand(1)));
    500 
    501     // Output known-0 bits are known if clear or set in both the LHS & RHS.
    502     KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
    503     // Output known-1 are known to be set if set in only one of the LHS, RHS.
    504     KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
    505 
    506     // If all of the demanded bits on one side are known, and all of the set
    507     // bits on that side are also known to be set on the other side, turn this
    508     // into an AND, as we know the bits will be cleared.
    509     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
    510     // NB: it is okay if more bits are known than are requested
    511     if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known on one side
    512       if (KnownOne == KnownOne2) { // set bits are the same on both sides
    513         EVT VT = Op.getValueType();
    514         SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
    515         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
    516                                                  Op.getOperand(0), ANDC));
    517       }
    518     }
    519 
    520     // If the RHS is a constant, see if we can simplify it.
    521     // for XOR, we prefer to force bits to 1 if they will make a -1.
    522     // if we can't force bits, try to shrink constant
    523     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
    524       APInt Expanded = C->getAPIntValue() | (~NewMask);
    525       // if we can expand it to have all bits set, do it
    526       if (Expanded.isAllOnesValue()) {
    527         if (Expanded != C->getAPIntValue()) {
    528           EVT VT = Op.getValueType();
    529           SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
    530                                           TLO.DAG.getConstant(Expanded, VT));
    531           return TLO.CombineTo(Op, New);
    532         }
    533         // if it already has all the bits set, nothing to change
    534         // but don't shrink either!
    535       } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
    536         return true;
    537       }
    538     }
    539 
    540     KnownZero = KnownZeroOut;
    541     KnownOne  = KnownOneOut;
    542     break;
    543   case ISD::SELECT:
    544     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
    545                              KnownOne, TLO, Depth+1))
    546       return true;
    547     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
    548                              KnownOne2, TLO, Depth+1))
    549       return true;
    550     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    551     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
    552 
    553     // If the operands are constants, see if we can simplify them.
    554     if (TLO.ShrinkDemandedConstant(Op, NewMask))
    555       return true;
    556 
    557     // Only known if known in both the LHS and RHS.
    558     KnownOne &= KnownOne2;
    559     KnownZero &= KnownZero2;
    560     break;
    561   case ISD::SELECT_CC:
    562     if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
    563                              KnownOne, TLO, Depth+1))
    564       return true;
    565     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
    566                              KnownOne2, TLO, Depth+1))
    567       return true;
    568     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    569     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
    570 
    571     // If the operands are constants, see if we can simplify them.
    572     if (TLO.ShrinkDemandedConstant(Op, NewMask))
    573       return true;
    574 
    575     // Only known if known in both the LHS and RHS.
    576     KnownOne &= KnownOne2;
    577     KnownZero &= KnownZero2;
    578     break;
    579   case ISD::SHL:
    580     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
    581       unsigned ShAmt = SA->getZExtValue();
    582       SDValue InOp = Op.getOperand(0);
    583 
    584       // If the shift count is an invalid immediate, don't do anything.
    585       if (ShAmt >= BitWidth)
    586         break;
    587 
    588       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
    589       // single shift.  We can do this if the bottom bits (which are shifted
    590       // out) are never demanded.
    591       if (InOp.getOpcode() == ISD::SRL &&
    592           isa<ConstantSDNode>(InOp.getOperand(1))) {
    593         if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
    594           unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
    595           unsigned Opc = ISD::SHL;
    596           int Diff = ShAmt-C1;
    597           if (Diff < 0) {
    598             Diff = -Diff;
    599             Opc = ISD::SRL;
    600           }
    601 
    602           SDValue NewSA =
    603             TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
    604           EVT VT = Op.getValueType();
    605           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
    606                                                    InOp.getOperand(0), NewSA));
    607         }
    608       }
    609 
    610       if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt),
    611                                KnownZero, KnownOne, TLO, Depth+1))
    612         return true;
    613 
    614       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
    615       // are not demanded. This will likely allow the anyext to be folded away.
    616       if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) {
    617         SDValue InnerOp = InOp.getNode()->getOperand(0);
    618         EVT InnerVT = InnerOp.getValueType();
    619         unsigned InnerBits = InnerVT.getSizeInBits();
    620         if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 &&
    621             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
    622           EVT ShTy = getShiftAmountTy(InnerVT);
    623           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
    624             ShTy = InnerVT;
    625           SDValue NarrowShl =
    626             TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
    627                             TLO.DAG.getConstant(ShAmt, ShTy));
    628           return
    629             TLO.CombineTo(Op,
    630                           TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(),
    631                                           NarrowShl));
    632         }
    633       }
    634 
    635       KnownZero <<= SA->getZExtValue();
    636       KnownOne  <<= SA->getZExtValue();
    637       // low bits known zero.
    638       KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
    639     }
    640     break;
    641   case ISD::SRL:
    642     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
    643       EVT VT = Op.getValueType();
    644       unsigned ShAmt = SA->getZExtValue();
    645       unsigned VTSize = VT.getSizeInBits();
    646       SDValue InOp = Op.getOperand(0);
    647 
    648       // If the shift count is an invalid immediate, don't do anything.
    649       if (ShAmt >= BitWidth)
    650         break;
    651 
    652       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
    653       // single shift.  We can do this if the top bits (which are shifted out)
    654       // are never demanded.
    655       if (InOp.getOpcode() == ISD::SHL &&
    656           isa<ConstantSDNode>(InOp.getOperand(1))) {
    657         if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
    658           unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
    659           unsigned Opc = ISD::SRL;
    660           int Diff = ShAmt-C1;
    661           if (Diff < 0) {
    662             Diff = -Diff;
    663             Opc = ISD::SHL;
    664           }
    665 
    666           SDValue NewSA =
    667             TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
    668           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
    669                                                    InOp.getOperand(0), NewSA));
    670         }
    671       }
    672 
    673       // Compute the new bits that are at the top now.
    674       if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
    675                                KnownZero, KnownOne, TLO, Depth+1))
    676         return true;
    677       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    678       KnownZero = KnownZero.lshr(ShAmt);
    679       KnownOne  = KnownOne.lshr(ShAmt);
    680 
    681       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
    682       KnownZero |= HighBits;  // High bits known zero.
    683     }
    684     break;
    685   case ISD::SRA:
    686     // If this is an arithmetic shift right and only the low-bit is set, we can
    687     // always convert this into a logical shr, even if the shift amount is
    688     // variable.  The low bit of the shift cannot be an input sign bit unless
    689     // the shift amount is >= the size of the datatype, which is undefined.
    690     if (NewMask == 1)
    691       return TLO.CombineTo(Op,
    692                            TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
    693                                            Op.getOperand(0), Op.getOperand(1)));
    694 
    695     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
    696       EVT VT = Op.getValueType();
    697       unsigned ShAmt = SA->getZExtValue();
    698 
    699       // If the shift count is an invalid immediate, don't do anything.
    700       if (ShAmt >= BitWidth)
    701         break;
    702 
    703       APInt InDemandedMask = (NewMask << ShAmt);
    704 
    705       // If any of the demanded bits are produced by the sign extension, we also
    706       // demand the input sign bit.
    707       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
    708       if (HighBits.intersects(NewMask))
    709         InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
    710 
    711       if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
    712                                KnownZero, KnownOne, TLO, Depth+1))
    713         return true;
    714       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    715       KnownZero = KnownZero.lshr(ShAmt);
    716       KnownOne  = KnownOne.lshr(ShAmt);
    717 
    718       // Handle the sign bit, adjusted to where it is now in the mask.
    719       APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
    720 
    721       // If the input sign bit is known to be zero, or if none of the top bits
    722       // are demanded, turn this into an unsigned shift right.
    723       if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
    724         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
    725                                                  Op.getOperand(0),
    726                                                  Op.getOperand(1)));
    727       } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
    728         KnownOne |= HighBits;
    729       }
    730     }
    731     break;
    732   case ISD::SIGN_EXTEND_INREG: {
    733     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
    734 
    735     APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1);
    736     // If we only care about the highest bit, don't bother shifting right.
    737     if (MsbMask == DemandedMask) {
    738       unsigned ShAmt = ExVT.getScalarType().getSizeInBits();
    739       SDValue InOp = Op.getOperand(0);
    740 
    741       // Compute the correct shift amount type, which must be getShiftAmountTy
    742       // for scalar types after legalization.
    743       EVT ShiftAmtTy = Op.getValueType();
    744       if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
    745         ShiftAmtTy = getShiftAmountTy(ShiftAmtTy);
    746 
    747       SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, ShiftAmtTy);
    748       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
    749                                             Op.getValueType(), InOp, ShiftAmt));
    750     }
    751 
    752     // Sign extension.  Compute the demanded bits in the result that are not
    753     // present in the input.
    754     APInt NewBits =
    755       APInt::getHighBitsSet(BitWidth,
    756                             BitWidth - ExVT.getScalarType().getSizeInBits());
    757 
    758     // If none of the extended bits are demanded, eliminate the sextinreg.
    759     if ((NewBits & NewMask) == 0)
    760       return TLO.CombineTo(Op, Op.getOperand(0));
    761 
    762     APInt InSignBit =
    763       APInt::getSignBit(ExVT.getScalarType().getSizeInBits()).zext(BitWidth);
    764     APInt InputDemandedBits =
    765       APInt::getLowBitsSet(BitWidth,
    766                            ExVT.getScalarType().getSizeInBits()) &
    767       NewMask;
    768 
    769     // Since the sign extended bits are demanded, we know that the sign
    770     // bit is demanded.
    771     InputDemandedBits |= InSignBit;
    772 
    773     if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
    774                              KnownZero, KnownOne, TLO, Depth+1))
    775       return true;
    776     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    777 
    778     // If the sign bit of the input is known set or clear, then we know the
    779     // top bits of the result.
    780 
    781     // If the input sign bit is known zero, convert this into a zero extension.
    782     if (KnownZero.intersects(InSignBit))
    783       return TLO.CombineTo(Op,
    784                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,ExVT));
    785 
    786     if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
    787       KnownOne |= NewBits;
    788       KnownZero &= ~NewBits;
    789     } else {                       // Input sign bit unknown
    790       KnownZero &= ~NewBits;
    791       KnownOne &= ~NewBits;
    792     }
    793     break;
    794   }
    795   case ISD::ZERO_EXTEND: {
    796     unsigned OperandBitWidth =
    797       Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
    798     APInt InMask = NewMask.trunc(OperandBitWidth);
    799 
    800     // If none of the top bits are demanded, convert this into an any_extend.
    801     APInt NewBits =
    802       APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
    803     if (!NewBits.intersects(NewMask))
    804       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
    805                                                Op.getValueType(),
    806                                                Op.getOperand(0)));
    807 
    808     if (SimplifyDemandedBits(Op.getOperand(0), InMask,
    809                              KnownZero, KnownOne, TLO, Depth+1))
    810       return true;
    811     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    812     KnownZero = KnownZero.zext(BitWidth);
    813     KnownOne = KnownOne.zext(BitWidth);
    814     KnownZero |= NewBits;
    815     break;
    816   }
    817   case ISD::SIGN_EXTEND: {
    818     EVT InVT = Op.getOperand(0).getValueType();
    819     unsigned InBits = InVT.getScalarType().getSizeInBits();
    820     APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
    821     APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
    822     APInt NewBits   = ~InMask & NewMask;
    823 
    824     // If none of the top bits are demanded, convert this into an any_extend.
    825     if (NewBits == 0)
    826       return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
    827                                               Op.getValueType(),
    828                                               Op.getOperand(0)));
    829 
    830     // Since some of the sign extended bits are demanded, we know that the sign
    831     // bit is demanded.
    832     APInt InDemandedBits = InMask & NewMask;
    833     InDemandedBits |= InSignBit;
    834     InDemandedBits = InDemandedBits.trunc(InBits);
    835 
    836     if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
    837                              KnownOne, TLO, Depth+1))
    838       return true;
    839     KnownZero = KnownZero.zext(BitWidth);
    840     KnownOne = KnownOne.zext(BitWidth);
    841 
    842     // If the sign bit is known zero, convert this to a zero extend.
    843     if (KnownZero.intersects(InSignBit))
    844       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
    845                                                Op.getValueType(),
    846                                                Op.getOperand(0)));
    847 
    848     // If the sign bit is known one, the top bits match.
    849     if (KnownOne.intersects(InSignBit)) {
    850       KnownOne |= NewBits;
    851       assert((KnownZero & NewBits) == 0);
    852     } else {   // Otherwise, top bits aren't known.
    853       assert((KnownOne & NewBits) == 0);
    854       assert((KnownZero & NewBits) == 0);
    855     }
    856     break;
    857   }
    858   case ISD::ANY_EXTEND: {
    859     unsigned OperandBitWidth =
    860       Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
    861     APInt InMask = NewMask.trunc(OperandBitWidth);
    862     if (SimplifyDemandedBits(Op.getOperand(0), InMask,
    863                              KnownZero, KnownOne, TLO, Depth+1))
    864       return true;
    865     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    866     KnownZero = KnownZero.zext(BitWidth);
    867     KnownOne = KnownOne.zext(BitWidth);
    868     break;
    869   }
    870   case ISD::TRUNCATE: {
    871     // Simplify the input, using demanded bit information, and compute the known
    872     // zero/one bits live out.
    873     unsigned OperandBitWidth =
    874       Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
    875     APInt TruncMask = NewMask.zext(OperandBitWidth);
    876     if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
    877                              KnownZero, KnownOne, TLO, Depth+1))
    878       return true;
    879     KnownZero = KnownZero.trunc(BitWidth);
    880     KnownOne = KnownOne.trunc(BitWidth);
    881 
    882     // If the input is only used by this truncate, see if we can shrink it based
    883     // on the known demanded bits.
    884     if (Op.getOperand(0).getNode()->hasOneUse()) {
    885       SDValue In = Op.getOperand(0);
    886       switch (In.getOpcode()) {
    887       default: break;
    888       case ISD::SRL:
    889         // Shrink SRL by a constant if none of the high bits shifted in are
    890         // demanded.
    891         if (TLO.LegalTypes() &&
    892             !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
    893           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
    894           // undesirable.
    895           break;
    896         ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
    897         if (!ShAmt)
    898           break;
    899         SDValue Shift = In.getOperand(1);
    900         if (TLO.LegalTypes()) {
    901           uint64_t ShVal = ShAmt->getZExtValue();
    902           Shift =
    903             TLO.DAG.getConstant(ShVal, getShiftAmountTy(Op.getValueType()));
    904         }
    905 
    906         APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
    907                                                OperandBitWidth - BitWidth);
    908         HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth);
    909 
    910         if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
    911           // None of the shifted in bits are needed.  Add a truncate of the
    912           // shift input, then shift it.
    913           SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
    914                                              Op.getValueType(),
    915                                              In.getOperand(0));
    916           return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
    917                                                    Op.getValueType(),
    918                                                    NewTrunc,
    919                                                    Shift));
    920         }
    921         break;
    922       }
    923     }
    924 
    925     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    926     break;
    927   }
    928   case ISD::AssertZext: {
    929     // AssertZext demands all of the high bits, plus any of the low bits
    930     // demanded by its users.
    931     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
    932     APInt InMask = APInt::getLowBitsSet(BitWidth,
    933                                         VT.getSizeInBits());
    934     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask,
    935                              KnownZero, KnownOne, TLO, Depth+1))
    936       return true;
    937     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    938 
    939     KnownZero |= ~InMask & NewMask;
    940     break;
    941   }
    942   case ISD::BITCAST:
    943     // If this is an FP->Int bitcast and if the sign bit is the only
    944     // thing demanded, turn this into a FGETSIGN.
    945     if (!TLO.LegalOperations() &&
    946         !Op.getValueType().isVector() &&
    947         !Op.getOperand(0).getValueType().isVector() &&
    948         NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) &&
    949         Op.getOperand(0).getValueType().isFloatingPoint()) {
    950       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType());
    951       bool i32Legal  = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
    952       if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple()) {
    953         EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32;
    954         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
    955         // place.  We expect the SHL to be eliminated by other optimizations.
    956         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0));
    957         unsigned OpVTSizeInBits = Op.getValueType().getSizeInBits();
    958         if (!OpVTLegal && OpVTSizeInBits > 32)
    959           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign);
    960         unsigned ShVal = Op.getValueType().getSizeInBits()-1;
    961         SDValue ShAmt = TLO.DAG.getConstant(ShVal, Op.getValueType());
    962         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
    963                                                  Op.getValueType(),
    964                                                  Sign, ShAmt));
    965       }
    966     }
    967     break;
    968   case ISD::ADD:
    969   case ISD::MUL:
    970   case ISD::SUB: {
    971     // Add, Sub, and Mul don't demand any bits in positions beyond that
    972     // of the highest bit demanded of them.
    973     APInt LoMask = APInt::getLowBitsSet(BitWidth,
    974                                         BitWidth - NewMask.countLeadingZeros());
    975     if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
    976                              KnownOne2, TLO, Depth+1))
    977       return true;
    978     if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
    979                              KnownOne2, TLO, Depth+1))
    980       return true;
    981     // See if the operation should be performed at a smaller bit width.
    982     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
    983       return true;
    984   }
    985   // FALL THROUGH
    986   default:
    987     // Just use ComputeMaskedBits to compute output bits.
    988     TLO.DAG.ComputeMaskedBits(Op, KnownZero, KnownOne, Depth);
    989     break;
    990   }
    991 
    992   // If we know the value of all of the demanded bits, return this as a
    993   // constant.
    994   if ((NewMask & (KnownZero|KnownOne)) == NewMask)
    995     return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
    996 
    997   return false;
    998 }
    999 
   1000 /// computeMaskedBitsForTargetNode - Determine which of the bits specified
   1001 /// in Mask are known to be either zero or one and return them in the
   1002 /// KnownZero/KnownOne bitsets.
   1003 void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
   1004                                                     APInt &KnownZero,
   1005                                                     APInt &KnownOne,
   1006                                                     const SelectionDAG &DAG,
   1007                                                     unsigned Depth) const {
   1008   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
   1009           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
   1010           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
   1011           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
   1012          "Should use MaskedValueIsZero if you don't know whether Op"
   1013          " is a target node!");
   1014   KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0);
   1015 }
   1016 
   1017 /// ComputeNumSignBitsForTargetNode - This method can be implemented by
   1018 /// targets that want to expose additional information about sign bits to the
   1019 /// DAG Combiner.
   1020 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
   1021                                                          unsigned Depth) const {
   1022   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
   1023           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
   1024           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
   1025           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
   1026          "Should use ComputeNumSignBits if you don't know whether Op"
   1027          " is a target node!");
   1028   return 1;
   1029 }
   1030 
   1031 /// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
   1032 /// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
   1033 /// determine which bit is set.
   1034 ///
   1035 static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
   1036   // A left-shift of a constant one will have exactly one bit set, because
   1037   // shifting the bit off the end is undefined.
   1038   if (Val.getOpcode() == ISD::SHL)
   1039     if (ConstantSDNode *C =
   1040          dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
   1041       if (C->getAPIntValue() == 1)
   1042         return true;
   1043 
   1044   // Similarly, a right-shift of a constant sign-bit will have exactly
   1045   // one bit set.
   1046   if (Val.getOpcode() == ISD::SRL)
   1047     if (ConstantSDNode *C =
   1048          dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
   1049       if (C->getAPIntValue().isSignBit())
   1050         return true;
   1051 
   1052   // More could be done here, though the above checks are enough
   1053   // to handle some common cases.
   1054 
   1055   // Fall back to ComputeMaskedBits to catch other known cases.
   1056   EVT OpVT = Val.getValueType();
   1057   unsigned BitWidth = OpVT.getScalarType().getSizeInBits();
   1058   APInt KnownZero, KnownOne;
   1059   DAG.ComputeMaskedBits(Val, KnownZero, KnownOne);
   1060   return (KnownZero.countPopulation() == BitWidth - 1) &&
   1061          (KnownOne.countPopulation() == 1);
   1062 }
   1063 
   1064 /// SimplifySetCC - Try to simplify a setcc built with the specified operands
   1065 /// and cc. If it is unable to simplify it, return a null SDValue.
   1066 SDValue
   1067 TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
   1068                               ISD::CondCode Cond, bool foldBooleans,
   1069                               DAGCombinerInfo &DCI, DebugLoc dl) const {
   1070   SelectionDAG &DAG = DCI.DAG;
   1071 
   1072   // These setcc operations always fold.
   1073   switch (Cond) {
   1074   default: break;
   1075   case ISD::SETFALSE:
   1076   case ISD::SETFALSE2: return DAG.getConstant(0, VT);
   1077   case ISD::SETTRUE:
   1078   case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
   1079   }
   1080 
   1081   // Ensure that the constant occurs on the RHS, and fold constant
   1082   // comparisons.
   1083   if (isa<ConstantSDNode>(N0.getNode()))
   1084     return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
   1085 
   1086   if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
   1087     const APInt &C1 = N1C->getAPIntValue();
   1088 
   1089     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
   1090     // equality comparison, then we're just comparing whether X itself is
   1091     // zero.
   1092     if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
   1093         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
   1094         N0.getOperand(1).getOpcode() == ISD::Constant) {
   1095       const APInt &ShAmt
   1096         = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
   1097       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
   1098           ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
   1099         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
   1100           // (srl (ctlz x), 5) == 0  -> X != 0
   1101           // (srl (ctlz x), 5) != 1  -> X != 0
   1102           Cond = ISD::SETNE;
   1103         } else {
   1104           // (srl (ctlz x), 5) != 0  -> X == 0
   1105           // (srl (ctlz x), 5) == 1  -> X == 0
   1106           Cond = ISD::SETEQ;
   1107         }
   1108         SDValue Zero = DAG.getConstant(0, N0.getValueType());
   1109         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
   1110                             Zero, Cond);
   1111       }
   1112     }
   1113 
   1114     SDValue CTPOP = N0;
   1115     // Look through truncs that don't change the value of a ctpop.
   1116     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
   1117       CTPOP = N0.getOperand(0);
   1118 
   1119     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
   1120         (N0 == CTPOP || N0.getValueType().getSizeInBits() >
   1121                         Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) {
   1122       EVT CTVT = CTPOP.getValueType();
   1123       SDValue CTOp = CTPOP.getOperand(0);
   1124 
   1125       // (ctpop x) u< 2 -> (x & x-1) == 0
   1126       // (ctpop x) u> 1 -> (x & x-1) != 0
   1127       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
   1128         SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
   1129                                   DAG.getConstant(1, CTVT));
   1130         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
   1131         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
   1132         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, CTVT), CC);
   1133       }
   1134 
   1135       // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
   1136     }
   1137 
   1138     // (zext x) == C --> x == (trunc C)
   1139     if (DCI.isBeforeLegalize() && N0->hasOneUse() &&
   1140         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
   1141       unsigned MinBits = N0.getValueSizeInBits();
   1142       SDValue PreZExt;
   1143       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
   1144         // ZExt
   1145         MinBits = N0->getOperand(0).getValueSizeInBits();
   1146         PreZExt = N0->getOperand(0);
   1147       } else if (N0->getOpcode() == ISD::AND) {
   1148         // DAGCombine turns costly ZExts into ANDs
   1149         if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
   1150           if ((C->getAPIntValue()+1).isPowerOf2()) {
   1151             MinBits = C->getAPIntValue().countTrailingOnes();
   1152             PreZExt = N0->getOperand(0);
   1153           }
   1154       } else if (LoadSDNode *LN0 = dyn_cast<LoadSDNode>(N0)) {
   1155         // ZEXTLOAD
   1156         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
   1157           MinBits = LN0->getMemoryVT().getSizeInBits();
   1158           PreZExt = N0;
   1159         }
   1160       }
   1161 
   1162       // Make sure we're not losing bits from the constant.
   1163       if (MinBits < C1.getBitWidth() && MinBits > C1.getActiveBits()) {
   1164         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
   1165         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
   1166           // Will get folded away.
   1167           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreZExt);
   1168           SDValue C = DAG.getConstant(C1.trunc(MinBits), MinVT);
   1169           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
   1170         }
   1171       }
   1172     }
   1173 
   1174     // If the LHS is '(and load, const)', the RHS is 0,
   1175     // the test is for equality or unsigned, and all 1 bits of the const are
   1176     // in the same partial word, see if we can shorten the load.
   1177     if (DCI.isBeforeLegalize() &&
   1178         N0.getOpcode() == ISD::AND && C1 == 0 &&
   1179         N0.getNode()->hasOneUse() &&
   1180         isa<LoadSDNode>(N0.getOperand(0)) &&
   1181         N0.getOperand(0).getNode()->hasOneUse() &&
   1182         isa<ConstantSDNode>(N0.getOperand(1))) {
   1183       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
   1184       APInt bestMask;
   1185       unsigned bestWidth = 0, bestOffset = 0;
   1186       if (!Lod->isVolatile() && Lod->isUnindexed()) {
   1187         unsigned origWidth = N0.getValueType().getSizeInBits();
   1188         unsigned maskWidth = origWidth;
   1189         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
   1190         // 8 bits, but have to be careful...
   1191         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
   1192           origWidth = Lod->getMemoryVT().getSizeInBits();
   1193         const APInt &Mask =
   1194           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
   1195         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
   1196           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
   1197           for (unsigned offset=0; offset<origWidth/width; offset++) {
   1198             if ((newMask & Mask) == Mask) {
   1199               if (!getDataLayout()->isLittleEndian())
   1200                 bestOffset = (origWidth/width - offset - 1) * (width/8);
   1201               else
   1202                 bestOffset = (uint64_t)offset * (width/8);
   1203               bestMask = Mask.lshr(offset * (width/8) * 8);
   1204               bestWidth = width;
   1205               break;
   1206             }
   1207             newMask = newMask << width;
   1208           }
   1209         }
   1210       }
   1211       if (bestWidth) {
   1212         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
   1213         if (newVT.isRound()) {
   1214           EVT PtrType = Lod->getOperand(1).getValueType();
   1215           SDValue Ptr = Lod->getBasePtr();
   1216           if (bestOffset != 0)
   1217             Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
   1218                               DAG.getConstant(bestOffset, PtrType));
   1219           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
   1220           SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
   1221                                 Lod->getPointerInfo().getWithOffset(bestOffset),
   1222                                         false, false, false, NewAlign);
   1223           return DAG.getSetCC(dl, VT,
   1224                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
   1225                                       DAG.getConstant(bestMask.trunc(bestWidth),
   1226                                                       newVT)),
   1227                               DAG.getConstant(0LL, newVT), Cond);
   1228         }
   1229       }
   1230     }
   1231 
   1232     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
   1233     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
   1234       unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
   1235 
   1236       // If the comparison constant has bits in the upper part, the
   1237       // zero-extended value could never match.
   1238       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
   1239                                               C1.getBitWidth() - InSize))) {
   1240         switch (Cond) {
   1241         case ISD::SETUGT:
   1242         case ISD::SETUGE:
   1243         case ISD::SETEQ: return DAG.getConstant(0, VT);
   1244         case ISD::SETULT:
   1245         case ISD::SETULE:
   1246         case ISD::SETNE: return DAG.getConstant(1, VT);
   1247         case ISD::SETGT:
   1248         case ISD::SETGE:
   1249           // True if the sign bit of C1 is set.
   1250           return DAG.getConstant(C1.isNegative(), VT);
   1251         case ISD::SETLT:
   1252         case ISD::SETLE:
   1253           // True if the sign bit of C1 isn't set.
   1254           return DAG.getConstant(C1.isNonNegative(), VT);
   1255         default:
   1256           break;
   1257         }
   1258       }
   1259 
   1260       // Otherwise, we can perform the comparison with the low bits.
   1261       switch (Cond) {
   1262       case ISD::SETEQ:
   1263       case ISD::SETNE:
   1264       case ISD::SETUGT:
   1265       case ISD::SETUGE:
   1266       case ISD::SETULT:
   1267       case ISD::SETULE: {
   1268         EVT newVT = N0.getOperand(0).getValueType();
   1269         if (DCI.isBeforeLegalizeOps() ||
   1270             (isOperationLegal(ISD::SETCC, newVT) &&
   1271              getCondCodeAction(Cond, newVT.getSimpleVT())==Legal))
   1272           return DAG.getSetCC(dl, VT, N0.getOperand(0),
   1273                               DAG.getConstant(C1.trunc(InSize), newVT),
   1274                               Cond);
   1275         break;
   1276       }
   1277       default:
   1278         break;   // todo, be more careful with signed comparisons
   1279       }
   1280     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
   1281                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
   1282       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
   1283       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
   1284       EVT ExtDstTy = N0.getValueType();
   1285       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
   1286 
   1287       // If the constant doesn't fit into the number of bits for the source of
   1288       // the sign extension, it is impossible for both sides to be equal.
   1289       if (C1.getMinSignedBits() > ExtSrcTyBits)
   1290         return DAG.getConstant(Cond == ISD::SETNE, VT);
   1291 
   1292       SDValue ZextOp;
   1293       EVT Op0Ty = N0.getOperand(0).getValueType();
   1294       if (Op0Ty == ExtSrcTy) {
   1295         ZextOp = N0.getOperand(0);
   1296       } else {
   1297         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
   1298         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
   1299                               DAG.getConstant(Imm, Op0Ty));
   1300       }
   1301       if (!DCI.isCalledByLegalizer())
   1302         DCI.AddToWorklist(ZextOp.getNode());
   1303       // Otherwise, make this a use of a zext.
   1304       return DAG.getSetCC(dl, VT, ZextOp,
   1305                           DAG.getConstant(C1 & APInt::getLowBitsSet(
   1306                                                               ExtDstTyBits,
   1307                                                               ExtSrcTyBits),
   1308                                           ExtDstTy),
   1309                           Cond);
   1310     } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
   1311                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
   1312       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
   1313       if (N0.getOpcode() == ISD::SETCC &&
   1314           isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
   1315         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
   1316         if (TrueWhenTrue)
   1317           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
   1318         // Invert the condition.
   1319         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
   1320         CC = ISD::getSetCCInverse(CC,
   1321                                   N0.getOperand(0).getValueType().isInteger());
   1322         return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
   1323       }
   1324 
   1325       if ((N0.getOpcode() == ISD::XOR ||
   1326            (N0.getOpcode() == ISD::AND &&
   1327             N0.getOperand(0).getOpcode() == ISD::XOR &&
   1328             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
   1329           isa<ConstantSDNode>(N0.getOperand(1)) &&
   1330           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
   1331         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
   1332         // can only do this if the top bits are known zero.
   1333         unsigned BitWidth = N0.getValueSizeInBits();
   1334         if (DAG.MaskedValueIsZero(N0,
   1335                                   APInt::getHighBitsSet(BitWidth,
   1336                                                         BitWidth-1))) {
   1337           // Okay, get the un-inverted input value.
   1338           SDValue Val;
   1339           if (N0.getOpcode() == ISD::XOR)
   1340             Val = N0.getOperand(0);
   1341           else {
   1342             assert(N0.getOpcode() == ISD::AND &&
   1343                     N0.getOperand(0).getOpcode() == ISD::XOR);
   1344             // ((X^1)&1)^1 -> X & 1
   1345             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
   1346                               N0.getOperand(0).getOperand(0),
   1347                               N0.getOperand(1));
   1348           }
   1349 
   1350           return DAG.getSetCC(dl, VT, Val, N1,
   1351                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
   1352         }
   1353       } else if (N1C->getAPIntValue() == 1 &&
   1354                  (VT == MVT::i1 ||
   1355                   getBooleanContents(false) == ZeroOrOneBooleanContent)) {
   1356         SDValue Op0 = N0;
   1357         if (Op0.getOpcode() == ISD::TRUNCATE)
   1358           Op0 = Op0.getOperand(0);
   1359 
   1360         if ((Op0.getOpcode() == ISD::XOR) &&
   1361             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
   1362             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
   1363           // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
   1364           Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
   1365           return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
   1366                               Cond);
   1367         }
   1368         if (Op0.getOpcode() == ISD::AND &&
   1369             isa<ConstantSDNode>(Op0.getOperand(1)) &&
   1370             cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
   1371           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
   1372           if (Op0.getValueType().bitsGT(VT))
   1373             Op0 = DAG.getNode(ISD::AND, dl, VT,
   1374                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
   1375                           DAG.getConstant(1, VT));
   1376           else if (Op0.getValueType().bitsLT(VT))
   1377             Op0 = DAG.getNode(ISD::AND, dl, VT,
   1378                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
   1379                         DAG.getConstant(1, VT));
   1380 
   1381           return DAG.getSetCC(dl, VT, Op0,
   1382                               DAG.getConstant(0, Op0.getValueType()),
   1383                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
   1384         }
   1385         if (Op0.getOpcode() == ISD::AssertZext &&
   1386             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
   1387           return DAG.getSetCC(dl, VT, Op0,
   1388                               DAG.getConstant(0, Op0.getValueType()),
   1389                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
   1390       }
   1391     }
   1392 
   1393     APInt MinVal, MaxVal;
   1394     unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
   1395     if (ISD::isSignedIntSetCC(Cond)) {
   1396       MinVal = APInt::getSignedMinValue(OperandBitSize);
   1397       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
   1398     } else {
   1399       MinVal = APInt::getMinValue(OperandBitSize);
   1400       MaxVal = APInt::getMaxValue(OperandBitSize);
   1401     }
   1402 
   1403     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
   1404     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
   1405       if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
   1406       // X >= C0 --> X > (C0-1)
   1407       return DAG.getSetCC(dl, VT, N0,
   1408                           DAG.getConstant(C1-1, N1.getValueType()),
   1409                           (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
   1410     }
   1411 
   1412     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
   1413       if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
   1414       // X <= C0 --> X < (C0+1)
   1415       return DAG.getSetCC(dl, VT, N0,
   1416                           DAG.getConstant(C1+1, N1.getValueType()),
   1417                           (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
   1418     }
   1419 
   1420     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
   1421       return DAG.getConstant(0, VT);      // X < MIN --> false
   1422     if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
   1423       return DAG.getConstant(1, VT);      // X >= MIN --> true
   1424     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
   1425       return DAG.getConstant(0, VT);      // X > MAX --> false
   1426     if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
   1427       return DAG.getConstant(1, VT);      // X <= MAX --> true
   1428 
   1429     // Canonicalize setgt X, Min --> setne X, Min
   1430     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
   1431       return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
   1432     // Canonicalize setlt X, Max --> setne X, Max
   1433     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
   1434       return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
   1435 
   1436     // If we have setult X, 1, turn it into seteq X, 0
   1437     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
   1438       return DAG.getSetCC(dl, VT, N0,
   1439                           DAG.getConstant(MinVal, N0.getValueType()),
   1440                           ISD::SETEQ);
   1441     // If we have setugt X, Max-1, turn it into seteq X, Max
   1442     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
   1443       return DAG.getSetCC(dl, VT, N0,
   1444                           DAG.getConstant(MaxVal, N0.getValueType()),
   1445                           ISD::SETEQ);
   1446 
   1447     // If we have "setcc X, C0", check to see if we can shrink the immediate
   1448     // by changing cc.
   1449 
   1450     // SETUGT X, SINTMAX  -> SETLT X, 0
   1451     if (Cond == ISD::SETUGT &&
   1452         C1 == APInt::getSignedMaxValue(OperandBitSize))
   1453       return DAG.getSetCC(dl, VT, N0,
   1454                           DAG.getConstant(0, N1.getValueType()),
   1455                           ISD::SETLT);
   1456 
   1457     // SETULT X, SINTMIN  -> SETGT X, -1
   1458     if (Cond == ISD::SETULT &&
   1459         C1 == APInt::getSignedMinValue(OperandBitSize)) {
   1460       SDValue ConstMinusOne =
   1461           DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
   1462                           N1.getValueType());
   1463       return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
   1464     }
   1465 
   1466     // Fold bit comparisons when we can.
   1467     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
   1468         (VT == N0.getValueType() ||
   1469          (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
   1470         N0.getOpcode() == ISD::AND)
   1471       if (ConstantSDNode *AndRHS =
   1472                   dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
   1473         EVT ShiftTy = DCI.isBeforeLegalizeOps() ?
   1474           getPointerTy() : getShiftAmountTy(N0.getValueType());
   1475         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
   1476           // Perform the xform if the AND RHS is a single bit.
   1477           if (AndRHS->getAPIntValue().isPowerOf2()) {
   1478             return DAG.getNode(ISD::TRUNCATE, dl, VT,
   1479                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
   1480                    DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy)));
   1481           }
   1482         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
   1483           // (X & 8) == 8  -->  (X & 8) >> 3
   1484           // Perform the xform if C1 is a single bit.
   1485           if (C1.isPowerOf2()) {
   1486             return DAG.getNode(ISD::TRUNCATE, dl, VT,
   1487                                DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
   1488                                       DAG.getConstant(C1.logBase2(), ShiftTy)));
   1489           }
   1490         }
   1491       }
   1492 
   1493     if (C1.getMinSignedBits() <= 64 &&
   1494         !isLegalICmpImmediate(C1.getSExtValue())) {
   1495       // (X & -256) == 256 -> (X >> 8) == 1
   1496       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
   1497           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
   1498         if (ConstantSDNode *AndRHS =
   1499             dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
   1500           const APInt &AndRHSC = AndRHS->getAPIntValue();
   1501           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
   1502             unsigned ShiftBits = AndRHSC.countTrailingZeros();
   1503             EVT ShiftTy = DCI.isBeforeLegalizeOps() ?
   1504               getPointerTy() : getShiftAmountTy(N0.getValueType());
   1505             EVT CmpTy = N0.getValueType();
   1506             SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
   1507                                         DAG.getConstant(ShiftBits, ShiftTy));
   1508             SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), CmpTy);
   1509             return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
   1510           }
   1511         }
   1512       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
   1513                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
   1514         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
   1515         // X <  0x100000000 -> (X >> 32) <  1
   1516         // X >= 0x100000000 -> (X >> 32) >= 1
   1517         // X <= 0x0ffffffff -> (X >> 32) <  1
   1518         // X >  0x0ffffffff -> (X >> 32) >= 1
   1519         unsigned ShiftBits;
   1520         APInt NewC = C1;
   1521         ISD::CondCode NewCond = Cond;
   1522         if (AdjOne) {
   1523           ShiftBits = C1.countTrailingOnes();
   1524           NewC = NewC + 1;
   1525           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
   1526         } else {
   1527           ShiftBits = C1.countTrailingZeros();
   1528         }
   1529         NewC = NewC.lshr(ShiftBits);
   1530         if (ShiftBits && isLegalICmpImmediate(NewC.getSExtValue())) {
   1531           EVT ShiftTy = DCI.isBeforeLegalizeOps() ?
   1532             getPointerTy() : getShiftAmountTy(N0.getValueType());
   1533           EVT CmpTy = N0.getValueType();
   1534           SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
   1535                                       DAG.getConstant(ShiftBits, ShiftTy));
   1536           SDValue CmpRHS = DAG.getConstant(NewC, CmpTy);
   1537           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
   1538         }
   1539       }
   1540     }
   1541   }
   1542 
   1543   if (isa<ConstantFPSDNode>(N0.getNode())) {
   1544     // Constant fold or commute setcc.
   1545     SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
   1546     if (O.getNode()) return O;
   1547   } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
   1548     // If the RHS of an FP comparison is a constant, simplify it away in
   1549     // some cases.
   1550     if (CFP->getValueAPF().isNaN()) {
   1551       // If an operand is known to be a nan, we can fold it.
   1552       switch (ISD::getUnorderedFlavor(Cond)) {
   1553       default: llvm_unreachable("Unknown flavor!");
   1554       case 0:  // Known false.
   1555         return DAG.getConstant(0, VT);
   1556       case 1:  // Known true.
   1557         return DAG.getConstant(1, VT);
   1558       case 2:  // Undefined.
   1559         return DAG.getUNDEF(VT);
   1560       }
   1561     }
   1562 
   1563     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
   1564     // constant if knowing that the operand is non-nan is enough.  We prefer to
   1565     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
   1566     // materialize 0.0.
   1567     if (Cond == ISD::SETO || Cond == ISD::SETUO)
   1568       return DAG.getSetCC(dl, VT, N0, N0, Cond);
   1569 
   1570     // If the condition is not legal, see if we can find an equivalent one
   1571     // which is legal.
   1572     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
   1573       // If the comparison was an awkward floating-point == or != and one of
   1574       // the comparison operands is infinity or negative infinity, convert the
   1575       // condition to a less-awkward <= or >=.
   1576       if (CFP->getValueAPF().isInfinity()) {
   1577         if (CFP->getValueAPF().isNegative()) {
   1578           if (Cond == ISD::SETOEQ &&
   1579               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
   1580             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
   1581           if (Cond == ISD::SETUEQ &&
   1582               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
   1583             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
   1584           if (Cond == ISD::SETUNE &&
   1585               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
   1586             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
   1587           if (Cond == ISD::SETONE &&
   1588               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
   1589             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
   1590         } else {
   1591           if (Cond == ISD::SETOEQ &&
   1592               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
   1593             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
   1594           if (Cond == ISD::SETUEQ &&
   1595               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
   1596             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
   1597           if (Cond == ISD::SETUNE &&
   1598               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
   1599             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
   1600           if (Cond == ISD::SETONE &&
   1601               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
   1602             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
   1603         }
   1604       }
   1605     }
   1606   }
   1607 
   1608   if (N0 == N1) {
   1609     // The sext(setcc()) => setcc() optimization relies on the appropriate
   1610     // constant being emitted.
   1611     uint64_t EqVal = 0;
   1612     switch (getBooleanContents(N0.getValueType().isVector())) {
   1613     case UndefinedBooleanContent:
   1614     case ZeroOrOneBooleanContent:
   1615       EqVal = ISD::isTrueWhenEqual(Cond);
   1616       break;
   1617     case ZeroOrNegativeOneBooleanContent:
   1618       EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0;
   1619       break;
   1620     }
   1621 
   1622     // We can always fold X == X for integer setcc's.
   1623     if (N0.getValueType().isInteger()) {
   1624       return DAG.getConstant(EqVal, VT);
   1625     }
   1626     unsigned UOF = ISD::getUnorderedFlavor(Cond);
   1627     if (UOF == 2)   // FP operators that are undefined on NaNs.
   1628       return DAG.getConstant(EqVal, VT);
   1629     if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
   1630       return DAG.getConstant(EqVal, VT);
   1631     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
   1632     // if it is not already.
   1633     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
   1634     if (NewCond != Cond && (DCI.isBeforeLegalizeOps() ||
   1635           getCondCodeAction(NewCond, N0.getSimpleValueType()) == Legal))
   1636       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
   1637   }
   1638 
   1639   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
   1640       N0.getValueType().isInteger()) {
   1641     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
   1642         N0.getOpcode() == ISD::XOR) {
   1643       // Simplify (X+Y) == (X+Z) -->  Y == Z
   1644       if (N0.getOpcode() == N1.getOpcode()) {
   1645         if (N0.getOperand(0) == N1.getOperand(0))
   1646           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
   1647         if (N0.getOperand(1) == N1.getOperand(1))
   1648           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
   1649         if (DAG.isCommutativeBinOp(N0.getOpcode())) {
   1650           // If X op Y == Y op X, try other combinations.
   1651           if (N0.getOperand(0) == N1.getOperand(1))
   1652             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
   1653                                 Cond);
   1654           if (N0.getOperand(1) == N1.getOperand(0))
   1655             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
   1656                                 Cond);
   1657         }
   1658       }
   1659 
   1660       // If RHS is a legal immediate value for a compare instruction, we need
   1661       // to be careful about increasing register pressure needlessly.
   1662       bool LegalRHSImm = false;
   1663 
   1664       if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
   1665         if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
   1666           // Turn (X+C1) == C2 --> X == C2-C1
   1667           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
   1668             return DAG.getSetCC(dl, VT, N0.getOperand(0),
   1669                                 DAG.getConstant(RHSC->getAPIntValue()-
   1670                                                 LHSR->getAPIntValue(),
   1671                                 N0.getValueType()), Cond);
   1672           }
   1673 
   1674           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
   1675           if (N0.getOpcode() == ISD::XOR)
   1676             // If we know that all of the inverted bits are zero, don't bother
   1677             // performing the inversion.
   1678             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
   1679               return
   1680                 DAG.getSetCC(dl, VT, N0.getOperand(0),
   1681                              DAG.getConstant(LHSR->getAPIntValue() ^
   1682                                                RHSC->getAPIntValue(),
   1683                                              N0.getValueType()),
   1684                              Cond);
   1685         }
   1686 
   1687         // Turn (C1-X) == C2 --> X == C1-C2
   1688         if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
   1689           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
   1690             return
   1691               DAG.getSetCC(dl, VT, N0.getOperand(1),
   1692                            DAG.getConstant(SUBC->getAPIntValue() -
   1693                                              RHSC->getAPIntValue(),
   1694                                            N0.getValueType()),
   1695                            Cond);
   1696           }
   1697         }
   1698 
   1699         // Could RHSC fold directly into a compare?
   1700         if (RHSC->getValueType(0).getSizeInBits() <= 64)
   1701           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
   1702       }
   1703 
   1704       // Simplify (X+Z) == X -->  Z == 0
   1705       // Don't do this if X is an immediate that can fold into a cmp
   1706       // instruction and X+Z has other uses. It could be an induction variable
   1707       // chain, and the transform would increase register pressure.
   1708       if (!LegalRHSImm || N0.getNode()->hasOneUse()) {
   1709         if (N0.getOperand(0) == N1)
   1710           return DAG.getSetCC(dl, VT, N0.getOperand(1),
   1711                               DAG.getConstant(0, N0.getValueType()), Cond);
   1712         if (N0.getOperand(1) == N1) {
   1713           if (DAG.isCommutativeBinOp(N0.getOpcode()))
   1714             return DAG.getSetCC(dl, VT, N0.getOperand(0),
   1715                                 DAG.getConstant(0, N0.getValueType()), Cond);
   1716           if (N0.getNode()->hasOneUse()) {
   1717             assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
   1718             // (Z-X) == X  --> Z == X<<1
   1719             SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N1,
   1720                        DAG.getConstant(1, getShiftAmountTy(N1.getValueType())));
   1721             if (!DCI.isCalledByLegalizer())
   1722               DCI.AddToWorklist(SH.getNode());
   1723             return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
   1724           }
   1725         }
   1726       }
   1727     }
   1728 
   1729     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
   1730         N1.getOpcode() == ISD::XOR) {
   1731       // Simplify  X == (X+Z) -->  Z == 0
   1732       if (N1.getOperand(0) == N0)
   1733         return DAG.getSetCC(dl, VT, N1.getOperand(1),
   1734                         DAG.getConstant(0, N1.getValueType()), Cond);
   1735       if (N1.getOperand(1) == N0) {
   1736         if (DAG.isCommutativeBinOp(N1.getOpcode()))
   1737           return DAG.getSetCC(dl, VT, N1.getOperand(0),
   1738                           DAG.getConstant(0, N1.getValueType()), Cond);
   1739         if (N1.getNode()->hasOneUse()) {
   1740           assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
   1741           // X == (Z-X)  --> X<<1 == Z
   1742           SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
   1743                        DAG.getConstant(1, getShiftAmountTy(N0.getValueType())));
   1744           if (!DCI.isCalledByLegalizer())
   1745             DCI.AddToWorklist(SH.getNode());
   1746           return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
   1747         }
   1748       }
   1749     }
   1750 
   1751     // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
   1752     // Note that where y is variable and is known to have at most
   1753     // one bit set (for example, if it is z&1) we cannot do this;
   1754     // the expressions are not equivalent when y==0.
   1755     if (N0.getOpcode() == ISD::AND)
   1756       if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
   1757         if (ValueHasExactlyOneBitSet(N1, DAG)) {
   1758           Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
   1759           SDValue Zero = DAG.getConstant(0, N1.getValueType());
   1760           return DAG.getSetCC(dl, VT, N0, Zero, Cond);
   1761         }
   1762       }
   1763     if (N1.getOpcode() == ISD::AND)
   1764       if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
   1765         if (ValueHasExactlyOneBitSet(N0, DAG)) {
   1766           Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
   1767           SDValue Zero = DAG.getConstant(0, N0.getValueType());
   1768           return DAG.getSetCC(dl, VT, N1, Zero, Cond);
   1769         }
   1770       }
   1771   }
   1772 
   1773   // Fold away ALL boolean setcc's.
   1774   SDValue Temp;
   1775   if (N0.getValueType() == MVT::i1 && foldBooleans) {
   1776     switch (Cond) {
   1777     default: llvm_unreachable("Unknown integer setcc!");
   1778     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
   1779       Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
   1780       N0 = DAG.getNOT(dl, Temp, MVT::i1);
   1781       if (!DCI.isCalledByLegalizer())
   1782         DCI.AddToWorklist(Temp.getNode());
   1783       break;
   1784     case ISD::SETNE:  // X != Y   -->  (X^Y)
   1785       N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
   1786       break;
   1787     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
   1788     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
   1789       Temp = DAG.getNOT(dl, N0, MVT::i1);
   1790       N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
   1791       if (!DCI.isCalledByLegalizer())
   1792         DCI.AddToWorklist(Temp.getNode());
   1793       break;
   1794     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
   1795     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
   1796       Temp = DAG.getNOT(dl, N1, MVT::i1);
   1797       N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
   1798       if (!DCI.isCalledByLegalizer())
   1799         DCI.AddToWorklist(Temp.getNode());
   1800       break;
   1801     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
   1802     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
   1803       Temp = DAG.getNOT(dl, N0, MVT::i1);
   1804       N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
   1805       if (!DCI.isCalledByLegalizer())
   1806         DCI.AddToWorklist(Temp.getNode());
   1807       break;
   1808     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
   1809     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
   1810       Temp = DAG.getNOT(dl, N1, MVT::i1);
   1811       N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
   1812       break;
   1813     }
   1814     if (VT != MVT::i1) {
   1815       if (!DCI.isCalledByLegalizer())
   1816         DCI.AddToWorklist(N0.getNode());
   1817       // FIXME: If running after legalize, we probably can't do this.
   1818       N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
   1819     }
   1820     return N0;
   1821   }
   1822 
   1823   // Could not fold it.
   1824   return SDValue();
   1825 }
   1826 
   1827 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
   1828 /// node is a GlobalAddress + offset.
   1829 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA,
   1830                                     int64_t &Offset) const {
   1831   if (isa<GlobalAddressSDNode>(N)) {
   1832     GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
   1833     GA = GASD->getGlobal();
   1834     Offset += GASD->getOffset();
   1835     return true;
   1836   }
   1837 
   1838   if (N->getOpcode() == ISD::ADD) {
   1839     SDValue N1 = N->getOperand(0);
   1840     SDValue N2 = N->getOperand(1);
   1841     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
   1842       ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
   1843       if (V) {
   1844         Offset += V->getSExtValue();
   1845         return true;
   1846       }
   1847     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
   1848       ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
   1849       if (V) {
   1850         Offset += V->getSExtValue();
   1851         return true;
   1852       }
   1853     }
   1854   }
   1855 
   1856   return false;
   1857 }
   1858 
   1859 
   1860 SDValue TargetLowering::
   1861 PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
   1862   // Default implementation: no optimization.
   1863   return SDValue();
   1864 }
   1865 
   1866 //===----------------------------------------------------------------------===//
   1867 //  Inline Assembler Implementation Methods
   1868 //===----------------------------------------------------------------------===//
   1869 
   1870 
   1871 TargetLowering::ConstraintType
   1872 TargetLowering::getConstraintType(const std::string &Constraint) const {
   1873   unsigned S = Constraint.size();
   1874 
   1875   if (S == 1) {
   1876     switch (Constraint[0]) {
   1877     default: break;
   1878     case 'r': return C_RegisterClass;
   1879     case 'm':    // memory
   1880     case 'o':    // offsetable
   1881     case 'V':    // not offsetable
   1882       return C_Memory;
   1883     case 'i':    // Simple Integer or Relocatable Constant
   1884     case 'n':    // Simple Integer
   1885     case 'E':    // Floating Point Constant
   1886     case 'F':    // Floating Point Constant
   1887     case 's':    // Relocatable Constant
   1888     case 'p':    // Address.
   1889     case 'X':    // Allow ANY value.
   1890     case 'I':    // Target registers.
   1891     case 'J':
   1892     case 'K':
   1893     case 'L':
   1894     case 'M':
   1895     case 'N':
   1896     case 'O':
   1897     case 'P':
   1898     case '<':
   1899     case '>':
   1900       return C_Other;
   1901     }
   1902   }
   1903 
   1904   if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') {
   1905     if (S == 8 && !Constraint.compare(1, 6, "memory", 6))  // "{memory}"
   1906       return C_Memory;
   1907     return C_Register;
   1908   }
   1909   return C_Unknown;
   1910 }
   1911 
   1912 /// LowerXConstraint - try to replace an X constraint, which matches anything,
   1913 /// with another that has more specific requirements based on the type of the
   1914 /// corresponding operand.
   1915 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
   1916   if (ConstraintVT.isInteger())
   1917     return "r";
   1918   if (ConstraintVT.isFloatingPoint())
   1919     return "f";      // works for many targets
   1920   return 0;
   1921 }
   1922 
   1923 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
   1924 /// vector.  If it is invalid, don't add anything to Ops.
   1925 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
   1926                                                   std::string &Constraint,
   1927                                                   std::vector<SDValue> &Ops,
   1928                                                   SelectionDAG &DAG) const {
   1929 
   1930   if (Constraint.length() > 1) return;
   1931 
   1932   char ConstraintLetter = Constraint[0];
   1933   switch (ConstraintLetter) {
   1934   default: break;
   1935   case 'X':     // Allows any operand; labels (basic block) use this.
   1936     if (Op.getOpcode() == ISD::BasicBlock) {
   1937       Ops.push_back(Op);
   1938       return;
   1939     }
   1940     // fall through
   1941   case 'i':    // Simple Integer or Relocatable Constant
   1942   case 'n':    // Simple Integer
   1943   case 's': {  // Relocatable Constant
   1944     // These operands are interested in values of the form (GV+C), where C may
   1945     // be folded in as an offset of GV, or it may be explicitly added.  Also, it
   1946     // is possible and fine if either GV or C are missing.
   1947     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
   1948     GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
   1949 
   1950     // If we have "(add GV, C)", pull out GV/C
   1951     if (Op.getOpcode() == ISD::ADD) {
   1952       C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
   1953       GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
   1954       if (C == 0 || GA == 0) {
   1955         C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
   1956         GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
   1957       }
   1958       if (C == 0 || GA == 0)
   1959         C = 0, GA = 0;
   1960     }
   1961 
   1962     // If we find a valid operand, map to the TargetXXX version so that the
   1963     // value itself doesn't get selected.
   1964     if (GA) {   // Either &GV   or   &GV+C
   1965       if (ConstraintLetter != 'n') {
   1966         int64_t Offs = GA->getOffset();
   1967         if (C) Offs += C->getZExtValue();
   1968         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
   1969                                                  C ? C->getDebugLoc() : DebugLoc(),
   1970                                                  Op.getValueType(), Offs));
   1971         return;
   1972       }
   1973     }
   1974     if (C) {   // just C, no GV.
   1975       // Simple constants are not allowed for 's'.
   1976       if (ConstraintLetter != 's') {
   1977         // gcc prints these as sign extended.  Sign extend value to 64 bits
   1978         // now; without this it would get ZExt'd later in
   1979         // ScheduleDAGSDNodes::EmitNode, which is very generic.
   1980         Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
   1981                                             MVT::i64));
   1982         return;
   1983       }
   1984     }
   1985     break;
   1986   }
   1987   }
   1988 }
   1989 
   1990 std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
   1991 getRegForInlineAsmConstraint(const std::string &Constraint,
   1992                              EVT VT) const {
   1993   if (Constraint[0] != '{')
   1994     return std::make_pair(0u, static_cast<TargetRegisterClass*>(0));
   1995   assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
   1996 
   1997   // Remove the braces from around the name.
   1998   StringRef RegName(Constraint.data()+1, Constraint.size()-2);
   1999 
   2000   std::pair<unsigned, const TargetRegisterClass*> R =
   2001     std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
   2002 
   2003   // Figure out which register class contains this reg.
   2004   const TargetRegisterInfo *RI = getTargetMachine().getRegisterInfo();
   2005   for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
   2006        E = RI->regclass_end(); RCI != E; ++RCI) {
   2007     const TargetRegisterClass *RC = *RCI;
   2008 
   2009     // If none of the value types for this register class are valid, we
   2010     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
   2011     if (!isLegalRC(RC))
   2012       continue;
   2013 
   2014     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
   2015          I != E; ++I) {
   2016       if (RegName.equals_lower(RI->getName(*I))) {
   2017         std::pair<unsigned, const TargetRegisterClass*> S =
   2018           std::make_pair(*I, RC);
   2019 
   2020         // If this register class has the requested value type, return it,
   2021         // otherwise keep searching and return the first class found
   2022         // if no other is found which explicitly has the requested type.
   2023         if (RC->hasType(VT))
   2024           return S;
   2025         else if (!R.second)
   2026           R = S;
   2027       }
   2028     }
   2029   }
   2030 
   2031   return R;
   2032 }
   2033 
   2034 //===----------------------------------------------------------------------===//
   2035 // Constraint Selection.
   2036 
   2037 /// isMatchingInputConstraint - Return true of this is an input operand that is
   2038 /// a matching constraint like "4".
   2039 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
   2040   assert(!ConstraintCode.empty() && "No known constraint!");
   2041   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
   2042 }
   2043 
   2044 /// getMatchedOperand - If this is an input matching constraint, this method
   2045 /// returns the output operand it matches.
   2046 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
   2047   assert(!ConstraintCode.empty() && "No known constraint!");
   2048   return atoi(ConstraintCode.c_str());
   2049 }
   2050 
   2051 
   2052 /// ParseConstraints - Split up the constraint string from the inline
   2053 /// assembly value into the specific constraints and their prefixes,
   2054 /// and also tie in the associated operand values.
   2055 /// If this returns an empty vector, and if the constraint string itself
   2056 /// isn't empty, there was an error parsing.
   2057 TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints(
   2058     ImmutableCallSite CS) const {
   2059   /// ConstraintOperands - Information about all of the constraints.
   2060   AsmOperandInfoVector ConstraintOperands;
   2061   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
   2062   unsigned maCount = 0; // Largest number of multiple alternative constraints.
   2063 
   2064   // Do a prepass over the constraints, canonicalizing them, and building up the
   2065   // ConstraintOperands list.
   2066   InlineAsm::ConstraintInfoVector
   2067     ConstraintInfos = IA->ParseConstraints();
   2068 
   2069   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
   2070   unsigned ResNo = 0;   // ResNo - The result number of the next output.
   2071 
   2072   for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
   2073     ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
   2074     AsmOperandInfo &OpInfo = ConstraintOperands.back();
   2075 
   2076     // Update multiple alternative constraint count.
   2077     if (OpInfo.multipleAlternatives.size() > maCount)
   2078       maCount = OpInfo.multipleAlternatives.size();
   2079 
   2080     OpInfo.ConstraintVT = MVT::Other;
   2081 
   2082     // Compute the value type for each operand.
   2083     switch (OpInfo.Type) {
   2084     case InlineAsm::isOutput:
   2085       // Indirect outputs just consume an argument.
   2086       if (OpInfo.isIndirect) {
   2087         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
   2088         break;
   2089       }
   2090 
   2091       // The return value of the call is this value.  As such, there is no
   2092       // corresponding argument.
   2093       assert(!CS.getType()->isVoidTy() &&
   2094              "Bad inline asm!");
   2095       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
   2096         OpInfo.ConstraintVT = getSimpleValueType(STy->getElementType(ResNo));
   2097       } else {
   2098         assert(ResNo == 0 && "Asm only has one result!");
   2099         OpInfo.ConstraintVT = getSimpleValueType(CS.getType());
   2100       }
   2101       ++ResNo;
   2102       break;
   2103     case InlineAsm::isInput:
   2104       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
   2105       break;
   2106     case InlineAsm::isClobber:
   2107       // Nothing to do.
   2108       break;
   2109     }
   2110 
   2111     if (OpInfo.CallOperandVal) {
   2112       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
   2113       if (OpInfo.isIndirect) {
   2114         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
   2115         if (!PtrTy)
   2116           report_fatal_error("Indirect operand for inline asm not a pointer!");
   2117         OpTy = PtrTy->getElementType();
   2118       }
   2119 
   2120       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
   2121       if (StructType *STy = dyn_cast<StructType>(OpTy))
   2122         if (STy->getNumElements() == 1)
   2123           OpTy = STy->getElementType(0);
   2124 
   2125       // If OpTy is not a single value, it may be a struct/union that we
   2126       // can tile with integers.
   2127       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
   2128         unsigned BitSize = getDataLayout()->getTypeSizeInBits(OpTy);
   2129         switch (BitSize) {
   2130         default: break;
   2131         case 1:
   2132         case 8:
   2133         case 16:
   2134         case 32:
   2135         case 64:
   2136         case 128:
   2137           OpInfo.ConstraintVT =
   2138             MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
   2139           break;
   2140         }
   2141       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
   2142         OpInfo.ConstraintVT = MVT::getIntegerVT(
   2143             8*getDataLayout()->getPointerSize(PT->getAddressSpace()));
   2144       } else {
   2145         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
   2146       }
   2147     }
   2148   }
   2149 
   2150   // If we have multiple alternative constraints, select the best alternative.
   2151   if (ConstraintInfos.size()) {
   2152     if (maCount) {
   2153       unsigned bestMAIndex = 0;
   2154       int bestWeight = -1;
   2155       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
   2156       int weight = -1;
   2157       unsigned maIndex;
   2158       // Compute the sums of the weights for each alternative, keeping track
   2159       // of the best (highest weight) one so far.
   2160       for (maIndex = 0; maIndex < maCount; ++maIndex) {
   2161         int weightSum = 0;
   2162         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
   2163             cIndex != eIndex; ++cIndex) {
   2164           AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
   2165           if (OpInfo.Type == InlineAsm::isClobber)
   2166             continue;
   2167 
   2168           // If this is an output operand with a matching input operand,
   2169           // look up the matching input. If their types mismatch, e.g. one
   2170           // is an integer, the other is floating point, or their sizes are
   2171           // different, flag it as an maCantMatch.
   2172           if (OpInfo.hasMatchingInput()) {
   2173             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
   2174             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
   2175               if ((OpInfo.ConstraintVT.isInteger() !=
   2176                    Input.ConstraintVT.isInteger()) ||
   2177                   (OpInfo.ConstraintVT.getSizeInBits() !=
   2178                    Input.ConstraintVT.getSizeInBits())) {
   2179                 weightSum = -1;  // Can't match.
   2180                 break;
   2181               }
   2182             }
   2183           }
   2184           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
   2185           if (weight == -1) {
   2186             weightSum = -1;
   2187             break;
   2188           }
   2189           weightSum += weight;
   2190         }
   2191         // Update best.
   2192         if (weightSum > bestWeight) {
   2193           bestWeight = weightSum;
   2194           bestMAIndex = maIndex;
   2195         }
   2196       }
   2197 
   2198       // Now select chosen alternative in each constraint.
   2199       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
   2200           cIndex != eIndex; ++cIndex) {
   2201         AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
   2202         if (cInfo.Type == InlineAsm::isClobber)
   2203           continue;
   2204         cInfo.selectAlternative(bestMAIndex);
   2205       }
   2206     }
   2207   }
   2208 
   2209   // Check and hook up tied operands, choose constraint code to use.
   2210   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
   2211       cIndex != eIndex; ++cIndex) {
   2212     AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
   2213 
   2214     // If this is an output operand with a matching input operand, look up the
   2215     // matching input. If their types mismatch, e.g. one is an integer, the
   2216     // other is floating point, or their sizes are different, flag it as an
   2217     // error.
   2218     if (OpInfo.hasMatchingInput()) {
   2219       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
   2220 
   2221       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
   2222         std::pair<unsigned, const TargetRegisterClass*> MatchRC =
   2223           getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
   2224                                        OpInfo.ConstraintVT);
   2225         std::pair<unsigned, const TargetRegisterClass*> InputRC =
   2226           getRegForInlineAsmConstraint(Input.ConstraintCode,
   2227                                        Input.ConstraintVT);
   2228         if ((OpInfo.ConstraintVT.isInteger() !=
   2229              Input.ConstraintVT.isInteger()) ||
   2230             (MatchRC.second != InputRC.second)) {
   2231           report_fatal_error("Unsupported asm: input constraint"
   2232                              " with a matching output constraint of"
   2233                              " incompatible type!");
   2234         }
   2235       }
   2236 
   2237     }
   2238   }
   2239 
   2240   return ConstraintOperands;
   2241 }
   2242 
   2243 
   2244 /// getConstraintGenerality - Return an integer indicating how general CT
   2245 /// is.
   2246 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
   2247   switch (CT) {
   2248   case TargetLowering::C_Other:
   2249   case TargetLowering::C_Unknown:
   2250     return 0;
   2251   case TargetLowering::C_Register:
   2252     return 1;
   2253   case TargetLowering::C_RegisterClass:
   2254     return 2;
   2255   case TargetLowering::C_Memory:
   2256     return 3;
   2257   }
   2258   llvm_unreachable("Invalid constraint type");
   2259 }
   2260 
   2261 /// Examine constraint type and operand type and determine a weight value.
   2262 /// This object must already have been set up with the operand type
   2263 /// and the current alternative constraint selected.
   2264 TargetLowering::ConstraintWeight
   2265   TargetLowering::getMultipleConstraintMatchWeight(
   2266     AsmOperandInfo &info, int maIndex) const {
   2267   InlineAsm::ConstraintCodeVector *rCodes;
   2268   if (maIndex >= (int)info.multipleAlternatives.size())
   2269     rCodes = &info.Codes;
   2270   else
   2271     rCodes = &info.multipleAlternatives[maIndex].Codes;
   2272   ConstraintWeight BestWeight = CW_Invalid;
   2273 
   2274   // Loop over the options, keeping track of the most general one.
   2275   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
   2276     ConstraintWeight weight =
   2277       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
   2278     if (weight > BestWeight)
   2279       BestWeight = weight;
   2280   }
   2281 
   2282   return BestWeight;
   2283 }
   2284 
   2285 /// Examine constraint type and operand type and determine a weight value.
   2286 /// This object must already have been set up with the operand type
   2287 /// and the current alternative constraint selected.
   2288 TargetLowering::ConstraintWeight
   2289   TargetLowering::getSingleConstraintMatchWeight(
   2290     AsmOperandInfo &info, const char *constraint) const {
   2291   ConstraintWeight weight = CW_Invalid;
   2292   Value *CallOperandVal = info.CallOperandVal;
   2293     // If we don't have a value, we can't do a match,
   2294     // but allow it at the lowest weight.
   2295   if (CallOperandVal == NULL)
   2296     return CW_Default;
   2297   // Look at the constraint type.
   2298   switch (*constraint) {
   2299     case 'i': // immediate integer.
   2300     case 'n': // immediate integer with a known value.
   2301       if (isa<ConstantInt>(CallOperandVal))
   2302         weight = CW_Constant;
   2303       break;
   2304     case 's': // non-explicit intregal immediate.
   2305       if (isa<GlobalValue>(CallOperandVal))
   2306         weight = CW_Constant;
   2307       break;
   2308     case 'E': // immediate float if host format.
   2309     case 'F': // immediate float.
   2310       if (isa<ConstantFP>(CallOperandVal))
   2311         weight = CW_Constant;
   2312       break;
   2313     case '<': // memory operand with autodecrement.
   2314     case '>': // memory operand with autoincrement.
   2315     case 'm': // memory operand.
   2316     case 'o': // offsettable memory operand
   2317     case 'V': // non-offsettable memory operand
   2318       weight = CW_Memory;
   2319       break;
   2320     case 'r': // general register.
   2321     case 'g': // general register, memory operand or immediate integer.
   2322               // note: Clang converts "g" to "imr".
   2323       if (CallOperandVal->getType()->isIntegerTy())
   2324         weight = CW_Register;
   2325       break;
   2326     case 'X': // any operand.
   2327     default:
   2328       weight = CW_Default;
   2329       break;
   2330   }
   2331   return weight;
   2332 }
   2333 
   2334 /// ChooseConstraint - If there are multiple different constraints that we
   2335 /// could pick for this operand (e.g. "imr") try to pick the 'best' one.
   2336 /// This is somewhat tricky: constraints fall into four classes:
   2337 ///    Other         -> immediates and magic values
   2338 ///    Register      -> one specific register
   2339 ///    RegisterClass -> a group of regs
   2340 ///    Memory        -> memory
   2341 /// Ideally, we would pick the most specific constraint possible: if we have
   2342 /// something that fits into a register, we would pick it.  The problem here
   2343 /// is that if we have something that could either be in a register or in
   2344 /// memory that use of the register could cause selection of *other*
   2345 /// operands to fail: they might only succeed if we pick memory.  Because of
   2346 /// this the heuristic we use is:
   2347 ///
   2348 ///  1) If there is an 'other' constraint, and if the operand is valid for
   2349 ///     that constraint, use it.  This makes us take advantage of 'i'
   2350 ///     constraints when available.
   2351 ///  2) Otherwise, pick the most general constraint present.  This prefers
   2352 ///     'm' over 'r', for example.
   2353 ///
   2354 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
   2355                              const TargetLowering &TLI,
   2356                              SDValue Op, SelectionDAG *DAG) {
   2357   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
   2358   unsigned BestIdx = 0;
   2359   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
   2360   int BestGenerality = -1;
   2361 
   2362   // Loop over the options, keeping track of the most general one.
   2363   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
   2364     TargetLowering::ConstraintType CType =
   2365       TLI.getConstraintType(OpInfo.Codes[i]);
   2366 
   2367     // If this is an 'other' constraint, see if the operand is valid for it.
   2368     // For example, on X86 we might have an 'rI' constraint.  If the operand
   2369     // is an integer in the range [0..31] we want to use I (saving a load
   2370     // of a register), otherwise we must use 'r'.
   2371     if (CType == TargetLowering::C_Other && Op.getNode()) {
   2372       assert(OpInfo.Codes[i].size() == 1 &&
   2373              "Unhandled multi-letter 'other' constraint");
   2374       std::vector<SDValue> ResultOps;
   2375       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
   2376                                        ResultOps, *DAG);
   2377       if (!ResultOps.empty()) {
   2378         BestType = CType;
   2379         BestIdx = i;
   2380         break;
   2381       }
   2382     }
   2383 
   2384     // Things with matching constraints can only be registers, per gcc
   2385     // documentation.  This mainly affects "g" constraints.
   2386     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
   2387       continue;
   2388 
   2389     // This constraint letter is more general than the previous one, use it.
   2390     int Generality = getConstraintGenerality(CType);
   2391     if (Generality > BestGenerality) {
   2392       BestType = CType;
   2393       BestIdx = i;
   2394       BestGenerality = Generality;
   2395     }
   2396   }
   2397 
   2398   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
   2399   OpInfo.ConstraintType = BestType;
   2400 }
   2401 
   2402 /// ComputeConstraintToUse - Determines the constraint code and constraint
   2403 /// type to use for the specific AsmOperandInfo, setting
   2404 /// OpInfo.ConstraintCode and OpInfo.ConstraintType.
   2405 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
   2406                                             SDValue Op,
   2407                                             SelectionDAG *DAG) const {
   2408   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
   2409 
   2410   // Single-letter constraints ('r') are very common.
   2411   if (OpInfo.Codes.size() == 1) {
   2412     OpInfo.ConstraintCode = OpInfo.Codes[0];
   2413     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
   2414   } else {
   2415     ChooseConstraint(OpInfo, *this, Op, DAG);
   2416   }
   2417 
   2418   // 'X' matches anything.
   2419   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
   2420     // Labels and constants are handled elsewhere ('X' is the only thing
   2421     // that matches labels).  For Functions, the type here is the type of
   2422     // the result, which is not what we want to look at; leave them alone.
   2423     Value *v = OpInfo.CallOperandVal;
   2424     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
   2425       OpInfo.CallOperandVal = v;
   2426       return;
   2427     }
   2428 
   2429     // Otherwise, try to resolve it to something we know about by looking at
   2430     // the actual operand type.
   2431     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
   2432       OpInfo.ConstraintCode = Repl;
   2433       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
   2434     }
   2435   }
   2436 }
   2437 
   2438 /// BuildExactDiv - Given an exact SDIV by a constant, create a multiplication
   2439 /// with the multiplicative inverse of the constant.
   2440 SDValue TargetLowering::BuildExactSDIV(SDValue Op1, SDValue Op2, DebugLoc dl,
   2441                                        SelectionDAG &DAG) const {
   2442   ConstantSDNode *C = cast<ConstantSDNode>(Op2);
   2443   APInt d = C->getAPIntValue();
   2444   assert(d != 0 && "Division by zero!");
   2445 
   2446   // Shift the value upfront if it is even, so the LSB is one.
   2447   unsigned ShAmt = d.countTrailingZeros();
   2448   if (ShAmt) {
   2449     // TODO: For UDIV use SRL instead of SRA.
   2450     SDValue Amt = DAG.getConstant(ShAmt, getShiftAmountTy(Op1.getValueType()));
   2451     Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt);
   2452     d = d.ashr(ShAmt);
   2453   }
   2454 
   2455   // Calculate the multiplicative inverse, using Newton's method.
   2456   APInt t, xn = d;
   2457   while ((t = d*xn) != 1)
   2458     xn *= APInt(d.getBitWidth(), 2) - t;
   2459 
   2460   Op2 = DAG.getConstant(xn, Op1.getValueType());
   2461   return DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2);
   2462 }
   2463 
   2464 /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
   2465 /// return a DAG expression to select that will generate the same value by
   2466 /// multiplying by a magic number.  See:
   2467 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
   2468 SDValue TargetLowering::
   2469 BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
   2470           std::vector<SDNode*> *Created) const {
   2471   EVT VT = N->getValueType(0);
   2472   DebugLoc dl= N->getDebugLoc();
   2473 
   2474   // Check to see if we can do this.
   2475   // FIXME: We should be more aggressive here.
   2476   if (!isTypeLegal(VT))
   2477     return SDValue();
   2478 
   2479   APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
   2480   APInt::ms magics = d.magic();
   2481 
   2482   // Multiply the numerator (operand 0) by the magic value
   2483   // FIXME: We should support doing a MUL in a wider type
   2484   SDValue Q;
   2485   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) :
   2486                             isOperationLegalOrCustom(ISD::MULHS, VT))
   2487     Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
   2488                     DAG.getConstant(magics.m, VT));
   2489   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) :
   2490                                  isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
   2491     Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
   2492                               N->getOperand(0),
   2493                               DAG.getConstant(magics.m, VT)).getNode(), 1);
   2494   else
   2495     return SDValue();       // No mulhs or equvialent
   2496   // If d > 0 and m < 0, add the numerator
   2497   if (d.isStrictlyPositive() && magics.m.isNegative()) {
   2498     Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
   2499     if (Created)
   2500       Created->push_back(Q.getNode());
   2501   }
   2502   // If d < 0 and m > 0, subtract the numerator.
   2503   if (d.isNegative() && magics.m.isStrictlyPositive()) {
   2504     Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
   2505     if (Created)
   2506       Created->push_back(Q.getNode());
   2507   }
   2508   // Shift right algebraic if shift value is nonzero
   2509   if (magics.s > 0) {
   2510     Q = DAG.getNode(ISD::SRA, dl, VT, Q,
   2511                  DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
   2512     if (Created)
   2513       Created->push_back(Q.getNode());
   2514   }
   2515   // Extract the sign bit and add it to the quotient
   2516   SDValue T =
   2517     DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
   2518                                            getShiftAmountTy(Q.getValueType())));
   2519   if (Created)
   2520     Created->push_back(T.getNode());
   2521   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
   2522 }
   2523 
   2524 /// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
   2525 /// return a DAG expression to select that will generate the same value by
   2526 /// multiplying by a magic number.  See:
   2527 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
   2528 SDValue TargetLowering::
   2529 BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
   2530           std::vector<SDNode*> *Created) const {
   2531   EVT VT = N->getValueType(0);
   2532   DebugLoc dl = N->getDebugLoc();
   2533 
   2534   // Check to see if we can do this.
   2535   // FIXME: We should be more aggressive here.
   2536   if (!isTypeLegal(VT))
   2537     return SDValue();
   2538 
   2539   // FIXME: We should use a narrower constant when the upper
   2540   // bits are known to be zero.
   2541   const APInt &N1C = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
   2542   APInt::mu magics = N1C.magicu();
   2543 
   2544   SDValue Q = N->getOperand(0);
   2545 
   2546   // If the divisor is even, we can avoid using the expensive fixup by shifting
   2547   // the divided value upfront.
   2548   if (magics.a != 0 && !N1C[0]) {
   2549     unsigned Shift = N1C.countTrailingZeros();
   2550     Q = DAG.getNode(ISD::SRL, dl, VT, Q,
   2551                     DAG.getConstant(Shift, getShiftAmountTy(Q.getValueType())));
   2552     if (Created)
   2553       Created->push_back(Q.getNode());
   2554 
   2555     // Get magic number for the shifted divisor.
   2556     magics = N1C.lshr(Shift).magicu(Shift);
   2557     assert(magics.a == 0 && "Should use cheap fixup now");
   2558   }
   2559 
   2560   // Multiply the numerator (operand 0) by the magic value
   2561   // FIXME: We should support doing a MUL in a wider type
   2562   if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) :
   2563                             isOperationLegalOrCustom(ISD::MULHU, VT))
   2564     Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, VT));
   2565   else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) :
   2566                                  isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
   2567     Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q,
   2568                             DAG.getConstant(magics.m, VT)).getNode(), 1);
   2569   else
   2570     return SDValue();       // No mulhu or equvialent
   2571   if (Created)
   2572     Created->push_back(Q.getNode());
   2573 
   2574   if (magics.a == 0) {
   2575     assert(magics.s < N1C.getBitWidth() &&
   2576            "We shouldn't generate an undefined shift!");
   2577     return DAG.getNode(ISD::SRL, dl, VT, Q,
   2578                  DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
   2579   } else {
   2580     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
   2581     if (Created)
   2582       Created->push_back(NPQ.getNode());
   2583     NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
   2584                       DAG.getConstant(1, getShiftAmountTy(NPQ.getValueType())));
   2585     if (Created)
   2586       Created->push_back(NPQ.getNode());
   2587     NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
   2588     if (Created)
   2589       Created->push_back(NPQ.getNode());
   2590     return DAG.getNode(ISD::SRL, dl, VT, NPQ,
   2591              DAG.getConstant(magics.s-1, getShiftAmountTy(NPQ.getValueType())));
   2592   }
   2593 }
   2594