Home | History | Annotate | Download | only in X86
      1 //===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the X86 implementation of TargetFrameLowering class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "X86FrameLowering.h"
     15 #include "X86InstrBuilder.h"
     16 #include "X86InstrInfo.h"
     17 #include "X86MachineFunctionInfo.h"
     18 #include "X86Subtarget.h"
     19 #include "X86TargetMachine.h"
     20 #include "llvm/ADT/SmallSet.h"
     21 #include "llvm/CodeGen/MachineFrameInfo.h"
     22 #include "llvm/CodeGen/MachineFunction.h"
     23 #include "llvm/CodeGen/MachineInstrBuilder.h"
     24 #include "llvm/CodeGen/MachineModuleInfo.h"
     25 #include "llvm/CodeGen/MachineRegisterInfo.h"
     26 #include "llvm/IR/DataLayout.h"
     27 #include "llvm/IR/Function.h"
     28 #include "llvm/MC/MCAsmInfo.h"
     29 #include "llvm/MC/MCSymbol.h"
     30 #include "llvm/Support/CommandLine.h"
     31 #include "llvm/Target/TargetOptions.h"
     32 
     33 using namespace llvm;
     34 
     35 // FIXME: completely move here.
     36 extern cl::opt<bool> ForceStackAlign;
     37 
     38 bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
     39   return !MF.getFrameInfo()->hasVarSizedObjects();
     40 }
     41 
     42 /// hasFP - Return true if the specified function should have a dedicated frame
     43 /// pointer register.  This is true if the function has variable sized allocas
     44 /// or if frame pointer elimination is disabled.
     45 bool X86FrameLowering::hasFP(const MachineFunction &MF) const {
     46   const MachineFrameInfo *MFI = MF.getFrameInfo();
     47   const MachineModuleInfo &MMI = MF.getMMI();
     48   const TargetRegisterInfo *RegInfo = TM.getRegisterInfo();
     49 
     50   return (MF.getTarget().Options.DisableFramePointerElim(MF) ||
     51           RegInfo->needsStackRealignment(MF) ||
     52           MFI->hasVarSizedObjects() ||
     53           MFI->isFrameAddressTaken() || MF.hasMSInlineAsm() ||
     54           MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
     55           MMI.callsUnwindInit() || MMI.callsEHReturn());
     56 }
     57 
     58 static unsigned getSUBriOpcode(unsigned IsLP64, int64_t Imm) {
     59   if (IsLP64) {
     60     if (isInt<8>(Imm))
     61       return X86::SUB64ri8;
     62     return X86::SUB64ri32;
     63   } else {
     64     if (isInt<8>(Imm))
     65       return X86::SUB32ri8;
     66     return X86::SUB32ri;
     67   }
     68 }
     69 
     70 static unsigned getADDriOpcode(unsigned IsLP64, int64_t Imm) {
     71   if (IsLP64) {
     72     if (isInt<8>(Imm))
     73       return X86::ADD64ri8;
     74     return X86::ADD64ri32;
     75   } else {
     76     if (isInt<8>(Imm))
     77       return X86::ADD32ri8;
     78     return X86::ADD32ri;
     79   }
     80 }
     81 
     82 static unsigned getLEArOpcode(unsigned IsLP64) {
     83   return IsLP64 ? X86::LEA64r : X86::LEA32r;
     84 }
     85 
     86 /// findDeadCallerSavedReg - Return a caller-saved register that isn't live
     87 /// when it reaches the "return" instruction. We can then pop a stack object
     88 /// to this register without worry about clobbering it.
     89 static unsigned findDeadCallerSavedReg(MachineBasicBlock &MBB,
     90                                        MachineBasicBlock::iterator &MBBI,
     91                                        const TargetRegisterInfo &TRI,
     92                                        bool Is64Bit) {
     93   const MachineFunction *MF = MBB.getParent();
     94   const Function *F = MF->getFunction();
     95   if (!F || MF->getMMI().callsEHReturn())
     96     return 0;
     97 
     98   static const uint16_t CallerSavedRegs32Bit[] = {
     99     X86::EAX, X86::EDX, X86::ECX, 0
    100   };
    101 
    102   static const uint16_t CallerSavedRegs64Bit[] = {
    103     X86::RAX, X86::RDX, X86::RCX, X86::RSI, X86::RDI,
    104     X86::R8,  X86::R9,  X86::R10, X86::R11, 0
    105   };
    106 
    107   unsigned Opc = MBBI->getOpcode();
    108   switch (Opc) {
    109   default: return 0;
    110   case X86::RET:
    111   case X86::RETI:
    112   case X86::TCRETURNdi:
    113   case X86::TCRETURNri:
    114   case X86::TCRETURNmi:
    115   case X86::TCRETURNdi64:
    116   case X86::TCRETURNri64:
    117   case X86::TCRETURNmi64:
    118   case X86::EH_RETURN:
    119   case X86::EH_RETURN64: {
    120     SmallSet<uint16_t, 8> Uses;
    121     for (unsigned i = 0, e = MBBI->getNumOperands(); i != e; ++i) {
    122       MachineOperand &MO = MBBI->getOperand(i);
    123       if (!MO.isReg() || MO.isDef())
    124         continue;
    125       unsigned Reg = MO.getReg();
    126       if (!Reg)
    127         continue;
    128       for (MCRegAliasIterator AI(Reg, &TRI, true); AI.isValid(); ++AI)
    129         Uses.insert(*AI);
    130     }
    131 
    132     const uint16_t *CS = Is64Bit ? CallerSavedRegs64Bit : CallerSavedRegs32Bit;
    133     for (; *CS; ++CS)
    134       if (!Uses.count(*CS))
    135         return *CS;
    136   }
    137   }
    138 
    139   return 0;
    140 }
    141 
    142 
    143 /// emitSPUpdate - Emit a series of instructions to increment / decrement the
    144 /// stack pointer by a constant value.
    145 static
    146 void emitSPUpdate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
    147                   unsigned StackPtr, int64_t NumBytes,
    148                   bool Is64Bit, bool IsLP64, bool UseLEA,
    149                   const TargetInstrInfo &TII, const TargetRegisterInfo &TRI) {
    150   bool isSub = NumBytes < 0;
    151   uint64_t Offset = isSub ? -NumBytes : NumBytes;
    152   unsigned Opc;
    153   if (UseLEA)
    154     Opc = getLEArOpcode(IsLP64);
    155   else
    156     Opc = isSub
    157       ? getSUBriOpcode(IsLP64, Offset)
    158       : getADDriOpcode(IsLP64, Offset);
    159 
    160   uint64_t Chunk = (1LL << 31) - 1;
    161   DebugLoc DL = MBB.findDebugLoc(MBBI);
    162 
    163   while (Offset) {
    164     uint64_t ThisVal = (Offset > Chunk) ? Chunk : Offset;
    165     if (ThisVal == (Is64Bit ? 8 : 4)) {
    166       // Use push / pop instead.
    167       unsigned Reg = isSub
    168         ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX)
    169         : findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);
    170       if (Reg) {
    171         Opc = isSub
    172           ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r)
    173           : (Is64Bit ? X86::POP64r  : X86::POP32r);
    174         MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc))
    175           .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub));
    176         if (isSub)
    177           MI->setFlag(MachineInstr::FrameSetup);
    178         Offset -= ThisVal;
    179         continue;
    180       }
    181     }
    182 
    183     MachineInstr *MI = NULL;
    184 
    185     if (UseLEA) {
    186       MI =  addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr),
    187                           StackPtr, false, isSub ? -ThisVal : ThisVal);
    188     } else {
    189       MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
    190             .addReg(StackPtr)
    191             .addImm(ThisVal);
    192       MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
    193     }
    194 
    195     if (isSub)
    196       MI->setFlag(MachineInstr::FrameSetup);
    197 
    198     Offset -= ThisVal;
    199   }
    200 }
    201 
    202 /// mergeSPUpdatesUp - Merge two stack-manipulating instructions upper iterator.
    203 static
    204 void mergeSPUpdatesUp(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
    205                       unsigned StackPtr, uint64_t *NumBytes = NULL) {
    206   if (MBBI == MBB.begin()) return;
    207 
    208   MachineBasicBlock::iterator PI = prior(MBBI);
    209   unsigned Opc = PI->getOpcode();
    210   if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
    211        Opc == X86::ADD32ri || Opc == X86::ADD32ri8 ||
    212        Opc == X86::LEA32r || Opc == X86::LEA64_32r) &&
    213       PI->getOperand(0).getReg() == StackPtr) {
    214     if (NumBytes)
    215       *NumBytes += PI->getOperand(2).getImm();
    216     MBB.erase(PI);
    217   } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
    218               Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
    219              PI->getOperand(0).getReg() == StackPtr) {
    220     if (NumBytes)
    221       *NumBytes -= PI->getOperand(2).getImm();
    222     MBB.erase(PI);
    223   }
    224 }
    225 
    226 /// mergeSPUpdatesDown - Merge two stack-manipulating instructions lower iterator.
    227 static
    228 void mergeSPUpdatesDown(MachineBasicBlock &MBB,
    229                         MachineBasicBlock::iterator &MBBI,
    230                         unsigned StackPtr, uint64_t *NumBytes = NULL) {
    231   // FIXME:  THIS ISN'T RUN!!!
    232   return;
    233 
    234   if (MBBI == MBB.end()) return;
    235 
    236   MachineBasicBlock::iterator NI = llvm::next(MBBI);
    237   if (NI == MBB.end()) return;
    238 
    239   unsigned Opc = NI->getOpcode();
    240   if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
    241        Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
    242       NI->getOperand(0).getReg() == StackPtr) {
    243     if (NumBytes)
    244       *NumBytes -= NI->getOperand(2).getImm();
    245     MBB.erase(NI);
    246     MBBI = NI;
    247   } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
    248               Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
    249              NI->getOperand(0).getReg() == StackPtr) {
    250     if (NumBytes)
    251       *NumBytes += NI->getOperand(2).getImm();
    252     MBB.erase(NI);
    253     MBBI = NI;
    254   }
    255 }
    256 
    257 /// mergeSPUpdates - Checks the instruction before/after the passed
    258 /// instruction. If it is an ADD/SUB/LEA instruction it is deleted argument and the
    259 /// stack adjustment is returned as a positive value for ADD/LEA and a negative for
    260 /// SUB.
    261 static int mergeSPUpdates(MachineBasicBlock &MBB,
    262                            MachineBasicBlock::iterator &MBBI,
    263                            unsigned StackPtr,
    264                            bool doMergeWithPrevious) {
    265   if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
    266       (!doMergeWithPrevious && MBBI == MBB.end()))
    267     return 0;
    268 
    269   MachineBasicBlock::iterator PI = doMergeWithPrevious ? prior(MBBI) : MBBI;
    270   MachineBasicBlock::iterator NI = doMergeWithPrevious ? 0 : llvm::next(MBBI);
    271   unsigned Opc = PI->getOpcode();
    272   int Offset = 0;
    273 
    274   if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
    275        Opc == X86::ADD32ri || Opc == X86::ADD32ri8 ||
    276        Opc == X86::LEA32r || Opc == X86::LEA64_32r) &&
    277       PI->getOperand(0).getReg() == StackPtr){
    278     Offset += PI->getOperand(2).getImm();
    279     MBB.erase(PI);
    280     if (!doMergeWithPrevious) MBBI = NI;
    281   } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
    282               Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
    283              PI->getOperand(0).getReg() == StackPtr) {
    284     Offset -= PI->getOperand(2).getImm();
    285     MBB.erase(PI);
    286     if (!doMergeWithPrevious) MBBI = NI;
    287   }
    288 
    289   return Offset;
    290 }
    291 
    292 static bool isEAXLiveIn(MachineFunction &MF) {
    293   for (MachineRegisterInfo::livein_iterator II = MF.getRegInfo().livein_begin(),
    294        EE = MF.getRegInfo().livein_end(); II != EE; ++II) {
    295     unsigned Reg = II->first;
    296 
    297     if (Reg == X86::EAX || Reg == X86::AX ||
    298         Reg == X86::AH || Reg == X86::AL)
    299       return true;
    300   }
    301 
    302   return false;
    303 }
    304 
    305 void X86FrameLowering::emitCalleeSavedFrameMoves(MachineFunction &MF,
    306                                                  MCSymbol *Label,
    307                                                  unsigned FramePtr) const {
    308   MachineFrameInfo *MFI = MF.getFrameInfo();
    309   MachineModuleInfo &MMI = MF.getMMI();
    310 
    311   // Add callee saved registers to move list.
    312   const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
    313   if (CSI.empty()) return;
    314 
    315   std::vector<MachineMove> &Moves = MMI.getFrameMoves();
    316   const X86RegisterInfo *RegInfo = TM.getRegisterInfo();
    317   bool HasFP = hasFP(MF);
    318 
    319   // Calculate amount of bytes used for return address storing.
    320   int stackGrowth = -RegInfo->getSlotSize();
    321 
    322   // FIXME: This is dirty hack. The code itself is pretty mess right now.
    323   // It should be rewritten from scratch and generalized sometimes.
    324 
    325   // Determine maximum offset (minimum due to stack growth).
    326   int64_t MaxOffset = 0;
    327   for (std::vector<CalleeSavedInfo>::const_iterator
    328          I = CSI.begin(), E = CSI.end(); I != E; ++I)
    329     MaxOffset = std::min(MaxOffset,
    330                          MFI->getObjectOffset(I->getFrameIdx()));
    331 
    332   // Calculate offsets.
    333   int64_t saveAreaOffset = (HasFP ? 3 : 2) * stackGrowth;
    334   for (std::vector<CalleeSavedInfo>::const_iterator
    335          I = CSI.begin(), E = CSI.end(); I != E; ++I) {
    336     int64_t Offset = MFI->getObjectOffset(I->getFrameIdx());
    337     unsigned Reg = I->getReg();
    338     Offset = MaxOffset - Offset + saveAreaOffset;
    339 
    340     // Don't output a new machine move if we're re-saving the frame
    341     // pointer. This happens when the PrologEpilogInserter has inserted an extra
    342     // "PUSH" of the frame pointer -- the "emitPrologue" method automatically
    343     // generates one when frame pointers are used. If we generate a "machine
    344     // move" for this extra "PUSH", the linker will lose track of the fact that
    345     // the frame pointer should have the value of the first "PUSH" when it's
    346     // trying to unwind.
    347     //
    348     // FIXME: This looks inelegant. It's possibly correct, but it's covering up
    349     //        another bug. I.e., one where we generate a prolog like this:
    350     //
    351     //          pushl  %ebp
    352     //          movl   %esp, %ebp
    353     //          pushl  %ebp
    354     //          pushl  %esi
    355     //           ...
    356     //
    357     //        The immediate re-push of EBP is unnecessary. At the least, it's an
    358     //        optimization bug. EBP can be used as a scratch register in certain
    359     //        cases, but probably not when we have a frame pointer.
    360     if (HasFP && FramePtr == Reg)
    361       continue;
    362 
    363     MachineLocation CSDst(MachineLocation::VirtualFP, Offset);
    364     MachineLocation CSSrc(Reg);
    365     Moves.push_back(MachineMove(Label, CSDst, CSSrc));
    366   }
    367 }
    368 
    369 /// getCompactUnwindRegNum - Get the compact unwind number for a given
    370 /// register. The number corresponds to the enum lists in
    371 /// compact_unwind_encoding.h.
    372 static int getCompactUnwindRegNum(const uint16_t *CURegs, unsigned Reg) {
    373   for (int Idx = 1; *CURegs; ++CURegs, ++Idx)
    374     if (*CURegs == Reg)
    375       return Idx;
    376 
    377   return -1;
    378 }
    379 
    380 // Number of registers that can be saved in a compact unwind encoding.
    381 #define CU_NUM_SAVED_REGS 6
    382 
    383 /// encodeCompactUnwindRegistersWithoutFrame - Create the permutation encoding
    384 /// used with frameless stacks. It is passed the number of registers to be saved
    385 /// and an array of the registers saved.
    386 static uint32_t
    387 encodeCompactUnwindRegistersWithoutFrame(unsigned SavedRegs[CU_NUM_SAVED_REGS],
    388                                          unsigned RegCount, bool Is64Bit) {
    389   // The saved registers are numbered from 1 to 6. In order to encode the order
    390   // in which they were saved, we re-number them according to their place in the
    391   // register order. The re-numbering is relative to the last re-numbered
    392   // register. E.g., if we have registers {6, 2, 4, 5} saved in that order:
    393   //
    394   //    Orig  Re-Num
    395   //    ----  ------
    396   //     6       6
    397   //     2       2
    398   //     4       3
    399   //     5       3
    400   //
    401   static const uint16_t CU32BitRegs[] = {
    402     X86::EBX, X86::ECX, X86::EDX, X86::EDI, X86::ESI, X86::EBP, 0
    403   };
    404   static const uint16_t CU64BitRegs[] = {
    405     X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0
    406   };
    407   const uint16_t *CURegs = (Is64Bit ? CU64BitRegs : CU32BitRegs);
    408 
    409   for (unsigned i = 0; i != CU_NUM_SAVED_REGS; ++i) {
    410     int CUReg = getCompactUnwindRegNum(CURegs, SavedRegs[i]);
    411     if (CUReg == -1) return ~0U;
    412     SavedRegs[i] = CUReg;
    413   }
    414 
    415   // Reverse the list.
    416   std::swap(SavedRegs[0], SavedRegs[5]);
    417   std::swap(SavedRegs[1], SavedRegs[4]);
    418   std::swap(SavedRegs[2], SavedRegs[3]);
    419 
    420   uint32_t RenumRegs[CU_NUM_SAVED_REGS];
    421   for (unsigned i = CU_NUM_SAVED_REGS - RegCount; i < CU_NUM_SAVED_REGS; ++i) {
    422     unsigned Countless = 0;
    423     for (unsigned j = CU_NUM_SAVED_REGS - RegCount; j < i; ++j)
    424       if (SavedRegs[j] < SavedRegs[i])
    425         ++Countless;
    426 
    427     RenumRegs[i] = SavedRegs[i] - Countless - 1;
    428   }
    429 
    430   // Take the renumbered values and encode them into a 10-bit number.
    431   uint32_t permutationEncoding = 0;
    432   switch (RegCount) {
    433   case 6:
    434     permutationEncoding |= 120 * RenumRegs[0] + 24 * RenumRegs[1]
    435                            + 6 * RenumRegs[2] +  2 * RenumRegs[3]
    436                            +     RenumRegs[4];
    437     break;
    438   case 5:
    439     permutationEncoding |= 120 * RenumRegs[1] + 24 * RenumRegs[2]
    440                            + 6 * RenumRegs[3] +  2 * RenumRegs[4]
    441                            +     RenumRegs[5];
    442     break;
    443   case 4:
    444     permutationEncoding |=  60 * RenumRegs[2] + 12 * RenumRegs[3]
    445                            + 3 * RenumRegs[4] +      RenumRegs[5];
    446     break;
    447   case 3:
    448     permutationEncoding |=  20 * RenumRegs[3] +  4 * RenumRegs[4]
    449                            +     RenumRegs[5];
    450     break;
    451   case 2:
    452     permutationEncoding |=   5 * RenumRegs[4] +      RenumRegs[5];
    453     break;
    454   case 1:
    455     permutationEncoding |=       RenumRegs[5];
    456     break;
    457   }
    458 
    459   assert((permutationEncoding & 0x3FF) == permutationEncoding &&
    460          "Invalid compact register encoding!");
    461   return permutationEncoding;
    462 }
    463 
    464 /// encodeCompactUnwindRegistersWithFrame - Return the registers encoded for a
    465 /// compact encoding with a frame pointer.
    466 static uint32_t
    467 encodeCompactUnwindRegistersWithFrame(unsigned SavedRegs[CU_NUM_SAVED_REGS],
    468                                       bool Is64Bit) {
    469   static const uint16_t CU32BitRegs[] = {
    470     X86::EBX, X86::ECX, X86::EDX, X86::EDI, X86::ESI, X86::EBP, 0
    471   };
    472   static const uint16_t CU64BitRegs[] = {
    473     X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0
    474   };
    475   const uint16_t *CURegs = (Is64Bit ? CU64BitRegs : CU32BitRegs);
    476 
    477   // Encode the registers in the order they were saved, 3-bits per register. The
    478   // registers are numbered from 1 to CU_NUM_SAVED_REGS.
    479   uint32_t RegEnc = 0;
    480   for (int I = CU_NUM_SAVED_REGS - 1, Idx = 0; I != -1; --I) {
    481     unsigned Reg = SavedRegs[I];
    482     if (Reg == 0) continue;
    483 
    484     int CURegNum = getCompactUnwindRegNum(CURegs, Reg);
    485     if (CURegNum == -1) return ~0U;
    486 
    487     // Encode the 3-bit register number in order, skipping over 3-bits for each
    488     // register.
    489     RegEnc |= (CURegNum & 0x7) << (Idx++ * 3);
    490   }
    491 
    492   assert((RegEnc & 0x3FFFF) == RegEnc && "Invalid compact register encoding!");
    493   return RegEnc;
    494 }
    495 
    496 uint32_t X86FrameLowering::getCompactUnwindEncoding(MachineFunction &MF) const {
    497   const X86RegisterInfo *RegInfo = TM.getRegisterInfo();
    498   unsigned FramePtr = RegInfo->getFrameRegister(MF);
    499   unsigned StackPtr = RegInfo->getStackRegister();
    500 
    501   bool Is64Bit = STI.is64Bit();
    502   bool HasFP = hasFP(MF);
    503 
    504   unsigned SavedRegs[CU_NUM_SAVED_REGS] = { 0, 0, 0, 0, 0, 0 };
    505   unsigned SavedRegIdx = 0;
    506 
    507   unsigned OffsetSize = (Is64Bit ? 8 : 4);
    508 
    509   unsigned PushInstr = (Is64Bit ? X86::PUSH64r : X86::PUSH32r);
    510   unsigned PushInstrSize = 1;
    511   unsigned MoveInstr = (Is64Bit ? X86::MOV64rr : X86::MOV32rr);
    512   unsigned MoveInstrSize = (Is64Bit ? 3 : 2);
    513   unsigned SubtractInstrIdx = (Is64Bit ? 3 : 2);
    514 
    515   unsigned StackDivide = (Is64Bit ? 8 : 4);
    516 
    517   unsigned InstrOffset = 0;
    518   unsigned StackAdjust = 0;
    519   unsigned StackSize = 0;
    520 
    521   MachineBasicBlock &MBB = MF.front(); // Prologue is in entry BB.
    522   bool ExpectEnd = false;
    523   for (MachineBasicBlock::iterator
    524          MBBI = MBB.begin(), MBBE = MBB.end(); MBBI != MBBE; ++MBBI) {
    525     MachineInstr &MI = *MBBI;
    526     unsigned Opc = MI.getOpcode();
    527     if (Opc == X86::PROLOG_LABEL) continue;
    528     if (!MI.getFlag(MachineInstr::FrameSetup)) break;
    529 
    530     // We don't exect any more prolog instructions.
    531     if (ExpectEnd) return 0;
    532 
    533     if (Opc == PushInstr) {
    534       // If there are too many saved registers, we cannot use compact encoding.
    535       if (SavedRegIdx >= CU_NUM_SAVED_REGS) return 0;
    536 
    537       SavedRegs[SavedRegIdx++] = MI.getOperand(0).getReg();
    538       StackAdjust += OffsetSize;
    539       InstrOffset += PushInstrSize;
    540     } else if (Opc == MoveInstr) {
    541       unsigned SrcReg = MI.getOperand(1).getReg();
    542       unsigned DstReg = MI.getOperand(0).getReg();
    543 
    544       if (DstReg != FramePtr || SrcReg != StackPtr)
    545         return 0;
    546 
    547       StackAdjust = 0;
    548       memset(SavedRegs, 0, sizeof(SavedRegs));
    549       SavedRegIdx = 0;
    550       InstrOffset += MoveInstrSize;
    551     } else if (Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
    552                Opc == X86::SUB32ri || Opc == X86::SUB32ri8) {
    553       if (StackSize)
    554         // We already have a stack size.
    555         return 0;
    556 
    557       if (!MI.getOperand(0).isReg() ||
    558           MI.getOperand(0).getReg() != MI.getOperand(1).getReg() ||
    559           MI.getOperand(0).getReg() != StackPtr || !MI.getOperand(2).isImm())
    560         // We need this to be a stack adjustment pointer. Something like:
    561         //
    562         //   %RSP<def> = SUB64ri8 %RSP, 48
    563         return 0;
    564 
    565       StackSize = MI.getOperand(2).getImm() / StackDivide;
    566       SubtractInstrIdx += InstrOffset;
    567       ExpectEnd = true;
    568     }
    569   }
    570 
    571   // Encode that we are using EBP/RBP as the frame pointer.
    572   uint32_t CompactUnwindEncoding = 0;
    573   StackAdjust /= StackDivide;
    574   if (HasFP) {
    575     if ((StackAdjust & 0xFF) != StackAdjust)
    576       // Offset was too big for compact encoding.
    577       return 0;
    578 
    579     // Get the encoding of the saved registers when we have a frame pointer.
    580     uint32_t RegEnc = encodeCompactUnwindRegistersWithFrame(SavedRegs, Is64Bit);
    581     if (RegEnc == ~0U) return 0;
    582 
    583     CompactUnwindEncoding |= 0x01000000;
    584     CompactUnwindEncoding |= (StackAdjust & 0xFF) << 16;
    585     CompactUnwindEncoding |= RegEnc & 0x7FFF;
    586   } else {
    587     ++StackAdjust;
    588     uint32_t TotalStackSize = StackAdjust + StackSize;
    589     if ((TotalStackSize & 0xFF) == TotalStackSize) {
    590       // Frameless stack with a small stack size.
    591       CompactUnwindEncoding |= 0x02000000;
    592 
    593       // Encode the stack size.
    594       CompactUnwindEncoding |= (TotalStackSize & 0xFF) << 16;
    595     } else {
    596       if ((StackAdjust & 0x7) != StackAdjust)
    597         // The extra stack adjustments are too big for us to handle.
    598         return 0;
    599 
    600       // Frameless stack with an offset too large for us to encode compactly.
    601       CompactUnwindEncoding |= 0x03000000;
    602 
    603       // Encode the offset to the nnnnnn value in the 'subl $nnnnnn, ESP'
    604       // instruction.
    605       CompactUnwindEncoding |= (SubtractInstrIdx & 0xFF) << 16;
    606 
    607       // Encode any extra stack stack adjustments (done via push instructions).
    608       CompactUnwindEncoding |= (StackAdjust & 0x7) << 13;
    609     }
    610 
    611     // Encode the number of registers saved.
    612     CompactUnwindEncoding |= (SavedRegIdx & 0x7) << 10;
    613 
    614     // Get the encoding of the saved registers when we don't have a frame
    615     // pointer.
    616     uint32_t RegEnc =
    617       encodeCompactUnwindRegistersWithoutFrame(SavedRegs, SavedRegIdx,
    618                                                Is64Bit);
    619     if (RegEnc == ~0U) return 0;
    620 
    621     // Encode the register encoding.
    622     CompactUnwindEncoding |= RegEnc & 0x3FF;
    623   }
    624 
    625   return CompactUnwindEncoding;
    626 }
    627 
    628 /// usesTheStack - This function checks if any of the users of EFLAGS
    629 /// copies the EFLAGS. We know that the code that lowers COPY of EFLAGS has
    630 /// to use the stack, and if we don't adjust the stack we clobber the first
    631 /// frame index.
    632 /// See X86InstrInfo::copyPhysReg.
    633 static bool usesTheStack(MachineFunction &MF) {
    634   MachineRegisterInfo &MRI = MF.getRegInfo();
    635 
    636   for (MachineRegisterInfo::reg_iterator ri = MRI.reg_begin(X86::EFLAGS),
    637        re = MRI.reg_end(); ri != re; ++ri)
    638     if (ri->isCopy())
    639       return true;
    640 
    641   return false;
    642 }
    643 
    644 /// emitPrologue - Push callee-saved registers onto the stack, which
    645 /// automatically adjust the stack pointer. Adjust the stack pointer to allocate
    646 /// space for local variables. Also emit labels used by the exception handler to
    647 /// generate the exception handling frames.
    648 void X86FrameLowering::emitPrologue(MachineFunction &MF) const {
    649   MachineBasicBlock &MBB = MF.front(); // Prologue goes in entry BB.
    650   MachineBasicBlock::iterator MBBI = MBB.begin();
    651   MachineFrameInfo *MFI = MF.getFrameInfo();
    652   const Function *Fn = MF.getFunction();
    653   const X86RegisterInfo *RegInfo = TM.getRegisterInfo();
    654   const X86InstrInfo &TII = *TM.getInstrInfo();
    655   MachineModuleInfo &MMI = MF.getMMI();
    656   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
    657   bool needsFrameMoves = MMI.hasDebugInfo() ||
    658     Fn->needsUnwindTableEntry();
    659   uint64_t MaxAlign  = MFI->getMaxAlignment(); // Desired stack alignment.
    660   uint64_t StackSize = MFI->getStackSize();    // Number of bytes to allocate.
    661   bool HasFP = hasFP(MF);
    662   bool Is64Bit = STI.is64Bit();
    663   bool IsLP64 = STI.isTarget64BitLP64();
    664   bool IsWin64 = STI.isTargetWin64();
    665   bool UseLEA = STI.useLeaForSP();
    666   unsigned StackAlign = getStackAlignment();
    667   unsigned SlotSize = RegInfo->getSlotSize();
    668   unsigned FramePtr = RegInfo->getFrameRegister(MF);
    669   unsigned StackPtr = RegInfo->getStackRegister();
    670   unsigned BasePtr = RegInfo->getBaseRegister();
    671   DebugLoc DL;
    672 
    673   // If we're forcing a stack realignment we can't rely on just the frame
    674   // info, we need to know the ABI stack alignment as well in case we
    675   // have a call out.  Otherwise just make sure we have some alignment - we'll
    676   // go with the minimum SlotSize.
    677   if (ForceStackAlign) {
    678     if (MFI->hasCalls())
    679       MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
    680     else if (MaxAlign < SlotSize)
    681       MaxAlign = SlotSize;
    682   }
    683 
    684   // Add RETADDR move area to callee saved frame size.
    685   int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
    686   if (TailCallReturnAddrDelta < 0)
    687     X86FI->setCalleeSavedFrameSize(
    688       X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta);
    689 
    690   // If this is x86-64 and the Red Zone is not disabled, if we are a leaf
    691   // function, and use up to 128 bytes of stack space, don't have a frame
    692   // pointer, calls, or dynamic alloca then we do not need to adjust the
    693   // stack pointer (we fit in the Red Zone). We also check that we don't
    694   // push and pop from the stack.
    695   if (Is64Bit && !Fn->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
    696                                                    Attribute::NoRedZone) &&
    697       !RegInfo->needsStackRealignment(MF) &&
    698       !MFI->hasVarSizedObjects() &&                     // No dynamic alloca.
    699       !MFI->adjustsStack() &&                           // No calls.
    700       !IsWin64 &&                                       // Win64 has no Red Zone
    701       !usesTheStack(MF) &&                              // Don't push and pop.
    702       !MF.getTarget().Options.EnableSegmentedStacks) {  // Regular stack
    703     uint64_t MinSize = X86FI->getCalleeSavedFrameSize();
    704     if (HasFP) MinSize += SlotSize;
    705     StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0);
    706     MFI->setStackSize(StackSize);
    707   }
    708 
    709   // Insert stack pointer adjustment for later moving of return addr.  Only
    710   // applies to tail call optimized functions where the callee argument stack
    711   // size is bigger than the callers.
    712   if (TailCallReturnAddrDelta < 0) {
    713     MachineInstr *MI =
    714       BuildMI(MBB, MBBI, DL,
    715               TII.get(getSUBriOpcode(IsLP64, -TailCallReturnAddrDelta)),
    716               StackPtr)
    717         .addReg(StackPtr)
    718         .addImm(-TailCallReturnAddrDelta)
    719         .setMIFlag(MachineInstr::FrameSetup);
    720     MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
    721   }
    722 
    723   // Mapping for machine moves:
    724   //
    725   //   DST: VirtualFP AND
    726   //        SRC: VirtualFP              => DW_CFA_def_cfa_offset
    727   //        ELSE                        => DW_CFA_def_cfa
    728   //
    729   //   SRC: VirtualFP AND
    730   //        DST: Register               => DW_CFA_def_cfa_register
    731   //
    732   //   ELSE
    733   //        OFFSET < 0                  => DW_CFA_offset_extended_sf
    734   //        REG < 64                    => DW_CFA_offset + Reg
    735   //        ELSE                        => DW_CFA_offset_extended
    736 
    737   std::vector<MachineMove> &Moves = MMI.getFrameMoves();
    738   uint64_t NumBytes = 0;
    739   int stackGrowth = -SlotSize;
    740 
    741   if (HasFP) {
    742     // Calculate required stack adjustment.
    743     uint64_t FrameSize = StackSize - SlotSize;
    744     if (RegInfo->needsStackRealignment(MF)) {
    745       // Callee-saved registers are pushed on stack before the stack
    746       // is realigned.
    747       FrameSize -= X86FI->getCalleeSavedFrameSize();
    748       NumBytes = (FrameSize + MaxAlign - 1) / MaxAlign * MaxAlign;
    749     } else {
    750       NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize();
    751     }
    752 
    753     // Get the offset of the stack slot for the EBP register, which is
    754     // guaranteed to be the last slot by processFunctionBeforeFrameFinalized.
    755     // Update the frame offset adjustment.
    756     MFI->setOffsetAdjustment(-NumBytes);
    757 
    758     // Save EBP/RBP into the appropriate stack slot.
    759     BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
    760       .addReg(FramePtr, RegState::Kill)
    761       .setMIFlag(MachineInstr::FrameSetup);
    762 
    763     if (needsFrameMoves) {
    764       // Mark the place where EBP/RBP was saved.
    765       MCSymbol *FrameLabel = MMI.getContext().CreateTempSymbol();
    766       BuildMI(MBB, MBBI, DL, TII.get(X86::PROLOG_LABEL))
    767         .addSym(FrameLabel);
    768 
    769       // Define the current CFA rule to use the provided offset.
    770       if (StackSize) {
    771         MachineLocation SPDst(MachineLocation::VirtualFP);
    772         MachineLocation SPSrc(MachineLocation::VirtualFP, 2 * stackGrowth);
    773         Moves.push_back(MachineMove(FrameLabel, SPDst, SPSrc));
    774       } else {
    775         MachineLocation SPDst(StackPtr);
    776         MachineLocation SPSrc(StackPtr, stackGrowth);
    777         Moves.push_back(MachineMove(FrameLabel, SPDst, SPSrc));
    778       }
    779 
    780       // Change the rule for the FramePtr to be an "offset" rule.
    781       MachineLocation FPDst(MachineLocation::VirtualFP, 2 * stackGrowth);
    782       MachineLocation FPSrc(FramePtr);
    783       Moves.push_back(MachineMove(FrameLabel, FPDst, FPSrc));
    784     }
    785 
    786     // Update EBP with the new base value.
    787     BuildMI(MBB, MBBI, DL,
    788             TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), FramePtr)
    789         .addReg(StackPtr)
    790         .setMIFlag(MachineInstr::FrameSetup);
    791 
    792     if (needsFrameMoves) {
    793       // Mark effective beginning of when frame pointer becomes valid.
    794       MCSymbol *FrameLabel = MMI.getContext().CreateTempSymbol();
    795       BuildMI(MBB, MBBI, DL, TII.get(X86::PROLOG_LABEL))
    796         .addSym(FrameLabel);
    797 
    798       // Define the current CFA to use the EBP/RBP register.
    799       MachineLocation FPDst(FramePtr);
    800       MachineLocation FPSrc(MachineLocation::VirtualFP);
    801       Moves.push_back(MachineMove(FrameLabel, FPDst, FPSrc));
    802     }
    803 
    804     // Mark the FramePtr as live-in in every block except the entry.
    805     for (MachineFunction::iterator I = llvm::next(MF.begin()), E = MF.end();
    806          I != E; ++I)
    807       I->addLiveIn(FramePtr);
    808   } else {
    809     NumBytes = StackSize - X86FI->getCalleeSavedFrameSize();
    810   }
    811 
    812   // Skip the callee-saved push instructions.
    813   bool PushedRegs = false;
    814   int StackOffset = 2 * stackGrowth;
    815 
    816   while (MBBI != MBB.end() &&
    817          (MBBI->getOpcode() == X86::PUSH32r ||
    818           MBBI->getOpcode() == X86::PUSH64r)) {
    819     PushedRegs = true;
    820     MBBI->setFlag(MachineInstr::FrameSetup);
    821     ++MBBI;
    822 
    823     if (!HasFP && needsFrameMoves) {
    824       // Mark callee-saved push instruction.
    825       MCSymbol *Label = MMI.getContext().CreateTempSymbol();
    826       BuildMI(MBB, MBBI, DL, TII.get(X86::PROLOG_LABEL)).addSym(Label);
    827 
    828       // Define the current CFA rule to use the provided offset.
    829       unsigned Ptr = StackSize ? MachineLocation::VirtualFP : StackPtr;
    830       MachineLocation SPDst(Ptr);
    831       MachineLocation SPSrc(Ptr, StackOffset);
    832       Moves.push_back(MachineMove(Label, SPDst, SPSrc));
    833       StackOffset += stackGrowth;
    834     }
    835   }
    836 
    837   // Realign stack after we pushed callee-saved registers (so that we'll be
    838   // able to calculate their offsets from the frame pointer).
    839 
    840   // NOTE: We push the registers before realigning the stack, so
    841   // vector callee-saved (xmm) registers may be saved w/o proper
    842   // alignment in this way. However, currently these regs are saved in
    843   // stack slots (see X86FrameLowering::spillCalleeSavedRegisters()), so
    844   // this shouldn't be a problem.
    845   if (RegInfo->needsStackRealignment(MF)) {
    846     assert(HasFP && "There should be a frame pointer if stack is realigned.");
    847     MachineInstr *MI =
    848       BuildMI(MBB, MBBI, DL,
    849               TII.get(Is64Bit ? X86::AND64ri32 : X86::AND32ri), StackPtr)
    850       .addReg(StackPtr)
    851       .addImm(-MaxAlign)
    852       .setMIFlag(MachineInstr::FrameSetup);
    853 
    854     // The EFLAGS implicit def is dead.
    855     MI->getOperand(3).setIsDead();
    856   }
    857 
    858   // If there is an SUB32ri of ESP immediately before this instruction, merge
    859   // the two. This can be the case when tail call elimination is enabled and
    860   // the callee has more arguments then the caller.
    861   NumBytes -= mergeSPUpdates(MBB, MBBI, StackPtr, true);
    862 
    863   // If there is an ADD32ri or SUB32ri of ESP immediately after this
    864   // instruction, merge the two instructions.
    865   mergeSPUpdatesDown(MBB, MBBI, StackPtr, &NumBytes);
    866 
    867   // Adjust stack pointer: ESP -= numbytes.
    868 
    869   // Windows and cygwin/mingw require a prologue helper routine when allocating
    870   // more than 4K bytes on the stack.  Windows uses __chkstk and cygwin/mingw
    871   // uses __alloca.  __alloca and the 32-bit version of __chkstk will probe the
    872   // stack and adjust the stack pointer in one go.  The 64-bit version of
    873   // __chkstk is only responsible for probing the stack.  The 64-bit prologue is
    874   // responsible for adjusting the stack pointer.  Touching the stack at 4K
    875   // increments is necessary to ensure that the guard pages used by the OS
    876   // virtual memory manager are allocated in correct sequence.
    877   if (NumBytes >= 4096 && STI.isTargetCOFF() && !STI.isTargetEnvMacho()) {
    878     const char *StackProbeSymbol;
    879     bool isSPUpdateNeeded = false;
    880 
    881     if (Is64Bit) {
    882       if (STI.isTargetCygMing())
    883         StackProbeSymbol = "___chkstk";
    884       else {
    885         StackProbeSymbol = "__chkstk";
    886         isSPUpdateNeeded = true;
    887       }
    888     } else if (STI.isTargetCygMing())
    889       StackProbeSymbol = "_alloca";
    890     else
    891       StackProbeSymbol = "_chkstk";
    892 
    893     // Check whether EAX is livein for this function.
    894     bool isEAXAlive = isEAXLiveIn(MF);
    895 
    896     if (isEAXAlive) {
    897       // Sanity check that EAX is not livein for this function.
    898       // It should not be, so throw an assert.
    899       assert(!Is64Bit && "EAX is livein in x64 case!");
    900 
    901       // Save EAX
    902       BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r))
    903         .addReg(X86::EAX, RegState::Kill)
    904         .setMIFlag(MachineInstr::FrameSetup);
    905     }
    906 
    907     if (Is64Bit) {
    908       // Handle the 64-bit Windows ABI case where we need to call __chkstk.
    909       // Function prologue is responsible for adjusting the stack pointer.
    910       BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX)
    911         .addImm(NumBytes)
    912         .setMIFlag(MachineInstr::FrameSetup);
    913     } else {
    914       // Allocate NumBytes-4 bytes on stack in case of isEAXAlive.
    915       // We'll also use 4 already allocated bytes for EAX.
    916       BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
    917         .addImm(isEAXAlive ? NumBytes - 4 : NumBytes)
    918         .setMIFlag(MachineInstr::FrameSetup);
    919     }
    920 
    921     BuildMI(MBB, MBBI, DL,
    922             TII.get(Is64Bit ? X86::W64ALLOCA : X86::CALLpcrel32))
    923       .addExternalSymbol(StackProbeSymbol)
    924       .addReg(StackPtr,    RegState::Define | RegState::Implicit)
    925       .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit)
    926       .setMIFlag(MachineInstr::FrameSetup);
    927 
    928     // MSVC x64's __chkstk needs to adjust %rsp.
    929     // FIXME: %rax preserves the offset and should be available.
    930     if (isSPUpdateNeeded)
    931       emitSPUpdate(MBB, MBBI, StackPtr, -(int64_t)NumBytes, Is64Bit, IsLP64,
    932                    UseLEA, TII, *RegInfo);
    933 
    934     if (isEAXAlive) {
    935         // Restore EAX
    936         MachineInstr *MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm),
    937                                                 X86::EAX),
    938                                         StackPtr, false, NumBytes - 4);
    939         MI->setFlag(MachineInstr::FrameSetup);
    940         MBB.insert(MBBI, MI);
    941     }
    942   } else if (NumBytes)
    943     emitSPUpdate(MBB, MBBI, StackPtr, -(int64_t)NumBytes, Is64Bit, IsLP64,
    944                  UseLEA, TII, *RegInfo);
    945 
    946   // If we need a base pointer, set it up here. It's whatever the value
    947   // of the stack pointer is at this point. Any variable size objects
    948   // will be allocated after this, so we can still use the base pointer
    949   // to reference locals.
    950   if (RegInfo->hasBasePointer(MF)) {
    951     // Update the frame pointer with the current stack pointer.
    952     unsigned Opc = Is64Bit ? X86::MOV64rr : X86::MOV32rr;
    953     BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr)
    954       .addReg(StackPtr)
    955       .setMIFlag(MachineInstr::FrameSetup);
    956   }
    957 
    958   if (( (!HasFP && NumBytes) || PushedRegs) && needsFrameMoves) {
    959     // Mark end of stack pointer adjustment.
    960     MCSymbol *Label = MMI.getContext().CreateTempSymbol();
    961     BuildMI(MBB, MBBI, DL, TII.get(X86::PROLOG_LABEL))
    962       .addSym(Label);
    963 
    964     if (!HasFP && NumBytes) {
    965       // Define the current CFA rule to use the provided offset.
    966       if (StackSize) {
    967         MachineLocation SPDst(MachineLocation::VirtualFP);
    968         MachineLocation SPSrc(MachineLocation::VirtualFP,
    969                               -StackSize + stackGrowth);
    970         Moves.push_back(MachineMove(Label, SPDst, SPSrc));
    971       } else {
    972         MachineLocation SPDst(StackPtr);
    973         MachineLocation SPSrc(StackPtr, stackGrowth);
    974         Moves.push_back(MachineMove(Label, SPDst, SPSrc));
    975       }
    976     }
    977 
    978     // Emit DWARF info specifying the offsets of the callee-saved registers.
    979     if (PushedRegs)
    980       emitCalleeSavedFrameMoves(MF, Label, HasFP ? FramePtr : StackPtr);
    981   }
    982 
    983   // Darwin 10.7 and greater has support for compact unwind encoding.
    984   if (STI.getTargetTriple().isMacOSX() &&
    985       !STI.getTargetTriple().isMacOSXVersionLT(10, 7))
    986     MMI.setCompactUnwindEncoding(getCompactUnwindEncoding(MF));
    987 }
    988 
    989 void X86FrameLowering::emitEpilogue(MachineFunction &MF,
    990                                     MachineBasicBlock &MBB) const {
    991   const MachineFrameInfo *MFI = MF.getFrameInfo();
    992   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
    993   const X86RegisterInfo *RegInfo = TM.getRegisterInfo();
    994   const X86InstrInfo &TII = *TM.getInstrInfo();
    995   MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
    996   assert(MBBI != MBB.end() && "Returning block has no instructions");
    997   unsigned RetOpcode = MBBI->getOpcode();
    998   DebugLoc DL = MBBI->getDebugLoc();
    999   bool Is64Bit = STI.is64Bit();
   1000   bool IsLP64 = STI.isTarget64BitLP64();
   1001   bool UseLEA = STI.useLeaForSP();
   1002   unsigned StackAlign = getStackAlignment();
   1003   unsigned SlotSize = RegInfo->getSlotSize();
   1004   unsigned FramePtr = RegInfo->getFrameRegister(MF);
   1005   unsigned StackPtr = RegInfo->getStackRegister();
   1006 
   1007   switch (RetOpcode) {
   1008   default:
   1009     llvm_unreachable("Can only insert epilog into returning blocks");
   1010   case X86::RET:
   1011   case X86::RETI:
   1012   case X86::TCRETURNdi:
   1013   case X86::TCRETURNri:
   1014   case X86::TCRETURNmi:
   1015   case X86::TCRETURNdi64:
   1016   case X86::TCRETURNri64:
   1017   case X86::TCRETURNmi64:
   1018   case X86::EH_RETURN:
   1019   case X86::EH_RETURN64:
   1020     break;  // These are ok
   1021   }
   1022 
   1023   // Get the number of bytes to allocate from the FrameInfo.
   1024   uint64_t StackSize = MFI->getStackSize();
   1025   uint64_t MaxAlign  = MFI->getMaxAlignment();
   1026   unsigned CSSize = X86FI->getCalleeSavedFrameSize();
   1027   uint64_t NumBytes = 0;
   1028 
   1029   // If we're forcing a stack realignment we can't rely on just the frame
   1030   // info, we need to know the ABI stack alignment as well in case we
   1031   // have a call out.  Otherwise just make sure we have some alignment - we'll
   1032   // go with the minimum.
   1033   if (ForceStackAlign) {
   1034     if (MFI->hasCalls())
   1035       MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
   1036     else
   1037       MaxAlign = MaxAlign ? MaxAlign : 4;
   1038   }
   1039 
   1040   if (hasFP(MF)) {
   1041     // Calculate required stack adjustment.
   1042     uint64_t FrameSize = StackSize - SlotSize;
   1043     if (RegInfo->needsStackRealignment(MF)) {
   1044       // Callee-saved registers were pushed on stack before the stack
   1045       // was realigned.
   1046       FrameSize -= CSSize;
   1047       NumBytes = (FrameSize + MaxAlign - 1) / MaxAlign * MaxAlign;
   1048     } else {
   1049       NumBytes = FrameSize - CSSize;
   1050     }
   1051 
   1052     // Pop EBP.
   1053     BuildMI(MBB, MBBI, DL,
   1054             TII.get(Is64Bit ? X86::POP64r : X86::POP32r), FramePtr);
   1055   } else {
   1056     NumBytes = StackSize - CSSize;
   1057   }
   1058 
   1059   // Skip the callee-saved pop instructions.
   1060   while (MBBI != MBB.begin()) {
   1061     MachineBasicBlock::iterator PI = prior(MBBI);
   1062     unsigned Opc = PI->getOpcode();
   1063 
   1064     if (Opc != X86::POP32r && Opc != X86::POP64r && Opc != X86::DBG_VALUE &&
   1065         !PI->isTerminator())
   1066       break;
   1067 
   1068     --MBBI;
   1069   }
   1070   MachineBasicBlock::iterator FirstCSPop = MBBI;
   1071 
   1072   DL = MBBI->getDebugLoc();
   1073 
   1074   // If there is an ADD32ri or SUB32ri of ESP immediately before this
   1075   // instruction, merge the two instructions.
   1076   if (NumBytes || MFI->hasVarSizedObjects())
   1077     mergeSPUpdatesUp(MBB, MBBI, StackPtr, &NumBytes);
   1078 
   1079   // If dynamic alloca is used, then reset esp to point to the last callee-saved
   1080   // slot before popping them off! Same applies for the case, when stack was
   1081   // realigned.
   1082   if (RegInfo->needsStackRealignment(MF) || MFI->hasVarSizedObjects()) {
   1083     if (RegInfo->needsStackRealignment(MF))
   1084       MBBI = FirstCSPop;
   1085     if (CSSize != 0) {
   1086       unsigned Opc = getLEArOpcode(IsLP64);
   1087       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr),
   1088                    FramePtr, false, -CSSize);
   1089     } else {
   1090       unsigned Opc = (Is64Bit ? X86::MOV64rr : X86::MOV32rr);
   1091       BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
   1092         .addReg(FramePtr);
   1093     }
   1094   } else if (NumBytes) {
   1095     // Adjust stack pointer back: ESP += numbytes.
   1096     emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, IsLP64, UseLEA,
   1097                  TII, *RegInfo);
   1098   }
   1099 
   1100   // We're returning from function via eh_return.
   1101   if (RetOpcode == X86::EH_RETURN || RetOpcode == X86::EH_RETURN64) {
   1102     MBBI = MBB.getLastNonDebugInstr();
   1103     MachineOperand &DestAddr  = MBBI->getOperand(0);
   1104     assert(DestAddr.isReg() && "Offset should be in register!");
   1105     BuildMI(MBB, MBBI, DL,
   1106             TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr),
   1107             StackPtr).addReg(DestAddr.getReg());
   1108   } else if (RetOpcode == X86::TCRETURNri || RetOpcode == X86::TCRETURNdi ||
   1109              RetOpcode == X86::TCRETURNmi ||
   1110              RetOpcode == X86::TCRETURNri64 || RetOpcode == X86::TCRETURNdi64 ||
   1111              RetOpcode == X86::TCRETURNmi64) {
   1112     bool isMem = RetOpcode == X86::TCRETURNmi || RetOpcode == X86::TCRETURNmi64;
   1113     // Tail call return: adjust the stack pointer and jump to callee.
   1114     MBBI = MBB.getLastNonDebugInstr();
   1115     MachineOperand &JumpTarget = MBBI->getOperand(0);
   1116     MachineOperand &StackAdjust = MBBI->getOperand(isMem ? 5 : 1);
   1117     assert(StackAdjust.isImm() && "Expecting immediate value.");
   1118 
   1119     // Adjust stack pointer.
   1120     int StackAdj = StackAdjust.getImm();
   1121     int MaxTCDelta = X86FI->getTCReturnAddrDelta();
   1122     int Offset = 0;
   1123     assert(MaxTCDelta <= 0 && "MaxTCDelta should never be positive");
   1124 
   1125     // Incoporate the retaddr area.
   1126     Offset = StackAdj-MaxTCDelta;
   1127     assert(Offset >= 0 && "Offset should never be negative");
   1128 
   1129     if (Offset) {
   1130       // Check for possible merge with preceding ADD instruction.
   1131       Offset += mergeSPUpdates(MBB, MBBI, StackPtr, true);
   1132       emitSPUpdate(MBB, MBBI, StackPtr, Offset, Is64Bit, IsLP64,
   1133                    UseLEA, TII, *RegInfo);
   1134     }
   1135 
   1136     // Jump to label or value in register.
   1137     if (RetOpcode == X86::TCRETURNdi || RetOpcode == X86::TCRETURNdi64) {
   1138       MachineInstrBuilder MIB =
   1139         BuildMI(MBB, MBBI, DL, TII.get((RetOpcode == X86::TCRETURNdi)
   1140                                        ? X86::TAILJMPd : X86::TAILJMPd64));
   1141       if (JumpTarget.isGlobal())
   1142         MIB.addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset(),
   1143                              JumpTarget.getTargetFlags());
   1144       else {
   1145         assert(JumpTarget.isSymbol());
   1146         MIB.addExternalSymbol(JumpTarget.getSymbolName(),
   1147                               JumpTarget.getTargetFlags());
   1148       }
   1149     } else if (RetOpcode == X86::TCRETURNmi || RetOpcode == X86::TCRETURNmi64) {
   1150       MachineInstrBuilder MIB =
   1151         BuildMI(MBB, MBBI, DL, TII.get((RetOpcode == X86::TCRETURNmi)
   1152                                        ? X86::TAILJMPm : X86::TAILJMPm64));
   1153       for (unsigned i = 0; i != 5; ++i)
   1154         MIB.addOperand(MBBI->getOperand(i));
   1155     } else if (RetOpcode == X86::TCRETURNri64) {
   1156       BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPr64)).
   1157         addReg(JumpTarget.getReg(), RegState::Kill);
   1158     } else {
   1159       BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPr)).
   1160         addReg(JumpTarget.getReg(), RegState::Kill);
   1161     }
   1162 
   1163     MachineInstr *NewMI = prior(MBBI);
   1164     NewMI->copyImplicitOps(MF, MBBI);
   1165 
   1166     // Delete the pseudo instruction TCRETURN.
   1167     MBB.erase(MBBI);
   1168   } else if ((RetOpcode == X86::RET || RetOpcode == X86::RETI) &&
   1169              (X86FI->getTCReturnAddrDelta() < 0)) {
   1170     // Add the return addr area delta back since we are not tail calling.
   1171     int delta = -1*X86FI->getTCReturnAddrDelta();
   1172     MBBI = MBB.getLastNonDebugInstr();
   1173 
   1174     // Check for possible merge with preceding ADD instruction.
   1175     delta += mergeSPUpdates(MBB, MBBI, StackPtr, true);
   1176     emitSPUpdate(MBB, MBBI, StackPtr, delta, Is64Bit, IsLP64, UseLEA, TII,
   1177                  *RegInfo);
   1178   }
   1179 }
   1180 
   1181 int X86FrameLowering::getFrameIndexOffset(const MachineFunction &MF, int FI) const {
   1182   const X86RegisterInfo *RegInfo =
   1183     static_cast<const X86RegisterInfo*>(MF.getTarget().getRegisterInfo());
   1184   const MachineFrameInfo *MFI = MF.getFrameInfo();
   1185   int Offset = MFI->getObjectOffset(FI) - getOffsetOfLocalArea();
   1186   uint64_t StackSize = MFI->getStackSize();
   1187 
   1188   if (RegInfo->hasBasePointer(MF)) {
   1189     assert (hasFP(MF) && "VLAs and dynamic stack realign, but no FP?!");
   1190     if (FI < 0) {
   1191       // Skip the saved EBP.
   1192       return Offset + RegInfo->getSlotSize();
   1193     } else {
   1194       assert((-(Offset + StackSize)) % MFI->getObjectAlignment(FI) == 0);
   1195       return Offset + StackSize;
   1196     }
   1197   } else if (RegInfo->needsStackRealignment(MF)) {
   1198     if (FI < 0) {
   1199       // Skip the saved EBP.
   1200       return Offset + RegInfo->getSlotSize();
   1201     } else {
   1202       assert((-(Offset + StackSize)) % MFI->getObjectAlignment(FI) == 0);
   1203       return Offset + StackSize;
   1204     }
   1205     // FIXME: Support tail calls
   1206   } else {
   1207     if (!hasFP(MF))
   1208       return Offset + StackSize;
   1209 
   1210     // Skip the saved EBP.
   1211     Offset += RegInfo->getSlotSize();
   1212 
   1213     // Skip the RETADDR move area
   1214     const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
   1215     int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
   1216     if (TailCallReturnAddrDelta < 0)
   1217       Offset -= TailCallReturnAddrDelta;
   1218   }
   1219 
   1220   return Offset;
   1221 }
   1222 
   1223 int X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
   1224                                              unsigned &FrameReg) const {
   1225   const X86RegisterInfo *RegInfo =
   1226       static_cast<const X86RegisterInfo*>(MF.getTarget().getRegisterInfo());
   1227   // We can't calculate offset from frame pointer if the stack is realigned,
   1228   // so enforce usage of stack/base pointer.  The base pointer is used when we
   1229   // have dynamic allocas in addition to dynamic realignment.
   1230   if (RegInfo->hasBasePointer(MF))
   1231     FrameReg = RegInfo->getBaseRegister();
   1232   else if (RegInfo->needsStackRealignment(MF))
   1233     FrameReg = RegInfo->getStackRegister();
   1234   else
   1235     FrameReg = RegInfo->getFrameRegister(MF);
   1236   return getFrameIndexOffset(MF, FI);
   1237 }
   1238 
   1239 bool X86FrameLowering::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
   1240                                              MachineBasicBlock::iterator MI,
   1241                                         const std::vector<CalleeSavedInfo> &CSI,
   1242                                           const TargetRegisterInfo *TRI) const {
   1243   if (CSI.empty())
   1244     return false;
   1245 
   1246   DebugLoc DL = MBB.findDebugLoc(MI);
   1247 
   1248   MachineFunction &MF = *MBB.getParent();
   1249 
   1250   unsigned SlotSize = STI.is64Bit() ? 8 : 4;
   1251   unsigned FPReg = TRI->getFrameRegister(MF);
   1252   unsigned CalleeFrameSize = 0;
   1253 
   1254   const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
   1255   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
   1256 
   1257   // Push GPRs. It increases frame size.
   1258   unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r;
   1259   for (unsigned i = CSI.size(); i != 0; --i) {
   1260     unsigned Reg = CSI[i-1].getReg();
   1261     if (!X86::GR64RegClass.contains(Reg) &&
   1262         !X86::GR32RegClass.contains(Reg))
   1263       continue;
   1264     // Add the callee-saved register as live-in. It's killed at the spill.
   1265     MBB.addLiveIn(Reg);
   1266     if (Reg == FPReg)
   1267       // X86RegisterInfo::emitPrologue will handle spilling of frame register.
   1268       continue;
   1269     CalleeFrameSize += SlotSize;
   1270     BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, RegState::Kill)
   1271       .setMIFlag(MachineInstr::FrameSetup);
   1272   }
   1273 
   1274   X86FI->setCalleeSavedFrameSize(CalleeFrameSize);
   1275 
   1276   // Make XMM regs spilled. X86 does not have ability of push/pop XMM.
   1277   // It can be done by spilling XMMs to stack frame.
   1278   // Note that only Win64 ABI might spill XMMs.
   1279   for (unsigned i = CSI.size(); i != 0; --i) {
   1280     unsigned Reg = CSI[i-1].getReg();
   1281     if (X86::GR64RegClass.contains(Reg) ||
   1282         X86::GR32RegClass.contains(Reg))
   1283       continue;
   1284     // Add the callee-saved register as live-in. It's killed at the spill.
   1285     MBB.addLiveIn(Reg);
   1286     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
   1287     TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i-1].getFrameIdx(),
   1288                             RC, TRI);
   1289   }
   1290 
   1291   return true;
   1292 }
   1293 
   1294 bool X86FrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
   1295                                                MachineBasicBlock::iterator MI,
   1296                                         const std::vector<CalleeSavedInfo> &CSI,
   1297                                           const TargetRegisterInfo *TRI) const {
   1298   if (CSI.empty())
   1299     return false;
   1300 
   1301   DebugLoc DL = MBB.findDebugLoc(MI);
   1302 
   1303   MachineFunction &MF = *MBB.getParent();
   1304   const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
   1305 
   1306   // Reload XMMs from stack frame.
   1307   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
   1308     unsigned Reg = CSI[i].getReg();
   1309     if (X86::GR64RegClass.contains(Reg) ||
   1310         X86::GR32RegClass.contains(Reg))
   1311       continue;
   1312     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
   1313     TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(),
   1314                              RC, TRI);
   1315   }
   1316 
   1317   // POP GPRs.
   1318   unsigned FPReg = TRI->getFrameRegister(MF);
   1319   unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r;
   1320   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
   1321     unsigned Reg = CSI[i].getReg();
   1322     if (!X86::GR64RegClass.contains(Reg) &&
   1323         !X86::GR32RegClass.contains(Reg))
   1324       continue;
   1325     if (Reg == FPReg)
   1326       // X86RegisterInfo::emitEpilogue will handle restoring of frame register.
   1327       continue;
   1328     BuildMI(MBB, MI, DL, TII.get(Opc), Reg);
   1329   }
   1330   return true;
   1331 }
   1332 
   1333 void
   1334 X86FrameLowering::processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
   1335                                                    RegScavenger *RS) const {
   1336   MachineFrameInfo *MFI = MF.getFrameInfo();
   1337   const X86RegisterInfo *RegInfo = TM.getRegisterInfo();
   1338   unsigned SlotSize = RegInfo->getSlotSize();
   1339 
   1340   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
   1341   int32_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
   1342 
   1343   if (TailCallReturnAddrDelta < 0) {
   1344     // create RETURNADDR area
   1345     //   arg
   1346     //   arg
   1347     //   RETADDR
   1348     //   { ...
   1349     //     RETADDR area
   1350     //     ...
   1351     //   }
   1352     //   [EBP]
   1353     MFI->CreateFixedObject(-TailCallReturnAddrDelta,
   1354                            (-1U*SlotSize)+TailCallReturnAddrDelta, true);
   1355   }
   1356 
   1357   if (hasFP(MF)) {
   1358     assert((TailCallReturnAddrDelta <= 0) &&
   1359            "The Delta should always be zero or negative");
   1360     const TargetFrameLowering &TFI = *MF.getTarget().getFrameLowering();
   1361 
   1362     // Create a frame entry for the EBP register that must be saved.
   1363     int FrameIdx = MFI->CreateFixedObject(SlotSize,
   1364                                           -(int)SlotSize +
   1365                                           TFI.getOffsetOfLocalArea() +
   1366                                           TailCallReturnAddrDelta,
   1367                                           true);
   1368     assert(FrameIdx == MFI->getObjectIndexBegin() &&
   1369            "Slot for EBP register must be last in order to be found!");
   1370     (void)FrameIdx;
   1371   }
   1372 
   1373   // Spill the BasePtr if it's used.
   1374   if (RegInfo->hasBasePointer(MF))
   1375     MF.getRegInfo().setPhysRegUsed(RegInfo->getBaseRegister());
   1376 }
   1377 
   1378 static bool
   1379 HasNestArgument(const MachineFunction *MF) {
   1380   const Function *F = MF->getFunction();
   1381   for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
   1382        I != E; I++) {
   1383     if (I->hasNestAttr())
   1384       return true;
   1385   }
   1386   return false;
   1387 }
   1388 
   1389 /// GetScratchRegister - Get a temp register for performing work in the
   1390 /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform
   1391 /// and the properties of the function either one or two registers will be
   1392 /// needed. Set primary to true for the first register, false for the second.
   1393 static unsigned
   1394 GetScratchRegister(bool Is64Bit, const MachineFunction &MF, bool Primary) {
   1395   CallingConv::ID CallingConvention = MF.getFunction()->getCallingConv();
   1396 
   1397   // Erlang stuff.
   1398   if (CallingConvention == CallingConv::HiPE) {
   1399     if (Is64Bit)
   1400       return Primary ? X86::R14 : X86::R13;
   1401     else
   1402       return Primary ? X86::EBX : X86::EDI;
   1403   }
   1404 
   1405   if (Is64Bit)
   1406     return Primary ? X86::R11 : X86::R12;
   1407 
   1408   bool IsNested = HasNestArgument(&MF);
   1409 
   1410   if (CallingConvention == CallingConv::X86_FastCall ||
   1411       CallingConvention == CallingConv::Fast) {
   1412     if (IsNested)
   1413       report_fatal_error("Segmented stacks does not support fastcall with "
   1414                          "nested function.");
   1415     return Primary ? X86::EAX : X86::ECX;
   1416   }
   1417   if (IsNested)
   1418     return Primary ? X86::EDX : X86::EAX;
   1419   return Primary ? X86::ECX : X86::EAX;
   1420 }
   1421 
   1422 // The stack limit in the TCB is set to this many bytes above the actual stack
   1423 // limit.
   1424 static const uint64_t kSplitStackAvailable = 256;
   1425 
   1426 void
   1427 X86FrameLowering::adjustForSegmentedStacks(MachineFunction &MF) const {
   1428   MachineBasicBlock &prologueMBB = MF.front();
   1429   MachineFrameInfo *MFI = MF.getFrameInfo();
   1430   const X86InstrInfo &TII = *TM.getInstrInfo();
   1431   uint64_t StackSize;
   1432   bool Is64Bit = STI.is64Bit();
   1433   unsigned TlsReg, TlsOffset;
   1434   DebugLoc DL;
   1435 
   1436   unsigned ScratchReg = GetScratchRegister(Is64Bit, MF, true);
   1437   assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
   1438          "Scratch register is live-in");
   1439 
   1440   if (MF.getFunction()->isVarArg())
   1441     report_fatal_error("Segmented stacks do not support vararg functions.");
   1442   if (!STI.isTargetLinux() && !STI.isTargetDarwin() &&
   1443       !STI.isTargetWin32() && !STI.isTargetFreeBSD())
   1444     report_fatal_error("Segmented stacks not supported on this platform.");
   1445 
   1446   MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock();
   1447   MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock();
   1448   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
   1449   bool IsNested = false;
   1450 
   1451   // We need to know if the function has a nest argument only in 64 bit mode.
   1452   if (Is64Bit)
   1453     IsNested = HasNestArgument(&MF);
   1454 
   1455   // The MOV R10, RAX needs to be in a different block, since the RET we emit in
   1456   // allocMBB needs to be last (terminating) instruction.
   1457 
   1458   for (MachineBasicBlock::livein_iterator i = prologueMBB.livein_begin(),
   1459          e = prologueMBB.livein_end(); i != e; i++) {
   1460     allocMBB->addLiveIn(*i);
   1461     checkMBB->addLiveIn(*i);
   1462   }
   1463 
   1464   if (IsNested)
   1465     allocMBB->addLiveIn(X86::R10);
   1466 
   1467   MF.push_front(allocMBB);
   1468   MF.push_front(checkMBB);
   1469 
   1470   // Eventually StackSize will be calculated by a link-time pass; which will
   1471   // also decide whether checking code needs to be injected into this particular
   1472   // prologue.
   1473   StackSize = MFI->getStackSize();
   1474 
   1475   // When the frame size is less than 256 we just compare the stack
   1476   // boundary directly to the value of the stack pointer, per gcc.
   1477   bool CompareStackPointer = StackSize < kSplitStackAvailable;
   1478 
   1479   // Read the limit off the current stacklet off the stack_guard location.
   1480   if (Is64Bit) {
   1481     if (STI.isTargetLinux()) {
   1482       TlsReg = X86::FS;
   1483       TlsOffset = 0x70;
   1484     } else if (STI.isTargetDarwin()) {
   1485       TlsReg = X86::GS;
   1486       TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90.
   1487     } else if (STI.isTargetFreeBSD()) {
   1488       TlsReg = X86::FS;
   1489       TlsOffset = 0x18;
   1490     } else {
   1491       report_fatal_error("Segmented stacks not supported on this platform.");
   1492     }
   1493 
   1494     if (CompareStackPointer)
   1495       ScratchReg = X86::RSP;
   1496     else
   1497       BuildMI(checkMBB, DL, TII.get(X86::LEA64r), ScratchReg).addReg(X86::RSP)
   1498         .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
   1499 
   1500     BuildMI(checkMBB, DL, TII.get(X86::CMP64rm)).addReg(ScratchReg)
   1501       .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg);
   1502   } else {
   1503     if (STI.isTargetLinux()) {
   1504       TlsReg = X86::GS;
   1505       TlsOffset = 0x30;
   1506     } else if (STI.isTargetDarwin()) {
   1507       TlsReg = X86::GS;
   1508       TlsOffset = 0x48 + 90*4;
   1509     } else if (STI.isTargetWin32()) {
   1510       TlsReg = X86::FS;
   1511       TlsOffset = 0x14; // pvArbitrary, reserved for application use
   1512     } else if (STI.isTargetFreeBSD()) {
   1513       report_fatal_error("Segmented stacks not supported on FreeBSD i386.");
   1514     } else {
   1515       report_fatal_error("Segmented stacks not supported on this platform.");
   1516     }
   1517 
   1518     if (CompareStackPointer)
   1519       ScratchReg = X86::ESP;
   1520     else
   1521       BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP)
   1522         .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
   1523 
   1524     if (STI.isTargetLinux() || STI.isTargetWin32()) {
   1525       BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg)
   1526         .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg);
   1527     } else if (STI.isTargetDarwin()) {
   1528 
   1529       // TlsOffset doesn't fit into a mod r/m byte so we need an extra register
   1530       unsigned ScratchReg2;
   1531       bool SaveScratch2;
   1532       if (CompareStackPointer) {
   1533         // The primary scratch register is available for holding the TLS offset
   1534         ScratchReg2 = GetScratchRegister(Is64Bit, MF, true);
   1535         SaveScratch2 = false;
   1536       } else {
   1537         // Need to use a second register to hold the TLS offset
   1538         ScratchReg2 = GetScratchRegister(Is64Bit, MF, false);
   1539 
   1540         // Unfortunately, with fastcc the second scratch register may hold an arg
   1541         SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2);
   1542       }
   1543 
   1544       // If Scratch2 is live-in then it needs to be saved
   1545       assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) &&
   1546              "Scratch register is live-in and not saved");
   1547 
   1548       if (SaveScratch2)
   1549         BuildMI(checkMBB, DL, TII.get(X86::PUSH32r))
   1550           .addReg(ScratchReg2, RegState::Kill);
   1551 
   1552       BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2)
   1553         .addImm(TlsOffset);
   1554       BuildMI(checkMBB, DL, TII.get(X86::CMP32rm))
   1555         .addReg(ScratchReg)
   1556         .addReg(ScratchReg2).addImm(1).addReg(0)
   1557         .addImm(0)
   1558         .addReg(TlsReg);
   1559 
   1560       if (SaveScratch2)
   1561         BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2);
   1562     }
   1563   }
   1564 
   1565   // This jump is taken if SP >= (Stacklet Limit + Stack Space required).
   1566   // It jumps to normal execution of the function body.
   1567   BuildMI(checkMBB, DL, TII.get(X86::JA_4)).addMBB(&prologueMBB);
   1568 
   1569   // On 32 bit we first push the arguments size and then the frame size. On 64
   1570   // bit, we pass the stack frame size in r10 and the argument size in r11.
   1571   if (Is64Bit) {
   1572     // Functions with nested arguments use R10, so it needs to be saved across
   1573     // the call to _morestack
   1574 
   1575     if (IsNested)
   1576       BuildMI(allocMBB, DL, TII.get(X86::MOV64rr), X86::RAX).addReg(X86::R10);
   1577 
   1578     BuildMI(allocMBB, DL, TII.get(X86::MOV64ri), X86::R10)
   1579       .addImm(StackSize);
   1580     BuildMI(allocMBB, DL, TII.get(X86::MOV64ri), X86::R11)
   1581       .addImm(X86FI->getArgumentStackSize());
   1582     MF.getRegInfo().setPhysRegUsed(X86::R10);
   1583     MF.getRegInfo().setPhysRegUsed(X86::R11);
   1584   } else {
   1585     BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
   1586       .addImm(X86FI->getArgumentStackSize());
   1587     BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
   1588       .addImm(StackSize);
   1589   }
   1590 
   1591   // __morestack is in libgcc
   1592   if (Is64Bit)
   1593     BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32))
   1594       .addExternalSymbol("__morestack");
   1595   else
   1596     BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32))
   1597       .addExternalSymbol("__morestack");
   1598 
   1599   if (IsNested)
   1600     BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10));
   1601   else
   1602     BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET));
   1603 
   1604   allocMBB->addSuccessor(&prologueMBB);
   1605 
   1606   checkMBB->addSuccessor(allocMBB);
   1607   checkMBB->addSuccessor(&prologueMBB);
   1608 
   1609 #ifdef XDEBUG
   1610   MF.verify();
   1611 #endif
   1612 }
   1613 
   1614 /// Erlang programs may need a special prologue to handle the stack size they
   1615 /// might need at runtime. That is because Erlang/OTP does not implement a C
   1616 /// stack but uses a custom implementation of hybrid stack/heap architecture.
   1617 /// (for more information see Eric Stenman's Ph.D. thesis:
   1618 /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf)
   1619 ///
   1620 /// CheckStack:
   1621 ///	  temp0 = sp - MaxStack
   1622 ///	  if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
   1623 /// OldStart:
   1624 ///	  ...
   1625 /// IncStack:
   1626 ///	  call inc_stack   # doubles the stack space
   1627 ///	  temp0 = sp - MaxStack
   1628 ///	  if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
   1629 void X86FrameLowering::adjustForHiPEPrologue(MachineFunction &MF) const {
   1630   const X86InstrInfo &TII = *TM.getInstrInfo();
   1631   MachineFrameInfo *MFI = MF.getFrameInfo();
   1632   const unsigned SlotSize = TM.getRegisterInfo()->getSlotSize();
   1633   const bool Is64Bit = STI.is64Bit();
   1634   DebugLoc DL;
   1635   // HiPE-specific values
   1636   const unsigned HipeLeafWords = 24;
   1637   const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5;
   1638   const unsigned Guaranteed = HipeLeafWords * SlotSize;
   1639   unsigned CallerStkArity = MF.getFunction()->arg_size() > CCRegisteredArgs ?
   1640                             MF.getFunction()->arg_size() - CCRegisteredArgs : 0;
   1641   unsigned MaxStack = MFI->getStackSize() + CallerStkArity*SlotSize + SlotSize;
   1642 
   1643   assert(STI.isTargetLinux() &&
   1644          "HiPE prologue is only supported on Linux operating systems.");
   1645 
   1646   // Compute the largest caller's frame that is needed to fit the callees'
   1647   // frames. This 'MaxStack' is computed from:
   1648   //
   1649   // a) the fixed frame size, which is the space needed for all spilled temps,
   1650   // b) outgoing on-stack parameter areas, and
   1651   // c) the minimum stack space this function needs to make available for the
   1652   //    functions it calls (a tunable ABI property).
   1653   if (MFI->hasCalls()) {
   1654     unsigned MoreStackForCalls = 0;
   1655 
   1656     for (MachineFunction::iterator MBBI = MF.begin(), MBBE = MF.end();
   1657          MBBI != MBBE; ++MBBI)
   1658       for (MachineBasicBlock::iterator MI = MBBI->begin(), ME = MBBI->end();
   1659            MI != ME; ++MI) {
   1660         if (!MI->isCall())
   1661           continue;
   1662 
   1663         // Get callee operand.
   1664         const MachineOperand &MO = MI->getOperand(0);
   1665 
   1666         // Only take account of global function calls (no closures etc.).
   1667         if (!MO.isGlobal())
   1668           continue;
   1669 
   1670         const Function *F = dyn_cast<Function>(MO.getGlobal());
   1671         if (!F)
   1672           continue;
   1673 
   1674         // Do not update 'MaxStack' for primitive and built-in functions
   1675         // (encoded with names either starting with "erlang."/"bif_" or not
   1676         // having a ".", such as a simple <Module>.<Function>.<Arity>, or an
   1677         // "_", such as the BIF "suspend_0") as they are executed on another
   1678         // stack.
   1679         if (F->getName().find("erlang.") != StringRef::npos ||
   1680             F->getName().find("bif_") != StringRef::npos ||
   1681             F->getName().find_first_of("._") == StringRef::npos)
   1682           continue;
   1683 
   1684         unsigned CalleeStkArity =
   1685           F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0;
   1686         if (HipeLeafWords - 1 > CalleeStkArity)
   1687           MoreStackForCalls = std::max(MoreStackForCalls,
   1688                                (HipeLeafWords - 1 - CalleeStkArity) * SlotSize);
   1689       }
   1690     MaxStack += MoreStackForCalls;
   1691   }
   1692 
   1693   // If the stack frame needed is larger than the guaranteed then runtime checks
   1694   // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue.
   1695   if (MaxStack > Guaranteed) {
   1696     MachineBasicBlock &prologueMBB = MF.front();
   1697     MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock();
   1698     MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock();
   1699 
   1700     for (MachineBasicBlock::livein_iterator I = prologueMBB.livein_begin(),
   1701            E = prologueMBB.livein_end(); I != E; I++) {
   1702       stackCheckMBB->addLiveIn(*I);
   1703       incStackMBB->addLiveIn(*I);
   1704     }
   1705 
   1706     MF.push_front(incStackMBB);
   1707     MF.push_front(stackCheckMBB);
   1708 
   1709     unsigned ScratchReg, SPReg, PReg, SPLimitOffset;
   1710     unsigned LEAop, CMPop, CALLop;
   1711     if (Is64Bit) {
   1712       SPReg = X86::RSP;
   1713       PReg  = X86::RBP;
   1714       LEAop = X86::LEA64r;
   1715       CMPop = X86::CMP64rm;
   1716       CALLop = X86::CALL64pcrel32;
   1717       SPLimitOffset = 0x90;
   1718     } else {
   1719       SPReg = X86::ESP;
   1720       PReg  = X86::EBP;
   1721       LEAop = X86::LEA32r;
   1722       CMPop = X86::CMP32rm;
   1723       CALLop = X86::CALLpcrel32;
   1724       SPLimitOffset = 0x4c;
   1725     }
   1726 
   1727     ScratchReg = GetScratchRegister(Is64Bit, MF, true);
   1728     assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
   1729            "HiPE prologue scratch register is live-in");
   1730 
   1731     // Create new MBB for StackCheck:
   1732     addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg),
   1733                  SPReg, false, -MaxStack);
   1734     // SPLimitOffset is in a fixed heap location (pointed by BP).
   1735     addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop))
   1736                  .addReg(ScratchReg), PReg, false, SPLimitOffset);
   1737     BuildMI(stackCheckMBB, DL, TII.get(X86::JAE_4)).addMBB(&prologueMBB);
   1738 
   1739     // Create new MBB for IncStack:
   1740     BuildMI(incStackMBB, DL, TII.get(CALLop)).
   1741       addExternalSymbol("inc_stack_0");
   1742     addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg),
   1743                  SPReg, false, -MaxStack);
   1744     addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop))
   1745                  .addReg(ScratchReg), PReg, false, SPLimitOffset);
   1746     BuildMI(incStackMBB, DL, TII.get(X86::JLE_4)).addMBB(incStackMBB);
   1747 
   1748     stackCheckMBB->addSuccessor(&prologueMBB, 99);
   1749     stackCheckMBB->addSuccessor(incStackMBB, 1);
   1750     incStackMBB->addSuccessor(&prologueMBB, 99);
   1751     incStackMBB->addSuccessor(incStackMBB, 1);
   1752   }
   1753 #ifdef XDEBUG
   1754   MF.verify();
   1755 #endif
   1756 }
   1757 
   1758 void X86FrameLowering::
   1759 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
   1760                               MachineBasicBlock::iterator I) const {
   1761   const X86InstrInfo &TII = *TM.getInstrInfo();
   1762   const X86RegisterInfo &RegInfo = *TM.getRegisterInfo();
   1763   unsigned StackPtr = RegInfo.getStackRegister();
   1764   bool reseveCallFrame = hasReservedCallFrame(MF);
   1765   int Opcode = I->getOpcode();
   1766   bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode();
   1767   bool IsLP64 = STI.isTarget64BitLP64();
   1768   DebugLoc DL = I->getDebugLoc();
   1769   uint64_t Amount = !reseveCallFrame ? I->getOperand(0).getImm() : 0;
   1770   uint64_t CalleeAmt = isDestroy ? I->getOperand(1).getImm() : 0;
   1771   I = MBB.erase(I);
   1772 
   1773   if (!reseveCallFrame) {
   1774     // If the stack pointer can be changed after prologue, turn the
   1775     // adjcallstackup instruction into a 'sub ESP, <amt>' and the
   1776     // adjcallstackdown instruction into 'add ESP, <amt>'
   1777     // TODO: consider using push / pop instead of sub + store / add
   1778     if (Amount == 0)
   1779       return;
   1780 
   1781     // We need to keep the stack aligned properly.  To do this, we round the
   1782     // amount of space needed for the outgoing arguments up to the next
   1783     // alignment boundary.
   1784     unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
   1785     Amount = (Amount + StackAlign - 1) / StackAlign * StackAlign;
   1786 
   1787     MachineInstr *New = 0;
   1788     if (Opcode == TII.getCallFrameSetupOpcode()) {
   1789       New = BuildMI(MF, DL, TII.get(getSUBriOpcode(IsLP64, Amount)),
   1790                     StackPtr)
   1791         .addReg(StackPtr)
   1792         .addImm(Amount);
   1793     } else {
   1794       assert(Opcode == TII.getCallFrameDestroyOpcode());
   1795 
   1796       // Factor out the amount the callee already popped.
   1797       Amount -= CalleeAmt;
   1798 
   1799       if (Amount) {
   1800         unsigned Opc = getADDriOpcode(IsLP64, Amount);
   1801         New = BuildMI(MF, DL, TII.get(Opc), StackPtr)
   1802           .addReg(StackPtr).addImm(Amount);
   1803       }
   1804     }
   1805 
   1806     if (New) {
   1807       // The EFLAGS implicit def is dead.
   1808       New->getOperand(3).setIsDead();
   1809 
   1810       // Replace the pseudo instruction with a new instruction.
   1811       MBB.insert(I, New);
   1812     }
   1813 
   1814     return;
   1815   }
   1816 
   1817   if (Opcode == TII.getCallFrameDestroyOpcode() && CalleeAmt) {
   1818     // If we are performing frame pointer elimination and if the callee pops
   1819     // something off the stack pointer, add it back.  We do this until we have
   1820     // more advanced stack pointer tracking ability.
   1821     unsigned Opc = getSUBriOpcode(IsLP64, CalleeAmt);
   1822     MachineInstr *New = BuildMI(MF, DL, TII.get(Opc), StackPtr)
   1823       .addReg(StackPtr).addImm(CalleeAmt);
   1824 
   1825     // The EFLAGS implicit def is dead.
   1826     New->getOperand(3).setIsDead();
   1827 
   1828     // We are not tracking the stack pointer adjustment by the callee, so make
   1829     // sure we restore the stack pointer immediately after the call, there may
   1830     // be spill code inserted between the CALL and ADJCALLSTACKUP instructions.
   1831     MachineBasicBlock::iterator B = MBB.begin();
   1832     while (I != B && !llvm::prior(I)->isCall())
   1833       --I;
   1834     MBB.insert(I, New);
   1835   }
   1836 }
   1837 
   1838