Home | History | Annotate | Download | only in X86
      1 //===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the pass which converts floating point instructions from
     11 // pseudo registers into register stack instructions.  This pass uses live
     12 // variable information to indicate where the FPn registers are used and their
     13 // lifetimes.
     14 //
     15 // The x87 hardware tracks liveness of the stack registers, so it is necessary
     16 // to implement exact liveness tracking between basic blocks. The CFG edges are
     17 // partitioned into bundles where the same FP registers must be live in
     18 // identical stack positions. Instructions are inserted at the end of each basic
     19 // block to rearrange the live registers to match the outgoing bundle.
     20 //
     21 // This approach avoids splitting critical edges at the potential cost of more
     22 // live register shuffling instructions when critical edges are present.
     23 //
     24 //===----------------------------------------------------------------------===//
     25 
     26 #define DEBUG_TYPE "x86-codegen"
     27 #include "X86.h"
     28 #include "X86InstrInfo.h"
     29 #include "llvm/ADT/DepthFirstIterator.h"
     30 #include "llvm/ADT/STLExtras.h"
     31 #include "llvm/ADT/SmallPtrSet.h"
     32 #include "llvm/ADT/SmallVector.h"
     33 #include "llvm/ADT/Statistic.h"
     34 #include "llvm/CodeGen/EdgeBundles.h"
     35 #include "llvm/CodeGen/MachineFunctionPass.h"
     36 #include "llvm/CodeGen/MachineInstrBuilder.h"
     37 #include "llvm/CodeGen/MachineRegisterInfo.h"
     38 #include "llvm/CodeGen/Passes.h"
     39 #include "llvm/IR/InlineAsm.h"
     40 #include "llvm/Support/Debug.h"
     41 #include "llvm/Support/ErrorHandling.h"
     42 #include "llvm/Support/raw_ostream.h"
     43 #include "llvm/Target/TargetInstrInfo.h"
     44 #include "llvm/Target/TargetMachine.h"
     45 #include <algorithm>
     46 using namespace llvm;
     47 
     48 STATISTIC(NumFXCH, "Number of fxch instructions inserted");
     49 STATISTIC(NumFP  , "Number of floating point instructions");
     50 
     51 namespace {
     52   struct FPS : public MachineFunctionPass {
     53     static char ID;
     54     FPS() : MachineFunctionPass(ID) {
     55       initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
     56       // This is really only to keep valgrind quiet.
     57       // The logic in isLive() is too much for it.
     58       memset(Stack, 0, sizeof(Stack));
     59       memset(RegMap, 0, sizeof(RegMap));
     60     }
     61 
     62     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
     63       AU.setPreservesCFG();
     64       AU.addRequired<EdgeBundles>();
     65       AU.addPreservedID(MachineLoopInfoID);
     66       AU.addPreservedID(MachineDominatorsID);
     67       MachineFunctionPass::getAnalysisUsage(AU);
     68     }
     69 
     70     virtual bool runOnMachineFunction(MachineFunction &MF);
     71 
     72     virtual const char *getPassName() const { return "X86 FP Stackifier"; }
     73 
     74   private:
     75     const TargetInstrInfo *TII; // Machine instruction info.
     76 
     77     // Two CFG edges are related if they leave the same block, or enter the same
     78     // block. The transitive closure of an edge under this relation is a
     79     // LiveBundle. It represents a set of CFG edges where the live FP stack
     80     // registers must be allocated identically in the x87 stack.
     81     //
     82     // A LiveBundle is usually all the edges leaving a block, or all the edges
     83     // entering a block, but it can contain more edges if critical edges are
     84     // present.
     85     //
     86     // The set of live FP registers in a LiveBundle is calculated by bundleCFG,
     87     // but the exact mapping of FP registers to stack slots is fixed later.
     88     struct LiveBundle {
     89       // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c.
     90       unsigned Mask;
     91 
     92       // Number of pre-assigned live registers in FixStack. This is 0 when the
     93       // stack order has not yet been fixed.
     94       unsigned FixCount;
     95 
     96       // Assigned stack order for live-in registers.
     97       // FixStack[i] == getStackEntry(i) for all i < FixCount.
     98       unsigned char FixStack[8];
     99 
    100       LiveBundle() : Mask(0), FixCount(0) {}
    101 
    102       // Have the live registers been assigned a stack order yet?
    103       bool isFixed() const { return !Mask || FixCount; }
    104     };
    105 
    106     // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges
    107     // with no live FP registers.
    108     SmallVector<LiveBundle, 8> LiveBundles;
    109 
    110     // The edge bundle analysis provides indices into the LiveBundles vector.
    111     EdgeBundles *Bundles;
    112 
    113     // Return a bitmask of FP registers in block's live-in list.
    114     static unsigned calcLiveInMask(MachineBasicBlock *MBB) {
    115       unsigned Mask = 0;
    116       for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
    117            E = MBB->livein_end(); I != E; ++I) {
    118         unsigned Reg = *I - X86::FP0;
    119         if (Reg < 8)
    120           Mask |= 1 << Reg;
    121       }
    122       return Mask;
    123     }
    124 
    125     // Partition all the CFG edges into LiveBundles.
    126     void bundleCFG(MachineFunction &MF);
    127 
    128     MachineBasicBlock *MBB;     // Current basic block
    129 
    130     // The hardware keeps track of how many FP registers are live, so we have
    131     // to model that exactly. Usually, each live register corresponds to an
    132     // FP<n> register, but when dealing with calls, returns, and inline
    133     // assembly, it is sometimes necessary to have live scratch registers.
    134     unsigned Stack[8];          // FP<n> Registers in each stack slot...
    135     unsigned StackTop;          // The current top of the FP stack.
    136 
    137     enum {
    138       NumFPRegs = 16            // Including scratch pseudo-registers.
    139     };
    140 
    141     // For each live FP<n> register, point to its Stack[] entry.
    142     // The first entries correspond to FP0-FP6, the rest are scratch registers
    143     // used when we need slightly different live registers than what the
    144     // register allocator thinks.
    145     unsigned RegMap[NumFPRegs];
    146 
    147     // Pending fixed registers - Inline assembly needs FP registers to appear
    148     // in fixed stack slot positions. This is handled by copying FP registers
    149     // to ST registers before the instruction, and copying back after the
    150     // instruction.
    151     //
    152     // This is modeled with pending ST registers. NumPendingSTs is the number
    153     // of ST registers (ST0-STn) we are tracking. PendingST[n] points to an FP
    154     // register that holds the ST value. The ST registers are not moved into
    155     // place until immediately before the instruction that needs them.
    156     //
    157     // It can happen that we need an ST register to be live when no FP register
    158     // holds the value:
    159     //
    160     //   %ST0 = COPY %FP4<kill>
    161     //
    162     // When that happens, we allocate a scratch FP register to hold the ST
    163     // value. That means every register in PendingST must be live.
    164 
    165     unsigned NumPendingSTs;
    166     unsigned char PendingST[8];
    167 
    168     // Set up our stack model to match the incoming registers to MBB.
    169     void setupBlockStack();
    170 
    171     // Shuffle live registers to match the expectations of successor blocks.
    172     void finishBlockStack();
    173 
    174 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    175     void dumpStack() const {
    176       dbgs() << "Stack contents:";
    177       for (unsigned i = 0; i != StackTop; ++i) {
    178         dbgs() << " FP" << Stack[i];
    179         assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
    180       }
    181       for (unsigned i = 0; i != NumPendingSTs; ++i)
    182         dbgs() << ", ST" << i << " in FP" << unsigned(PendingST[i]);
    183       dbgs() << "\n";
    184     }
    185 #endif
    186 
    187     /// getSlot - Return the stack slot number a particular register number is
    188     /// in.
    189     unsigned getSlot(unsigned RegNo) const {
    190       assert(RegNo < NumFPRegs && "Regno out of range!");
    191       return RegMap[RegNo];
    192     }
    193 
    194     /// isLive - Is RegNo currently live in the stack?
    195     bool isLive(unsigned RegNo) const {
    196       unsigned Slot = getSlot(RegNo);
    197       return Slot < StackTop && Stack[Slot] == RegNo;
    198     }
    199 
    200     /// getScratchReg - Return an FP register that is not currently in use.
    201     unsigned getScratchReg() const {
    202       for (int i = NumFPRegs - 1; i >= 8; --i)
    203         if (!isLive(i))
    204           return i;
    205       llvm_unreachable("Ran out of scratch FP registers");
    206     }
    207 
    208     /// isScratchReg - Returns trus if RegNo is a scratch FP register.
    209     static bool isScratchReg(unsigned RegNo) {
    210       return RegNo > 8 && RegNo < NumFPRegs;
    211     }
    212 
    213     /// getStackEntry - Return the X86::FP<n> register in register ST(i).
    214     unsigned getStackEntry(unsigned STi) const {
    215       if (STi >= StackTop)
    216         report_fatal_error("Access past stack top!");
    217       return Stack[StackTop-1-STi];
    218     }
    219 
    220     /// getSTReg - Return the X86::ST(i) register which contains the specified
    221     /// FP<RegNo> register.
    222     unsigned getSTReg(unsigned RegNo) const {
    223       return StackTop - 1 - getSlot(RegNo) + X86::ST0;
    224     }
    225 
    226     // pushReg - Push the specified FP<n> register onto the stack.
    227     void pushReg(unsigned Reg) {
    228       assert(Reg < NumFPRegs && "Register number out of range!");
    229       if (StackTop >= 8)
    230         report_fatal_error("Stack overflow!");
    231       Stack[StackTop] = Reg;
    232       RegMap[Reg] = StackTop++;
    233     }
    234 
    235     bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
    236     void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
    237       DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
    238       if (isAtTop(RegNo)) return;
    239 
    240       unsigned STReg = getSTReg(RegNo);
    241       unsigned RegOnTop = getStackEntry(0);
    242 
    243       // Swap the slots the regs are in.
    244       std::swap(RegMap[RegNo], RegMap[RegOnTop]);
    245 
    246       // Swap stack slot contents.
    247       if (RegMap[RegOnTop] >= StackTop)
    248         report_fatal_error("Access past stack top!");
    249       std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
    250 
    251       // Emit an fxch to update the runtime processors version of the state.
    252       BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg);
    253       ++NumFXCH;
    254     }
    255 
    256     void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
    257       DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
    258       unsigned STReg = getSTReg(RegNo);
    259       pushReg(AsReg);   // New register on top of stack
    260 
    261       BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg);
    262     }
    263 
    264     /// duplicatePendingSTBeforeKill - The instruction at I is about to kill
    265     /// RegNo. If any PendingST registers still need the RegNo value, duplicate
    266     /// them to new scratch registers.
    267     void duplicatePendingSTBeforeKill(unsigned RegNo, MachineInstr *I) {
    268       for (unsigned i = 0; i != NumPendingSTs; ++i) {
    269         if (PendingST[i] != RegNo)
    270           continue;
    271         unsigned SR = getScratchReg();
    272         DEBUG(dbgs() << "Duplicating pending ST" << i
    273                      << " in FP" << RegNo << " to FP" << SR << '\n');
    274         duplicateToTop(RegNo, SR, I);
    275         PendingST[i] = SR;
    276       }
    277     }
    278 
    279     /// popStackAfter - Pop the current value off of the top of the FP stack
    280     /// after the specified instruction.
    281     void popStackAfter(MachineBasicBlock::iterator &I);
    282 
    283     /// freeStackSlotAfter - Free the specified register from the register
    284     /// stack, so that it is no longer in a register.  If the register is
    285     /// currently at the top of the stack, we just pop the current instruction,
    286     /// otherwise we store the current top-of-stack into the specified slot,
    287     /// then pop the top of stack.
    288     void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
    289 
    290     /// freeStackSlotBefore - Just the pop, no folding. Return the inserted
    291     /// instruction.
    292     MachineBasicBlock::iterator
    293     freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo);
    294 
    295     /// Adjust the live registers to be the set in Mask.
    296     void adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I);
    297 
    298     /// Shuffle the top FixCount stack entries such that FP reg FixStack[0] is
    299     /// st(0), FP reg FixStack[1] is st(1) etc.
    300     void shuffleStackTop(const unsigned char *FixStack, unsigned FixCount,
    301                          MachineBasicBlock::iterator I);
    302 
    303     bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
    304 
    305     void handleZeroArgFP(MachineBasicBlock::iterator &I);
    306     void handleOneArgFP(MachineBasicBlock::iterator &I);
    307     void handleOneArgFPRW(MachineBasicBlock::iterator &I);
    308     void handleTwoArgFP(MachineBasicBlock::iterator &I);
    309     void handleCompareFP(MachineBasicBlock::iterator &I);
    310     void handleCondMovFP(MachineBasicBlock::iterator &I);
    311     void handleSpecialFP(MachineBasicBlock::iterator &I);
    312 
    313     // Check if a COPY instruction is using FP registers.
    314     static bool isFPCopy(MachineInstr *MI) {
    315       unsigned DstReg = MI->getOperand(0).getReg();
    316       unsigned SrcReg = MI->getOperand(1).getReg();
    317 
    318       return X86::RFP80RegClass.contains(DstReg) ||
    319         X86::RFP80RegClass.contains(SrcReg);
    320     }
    321   };
    322   char FPS::ID = 0;
    323 }
    324 
    325 FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
    326 
    327 /// getFPReg - Return the X86::FPx register number for the specified operand.
    328 /// For example, this returns 3 for X86::FP3.
    329 static unsigned getFPReg(const MachineOperand &MO) {
    330   assert(MO.isReg() && "Expected an FP register!");
    331   unsigned Reg = MO.getReg();
    332   assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
    333   return Reg - X86::FP0;
    334 }
    335 
    336 /// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
    337 /// register references into FP stack references.
    338 ///
    339 bool FPS::runOnMachineFunction(MachineFunction &MF) {
    340   // We only need to run this pass if there are any FP registers used in this
    341   // function.  If it is all integer, there is nothing for us to do!
    342   bool FPIsUsed = false;
    343 
    344   assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!");
    345   for (unsigned i = 0; i <= 6; ++i)
    346     if (MF.getRegInfo().isPhysRegUsed(X86::FP0+i)) {
    347       FPIsUsed = true;
    348       break;
    349     }
    350 
    351   // Early exit.
    352   if (!FPIsUsed) return false;
    353 
    354   Bundles = &getAnalysis<EdgeBundles>();
    355   TII = MF.getTarget().getInstrInfo();
    356 
    357   // Prepare cross-MBB liveness.
    358   bundleCFG(MF);
    359 
    360   StackTop = 0;
    361 
    362   // Process the function in depth first order so that we process at least one
    363   // of the predecessors for every reachable block in the function.
    364   SmallPtrSet<MachineBasicBlock*, 8> Processed;
    365   MachineBasicBlock *Entry = MF.begin();
    366 
    367   bool Changed = false;
    368   for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*, 8> >
    369          I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
    370        I != E; ++I)
    371     Changed |= processBasicBlock(MF, **I);
    372 
    373   // Process any unreachable blocks in arbitrary order now.
    374   if (MF.size() != Processed.size())
    375     for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB)
    376       if (Processed.insert(BB))
    377         Changed |= processBasicBlock(MF, *BB);
    378 
    379   LiveBundles.clear();
    380 
    381   return Changed;
    382 }
    383 
    384 /// bundleCFG - Scan all the basic blocks to determine consistent live-in and
    385 /// live-out sets for the FP registers. Consistent means that the set of
    386 /// registers live-out from a block is identical to the live-in set of all
    387 /// successors. This is not enforced by the normal live-in lists since
    388 /// registers may be implicitly defined, or not used by all successors.
    389 void FPS::bundleCFG(MachineFunction &MF) {
    390   assert(LiveBundles.empty() && "Stale data in LiveBundles");
    391   LiveBundles.resize(Bundles->getNumBundles());
    392 
    393   // Gather the actual live-in masks for all MBBs.
    394   for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
    395     MachineBasicBlock *MBB = I;
    396     const unsigned Mask = calcLiveInMask(MBB);
    397     if (!Mask)
    398       continue;
    399     // Update MBB ingoing bundle mask.
    400     LiveBundles[Bundles->getBundle(MBB->getNumber(), false)].Mask |= Mask;
    401   }
    402 }
    403 
    404 /// processBasicBlock - Loop over all of the instructions in the basic block,
    405 /// transforming FP instructions into their stack form.
    406 ///
    407 bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
    408   bool Changed = false;
    409   MBB = &BB;
    410   NumPendingSTs = 0;
    411 
    412   setupBlockStack();
    413 
    414   for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
    415     MachineInstr *MI = I;
    416     uint64_t Flags = MI->getDesc().TSFlags;
    417 
    418     unsigned FPInstClass = Flags & X86II::FPTypeMask;
    419     if (MI->isInlineAsm())
    420       FPInstClass = X86II::SpecialFP;
    421 
    422     if (MI->isCopy() && isFPCopy(MI))
    423       FPInstClass = X86II::SpecialFP;
    424 
    425     if (MI->isImplicitDef() &&
    426         X86::RFP80RegClass.contains(MI->getOperand(0).getReg()))
    427       FPInstClass = X86II::SpecialFP;
    428 
    429     if (FPInstClass == X86II::NotFP)
    430       continue;  // Efficiently ignore non-fp insts!
    431 
    432     MachineInstr *PrevMI = 0;
    433     if (I != BB.begin())
    434       PrevMI = prior(I);
    435 
    436     ++NumFP;  // Keep track of # of pseudo instrs
    437     DEBUG(dbgs() << "\nFPInst:\t" << *MI);
    438 
    439     // Get dead variables list now because the MI pointer may be deleted as part
    440     // of processing!
    441     SmallVector<unsigned, 8> DeadRegs;
    442     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    443       const MachineOperand &MO = MI->getOperand(i);
    444       if (MO.isReg() && MO.isDead())
    445         DeadRegs.push_back(MO.getReg());
    446     }
    447 
    448     switch (FPInstClass) {
    449     case X86II::ZeroArgFP:  handleZeroArgFP(I); break;
    450     case X86II::OneArgFP:   handleOneArgFP(I);  break;  // fstp ST(0)
    451     case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
    452     case X86II::TwoArgFP:   handleTwoArgFP(I);  break;
    453     case X86II::CompareFP:  handleCompareFP(I); break;
    454     case X86II::CondMovFP:  handleCondMovFP(I); break;
    455     case X86II::SpecialFP:  handleSpecialFP(I); break;
    456     default: llvm_unreachable("Unknown FP Type!");
    457     }
    458 
    459     // Check to see if any of the values defined by this instruction are dead
    460     // after definition.  If so, pop them.
    461     for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
    462       unsigned Reg = DeadRegs[i];
    463       if (Reg >= X86::FP0 && Reg <= X86::FP6) {
    464         DEBUG(dbgs() << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
    465         freeStackSlotAfter(I, Reg-X86::FP0);
    466       }
    467     }
    468 
    469     // Print out all of the instructions expanded to if -debug
    470     DEBUG(
    471       MachineBasicBlock::iterator PrevI(PrevMI);
    472       if (I == PrevI) {
    473         dbgs() << "Just deleted pseudo instruction\n";
    474       } else {
    475         MachineBasicBlock::iterator Start = I;
    476         // Rewind to first instruction newly inserted.
    477         while (Start != BB.begin() && prior(Start) != PrevI) --Start;
    478         dbgs() << "Inserted instructions:\n\t";
    479         Start->print(dbgs(), &MF.getTarget());
    480         while (++Start != llvm::next(I)) {}
    481       }
    482       dumpStack();
    483     );
    484     (void)PrevMI;
    485 
    486     Changed = true;
    487   }
    488 
    489   finishBlockStack();
    490 
    491   return Changed;
    492 }
    493 
    494 /// setupBlockStack - Use the live bundles to set up our model of the stack
    495 /// to match predecessors' live out stack.
    496 void FPS::setupBlockStack() {
    497   DEBUG(dbgs() << "\nSetting up live-ins for BB#" << MBB->getNumber()
    498                << " derived from " << MBB->getName() << ".\n");
    499   StackTop = 0;
    500   // Get the live-in bundle for MBB.
    501   const LiveBundle &Bundle =
    502     LiveBundles[Bundles->getBundle(MBB->getNumber(), false)];
    503 
    504   if (!Bundle.Mask) {
    505     DEBUG(dbgs() << "Block has no FP live-ins.\n");
    506     return;
    507   }
    508 
    509   // Depth-first iteration should ensure that we always have an assigned stack.
    510   assert(Bundle.isFixed() && "Reached block before any predecessors");
    511 
    512   // Push the fixed live-in registers.
    513   for (unsigned i = Bundle.FixCount; i > 0; --i) {
    514     MBB->addLiveIn(X86::ST0+i-1);
    515     DEBUG(dbgs() << "Live-in st(" << (i-1) << "): %FP"
    516                  << unsigned(Bundle.FixStack[i-1]) << '\n');
    517     pushReg(Bundle.FixStack[i-1]);
    518   }
    519 
    520   // Kill off unwanted live-ins. This can happen with a critical edge.
    521   // FIXME: We could keep these live registers around as zombies. They may need
    522   // to be revived at the end of a short block. It might save a few instrs.
    523   adjustLiveRegs(calcLiveInMask(MBB), MBB->begin());
    524   DEBUG(MBB->dump());
    525 }
    526 
    527 /// finishBlockStack - Revive live-outs that are implicitly defined out of
    528 /// MBB. Shuffle live registers to match the expected fixed stack of any
    529 /// predecessors, and ensure that all predecessors are expecting the same
    530 /// stack.
    531 void FPS::finishBlockStack() {
    532   // The RET handling below takes care of return blocks for us.
    533   if (MBB->succ_empty())
    534     return;
    535 
    536   DEBUG(dbgs() << "Setting up live-outs for BB#" << MBB->getNumber()
    537                << " derived from " << MBB->getName() << ".\n");
    538 
    539   // Get MBB's live-out bundle.
    540   unsigned BundleIdx = Bundles->getBundle(MBB->getNumber(), true);
    541   LiveBundle &Bundle = LiveBundles[BundleIdx];
    542 
    543   // We may need to kill and define some registers to match successors.
    544   // FIXME: This can probably be combined with the shuffle below.
    545   MachineBasicBlock::iterator Term = MBB->getFirstTerminator();
    546   adjustLiveRegs(Bundle.Mask, Term);
    547 
    548   if (!Bundle.Mask) {
    549     DEBUG(dbgs() << "No live-outs.\n");
    550     return;
    551   }
    552 
    553   // Has the stack order been fixed yet?
    554   DEBUG(dbgs() << "LB#" << BundleIdx << ": ");
    555   if (Bundle.isFixed()) {
    556     DEBUG(dbgs() << "Shuffling stack to match.\n");
    557     shuffleStackTop(Bundle.FixStack, Bundle.FixCount, Term);
    558   } else {
    559     // Not fixed yet, we get to choose.
    560     DEBUG(dbgs() << "Fixing stack order now.\n");
    561     Bundle.FixCount = StackTop;
    562     for (unsigned i = 0; i < StackTop; ++i)
    563       Bundle.FixStack[i] = getStackEntry(i);
    564   }
    565 }
    566 
    567 
    568 //===----------------------------------------------------------------------===//
    569 // Efficient Lookup Table Support
    570 //===----------------------------------------------------------------------===//
    571 
    572 namespace {
    573   struct TableEntry {
    574     uint16_t from;
    575     uint16_t to;
    576     bool operator<(const TableEntry &TE) const { return from < TE.from; }
    577     friend bool operator<(const TableEntry &TE, unsigned V) {
    578       return TE.from < V;
    579     }
    580     friend bool LLVM_ATTRIBUTE_UNUSED operator<(unsigned V,
    581                                                 const TableEntry &TE) {
    582       return V < TE.from;
    583     }
    584   };
    585 }
    586 
    587 #ifndef NDEBUG
    588 static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
    589   for (unsigned i = 0; i != NumEntries-1; ++i)
    590     if (!(Table[i] < Table[i+1])) return false;
    591   return true;
    592 }
    593 #endif
    594 
    595 static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
    596   const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
    597   if (I != Table+N && I->from == Opcode)
    598     return I->to;
    599   return -1;
    600 }
    601 
    602 #ifdef NDEBUG
    603 #define ASSERT_SORTED(TABLE)
    604 #else
    605 #define ASSERT_SORTED(TABLE)                                              \
    606   { static bool TABLE##Checked = false;                                   \
    607     if (!TABLE##Checked) {                                                \
    608        assert(TableIsSorted(TABLE, array_lengthof(TABLE)) &&              \
    609               "All lookup tables must be sorted for efficient access!");  \
    610        TABLE##Checked = true;                                             \
    611     }                                                                     \
    612   }
    613 #endif
    614 
    615 //===----------------------------------------------------------------------===//
    616 // Register File -> Register Stack Mapping Methods
    617 //===----------------------------------------------------------------------===//
    618 
    619 // OpcodeTable - Sorted map of register instructions to their stack version.
    620 // The first element is an register file pseudo instruction, the second is the
    621 // concrete X86 instruction which uses the register stack.
    622 //
    623 static const TableEntry OpcodeTable[] = {
    624   { X86::ABS_Fp32     , X86::ABS_F     },
    625   { X86::ABS_Fp64     , X86::ABS_F     },
    626   { X86::ABS_Fp80     , X86::ABS_F     },
    627   { X86::ADD_Fp32m    , X86::ADD_F32m  },
    628   { X86::ADD_Fp64m    , X86::ADD_F64m  },
    629   { X86::ADD_Fp64m32  , X86::ADD_F32m  },
    630   { X86::ADD_Fp80m32  , X86::ADD_F32m  },
    631   { X86::ADD_Fp80m64  , X86::ADD_F64m  },
    632   { X86::ADD_FpI16m32 , X86::ADD_FI16m },
    633   { X86::ADD_FpI16m64 , X86::ADD_FI16m },
    634   { X86::ADD_FpI16m80 , X86::ADD_FI16m },
    635   { X86::ADD_FpI32m32 , X86::ADD_FI32m },
    636   { X86::ADD_FpI32m64 , X86::ADD_FI32m },
    637   { X86::ADD_FpI32m80 , X86::ADD_FI32m },
    638   { X86::CHS_Fp32     , X86::CHS_F     },
    639   { X86::CHS_Fp64     , X86::CHS_F     },
    640   { X86::CHS_Fp80     , X86::CHS_F     },
    641   { X86::CMOVBE_Fp32  , X86::CMOVBE_F  },
    642   { X86::CMOVBE_Fp64  , X86::CMOVBE_F  },
    643   { X86::CMOVBE_Fp80  , X86::CMOVBE_F  },
    644   { X86::CMOVB_Fp32   , X86::CMOVB_F   },
    645   { X86::CMOVB_Fp64   , X86::CMOVB_F  },
    646   { X86::CMOVB_Fp80   , X86::CMOVB_F  },
    647   { X86::CMOVE_Fp32   , X86::CMOVE_F  },
    648   { X86::CMOVE_Fp64   , X86::CMOVE_F   },
    649   { X86::CMOVE_Fp80   , X86::CMOVE_F   },
    650   { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
    651   { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
    652   { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
    653   { X86::CMOVNB_Fp32  , X86::CMOVNB_F  },
    654   { X86::CMOVNB_Fp64  , X86::CMOVNB_F  },
    655   { X86::CMOVNB_Fp80  , X86::CMOVNB_F  },
    656   { X86::CMOVNE_Fp32  , X86::CMOVNE_F  },
    657   { X86::CMOVNE_Fp64  , X86::CMOVNE_F  },
    658   { X86::CMOVNE_Fp80  , X86::CMOVNE_F  },
    659   { X86::CMOVNP_Fp32  , X86::CMOVNP_F  },
    660   { X86::CMOVNP_Fp64  , X86::CMOVNP_F  },
    661   { X86::CMOVNP_Fp80  , X86::CMOVNP_F  },
    662   { X86::CMOVP_Fp32   , X86::CMOVP_F   },
    663   { X86::CMOVP_Fp64   , X86::CMOVP_F   },
    664   { X86::CMOVP_Fp80   , X86::CMOVP_F   },
    665   { X86::COS_Fp32     , X86::COS_F     },
    666   { X86::COS_Fp64     , X86::COS_F     },
    667   { X86::COS_Fp80     , X86::COS_F     },
    668   { X86::DIVR_Fp32m   , X86::DIVR_F32m },
    669   { X86::DIVR_Fp64m   , X86::DIVR_F64m },
    670   { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
    671   { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
    672   { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
    673   { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
    674   { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
    675   { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
    676   { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
    677   { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
    678   { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
    679   { X86::DIV_Fp32m    , X86::DIV_F32m  },
    680   { X86::DIV_Fp64m    , X86::DIV_F64m  },
    681   { X86::DIV_Fp64m32  , X86::DIV_F32m  },
    682   { X86::DIV_Fp80m32  , X86::DIV_F32m  },
    683   { X86::DIV_Fp80m64  , X86::DIV_F64m  },
    684   { X86::DIV_FpI16m32 , X86::DIV_FI16m },
    685   { X86::DIV_FpI16m64 , X86::DIV_FI16m },
    686   { X86::DIV_FpI16m80 , X86::DIV_FI16m },
    687   { X86::DIV_FpI32m32 , X86::DIV_FI32m },
    688   { X86::DIV_FpI32m64 , X86::DIV_FI32m },
    689   { X86::DIV_FpI32m80 , X86::DIV_FI32m },
    690   { X86::ILD_Fp16m32  , X86::ILD_F16m  },
    691   { X86::ILD_Fp16m64  , X86::ILD_F16m  },
    692   { X86::ILD_Fp16m80  , X86::ILD_F16m  },
    693   { X86::ILD_Fp32m32  , X86::ILD_F32m  },
    694   { X86::ILD_Fp32m64  , X86::ILD_F32m  },
    695   { X86::ILD_Fp32m80  , X86::ILD_F32m  },
    696   { X86::ILD_Fp64m32  , X86::ILD_F64m  },
    697   { X86::ILD_Fp64m64  , X86::ILD_F64m  },
    698   { X86::ILD_Fp64m80  , X86::ILD_F64m  },
    699   { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
    700   { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
    701   { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
    702   { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
    703   { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
    704   { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
    705   { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
    706   { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
    707   { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
    708   { X86::IST_Fp16m32  , X86::IST_F16m  },
    709   { X86::IST_Fp16m64  , X86::IST_F16m  },
    710   { X86::IST_Fp16m80  , X86::IST_F16m  },
    711   { X86::IST_Fp32m32  , X86::IST_F32m  },
    712   { X86::IST_Fp32m64  , X86::IST_F32m  },
    713   { X86::IST_Fp32m80  , X86::IST_F32m  },
    714   { X86::IST_Fp64m32  , X86::IST_FP64m },
    715   { X86::IST_Fp64m64  , X86::IST_FP64m },
    716   { X86::IST_Fp64m80  , X86::IST_FP64m },
    717   { X86::LD_Fp032     , X86::LD_F0     },
    718   { X86::LD_Fp064     , X86::LD_F0     },
    719   { X86::LD_Fp080     , X86::LD_F0     },
    720   { X86::LD_Fp132     , X86::LD_F1     },
    721   { X86::LD_Fp164     , X86::LD_F1     },
    722   { X86::LD_Fp180     , X86::LD_F1     },
    723   { X86::LD_Fp32m     , X86::LD_F32m   },
    724   { X86::LD_Fp32m64   , X86::LD_F32m   },
    725   { X86::LD_Fp32m80   , X86::LD_F32m   },
    726   { X86::LD_Fp64m     , X86::LD_F64m   },
    727   { X86::LD_Fp64m80   , X86::LD_F64m   },
    728   { X86::LD_Fp80m     , X86::LD_F80m   },
    729   { X86::MUL_Fp32m    , X86::MUL_F32m  },
    730   { X86::MUL_Fp64m    , X86::MUL_F64m  },
    731   { X86::MUL_Fp64m32  , X86::MUL_F32m  },
    732   { X86::MUL_Fp80m32  , X86::MUL_F32m  },
    733   { X86::MUL_Fp80m64  , X86::MUL_F64m  },
    734   { X86::MUL_FpI16m32 , X86::MUL_FI16m },
    735   { X86::MUL_FpI16m64 , X86::MUL_FI16m },
    736   { X86::MUL_FpI16m80 , X86::MUL_FI16m },
    737   { X86::MUL_FpI32m32 , X86::MUL_FI32m },
    738   { X86::MUL_FpI32m64 , X86::MUL_FI32m },
    739   { X86::MUL_FpI32m80 , X86::MUL_FI32m },
    740   { X86::SIN_Fp32     , X86::SIN_F     },
    741   { X86::SIN_Fp64     , X86::SIN_F     },
    742   { X86::SIN_Fp80     , X86::SIN_F     },
    743   { X86::SQRT_Fp32    , X86::SQRT_F    },
    744   { X86::SQRT_Fp64    , X86::SQRT_F    },
    745   { X86::SQRT_Fp80    , X86::SQRT_F    },
    746   { X86::ST_Fp32m     , X86::ST_F32m   },
    747   { X86::ST_Fp64m     , X86::ST_F64m   },
    748   { X86::ST_Fp64m32   , X86::ST_F32m   },
    749   { X86::ST_Fp80m32   , X86::ST_F32m   },
    750   { X86::ST_Fp80m64   , X86::ST_F64m   },
    751   { X86::ST_FpP80m    , X86::ST_FP80m  },
    752   { X86::SUBR_Fp32m   , X86::SUBR_F32m },
    753   { X86::SUBR_Fp64m   , X86::SUBR_F64m },
    754   { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
    755   { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
    756   { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
    757   { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
    758   { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
    759   { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
    760   { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
    761   { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
    762   { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
    763   { X86::SUB_Fp32m    , X86::SUB_F32m  },
    764   { X86::SUB_Fp64m    , X86::SUB_F64m  },
    765   { X86::SUB_Fp64m32  , X86::SUB_F32m  },
    766   { X86::SUB_Fp80m32  , X86::SUB_F32m  },
    767   { X86::SUB_Fp80m64  , X86::SUB_F64m  },
    768   { X86::SUB_FpI16m32 , X86::SUB_FI16m },
    769   { X86::SUB_FpI16m64 , X86::SUB_FI16m },
    770   { X86::SUB_FpI16m80 , X86::SUB_FI16m },
    771   { X86::SUB_FpI32m32 , X86::SUB_FI32m },
    772   { X86::SUB_FpI32m64 , X86::SUB_FI32m },
    773   { X86::SUB_FpI32m80 , X86::SUB_FI32m },
    774   { X86::TST_Fp32     , X86::TST_F     },
    775   { X86::TST_Fp64     , X86::TST_F     },
    776   { X86::TST_Fp80     , X86::TST_F     },
    777   { X86::UCOM_FpIr32  , X86::UCOM_FIr  },
    778   { X86::UCOM_FpIr64  , X86::UCOM_FIr  },
    779   { X86::UCOM_FpIr80  , X86::UCOM_FIr  },
    780   { X86::UCOM_Fpr32   , X86::UCOM_Fr   },
    781   { X86::UCOM_Fpr64   , X86::UCOM_Fr   },
    782   { X86::UCOM_Fpr80   , X86::UCOM_Fr   },
    783 };
    784 
    785 static unsigned getConcreteOpcode(unsigned Opcode) {
    786   ASSERT_SORTED(OpcodeTable);
    787   int Opc = Lookup(OpcodeTable, array_lengthof(OpcodeTable), Opcode);
    788   assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
    789   return Opc;
    790 }
    791 
    792 //===----------------------------------------------------------------------===//
    793 // Helper Methods
    794 //===----------------------------------------------------------------------===//
    795 
    796 // PopTable - Sorted map of instructions to their popping version.  The first
    797 // element is an instruction, the second is the version which pops.
    798 //
    799 static const TableEntry PopTable[] = {
    800   { X86::ADD_FrST0 , X86::ADD_FPrST0  },
    801 
    802   { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
    803   { X86::DIV_FrST0 , X86::DIV_FPrST0  },
    804 
    805   { X86::IST_F16m  , X86::IST_FP16m   },
    806   { X86::IST_F32m  , X86::IST_FP32m   },
    807 
    808   { X86::MUL_FrST0 , X86::MUL_FPrST0  },
    809 
    810   { X86::ST_F32m   , X86::ST_FP32m    },
    811   { X86::ST_F64m   , X86::ST_FP64m    },
    812   { X86::ST_Frr    , X86::ST_FPrr     },
    813 
    814   { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
    815   { X86::SUB_FrST0 , X86::SUB_FPrST0  },
    816 
    817   { X86::UCOM_FIr  , X86::UCOM_FIPr   },
    818 
    819   { X86::UCOM_FPr  , X86::UCOM_FPPr   },
    820   { X86::UCOM_Fr   , X86::UCOM_FPr    },
    821 };
    822 
    823 /// popStackAfter - Pop the current value off of the top of the FP stack after
    824 /// the specified instruction.  This attempts to be sneaky and combine the pop
    825 /// into the instruction itself if possible.  The iterator is left pointing to
    826 /// the last instruction, be it a new pop instruction inserted, or the old
    827 /// instruction if it was modified in place.
    828 ///
    829 void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
    830   MachineInstr* MI = I;
    831   DebugLoc dl = MI->getDebugLoc();
    832   ASSERT_SORTED(PopTable);
    833   if (StackTop == 0)
    834     report_fatal_error("Cannot pop empty stack!");
    835   RegMap[Stack[--StackTop]] = ~0;     // Update state
    836 
    837   // Check to see if there is a popping version of this instruction...
    838   int Opcode = Lookup(PopTable, array_lengthof(PopTable), I->getOpcode());
    839   if (Opcode != -1) {
    840     I->setDesc(TII->get(Opcode));
    841     if (Opcode == X86::UCOM_FPPr)
    842       I->RemoveOperand(0);
    843   } else {    // Insert an explicit pop
    844     I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
    845   }
    846 }
    847 
    848 /// freeStackSlotAfter - Free the specified register from the register stack, so
    849 /// that it is no longer in a register.  If the register is currently at the top
    850 /// of the stack, we just pop the current instruction, otherwise we store the
    851 /// current top-of-stack into the specified slot, then pop the top of stack.
    852 void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
    853   if (getStackEntry(0) == FPRegNo) {  // already at the top of stack? easy.
    854     popStackAfter(I);
    855     return;
    856   }
    857 
    858   // Otherwise, store the top of stack into the dead slot, killing the operand
    859   // without having to add in an explicit xchg then pop.
    860   //
    861   I = freeStackSlotBefore(++I, FPRegNo);
    862 }
    863 
    864 /// freeStackSlotBefore - Free the specified register without trying any
    865 /// folding.
    866 MachineBasicBlock::iterator
    867 FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) {
    868   unsigned STReg    = getSTReg(FPRegNo);
    869   unsigned OldSlot  = getSlot(FPRegNo);
    870   unsigned TopReg   = Stack[StackTop-1];
    871   Stack[OldSlot]    = TopReg;
    872   RegMap[TopReg]    = OldSlot;
    873   RegMap[FPRegNo]   = ~0;
    874   Stack[--StackTop] = ~0;
    875   return BuildMI(*MBB, I, DebugLoc(), TII->get(X86::ST_FPrr)).addReg(STReg);
    876 }
    877 
    878 /// adjustLiveRegs - Kill and revive registers such that exactly the FP
    879 /// registers with a bit in Mask are live.
    880 void FPS::adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I) {
    881   unsigned Defs = Mask;
    882   unsigned Kills = 0;
    883   for (unsigned i = 0; i < StackTop; ++i) {
    884     unsigned RegNo = Stack[i];
    885     if (!(Defs & (1 << RegNo)))
    886       // This register is live, but we don't want it.
    887       Kills |= (1 << RegNo);
    888     else
    889       // We don't need to imp-def this live register.
    890       Defs &= ~(1 << RegNo);
    891   }
    892   assert((Kills & Defs) == 0 && "Register needs killing and def'ing?");
    893 
    894   // Produce implicit-defs for free by using killed registers.
    895   while (Kills && Defs) {
    896     unsigned KReg = CountTrailingZeros_32(Kills);
    897     unsigned DReg = CountTrailingZeros_32(Defs);
    898     DEBUG(dbgs() << "Renaming %FP" << KReg << " as imp %FP" << DReg << "\n");
    899     std::swap(Stack[getSlot(KReg)], Stack[getSlot(DReg)]);
    900     std::swap(RegMap[KReg], RegMap[DReg]);
    901     Kills &= ~(1 << KReg);
    902     Defs &= ~(1 << DReg);
    903   }
    904 
    905   // Kill registers by popping.
    906   if (Kills && I != MBB->begin()) {
    907     MachineBasicBlock::iterator I2 = llvm::prior(I);
    908     while (StackTop) {
    909       unsigned KReg = getStackEntry(0);
    910       if (!(Kills & (1 << KReg)))
    911         break;
    912       DEBUG(dbgs() << "Popping %FP" << KReg << "\n");
    913       popStackAfter(I2);
    914       Kills &= ~(1 << KReg);
    915     }
    916   }
    917 
    918   // Manually kill the rest.
    919   while (Kills) {
    920     unsigned KReg = CountTrailingZeros_32(Kills);
    921     DEBUG(dbgs() << "Killing %FP" << KReg << "\n");
    922     freeStackSlotBefore(I, KReg);
    923     Kills &= ~(1 << KReg);
    924   }
    925 
    926   // Load zeros for all the imp-defs.
    927   while(Defs) {
    928     unsigned DReg = CountTrailingZeros_32(Defs);
    929     DEBUG(dbgs() << "Defining %FP" << DReg << " as 0\n");
    930     BuildMI(*MBB, I, DebugLoc(), TII->get(X86::LD_F0));
    931     pushReg(DReg);
    932     Defs &= ~(1 << DReg);
    933   }
    934 
    935   // Now we should have the correct registers live.
    936   DEBUG(dumpStack());
    937   assert(StackTop == CountPopulation_32(Mask) && "Live count mismatch");
    938 }
    939 
    940 /// shuffleStackTop - emit fxch instructions before I to shuffle the top
    941 /// FixCount entries into the order given by FixStack.
    942 /// FIXME: Is there a better algorithm than insertion sort?
    943 void FPS::shuffleStackTop(const unsigned char *FixStack,
    944                           unsigned FixCount,
    945                           MachineBasicBlock::iterator I) {
    946   // Move items into place, starting from the desired stack bottom.
    947   while (FixCount--) {
    948     // Old register at position FixCount.
    949     unsigned OldReg = getStackEntry(FixCount);
    950     // Desired register at position FixCount.
    951     unsigned Reg = FixStack[FixCount];
    952     if (Reg == OldReg)
    953       continue;
    954     // (Reg st0) (OldReg st0) = (Reg OldReg st0)
    955     moveToTop(Reg, I);
    956     if (FixCount > 0)
    957       moveToTop(OldReg, I);
    958   }
    959   DEBUG(dumpStack());
    960 }
    961 
    962 
    963 //===----------------------------------------------------------------------===//
    964 // Instruction transformation implementation
    965 //===----------------------------------------------------------------------===//
    966 
    967 /// handleZeroArgFP - ST(0) = fld0    ST(0) = flds <mem>
    968 ///
    969 void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
    970   MachineInstr *MI = I;
    971   unsigned DestReg = getFPReg(MI->getOperand(0));
    972 
    973   // Change from the pseudo instruction to the concrete instruction.
    974   MI->RemoveOperand(0);   // Remove the explicit ST(0) operand
    975   MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
    976 
    977   // Result gets pushed on the stack.
    978   pushReg(DestReg);
    979 }
    980 
    981 /// handleOneArgFP - fst <mem>, ST(0)
    982 ///
    983 void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
    984   MachineInstr *MI = I;
    985   unsigned NumOps = MI->getDesc().getNumOperands();
    986   assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) &&
    987          "Can only handle fst* & ftst instructions!");
    988 
    989   // Is this the last use of the source register?
    990   unsigned Reg = getFPReg(MI->getOperand(NumOps-1));
    991   bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
    992 
    993   if (KillsSrc)
    994     duplicatePendingSTBeforeKill(Reg, I);
    995 
    996   // FISTP64m is strange because there isn't a non-popping versions.
    997   // If we have one _and_ we don't want to pop the operand, duplicate the value
    998   // on the stack instead of moving it.  This ensure that popping the value is
    999   // always ok.
   1000   // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
   1001   //
   1002   if (!KillsSrc &&
   1003       (MI->getOpcode() == X86::IST_Fp64m32 ||
   1004        MI->getOpcode() == X86::ISTT_Fp16m32 ||
   1005        MI->getOpcode() == X86::ISTT_Fp32m32 ||
   1006        MI->getOpcode() == X86::ISTT_Fp64m32 ||
   1007        MI->getOpcode() == X86::IST_Fp64m64 ||
   1008        MI->getOpcode() == X86::ISTT_Fp16m64 ||
   1009        MI->getOpcode() == X86::ISTT_Fp32m64 ||
   1010        MI->getOpcode() == X86::ISTT_Fp64m64 ||
   1011        MI->getOpcode() == X86::IST_Fp64m80 ||
   1012        MI->getOpcode() == X86::ISTT_Fp16m80 ||
   1013        MI->getOpcode() == X86::ISTT_Fp32m80 ||
   1014        MI->getOpcode() == X86::ISTT_Fp64m80 ||
   1015        MI->getOpcode() == X86::ST_FpP80m)) {
   1016     duplicateToTop(Reg, getScratchReg(), I);
   1017   } else {
   1018     moveToTop(Reg, I);            // Move to the top of the stack...
   1019   }
   1020 
   1021   // Convert from the pseudo instruction to the concrete instruction.
   1022   MI->RemoveOperand(NumOps-1);    // Remove explicit ST(0) operand
   1023   MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
   1024 
   1025   if (MI->getOpcode() == X86::IST_FP64m ||
   1026       MI->getOpcode() == X86::ISTT_FP16m ||
   1027       MI->getOpcode() == X86::ISTT_FP32m ||
   1028       MI->getOpcode() == X86::ISTT_FP64m ||
   1029       MI->getOpcode() == X86::ST_FP80m) {
   1030     if (StackTop == 0)
   1031       report_fatal_error("Stack empty??");
   1032     --StackTop;
   1033   } else if (KillsSrc) { // Last use of operand?
   1034     popStackAfter(I);
   1035   }
   1036 }
   1037 
   1038 
   1039 /// handleOneArgFPRW: Handle instructions that read from the top of stack and
   1040 /// replace the value with a newly computed value.  These instructions may have
   1041 /// non-fp operands after their FP operands.
   1042 ///
   1043 ///  Examples:
   1044 ///     R1 = fchs R2
   1045 ///     R1 = fadd R2, [mem]
   1046 ///
   1047 void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
   1048   MachineInstr *MI = I;
   1049 #ifndef NDEBUG
   1050   unsigned NumOps = MI->getDesc().getNumOperands();
   1051   assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
   1052 #endif
   1053 
   1054   // Is this the last use of the source register?
   1055   unsigned Reg = getFPReg(MI->getOperand(1));
   1056   bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
   1057 
   1058   if (KillsSrc) {
   1059     duplicatePendingSTBeforeKill(Reg, I);
   1060     // If this is the last use of the source register, just make sure it's on
   1061     // the top of the stack.
   1062     moveToTop(Reg, I);
   1063     if (StackTop == 0)
   1064       report_fatal_error("Stack cannot be empty!");
   1065     --StackTop;
   1066     pushReg(getFPReg(MI->getOperand(0)));
   1067   } else {
   1068     // If this is not the last use of the source register, _copy_ it to the top
   1069     // of the stack.
   1070     duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
   1071   }
   1072 
   1073   // Change from the pseudo instruction to the concrete instruction.
   1074   MI->RemoveOperand(1);   // Drop the source operand.
   1075   MI->RemoveOperand(0);   // Drop the destination operand.
   1076   MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
   1077 }
   1078 
   1079 
   1080 //===----------------------------------------------------------------------===//
   1081 // Define tables of various ways to map pseudo instructions
   1082 //
   1083 
   1084 // ForwardST0Table - Map: A = B op C  into: ST(0) = ST(0) op ST(i)
   1085 static const TableEntry ForwardST0Table[] = {
   1086   { X86::ADD_Fp32  , X86::ADD_FST0r },
   1087   { X86::ADD_Fp64  , X86::ADD_FST0r },
   1088   { X86::ADD_Fp80  , X86::ADD_FST0r },
   1089   { X86::DIV_Fp32  , X86::DIV_FST0r },
   1090   { X86::DIV_Fp64  , X86::DIV_FST0r },
   1091   { X86::DIV_Fp80  , X86::DIV_FST0r },
   1092   { X86::MUL_Fp32  , X86::MUL_FST0r },
   1093   { X86::MUL_Fp64  , X86::MUL_FST0r },
   1094   { X86::MUL_Fp80  , X86::MUL_FST0r },
   1095   { X86::SUB_Fp32  , X86::SUB_FST0r },
   1096   { X86::SUB_Fp64  , X86::SUB_FST0r },
   1097   { X86::SUB_Fp80  , X86::SUB_FST0r },
   1098 };
   1099 
   1100 // ReverseST0Table - Map: A = B op C  into: ST(0) = ST(i) op ST(0)
   1101 static const TableEntry ReverseST0Table[] = {
   1102   { X86::ADD_Fp32  , X86::ADD_FST0r  },   // commutative
   1103   { X86::ADD_Fp64  , X86::ADD_FST0r  },   // commutative
   1104   { X86::ADD_Fp80  , X86::ADD_FST0r  },   // commutative
   1105   { X86::DIV_Fp32  , X86::DIVR_FST0r },
   1106   { X86::DIV_Fp64  , X86::DIVR_FST0r },
   1107   { X86::DIV_Fp80  , X86::DIVR_FST0r },
   1108   { X86::MUL_Fp32  , X86::MUL_FST0r  },   // commutative
   1109   { X86::MUL_Fp64  , X86::MUL_FST0r  },   // commutative
   1110   { X86::MUL_Fp80  , X86::MUL_FST0r  },   // commutative
   1111   { X86::SUB_Fp32  , X86::SUBR_FST0r },
   1112   { X86::SUB_Fp64  , X86::SUBR_FST0r },
   1113   { X86::SUB_Fp80  , X86::SUBR_FST0r },
   1114 };
   1115 
   1116 // ForwardSTiTable - Map: A = B op C  into: ST(i) = ST(0) op ST(i)
   1117 static const TableEntry ForwardSTiTable[] = {
   1118   { X86::ADD_Fp32  , X86::ADD_FrST0  },   // commutative
   1119   { X86::ADD_Fp64  , X86::ADD_FrST0  },   // commutative
   1120   { X86::ADD_Fp80  , X86::ADD_FrST0  },   // commutative
   1121   { X86::DIV_Fp32  , X86::DIVR_FrST0 },
   1122   { X86::DIV_Fp64  , X86::DIVR_FrST0 },
   1123   { X86::DIV_Fp80  , X86::DIVR_FrST0 },
   1124   { X86::MUL_Fp32  , X86::MUL_FrST0  },   // commutative
   1125   { X86::MUL_Fp64  , X86::MUL_FrST0  },   // commutative
   1126   { X86::MUL_Fp80  , X86::MUL_FrST0  },   // commutative
   1127   { X86::SUB_Fp32  , X86::SUBR_FrST0 },
   1128   { X86::SUB_Fp64  , X86::SUBR_FrST0 },
   1129   { X86::SUB_Fp80  , X86::SUBR_FrST0 },
   1130 };
   1131 
   1132 // ReverseSTiTable - Map: A = B op C  into: ST(i) = ST(i) op ST(0)
   1133 static const TableEntry ReverseSTiTable[] = {
   1134   { X86::ADD_Fp32  , X86::ADD_FrST0 },
   1135   { X86::ADD_Fp64  , X86::ADD_FrST0 },
   1136   { X86::ADD_Fp80  , X86::ADD_FrST0 },
   1137   { X86::DIV_Fp32  , X86::DIV_FrST0 },
   1138   { X86::DIV_Fp64  , X86::DIV_FrST0 },
   1139   { X86::DIV_Fp80  , X86::DIV_FrST0 },
   1140   { X86::MUL_Fp32  , X86::MUL_FrST0 },
   1141   { X86::MUL_Fp64  , X86::MUL_FrST0 },
   1142   { X86::MUL_Fp80  , X86::MUL_FrST0 },
   1143   { X86::SUB_Fp32  , X86::SUB_FrST0 },
   1144   { X86::SUB_Fp64  , X86::SUB_FrST0 },
   1145   { X86::SUB_Fp80  , X86::SUB_FrST0 },
   1146 };
   1147 
   1148 
   1149 /// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
   1150 /// instructions which need to be simplified and possibly transformed.
   1151 ///
   1152 /// Result: ST(0) = fsub  ST(0), ST(i)
   1153 ///         ST(i) = fsub  ST(0), ST(i)
   1154 ///         ST(0) = fsubr ST(0), ST(i)
   1155 ///         ST(i) = fsubr ST(0), ST(i)
   1156 ///
   1157 void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
   1158   ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
   1159   ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
   1160   MachineInstr *MI = I;
   1161 
   1162   unsigned NumOperands = MI->getDesc().getNumOperands();
   1163   assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
   1164   unsigned Dest = getFPReg(MI->getOperand(0));
   1165   unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
   1166   unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
   1167   bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
   1168   bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
   1169   DebugLoc dl = MI->getDebugLoc();
   1170 
   1171   unsigned TOS = getStackEntry(0);
   1172 
   1173   // One of our operands must be on the top of the stack.  If neither is yet, we
   1174   // need to move one.
   1175   if (Op0 != TOS && Op1 != TOS) {   // No operand at TOS?
   1176     // We can choose to move either operand to the top of the stack.  If one of
   1177     // the operands is killed by this instruction, we want that one so that we
   1178     // can update right on top of the old version.
   1179     if (KillsOp0) {
   1180       moveToTop(Op0, I);         // Move dead operand to TOS.
   1181       TOS = Op0;
   1182     } else if (KillsOp1) {
   1183       moveToTop(Op1, I);
   1184       TOS = Op1;
   1185     } else {
   1186       // All of the operands are live after this instruction executes, so we
   1187       // cannot update on top of any operand.  Because of this, we must
   1188       // duplicate one of the stack elements to the top.  It doesn't matter
   1189       // which one we pick.
   1190       //
   1191       duplicateToTop(Op0, Dest, I);
   1192       Op0 = TOS = Dest;
   1193       KillsOp0 = true;
   1194     }
   1195   } else if (!KillsOp0 && !KillsOp1) {
   1196     // If we DO have one of our operands at the top of the stack, but we don't
   1197     // have a dead operand, we must duplicate one of the operands to a new slot
   1198     // on the stack.
   1199     duplicateToTop(Op0, Dest, I);
   1200     Op0 = TOS = Dest;
   1201     KillsOp0 = true;
   1202   }
   1203 
   1204   // Now we know that one of our operands is on the top of the stack, and at
   1205   // least one of our operands is killed by this instruction.
   1206   assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
   1207          "Stack conditions not set up right!");
   1208 
   1209   // We decide which form to use based on what is on the top of the stack, and
   1210   // which operand is killed by this instruction.
   1211   const TableEntry *InstTable;
   1212   bool isForward = TOS == Op0;
   1213   bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
   1214   if (updateST0) {
   1215     if (isForward)
   1216       InstTable = ForwardST0Table;
   1217     else
   1218       InstTable = ReverseST0Table;
   1219   } else {
   1220     if (isForward)
   1221       InstTable = ForwardSTiTable;
   1222     else
   1223       InstTable = ReverseSTiTable;
   1224   }
   1225 
   1226   int Opcode = Lookup(InstTable, array_lengthof(ForwardST0Table),
   1227                       MI->getOpcode());
   1228   assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
   1229 
   1230   // NotTOS - The register which is not on the top of stack...
   1231   unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
   1232 
   1233   // Replace the old instruction with a new instruction
   1234   MBB->remove(I++);
   1235   I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS));
   1236 
   1237   // If both operands are killed, pop one off of the stack in addition to
   1238   // overwriting the other one.
   1239   if (KillsOp0 && KillsOp1 && Op0 != Op1) {
   1240     assert(!updateST0 && "Should have updated other operand!");
   1241     popStackAfter(I);   // Pop the top of stack
   1242   }
   1243 
   1244   // Update stack information so that we know the destination register is now on
   1245   // the stack.
   1246   unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
   1247   assert(UpdatedSlot < StackTop && Dest < 7);
   1248   Stack[UpdatedSlot]   = Dest;
   1249   RegMap[Dest]         = UpdatedSlot;
   1250   MBB->getParent()->DeleteMachineInstr(MI); // Remove the old instruction
   1251 }
   1252 
   1253 /// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
   1254 /// register arguments and no explicit destinations.
   1255 ///
   1256 void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
   1257   ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
   1258   ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
   1259   MachineInstr *MI = I;
   1260 
   1261   unsigned NumOperands = MI->getDesc().getNumOperands();
   1262   assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
   1263   unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
   1264   unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
   1265   bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
   1266   bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
   1267 
   1268   // Make sure the first operand is on the top of stack, the other one can be
   1269   // anywhere.
   1270   moveToTop(Op0, I);
   1271 
   1272   // Change from the pseudo instruction to the concrete instruction.
   1273   MI->getOperand(0).setReg(getSTReg(Op1));
   1274   MI->RemoveOperand(1);
   1275   MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
   1276 
   1277   // If any of the operands are killed by this instruction, free them.
   1278   if (KillsOp0) freeStackSlotAfter(I, Op0);
   1279   if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
   1280 }
   1281 
   1282 /// handleCondMovFP - Handle two address conditional move instructions.  These
   1283 /// instructions move a st(i) register to st(0) iff a condition is true.  These
   1284 /// instructions require that the first operand is at the top of the stack, but
   1285 /// otherwise don't modify the stack at all.
   1286 void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
   1287   MachineInstr *MI = I;
   1288 
   1289   unsigned Op0 = getFPReg(MI->getOperand(0));
   1290   unsigned Op1 = getFPReg(MI->getOperand(2));
   1291   bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
   1292 
   1293   // The first operand *must* be on the top of the stack.
   1294   moveToTop(Op0, I);
   1295 
   1296   // Change the second operand to the stack register that the operand is in.
   1297   // Change from the pseudo instruction to the concrete instruction.
   1298   MI->RemoveOperand(0);
   1299   MI->RemoveOperand(1);
   1300   MI->getOperand(0).setReg(getSTReg(Op1));
   1301   MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
   1302 
   1303   // If we kill the second operand, make sure to pop it from the stack.
   1304   if (Op0 != Op1 && KillsOp1) {
   1305     // Get this value off of the register stack.
   1306     freeStackSlotAfter(I, Op1);
   1307   }
   1308 }
   1309 
   1310 
   1311 /// handleSpecialFP - Handle special instructions which behave unlike other
   1312 /// floating point instructions.  This is primarily intended for use by pseudo
   1313 /// instructions.
   1314 ///
   1315 void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
   1316   MachineInstr *MI = I;
   1317   switch (MI->getOpcode()) {
   1318   default: llvm_unreachable("Unknown SpecialFP instruction!");
   1319   case TargetOpcode::COPY: {
   1320     // We handle three kinds of copies: FP <- FP, FP <- ST, and ST <- FP.
   1321     const MachineOperand &MO1 = MI->getOperand(1);
   1322     const MachineOperand &MO0 = MI->getOperand(0);
   1323     unsigned DstST = MO0.getReg() - X86::ST0;
   1324     unsigned SrcST = MO1.getReg() - X86::ST0;
   1325     bool KillsSrc = MI->killsRegister(MO1.getReg());
   1326 
   1327     // ST = COPY FP. Set up a pending ST register.
   1328     if (DstST < 8) {
   1329       unsigned SrcFP = getFPReg(MO1);
   1330       assert(isLive(SrcFP) && "Cannot copy dead register");
   1331       assert(!MO0.isDead() && "Cannot copy to dead ST register");
   1332 
   1333       // Unallocated STs are marked as the nonexistent FP255.
   1334       while (NumPendingSTs <= DstST)
   1335         PendingST[NumPendingSTs++] = NumFPRegs;
   1336 
   1337       // STi could still be live from a previous inline asm.
   1338       if (isScratchReg(PendingST[DstST])) {
   1339         DEBUG(dbgs() << "Clobbering old ST in FP" << unsigned(PendingST[DstST])
   1340                      << '\n');
   1341         freeStackSlotBefore(MI, PendingST[DstST]);
   1342       }
   1343 
   1344       // When the source is killed, allocate a scratch FP register.
   1345       if (KillsSrc) {
   1346         duplicatePendingSTBeforeKill(SrcFP, I);
   1347         unsigned Slot = getSlot(SrcFP);
   1348         unsigned SR = getScratchReg();
   1349         PendingST[DstST] = SR;
   1350         Stack[Slot] = SR;
   1351         RegMap[SR] = Slot;
   1352       } else
   1353         PendingST[DstST] = SrcFP;
   1354       break;
   1355     }
   1356 
   1357     // FP = COPY ST. Extract fixed stack value.
   1358     // Any instruction defining ST registers must have assigned them to a
   1359     // scratch register.
   1360     if (SrcST < 8) {
   1361       unsigned DstFP = getFPReg(MO0);
   1362       assert(!isLive(DstFP) && "Cannot copy ST to live FP register");
   1363       assert(NumPendingSTs > SrcST && "Cannot copy from dead ST register");
   1364       unsigned SrcFP = PendingST[SrcST];
   1365       assert(isScratchReg(SrcFP) && "Expected ST in a scratch register");
   1366       assert(isLive(SrcFP) && "Scratch holding ST is dead");
   1367 
   1368       // DstFP steals the stack slot from SrcFP.
   1369       unsigned Slot = getSlot(SrcFP);
   1370       Stack[Slot] = DstFP;
   1371       RegMap[DstFP] = Slot;
   1372 
   1373       // Always treat the ST as killed.
   1374       PendingST[SrcST] = NumFPRegs;
   1375       while (NumPendingSTs && PendingST[NumPendingSTs - 1] == NumFPRegs)
   1376         --NumPendingSTs;
   1377       break;
   1378     }
   1379 
   1380     // FP <- FP copy.
   1381     unsigned DstFP = getFPReg(MO0);
   1382     unsigned SrcFP = getFPReg(MO1);
   1383     assert(isLive(SrcFP) && "Cannot copy dead register");
   1384     if (KillsSrc) {
   1385       // If the input operand is killed, we can just change the owner of the
   1386       // incoming stack slot into the result.
   1387       unsigned Slot = getSlot(SrcFP);
   1388       Stack[Slot] = DstFP;
   1389       RegMap[DstFP] = Slot;
   1390     } else {
   1391       // For COPY we just duplicate the specified value to a new stack slot.
   1392       // This could be made better, but would require substantial changes.
   1393       duplicateToTop(SrcFP, DstFP, I);
   1394     }
   1395     break;
   1396   }
   1397 
   1398   case TargetOpcode::IMPLICIT_DEF: {
   1399     // All FP registers must be explicitly defined, so load a 0 instead.
   1400     unsigned Reg = MI->getOperand(0).getReg() - X86::FP0;
   1401     DEBUG(dbgs() << "Emitting LD_F0 for implicit FP" << Reg << '\n');
   1402     BuildMI(*MBB, I, MI->getDebugLoc(), TII->get(X86::LD_F0));
   1403     pushReg(Reg);
   1404     break;
   1405   }
   1406 
   1407   case X86::FpPOP_RETVAL: {
   1408     // The FpPOP_RETVAL instruction is used after calls that return a value on
   1409     // the floating point stack. We cannot model this with ST defs since CALL
   1410     // instructions have fixed clobber lists. This instruction is interpreted
   1411     // to mean that there is one more live register on the stack than we
   1412     // thought.
   1413     //
   1414     // This means that StackTop does not match the hardware stack between a
   1415     // call and the FpPOP_RETVAL instructions.  We do tolerate FP instructions
   1416     // between CALL and FpPOP_RETVAL as long as they don't overflow the
   1417     // hardware stack.
   1418     unsigned DstFP = getFPReg(MI->getOperand(0));
   1419 
   1420     // Move existing stack elements up to reflect reality.
   1421     assert(StackTop < 8 && "Stack overflowed before FpPOP_RETVAL");
   1422     if (StackTop) {
   1423       std::copy_backward(Stack, Stack + StackTop, Stack + StackTop + 1);
   1424       for (unsigned i = 0; i != NumFPRegs; ++i)
   1425         ++RegMap[i];
   1426     }
   1427     ++StackTop;
   1428 
   1429     // DstFP is the new bottom of the stack.
   1430     Stack[0] = DstFP;
   1431     RegMap[DstFP] = 0;
   1432 
   1433     // DstFP will be killed by processBasicBlock if this was a dead def.
   1434     break;
   1435   }
   1436 
   1437   case TargetOpcode::INLINEASM: {
   1438     // The inline asm MachineInstr currently only *uses* FP registers for the
   1439     // 'f' constraint.  These should be turned into the current ST(x) register
   1440     // in the machine instr.
   1441     //
   1442     // There are special rules for x87 inline assembly. The compiler must know
   1443     // exactly how many registers are popped and pushed implicitly by the asm.
   1444     // Otherwise it is not possible to restore the stack state after the inline
   1445     // asm.
   1446     //
   1447     // There are 3 kinds of input operands:
   1448     //
   1449     // 1. Popped inputs. These must appear at the stack top in ST0-STn. A
   1450     //    popped input operand must be in a fixed stack slot, and it is either
   1451     //    tied to an output operand, or in the clobber list. The MI has ST use
   1452     //    and def operands for these inputs.
   1453     //
   1454     // 2. Fixed inputs. These inputs appear in fixed stack slots, but are
   1455     //    preserved by the inline asm. The fixed stack slots must be STn-STm
   1456     //    following the popped inputs. A fixed input operand cannot be tied to
   1457     //    an output or appear in the clobber list. The MI has ST use operands
   1458     //    and no defs for these inputs.
   1459     //
   1460     // 3. Preserved inputs. These inputs use the "f" constraint which is
   1461     //    represented as an FP register. The inline asm won't change these
   1462     //    stack slots.
   1463     //
   1464     // Outputs must be in ST registers, FP outputs are not allowed. Clobbered
   1465     // registers do not count as output operands. The inline asm changes the
   1466     // stack as if it popped all the popped inputs and then pushed all the
   1467     // output operands.
   1468 
   1469     // Scan the assembly for ST registers used, defined and clobbered. We can
   1470     // only tell clobbers from defs by looking at the asm descriptor.
   1471     unsigned STUses = 0, STDefs = 0, STClobbers = 0, STDeadDefs = 0;
   1472     unsigned NumOps = 0;
   1473     for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI->getNumOperands();
   1474          i != e && MI->getOperand(i).isImm(); i += 1 + NumOps) {
   1475       unsigned Flags = MI->getOperand(i).getImm();
   1476       NumOps = InlineAsm::getNumOperandRegisters(Flags);
   1477       if (NumOps != 1)
   1478         continue;
   1479       const MachineOperand &MO = MI->getOperand(i + 1);
   1480       if (!MO.isReg())
   1481         continue;
   1482       unsigned STReg = MO.getReg() - X86::ST0;
   1483       if (STReg >= 8)
   1484         continue;
   1485 
   1486       switch (InlineAsm::getKind(Flags)) {
   1487       case InlineAsm::Kind_RegUse:
   1488         STUses |= (1u << STReg);
   1489         break;
   1490       case InlineAsm::Kind_RegDef:
   1491       case InlineAsm::Kind_RegDefEarlyClobber:
   1492         STDefs |= (1u << STReg);
   1493         if (MO.isDead())
   1494           STDeadDefs |= (1u << STReg);
   1495         break;
   1496       case InlineAsm::Kind_Clobber:
   1497         STClobbers |= (1u << STReg);
   1498         break;
   1499       default:
   1500         break;
   1501       }
   1502     }
   1503 
   1504     if (STUses && !isMask_32(STUses))
   1505       MI->emitError("fixed input regs must be last on the x87 stack");
   1506     unsigned NumSTUses = CountTrailingOnes_32(STUses);
   1507 
   1508     // Defs must be contiguous from the stack top. ST0-STn.
   1509     if (STDefs && !isMask_32(STDefs)) {
   1510       MI->emitError("output regs must be last on the x87 stack");
   1511       STDefs = NextPowerOf2(STDefs) - 1;
   1512     }
   1513     unsigned NumSTDefs = CountTrailingOnes_32(STDefs);
   1514 
   1515     // So must the clobbered stack slots. ST0-STm, m >= n.
   1516     if (STClobbers && !isMask_32(STDefs | STClobbers))
   1517       MI->emitError("clobbers must be last on the x87 stack");
   1518 
   1519     // Popped inputs are the ones that are also clobbered or defined.
   1520     unsigned STPopped = STUses & (STDefs | STClobbers);
   1521     if (STPopped && !isMask_32(STPopped))
   1522       MI->emitError("implicitly popped regs must be last on the x87 stack");
   1523     unsigned NumSTPopped = CountTrailingOnes_32(STPopped);
   1524 
   1525     DEBUG(dbgs() << "Asm uses " << NumSTUses << " fixed regs, pops "
   1526                  << NumSTPopped << ", and defines " << NumSTDefs << " regs.\n");
   1527 
   1528     // Scan the instruction for FP uses corresponding to "f" constraints.
   1529     // Collect FP registers to kill afer the instruction.
   1530     // Always kill all the scratch regs.
   1531     unsigned FPKills = ((1u << NumFPRegs) - 1) & ~0xff;
   1532     unsigned FPUsed = 0;
   1533     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   1534       MachineOperand &Op = MI->getOperand(i);
   1535       if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
   1536         continue;
   1537       if (!Op.isUse())
   1538         MI->emitError("illegal \"f\" output constraint");
   1539       unsigned FPReg = getFPReg(Op);
   1540       FPUsed |= 1U << FPReg;
   1541 
   1542       // If we kill this operand, make sure to pop it from the stack after the
   1543       // asm.  We just remember it for now, and pop them all off at the end in
   1544       // a batch.
   1545       if (Op.isKill())
   1546         FPKills |= 1U << FPReg;
   1547     }
   1548 
   1549     // The popped inputs will be killed by the instruction, so duplicate them
   1550     // if the FP register needs to be live after the instruction, or if it is
   1551     // used in the instruction itself. We effectively treat the popped inputs
   1552     // as early clobbers.
   1553     for (unsigned i = 0; i < NumSTPopped; ++i) {
   1554       if ((FPKills & ~FPUsed) & (1u << PendingST[i]))
   1555         continue;
   1556       unsigned SR = getScratchReg();
   1557       duplicateToTop(PendingST[i], SR, I);
   1558       DEBUG(dbgs() << "Duplicating ST" << i << " in FP"
   1559                    << unsigned(PendingST[i]) << " to avoid clobbering it.\n");
   1560       PendingST[i] = SR;
   1561     }
   1562 
   1563     // Make sure we have a unique live register for every fixed use. Some of
   1564     // them could be undef uses, and we need to emit LD_F0 instructions.
   1565     for (unsigned i = 0; i < NumSTUses; ++i) {
   1566       if (i < NumPendingSTs && PendingST[i] < NumFPRegs) {
   1567         // Check for shared assignments.
   1568         for (unsigned j = 0; j < i; ++j) {
   1569           if (PendingST[j] != PendingST[i])
   1570             continue;
   1571           // STi and STj are inn the same register, create a copy.
   1572           unsigned SR = getScratchReg();
   1573           duplicateToTop(PendingST[i], SR, I);
   1574           DEBUG(dbgs() << "Duplicating ST" << i << " in FP"
   1575                        << unsigned(PendingST[i])
   1576                        << " to avoid collision with ST" << j << '\n');
   1577           PendingST[i] = SR;
   1578         }
   1579         continue;
   1580       }
   1581       unsigned SR = getScratchReg();
   1582       DEBUG(dbgs() << "Emitting LD_F0 for ST" << i << " in FP" << SR << '\n');
   1583       BuildMI(*MBB, I, MI->getDebugLoc(), TII->get(X86::LD_F0));
   1584       pushReg(SR);
   1585       PendingST[i] = SR;
   1586       if (NumPendingSTs == i)
   1587         ++NumPendingSTs;
   1588     }
   1589     assert(NumPendingSTs >= NumSTUses && "Fixed registers should be assigned");
   1590 
   1591     // Now we can rearrange the live registers to match what was requested.
   1592     shuffleStackTop(PendingST, NumPendingSTs, I);
   1593     DEBUG({dbgs() << "Before asm: "; dumpStack();});
   1594 
   1595     // With the stack layout fixed, rewrite the FP registers.
   1596     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   1597       MachineOperand &Op = MI->getOperand(i);
   1598       if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
   1599         continue;
   1600       unsigned FPReg = getFPReg(Op);
   1601       Op.setReg(getSTReg(FPReg));
   1602     }
   1603 
   1604     // Simulate the inline asm popping its inputs and pushing its outputs.
   1605     StackTop -= NumSTPopped;
   1606 
   1607     // Hold the fixed output registers in scratch FP registers. They will be
   1608     // transferred to real FP registers by copies.
   1609     NumPendingSTs = 0;
   1610     for (unsigned i = 0; i < NumSTDefs; ++i) {
   1611       unsigned SR = getScratchReg();
   1612       pushReg(SR);
   1613       FPKills &= ~(1u << SR);
   1614     }
   1615     for (unsigned i = 0; i < NumSTDefs; ++i)
   1616       PendingST[NumPendingSTs++] = getStackEntry(i);
   1617     DEBUG({dbgs() << "After asm: "; dumpStack();});
   1618 
   1619     // If any of the ST defs were dead, pop them immediately. Our caller only
   1620     // handles dead FP defs.
   1621     MachineBasicBlock::iterator InsertPt = MI;
   1622     for (unsigned i = 0; STDefs & (1u << i); ++i) {
   1623       if (!(STDeadDefs & (1u << i)))
   1624         continue;
   1625       freeStackSlotAfter(InsertPt, PendingST[i]);
   1626       PendingST[i] = NumFPRegs;
   1627     }
   1628     while (NumPendingSTs && PendingST[NumPendingSTs - 1] == NumFPRegs)
   1629       --NumPendingSTs;
   1630 
   1631     // If this asm kills any FP registers (is the last use of them) we must
   1632     // explicitly emit pop instructions for them.  Do this now after the asm has
   1633     // executed so that the ST(x) numbers are not off (which would happen if we
   1634     // did this inline with operand rewriting).
   1635     //
   1636     // Note: this might be a non-optimal pop sequence.  We might be able to do
   1637     // better by trying to pop in stack order or something.
   1638     while (FPKills) {
   1639       unsigned FPReg = CountTrailingZeros_32(FPKills);
   1640       if (isLive(FPReg))
   1641         freeStackSlotAfter(InsertPt, FPReg);
   1642       FPKills &= ~(1U << FPReg);
   1643     }
   1644     // Don't delete the inline asm!
   1645     return;
   1646   }
   1647 
   1648   case X86::WIN_FTOL_32:
   1649   case X86::WIN_FTOL_64: {
   1650     // Push the operand into ST0.
   1651     MachineOperand &Op = MI->getOperand(0);
   1652     assert(Op.isUse() && Op.isReg() &&
   1653       Op.getReg() >= X86::FP0 && Op.getReg() <= X86::FP6);
   1654     unsigned FPReg = getFPReg(Op);
   1655     if (Op.isKill())
   1656       moveToTop(FPReg, I);
   1657     else
   1658       duplicateToTop(FPReg, FPReg, I);
   1659 
   1660     // Emit the call. This will pop the operand.
   1661     BuildMI(*MBB, I, MI->getDebugLoc(), TII->get(X86::CALLpcrel32))
   1662       .addExternalSymbol("_ftol2")
   1663       .addReg(X86::ST0, RegState::ImplicitKill)
   1664       .addReg(X86::EAX, RegState::Define | RegState::Implicit)
   1665       .addReg(X86::EDX, RegState::Define | RegState::Implicit)
   1666       .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
   1667     --StackTop;
   1668 
   1669     break;
   1670   }
   1671 
   1672   case X86::RET:
   1673   case X86::RETI:
   1674     // If RET has an FP register use operand, pass the first one in ST(0) and
   1675     // the second one in ST(1).
   1676 
   1677     // Find the register operands.
   1678     unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
   1679     unsigned LiveMask = 0;
   1680 
   1681     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   1682       MachineOperand &Op = MI->getOperand(i);
   1683       if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
   1684         continue;
   1685       // FP Register uses must be kills unless there are two uses of the same
   1686       // register, in which case only one will be a kill.
   1687       assert(Op.isUse() &&
   1688              (Op.isKill() ||                        // Marked kill.
   1689               getFPReg(Op) == FirstFPRegOp ||       // Second instance.
   1690               MI->killsRegister(Op.getReg())) &&    // Later use is marked kill.
   1691              "Ret only defs operands, and values aren't live beyond it");
   1692 
   1693       if (FirstFPRegOp == ~0U)
   1694         FirstFPRegOp = getFPReg(Op);
   1695       else {
   1696         assert(SecondFPRegOp == ~0U && "More than two fp operands!");
   1697         SecondFPRegOp = getFPReg(Op);
   1698       }
   1699       LiveMask |= (1 << getFPReg(Op));
   1700 
   1701       // Remove the operand so that later passes don't see it.
   1702       MI->RemoveOperand(i);
   1703       --i, --e;
   1704     }
   1705 
   1706     // We may have been carrying spurious live-ins, so make sure only the returned
   1707     // registers are left live.
   1708     adjustLiveRegs(LiveMask, MI);
   1709     if (!LiveMask) return;  // Quick check to see if any are possible.
   1710 
   1711     // There are only four possibilities here:
   1712     // 1) we are returning a single FP value.  In this case, it has to be in
   1713     //    ST(0) already, so just declare success by removing the value from the
   1714     //    FP Stack.
   1715     if (SecondFPRegOp == ~0U) {
   1716       // Assert that the top of stack contains the right FP register.
   1717       assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
   1718              "Top of stack not the right register for RET!");
   1719 
   1720       // Ok, everything is good, mark the value as not being on the stack
   1721       // anymore so that our assertion about the stack being empty at end of
   1722       // block doesn't fire.
   1723       StackTop = 0;
   1724       return;
   1725     }
   1726 
   1727     // Otherwise, we are returning two values:
   1728     // 2) If returning the same value for both, we only have one thing in the FP
   1729     //    stack.  Consider:  RET FP1, FP1
   1730     if (StackTop == 1) {
   1731       assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
   1732              "Stack misconfiguration for RET!");
   1733 
   1734       // Duplicate the TOS so that we return it twice.  Just pick some other FPx
   1735       // register to hold it.
   1736       unsigned NewReg = getScratchReg();
   1737       duplicateToTop(FirstFPRegOp, NewReg, MI);
   1738       FirstFPRegOp = NewReg;
   1739     }
   1740 
   1741     /// Okay we know we have two different FPx operands now:
   1742     assert(StackTop == 2 && "Must have two values live!");
   1743 
   1744     /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
   1745     ///    in ST(1).  In this case, emit an fxch.
   1746     if (getStackEntry(0) == SecondFPRegOp) {
   1747       assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
   1748       moveToTop(FirstFPRegOp, MI);
   1749     }
   1750 
   1751     /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
   1752     /// ST(1).  Just remove both from our understanding of the stack and return.
   1753     assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
   1754     assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
   1755     StackTop = 0;
   1756     return;
   1757   }
   1758 
   1759   I = MBB->erase(I);  // Remove the pseudo instruction
   1760 
   1761   // We want to leave I pointing to the previous instruction, but what if we
   1762   // just erased the first instruction?
   1763   if (I == MBB->begin()) {
   1764     DEBUG(dbgs() << "Inserting dummy KILL\n");
   1765     I = BuildMI(*MBB, I, DebugLoc(), TII->get(TargetOpcode::KILL));
   1766   } else
   1767     --I;
   1768 }
   1769