Home | History | Annotate | Download | only in Scalar
      1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This transformation analyzes and transforms the induction variables (and
     11 // computations derived from them) into forms suitable for efficient execution
     12 // on the target.
     13 //
     14 // This pass performs a strength reduction on array references inside loops that
     15 // have as one or more of their components the loop induction variable, it
     16 // rewrites expressions to take advantage of scaled-index addressing modes
     17 // available on the target, and it performs a variety of other optimizations
     18 // related to loop induction variables.
     19 //
     20 // Terminology note: this code has a lot of handling for "post-increment" or
     21 // "post-inc" users. This is not talking about post-increment addressing modes;
     22 // it is instead talking about code like this:
     23 //
     24 //   %i = phi [ 0, %entry ], [ %i.next, %latch ]
     25 //   ...
     26 //   %i.next = add %i, 1
     27 //   %c = icmp eq %i.next, %n
     28 //
     29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
     30 // it's useful to think about these as the same register, with some uses using
     31 // the value of the register before the add and some using // it after. In this
     32 // example, the icmp is a post-increment user, since it uses %i.next, which is
     33 // the value of the induction variable after the increment. The other common
     34 // case of post-increment users is users outside the loop.
     35 //
     36 // TODO: More sophistication in the way Formulae are generated and filtered.
     37 //
     38 // TODO: Handle multiple loops at a time.
     39 //
     40 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
     41 //       of a GlobalValue?
     42 //
     43 // TODO: When truncation is free, truncate ICmp users' operands to make it a
     44 //       smaller encoding (on x86 at least).
     45 //
     46 // TODO: When a negated register is used by an add (such as in a list of
     47 //       multiple base registers, or as the increment expression in an addrec),
     48 //       we may not actually need both reg and (-1 * reg) in registers; the
     49 //       negation can be implemented by using a sub instead of an add. The
     50 //       lack of support for taking this into consideration when making
     51 //       register pressure decisions is partly worked around by the "Special"
     52 //       use kind.
     53 //
     54 //===----------------------------------------------------------------------===//
     55 
     56 #define DEBUG_TYPE "loop-reduce"
     57 #include "llvm/Transforms/Scalar.h"
     58 #include "llvm/ADT/DenseSet.h"
     59 #include "llvm/ADT/SetVector.h"
     60 #include "llvm/ADT/SmallBitVector.h"
     61 #include "llvm/ADT/STLExtras.h"
     62 #include "llvm/Analysis/Dominators.h"
     63 #include "llvm/Analysis/IVUsers.h"
     64 #include "llvm/Analysis/LoopPass.h"
     65 #include "llvm/Analysis/ScalarEvolutionExpander.h"
     66 #include "llvm/Analysis/TargetTransformInfo.h"
     67 #include "llvm/Assembly/Writer.h"
     68 #include "llvm/IR/Constants.h"
     69 #include "llvm/IR/DerivedTypes.h"
     70 #include "llvm/IR/Instructions.h"
     71 #include "llvm/IR/IntrinsicInst.h"
     72 #include "llvm/Support/CommandLine.h"
     73 #include "llvm/Support/Debug.h"
     74 #include "llvm/Support/ValueHandle.h"
     75 #include "llvm/Support/raw_ostream.h"
     76 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     77 #include "llvm/Transforms/Utils/Local.h"
     78 #include <algorithm>
     79 using namespace llvm;
     80 
     81 /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for
     82 /// bail out. This threshold is far beyond the number of users that LSR can
     83 /// conceivably solve, so it should not affect generated code, but catches the
     84 /// worst cases before LSR burns too much compile time and stack space.
     85 static const unsigned MaxIVUsers = 200;
     86 
     87 // Temporary flag to cleanup congruent phis after LSR phi expansion.
     88 // It's currently disabled until we can determine whether it's truly useful or
     89 // not. The flag should be removed after the v3.0 release.
     90 // This is now needed for ivchains.
     91 static cl::opt<bool> EnablePhiElim(
     92   "enable-lsr-phielim", cl::Hidden, cl::init(true),
     93   cl::desc("Enable LSR phi elimination"));
     94 
     95 #ifndef NDEBUG
     96 // Stress test IV chain generation.
     97 static cl::opt<bool> StressIVChain(
     98   "stress-ivchain", cl::Hidden, cl::init(false),
     99   cl::desc("Stress test LSR IV chains"));
    100 #else
    101 static bool StressIVChain = false;
    102 #endif
    103 
    104 namespace {
    105 
    106 /// RegSortData - This class holds data which is used to order reuse candidates.
    107 class RegSortData {
    108 public:
    109   /// UsedByIndices - This represents the set of LSRUse indices which reference
    110   /// a particular register.
    111   SmallBitVector UsedByIndices;
    112 
    113   RegSortData() {}
    114 
    115   void print(raw_ostream &OS) const;
    116   void dump() const;
    117 };
    118 
    119 }
    120 
    121 void RegSortData::print(raw_ostream &OS) const {
    122   OS << "[NumUses=" << UsedByIndices.count() << ']';
    123 }
    124 
    125 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    126 void RegSortData::dump() const {
    127   print(errs()); errs() << '\n';
    128 }
    129 #endif
    130 
    131 namespace {
    132 
    133 /// RegUseTracker - Map register candidates to information about how they are
    134 /// used.
    135 class RegUseTracker {
    136   typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;
    137 
    138   RegUsesTy RegUsesMap;
    139   SmallVector<const SCEV *, 16> RegSequence;
    140 
    141 public:
    142   void CountRegister(const SCEV *Reg, size_t LUIdx);
    143   void DropRegister(const SCEV *Reg, size_t LUIdx);
    144   void SwapAndDropUse(size_t LUIdx, size_t LastLUIdx);
    145 
    146   bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
    147 
    148   const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
    149 
    150   void clear();
    151 
    152   typedef SmallVectorImpl<const SCEV *>::iterator iterator;
    153   typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator;
    154   iterator begin() { return RegSequence.begin(); }
    155   iterator end()   { return RegSequence.end(); }
    156   const_iterator begin() const { return RegSequence.begin(); }
    157   const_iterator end() const   { return RegSequence.end(); }
    158 };
    159 
    160 }
    161 
    162 void
    163 RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) {
    164   std::pair<RegUsesTy::iterator, bool> Pair =
    165     RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
    166   RegSortData &RSD = Pair.first->second;
    167   if (Pair.second)
    168     RegSequence.push_back(Reg);
    169   RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
    170   RSD.UsedByIndices.set(LUIdx);
    171 }
    172 
    173 void
    174 RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) {
    175   RegUsesTy::iterator It = RegUsesMap.find(Reg);
    176   assert(It != RegUsesMap.end());
    177   RegSortData &RSD = It->second;
    178   assert(RSD.UsedByIndices.size() > LUIdx);
    179   RSD.UsedByIndices.reset(LUIdx);
    180 }
    181 
    182 void
    183 RegUseTracker::SwapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
    184   assert(LUIdx <= LastLUIdx);
    185 
    186   // Update RegUses. The data structure is not optimized for this purpose;
    187   // we must iterate through it and update each of the bit vectors.
    188   for (RegUsesTy::iterator I = RegUsesMap.begin(), E = RegUsesMap.end();
    189        I != E; ++I) {
    190     SmallBitVector &UsedByIndices = I->second.UsedByIndices;
    191     if (LUIdx < UsedByIndices.size())
    192       UsedByIndices[LUIdx] =
    193         LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : 0;
    194     UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
    195   }
    196 }
    197 
    198 bool
    199 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
    200   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
    201   if (I == RegUsesMap.end())
    202     return false;
    203   const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
    204   int i = UsedByIndices.find_first();
    205   if (i == -1) return false;
    206   if ((size_t)i != LUIdx) return true;
    207   return UsedByIndices.find_next(i) != -1;
    208 }
    209 
    210 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
    211   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
    212   assert(I != RegUsesMap.end() && "Unknown register!");
    213   return I->second.UsedByIndices;
    214 }
    215 
    216 void RegUseTracker::clear() {
    217   RegUsesMap.clear();
    218   RegSequence.clear();
    219 }
    220 
    221 namespace {
    222 
    223 /// Formula - This class holds information that describes a formula for
    224 /// computing satisfying a use. It may include broken-out immediates and scaled
    225 /// registers.
    226 struct Formula {
    227   /// Global base address used for complex addressing.
    228   GlobalValue *BaseGV;
    229 
    230   /// Base offset for complex addressing.
    231   int64_t BaseOffset;
    232 
    233   /// Whether any complex addressing has a base register.
    234   bool HasBaseReg;
    235 
    236   /// The scale of any complex addressing.
    237   int64_t Scale;
    238 
    239   /// BaseRegs - The list of "base" registers for this use. When this is
    240   /// non-empty,
    241   SmallVector<const SCEV *, 4> BaseRegs;
    242 
    243   /// ScaledReg - The 'scaled' register for this use. This should be non-null
    244   /// when Scale is not zero.
    245   const SCEV *ScaledReg;
    246 
    247   /// UnfoldedOffset - An additional constant offset which added near the
    248   /// use. This requires a temporary register, but the offset itself can
    249   /// live in an add immediate field rather than a register.
    250   int64_t UnfoldedOffset;
    251 
    252   Formula()
    253       : BaseGV(0), BaseOffset(0), HasBaseReg(false), Scale(0), ScaledReg(0),
    254         UnfoldedOffset(0) {}
    255 
    256   void InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
    257 
    258   unsigned getNumRegs() const;
    259   Type *getType() const;
    260 
    261   void DeleteBaseReg(const SCEV *&S);
    262 
    263   bool referencesReg(const SCEV *S) const;
    264   bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
    265                                   const RegUseTracker &RegUses) const;
    266 
    267   void print(raw_ostream &OS) const;
    268   void dump() const;
    269 };
    270 
    271 }
    272 
    273 /// DoInitialMatch - Recursion helper for InitialMatch.
    274 static void DoInitialMatch(const SCEV *S, Loop *L,
    275                            SmallVectorImpl<const SCEV *> &Good,
    276                            SmallVectorImpl<const SCEV *> &Bad,
    277                            ScalarEvolution &SE) {
    278   // Collect expressions which properly dominate the loop header.
    279   if (SE.properlyDominates(S, L->getHeader())) {
    280     Good.push_back(S);
    281     return;
    282   }
    283 
    284   // Look at add operands.
    285   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
    286     for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
    287          I != E; ++I)
    288       DoInitialMatch(*I, L, Good, Bad, SE);
    289     return;
    290   }
    291 
    292   // Look at addrec operands.
    293   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
    294     if (!AR->getStart()->isZero()) {
    295       DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
    296       DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
    297                                       AR->getStepRecurrence(SE),
    298                                       // FIXME: AR->getNoWrapFlags()
    299                                       AR->getLoop(), SCEV::FlagAnyWrap),
    300                      L, Good, Bad, SE);
    301       return;
    302     }
    303 
    304   // Handle a multiplication by -1 (negation) if it didn't fold.
    305   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
    306     if (Mul->getOperand(0)->isAllOnesValue()) {
    307       SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
    308       const SCEV *NewMul = SE.getMulExpr(Ops);
    309 
    310       SmallVector<const SCEV *, 4> MyGood;
    311       SmallVector<const SCEV *, 4> MyBad;
    312       DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
    313       const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
    314         SE.getEffectiveSCEVType(NewMul->getType())));
    315       for (SmallVectorImpl<const SCEV *>::const_iterator I = MyGood.begin(),
    316            E = MyGood.end(); I != E; ++I)
    317         Good.push_back(SE.getMulExpr(NegOne, *I));
    318       for (SmallVectorImpl<const SCEV *>::const_iterator I = MyBad.begin(),
    319            E = MyBad.end(); I != E; ++I)
    320         Bad.push_back(SE.getMulExpr(NegOne, *I));
    321       return;
    322     }
    323 
    324   // Ok, we can't do anything interesting. Just stuff the whole thing into a
    325   // register and hope for the best.
    326   Bad.push_back(S);
    327 }
    328 
    329 /// InitialMatch - Incorporate loop-variant parts of S into this Formula,
    330 /// attempting to keep all loop-invariant and loop-computable values in a
    331 /// single base register.
    332 void Formula::InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
    333   SmallVector<const SCEV *, 4> Good;
    334   SmallVector<const SCEV *, 4> Bad;
    335   DoInitialMatch(S, L, Good, Bad, SE);
    336   if (!Good.empty()) {
    337     const SCEV *Sum = SE.getAddExpr(Good);
    338     if (!Sum->isZero())
    339       BaseRegs.push_back(Sum);
    340     HasBaseReg = true;
    341   }
    342   if (!Bad.empty()) {
    343     const SCEV *Sum = SE.getAddExpr(Bad);
    344     if (!Sum->isZero())
    345       BaseRegs.push_back(Sum);
    346     HasBaseReg = true;
    347   }
    348 }
    349 
    350 /// getNumRegs - Return the total number of register operands used by this
    351 /// formula. This does not include register uses implied by non-constant
    352 /// addrec strides.
    353 unsigned Formula::getNumRegs() const {
    354   return !!ScaledReg + BaseRegs.size();
    355 }
    356 
    357 /// getType - Return the type of this formula, if it has one, or null
    358 /// otherwise. This type is meaningless except for the bit size.
    359 Type *Formula::getType() const {
    360   return !BaseRegs.empty() ? BaseRegs.front()->getType() :
    361          ScaledReg ? ScaledReg->getType() :
    362          BaseGV ? BaseGV->getType() :
    363          0;
    364 }
    365 
    366 /// DeleteBaseReg - Delete the given base reg from the BaseRegs list.
    367 void Formula::DeleteBaseReg(const SCEV *&S) {
    368   if (&S != &BaseRegs.back())
    369     std::swap(S, BaseRegs.back());
    370   BaseRegs.pop_back();
    371 }
    372 
    373 /// referencesReg - Test if this formula references the given register.
    374 bool Formula::referencesReg(const SCEV *S) const {
    375   return S == ScaledReg ||
    376          std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end();
    377 }
    378 
    379 /// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers
    380 /// which are used by uses other than the use with the given index.
    381 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
    382                                          const RegUseTracker &RegUses) const {
    383   if (ScaledReg)
    384     if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
    385       return true;
    386   for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
    387        E = BaseRegs.end(); I != E; ++I)
    388     if (RegUses.isRegUsedByUsesOtherThan(*I, LUIdx))
    389       return true;
    390   return false;
    391 }
    392 
    393 void Formula::print(raw_ostream &OS) const {
    394   bool First = true;
    395   if (BaseGV) {
    396     if (!First) OS << " + "; else First = false;
    397     WriteAsOperand(OS, BaseGV, /*PrintType=*/false);
    398   }
    399   if (BaseOffset != 0) {
    400     if (!First) OS << " + "; else First = false;
    401     OS << BaseOffset;
    402   }
    403   for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
    404        E = BaseRegs.end(); I != E; ++I) {
    405     if (!First) OS << " + "; else First = false;
    406     OS << "reg(" << **I << ')';
    407   }
    408   if (HasBaseReg && BaseRegs.empty()) {
    409     if (!First) OS << " + "; else First = false;
    410     OS << "**error: HasBaseReg**";
    411   } else if (!HasBaseReg && !BaseRegs.empty()) {
    412     if (!First) OS << " + "; else First = false;
    413     OS << "**error: !HasBaseReg**";
    414   }
    415   if (Scale != 0) {
    416     if (!First) OS << " + "; else First = false;
    417     OS << Scale << "*reg(";
    418     if (ScaledReg)
    419       OS << *ScaledReg;
    420     else
    421       OS << "<unknown>";
    422     OS << ')';
    423   }
    424   if (UnfoldedOffset != 0) {
    425     if (!First) OS << " + "; else First = false;
    426     OS << "imm(" << UnfoldedOffset << ')';
    427   }
    428 }
    429 
    430 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    431 void Formula::dump() const {
    432   print(errs()); errs() << '\n';
    433 }
    434 #endif
    435 
    436 /// isAddRecSExtable - Return true if the given addrec can be sign-extended
    437 /// without changing its value.
    438 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
    439   Type *WideTy =
    440     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
    441   return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
    442 }
    443 
    444 /// isAddSExtable - Return true if the given add can be sign-extended
    445 /// without changing its value.
    446 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
    447   Type *WideTy =
    448     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
    449   return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
    450 }
    451 
    452 /// isMulSExtable - Return true if the given mul can be sign-extended
    453 /// without changing its value.
    454 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
    455   Type *WideTy =
    456     IntegerType::get(SE.getContext(),
    457                      SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
    458   return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
    459 }
    460 
    461 /// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined
    462 /// and if the remainder is known to be zero,  or null otherwise. If
    463 /// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified
    464 /// to Y, ignoring that the multiplication may overflow, which is useful when
    465 /// the result will be used in a context where the most significant bits are
    466 /// ignored.
    467 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
    468                                 ScalarEvolution &SE,
    469                                 bool IgnoreSignificantBits = false) {
    470   // Handle the trivial case, which works for any SCEV type.
    471   if (LHS == RHS)
    472     return SE.getConstant(LHS->getType(), 1);
    473 
    474   // Handle a few RHS special cases.
    475   const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
    476   if (RC) {
    477     const APInt &RA = RC->getValue()->getValue();
    478     // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
    479     // some folding.
    480     if (RA.isAllOnesValue())
    481       return SE.getMulExpr(LHS, RC);
    482     // Handle x /s 1 as x.
    483     if (RA == 1)
    484       return LHS;
    485   }
    486 
    487   // Check for a division of a constant by a constant.
    488   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
    489     if (!RC)
    490       return 0;
    491     const APInt &LA = C->getValue()->getValue();
    492     const APInt &RA = RC->getValue()->getValue();
    493     if (LA.srem(RA) != 0)
    494       return 0;
    495     return SE.getConstant(LA.sdiv(RA));
    496   }
    497 
    498   // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
    499   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
    500     if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) {
    501       const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
    502                                       IgnoreSignificantBits);
    503       if (!Step) return 0;
    504       const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
    505                                        IgnoreSignificantBits);
    506       if (!Start) return 0;
    507       // FlagNW is independent of the start value, step direction, and is
    508       // preserved with smaller magnitude steps.
    509       // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
    510       return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
    511     }
    512     return 0;
    513   }
    514 
    515   // Distribute the sdiv over add operands, if the add doesn't overflow.
    516   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
    517     if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
    518       SmallVector<const SCEV *, 8> Ops;
    519       for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
    520            I != E; ++I) {
    521         const SCEV *Op = getExactSDiv(*I, RHS, SE,
    522                                       IgnoreSignificantBits);
    523         if (!Op) return 0;
    524         Ops.push_back(Op);
    525       }
    526       return SE.getAddExpr(Ops);
    527     }
    528     return 0;
    529   }
    530 
    531   // Check for a multiply operand that we can pull RHS out of.
    532   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
    533     if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
    534       SmallVector<const SCEV *, 4> Ops;
    535       bool Found = false;
    536       for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end();
    537            I != E; ++I) {
    538         const SCEV *S = *I;
    539         if (!Found)
    540           if (const SCEV *Q = getExactSDiv(S, RHS, SE,
    541                                            IgnoreSignificantBits)) {
    542             S = Q;
    543             Found = true;
    544           }
    545         Ops.push_back(S);
    546       }
    547       return Found ? SE.getMulExpr(Ops) : 0;
    548     }
    549     return 0;
    550   }
    551 
    552   // Otherwise we don't know.
    553   return 0;
    554 }
    555 
    556 /// ExtractImmediate - If S involves the addition of a constant integer value,
    557 /// return that integer value, and mutate S to point to a new SCEV with that
    558 /// value excluded.
    559 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
    560   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
    561     if (C->getValue()->getValue().getMinSignedBits() <= 64) {
    562       S = SE.getConstant(C->getType(), 0);
    563       return C->getValue()->getSExtValue();
    564     }
    565   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
    566     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
    567     int64_t Result = ExtractImmediate(NewOps.front(), SE);
    568     if (Result != 0)
    569       S = SE.getAddExpr(NewOps);
    570     return Result;
    571   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
    572     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
    573     int64_t Result = ExtractImmediate(NewOps.front(), SE);
    574     if (Result != 0)
    575       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
    576                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
    577                            SCEV::FlagAnyWrap);
    578     return Result;
    579   }
    580   return 0;
    581 }
    582 
    583 /// ExtractSymbol - If S involves the addition of a GlobalValue address,
    584 /// return that symbol, and mutate S to point to a new SCEV with that
    585 /// value excluded.
    586 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
    587   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
    588     if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
    589       S = SE.getConstant(GV->getType(), 0);
    590       return GV;
    591     }
    592   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
    593     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
    594     GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
    595     if (Result)
    596       S = SE.getAddExpr(NewOps);
    597     return Result;
    598   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
    599     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
    600     GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
    601     if (Result)
    602       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
    603                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
    604                            SCEV::FlagAnyWrap);
    605     return Result;
    606   }
    607   return 0;
    608 }
    609 
    610 /// isAddressUse - Returns true if the specified instruction is using the
    611 /// specified value as an address.
    612 static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
    613   bool isAddress = isa<LoadInst>(Inst);
    614   if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
    615     if (SI->getOperand(1) == OperandVal)
    616       isAddress = true;
    617   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
    618     // Addressing modes can also be folded into prefetches and a variety
    619     // of intrinsics.
    620     switch (II->getIntrinsicID()) {
    621       default: break;
    622       case Intrinsic::prefetch:
    623       case Intrinsic::x86_sse_storeu_ps:
    624       case Intrinsic::x86_sse2_storeu_pd:
    625       case Intrinsic::x86_sse2_storeu_dq:
    626       case Intrinsic::x86_sse2_storel_dq:
    627         if (II->getArgOperand(0) == OperandVal)
    628           isAddress = true;
    629         break;
    630     }
    631   }
    632   return isAddress;
    633 }
    634 
    635 /// getAccessType - Return the type of the memory being accessed.
    636 static Type *getAccessType(const Instruction *Inst) {
    637   Type *AccessTy = Inst->getType();
    638   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst))
    639     AccessTy = SI->getOperand(0)->getType();
    640   else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
    641     // Addressing modes can also be folded into prefetches and a variety
    642     // of intrinsics.
    643     switch (II->getIntrinsicID()) {
    644     default: break;
    645     case Intrinsic::x86_sse_storeu_ps:
    646     case Intrinsic::x86_sse2_storeu_pd:
    647     case Intrinsic::x86_sse2_storeu_dq:
    648     case Intrinsic::x86_sse2_storel_dq:
    649       AccessTy = II->getArgOperand(0)->getType();
    650       break;
    651     }
    652   }
    653 
    654   // All pointers have the same requirements, so canonicalize them to an
    655   // arbitrary pointer type to minimize variation.
    656   if (PointerType *PTy = dyn_cast<PointerType>(AccessTy))
    657     AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
    658                                 PTy->getAddressSpace());
    659 
    660   return AccessTy;
    661 }
    662 
    663 /// isExistingPhi - Return true if this AddRec is already a phi in its loop.
    664 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
    665   for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
    666        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
    667     if (SE.isSCEVable(PN->getType()) &&
    668         (SE.getEffectiveSCEVType(PN->getType()) ==
    669          SE.getEffectiveSCEVType(AR->getType())) &&
    670         SE.getSCEV(PN) == AR)
    671       return true;
    672   }
    673   return false;
    674 }
    675 
    676 /// Check if expanding this expression is likely to incur significant cost. This
    677 /// is tricky because SCEV doesn't track which expressions are actually computed
    678 /// by the current IR.
    679 ///
    680 /// We currently allow expansion of IV increments that involve adds,
    681 /// multiplication by constants, and AddRecs from existing phis.
    682 ///
    683 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
    684 /// obvious multiple of the UDivExpr.
    685 static bool isHighCostExpansion(const SCEV *S,
    686                                 SmallPtrSet<const SCEV*, 8> &Processed,
    687                                 ScalarEvolution &SE) {
    688   // Zero/One operand expressions
    689   switch (S->getSCEVType()) {
    690   case scUnknown:
    691   case scConstant:
    692     return false;
    693   case scTruncate:
    694     return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
    695                                Processed, SE);
    696   case scZeroExtend:
    697     return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
    698                                Processed, SE);
    699   case scSignExtend:
    700     return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
    701                                Processed, SE);
    702   }
    703 
    704   if (!Processed.insert(S))
    705     return false;
    706 
    707   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
    708     for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
    709          I != E; ++I) {
    710       if (isHighCostExpansion(*I, Processed, SE))
    711         return true;
    712     }
    713     return false;
    714   }
    715 
    716   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
    717     if (Mul->getNumOperands() == 2) {
    718       // Multiplication by a constant is ok
    719       if (isa<SCEVConstant>(Mul->getOperand(0)))
    720         return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
    721 
    722       // If we have the value of one operand, check if an existing
    723       // multiplication already generates this expression.
    724       if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
    725         Value *UVal = U->getValue();
    726         for (Value::use_iterator UI = UVal->use_begin(), UE = UVal->use_end();
    727              UI != UE; ++UI) {
    728           // If U is a constant, it may be used by a ConstantExpr.
    729           Instruction *User = dyn_cast<Instruction>(*UI);
    730           if (User && User->getOpcode() == Instruction::Mul
    731               && SE.isSCEVable(User->getType())) {
    732             return SE.getSCEV(User) == Mul;
    733           }
    734         }
    735       }
    736     }
    737   }
    738 
    739   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
    740     if (isExistingPhi(AR, SE))
    741       return false;
    742   }
    743 
    744   // Fow now, consider any other type of expression (div/mul/min/max) high cost.
    745   return true;
    746 }
    747 
    748 /// DeleteTriviallyDeadInstructions - If any of the instructions is the
    749 /// specified set are trivially dead, delete them and see if this makes any of
    750 /// their operands subsequently dead.
    751 static bool
    752 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) {
    753   bool Changed = false;
    754 
    755   while (!DeadInsts.empty()) {
    756     Value *V = DeadInsts.pop_back_val();
    757     Instruction *I = dyn_cast_or_null<Instruction>(V);
    758 
    759     if (I == 0 || !isInstructionTriviallyDead(I))
    760       continue;
    761 
    762     for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
    763       if (Instruction *U = dyn_cast<Instruction>(*OI)) {
    764         *OI = 0;
    765         if (U->use_empty())
    766           DeadInsts.push_back(U);
    767       }
    768 
    769     I->eraseFromParent();
    770     Changed = true;
    771   }
    772 
    773   return Changed;
    774 }
    775 
    776 namespace {
    777 
    778 /// Cost - This class is used to measure and compare candidate formulae.
    779 class Cost {
    780   /// TODO: Some of these could be merged. Also, a lexical ordering
    781   /// isn't always optimal.
    782   unsigned NumRegs;
    783   unsigned AddRecCost;
    784   unsigned NumIVMuls;
    785   unsigned NumBaseAdds;
    786   unsigned ImmCost;
    787   unsigned SetupCost;
    788 
    789 public:
    790   Cost()
    791     : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0),
    792       SetupCost(0) {}
    793 
    794   bool operator<(const Cost &Other) const;
    795 
    796   void Loose();
    797 
    798 #ifndef NDEBUG
    799   // Once any of the metrics loses, they must all remain losers.
    800   bool isValid() {
    801     return ((NumRegs | AddRecCost | NumIVMuls | NumBaseAdds
    802              | ImmCost | SetupCost) != ~0u)
    803       || ((NumRegs & AddRecCost & NumIVMuls & NumBaseAdds
    804            & ImmCost & SetupCost) == ~0u);
    805   }
    806 #endif
    807 
    808   bool isLoser() {
    809     assert(isValid() && "invalid cost");
    810     return NumRegs == ~0u;
    811   }
    812 
    813   void RateFormula(const Formula &F,
    814                    SmallPtrSet<const SCEV *, 16> &Regs,
    815                    const DenseSet<const SCEV *> &VisitedRegs,
    816                    const Loop *L,
    817                    const SmallVectorImpl<int64_t> &Offsets,
    818                    ScalarEvolution &SE, DominatorTree &DT,
    819                    SmallPtrSet<const SCEV *, 16> *LoserRegs = 0);
    820 
    821   void print(raw_ostream &OS) const;
    822   void dump() const;
    823 
    824 private:
    825   void RateRegister(const SCEV *Reg,
    826                     SmallPtrSet<const SCEV *, 16> &Regs,
    827                     const Loop *L,
    828                     ScalarEvolution &SE, DominatorTree &DT);
    829   void RatePrimaryRegister(const SCEV *Reg,
    830                            SmallPtrSet<const SCEV *, 16> &Regs,
    831                            const Loop *L,
    832                            ScalarEvolution &SE, DominatorTree &DT,
    833                            SmallPtrSet<const SCEV *, 16> *LoserRegs);
    834 };
    835 
    836 }
    837 
    838 /// RateRegister - Tally up interesting quantities from the given register.
    839 void Cost::RateRegister(const SCEV *Reg,
    840                         SmallPtrSet<const SCEV *, 16> &Regs,
    841                         const Loop *L,
    842                         ScalarEvolution &SE, DominatorTree &DT) {
    843   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
    844     // If this is an addrec for another loop, don't second-guess its addrec phi
    845     // nodes. LSR isn't currently smart enough to reason about more than one
    846     // loop at a time. LSR has already run on inner loops, will not run on outer
    847     // loops, and cannot be expected to change sibling loops.
    848     if (AR->getLoop() != L) {
    849       // If the AddRec exists, consider it's register free and leave it alone.
    850       if (isExistingPhi(AR, SE))
    851         return;
    852 
    853       // Otherwise, do not consider this formula at all.
    854       Loose();
    855       return;
    856     }
    857     AddRecCost += 1; /// TODO: This should be a function of the stride.
    858 
    859     // Add the step value register, if it needs one.
    860     // TODO: The non-affine case isn't precisely modeled here.
    861     if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
    862       if (!Regs.count(AR->getOperand(1))) {
    863         RateRegister(AR->getOperand(1), Regs, L, SE, DT);
    864         if (isLoser())
    865           return;
    866       }
    867     }
    868   }
    869   ++NumRegs;
    870 
    871   // Rough heuristic; favor registers which don't require extra setup
    872   // instructions in the preheader.
    873   if (!isa<SCEVUnknown>(Reg) &&
    874       !isa<SCEVConstant>(Reg) &&
    875       !(isa<SCEVAddRecExpr>(Reg) &&
    876         (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
    877          isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
    878     ++SetupCost;
    879 
    880     NumIVMuls += isa<SCEVMulExpr>(Reg) &&
    881                  SE.hasComputableLoopEvolution(Reg, L);
    882 }
    883 
    884 /// RatePrimaryRegister - Record this register in the set. If we haven't seen it
    885 /// before, rate it. Optional LoserRegs provides a way to declare any formula
    886 /// that refers to one of those regs an instant loser.
    887 void Cost::RatePrimaryRegister(const SCEV *Reg,
    888                                SmallPtrSet<const SCEV *, 16> &Regs,
    889                                const Loop *L,
    890                                ScalarEvolution &SE, DominatorTree &DT,
    891                                SmallPtrSet<const SCEV *, 16> *LoserRegs) {
    892   if (LoserRegs && LoserRegs->count(Reg)) {
    893     Loose();
    894     return;
    895   }
    896   if (Regs.insert(Reg)) {
    897     RateRegister(Reg, Regs, L, SE, DT);
    898     if (isLoser())
    899       LoserRegs->insert(Reg);
    900   }
    901 }
    902 
    903 void Cost::RateFormula(const Formula &F,
    904                        SmallPtrSet<const SCEV *, 16> &Regs,
    905                        const DenseSet<const SCEV *> &VisitedRegs,
    906                        const Loop *L,
    907                        const SmallVectorImpl<int64_t> &Offsets,
    908                        ScalarEvolution &SE, DominatorTree &DT,
    909                        SmallPtrSet<const SCEV *, 16> *LoserRegs) {
    910   // Tally up the registers.
    911   if (const SCEV *ScaledReg = F.ScaledReg) {
    912     if (VisitedRegs.count(ScaledReg)) {
    913       Loose();
    914       return;
    915     }
    916     RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs);
    917     if (isLoser())
    918       return;
    919   }
    920   for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
    921        E = F.BaseRegs.end(); I != E; ++I) {
    922     const SCEV *BaseReg = *I;
    923     if (VisitedRegs.count(BaseReg)) {
    924       Loose();
    925       return;
    926     }
    927     RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs);
    928     if (isLoser())
    929       return;
    930   }
    931 
    932   // Determine how many (unfolded) adds we'll need inside the loop.
    933   size_t NumBaseParts = F.BaseRegs.size() + (F.UnfoldedOffset != 0);
    934   if (NumBaseParts > 1)
    935     NumBaseAdds += NumBaseParts - 1;
    936 
    937   // Tally up the non-zero immediates.
    938   for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
    939        E = Offsets.end(); I != E; ++I) {
    940     int64_t Offset = (uint64_t)*I + F.BaseOffset;
    941     if (F.BaseGV)
    942       ImmCost += 64; // Handle symbolic values conservatively.
    943                      // TODO: This should probably be the pointer size.
    944     else if (Offset != 0)
    945       ImmCost += APInt(64, Offset, true).getMinSignedBits();
    946   }
    947   assert(isValid() && "invalid cost");
    948 }
    949 
    950 /// Loose - Set this cost to a losing value.
    951 void Cost::Loose() {
    952   NumRegs = ~0u;
    953   AddRecCost = ~0u;
    954   NumIVMuls = ~0u;
    955   NumBaseAdds = ~0u;
    956   ImmCost = ~0u;
    957   SetupCost = ~0u;
    958 }
    959 
    960 /// operator< - Choose the lower cost.
    961 bool Cost::operator<(const Cost &Other) const {
    962   if (NumRegs != Other.NumRegs)
    963     return NumRegs < Other.NumRegs;
    964   if (AddRecCost != Other.AddRecCost)
    965     return AddRecCost < Other.AddRecCost;
    966   if (NumIVMuls != Other.NumIVMuls)
    967     return NumIVMuls < Other.NumIVMuls;
    968   if (NumBaseAdds != Other.NumBaseAdds)
    969     return NumBaseAdds < Other.NumBaseAdds;
    970   if (ImmCost != Other.ImmCost)
    971     return ImmCost < Other.ImmCost;
    972   if (SetupCost != Other.SetupCost)
    973     return SetupCost < Other.SetupCost;
    974   return false;
    975 }
    976 
    977 void Cost::print(raw_ostream &OS) const {
    978   OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s");
    979   if (AddRecCost != 0)
    980     OS << ", with addrec cost " << AddRecCost;
    981   if (NumIVMuls != 0)
    982     OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s");
    983   if (NumBaseAdds != 0)
    984     OS << ", plus " << NumBaseAdds << " base add"
    985        << (NumBaseAdds == 1 ? "" : "s");
    986   if (ImmCost != 0)
    987     OS << ", plus " << ImmCost << " imm cost";
    988   if (SetupCost != 0)
    989     OS << ", plus " << SetupCost << " setup cost";
    990 }
    991 
    992 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    993 void Cost::dump() const {
    994   print(errs()); errs() << '\n';
    995 }
    996 #endif
    997 
    998 namespace {
    999 
   1000 /// LSRFixup - An operand value in an instruction which is to be replaced
   1001 /// with some equivalent, possibly strength-reduced, replacement.
   1002 struct LSRFixup {
   1003   /// UserInst - The instruction which will be updated.
   1004   Instruction *UserInst;
   1005 
   1006   /// OperandValToReplace - The operand of the instruction which will
   1007   /// be replaced. The operand may be used more than once; every instance
   1008   /// will be replaced.
   1009   Value *OperandValToReplace;
   1010 
   1011   /// PostIncLoops - If this user is to use the post-incremented value of an
   1012   /// induction variable, this variable is non-null and holds the loop
   1013   /// associated with the induction variable.
   1014   PostIncLoopSet PostIncLoops;
   1015 
   1016   /// LUIdx - The index of the LSRUse describing the expression which
   1017   /// this fixup needs, minus an offset (below).
   1018   size_t LUIdx;
   1019 
   1020   /// Offset - A constant offset to be added to the LSRUse expression.
   1021   /// This allows multiple fixups to share the same LSRUse with different
   1022   /// offsets, for example in an unrolled loop.
   1023   int64_t Offset;
   1024 
   1025   bool isUseFullyOutsideLoop(const Loop *L) const;
   1026 
   1027   LSRFixup();
   1028 
   1029   void print(raw_ostream &OS) const;
   1030   void dump() const;
   1031 };
   1032 
   1033 }
   1034 
   1035 LSRFixup::LSRFixup()
   1036   : UserInst(0), OperandValToReplace(0), LUIdx(~size_t(0)), Offset(0) {}
   1037 
   1038 /// isUseFullyOutsideLoop - Test whether this fixup always uses its
   1039 /// value outside of the given loop.
   1040 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
   1041   // PHI nodes use their value in their incoming blocks.
   1042   if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
   1043     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
   1044       if (PN->getIncomingValue(i) == OperandValToReplace &&
   1045           L->contains(PN->getIncomingBlock(i)))
   1046         return false;
   1047     return true;
   1048   }
   1049 
   1050   return !L->contains(UserInst);
   1051 }
   1052 
   1053 void LSRFixup::print(raw_ostream &OS) const {
   1054   OS << "UserInst=";
   1055   // Store is common and interesting enough to be worth special-casing.
   1056   if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
   1057     OS << "store ";
   1058     WriteAsOperand(OS, Store->getOperand(0), /*PrintType=*/false);
   1059   } else if (UserInst->getType()->isVoidTy())
   1060     OS << UserInst->getOpcodeName();
   1061   else
   1062     WriteAsOperand(OS, UserInst, /*PrintType=*/false);
   1063 
   1064   OS << ", OperandValToReplace=";
   1065   WriteAsOperand(OS, OperandValToReplace, /*PrintType=*/false);
   1066 
   1067   for (PostIncLoopSet::const_iterator I = PostIncLoops.begin(),
   1068        E = PostIncLoops.end(); I != E; ++I) {
   1069     OS << ", PostIncLoop=";
   1070     WriteAsOperand(OS, (*I)->getHeader(), /*PrintType=*/false);
   1071   }
   1072 
   1073   if (LUIdx != ~size_t(0))
   1074     OS << ", LUIdx=" << LUIdx;
   1075 
   1076   if (Offset != 0)
   1077     OS << ", Offset=" << Offset;
   1078 }
   1079 
   1080 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
   1081 void LSRFixup::dump() const {
   1082   print(errs()); errs() << '\n';
   1083 }
   1084 #endif
   1085 
   1086 namespace {
   1087 
   1088 /// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding
   1089 /// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*.
   1090 struct UniquifierDenseMapInfo {
   1091   static SmallVector<const SCEV *, 4> getEmptyKey() {
   1092     SmallVector<const SCEV *, 4>  V;
   1093     V.push_back(reinterpret_cast<const SCEV *>(-1));
   1094     return V;
   1095   }
   1096 
   1097   static SmallVector<const SCEV *, 4> getTombstoneKey() {
   1098     SmallVector<const SCEV *, 4> V;
   1099     V.push_back(reinterpret_cast<const SCEV *>(-2));
   1100     return V;
   1101   }
   1102 
   1103   static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
   1104     unsigned Result = 0;
   1105     for (SmallVectorImpl<const SCEV *>::const_iterator I = V.begin(),
   1106          E = V.end(); I != E; ++I)
   1107       Result ^= DenseMapInfo<const SCEV *>::getHashValue(*I);
   1108     return Result;
   1109   }
   1110 
   1111   static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
   1112                       const SmallVector<const SCEV *, 4> &RHS) {
   1113     return LHS == RHS;
   1114   }
   1115 };
   1116 
   1117 /// LSRUse - This class holds the state that LSR keeps for each use in
   1118 /// IVUsers, as well as uses invented by LSR itself. It includes information
   1119 /// about what kinds of things can be folded into the user, information about
   1120 /// the user itself, and information about how the use may be satisfied.
   1121 /// TODO: Represent multiple users of the same expression in common?
   1122 class LSRUse {
   1123   DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
   1124 
   1125 public:
   1126   /// KindType - An enum for a kind of use, indicating what types of
   1127   /// scaled and immediate operands it might support.
   1128   enum KindType {
   1129     Basic,   ///< A normal use, with no folding.
   1130     Special, ///< A special case of basic, allowing -1 scales.
   1131     Address, ///< An address use; folding according to TargetLowering
   1132     ICmpZero ///< An equality icmp with both operands folded into one.
   1133     // TODO: Add a generic icmp too?
   1134   };
   1135 
   1136   KindType Kind;
   1137   Type *AccessTy;
   1138 
   1139   SmallVector<int64_t, 8> Offsets;
   1140   int64_t MinOffset;
   1141   int64_t MaxOffset;
   1142 
   1143   /// AllFixupsOutsideLoop - This records whether all of the fixups using this
   1144   /// LSRUse are outside of the loop, in which case some special-case heuristics
   1145   /// may be used.
   1146   bool AllFixupsOutsideLoop;
   1147 
   1148   /// WidestFixupType - This records the widest use type for any fixup using
   1149   /// this LSRUse. FindUseWithSimilarFormula can't consider uses with different
   1150   /// max fixup widths to be equivalent, because the narrower one may be relying
   1151   /// on the implicit truncation to truncate away bogus bits.
   1152   Type *WidestFixupType;
   1153 
   1154   /// Formulae - A list of ways to build a value that can satisfy this user.
   1155   /// After the list is populated, one of these is selected heuristically and
   1156   /// used to formulate a replacement for OperandValToReplace in UserInst.
   1157   SmallVector<Formula, 12> Formulae;
   1158 
   1159   /// Regs - The set of register candidates used by all formulae in this LSRUse.
   1160   SmallPtrSet<const SCEV *, 4> Regs;
   1161 
   1162   LSRUse(KindType K, Type *T) : Kind(K), AccessTy(T),
   1163                                       MinOffset(INT64_MAX),
   1164                                       MaxOffset(INT64_MIN),
   1165                                       AllFixupsOutsideLoop(true),
   1166                                       WidestFixupType(0) {}
   1167 
   1168   bool HasFormulaWithSameRegs(const Formula &F) const;
   1169   bool InsertFormula(const Formula &F);
   1170   void DeleteFormula(Formula &F);
   1171   void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
   1172 
   1173   void print(raw_ostream &OS) const;
   1174   void dump() const;
   1175 };
   1176 
   1177 }
   1178 
   1179 /// HasFormula - Test whether this use as a formula which has the same
   1180 /// registers as the given formula.
   1181 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
   1182   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
   1183   if (F.ScaledReg) Key.push_back(F.ScaledReg);
   1184   // Unstable sort by host order ok, because this is only used for uniquifying.
   1185   std::sort(Key.begin(), Key.end());
   1186   return Uniquifier.count(Key);
   1187 }
   1188 
   1189 /// InsertFormula - If the given formula has not yet been inserted, add it to
   1190 /// the list, and return true. Return false otherwise.
   1191 bool LSRUse::InsertFormula(const Formula &F) {
   1192   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
   1193   if (F.ScaledReg) Key.push_back(F.ScaledReg);
   1194   // Unstable sort by host order ok, because this is only used for uniquifying.
   1195   std::sort(Key.begin(), Key.end());
   1196 
   1197   if (!Uniquifier.insert(Key).second)
   1198     return false;
   1199 
   1200   // Using a register to hold the value of 0 is not profitable.
   1201   assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
   1202          "Zero allocated in a scaled register!");
   1203 #ifndef NDEBUG
   1204   for (SmallVectorImpl<const SCEV *>::const_iterator I =
   1205        F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I)
   1206     assert(!(*I)->isZero() && "Zero allocated in a base register!");
   1207 #endif
   1208 
   1209   // Add the formula to the list.
   1210   Formulae.push_back(F);
   1211 
   1212   // Record registers now being used by this use.
   1213   Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
   1214 
   1215   return true;
   1216 }
   1217 
   1218 /// DeleteFormula - Remove the given formula from this use's list.
   1219 void LSRUse::DeleteFormula(Formula &F) {
   1220   if (&F != &Formulae.back())
   1221     std::swap(F, Formulae.back());
   1222   Formulae.pop_back();
   1223 }
   1224 
   1225 /// RecomputeRegs - Recompute the Regs field, and update RegUses.
   1226 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
   1227   // Now that we've filtered out some formulae, recompute the Regs set.
   1228   SmallPtrSet<const SCEV *, 4> OldRegs = Regs;
   1229   Regs.clear();
   1230   for (SmallVectorImpl<Formula>::const_iterator I = Formulae.begin(),
   1231        E = Formulae.end(); I != E; ++I) {
   1232     const Formula &F = *I;
   1233     if (F.ScaledReg) Regs.insert(F.ScaledReg);
   1234     Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
   1235   }
   1236 
   1237   // Update the RegTracker.
   1238   for (SmallPtrSet<const SCEV *, 4>::iterator I = OldRegs.begin(),
   1239        E = OldRegs.end(); I != E; ++I)
   1240     if (!Regs.count(*I))
   1241       RegUses.DropRegister(*I, LUIdx);
   1242 }
   1243 
   1244 void LSRUse::print(raw_ostream &OS) const {
   1245   OS << "LSR Use: Kind=";
   1246   switch (Kind) {
   1247   case Basic:    OS << "Basic"; break;
   1248   case Special:  OS << "Special"; break;
   1249   case ICmpZero: OS << "ICmpZero"; break;
   1250   case Address:
   1251     OS << "Address of ";
   1252     if (AccessTy->isPointerTy())
   1253       OS << "pointer"; // the full pointer type could be really verbose
   1254     else
   1255       OS << *AccessTy;
   1256   }
   1257 
   1258   OS << ", Offsets={";
   1259   for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
   1260        E = Offsets.end(); I != E; ++I) {
   1261     OS << *I;
   1262     if (llvm::next(I) != E)
   1263       OS << ',';
   1264   }
   1265   OS << '}';
   1266 
   1267   if (AllFixupsOutsideLoop)
   1268     OS << ", all-fixups-outside-loop";
   1269 
   1270   if (WidestFixupType)
   1271     OS << ", widest fixup type: " << *WidestFixupType;
   1272 }
   1273 
   1274 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
   1275 void LSRUse::dump() const {
   1276   print(errs()); errs() << '\n';
   1277 }
   1278 #endif
   1279 
   1280 /// isLegalUse - Test whether the use described by AM is "legal", meaning it can
   1281 /// be completely folded into the user instruction at isel time. This includes
   1282 /// address-mode folding and special icmp tricks.
   1283 static bool isLegalUse(const TargetTransformInfo &TTI, LSRUse::KindType Kind,
   1284                        Type *AccessTy, GlobalValue *BaseGV, int64_t BaseOffset,
   1285                        bool HasBaseReg, int64_t Scale) {
   1286   switch (Kind) {
   1287   case LSRUse::Address:
   1288     return TTI.isLegalAddressingMode(AccessTy, BaseGV, BaseOffset, HasBaseReg, Scale);
   1289 
   1290     // Otherwise, just guess that reg+reg addressing is legal.
   1291     //return ;
   1292 
   1293   case LSRUse::ICmpZero:
   1294     // There's not even a target hook for querying whether it would be legal to
   1295     // fold a GV into an ICmp.
   1296     if (BaseGV)
   1297       return false;
   1298 
   1299     // ICmp only has two operands; don't allow more than two non-trivial parts.
   1300     if (Scale != 0 && HasBaseReg && BaseOffset != 0)
   1301       return false;
   1302 
   1303     // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
   1304     // putting the scaled register in the other operand of the icmp.
   1305     if (Scale != 0 && Scale != -1)
   1306       return false;
   1307 
   1308     // If we have low-level target information, ask the target if it can fold an
   1309     // integer immediate on an icmp.
   1310     if (BaseOffset != 0) {
   1311       // We have one of:
   1312       // ICmpZero     BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
   1313       // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
   1314       // Offs is the ICmp immediate.
   1315       if (Scale == 0)
   1316         // The cast does the right thing with INT64_MIN.
   1317         BaseOffset = -(uint64_t)BaseOffset;
   1318       return TTI.isLegalICmpImmediate(BaseOffset);
   1319     }
   1320 
   1321     // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
   1322     return true;
   1323 
   1324   case LSRUse::Basic:
   1325     // Only handle single-register values.
   1326     return !BaseGV && Scale == 0 && BaseOffset == 0;
   1327 
   1328   case LSRUse::Special:
   1329     // Special case Basic to handle -1 scales.
   1330     return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
   1331   }
   1332 
   1333   llvm_unreachable("Invalid LSRUse Kind!");
   1334 }
   1335 
   1336 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
   1337                        int64_t MaxOffset, LSRUse::KindType Kind, Type *AccessTy,
   1338                        GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg,
   1339                        int64_t Scale) {
   1340   // Check for overflow.
   1341   if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
   1342       (MinOffset > 0))
   1343     return false;
   1344   MinOffset = (uint64_t)BaseOffset + MinOffset;
   1345   if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
   1346       (MaxOffset > 0))
   1347     return false;
   1348   MaxOffset = (uint64_t)BaseOffset + MaxOffset;
   1349 
   1350   return isLegalUse(TTI, Kind, AccessTy, BaseGV, MinOffset, HasBaseReg,
   1351                     Scale) &&
   1352          isLegalUse(TTI, Kind, AccessTy, BaseGV, MaxOffset, HasBaseReg, Scale);
   1353 }
   1354 
   1355 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
   1356                        int64_t MaxOffset, LSRUse::KindType Kind, Type *AccessTy,
   1357                        const Formula &F) {
   1358   return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
   1359                     F.BaseOffset, F.HasBaseReg, F.Scale);
   1360 }
   1361 
   1362 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
   1363                              LSRUse::KindType Kind, Type *AccessTy,
   1364                              GlobalValue *BaseGV, int64_t BaseOffset,
   1365                              bool HasBaseReg) {
   1366   // Fast-path: zero is always foldable.
   1367   if (BaseOffset == 0 && !BaseGV) return true;
   1368 
   1369   // Conservatively, create an address with an immediate and a
   1370   // base and a scale.
   1371   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
   1372 
   1373   // Canonicalize a scale of 1 to a base register if the formula doesn't
   1374   // already have a base register.
   1375   if (!HasBaseReg && Scale == 1) {
   1376     Scale = 0;
   1377     HasBaseReg = true;
   1378   }
   1379 
   1380   return isLegalUse(TTI, Kind, AccessTy, BaseGV, BaseOffset, HasBaseReg, Scale);
   1381 }
   1382 
   1383 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
   1384                              ScalarEvolution &SE, int64_t MinOffset,
   1385                              int64_t MaxOffset, LSRUse::KindType Kind,
   1386                              Type *AccessTy, const SCEV *S, bool HasBaseReg) {
   1387   // Fast-path: zero is always foldable.
   1388   if (S->isZero()) return true;
   1389 
   1390   // Conservatively, create an address with an immediate and a
   1391   // base and a scale.
   1392   int64_t BaseOffset = ExtractImmediate(S, SE);
   1393   GlobalValue *BaseGV = ExtractSymbol(S, SE);
   1394 
   1395   // If there's anything else involved, it's not foldable.
   1396   if (!S->isZero()) return false;
   1397 
   1398   // Fast-path: zero is always foldable.
   1399   if (BaseOffset == 0 && !BaseGV) return true;
   1400 
   1401   // Conservatively, create an address with an immediate and a
   1402   // base and a scale.
   1403   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
   1404 
   1405   return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
   1406                     BaseOffset, HasBaseReg, Scale);
   1407 }
   1408 
   1409 namespace {
   1410 
   1411 /// UseMapDenseMapInfo - A DenseMapInfo implementation for holding
   1412 /// DenseMaps and DenseSets of pairs of const SCEV* and LSRUse::Kind.
   1413 struct UseMapDenseMapInfo {
   1414   static std::pair<const SCEV *, LSRUse::KindType> getEmptyKey() {
   1415     return std::make_pair(reinterpret_cast<const SCEV *>(-1), LSRUse::Basic);
   1416   }
   1417 
   1418   static std::pair<const SCEV *, LSRUse::KindType> getTombstoneKey() {
   1419     return std::make_pair(reinterpret_cast<const SCEV *>(-2), LSRUse::Basic);
   1420   }
   1421 
   1422   static unsigned
   1423   getHashValue(const std::pair<const SCEV *, LSRUse::KindType> &V) {
   1424     unsigned Result = DenseMapInfo<const SCEV *>::getHashValue(V.first);
   1425     Result ^= DenseMapInfo<unsigned>::getHashValue(unsigned(V.second));
   1426     return Result;
   1427   }
   1428 
   1429   static bool isEqual(const std::pair<const SCEV *, LSRUse::KindType> &LHS,
   1430                       const std::pair<const SCEV *, LSRUse::KindType> &RHS) {
   1431     return LHS == RHS;
   1432   }
   1433 };
   1434 
   1435 /// IVInc - An individual increment in a Chain of IV increments.
   1436 /// Relate an IV user to an expression that computes the IV it uses from the IV
   1437 /// used by the previous link in the Chain.
   1438 ///
   1439 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
   1440 /// original IVOperand. The head of the chain's IVOperand is only valid during
   1441 /// chain collection, before LSR replaces IV users. During chain generation,
   1442 /// IncExpr can be used to find the new IVOperand that computes the same
   1443 /// expression.
   1444 struct IVInc {
   1445   Instruction *UserInst;
   1446   Value* IVOperand;
   1447   const SCEV *IncExpr;
   1448 
   1449   IVInc(Instruction *U, Value *O, const SCEV *E):
   1450     UserInst(U), IVOperand(O), IncExpr(E) {}
   1451 };
   1452 
   1453 // IVChain - The list of IV increments in program order.
   1454 // We typically add the head of a chain without finding subsequent links.
   1455 struct IVChain {
   1456   SmallVector<IVInc,1> Incs;
   1457   const SCEV *ExprBase;
   1458 
   1459   IVChain() : ExprBase(0) {}
   1460 
   1461   IVChain(const IVInc &Head, const SCEV *Base)
   1462     : Incs(1, Head), ExprBase(Base) {}
   1463 
   1464   typedef SmallVectorImpl<IVInc>::const_iterator const_iterator;
   1465 
   1466   // begin - return the first increment in the chain.
   1467   const_iterator begin() const {
   1468     assert(!Incs.empty());
   1469     return llvm::next(Incs.begin());
   1470   }
   1471   const_iterator end() const {
   1472     return Incs.end();
   1473   }
   1474 
   1475   // hasIncs - Returns true if this chain contains any increments.
   1476   bool hasIncs() const { return Incs.size() >= 2; }
   1477 
   1478   // add - Add an IVInc to the end of this chain.
   1479   void add(const IVInc &X) { Incs.push_back(X); }
   1480 
   1481   // tailUserInst - Returns the last UserInst in the chain.
   1482   Instruction *tailUserInst() const { return Incs.back().UserInst; }
   1483 
   1484   // isProfitableIncrement - Returns true if IncExpr can be profitably added to
   1485   // this chain.
   1486   bool isProfitableIncrement(const SCEV *OperExpr,
   1487                              const SCEV *IncExpr,
   1488                              ScalarEvolution&);
   1489 };
   1490 
   1491 /// ChainUsers - Helper for CollectChains to track multiple IV increment uses.
   1492 /// Distinguish between FarUsers that definitely cross IV increments and
   1493 /// NearUsers that may be used between IV increments.
   1494 struct ChainUsers {
   1495   SmallPtrSet<Instruction*, 4> FarUsers;
   1496   SmallPtrSet<Instruction*, 4> NearUsers;
   1497 };
   1498 
   1499 /// LSRInstance - This class holds state for the main loop strength reduction
   1500 /// logic.
   1501 class LSRInstance {
   1502   IVUsers &IU;
   1503   ScalarEvolution &SE;
   1504   DominatorTree &DT;
   1505   LoopInfo &LI;
   1506   const TargetTransformInfo &TTI;
   1507   Loop *const L;
   1508   bool Changed;
   1509 
   1510   /// IVIncInsertPos - This is the insert position that the current loop's
   1511   /// induction variable increment should be placed. In simple loops, this is
   1512   /// the latch block's terminator. But in more complicated cases, this is a
   1513   /// position which will dominate all the in-loop post-increment users.
   1514   Instruction *IVIncInsertPos;
   1515 
   1516   /// Factors - Interesting factors between use strides.
   1517   SmallSetVector<int64_t, 8> Factors;
   1518 
   1519   /// Types - Interesting use types, to facilitate truncation reuse.
   1520   SmallSetVector<Type *, 4> Types;
   1521 
   1522   /// Fixups - The list of operands which are to be replaced.
   1523   SmallVector<LSRFixup, 16> Fixups;
   1524 
   1525   /// Uses - The list of interesting uses.
   1526   SmallVector<LSRUse, 16> Uses;
   1527 
   1528   /// RegUses - Track which uses use which register candidates.
   1529   RegUseTracker RegUses;
   1530 
   1531   // Limit the number of chains to avoid quadratic behavior. We don't expect to
   1532   // have more than a few IV increment chains in a loop. Missing a Chain falls
   1533   // back to normal LSR behavior for those uses.
   1534   static const unsigned MaxChains = 8;
   1535 
   1536   /// IVChainVec - IV users can form a chain of IV increments.
   1537   SmallVector<IVChain, MaxChains> IVChainVec;
   1538 
   1539   /// IVIncSet - IV users that belong to profitable IVChains.
   1540   SmallPtrSet<Use*, MaxChains> IVIncSet;
   1541 
   1542   void OptimizeShadowIV();
   1543   bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
   1544   ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
   1545   void OptimizeLoopTermCond();
   1546 
   1547   void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
   1548                         SmallVectorImpl<ChainUsers> &ChainUsersVec);
   1549   void FinalizeChain(IVChain &Chain);
   1550   void CollectChains();
   1551   void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
   1552                        SmallVectorImpl<WeakVH> &DeadInsts);
   1553 
   1554   void CollectInterestingTypesAndFactors();
   1555   void CollectFixupsAndInitialFormulae();
   1556 
   1557   LSRFixup &getNewFixup() {
   1558     Fixups.push_back(LSRFixup());
   1559     return Fixups.back();
   1560   }
   1561 
   1562   // Support for sharing of LSRUses between LSRFixups.
   1563   typedef DenseMap<std::pair<const SCEV *, LSRUse::KindType>,
   1564                    size_t,
   1565                    UseMapDenseMapInfo> UseMapTy;
   1566   UseMapTy UseMap;
   1567 
   1568   bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
   1569                           LSRUse::KindType Kind, Type *AccessTy);
   1570 
   1571   std::pair<size_t, int64_t> getUse(const SCEV *&Expr,
   1572                                     LSRUse::KindType Kind,
   1573                                     Type *AccessTy);
   1574 
   1575   void DeleteUse(LSRUse &LU, size_t LUIdx);
   1576 
   1577   LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
   1578 
   1579   void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
   1580   void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
   1581   void CountRegisters(const Formula &F, size_t LUIdx);
   1582   bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
   1583 
   1584   void CollectLoopInvariantFixupsAndFormulae();
   1585 
   1586   void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
   1587                               unsigned Depth = 0);
   1588   void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
   1589   void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
   1590   void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
   1591   void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
   1592   void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
   1593   void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
   1594   void GenerateCrossUseConstantOffsets();
   1595   void GenerateAllReuseFormulae();
   1596 
   1597   void FilterOutUndesirableDedicatedRegisters();
   1598 
   1599   size_t EstimateSearchSpaceComplexity() const;
   1600   void NarrowSearchSpaceByDetectingSupersets();
   1601   void NarrowSearchSpaceByCollapsingUnrolledCode();
   1602   void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
   1603   void NarrowSearchSpaceByPickingWinnerRegs();
   1604   void NarrowSearchSpaceUsingHeuristics();
   1605 
   1606   void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
   1607                     Cost &SolutionCost,
   1608                     SmallVectorImpl<const Formula *> &Workspace,
   1609                     const Cost &CurCost,
   1610                     const SmallPtrSet<const SCEV *, 16> &CurRegs,
   1611                     DenseSet<const SCEV *> &VisitedRegs) const;
   1612   void Solve(SmallVectorImpl<const Formula *> &Solution) const;
   1613 
   1614   BasicBlock::iterator
   1615     HoistInsertPosition(BasicBlock::iterator IP,
   1616                         const SmallVectorImpl<Instruction *> &Inputs) const;
   1617   BasicBlock::iterator
   1618     AdjustInsertPositionForExpand(BasicBlock::iterator IP,
   1619                                   const LSRFixup &LF,
   1620                                   const LSRUse &LU,
   1621                                   SCEVExpander &Rewriter) const;
   1622 
   1623   Value *Expand(const LSRFixup &LF,
   1624                 const Formula &F,
   1625                 BasicBlock::iterator IP,
   1626                 SCEVExpander &Rewriter,
   1627                 SmallVectorImpl<WeakVH> &DeadInsts) const;
   1628   void RewriteForPHI(PHINode *PN, const LSRFixup &LF,
   1629                      const Formula &F,
   1630                      SCEVExpander &Rewriter,
   1631                      SmallVectorImpl<WeakVH> &DeadInsts,
   1632                      Pass *P) const;
   1633   void Rewrite(const LSRFixup &LF,
   1634                const Formula &F,
   1635                SCEVExpander &Rewriter,
   1636                SmallVectorImpl<WeakVH> &DeadInsts,
   1637                Pass *P) const;
   1638   void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
   1639                          Pass *P);
   1640 
   1641 public:
   1642   LSRInstance(Loop *L, Pass *P);
   1643 
   1644   bool getChanged() const { return Changed; }
   1645 
   1646   void print_factors_and_types(raw_ostream &OS) const;
   1647   void print_fixups(raw_ostream &OS) const;
   1648   void print_uses(raw_ostream &OS) const;
   1649   void print(raw_ostream &OS) const;
   1650   void dump() const;
   1651 };
   1652 
   1653 }
   1654 
   1655 /// OptimizeShadowIV - If IV is used in a int-to-float cast
   1656 /// inside the loop then try to eliminate the cast operation.
   1657 void LSRInstance::OptimizeShadowIV() {
   1658   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
   1659   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
   1660     return;
   1661 
   1662   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
   1663        UI != E; /* empty */) {
   1664     IVUsers::const_iterator CandidateUI = UI;
   1665     ++UI;
   1666     Instruction *ShadowUse = CandidateUI->getUser();
   1667     Type *DestTy = NULL;
   1668     bool IsSigned = false;
   1669 
   1670     /* If shadow use is a int->float cast then insert a second IV
   1671        to eliminate this cast.
   1672 
   1673          for (unsigned i = 0; i < n; ++i)
   1674            foo((double)i);
   1675 
   1676        is transformed into
   1677 
   1678          double d = 0.0;
   1679          for (unsigned i = 0; i < n; ++i, ++d)
   1680            foo(d);
   1681     */
   1682     if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
   1683       IsSigned = false;
   1684       DestTy = UCast->getDestTy();
   1685     }
   1686     else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
   1687       IsSigned = true;
   1688       DestTy = SCast->getDestTy();
   1689     }
   1690     if (!DestTy) continue;
   1691 
   1692     // If target does not support DestTy natively then do not apply
   1693     // this transformation.
   1694     if (!TTI.isTypeLegal(DestTy)) continue;
   1695 
   1696     PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
   1697     if (!PH) continue;
   1698     if (PH->getNumIncomingValues() != 2) continue;
   1699 
   1700     Type *SrcTy = PH->getType();
   1701     int Mantissa = DestTy->getFPMantissaWidth();
   1702     if (Mantissa == -1) continue;
   1703     if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
   1704       continue;
   1705 
   1706     unsigned Entry, Latch;
   1707     if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
   1708       Entry = 0;
   1709       Latch = 1;
   1710     } else {
   1711       Entry = 1;
   1712       Latch = 0;
   1713     }
   1714 
   1715     ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
   1716     if (!Init) continue;
   1717     Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
   1718                                         (double)Init->getSExtValue() :
   1719                                         (double)Init->getZExtValue());
   1720 
   1721     BinaryOperator *Incr =
   1722       dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
   1723     if (!Incr) continue;
   1724     if (Incr->getOpcode() != Instruction::Add
   1725         && Incr->getOpcode() != Instruction::Sub)
   1726       continue;
   1727 
   1728     /* Initialize new IV, double d = 0.0 in above example. */
   1729     ConstantInt *C = NULL;
   1730     if (Incr->getOperand(0) == PH)
   1731       C = dyn_cast<ConstantInt>(Incr->getOperand(1));
   1732     else if (Incr->getOperand(1) == PH)
   1733       C = dyn_cast<ConstantInt>(Incr->getOperand(0));
   1734     else
   1735       continue;
   1736 
   1737     if (!C) continue;
   1738 
   1739     // Ignore negative constants, as the code below doesn't handle them
   1740     // correctly. TODO: Remove this restriction.
   1741     if (!C->getValue().isStrictlyPositive()) continue;
   1742 
   1743     /* Add new PHINode. */
   1744     PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
   1745 
   1746     /* create new increment. '++d' in above example. */
   1747     Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
   1748     BinaryOperator *NewIncr =
   1749       BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
   1750                                Instruction::FAdd : Instruction::FSub,
   1751                              NewPH, CFP, "IV.S.next.", Incr);
   1752 
   1753     NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
   1754     NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
   1755 
   1756     /* Remove cast operation */
   1757     ShadowUse->replaceAllUsesWith(NewPH);
   1758     ShadowUse->eraseFromParent();
   1759     Changed = true;
   1760     break;
   1761   }
   1762 }
   1763 
   1764 /// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
   1765 /// set the IV user and stride information and return true, otherwise return
   1766 /// false.
   1767 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
   1768   for (IVUsers::iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
   1769     if (UI->getUser() == Cond) {
   1770       // NOTE: we could handle setcc instructions with multiple uses here, but
   1771       // InstCombine does it as well for simple uses, it's not clear that it
   1772       // occurs enough in real life to handle.
   1773       CondUse = UI;
   1774       return true;
   1775     }
   1776   return false;
   1777 }
   1778 
   1779 /// OptimizeMax - Rewrite the loop's terminating condition if it uses
   1780 /// a max computation.
   1781 ///
   1782 /// This is a narrow solution to a specific, but acute, problem. For loops
   1783 /// like this:
   1784 ///
   1785 ///   i = 0;
   1786 ///   do {
   1787 ///     p[i] = 0.0;
   1788 ///   } while (++i < n);
   1789 ///
   1790 /// the trip count isn't just 'n', because 'n' might not be positive. And
   1791 /// unfortunately this can come up even for loops where the user didn't use
   1792 /// a C do-while loop. For example, seemingly well-behaved top-test loops
   1793 /// will commonly be lowered like this:
   1794 //
   1795 ///   if (n > 0) {
   1796 ///     i = 0;
   1797 ///     do {
   1798 ///       p[i] = 0.0;
   1799 ///     } while (++i < n);
   1800 ///   }
   1801 ///
   1802 /// and then it's possible for subsequent optimization to obscure the if
   1803 /// test in such a way that indvars can't find it.
   1804 ///
   1805 /// When indvars can't find the if test in loops like this, it creates a
   1806 /// max expression, which allows it to give the loop a canonical
   1807 /// induction variable:
   1808 ///
   1809 ///   i = 0;
   1810 ///   max = n < 1 ? 1 : n;
   1811 ///   do {
   1812 ///     p[i] = 0.0;
   1813 ///   } while (++i != max);
   1814 ///
   1815 /// Canonical induction variables are necessary because the loop passes
   1816 /// are designed around them. The most obvious example of this is the
   1817 /// LoopInfo analysis, which doesn't remember trip count values. It
   1818 /// expects to be able to rediscover the trip count each time it is
   1819 /// needed, and it does this using a simple analysis that only succeeds if
   1820 /// the loop has a canonical induction variable.
   1821 ///
   1822 /// However, when it comes time to generate code, the maximum operation
   1823 /// can be quite costly, especially if it's inside of an outer loop.
   1824 ///
   1825 /// This function solves this problem by detecting this type of loop and
   1826 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
   1827 /// the instructions for the maximum computation.
   1828 ///
   1829 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
   1830   // Check that the loop matches the pattern we're looking for.
   1831   if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
   1832       Cond->getPredicate() != CmpInst::ICMP_NE)
   1833     return Cond;
   1834 
   1835   SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
   1836   if (!Sel || !Sel->hasOneUse()) return Cond;
   1837 
   1838   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
   1839   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
   1840     return Cond;
   1841   const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
   1842 
   1843   // Add one to the backedge-taken count to get the trip count.
   1844   const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
   1845   if (IterationCount != SE.getSCEV(Sel)) return Cond;
   1846 
   1847   // Check for a max calculation that matches the pattern. There's no check
   1848   // for ICMP_ULE here because the comparison would be with zero, which
   1849   // isn't interesting.
   1850   CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
   1851   const SCEVNAryExpr *Max = 0;
   1852   if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
   1853     Pred = ICmpInst::ICMP_SLE;
   1854     Max = S;
   1855   } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
   1856     Pred = ICmpInst::ICMP_SLT;
   1857     Max = S;
   1858   } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
   1859     Pred = ICmpInst::ICMP_ULT;
   1860     Max = U;
   1861   } else {
   1862     // No match; bail.
   1863     return Cond;
   1864   }
   1865 
   1866   // To handle a max with more than two operands, this optimization would
   1867   // require additional checking and setup.
   1868   if (Max->getNumOperands() != 2)
   1869     return Cond;
   1870 
   1871   const SCEV *MaxLHS = Max->getOperand(0);
   1872   const SCEV *MaxRHS = Max->getOperand(1);
   1873 
   1874   // ScalarEvolution canonicalizes constants to the left. For < and >, look
   1875   // for a comparison with 1. For <= and >=, a comparison with zero.
   1876   if (!MaxLHS ||
   1877       (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
   1878     return Cond;
   1879 
   1880   // Check the relevant induction variable for conformance to
   1881   // the pattern.
   1882   const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
   1883   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
   1884   if (!AR || !AR->isAffine() ||
   1885       AR->getStart() != One ||
   1886       AR->getStepRecurrence(SE) != One)
   1887     return Cond;
   1888 
   1889   assert(AR->getLoop() == L &&
   1890          "Loop condition operand is an addrec in a different loop!");
   1891 
   1892   // Check the right operand of the select, and remember it, as it will
   1893   // be used in the new comparison instruction.
   1894   Value *NewRHS = 0;
   1895   if (ICmpInst::isTrueWhenEqual(Pred)) {
   1896     // Look for n+1, and grab n.
   1897     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
   1898       if (isa<ConstantInt>(BO->getOperand(1)) &&
   1899           cast<ConstantInt>(BO->getOperand(1))->isOne() &&
   1900           SE.getSCEV(BO->getOperand(0)) == MaxRHS)
   1901         NewRHS = BO->getOperand(0);
   1902     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
   1903       if (isa<ConstantInt>(BO->getOperand(1)) &&
   1904           cast<ConstantInt>(BO->getOperand(1))->isOne() &&
   1905           SE.getSCEV(BO->getOperand(0)) == MaxRHS)
   1906         NewRHS = BO->getOperand(0);
   1907     if (!NewRHS)
   1908       return Cond;
   1909   } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
   1910     NewRHS = Sel->getOperand(1);
   1911   else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
   1912     NewRHS = Sel->getOperand(2);
   1913   else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
   1914     NewRHS = SU->getValue();
   1915   else
   1916     // Max doesn't match expected pattern.
   1917     return Cond;
   1918 
   1919   // Determine the new comparison opcode. It may be signed or unsigned,
   1920   // and the original comparison may be either equality or inequality.
   1921   if (Cond->getPredicate() == CmpInst::ICMP_EQ)
   1922     Pred = CmpInst::getInversePredicate(Pred);
   1923 
   1924   // Ok, everything looks ok to change the condition into an SLT or SGE and
   1925   // delete the max calculation.
   1926   ICmpInst *NewCond =
   1927     new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
   1928 
   1929   // Delete the max calculation instructions.
   1930   Cond->replaceAllUsesWith(NewCond);
   1931   CondUse->setUser(NewCond);
   1932   Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
   1933   Cond->eraseFromParent();
   1934   Sel->eraseFromParent();
   1935   if (Cmp->use_empty())
   1936     Cmp->eraseFromParent();
   1937   return NewCond;
   1938 }
   1939 
   1940 /// OptimizeLoopTermCond - Change loop terminating condition to use the
   1941 /// postinc iv when possible.
   1942 void
   1943 LSRInstance::OptimizeLoopTermCond() {
   1944   SmallPtrSet<Instruction *, 4> PostIncs;
   1945 
   1946   BasicBlock *LatchBlock = L->getLoopLatch();
   1947   SmallVector<BasicBlock*, 8> ExitingBlocks;
   1948   L->getExitingBlocks(ExitingBlocks);
   1949 
   1950   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
   1951     BasicBlock *ExitingBlock = ExitingBlocks[i];
   1952 
   1953     // Get the terminating condition for the loop if possible.  If we
   1954     // can, we want to change it to use a post-incremented version of its
   1955     // induction variable, to allow coalescing the live ranges for the IV into
   1956     // one register value.
   1957 
   1958     BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
   1959     if (!TermBr)
   1960       continue;
   1961     // FIXME: Overly conservative, termination condition could be an 'or' etc..
   1962     if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
   1963       continue;
   1964 
   1965     // Search IVUsesByStride to find Cond's IVUse if there is one.
   1966     IVStrideUse *CondUse = 0;
   1967     ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
   1968     if (!FindIVUserForCond(Cond, CondUse))
   1969       continue;
   1970 
   1971     // If the trip count is computed in terms of a max (due to ScalarEvolution
   1972     // being unable to find a sufficient guard, for example), change the loop
   1973     // comparison to use SLT or ULT instead of NE.
   1974     // One consequence of doing this now is that it disrupts the count-down
   1975     // optimization. That's not always a bad thing though, because in such
   1976     // cases it may still be worthwhile to avoid a max.
   1977     Cond = OptimizeMax(Cond, CondUse);
   1978 
   1979     // If this exiting block dominates the latch block, it may also use
   1980     // the post-inc value if it won't be shared with other uses.
   1981     // Check for dominance.
   1982     if (!DT.dominates(ExitingBlock, LatchBlock))
   1983       continue;
   1984 
   1985     // Conservatively avoid trying to use the post-inc value in non-latch
   1986     // exits if there may be pre-inc users in intervening blocks.
   1987     if (LatchBlock != ExitingBlock)
   1988       for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
   1989         // Test if the use is reachable from the exiting block. This dominator
   1990         // query is a conservative approximation of reachability.
   1991         if (&*UI != CondUse &&
   1992             !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
   1993           // Conservatively assume there may be reuse if the quotient of their
   1994           // strides could be a legal scale.
   1995           const SCEV *A = IU.getStride(*CondUse, L);
   1996           const SCEV *B = IU.getStride(*UI, L);
   1997           if (!A || !B) continue;
   1998           if (SE.getTypeSizeInBits(A->getType()) !=
   1999               SE.getTypeSizeInBits(B->getType())) {
   2000             if (SE.getTypeSizeInBits(A->getType()) >
   2001                 SE.getTypeSizeInBits(B->getType()))
   2002               B = SE.getSignExtendExpr(B, A->getType());
   2003             else
   2004               A = SE.getSignExtendExpr(A, B->getType());
   2005           }
   2006           if (const SCEVConstant *D =
   2007                 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
   2008             const ConstantInt *C = D->getValue();
   2009             // Stride of one or negative one can have reuse with non-addresses.
   2010             if (C->isOne() || C->isAllOnesValue())
   2011               goto decline_post_inc;
   2012             // Avoid weird situations.
   2013             if (C->getValue().getMinSignedBits() >= 64 ||
   2014                 C->getValue().isMinSignedValue())
   2015               goto decline_post_inc;
   2016             // Check for possible scaled-address reuse.
   2017             Type *AccessTy = getAccessType(UI->getUser());
   2018             int64_t Scale = C->getSExtValue();
   2019             if (TTI.isLegalAddressingMode(AccessTy, /*BaseGV=*/ 0,
   2020                                           /*BaseOffset=*/ 0,
   2021                                           /*HasBaseReg=*/ false, Scale))
   2022               goto decline_post_inc;
   2023             Scale = -Scale;
   2024             if (TTI.isLegalAddressingMode(AccessTy, /*BaseGV=*/ 0,
   2025                                           /*BaseOffset=*/ 0,
   2026                                           /*HasBaseReg=*/ false, Scale))
   2027               goto decline_post_inc;
   2028           }
   2029         }
   2030 
   2031     DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
   2032                  << *Cond << '\n');
   2033 
   2034     // It's possible for the setcc instruction to be anywhere in the loop, and
   2035     // possible for it to have multiple users.  If it is not immediately before
   2036     // the exiting block branch, move it.
   2037     if (&*++BasicBlock::iterator(Cond) != TermBr) {
   2038       if (Cond->hasOneUse()) {
   2039         Cond->moveBefore(TermBr);
   2040       } else {
   2041         // Clone the terminating condition and insert into the loopend.
   2042         ICmpInst *OldCond = Cond;
   2043         Cond = cast<ICmpInst>(Cond->clone());
   2044         Cond->setName(L->getHeader()->getName() + ".termcond");
   2045         ExitingBlock->getInstList().insert(TermBr, Cond);
   2046 
   2047         // Clone the IVUse, as the old use still exists!
   2048         CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
   2049         TermBr->replaceUsesOfWith(OldCond, Cond);
   2050       }
   2051     }
   2052 
   2053     // If we get to here, we know that we can transform the setcc instruction to
   2054     // use the post-incremented version of the IV, allowing us to coalesce the
   2055     // live ranges for the IV correctly.
   2056     CondUse->transformToPostInc(L);
   2057     Changed = true;
   2058 
   2059     PostIncs.insert(Cond);
   2060   decline_post_inc:;
   2061   }
   2062 
   2063   // Determine an insertion point for the loop induction variable increment. It
   2064   // must dominate all the post-inc comparisons we just set up, and it must
   2065   // dominate the loop latch edge.
   2066   IVIncInsertPos = L->getLoopLatch()->getTerminator();
   2067   for (SmallPtrSet<Instruction *, 4>::const_iterator I = PostIncs.begin(),
   2068        E = PostIncs.end(); I != E; ++I) {
   2069     BasicBlock *BB =
   2070       DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
   2071                                     (*I)->getParent());
   2072     if (BB == (*I)->getParent())
   2073       IVIncInsertPos = *I;
   2074     else if (BB != IVIncInsertPos->getParent())
   2075       IVIncInsertPos = BB->getTerminator();
   2076   }
   2077 }
   2078 
   2079 /// reconcileNewOffset - Determine if the given use can accommodate a fixup
   2080 /// at the given offset and other details. If so, update the use and
   2081 /// return true.
   2082 bool
   2083 LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
   2084                                 LSRUse::KindType Kind, Type *AccessTy) {
   2085   int64_t NewMinOffset = LU.MinOffset;
   2086   int64_t NewMaxOffset = LU.MaxOffset;
   2087   Type *NewAccessTy = AccessTy;
   2088 
   2089   // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
   2090   // something conservative, however this can pessimize in the case that one of
   2091   // the uses will have all its uses outside the loop, for example.
   2092   if (LU.Kind != Kind)
   2093     return false;
   2094   // Conservatively assume HasBaseReg is true for now.
   2095   if (NewOffset < LU.MinOffset) {
   2096     if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ 0,
   2097                           LU.MaxOffset - NewOffset, HasBaseReg))
   2098       return false;
   2099     NewMinOffset = NewOffset;
   2100   } else if (NewOffset > LU.MaxOffset) {
   2101     if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ 0,
   2102                           NewOffset - LU.MinOffset, HasBaseReg))
   2103       return false;
   2104     NewMaxOffset = NewOffset;
   2105   }
   2106   // Check for a mismatched access type, and fall back conservatively as needed.
   2107   // TODO: Be less conservative when the type is similar and can use the same
   2108   // addressing modes.
   2109   if (Kind == LSRUse::Address && AccessTy != LU.AccessTy)
   2110     NewAccessTy = Type::getVoidTy(AccessTy->getContext());
   2111 
   2112   // Update the use.
   2113   LU.MinOffset = NewMinOffset;
   2114   LU.MaxOffset = NewMaxOffset;
   2115   LU.AccessTy = NewAccessTy;
   2116   if (NewOffset != LU.Offsets.back())
   2117     LU.Offsets.push_back(NewOffset);
   2118   return true;
   2119 }
   2120 
   2121 /// getUse - Return an LSRUse index and an offset value for a fixup which
   2122 /// needs the given expression, with the given kind and optional access type.
   2123 /// Either reuse an existing use or create a new one, as needed.
   2124 std::pair<size_t, int64_t>
   2125 LSRInstance::getUse(const SCEV *&Expr,
   2126                     LSRUse::KindType Kind, Type *AccessTy) {
   2127   const SCEV *Copy = Expr;
   2128   int64_t Offset = ExtractImmediate(Expr, SE);
   2129 
   2130   // Basic uses can't accept any offset, for example.
   2131   if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ 0,
   2132                         Offset, /*HasBaseReg=*/ true)) {
   2133     Expr = Copy;
   2134     Offset = 0;
   2135   }
   2136 
   2137   std::pair<UseMapTy::iterator, bool> P =
   2138     UseMap.insert(std::make_pair(std::make_pair(Expr, Kind), 0));
   2139   if (!P.second) {
   2140     // A use already existed with this base.
   2141     size_t LUIdx = P.first->second;
   2142     LSRUse &LU = Uses[LUIdx];
   2143     if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
   2144       // Reuse this use.
   2145       return std::make_pair(LUIdx, Offset);
   2146   }
   2147 
   2148   // Create a new use.
   2149   size_t LUIdx = Uses.size();
   2150   P.first->second = LUIdx;
   2151   Uses.push_back(LSRUse(Kind, AccessTy));
   2152   LSRUse &LU = Uses[LUIdx];
   2153 
   2154   // We don't need to track redundant offsets, but we don't need to go out
   2155   // of our way here to avoid them.
   2156   if (LU.Offsets.empty() || Offset != LU.Offsets.back())
   2157     LU.Offsets.push_back(Offset);
   2158 
   2159   LU.MinOffset = Offset;
   2160   LU.MaxOffset = Offset;
   2161   return std::make_pair(LUIdx, Offset);
   2162 }
   2163 
   2164 /// DeleteUse - Delete the given use from the Uses list.
   2165 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
   2166   if (&LU != &Uses.back())
   2167     std::swap(LU, Uses.back());
   2168   Uses.pop_back();
   2169 
   2170   // Update RegUses.
   2171   RegUses.SwapAndDropUse(LUIdx, Uses.size());
   2172 }
   2173 
   2174 /// FindUseWithFormula - Look for a use distinct from OrigLU which is has
   2175 /// a formula that has the same registers as the given formula.
   2176 LSRUse *
   2177 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
   2178                                        const LSRUse &OrigLU) {
   2179   // Search all uses for the formula. This could be more clever.
   2180   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   2181     LSRUse &LU = Uses[LUIdx];
   2182     // Check whether this use is close enough to OrigLU, to see whether it's
   2183     // worthwhile looking through its formulae.
   2184     // Ignore ICmpZero uses because they may contain formulae generated by
   2185     // GenerateICmpZeroScales, in which case adding fixup offsets may
   2186     // be invalid.
   2187     if (&LU != &OrigLU &&
   2188         LU.Kind != LSRUse::ICmpZero &&
   2189         LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
   2190         LU.WidestFixupType == OrigLU.WidestFixupType &&
   2191         LU.HasFormulaWithSameRegs(OrigF)) {
   2192       // Scan through this use's formulae.
   2193       for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
   2194            E = LU.Formulae.end(); I != E; ++I) {
   2195         const Formula &F = *I;
   2196         // Check to see if this formula has the same registers and symbols
   2197         // as OrigF.
   2198         if (F.BaseRegs == OrigF.BaseRegs &&
   2199             F.ScaledReg == OrigF.ScaledReg &&
   2200             F.BaseGV == OrigF.BaseGV &&
   2201             F.Scale == OrigF.Scale &&
   2202             F.UnfoldedOffset == OrigF.UnfoldedOffset) {
   2203           if (F.BaseOffset == 0)
   2204             return &LU;
   2205           // This is the formula where all the registers and symbols matched;
   2206           // there aren't going to be any others. Since we declined it, we
   2207           // can skip the rest of the formulae and proceed to the next LSRUse.
   2208           break;
   2209         }
   2210       }
   2211     }
   2212   }
   2213 
   2214   // Nothing looked good.
   2215   return 0;
   2216 }
   2217 
   2218 void LSRInstance::CollectInterestingTypesAndFactors() {
   2219   SmallSetVector<const SCEV *, 4> Strides;
   2220 
   2221   // Collect interesting types and strides.
   2222   SmallVector<const SCEV *, 4> Worklist;
   2223   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
   2224     const SCEV *Expr = IU.getExpr(*UI);
   2225 
   2226     // Collect interesting types.
   2227     Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
   2228 
   2229     // Add strides for mentioned loops.
   2230     Worklist.push_back(Expr);
   2231     do {
   2232       const SCEV *S = Worklist.pop_back_val();
   2233       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
   2234         if (AR->getLoop() == L)
   2235           Strides.insert(AR->getStepRecurrence(SE));
   2236         Worklist.push_back(AR->getStart());
   2237       } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
   2238         Worklist.append(Add->op_begin(), Add->op_end());
   2239       }
   2240     } while (!Worklist.empty());
   2241   }
   2242 
   2243   // Compute interesting factors from the set of interesting strides.
   2244   for (SmallSetVector<const SCEV *, 4>::const_iterator
   2245        I = Strides.begin(), E = Strides.end(); I != E; ++I)
   2246     for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
   2247          llvm::next(I); NewStrideIter != E; ++NewStrideIter) {
   2248       const SCEV *OldStride = *I;
   2249       const SCEV *NewStride = *NewStrideIter;
   2250 
   2251       if (SE.getTypeSizeInBits(OldStride->getType()) !=
   2252           SE.getTypeSizeInBits(NewStride->getType())) {
   2253         if (SE.getTypeSizeInBits(OldStride->getType()) >
   2254             SE.getTypeSizeInBits(NewStride->getType()))
   2255           NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
   2256         else
   2257           OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
   2258       }
   2259       if (const SCEVConstant *Factor =
   2260             dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
   2261                                                         SE, true))) {
   2262         if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
   2263           Factors.insert(Factor->getValue()->getValue().getSExtValue());
   2264       } else if (const SCEVConstant *Factor =
   2265                    dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
   2266                                                                NewStride,
   2267                                                                SE, true))) {
   2268         if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
   2269           Factors.insert(Factor->getValue()->getValue().getSExtValue());
   2270       }
   2271     }
   2272 
   2273   // If all uses use the same type, don't bother looking for truncation-based
   2274   // reuse.
   2275   if (Types.size() == 1)
   2276     Types.clear();
   2277 
   2278   DEBUG(print_factors_and_types(dbgs()));
   2279 }
   2280 
   2281 /// findIVOperand - Helper for CollectChains that finds an IV operand (computed
   2282 /// by an AddRec in this loop) within [OI,OE) or returns OE. If IVUsers mapped
   2283 /// Instructions to IVStrideUses, we could partially skip this.
   2284 static User::op_iterator
   2285 findIVOperand(User::op_iterator OI, User::op_iterator OE,
   2286               Loop *L, ScalarEvolution &SE) {
   2287   for(; OI != OE; ++OI) {
   2288     if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
   2289       if (!SE.isSCEVable(Oper->getType()))
   2290         continue;
   2291 
   2292       if (const SCEVAddRecExpr *AR =
   2293           dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
   2294         if (AR->getLoop() == L)
   2295           break;
   2296       }
   2297     }
   2298   }
   2299   return OI;
   2300 }
   2301 
   2302 /// getWideOperand - IVChain logic must consistenctly peek base TruncInst
   2303 /// operands, so wrap it in a convenient helper.
   2304 static Value *getWideOperand(Value *Oper) {
   2305   if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
   2306     return Trunc->getOperand(0);
   2307   return Oper;
   2308 }
   2309 
   2310 /// isCompatibleIVType - Return true if we allow an IV chain to include both
   2311 /// types.
   2312 static bool isCompatibleIVType(Value *LVal, Value *RVal) {
   2313   Type *LType = LVal->getType();
   2314   Type *RType = RVal->getType();
   2315   return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy());
   2316 }
   2317 
   2318 /// getExprBase - Return an approximation of this SCEV expression's "base", or
   2319 /// NULL for any constant. Returning the expression itself is
   2320 /// conservative. Returning a deeper subexpression is more precise and valid as
   2321 /// long as it isn't less complex than another subexpression. For expressions
   2322 /// involving multiple unscaled values, we need to return the pointer-type
   2323 /// SCEVUnknown. This avoids forming chains across objects, such as:
   2324 /// PrevOper==a[i], IVOper==b[i], IVInc==b-a.
   2325 ///
   2326 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
   2327 /// SCEVUnknown, we simply return the rightmost SCEV operand.
   2328 static const SCEV *getExprBase(const SCEV *S) {
   2329   switch (S->getSCEVType()) {
   2330   default: // uncluding scUnknown.
   2331     return S;
   2332   case scConstant:
   2333     return 0;
   2334   case scTruncate:
   2335     return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
   2336   case scZeroExtend:
   2337     return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
   2338   case scSignExtend:
   2339     return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
   2340   case scAddExpr: {
   2341     // Skip over scaled operands (scMulExpr) to follow add operands as long as
   2342     // there's nothing more complex.
   2343     // FIXME: not sure if we want to recognize negation.
   2344     const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
   2345     for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
   2346            E(Add->op_begin()); I != E; ++I) {
   2347       const SCEV *SubExpr = *I;
   2348       if (SubExpr->getSCEVType() == scAddExpr)
   2349         return getExprBase(SubExpr);
   2350 
   2351       if (SubExpr->getSCEVType() != scMulExpr)
   2352         return SubExpr;
   2353     }
   2354     return S; // all operands are scaled, be conservative.
   2355   }
   2356   case scAddRecExpr:
   2357     return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
   2358   }
   2359 }
   2360 
   2361 /// Return true if the chain increment is profitable to expand into a loop
   2362 /// invariant value, which may require its own register. A profitable chain
   2363 /// increment will be an offset relative to the same base. We allow such offsets
   2364 /// to potentially be used as chain increment as long as it's not obviously
   2365 /// expensive to expand using real instructions.
   2366 bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
   2367                                     const SCEV *IncExpr,
   2368                                     ScalarEvolution &SE) {
   2369   // Aggressively form chains when -stress-ivchain.
   2370   if (StressIVChain)
   2371     return true;
   2372 
   2373   // Do not replace a constant offset from IV head with a nonconstant IV
   2374   // increment.
   2375   if (!isa<SCEVConstant>(IncExpr)) {
   2376     const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
   2377     if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
   2378       return 0;
   2379   }
   2380 
   2381   SmallPtrSet<const SCEV*, 8> Processed;
   2382   return !isHighCostExpansion(IncExpr, Processed, SE);
   2383 }
   2384 
   2385 /// Return true if the number of registers needed for the chain is estimated to
   2386 /// be less than the number required for the individual IV users. First prohibit
   2387 /// any IV users that keep the IV live across increments (the Users set should
   2388 /// be empty). Next count the number and type of increments in the chain.
   2389 ///
   2390 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
   2391 /// effectively use postinc addressing modes. Only consider it profitable it the
   2392 /// increments can be computed in fewer registers when chained.
   2393 ///
   2394 /// TODO: Consider IVInc free if it's already used in another chains.
   2395 static bool
   2396 isProfitableChain(IVChain &Chain, SmallPtrSet<Instruction*, 4> &Users,
   2397                   ScalarEvolution &SE, const TargetTransformInfo &TTI) {
   2398   if (StressIVChain)
   2399     return true;
   2400 
   2401   if (!Chain.hasIncs())
   2402     return false;
   2403 
   2404   if (!Users.empty()) {
   2405     DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
   2406           for (SmallPtrSet<Instruction*, 4>::const_iterator I = Users.begin(),
   2407                  E = Users.end(); I != E; ++I) {
   2408             dbgs() << "  " << **I << "\n";
   2409           });
   2410     return false;
   2411   }
   2412   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
   2413 
   2414   // The chain itself may require a register, so intialize cost to 1.
   2415   int cost = 1;
   2416 
   2417   // A complete chain likely eliminates the need for keeping the original IV in
   2418   // a register. LSR does not currently know how to form a complete chain unless
   2419   // the header phi already exists.
   2420   if (isa<PHINode>(Chain.tailUserInst())
   2421       && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
   2422     --cost;
   2423   }
   2424   const SCEV *LastIncExpr = 0;
   2425   unsigned NumConstIncrements = 0;
   2426   unsigned NumVarIncrements = 0;
   2427   unsigned NumReusedIncrements = 0;
   2428   for (IVChain::const_iterator I = Chain.begin(), E = Chain.end();
   2429        I != E; ++I) {
   2430 
   2431     if (I->IncExpr->isZero())
   2432       continue;
   2433 
   2434     // Incrementing by zero or some constant is neutral. We assume constants can
   2435     // be folded into an addressing mode or an add's immediate operand.
   2436     if (isa<SCEVConstant>(I->IncExpr)) {
   2437       ++NumConstIncrements;
   2438       continue;
   2439     }
   2440 
   2441     if (I->IncExpr == LastIncExpr)
   2442       ++NumReusedIncrements;
   2443     else
   2444       ++NumVarIncrements;
   2445 
   2446     LastIncExpr = I->IncExpr;
   2447   }
   2448   // An IV chain with a single increment is handled by LSR's postinc
   2449   // uses. However, a chain with multiple increments requires keeping the IV's
   2450   // value live longer than it needs to be if chained.
   2451   if (NumConstIncrements > 1)
   2452     --cost;
   2453 
   2454   // Materializing increment expressions in the preheader that didn't exist in
   2455   // the original code may cost a register. For example, sign-extended array
   2456   // indices can produce ridiculous increments like this:
   2457   // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
   2458   cost += NumVarIncrements;
   2459 
   2460   // Reusing variable increments likely saves a register to hold the multiple of
   2461   // the stride.
   2462   cost -= NumReusedIncrements;
   2463 
   2464   DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
   2465                << "\n");
   2466 
   2467   return cost < 0;
   2468 }
   2469 
   2470 /// ChainInstruction - Add this IV user to an existing chain or make it the head
   2471 /// of a new chain.
   2472 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
   2473                                    SmallVectorImpl<ChainUsers> &ChainUsersVec) {
   2474   // When IVs are used as types of varying widths, they are generally converted
   2475   // to a wider type with some uses remaining narrow under a (free) trunc.
   2476   Value *const NextIV = getWideOperand(IVOper);
   2477   const SCEV *const OperExpr = SE.getSCEV(NextIV);
   2478   const SCEV *const OperExprBase = getExprBase(OperExpr);
   2479 
   2480   // Visit all existing chains. Check if its IVOper can be computed as a
   2481   // profitable loop invariant increment from the last link in the Chain.
   2482   unsigned ChainIdx = 0, NChains = IVChainVec.size();
   2483   const SCEV *LastIncExpr = 0;
   2484   for (; ChainIdx < NChains; ++ChainIdx) {
   2485     IVChain &Chain = IVChainVec[ChainIdx];
   2486 
   2487     // Prune the solution space aggressively by checking that both IV operands
   2488     // are expressions that operate on the same unscaled SCEVUnknown. This
   2489     // "base" will be canceled by the subsequent getMinusSCEV call. Checking
   2490     // first avoids creating extra SCEV expressions.
   2491     if (!StressIVChain && Chain.ExprBase != OperExprBase)
   2492       continue;
   2493 
   2494     Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
   2495     if (!isCompatibleIVType(PrevIV, NextIV))
   2496       continue;
   2497 
   2498     // A phi node terminates a chain.
   2499     if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
   2500       continue;
   2501 
   2502     // The increment must be loop-invariant so it can be kept in a register.
   2503     const SCEV *PrevExpr = SE.getSCEV(PrevIV);
   2504     const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
   2505     if (!SE.isLoopInvariant(IncExpr, L))
   2506       continue;
   2507 
   2508     if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
   2509       LastIncExpr = IncExpr;
   2510       break;
   2511     }
   2512   }
   2513   // If we haven't found a chain, create a new one, unless we hit the max. Don't
   2514   // bother for phi nodes, because they must be last in the chain.
   2515   if (ChainIdx == NChains) {
   2516     if (isa<PHINode>(UserInst))
   2517       return;
   2518     if (NChains >= MaxChains && !StressIVChain) {
   2519       DEBUG(dbgs() << "IV Chain Limit\n");
   2520       return;
   2521     }
   2522     LastIncExpr = OperExpr;
   2523     // IVUsers may have skipped over sign/zero extensions. We don't currently
   2524     // attempt to form chains involving extensions unless they can be hoisted
   2525     // into this loop's AddRec.
   2526     if (!isa<SCEVAddRecExpr>(LastIncExpr))
   2527       return;
   2528     ++NChains;
   2529     IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
   2530                                  OperExprBase));
   2531     ChainUsersVec.resize(NChains);
   2532     DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
   2533                  << ") IV=" << *LastIncExpr << "\n");
   2534   } else {
   2535     DEBUG(dbgs() << "IV Chain#" << ChainIdx << "  Inc: (" << *UserInst
   2536                  << ") IV+" << *LastIncExpr << "\n");
   2537     // Add this IV user to the end of the chain.
   2538     IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
   2539   }
   2540   IVChain &Chain = IVChainVec[ChainIdx];
   2541 
   2542   SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
   2543   // This chain's NearUsers become FarUsers.
   2544   if (!LastIncExpr->isZero()) {
   2545     ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
   2546                                             NearUsers.end());
   2547     NearUsers.clear();
   2548   }
   2549 
   2550   // All other uses of IVOperand become near uses of the chain.
   2551   // We currently ignore intermediate values within SCEV expressions, assuming
   2552   // they will eventually be used be the current chain, or can be computed
   2553   // from one of the chain increments. To be more precise we could
   2554   // transitively follow its user and only add leaf IV users to the set.
   2555   for (Value::use_iterator UseIter = IVOper->use_begin(),
   2556          UseEnd = IVOper->use_end(); UseIter != UseEnd; ++UseIter) {
   2557     Instruction *OtherUse = dyn_cast<Instruction>(*UseIter);
   2558     if (!OtherUse)
   2559       continue;
   2560     // Uses in the chain will no longer be uses if the chain is formed.
   2561     // Include the head of the chain in this iteration (not Chain.begin()).
   2562     IVChain::const_iterator IncIter = Chain.Incs.begin();
   2563     IVChain::const_iterator IncEnd = Chain.Incs.end();
   2564     for( ; IncIter != IncEnd; ++IncIter) {
   2565       if (IncIter->UserInst == OtherUse)
   2566         break;
   2567     }
   2568     if (IncIter != IncEnd)
   2569       continue;
   2570 
   2571     if (SE.isSCEVable(OtherUse->getType())
   2572         && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
   2573         && IU.isIVUserOrOperand(OtherUse)) {
   2574       continue;
   2575     }
   2576     NearUsers.insert(OtherUse);
   2577   }
   2578 
   2579   // Since this user is part of the chain, it's no longer considered a use
   2580   // of the chain.
   2581   ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
   2582 }
   2583 
   2584 /// CollectChains - Populate the vector of Chains.
   2585 ///
   2586 /// This decreases ILP at the architecture level. Targets with ample registers,
   2587 /// multiple memory ports, and no register renaming probably don't want
   2588 /// this. However, such targets should probably disable LSR altogether.
   2589 ///
   2590 /// The job of LSR is to make a reasonable choice of induction variables across
   2591 /// the loop. Subsequent passes can easily "unchain" computation exposing more
   2592 /// ILP *within the loop* if the target wants it.
   2593 ///
   2594 /// Finding the best IV chain is potentially a scheduling problem. Since LSR
   2595 /// will not reorder memory operations, it will recognize this as a chain, but
   2596 /// will generate redundant IV increments. Ideally this would be corrected later
   2597 /// by a smart scheduler:
   2598 ///        = A[i]
   2599 ///        = A[i+x]
   2600 /// A[i]   =
   2601 /// A[i+x] =
   2602 ///
   2603 /// TODO: Walk the entire domtree within this loop, not just the path to the
   2604 /// loop latch. This will discover chains on side paths, but requires
   2605 /// maintaining multiple copies of the Chains state.
   2606 void LSRInstance::CollectChains() {
   2607   DEBUG(dbgs() << "Collecting IV Chains.\n");
   2608   SmallVector<ChainUsers, 8> ChainUsersVec;
   2609 
   2610   SmallVector<BasicBlock *,8> LatchPath;
   2611   BasicBlock *LoopHeader = L->getHeader();
   2612   for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
   2613        Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
   2614     LatchPath.push_back(Rung->getBlock());
   2615   }
   2616   LatchPath.push_back(LoopHeader);
   2617 
   2618   // Walk the instruction stream from the loop header to the loop latch.
   2619   for (SmallVectorImpl<BasicBlock *>::reverse_iterator
   2620          BBIter = LatchPath.rbegin(), BBEnd = LatchPath.rend();
   2621        BBIter != BBEnd; ++BBIter) {
   2622     for (BasicBlock::iterator I = (*BBIter)->begin(), E = (*BBIter)->end();
   2623          I != E; ++I) {
   2624       // Skip instructions that weren't seen by IVUsers analysis.
   2625       if (isa<PHINode>(I) || !IU.isIVUserOrOperand(I))
   2626         continue;
   2627 
   2628       // Ignore users that are part of a SCEV expression. This way we only
   2629       // consider leaf IV Users. This effectively rediscovers a portion of
   2630       // IVUsers analysis but in program order this time.
   2631       if (SE.isSCEVable(I->getType()) && !isa<SCEVUnknown>(SE.getSCEV(I)))
   2632         continue;
   2633 
   2634       // Remove this instruction from any NearUsers set it may be in.
   2635       for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
   2636            ChainIdx < NChains; ++ChainIdx) {
   2637         ChainUsersVec[ChainIdx].NearUsers.erase(I);
   2638       }
   2639       // Search for operands that can be chained.
   2640       SmallPtrSet<Instruction*, 4> UniqueOperands;
   2641       User::op_iterator IVOpEnd = I->op_end();
   2642       User::op_iterator IVOpIter = findIVOperand(I->op_begin(), IVOpEnd, L, SE);
   2643       while (IVOpIter != IVOpEnd) {
   2644         Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
   2645         if (UniqueOperands.insert(IVOpInst))
   2646           ChainInstruction(I, IVOpInst, ChainUsersVec);
   2647         IVOpIter = findIVOperand(llvm::next(IVOpIter), IVOpEnd, L, SE);
   2648       }
   2649     } // Continue walking down the instructions.
   2650   } // Continue walking down the domtree.
   2651   // Visit phi backedges to determine if the chain can generate the IV postinc.
   2652   for (BasicBlock::iterator I = L->getHeader()->begin();
   2653        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
   2654     if (!SE.isSCEVable(PN->getType()))
   2655       continue;
   2656 
   2657     Instruction *IncV =
   2658       dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch()));
   2659     if (IncV)
   2660       ChainInstruction(PN, IncV, ChainUsersVec);
   2661   }
   2662   // Remove any unprofitable chains.
   2663   unsigned ChainIdx = 0;
   2664   for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
   2665        UsersIdx < NChains; ++UsersIdx) {
   2666     if (!isProfitableChain(IVChainVec[UsersIdx],
   2667                            ChainUsersVec[UsersIdx].FarUsers, SE, TTI))
   2668       continue;
   2669     // Preserve the chain at UsesIdx.
   2670     if (ChainIdx != UsersIdx)
   2671       IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
   2672     FinalizeChain(IVChainVec[ChainIdx]);
   2673     ++ChainIdx;
   2674   }
   2675   IVChainVec.resize(ChainIdx);
   2676 }
   2677 
   2678 void LSRInstance::FinalizeChain(IVChain &Chain) {
   2679   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
   2680   DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
   2681 
   2682   for (IVChain::const_iterator I = Chain.begin(), E = Chain.end();
   2683        I != E; ++I) {
   2684     DEBUG(dbgs() << "        Inc: " << *I->UserInst << "\n");
   2685     User::op_iterator UseI =
   2686       std::find(I->UserInst->op_begin(), I->UserInst->op_end(), I->IVOperand);
   2687     assert(UseI != I->UserInst->op_end() && "cannot find IV operand");
   2688     IVIncSet.insert(UseI);
   2689   }
   2690 }
   2691 
   2692 /// Return true if the IVInc can be folded into an addressing mode.
   2693 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
   2694                              Value *Operand, const TargetTransformInfo &TTI) {
   2695   const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
   2696   if (!IncConst || !isAddressUse(UserInst, Operand))
   2697     return false;
   2698 
   2699   if (IncConst->getValue()->getValue().getMinSignedBits() > 64)
   2700     return false;
   2701 
   2702   int64_t IncOffset = IncConst->getValue()->getSExtValue();
   2703   if (!isAlwaysFoldable(TTI, LSRUse::Address,
   2704                         getAccessType(UserInst), /*BaseGV=*/ 0,
   2705                         IncOffset, /*HaseBaseReg=*/ false))
   2706     return false;
   2707 
   2708   return true;
   2709 }
   2710 
   2711 /// GenerateIVChains - Generate an add or subtract for each IVInc in a chain to
   2712 /// materialize the IV user's operand from the previous IV user's operand.
   2713 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
   2714                                   SmallVectorImpl<WeakVH> &DeadInsts) {
   2715   // Find the new IVOperand for the head of the chain. It may have been replaced
   2716   // by LSR.
   2717   const IVInc &Head = Chain.Incs[0];
   2718   User::op_iterator IVOpEnd = Head.UserInst->op_end();
   2719   User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
   2720                                              IVOpEnd, L, SE);
   2721   Value *IVSrc = 0;
   2722   while (IVOpIter != IVOpEnd) {
   2723     IVSrc = getWideOperand(*IVOpIter);
   2724 
   2725     // If this operand computes the expression that the chain needs, we may use
   2726     // it. (Check this after setting IVSrc which is used below.)
   2727     //
   2728     // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
   2729     // narrow for the chain, so we can no longer use it. We do allow using a
   2730     // wider phi, assuming the LSR checked for free truncation. In that case we
   2731     // should already have a truncate on this operand such that
   2732     // getSCEV(IVSrc) == IncExpr.
   2733     if (SE.getSCEV(*IVOpIter) == Head.IncExpr
   2734         || SE.getSCEV(IVSrc) == Head.IncExpr) {
   2735       break;
   2736     }
   2737     IVOpIter = findIVOperand(llvm::next(IVOpIter), IVOpEnd, L, SE);
   2738   }
   2739   if (IVOpIter == IVOpEnd) {
   2740     // Gracefully give up on this chain.
   2741     DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
   2742     return;
   2743   }
   2744 
   2745   DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
   2746   Type *IVTy = IVSrc->getType();
   2747   Type *IntTy = SE.getEffectiveSCEVType(IVTy);
   2748   const SCEV *LeftOverExpr = 0;
   2749   for (IVChain::const_iterator IncI = Chain.begin(),
   2750          IncE = Chain.end(); IncI != IncE; ++IncI) {
   2751 
   2752     Instruction *InsertPt = IncI->UserInst;
   2753     if (isa<PHINode>(InsertPt))
   2754       InsertPt = L->getLoopLatch()->getTerminator();
   2755 
   2756     // IVOper will replace the current IV User's operand. IVSrc is the IV
   2757     // value currently held in a register.
   2758     Value *IVOper = IVSrc;
   2759     if (!IncI->IncExpr->isZero()) {
   2760       // IncExpr was the result of subtraction of two narrow values, so must
   2761       // be signed.
   2762       const SCEV *IncExpr = SE.getNoopOrSignExtend(IncI->IncExpr, IntTy);
   2763       LeftOverExpr = LeftOverExpr ?
   2764         SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
   2765     }
   2766     if (LeftOverExpr && !LeftOverExpr->isZero()) {
   2767       // Expand the IV increment.
   2768       Rewriter.clearPostInc();
   2769       Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
   2770       const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
   2771                                              SE.getUnknown(IncV));
   2772       IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
   2773 
   2774       // If an IV increment can't be folded, use it as the next IV value.
   2775       if (!canFoldIVIncExpr(LeftOverExpr, IncI->UserInst, IncI->IVOperand,
   2776                             TTI)) {
   2777         assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
   2778         IVSrc = IVOper;
   2779         LeftOverExpr = 0;
   2780       }
   2781     }
   2782     Type *OperTy = IncI->IVOperand->getType();
   2783     if (IVTy != OperTy) {
   2784       assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
   2785              "cannot extend a chained IV");
   2786       IRBuilder<> Builder(InsertPt);
   2787       IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
   2788     }
   2789     IncI->UserInst->replaceUsesOfWith(IncI->IVOperand, IVOper);
   2790     DeadInsts.push_back(IncI->IVOperand);
   2791   }
   2792   // If LSR created a new, wider phi, we may also replace its postinc. We only
   2793   // do this if we also found a wide value for the head of the chain.
   2794   if (isa<PHINode>(Chain.tailUserInst())) {
   2795     for (BasicBlock::iterator I = L->getHeader()->begin();
   2796          PHINode *Phi = dyn_cast<PHINode>(I); ++I) {
   2797       if (!isCompatibleIVType(Phi, IVSrc))
   2798         continue;
   2799       Instruction *PostIncV = dyn_cast<Instruction>(
   2800         Phi->getIncomingValueForBlock(L->getLoopLatch()));
   2801       if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
   2802         continue;
   2803       Value *IVOper = IVSrc;
   2804       Type *PostIncTy = PostIncV->getType();
   2805       if (IVTy != PostIncTy) {
   2806         assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
   2807         IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
   2808         Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
   2809         IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
   2810       }
   2811       Phi->replaceUsesOfWith(PostIncV, IVOper);
   2812       DeadInsts.push_back(PostIncV);
   2813     }
   2814   }
   2815 }
   2816 
   2817 void LSRInstance::CollectFixupsAndInitialFormulae() {
   2818   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
   2819     Instruction *UserInst = UI->getUser();
   2820     // Skip IV users that are part of profitable IV Chains.
   2821     User::op_iterator UseI = std::find(UserInst->op_begin(), UserInst->op_end(),
   2822                                        UI->getOperandValToReplace());
   2823     assert(UseI != UserInst->op_end() && "cannot find IV operand");
   2824     if (IVIncSet.count(UseI))
   2825       continue;
   2826 
   2827     // Record the uses.
   2828     LSRFixup &LF = getNewFixup();
   2829     LF.UserInst = UserInst;
   2830     LF.OperandValToReplace = UI->getOperandValToReplace();
   2831     LF.PostIncLoops = UI->getPostIncLoops();
   2832 
   2833     LSRUse::KindType Kind = LSRUse::Basic;
   2834     Type *AccessTy = 0;
   2835     if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) {
   2836       Kind = LSRUse::Address;
   2837       AccessTy = getAccessType(LF.UserInst);
   2838     }
   2839 
   2840     const SCEV *S = IU.getExpr(*UI);
   2841 
   2842     // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
   2843     // (N - i == 0), and this allows (N - i) to be the expression that we work
   2844     // with rather than just N or i, so we can consider the register
   2845     // requirements for both N and i at the same time. Limiting this code to
   2846     // equality icmps is not a problem because all interesting loops use
   2847     // equality icmps, thanks to IndVarSimplify.
   2848     if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst))
   2849       if (CI->isEquality()) {
   2850         // Swap the operands if needed to put the OperandValToReplace on the
   2851         // left, for consistency.
   2852         Value *NV = CI->getOperand(1);
   2853         if (NV == LF.OperandValToReplace) {
   2854           CI->setOperand(1, CI->getOperand(0));
   2855           CI->setOperand(0, NV);
   2856           NV = CI->getOperand(1);
   2857           Changed = true;
   2858         }
   2859 
   2860         // x == y  -->  x - y == 0
   2861         const SCEV *N = SE.getSCEV(NV);
   2862         if (SE.isLoopInvariant(N, L) && isSafeToExpand(N)) {
   2863           // S is normalized, so normalize N before folding it into S
   2864           // to keep the result normalized.
   2865           N = TransformForPostIncUse(Normalize, N, CI, 0,
   2866                                      LF.PostIncLoops, SE, DT);
   2867           Kind = LSRUse::ICmpZero;
   2868           S = SE.getMinusSCEV(N, S);
   2869         }
   2870 
   2871         // -1 and the negations of all interesting strides (except the negation
   2872         // of -1) are now also interesting.
   2873         for (size_t i = 0, e = Factors.size(); i != e; ++i)
   2874           if (Factors[i] != -1)
   2875             Factors.insert(-(uint64_t)Factors[i]);
   2876         Factors.insert(-1);
   2877       }
   2878 
   2879     // Set up the initial formula for this use.
   2880     std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
   2881     LF.LUIdx = P.first;
   2882     LF.Offset = P.second;
   2883     LSRUse &LU = Uses[LF.LUIdx];
   2884     LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
   2885     if (!LU.WidestFixupType ||
   2886         SE.getTypeSizeInBits(LU.WidestFixupType) <
   2887         SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
   2888       LU.WidestFixupType = LF.OperandValToReplace->getType();
   2889 
   2890     // If this is the first use of this LSRUse, give it a formula.
   2891     if (LU.Formulae.empty()) {
   2892       InsertInitialFormula(S, LU, LF.LUIdx);
   2893       CountRegisters(LU.Formulae.back(), LF.LUIdx);
   2894     }
   2895   }
   2896 
   2897   DEBUG(print_fixups(dbgs()));
   2898 }
   2899 
   2900 /// InsertInitialFormula - Insert a formula for the given expression into
   2901 /// the given use, separating out loop-variant portions from loop-invariant
   2902 /// and loop-computable portions.
   2903 void
   2904 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
   2905   Formula F;
   2906   F.InitialMatch(S, L, SE);
   2907   bool Inserted = InsertFormula(LU, LUIdx, F);
   2908   assert(Inserted && "Initial formula already exists!"); (void)Inserted;
   2909 }
   2910 
   2911 /// InsertSupplementalFormula - Insert a simple single-register formula for
   2912 /// the given expression into the given use.
   2913 void
   2914 LSRInstance::InsertSupplementalFormula(const SCEV *S,
   2915                                        LSRUse &LU, size_t LUIdx) {
   2916   Formula F;
   2917   F.BaseRegs.push_back(S);
   2918   F.HasBaseReg = true;
   2919   bool Inserted = InsertFormula(LU, LUIdx, F);
   2920   assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
   2921 }
   2922 
   2923 /// CountRegisters - Note which registers are used by the given formula,
   2924 /// updating RegUses.
   2925 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
   2926   if (F.ScaledReg)
   2927     RegUses.CountRegister(F.ScaledReg, LUIdx);
   2928   for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
   2929        E = F.BaseRegs.end(); I != E; ++I)
   2930     RegUses.CountRegister(*I, LUIdx);
   2931 }
   2932 
   2933 /// InsertFormula - If the given formula has not yet been inserted, add it to
   2934 /// the list, and return true. Return false otherwise.
   2935 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
   2936   if (!LU.InsertFormula(F))
   2937     return false;
   2938 
   2939   CountRegisters(F, LUIdx);
   2940   return true;
   2941 }
   2942 
   2943 /// CollectLoopInvariantFixupsAndFormulae - Check for other uses of
   2944 /// loop-invariant values which we're tracking. These other uses will pin these
   2945 /// values in registers, making them less profitable for elimination.
   2946 /// TODO: This currently misses non-constant addrec step registers.
   2947 /// TODO: Should this give more weight to users inside the loop?
   2948 void
   2949 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
   2950   SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
   2951   SmallPtrSet<const SCEV *, 8> Inserted;
   2952 
   2953   while (!Worklist.empty()) {
   2954     const SCEV *S = Worklist.pop_back_val();
   2955 
   2956     if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
   2957       Worklist.append(N->op_begin(), N->op_end());
   2958     else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
   2959       Worklist.push_back(C->getOperand());
   2960     else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
   2961       Worklist.push_back(D->getLHS());
   2962       Worklist.push_back(D->getRHS());
   2963     } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
   2964       if (!Inserted.insert(U)) continue;
   2965       const Value *V = U->getValue();
   2966       if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
   2967         // Look for instructions defined outside the loop.
   2968         if (L->contains(Inst)) continue;
   2969       } else if (isa<UndefValue>(V))
   2970         // Undef doesn't have a live range, so it doesn't matter.
   2971         continue;
   2972       for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
   2973            UI != UE; ++UI) {
   2974         const Instruction *UserInst = dyn_cast<Instruction>(*UI);
   2975         // Ignore non-instructions.
   2976         if (!UserInst)
   2977           continue;
   2978         // Ignore instructions in other functions (as can happen with
   2979         // Constants).
   2980         if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
   2981           continue;
   2982         // Ignore instructions not dominated by the loop.
   2983         const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
   2984           UserInst->getParent() :
   2985           cast<PHINode>(UserInst)->getIncomingBlock(
   2986             PHINode::getIncomingValueNumForOperand(UI.getOperandNo()));
   2987         if (!DT.dominates(L->getHeader(), UseBB))
   2988           continue;
   2989         // Ignore uses which are part of other SCEV expressions, to avoid
   2990         // analyzing them multiple times.
   2991         if (SE.isSCEVable(UserInst->getType())) {
   2992           const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
   2993           // If the user is a no-op, look through to its uses.
   2994           if (!isa<SCEVUnknown>(UserS))
   2995             continue;
   2996           if (UserS == U) {
   2997             Worklist.push_back(
   2998               SE.getUnknown(const_cast<Instruction *>(UserInst)));
   2999             continue;
   3000           }
   3001         }
   3002         // Ignore icmp instructions which are already being analyzed.
   3003         if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
   3004           unsigned OtherIdx = !UI.getOperandNo();
   3005           Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
   3006           if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
   3007             continue;
   3008         }
   3009 
   3010         LSRFixup &LF = getNewFixup();
   3011         LF.UserInst = const_cast<Instruction *>(UserInst);
   3012         LF.OperandValToReplace = UI.getUse();
   3013         std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, 0);
   3014         LF.LUIdx = P.first;
   3015         LF.Offset = P.second;
   3016         LSRUse &LU = Uses[LF.LUIdx];
   3017         LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
   3018         if (!LU.WidestFixupType ||
   3019             SE.getTypeSizeInBits(LU.WidestFixupType) <
   3020             SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
   3021           LU.WidestFixupType = LF.OperandValToReplace->getType();
   3022         InsertSupplementalFormula(U, LU, LF.LUIdx);
   3023         CountRegisters(LU.Formulae.back(), Uses.size() - 1);
   3024         break;
   3025       }
   3026     }
   3027   }
   3028 }
   3029 
   3030 /// CollectSubexprs - Split S into subexpressions which can be pulled out into
   3031 /// separate registers. If C is non-null, multiply each subexpression by C.
   3032 ///
   3033 /// Return remainder expression after factoring the subexpressions captured by
   3034 /// Ops. If Ops is complete, return NULL.
   3035 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
   3036                                    SmallVectorImpl<const SCEV *> &Ops,
   3037                                    const Loop *L,
   3038                                    ScalarEvolution &SE,
   3039                                    unsigned Depth = 0) {
   3040   // Arbitrarily cap recursion to protect compile time.
   3041   if (Depth >= 3)
   3042     return S;
   3043 
   3044   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
   3045     // Break out add operands.
   3046     for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
   3047          I != E; ++I) {
   3048       const SCEV *Remainder = CollectSubexprs(*I, C, Ops, L, SE, Depth+1);
   3049       if (Remainder)
   3050         Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
   3051     }
   3052     return NULL;
   3053   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
   3054     // Split a non-zero base out of an addrec.
   3055     if (AR->getStart()->isZero())
   3056       return S;
   3057 
   3058     const SCEV *Remainder = CollectSubexprs(AR->getStart(),
   3059                                             C, Ops, L, SE, Depth+1);
   3060     // Split the non-zero AddRec unless it is part of a nested recurrence that
   3061     // does not pertain to this loop.
   3062     if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
   3063       Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
   3064       Remainder = NULL;
   3065     }
   3066     if (Remainder != AR->getStart()) {
   3067       if (!Remainder)
   3068         Remainder = SE.getConstant(AR->getType(), 0);
   3069       return SE.getAddRecExpr(Remainder,
   3070                               AR->getStepRecurrence(SE),
   3071                               AR->getLoop(),
   3072                               //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
   3073                               SCEV::FlagAnyWrap);
   3074     }
   3075   } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
   3076     // Break (C * (a + b + c)) into C*a + C*b + C*c.
   3077     if (Mul->getNumOperands() != 2)
   3078       return S;
   3079     if (const SCEVConstant *Op0 =
   3080         dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
   3081       C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
   3082       const SCEV *Remainder =
   3083         CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
   3084       if (Remainder)
   3085         Ops.push_back(SE.getMulExpr(C, Remainder));
   3086       return NULL;
   3087     }
   3088   }
   3089   return S;
   3090 }
   3091 
   3092 /// GenerateReassociations - Split out subexpressions from adds and the bases of
   3093 /// addrecs.
   3094 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
   3095                                          Formula Base,
   3096                                          unsigned Depth) {
   3097   // Arbitrarily cap recursion to protect compile time.
   3098   if (Depth >= 3) return;
   3099 
   3100   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
   3101     const SCEV *BaseReg = Base.BaseRegs[i];
   3102 
   3103     SmallVector<const SCEV *, 8> AddOps;
   3104     const SCEV *Remainder = CollectSubexprs(BaseReg, 0, AddOps, L, SE);
   3105     if (Remainder)
   3106       AddOps.push_back(Remainder);
   3107 
   3108     if (AddOps.size() == 1) continue;
   3109 
   3110     for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
   3111          JE = AddOps.end(); J != JE; ++J) {
   3112 
   3113       // Loop-variant "unknown" values are uninteresting; we won't be able to
   3114       // do anything meaningful with them.
   3115       if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
   3116         continue;
   3117 
   3118       // Don't pull a constant into a register if the constant could be folded
   3119       // into an immediate field.
   3120       if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
   3121                            LU.AccessTy, *J, Base.getNumRegs() > 1))
   3122         continue;
   3123 
   3124       // Collect all operands except *J.
   3125       SmallVector<const SCEV *, 8> InnerAddOps
   3126         (((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
   3127       InnerAddOps.append
   3128         (llvm::next(J), ((const SmallVector<const SCEV *, 8> &)AddOps).end());
   3129 
   3130       // Don't leave just a constant behind in a register if the constant could
   3131       // be folded into an immediate field.
   3132       if (InnerAddOps.size() == 1 &&
   3133           isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
   3134                            LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
   3135         continue;
   3136 
   3137       const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
   3138       if (InnerSum->isZero())
   3139         continue;
   3140       Formula F = Base;
   3141 
   3142       // Add the remaining pieces of the add back into the new formula.
   3143       const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
   3144       if (InnerSumSC &&
   3145           SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
   3146           TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
   3147                                   InnerSumSC->getValue()->getZExtValue())) {
   3148         F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset +
   3149                            InnerSumSC->getValue()->getZExtValue();
   3150         F.BaseRegs.erase(F.BaseRegs.begin() + i);
   3151       } else
   3152         F.BaseRegs[i] = InnerSum;
   3153 
   3154       // Add J as its own register, or an unfolded immediate.
   3155       const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
   3156       if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
   3157           TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
   3158                                   SC->getValue()->getZExtValue()))
   3159         F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset +
   3160                            SC->getValue()->getZExtValue();
   3161       else
   3162         F.BaseRegs.push_back(*J);
   3163 
   3164       if (InsertFormula(LU, LUIdx, F))
   3165         // If that formula hadn't been seen before, recurse to find more like
   3166         // it.
   3167         GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth+1);
   3168     }
   3169   }
   3170 }
   3171 
   3172 /// GenerateCombinations - Generate a formula consisting of all of the
   3173 /// loop-dominating registers added into a single register.
   3174 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
   3175                                        Formula Base) {
   3176   // This method is only interesting on a plurality of registers.
   3177   if (Base.BaseRegs.size() <= 1) return;
   3178 
   3179   Formula F = Base;
   3180   F.BaseRegs.clear();
   3181   SmallVector<const SCEV *, 4> Ops;
   3182   for (SmallVectorImpl<const SCEV *>::const_iterator
   3183        I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) {
   3184     const SCEV *BaseReg = *I;
   3185     if (SE.properlyDominates(BaseReg, L->getHeader()) &&
   3186         !SE.hasComputableLoopEvolution(BaseReg, L))
   3187       Ops.push_back(BaseReg);
   3188     else
   3189       F.BaseRegs.push_back(BaseReg);
   3190   }
   3191   if (Ops.size() > 1) {
   3192     const SCEV *Sum = SE.getAddExpr(Ops);
   3193     // TODO: If Sum is zero, it probably means ScalarEvolution missed an
   3194     // opportunity to fold something. For now, just ignore such cases
   3195     // rather than proceed with zero in a register.
   3196     if (!Sum->isZero()) {
   3197       F.BaseRegs.push_back(Sum);
   3198       (void)InsertFormula(LU, LUIdx, F);
   3199     }
   3200   }
   3201 }
   3202 
   3203 /// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets.
   3204 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
   3205                                           Formula Base) {
   3206   // We can't add a symbolic offset if the address already contains one.
   3207   if (Base.BaseGV) return;
   3208 
   3209   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
   3210     const SCEV *G = Base.BaseRegs[i];
   3211     GlobalValue *GV = ExtractSymbol(G, SE);
   3212     if (G->isZero() || !GV)
   3213       continue;
   3214     Formula F = Base;
   3215     F.BaseGV = GV;
   3216     if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
   3217       continue;
   3218     F.BaseRegs[i] = G;
   3219     (void)InsertFormula(LU, LUIdx, F);
   3220   }
   3221 }
   3222 
   3223 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
   3224 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
   3225                                           Formula Base) {
   3226   // TODO: For now, just add the min and max offset, because it usually isn't
   3227   // worthwhile looking at everything inbetween.
   3228   SmallVector<int64_t, 2> Worklist;
   3229   Worklist.push_back(LU.MinOffset);
   3230   if (LU.MaxOffset != LU.MinOffset)
   3231     Worklist.push_back(LU.MaxOffset);
   3232 
   3233   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
   3234     const SCEV *G = Base.BaseRegs[i];
   3235 
   3236     for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(),
   3237          E = Worklist.end(); I != E; ++I) {
   3238       Formula F = Base;
   3239       F.BaseOffset = (uint64_t)Base.BaseOffset - *I;
   3240       if (isLegalUse(TTI, LU.MinOffset - *I, LU.MaxOffset - *I, LU.Kind,
   3241                      LU.AccessTy, F)) {
   3242         // Add the offset to the base register.
   3243         const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), *I), G);
   3244         // If it cancelled out, drop the base register, otherwise update it.
   3245         if (NewG->isZero()) {
   3246           std::swap(F.BaseRegs[i], F.BaseRegs.back());
   3247           F.BaseRegs.pop_back();
   3248         } else
   3249           F.BaseRegs[i] = NewG;
   3250 
   3251         (void)InsertFormula(LU, LUIdx, F);
   3252       }
   3253     }
   3254 
   3255     int64_t Imm = ExtractImmediate(G, SE);
   3256     if (G->isZero() || Imm == 0)
   3257       continue;
   3258     Formula F = Base;
   3259     F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
   3260     if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
   3261       continue;
   3262     F.BaseRegs[i] = G;
   3263     (void)InsertFormula(LU, LUIdx, F);
   3264   }
   3265 }
   3266 
   3267 /// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up
   3268 /// the comparison. For example, x == y -> x*c == y*c.
   3269 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
   3270                                          Formula Base) {
   3271   if (LU.Kind != LSRUse::ICmpZero) return;
   3272 
   3273   // Determine the integer type for the base formula.
   3274   Type *IntTy = Base.getType();
   3275   if (!IntTy) return;
   3276   if (SE.getTypeSizeInBits(IntTy) > 64) return;
   3277 
   3278   // Don't do this if there is more than one offset.
   3279   if (LU.MinOffset != LU.MaxOffset) return;
   3280 
   3281   assert(!Base.BaseGV && "ICmpZero use is not legal!");
   3282 
   3283   // Check each interesting stride.
   3284   for (SmallSetVector<int64_t, 8>::const_iterator
   3285        I = Factors.begin(), E = Factors.end(); I != E; ++I) {
   3286     int64_t Factor = *I;
   3287 
   3288     // Check that the multiplication doesn't overflow.
   3289     if (Base.BaseOffset == INT64_MIN && Factor == -1)
   3290       continue;
   3291     int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
   3292     if (NewBaseOffset / Factor != Base.BaseOffset)
   3293       continue;
   3294 
   3295     // Check that multiplying with the use offset doesn't overflow.
   3296     int64_t Offset = LU.MinOffset;
   3297     if (Offset == INT64_MIN && Factor == -1)
   3298       continue;
   3299     Offset = (uint64_t)Offset * Factor;
   3300     if (Offset / Factor != LU.MinOffset)
   3301       continue;
   3302 
   3303     Formula F = Base;
   3304     F.BaseOffset = NewBaseOffset;
   3305 
   3306     // Check that this scale is legal.
   3307     if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
   3308       continue;
   3309 
   3310     // Compensate for the use having MinOffset built into it.
   3311     F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
   3312 
   3313     const SCEV *FactorS = SE.getConstant(IntTy, Factor);
   3314 
   3315     // Check that multiplying with each base register doesn't overflow.
   3316     for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
   3317       F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
   3318       if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
   3319         goto next;
   3320     }
   3321 
   3322     // Check that multiplying with the scaled register doesn't overflow.
   3323     if (F.ScaledReg) {
   3324       F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
   3325       if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
   3326         continue;
   3327     }
   3328 
   3329     // Check that multiplying with the unfolded offset doesn't overflow.
   3330     if (F.UnfoldedOffset != 0) {
   3331       if (F.UnfoldedOffset == INT64_MIN && Factor == -1)
   3332         continue;
   3333       F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
   3334       if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
   3335         continue;
   3336     }
   3337 
   3338     // If we make it here and it's legal, add it.
   3339     (void)InsertFormula(LU, LUIdx, F);
   3340   next:;
   3341   }
   3342 }
   3343 
   3344 /// GenerateScales - Generate stride factor reuse formulae by making use of
   3345 /// scaled-offset address modes, for example.
   3346 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
   3347   // Determine the integer type for the base formula.
   3348   Type *IntTy = Base.getType();
   3349   if (!IntTy) return;
   3350 
   3351   // If this Formula already has a scaled register, we can't add another one.
   3352   if (Base.Scale != 0) return;
   3353 
   3354   // Check each interesting stride.
   3355   for (SmallSetVector<int64_t, 8>::const_iterator
   3356        I = Factors.begin(), E = Factors.end(); I != E; ++I) {
   3357     int64_t Factor = *I;
   3358 
   3359     Base.Scale = Factor;
   3360     Base.HasBaseReg = Base.BaseRegs.size() > 1;
   3361     // Check whether this scale is going to be legal.
   3362     if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
   3363                     Base)) {
   3364       // As a special-case, handle special out-of-loop Basic users specially.
   3365       // TODO: Reconsider this special case.
   3366       if (LU.Kind == LSRUse::Basic &&
   3367           isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
   3368                      LU.AccessTy, Base) &&
   3369           LU.AllFixupsOutsideLoop)
   3370         LU.Kind = LSRUse::Special;
   3371       else
   3372         continue;
   3373     }
   3374     // For an ICmpZero, negating a solitary base register won't lead to
   3375     // new solutions.
   3376     if (LU.Kind == LSRUse::ICmpZero &&
   3377         !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
   3378       continue;
   3379     // For each addrec base reg, apply the scale, if possible.
   3380     for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
   3381       if (const SCEVAddRecExpr *AR =
   3382             dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) {
   3383         const SCEV *FactorS = SE.getConstant(IntTy, Factor);
   3384         if (FactorS->isZero())
   3385           continue;
   3386         // Divide out the factor, ignoring high bits, since we'll be
   3387         // scaling the value back up in the end.
   3388         if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
   3389           // TODO: This could be optimized to avoid all the copying.
   3390           Formula F = Base;
   3391           F.ScaledReg = Quotient;
   3392           F.DeleteBaseReg(F.BaseRegs[i]);
   3393           (void)InsertFormula(LU, LUIdx, F);
   3394         }
   3395       }
   3396   }
   3397 }
   3398 
   3399 /// GenerateTruncates - Generate reuse formulae from different IV types.
   3400 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
   3401   // Don't bother truncating symbolic values.
   3402   if (Base.BaseGV) return;
   3403 
   3404   // Determine the integer type for the base formula.
   3405   Type *DstTy = Base.getType();
   3406   if (!DstTy) return;
   3407   DstTy = SE.getEffectiveSCEVType(DstTy);
   3408 
   3409   for (SmallSetVector<Type *, 4>::const_iterator
   3410        I = Types.begin(), E = Types.end(); I != E; ++I) {
   3411     Type *SrcTy = *I;
   3412     if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
   3413       Formula F = Base;
   3414 
   3415       if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I);
   3416       for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(),
   3417            JE = F.BaseRegs.end(); J != JE; ++J)
   3418         *J = SE.getAnyExtendExpr(*J, SrcTy);
   3419 
   3420       // TODO: This assumes we've done basic processing on all uses and
   3421       // have an idea what the register usage is.
   3422       if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
   3423         continue;
   3424 
   3425       (void)InsertFormula(LU, LUIdx, F);
   3426     }
   3427   }
   3428 }
   3429 
   3430 namespace {
   3431 
   3432 /// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to
   3433 /// defer modifications so that the search phase doesn't have to worry about
   3434 /// the data structures moving underneath it.
   3435 struct WorkItem {
   3436   size_t LUIdx;
   3437   int64_t Imm;
   3438   const SCEV *OrigReg;
   3439 
   3440   WorkItem(size_t LI, int64_t I, const SCEV *R)
   3441     : LUIdx(LI), Imm(I), OrigReg(R) {}
   3442 
   3443   void print(raw_ostream &OS) const;
   3444   void dump() const;
   3445 };
   3446 
   3447 }
   3448 
   3449 void WorkItem::print(raw_ostream &OS) const {
   3450   OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
   3451      << " , add offset " << Imm;
   3452 }
   3453 
   3454 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
   3455 void WorkItem::dump() const {
   3456   print(errs()); errs() << '\n';
   3457 }
   3458 #endif
   3459 
   3460 /// GenerateCrossUseConstantOffsets - Look for registers which are a constant
   3461 /// distance apart and try to form reuse opportunities between them.
   3462 void LSRInstance::GenerateCrossUseConstantOffsets() {
   3463   // Group the registers by their value without any added constant offset.
   3464   typedef std::map<int64_t, const SCEV *> ImmMapTy;
   3465   typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy;
   3466   RegMapTy Map;
   3467   DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
   3468   SmallVector<const SCEV *, 8> Sequence;
   3469   for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
   3470        I != E; ++I) {
   3471     const SCEV *Reg = *I;
   3472     int64_t Imm = ExtractImmediate(Reg, SE);
   3473     std::pair<RegMapTy::iterator, bool> Pair =
   3474       Map.insert(std::make_pair(Reg, ImmMapTy()));
   3475     if (Pair.second)
   3476       Sequence.push_back(Reg);
   3477     Pair.first->second.insert(std::make_pair(Imm, *I));
   3478     UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I);
   3479   }
   3480 
   3481   // Now examine each set of registers with the same base value. Build up
   3482   // a list of work to do and do the work in a separate step so that we're
   3483   // not adding formulae and register counts while we're searching.
   3484   SmallVector<WorkItem, 32> WorkItems;
   3485   SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
   3486   for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(),
   3487        E = Sequence.end(); I != E; ++I) {
   3488     const SCEV *Reg = *I;
   3489     const ImmMapTy &Imms = Map.find(Reg)->second;
   3490 
   3491     // It's not worthwhile looking for reuse if there's only one offset.
   3492     if (Imms.size() == 1)
   3493       continue;
   3494 
   3495     DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
   3496           for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
   3497                J != JE; ++J)
   3498             dbgs() << ' ' << J->first;
   3499           dbgs() << '\n');
   3500 
   3501     // Examine each offset.
   3502     for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
   3503          J != JE; ++J) {
   3504       const SCEV *OrigReg = J->second;
   3505 
   3506       int64_t JImm = J->first;
   3507       const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
   3508 
   3509       if (!isa<SCEVConstant>(OrigReg) &&
   3510           UsedByIndicesMap[Reg].count() == 1) {
   3511         DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
   3512         continue;
   3513       }
   3514 
   3515       // Conservatively examine offsets between this orig reg a few selected
   3516       // other orig regs.
   3517       ImmMapTy::const_iterator OtherImms[] = {
   3518         Imms.begin(), prior(Imms.end()),
   3519         Imms.lower_bound((Imms.begin()->first + prior(Imms.end())->first) / 2)
   3520       };
   3521       for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
   3522         ImmMapTy::const_iterator M = OtherImms[i];
   3523         if (M == J || M == JE) continue;
   3524 
   3525         // Compute the difference between the two.
   3526         int64_t Imm = (uint64_t)JImm - M->first;
   3527         for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1;
   3528              LUIdx = UsedByIndices.find_next(LUIdx))
   3529           // Make a memo of this use, offset, and register tuple.
   3530           if (UniqueItems.insert(std::make_pair(LUIdx, Imm)))
   3531             WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
   3532       }
   3533     }
   3534   }
   3535 
   3536   Map.clear();
   3537   Sequence.clear();
   3538   UsedByIndicesMap.clear();
   3539   UniqueItems.clear();
   3540 
   3541   // Now iterate through the worklist and add new formulae.
   3542   for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(),
   3543        E = WorkItems.end(); I != E; ++I) {
   3544     const WorkItem &WI = *I;
   3545     size_t LUIdx = WI.LUIdx;
   3546     LSRUse &LU = Uses[LUIdx];
   3547     int64_t Imm = WI.Imm;
   3548     const SCEV *OrigReg = WI.OrigReg;
   3549 
   3550     Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
   3551     const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
   3552     unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
   3553 
   3554     // TODO: Use a more targeted data structure.
   3555     for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
   3556       const Formula &F = LU.Formulae[L];
   3557       // Use the immediate in the scaled register.
   3558       if (F.ScaledReg == OrigReg) {
   3559         int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
   3560         // Don't create 50 + reg(-50).
   3561         if (F.referencesReg(SE.getSCEV(
   3562                    ConstantInt::get(IntTy, -(uint64_t)Offset))))
   3563           continue;
   3564         Formula NewF = F;
   3565         NewF.BaseOffset = Offset;
   3566         if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
   3567                         NewF))
   3568           continue;
   3569         NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
   3570 
   3571         // If the new scale is a constant in a register, and adding the constant
   3572         // value to the immediate would produce a value closer to zero than the
   3573         // immediate itself, then the formula isn't worthwhile.
   3574         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
   3575           if (C->getValue()->isNegative() !=
   3576                 (NewF.BaseOffset < 0) &&
   3577               (C->getValue()->getValue().abs() * APInt(BitWidth, F.Scale))
   3578                 .ule(abs64(NewF.BaseOffset)))
   3579             continue;
   3580 
   3581         // OK, looks good.
   3582         (void)InsertFormula(LU, LUIdx, NewF);
   3583       } else {
   3584         // Use the immediate in a base register.
   3585         for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
   3586           const SCEV *BaseReg = F.BaseRegs[N];
   3587           if (BaseReg != OrigReg)
   3588             continue;
   3589           Formula NewF = F;
   3590           NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
   3591           if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
   3592                           LU.Kind, LU.AccessTy, NewF)) {
   3593             if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
   3594               continue;
   3595             NewF = F;
   3596             NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
   3597           }
   3598           NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
   3599 
   3600           // If the new formula has a constant in a register, and adding the
   3601           // constant value to the immediate would produce a value closer to
   3602           // zero than the immediate itself, then the formula isn't worthwhile.
   3603           for (SmallVectorImpl<const SCEV *>::const_iterator
   3604                J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end();
   3605                J != JE; ++J)
   3606             if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J))
   3607               if ((C->getValue()->getValue() + NewF.BaseOffset).abs().slt(
   3608                    abs64(NewF.BaseOffset)) &&
   3609                   (C->getValue()->getValue() +
   3610                    NewF.BaseOffset).countTrailingZeros() >=
   3611                    CountTrailingZeros_64(NewF.BaseOffset))
   3612                 goto skip_formula;
   3613 
   3614           // Ok, looks good.
   3615           (void)InsertFormula(LU, LUIdx, NewF);
   3616           break;
   3617         skip_formula:;
   3618         }
   3619       }
   3620     }
   3621   }
   3622 }
   3623 
   3624 /// GenerateAllReuseFormulae - Generate formulae for each use.
   3625 void
   3626 LSRInstance::GenerateAllReuseFormulae() {
   3627   // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
   3628   // queries are more precise.
   3629   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   3630     LSRUse &LU = Uses[LUIdx];
   3631     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
   3632       GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
   3633     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
   3634       GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
   3635   }
   3636   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   3637     LSRUse &LU = Uses[LUIdx];
   3638     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
   3639       GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
   3640     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
   3641       GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
   3642     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
   3643       GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
   3644     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
   3645       GenerateScales(LU, LUIdx, LU.Formulae[i]);
   3646   }
   3647   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   3648     LSRUse &LU = Uses[LUIdx];
   3649     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
   3650       GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
   3651   }
   3652 
   3653   GenerateCrossUseConstantOffsets();
   3654 
   3655   DEBUG(dbgs() << "\n"
   3656                   "After generating reuse formulae:\n";
   3657         print_uses(dbgs()));
   3658 }
   3659 
   3660 /// If there are multiple formulae with the same set of registers used
   3661 /// by other uses, pick the best one and delete the others.
   3662 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
   3663   DenseSet<const SCEV *> VisitedRegs;
   3664   SmallPtrSet<const SCEV *, 16> Regs;
   3665   SmallPtrSet<const SCEV *, 16> LoserRegs;
   3666 #ifndef NDEBUG
   3667   bool ChangedFormulae = false;
   3668 #endif
   3669 
   3670   // Collect the best formula for each unique set of shared registers. This
   3671   // is reset for each use.
   3672   typedef DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>
   3673     BestFormulaeTy;
   3674   BestFormulaeTy BestFormulae;
   3675 
   3676   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   3677     LSRUse &LU = Uses[LUIdx];
   3678     DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
   3679 
   3680     bool Any = false;
   3681     for (size_t FIdx = 0, NumForms = LU.Formulae.size();
   3682          FIdx != NumForms; ++FIdx) {
   3683       Formula &F = LU.Formulae[FIdx];
   3684 
   3685       // Some formulas are instant losers. For example, they may depend on
   3686       // nonexistent AddRecs from other loops. These need to be filtered
   3687       // immediately, otherwise heuristics could choose them over others leading
   3688       // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
   3689       // avoids the need to recompute this information across formulae using the
   3690       // same bad AddRec. Passing LoserRegs is also essential unless we remove
   3691       // the corresponding bad register from the Regs set.
   3692       Cost CostF;
   3693       Regs.clear();
   3694       CostF.RateFormula(F, Regs, VisitedRegs, L, LU.Offsets, SE, DT,
   3695                         &LoserRegs);
   3696       if (CostF.isLoser()) {
   3697         // During initial formula generation, undesirable formulae are generated
   3698         // by uses within other loops that have some non-trivial address mode or
   3699         // use the postinc form of the IV. LSR needs to provide these formulae
   3700         // as the basis of rediscovering the desired formula that uses an AddRec
   3701         // corresponding to the existing phi. Once all formulae have been
   3702         // generated, these initial losers may be pruned.
   3703         DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs());
   3704               dbgs() << "\n");
   3705       }
   3706       else {
   3707         SmallVector<const SCEV *, 4> Key;
   3708         for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(),
   3709                JE = F.BaseRegs.end(); J != JE; ++J) {
   3710           const SCEV *Reg = *J;
   3711           if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
   3712             Key.push_back(Reg);
   3713         }
   3714         if (F.ScaledReg &&
   3715             RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
   3716           Key.push_back(F.ScaledReg);
   3717         // Unstable sort by host order ok, because this is only used for
   3718         // uniquifying.
   3719         std::sort(Key.begin(), Key.end());
   3720 
   3721         std::pair<BestFormulaeTy::const_iterator, bool> P =
   3722           BestFormulae.insert(std::make_pair(Key, FIdx));
   3723         if (P.second)
   3724           continue;
   3725 
   3726         Formula &Best = LU.Formulae[P.first->second];
   3727 
   3728         Cost CostBest;
   3729         Regs.clear();
   3730         CostBest.RateFormula(Best, Regs, VisitedRegs, L, LU.Offsets, SE, DT);
   3731         if (CostF < CostBest)
   3732           std::swap(F, Best);
   3733         DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
   3734               dbgs() << "\n"
   3735                         "    in favor of formula "; Best.print(dbgs());
   3736               dbgs() << '\n');
   3737       }
   3738 #ifndef NDEBUG
   3739       ChangedFormulae = true;
   3740 #endif
   3741       LU.DeleteFormula(F);
   3742       --FIdx;
   3743       --NumForms;
   3744       Any = true;
   3745     }
   3746 
   3747     // Now that we've filtered out some formulae, recompute the Regs set.
   3748     if (Any)
   3749       LU.RecomputeRegs(LUIdx, RegUses);
   3750 
   3751     // Reset this to prepare for the next use.
   3752     BestFormulae.clear();
   3753   }
   3754 
   3755   DEBUG(if (ChangedFormulae) {
   3756           dbgs() << "\n"
   3757                     "After filtering out undesirable candidates:\n";
   3758           print_uses(dbgs());
   3759         });
   3760 }
   3761 
   3762 // This is a rough guess that seems to work fairly well.
   3763 static const size_t ComplexityLimit = UINT16_MAX;
   3764 
   3765 /// EstimateSearchSpaceComplexity - Estimate the worst-case number of
   3766 /// solutions the solver might have to consider. It almost never considers
   3767 /// this many solutions because it prune the search space, but the pruning
   3768 /// isn't always sufficient.
   3769 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
   3770   size_t Power = 1;
   3771   for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
   3772        E = Uses.end(); I != E; ++I) {
   3773     size_t FSize = I->Formulae.size();
   3774     if (FSize >= ComplexityLimit) {
   3775       Power = ComplexityLimit;
   3776       break;
   3777     }
   3778     Power *= FSize;
   3779     if (Power >= ComplexityLimit)
   3780       break;
   3781   }
   3782   return Power;
   3783 }
   3784 
   3785 /// NarrowSearchSpaceByDetectingSupersets - When one formula uses a superset
   3786 /// of the registers of another formula, it won't help reduce register
   3787 /// pressure (though it may not necessarily hurt register pressure); remove
   3788 /// it to simplify the system.
   3789 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
   3790   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
   3791     DEBUG(dbgs() << "The search space is too complex.\n");
   3792 
   3793     DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
   3794                     "which use a superset of registers used by other "
   3795                     "formulae.\n");
   3796 
   3797     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   3798       LSRUse &LU = Uses[LUIdx];
   3799       bool Any = false;
   3800       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
   3801         Formula &F = LU.Formulae[i];
   3802         // Look for a formula with a constant or GV in a register. If the use
   3803         // also has a formula with that same value in an immediate field,
   3804         // delete the one that uses a register.
   3805         for (SmallVectorImpl<const SCEV *>::const_iterator
   3806              I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
   3807           if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
   3808             Formula NewF = F;
   3809             NewF.BaseOffset += C->getValue()->getSExtValue();
   3810             NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
   3811                                 (I - F.BaseRegs.begin()));
   3812             if (LU.HasFormulaWithSameRegs(NewF)) {
   3813               DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
   3814               LU.DeleteFormula(F);
   3815               --i;
   3816               --e;
   3817               Any = true;
   3818               break;
   3819             }
   3820           } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
   3821             if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
   3822               if (!F.BaseGV) {
   3823                 Formula NewF = F;
   3824                 NewF.BaseGV = GV;
   3825                 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
   3826                                     (I - F.BaseRegs.begin()));
   3827                 if (LU.HasFormulaWithSameRegs(NewF)) {
   3828                   DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
   3829                         dbgs() << '\n');
   3830                   LU.DeleteFormula(F);
   3831                   --i;
   3832                   --e;
   3833                   Any = true;
   3834                   break;
   3835                 }
   3836               }
   3837           }
   3838         }
   3839       }
   3840       if (Any)
   3841         LU.RecomputeRegs(LUIdx, RegUses);
   3842     }
   3843 
   3844     DEBUG(dbgs() << "After pre-selection:\n";
   3845           print_uses(dbgs()));
   3846   }
   3847 }
   3848 
   3849 /// NarrowSearchSpaceByCollapsingUnrolledCode - When there are many registers
   3850 /// for expressions like A, A+1, A+2, etc., allocate a single register for
   3851 /// them.
   3852 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
   3853   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
   3854     return;
   3855 
   3856   DEBUG(dbgs() << "The search space is too complex.\n"
   3857                   "Narrowing the search space by assuming that uses separated "
   3858                   "by a constant offset will use the same registers.\n");
   3859 
   3860   // This is especially useful for unrolled loops.
   3861 
   3862   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   3863     LSRUse &LU = Uses[LUIdx];
   3864     for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
   3865          E = LU.Formulae.end(); I != E; ++I) {
   3866       const Formula &F = *I;
   3867       if (F.BaseOffset == 0 || F.Scale != 0)
   3868         continue;
   3869 
   3870       LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
   3871       if (!LUThatHas)
   3872         continue;
   3873 
   3874       if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
   3875                               LU.Kind, LU.AccessTy))
   3876         continue;
   3877 
   3878       DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs()); dbgs() << '\n');
   3879 
   3880       LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
   3881 
   3882       // Update the relocs to reference the new use.
   3883       for (SmallVectorImpl<LSRFixup>::iterator I = Fixups.begin(),
   3884            E = Fixups.end(); I != E; ++I) {
   3885         LSRFixup &Fixup = *I;
   3886         if (Fixup.LUIdx == LUIdx) {
   3887           Fixup.LUIdx = LUThatHas - &Uses.front();
   3888           Fixup.Offset += F.BaseOffset;
   3889           // Add the new offset to LUThatHas' offset list.
   3890           if (LUThatHas->Offsets.back() != Fixup.Offset) {
   3891             LUThatHas->Offsets.push_back(Fixup.Offset);
   3892             if (Fixup.Offset > LUThatHas->MaxOffset)
   3893               LUThatHas->MaxOffset = Fixup.Offset;
   3894             if (Fixup.Offset < LUThatHas->MinOffset)
   3895               LUThatHas->MinOffset = Fixup.Offset;
   3896           }
   3897           DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
   3898         }
   3899         if (Fixup.LUIdx == NumUses-1)
   3900           Fixup.LUIdx = LUIdx;
   3901       }
   3902 
   3903       // Delete formulae from the new use which are no longer legal.
   3904       bool Any = false;
   3905       for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
   3906         Formula &F = LUThatHas->Formulae[i];
   3907         if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
   3908                         LUThatHas->Kind, LUThatHas->AccessTy, F)) {
   3909           DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
   3910                 dbgs() << '\n');
   3911           LUThatHas->DeleteFormula(F);
   3912           --i;
   3913           --e;
   3914           Any = true;
   3915         }
   3916       }
   3917 
   3918       if (Any)
   3919         LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
   3920 
   3921       // Delete the old use.
   3922       DeleteUse(LU, LUIdx);
   3923       --LUIdx;
   3924       --NumUses;
   3925       break;
   3926     }
   3927   }
   3928 
   3929   DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
   3930 }
   3931 
   3932 /// NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters - Call
   3933 /// FilterOutUndesirableDedicatedRegisters again, if necessary, now that
   3934 /// we've done more filtering, as it may be able to find more formulae to
   3935 /// eliminate.
   3936 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
   3937   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
   3938     DEBUG(dbgs() << "The search space is too complex.\n");
   3939 
   3940     DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
   3941                     "undesirable dedicated registers.\n");
   3942 
   3943     FilterOutUndesirableDedicatedRegisters();
   3944 
   3945     DEBUG(dbgs() << "After pre-selection:\n";
   3946           print_uses(dbgs()));
   3947   }
   3948 }
   3949 
   3950 /// NarrowSearchSpaceByPickingWinnerRegs - Pick a register which seems likely
   3951 /// to be profitable, and then in any use which has any reference to that
   3952 /// register, delete all formulae which do not reference that register.
   3953 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
   3954   // With all other options exhausted, loop until the system is simple
   3955   // enough to handle.
   3956   SmallPtrSet<const SCEV *, 4> Taken;
   3957   while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
   3958     // Ok, we have too many of formulae on our hands to conveniently handle.
   3959     // Use a rough heuristic to thin out the list.
   3960     DEBUG(dbgs() << "The search space is too complex.\n");
   3961 
   3962     // Pick the register which is used by the most LSRUses, which is likely
   3963     // to be a good reuse register candidate.
   3964     const SCEV *Best = 0;
   3965     unsigned BestNum = 0;
   3966     for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
   3967          I != E; ++I) {
   3968       const SCEV *Reg = *I;
   3969       if (Taken.count(Reg))
   3970         continue;
   3971       if (!Best)
   3972         Best = Reg;
   3973       else {
   3974         unsigned Count = RegUses.getUsedByIndices(Reg).count();
   3975         if (Count > BestNum) {
   3976           Best = Reg;
   3977           BestNum = Count;
   3978         }
   3979       }
   3980     }
   3981 
   3982     DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
   3983                  << " will yield profitable reuse.\n");
   3984     Taken.insert(Best);
   3985 
   3986     // In any use with formulae which references this register, delete formulae
   3987     // which don't reference it.
   3988     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   3989       LSRUse &LU = Uses[LUIdx];
   3990       if (!LU.Regs.count(Best)) continue;
   3991 
   3992       bool Any = false;
   3993       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
   3994         Formula &F = LU.Formulae[i];
   3995         if (!F.referencesReg(Best)) {
   3996           DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
   3997           LU.DeleteFormula(F);
   3998           --e;
   3999           --i;
   4000           Any = true;
   4001           assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
   4002           continue;
   4003         }
   4004       }
   4005 
   4006       if (Any)
   4007         LU.RecomputeRegs(LUIdx, RegUses);
   4008     }
   4009 
   4010     DEBUG(dbgs() << "After pre-selection:\n";
   4011           print_uses(dbgs()));
   4012   }
   4013 }
   4014 
   4015 /// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of
   4016 /// formulae to choose from, use some rough heuristics to prune down the number
   4017 /// of formulae. This keeps the main solver from taking an extraordinary amount
   4018 /// of time in some worst-case scenarios.
   4019 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
   4020   NarrowSearchSpaceByDetectingSupersets();
   4021   NarrowSearchSpaceByCollapsingUnrolledCode();
   4022   NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
   4023   NarrowSearchSpaceByPickingWinnerRegs();
   4024 }
   4025 
   4026 /// SolveRecurse - This is the recursive solver.
   4027 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
   4028                                Cost &SolutionCost,
   4029                                SmallVectorImpl<const Formula *> &Workspace,
   4030                                const Cost &CurCost,
   4031                                const SmallPtrSet<const SCEV *, 16> &CurRegs,
   4032                                DenseSet<const SCEV *> &VisitedRegs) const {
   4033   // Some ideas:
   4034   //  - prune more:
   4035   //    - use more aggressive filtering
   4036   //    - sort the formula so that the most profitable solutions are found first
   4037   //    - sort the uses too
   4038   //  - search faster:
   4039   //    - don't compute a cost, and then compare. compare while computing a cost
   4040   //      and bail early.
   4041   //    - track register sets with SmallBitVector
   4042 
   4043   const LSRUse &LU = Uses[Workspace.size()];
   4044 
   4045   // If this use references any register that's already a part of the
   4046   // in-progress solution, consider it a requirement that a formula must
   4047   // reference that register in order to be considered. This prunes out
   4048   // unprofitable searching.
   4049   SmallSetVector<const SCEV *, 4> ReqRegs;
   4050   for (SmallPtrSet<const SCEV *, 16>::const_iterator I = CurRegs.begin(),
   4051        E = CurRegs.end(); I != E; ++I)
   4052     if (LU.Regs.count(*I))
   4053       ReqRegs.insert(*I);
   4054 
   4055   SmallPtrSet<const SCEV *, 16> NewRegs;
   4056   Cost NewCost;
   4057   for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
   4058        E = LU.Formulae.end(); I != E; ++I) {
   4059     const Formula &F = *I;
   4060 
   4061     // Ignore formulae which do not use any of the required registers.
   4062     bool SatisfiedReqReg = true;
   4063     for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(),
   4064          JE = ReqRegs.end(); J != JE; ++J) {
   4065       const SCEV *Reg = *J;
   4066       if ((!F.ScaledReg || F.ScaledReg != Reg) &&
   4067           std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) ==
   4068           F.BaseRegs.end()) {
   4069         SatisfiedReqReg = false;
   4070         break;
   4071       }
   4072     }
   4073     if (!SatisfiedReqReg) {
   4074       // If none of the formulae satisfied the required registers, then we could
   4075       // clear ReqRegs and try again. Currently, we simply give up in this case.
   4076       continue;
   4077     }
   4078 
   4079     // Evaluate the cost of the current formula. If it's already worse than
   4080     // the current best, prune the search at that point.
   4081     NewCost = CurCost;
   4082     NewRegs = CurRegs;
   4083     NewCost.RateFormula(F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT);
   4084     if (NewCost < SolutionCost) {
   4085       Workspace.push_back(&F);
   4086       if (Workspace.size() != Uses.size()) {
   4087         SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
   4088                      NewRegs, VisitedRegs);
   4089         if (F.getNumRegs() == 1 && Workspace.size() == 1)
   4090           VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
   4091       } else {
   4092         DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
   4093               dbgs() << ".\n Regs:";
   4094               for (SmallPtrSet<const SCEV *, 16>::const_iterator
   4095                    I = NewRegs.begin(), E = NewRegs.end(); I != E; ++I)
   4096                 dbgs() << ' ' << **I;
   4097               dbgs() << '\n');
   4098 
   4099         SolutionCost = NewCost;
   4100         Solution = Workspace;
   4101       }
   4102       Workspace.pop_back();
   4103     }
   4104   }
   4105 }
   4106 
   4107 /// Solve - Choose one formula from each use. Return the results in the given
   4108 /// Solution vector.
   4109 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
   4110   SmallVector<const Formula *, 8> Workspace;
   4111   Cost SolutionCost;
   4112   SolutionCost.Loose();
   4113   Cost CurCost;
   4114   SmallPtrSet<const SCEV *, 16> CurRegs;
   4115   DenseSet<const SCEV *> VisitedRegs;
   4116   Workspace.reserve(Uses.size());
   4117 
   4118   // SolveRecurse does all the work.
   4119   SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
   4120                CurRegs, VisitedRegs);
   4121   if (Solution.empty()) {
   4122     DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
   4123     return;
   4124   }
   4125 
   4126   // Ok, we've now made all our decisions.
   4127   DEBUG(dbgs() << "\n"
   4128                   "The chosen solution requires "; SolutionCost.print(dbgs());
   4129         dbgs() << ":\n";
   4130         for (size_t i = 0, e = Uses.size(); i != e; ++i) {
   4131           dbgs() << "  ";
   4132           Uses[i].print(dbgs());
   4133           dbgs() << "\n"
   4134                     "    ";
   4135           Solution[i]->print(dbgs());
   4136           dbgs() << '\n';
   4137         });
   4138 
   4139   assert(Solution.size() == Uses.size() && "Malformed solution!");
   4140 }
   4141 
   4142 /// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up
   4143 /// the dominator tree far as we can go while still being dominated by the
   4144 /// input positions. This helps canonicalize the insert position, which
   4145 /// encourages sharing.
   4146 BasicBlock::iterator
   4147 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
   4148                                  const SmallVectorImpl<Instruction *> &Inputs)
   4149                                                                          const {
   4150   for (;;) {
   4151     const Loop *IPLoop = LI.getLoopFor(IP->getParent());
   4152     unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
   4153 
   4154     BasicBlock *IDom;
   4155     for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
   4156       if (!Rung) return IP;
   4157       Rung = Rung->getIDom();
   4158       if (!Rung) return IP;
   4159       IDom = Rung->getBlock();
   4160 
   4161       // Don't climb into a loop though.
   4162       const Loop *IDomLoop = LI.getLoopFor(IDom);
   4163       unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
   4164       if (IDomDepth <= IPLoopDepth &&
   4165           (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
   4166         break;
   4167     }
   4168 
   4169     bool AllDominate = true;
   4170     Instruction *BetterPos = 0;
   4171     Instruction *Tentative = IDom->getTerminator();
   4172     for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(),
   4173          E = Inputs.end(); I != E; ++I) {
   4174       Instruction *Inst = *I;
   4175       if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
   4176         AllDominate = false;
   4177         break;
   4178       }
   4179       // Attempt to find an insert position in the middle of the block,
   4180       // instead of at the end, so that it can be used for other expansions.
   4181       if (IDom == Inst->getParent() &&
   4182           (!BetterPos || !DT.dominates(Inst, BetterPos)))
   4183         BetterPos = llvm::next(BasicBlock::iterator(Inst));
   4184     }
   4185     if (!AllDominate)
   4186       break;
   4187     if (BetterPos)
   4188       IP = BetterPos;
   4189     else
   4190       IP = Tentative;
   4191   }
   4192 
   4193   return IP;
   4194 }
   4195 
   4196 /// AdjustInsertPositionForExpand - Determine an input position which will be
   4197 /// dominated by the operands and which will dominate the result.
   4198 BasicBlock::iterator
   4199 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
   4200                                            const LSRFixup &LF,
   4201                                            const LSRUse &LU,
   4202                                            SCEVExpander &Rewriter) const {
   4203   // Collect some instructions which must be dominated by the
   4204   // expanding replacement. These must be dominated by any operands that
   4205   // will be required in the expansion.
   4206   SmallVector<Instruction *, 4> Inputs;
   4207   if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
   4208     Inputs.push_back(I);
   4209   if (LU.Kind == LSRUse::ICmpZero)
   4210     if (Instruction *I =
   4211           dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
   4212       Inputs.push_back(I);
   4213   if (LF.PostIncLoops.count(L)) {
   4214     if (LF.isUseFullyOutsideLoop(L))
   4215       Inputs.push_back(L->getLoopLatch()->getTerminator());
   4216     else
   4217       Inputs.push_back(IVIncInsertPos);
   4218   }
   4219   // The expansion must also be dominated by the increment positions of any
   4220   // loops it for which it is using post-inc mode.
   4221   for (PostIncLoopSet::const_iterator I = LF.PostIncLoops.begin(),
   4222        E = LF.PostIncLoops.end(); I != E; ++I) {
   4223     const Loop *PIL = *I;
   4224     if (PIL == L) continue;
   4225 
   4226     // Be dominated by the loop exit.
   4227     SmallVector<BasicBlock *, 4> ExitingBlocks;
   4228     PIL->getExitingBlocks(ExitingBlocks);
   4229     if (!ExitingBlocks.empty()) {
   4230       BasicBlock *BB = ExitingBlocks[0];
   4231       for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
   4232         BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
   4233       Inputs.push_back(BB->getTerminator());
   4234     }
   4235   }
   4236 
   4237   assert(!isa<PHINode>(LowestIP) && !isa<LandingPadInst>(LowestIP)
   4238          && !isa<DbgInfoIntrinsic>(LowestIP) &&
   4239          "Insertion point must be a normal instruction");
   4240 
   4241   // Then, climb up the immediate dominator tree as far as we can go while
   4242   // still being dominated by the input positions.
   4243   BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
   4244 
   4245   // Don't insert instructions before PHI nodes.
   4246   while (isa<PHINode>(IP)) ++IP;
   4247 
   4248   // Ignore landingpad instructions.
   4249   while (isa<LandingPadInst>(IP)) ++IP;
   4250 
   4251   // Ignore debug intrinsics.
   4252   while (isa<DbgInfoIntrinsic>(IP)) ++IP;
   4253 
   4254   // Set IP below instructions recently inserted by SCEVExpander. This keeps the
   4255   // IP consistent across expansions and allows the previously inserted
   4256   // instructions to be reused by subsequent expansion.
   4257   while (Rewriter.isInsertedInstruction(IP) && IP != LowestIP) ++IP;
   4258 
   4259   return IP;
   4260 }
   4261 
   4262 /// Expand - Emit instructions for the leading candidate expression for this
   4263 /// LSRUse (this is called "expanding").
   4264 Value *LSRInstance::Expand(const LSRFixup &LF,
   4265                            const Formula &F,
   4266                            BasicBlock::iterator IP,
   4267                            SCEVExpander &Rewriter,
   4268                            SmallVectorImpl<WeakVH> &DeadInsts) const {
   4269   const LSRUse &LU = Uses[LF.LUIdx];
   4270 
   4271   // Determine an input position which will be dominated by the operands and
   4272   // which will dominate the result.
   4273   IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
   4274 
   4275   // Inform the Rewriter if we have a post-increment use, so that it can
   4276   // perform an advantageous expansion.
   4277   Rewriter.setPostInc(LF.PostIncLoops);
   4278 
   4279   // This is the type that the user actually needs.
   4280   Type *OpTy = LF.OperandValToReplace->getType();
   4281   // This will be the type that we'll initially expand to.
   4282   Type *Ty = F.getType();
   4283   if (!Ty)
   4284     // No type known; just expand directly to the ultimate type.
   4285     Ty = OpTy;
   4286   else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
   4287     // Expand directly to the ultimate type if it's the right size.
   4288     Ty = OpTy;
   4289   // This is the type to do integer arithmetic in.
   4290   Type *IntTy = SE.getEffectiveSCEVType(Ty);
   4291 
   4292   // Build up a list of operands to add together to form the full base.
   4293   SmallVector<const SCEV *, 8> Ops;
   4294 
   4295   // Expand the BaseRegs portion.
   4296   for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
   4297        E = F.BaseRegs.end(); I != E; ++I) {
   4298     const SCEV *Reg = *I;
   4299     assert(!Reg->isZero() && "Zero allocated in a base register!");
   4300 
   4301     // If we're expanding for a post-inc user, make the post-inc adjustment.
   4302     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
   4303     Reg = TransformForPostIncUse(Denormalize, Reg,
   4304                                  LF.UserInst, LF.OperandValToReplace,
   4305                                  Loops, SE, DT);
   4306 
   4307     Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, 0, IP)));
   4308   }
   4309 
   4310   // Expand the ScaledReg portion.
   4311   Value *ICmpScaledV = 0;
   4312   if (F.Scale != 0) {
   4313     const SCEV *ScaledS = F.ScaledReg;
   4314 
   4315     // If we're expanding for a post-inc user, make the post-inc adjustment.
   4316     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
   4317     ScaledS = TransformForPostIncUse(Denormalize, ScaledS,
   4318                                      LF.UserInst, LF.OperandValToReplace,
   4319                                      Loops, SE, DT);
   4320 
   4321     if (LU.Kind == LSRUse::ICmpZero) {
   4322       // An interesting way of "folding" with an icmp is to use a negated
   4323       // scale, which we'll implement by inserting it into the other operand
   4324       // of the icmp.
   4325       assert(F.Scale == -1 &&
   4326              "The only scale supported by ICmpZero uses is -1!");
   4327       ICmpScaledV = Rewriter.expandCodeFor(ScaledS, 0, IP);
   4328     } else {
   4329       // Otherwise just expand the scaled register and an explicit scale,
   4330       // which is expected to be matched as part of the address.
   4331 
   4332       // Flush the operand list to suppress SCEVExpander hoisting address modes.
   4333       if (!Ops.empty() && LU.Kind == LSRUse::Address) {
   4334         Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
   4335         Ops.clear();
   4336         Ops.push_back(SE.getUnknown(FullV));
   4337       }
   4338       ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, 0, IP));
   4339       ScaledS = SE.getMulExpr(ScaledS,
   4340                               SE.getConstant(ScaledS->getType(), F.Scale));
   4341       Ops.push_back(ScaledS);
   4342     }
   4343   }
   4344 
   4345   // Expand the GV portion.
   4346   if (F.BaseGV) {
   4347     // Flush the operand list to suppress SCEVExpander hoisting.
   4348     if (!Ops.empty()) {
   4349       Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
   4350       Ops.clear();
   4351       Ops.push_back(SE.getUnknown(FullV));
   4352     }
   4353     Ops.push_back(SE.getUnknown(F.BaseGV));
   4354   }
   4355 
   4356   // Flush the operand list to suppress SCEVExpander hoisting of both folded and
   4357   // unfolded offsets. LSR assumes they both live next to their uses.
   4358   if (!Ops.empty()) {
   4359     Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
   4360     Ops.clear();
   4361     Ops.push_back(SE.getUnknown(FullV));
   4362   }
   4363 
   4364   // Expand the immediate portion.
   4365   int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
   4366   if (Offset != 0) {
   4367     if (LU.Kind == LSRUse::ICmpZero) {
   4368       // The other interesting way of "folding" with an ICmpZero is to use a
   4369       // negated immediate.
   4370       if (!ICmpScaledV)
   4371         ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
   4372       else {
   4373         Ops.push_back(SE.getUnknown(ICmpScaledV));
   4374         ICmpScaledV = ConstantInt::get(IntTy, Offset);
   4375       }
   4376     } else {
   4377       // Just add the immediate values. These again are expected to be matched
   4378       // as part of the address.
   4379       Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
   4380     }
   4381   }
   4382 
   4383   // Expand the unfolded offset portion.
   4384   int64_t UnfoldedOffset = F.UnfoldedOffset;
   4385   if (UnfoldedOffset != 0) {
   4386     // Just add the immediate values.
   4387     Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
   4388                                                        UnfoldedOffset)));
   4389   }
   4390 
   4391   // Emit instructions summing all the operands.
   4392   const SCEV *FullS = Ops.empty() ?
   4393                       SE.getConstant(IntTy, 0) :
   4394                       SE.getAddExpr(Ops);
   4395   Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP);
   4396 
   4397   // We're done expanding now, so reset the rewriter.
   4398   Rewriter.clearPostInc();
   4399 
   4400   // An ICmpZero Formula represents an ICmp which we're handling as a
   4401   // comparison against zero. Now that we've expanded an expression for that
   4402   // form, update the ICmp's other operand.
   4403   if (LU.Kind == LSRUse::ICmpZero) {
   4404     ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
   4405     DeadInsts.push_back(CI->getOperand(1));
   4406     assert(!F.BaseGV && "ICmp does not support folding a global value and "
   4407                            "a scale at the same time!");
   4408     if (F.Scale == -1) {
   4409       if (ICmpScaledV->getType() != OpTy) {
   4410         Instruction *Cast =
   4411           CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
   4412                                                    OpTy, false),
   4413                            ICmpScaledV, OpTy, "tmp", CI);
   4414         ICmpScaledV = Cast;
   4415       }
   4416       CI->setOperand(1, ICmpScaledV);
   4417     } else {
   4418       assert(F.Scale == 0 &&
   4419              "ICmp does not support folding a global value and "
   4420              "a scale at the same time!");
   4421       Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
   4422                                            -(uint64_t)Offset);
   4423       if (C->getType() != OpTy)
   4424         C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
   4425                                                           OpTy, false),
   4426                                   C, OpTy);
   4427 
   4428       CI->setOperand(1, C);
   4429     }
   4430   }
   4431 
   4432   return FullV;
   4433 }
   4434 
   4435 /// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use
   4436 /// of their operands effectively happens in their predecessor blocks, so the
   4437 /// expression may need to be expanded in multiple places.
   4438 void LSRInstance::RewriteForPHI(PHINode *PN,
   4439                                 const LSRFixup &LF,
   4440                                 const Formula &F,
   4441                                 SCEVExpander &Rewriter,
   4442                                 SmallVectorImpl<WeakVH> &DeadInsts,
   4443                                 Pass *P) const {
   4444   DenseMap<BasicBlock *, Value *> Inserted;
   4445   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
   4446     if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
   4447       BasicBlock *BB = PN->getIncomingBlock(i);
   4448 
   4449       // If this is a critical edge, split the edge so that we do not insert
   4450       // the code on all predecessor/successor paths.  We do this unless this
   4451       // is the canonical backedge for this loop, which complicates post-inc
   4452       // users.
   4453       if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
   4454           !isa<IndirectBrInst>(BB->getTerminator())) {
   4455         BasicBlock *Parent = PN->getParent();
   4456         Loop *PNLoop = LI.getLoopFor(Parent);
   4457         if (!PNLoop || Parent != PNLoop->getHeader()) {
   4458           // Split the critical edge.
   4459           BasicBlock *NewBB = 0;
   4460           if (!Parent->isLandingPad()) {
   4461             NewBB = SplitCriticalEdge(BB, Parent, P,
   4462                                       /*MergeIdenticalEdges=*/true,
   4463                                       /*DontDeleteUselessPhis=*/true);
   4464           } else {
   4465             SmallVector<BasicBlock*, 2> NewBBs;
   4466             SplitLandingPadPredecessors(Parent, BB, "", "", P, NewBBs);
   4467             NewBB = NewBBs[0];
   4468           }
   4469           // If NewBB==NULL, then SplitCriticalEdge refused to split because all
   4470           // phi predecessors are identical. The simple thing to do is skip
   4471           // splitting in this case rather than complicate the API.
   4472           if (NewBB) {
   4473             // If PN is outside of the loop and BB is in the loop, we want to
   4474             // move the block to be immediately before the PHI block, not
   4475             // immediately after BB.
   4476             if (L->contains(BB) && !L->contains(PN))
   4477               NewBB->moveBefore(PN->getParent());
   4478 
   4479             // Splitting the edge can reduce the number of PHI entries we have.
   4480             e = PN->getNumIncomingValues();
   4481             BB = NewBB;
   4482             i = PN->getBasicBlockIndex(BB);
   4483           }
   4484         }
   4485       }
   4486 
   4487       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
   4488         Inserted.insert(std::make_pair(BB, static_cast<Value *>(0)));
   4489       if (!Pair.second)
   4490         PN->setIncomingValue(i, Pair.first->second);
   4491       else {
   4492         Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts);
   4493 
   4494         // If this is reuse-by-noop-cast, insert the noop cast.
   4495         Type *OpTy = LF.OperandValToReplace->getType();
   4496         if (FullV->getType() != OpTy)
   4497           FullV =
   4498             CastInst::Create(CastInst::getCastOpcode(FullV, false,
   4499                                                      OpTy, false),
   4500                              FullV, LF.OperandValToReplace->getType(),
   4501                              "tmp", BB->getTerminator());
   4502 
   4503         PN->setIncomingValue(i, FullV);
   4504         Pair.first->second = FullV;
   4505       }
   4506     }
   4507 }
   4508 
   4509 /// Rewrite - Emit instructions for the leading candidate expression for this
   4510 /// LSRUse (this is called "expanding"), and update the UserInst to reference
   4511 /// the newly expanded value.
   4512 void LSRInstance::Rewrite(const LSRFixup &LF,
   4513                           const Formula &F,
   4514                           SCEVExpander &Rewriter,
   4515                           SmallVectorImpl<WeakVH> &DeadInsts,
   4516                           Pass *P) const {
   4517   // First, find an insertion point that dominates UserInst. For PHI nodes,
   4518   // find the nearest block which dominates all the relevant uses.
   4519   if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
   4520     RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P);
   4521   } else {
   4522     Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts);
   4523 
   4524     // If this is reuse-by-noop-cast, insert the noop cast.
   4525     Type *OpTy = LF.OperandValToReplace->getType();
   4526     if (FullV->getType() != OpTy) {
   4527       Instruction *Cast =
   4528         CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
   4529                          FullV, OpTy, "tmp", LF.UserInst);
   4530       FullV = Cast;
   4531     }
   4532 
   4533     // Update the user. ICmpZero is handled specially here (for now) because
   4534     // Expand may have updated one of the operands of the icmp already, and
   4535     // its new value may happen to be equal to LF.OperandValToReplace, in
   4536     // which case doing replaceUsesOfWith leads to replacing both operands
   4537     // with the same value. TODO: Reorganize this.
   4538     if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero)
   4539       LF.UserInst->setOperand(0, FullV);
   4540     else
   4541       LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
   4542   }
   4543 
   4544   DeadInsts.push_back(LF.OperandValToReplace);
   4545 }
   4546 
   4547 /// ImplementSolution - Rewrite all the fixup locations with new values,
   4548 /// following the chosen solution.
   4549 void
   4550 LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
   4551                                Pass *P) {
   4552   // Keep track of instructions we may have made dead, so that
   4553   // we can remove them after we are done working.
   4554   SmallVector<WeakVH, 16> DeadInsts;
   4555 
   4556   SCEVExpander Rewriter(SE, "lsr");
   4557 #ifndef NDEBUG
   4558   Rewriter.setDebugType(DEBUG_TYPE);
   4559 #endif
   4560   Rewriter.disableCanonicalMode();
   4561   Rewriter.enableLSRMode();
   4562   Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
   4563 
   4564   // Mark phi nodes that terminate chains so the expander tries to reuse them.
   4565   for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(),
   4566          ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) {
   4567     if (PHINode *PN = dyn_cast<PHINode>(ChainI->tailUserInst()))
   4568       Rewriter.setChainedPhi(PN);
   4569   }
   4570 
   4571   // Expand the new value definitions and update the users.
   4572   for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
   4573        E = Fixups.end(); I != E; ++I) {
   4574     const LSRFixup &Fixup = *I;
   4575 
   4576     Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts, P);
   4577 
   4578     Changed = true;
   4579   }
   4580 
   4581   for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(),
   4582          ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) {
   4583     GenerateIVChain(*ChainI, Rewriter, DeadInsts);
   4584     Changed = true;
   4585   }
   4586   // Clean up after ourselves. This must be done before deleting any
   4587   // instructions.
   4588   Rewriter.clear();
   4589 
   4590   Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
   4591 }
   4592 
   4593 LSRInstance::LSRInstance(Loop *L, Pass *P)
   4594     : IU(P->getAnalysis<IVUsers>()), SE(P->getAnalysis<ScalarEvolution>()),
   4595       DT(P->getAnalysis<DominatorTree>()), LI(P->getAnalysis<LoopInfo>()),
   4596       TTI(P->getAnalysis<TargetTransformInfo>()), L(L), Changed(false),
   4597       IVIncInsertPos(0) {
   4598   // If LoopSimplify form is not available, stay out of trouble.
   4599   if (!L->isLoopSimplifyForm())
   4600     return;
   4601 
   4602   // If there's no interesting work to be done, bail early.
   4603   if (IU.empty()) return;
   4604 
   4605   // If there's too much analysis to be done, bail early. We won't be able to
   4606   // model the problem anyway.
   4607   unsigned NumUsers = 0;
   4608   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
   4609     if (++NumUsers > MaxIVUsers) {
   4610       DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << *L
   4611             << "\n");
   4612       return;
   4613     }
   4614   }
   4615 
   4616 #ifndef NDEBUG
   4617   // All dominating loops must have preheaders, or SCEVExpander may not be able
   4618   // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
   4619   //
   4620   // IVUsers analysis should only create users that are dominated by simple loop
   4621   // headers. Since this loop should dominate all of its users, its user list
   4622   // should be empty if this loop itself is not within a simple loop nest.
   4623   for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
   4624        Rung; Rung = Rung->getIDom()) {
   4625     BasicBlock *BB = Rung->getBlock();
   4626     const Loop *DomLoop = LI.getLoopFor(BB);
   4627     if (DomLoop && DomLoop->getHeader() == BB) {
   4628       assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
   4629     }
   4630   }
   4631 #endif // DEBUG
   4632 
   4633   DEBUG(dbgs() << "\nLSR on loop ";
   4634         WriteAsOperand(dbgs(), L->getHeader(), /*PrintType=*/false);
   4635         dbgs() << ":\n");
   4636 
   4637   // First, perform some low-level loop optimizations.
   4638   OptimizeShadowIV();
   4639   OptimizeLoopTermCond();
   4640 
   4641   // If loop preparation eliminates all interesting IV users, bail.
   4642   if (IU.empty()) return;
   4643 
   4644   // Skip nested loops until we can model them better with formulae.
   4645   if (!L->empty()) {
   4646     DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
   4647     return;
   4648   }
   4649 
   4650   // Start collecting data and preparing for the solver.
   4651   CollectChains();
   4652   CollectInterestingTypesAndFactors();
   4653   CollectFixupsAndInitialFormulae();
   4654   CollectLoopInvariantFixupsAndFormulae();
   4655 
   4656   assert(!Uses.empty() && "IVUsers reported at least one use");
   4657   DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
   4658         print_uses(dbgs()));
   4659 
   4660   // Now use the reuse data to generate a bunch of interesting ways
   4661   // to formulate the values needed for the uses.
   4662   GenerateAllReuseFormulae();
   4663 
   4664   FilterOutUndesirableDedicatedRegisters();
   4665   NarrowSearchSpaceUsingHeuristics();
   4666 
   4667   SmallVector<const Formula *, 8> Solution;
   4668   Solve(Solution);
   4669 
   4670   // Release memory that is no longer needed.
   4671   Factors.clear();
   4672   Types.clear();
   4673   RegUses.clear();
   4674 
   4675   if (Solution.empty())
   4676     return;
   4677 
   4678 #ifndef NDEBUG
   4679   // Formulae should be legal.
   4680   for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), E = Uses.end();
   4681        I != E; ++I) {
   4682     const LSRUse &LU = *I;
   4683     for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
   4684                                                   JE = LU.Formulae.end();
   4685          J != JE; ++J)
   4686       assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
   4687                         *J) && "Illegal formula generated!");
   4688   };
   4689 #endif
   4690 
   4691   // Now that we've decided what we want, make it so.
   4692   ImplementSolution(Solution, P);
   4693 }
   4694 
   4695 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
   4696   if (Factors.empty() && Types.empty()) return;
   4697 
   4698   OS << "LSR has identified the following interesting factors and types: ";
   4699   bool First = true;
   4700 
   4701   for (SmallSetVector<int64_t, 8>::const_iterator
   4702        I = Factors.begin(), E = Factors.end(); I != E; ++I) {
   4703     if (!First) OS << ", ";
   4704     First = false;
   4705     OS << '*' << *I;
   4706   }
   4707 
   4708   for (SmallSetVector<Type *, 4>::const_iterator
   4709        I = Types.begin(), E = Types.end(); I != E; ++I) {
   4710     if (!First) OS << ", ";
   4711     First = false;
   4712     OS << '(' << **I << ')';
   4713   }
   4714   OS << '\n';
   4715 }
   4716 
   4717 void LSRInstance::print_fixups(raw_ostream &OS) const {
   4718   OS << "LSR is examining the following fixup sites:\n";
   4719   for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
   4720        E = Fixups.end(); I != E; ++I) {
   4721     dbgs() << "  ";
   4722     I->print(OS);
   4723     OS << '\n';
   4724   }
   4725 }
   4726 
   4727 void LSRInstance::print_uses(raw_ostream &OS) const {
   4728   OS << "LSR is examining the following uses:\n";
   4729   for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
   4730        E = Uses.end(); I != E; ++I) {
   4731     const LSRUse &LU = *I;
   4732     dbgs() << "  ";
   4733     LU.print(OS);
   4734     OS << '\n';
   4735     for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
   4736          JE = LU.Formulae.end(); J != JE; ++J) {
   4737       OS << "    ";
   4738       J->print(OS);
   4739       OS << '\n';
   4740     }
   4741   }
   4742 }
   4743 
   4744 void LSRInstance::print(raw_ostream &OS) const {
   4745   print_factors_and_types(OS);
   4746   print_fixups(OS);
   4747   print_uses(OS);
   4748 }
   4749 
   4750 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
   4751 void LSRInstance::dump() const {
   4752   print(errs()); errs() << '\n';
   4753 }
   4754 #endif
   4755 
   4756 namespace {
   4757 
   4758 class LoopStrengthReduce : public LoopPass {
   4759 public:
   4760   static char ID; // Pass ID, replacement for typeid
   4761   LoopStrengthReduce();
   4762 
   4763 private:
   4764   bool runOnLoop(Loop *L, LPPassManager &LPM);
   4765   void getAnalysisUsage(AnalysisUsage &AU) const;
   4766 };
   4767 
   4768 }
   4769 
   4770 char LoopStrengthReduce::ID = 0;
   4771 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
   4772                 "Loop Strength Reduction", false, false)
   4773 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
   4774 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
   4775 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
   4776 INITIALIZE_PASS_DEPENDENCY(IVUsers)
   4777 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
   4778 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
   4779 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
   4780                 "Loop Strength Reduction", false, false)
   4781 
   4782 
   4783 Pass *llvm::createLoopStrengthReducePass() {
   4784   return new LoopStrengthReduce();
   4785 }
   4786 
   4787 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
   4788   initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
   4789 }
   4790 
   4791 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
   4792   // We split critical edges, so we change the CFG.  However, we do update
   4793   // many analyses if they are around.
   4794   AU.addPreservedID(LoopSimplifyID);
   4795 
   4796   AU.addRequired<LoopInfo>();
   4797   AU.addPreserved<LoopInfo>();
   4798   AU.addRequiredID(LoopSimplifyID);
   4799   AU.addRequired<DominatorTree>();
   4800   AU.addPreserved<DominatorTree>();
   4801   AU.addRequired<ScalarEvolution>();
   4802   AU.addPreserved<ScalarEvolution>();
   4803   // Requiring LoopSimplify a second time here prevents IVUsers from running
   4804   // twice, since LoopSimplify was invalidated by running ScalarEvolution.
   4805   AU.addRequiredID(LoopSimplifyID);
   4806   AU.addRequired<IVUsers>();
   4807   AU.addPreserved<IVUsers>();
   4808   AU.addRequired<TargetTransformInfo>();
   4809 }
   4810 
   4811 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
   4812   bool Changed = false;
   4813 
   4814   // Run the main LSR transformation.
   4815   Changed |= LSRInstance(L, this).getChanged();
   4816 
   4817   // Remove any extra phis created by processing inner loops.
   4818   Changed |= DeleteDeadPHIs(L->getHeader());
   4819   if (EnablePhiElim && L->isLoopSimplifyForm()) {
   4820     SmallVector<WeakVH, 16> DeadInsts;
   4821     SCEVExpander Rewriter(getAnalysis<ScalarEvolution>(), "lsr");
   4822 #ifndef NDEBUG
   4823     Rewriter.setDebugType(DEBUG_TYPE);
   4824 #endif
   4825     unsigned numFolded =
   4826         Rewriter.replaceCongruentIVs(L, &getAnalysis<DominatorTree>(),
   4827                                      DeadInsts,
   4828                                      &getAnalysis<TargetTransformInfo>());
   4829     if (numFolded) {
   4830       Changed = true;
   4831       DeleteTriviallyDeadInstructions(DeadInsts);
   4832       DeleteDeadPHIs(L->getHeader());
   4833     }
   4834   }
   4835   return Changed;
   4836 }
   4837