Home | History | Annotate | Download | only in Analysis
      1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the implementation of the scalar evolution analysis
     11 // engine, which is used primarily to analyze expressions involving induction
     12 // variables in loops.
     13 //
     14 // There are several aspects to this library.  First is the representation of
     15 // scalar expressions, which are represented as subclasses of the SCEV class.
     16 // These classes are used to represent certain types of subexpressions that we
     17 // can handle. We only create one SCEV of a particular shape, so
     18 // pointer-comparisons for equality are legal.
     19 //
     20 // One important aspect of the SCEV objects is that they are never cyclic, even
     21 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
     22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
     23 // recurrence) then we represent it directly as a recurrence node, otherwise we
     24 // represent it as a SCEVUnknown node.
     25 //
     26 // In addition to being able to represent expressions of various types, we also
     27 // have folders that are used to build the *canonical* representation for a
     28 // particular expression.  These folders are capable of using a variety of
     29 // rewrite rules to simplify the expressions.
     30 //
     31 // Once the folders are defined, we can implement the more interesting
     32 // higher-level code, such as the code that recognizes PHI nodes of various
     33 // types, computes the execution count of a loop, etc.
     34 //
     35 // TODO: We should use these routines and value representations to implement
     36 // dependence analysis!
     37 //
     38 //===----------------------------------------------------------------------===//
     39 //
     40 // There are several good references for the techniques used in this analysis.
     41 //
     42 //  Chains of recurrences -- a method to expedite the evaluation
     43 //  of closed-form functions
     44 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
     45 //
     46 //  On computational properties of chains of recurrences
     47 //  Eugene V. Zima
     48 //
     49 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
     50 //  Robert A. van Engelen
     51 //
     52 //  Efficient Symbolic Analysis for Optimizing Compilers
     53 //  Robert A. van Engelen
     54 //
     55 //  Using the chains of recurrences algebra for data dependence testing and
     56 //  induction variable substitution
     57 //  MS Thesis, Johnie Birch
     58 //
     59 //===----------------------------------------------------------------------===//
     60 
     61 #define DEBUG_TYPE "scalar-evolution"
     62 #include "llvm/Analysis/ScalarEvolution.h"
     63 #include "llvm/ADT/STLExtras.h"
     64 #include "llvm/ADT/SmallPtrSet.h"
     65 #include "llvm/ADT/Statistic.h"
     66 #include "llvm/Analysis/ConstantFolding.h"
     67 #include "llvm/Analysis/Dominators.h"
     68 #include "llvm/Analysis/InstructionSimplify.h"
     69 #include "llvm/Analysis/LoopInfo.h"
     70 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
     71 #include "llvm/Analysis/ValueTracking.h"
     72 #include "llvm/Assembly/Writer.h"
     73 #include "llvm/IR/Constants.h"
     74 #include "llvm/IR/DataLayout.h"
     75 #include "llvm/IR/DerivedTypes.h"
     76 #include "llvm/IR/GlobalAlias.h"
     77 #include "llvm/IR/GlobalVariable.h"
     78 #include "llvm/IR/Instructions.h"
     79 #include "llvm/IR/LLVMContext.h"
     80 #include "llvm/IR/Operator.h"
     81 #include "llvm/Support/CommandLine.h"
     82 #include "llvm/Support/ConstantRange.h"
     83 #include "llvm/Support/Debug.h"
     84 #include "llvm/Support/ErrorHandling.h"
     85 #include "llvm/Support/GetElementPtrTypeIterator.h"
     86 #include "llvm/Support/InstIterator.h"
     87 #include "llvm/Support/MathExtras.h"
     88 #include "llvm/Support/raw_ostream.h"
     89 #include "llvm/Target/TargetLibraryInfo.h"
     90 #include <algorithm>
     91 using namespace llvm;
     92 
     93 STATISTIC(NumArrayLenItCounts,
     94           "Number of trip counts computed with array length");
     95 STATISTIC(NumTripCountsComputed,
     96           "Number of loops with predictable loop counts");
     97 STATISTIC(NumTripCountsNotComputed,
     98           "Number of loops without predictable loop counts");
     99 STATISTIC(NumBruteForceTripCountsComputed,
    100           "Number of loops with trip counts computed by force");
    101 
    102 static cl::opt<unsigned>
    103 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
    104                         cl::desc("Maximum number of iterations SCEV will "
    105                                  "symbolically execute a constant "
    106                                  "derived loop"),
    107                         cl::init(100));
    108 
    109 // FIXME: Enable this with XDEBUG when the test suite is clean.
    110 static cl::opt<bool>
    111 VerifySCEV("verify-scev",
    112            cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
    113 
    114 INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
    115                 "Scalar Evolution Analysis", false, true)
    116 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
    117 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
    118 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
    119 INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
    120                 "Scalar Evolution Analysis", false, true)
    121 char ScalarEvolution::ID = 0;
    122 
    123 //===----------------------------------------------------------------------===//
    124 //                           SCEV class definitions
    125 //===----------------------------------------------------------------------===//
    126 
    127 //===----------------------------------------------------------------------===//
    128 // Implementation of the SCEV class.
    129 //
    130 
    131 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    132 void SCEV::dump() const {
    133   print(dbgs());
    134   dbgs() << '\n';
    135 }
    136 #endif
    137 
    138 void SCEV::print(raw_ostream &OS) const {
    139   switch (getSCEVType()) {
    140   case scConstant:
    141     WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false);
    142     return;
    143   case scTruncate: {
    144     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
    145     const SCEV *Op = Trunc->getOperand();
    146     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
    147        << *Trunc->getType() << ")";
    148     return;
    149   }
    150   case scZeroExtend: {
    151     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
    152     const SCEV *Op = ZExt->getOperand();
    153     OS << "(zext " << *Op->getType() << " " << *Op << " to "
    154        << *ZExt->getType() << ")";
    155     return;
    156   }
    157   case scSignExtend: {
    158     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
    159     const SCEV *Op = SExt->getOperand();
    160     OS << "(sext " << *Op->getType() << " " << *Op << " to "
    161        << *SExt->getType() << ")";
    162     return;
    163   }
    164   case scAddRecExpr: {
    165     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
    166     OS << "{" << *AR->getOperand(0);
    167     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
    168       OS << ",+," << *AR->getOperand(i);
    169     OS << "}<";
    170     if (AR->getNoWrapFlags(FlagNUW))
    171       OS << "nuw><";
    172     if (AR->getNoWrapFlags(FlagNSW))
    173       OS << "nsw><";
    174     if (AR->getNoWrapFlags(FlagNW) &&
    175         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
    176       OS << "nw><";
    177     WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false);
    178     OS << ">";
    179     return;
    180   }
    181   case scAddExpr:
    182   case scMulExpr:
    183   case scUMaxExpr:
    184   case scSMaxExpr: {
    185     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
    186     const char *OpStr = 0;
    187     switch (NAry->getSCEVType()) {
    188     case scAddExpr: OpStr = " + "; break;
    189     case scMulExpr: OpStr = " * "; break;
    190     case scUMaxExpr: OpStr = " umax "; break;
    191     case scSMaxExpr: OpStr = " smax "; break;
    192     }
    193     OS << "(";
    194     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
    195          I != E; ++I) {
    196       OS << **I;
    197       if (llvm::next(I) != E)
    198         OS << OpStr;
    199     }
    200     OS << ")";
    201     switch (NAry->getSCEVType()) {
    202     case scAddExpr:
    203     case scMulExpr:
    204       if (NAry->getNoWrapFlags(FlagNUW))
    205         OS << "<nuw>";
    206       if (NAry->getNoWrapFlags(FlagNSW))
    207         OS << "<nsw>";
    208     }
    209     return;
    210   }
    211   case scUDivExpr: {
    212     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
    213     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
    214     return;
    215   }
    216   case scUnknown: {
    217     const SCEVUnknown *U = cast<SCEVUnknown>(this);
    218     Type *AllocTy;
    219     if (U->isSizeOf(AllocTy)) {
    220       OS << "sizeof(" << *AllocTy << ")";
    221       return;
    222     }
    223     if (U->isAlignOf(AllocTy)) {
    224       OS << "alignof(" << *AllocTy << ")";
    225       return;
    226     }
    227 
    228     Type *CTy;
    229     Constant *FieldNo;
    230     if (U->isOffsetOf(CTy, FieldNo)) {
    231       OS << "offsetof(" << *CTy << ", ";
    232       WriteAsOperand(OS, FieldNo, false);
    233       OS << ")";
    234       return;
    235     }
    236 
    237     // Otherwise just print it normally.
    238     WriteAsOperand(OS, U->getValue(), false);
    239     return;
    240   }
    241   case scCouldNotCompute:
    242     OS << "***COULDNOTCOMPUTE***";
    243     return;
    244   default: break;
    245   }
    246   llvm_unreachable("Unknown SCEV kind!");
    247 }
    248 
    249 Type *SCEV::getType() const {
    250   switch (getSCEVType()) {
    251   case scConstant:
    252     return cast<SCEVConstant>(this)->getType();
    253   case scTruncate:
    254   case scZeroExtend:
    255   case scSignExtend:
    256     return cast<SCEVCastExpr>(this)->getType();
    257   case scAddRecExpr:
    258   case scMulExpr:
    259   case scUMaxExpr:
    260   case scSMaxExpr:
    261     return cast<SCEVNAryExpr>(this)->getType();
    262   case scAddExpr:
    263     return cast<SCEVAddExpr>(this)->getType();
    264   case scUDivExpr:
    265     return cast<SCEVUDivExpr>(this)->getType();
    266   case scUnknown:
    267     return cast<SCEVUnknown>(this)->getType();
    268   case scCouldNotCompute:
    269     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
    270   default:
    271     llvm_unreachable("Unknown SCEV kind!");
    272   }
    273 }
    274 
    275 bool SCEV::isZero() const {
    276   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
    277     return SC->getValue()->isZero();
    278   return false;
    279 }
    280 
    281 bool SCEV::isOne() const {
    282   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
    283     return SC->getValue()->isOne();
    284   return false;
    285 }
    286 
    287 bool SCEV::isAllOnesValue() const {
    288   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
    289     return SC->getValue()->isAllOnesValue();
    290   return false;
    291 }
    292 
    293 /// isNonConstantNegative - Return true if the specified scev is negated, but
    294 /// not a constant.
    295 bool SCEV::isNonConstantNegative() const {
    296   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
    297   if (!Mul) return false;
    298 
    299   // If there is a constant factor, it will be first.
    300   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
    301   if (!SC) return false;
    302 
    303   // Return true if the value is negative, this matches things like (-42 * V).
    304   return SC->getValue()->getValue().isNegative();
    305 }
    306 
    307 SCEVCouldNotCompute::SCEVCouldNotCompute() :
    308   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
    309 
    310 bool SCEVCouldNotCompute::classof(const SCEV *S) {
    311   return S->getSCEVType() == scCouldNotCompute;
    312 }
    313 
    314 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
    315   FoldingSetNodeID ID;
    316   ID.AddInteger(scConstant);
    317   ID.AddPointer(V);
    318   void *IP = 0;
    319   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
    320   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
    321   UniqueSCEVs.InsertNode(S, IP);
    322   return S;
    323 }
    324 
    325 const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
    326   return getConstant(ConstantInt::get(getContext(), Val));
    327 }
    328 
    329 const SCEV *
    330 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
    331   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
    332   return getConstant(ConstantInt::get(ITy, V, isSigned));
    333 }
    334 
    335 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
    336                            unsigned SCEVTy, const SCEV *op, Type *ty)
    337   : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
    338 
    339 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
    340                                    const SCEV *op, Type *ty)
    341   : SCEVCastExpr(ID, scTruncate, op, ty) {
    342   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
    343          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
    344          "Cannot truncate non-integer value!");
    345 }
    346 
    347 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
    348                                        const SCEV *op, Type *ty)
    349   : SCEVCastExpr(ID, scZeroExtend, op, ty) {
    350   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
    351          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
    352          "Cannot zero extend non-integer value!");
    353 }
    354 
    355 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
    356                                        const SCEV *op, Type *ty)
    357   : SCEVCastExpr(ID, scSignExtend, op, ty) {
    358   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
    359          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
    360          "Cannot sign extend non-integer value!");
    361 }
    362 
    363 void SCEVUnknown::deleted() {
    364   // Clear this SCEVUnknown from various maps.
    365   SE->forgetMemoizedResults(this);
    366 
    367   // Remove this SCEVUnknown from the uniquing map.
    368   SE->UniqueSCEVs.RemoveNode(this);
    369 
    370   // Release the value.
    371   setValPtr(0);
    372 }
    373 
    374 void SCEVUnknown::allUsesReplacedWith(Value *New) {
    375   // Clear this SCEVUnknown from various maps.
    376   SE->forgetMemoizedResults(this);
    377 
    378   // Remove this SCEVUnknown from the uniquing map.
    379   SE->UniqueSCEVs.RemoveNode(this);
    380 
    381   // Update this SCEVUnknown to point to the new value. This is needed
    382   // because there may still be outstanding SCEVs which still point to
    383   // this SCEVUnknown.
    384   setValPtr(New);
    385 }
    386 
    387 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
    388   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
    389     if (VCE->getOpcode() == Instruction::PtrToInt)
    390       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
    391         if (CE->getOpcode() == Instruction::GetElementPtr &&
    392             CE->getOperand(0)->isNullValue() &&
    393             CE->getNumOperands() == 2)
    394           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
    395             if (CI->isOne()) {
    396               AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
    397                                  ->getElementType();
    398               return true;
    399             }
    400 
    401   return false;
    402 }
    403 
    404 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
    405   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
    406     if (VCE->getOpcode() == Instruction::PtrToInt)
    407       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
    408         if (CE->getOpcode() == Instruction::GetElementPtr &&
    409             CE->getOperand(0)->isNullValue()) {
    410           Type *Ty =
    411             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
    412           if (StructType *STy = dyn_cast<StructType>(Ty))
    413             if (!STy->isPacked() &&
    414                 CE->getNumOperands() == 3 &&
    415                 CE->getOperand(1)->isNullValue()) {
    416               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
    417                 if (CI->isOne() &&
    418                     STy->getNumElements() == 2 &&
    419                     STy->getElementType(0)->isIntegerTy(1)) {
    420                   AllocTy = STy->getElementType(1);
    421                   return true;
    422                 }
    423             }
    424         }
    425 
    426   return false;
    427 }
    428 
    429 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
    430   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
    431     if (VCE->getOpcode() == Instruction::PtrToInt)
    432       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
    433         if (CE->getOpcode() == Instruction::GetElementPtr &&
    434             CE->getNumOperands() == 3 &&
    435             CE->getOperand(0)->isNullValue() &&
    436             CE->getOperand(1)->isNullValue()) {
    437           Type *Ty =
    438             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
    439           // Ignore vector types here so that ScalarEvolutionExpander doesn't
    440           // emit getelementptrs that index into vectors.
    441           if (Ty->isStructTy() || Ty->isArrayTy()) {
    442             CTy = Ty;
    443             FieldNo = CE->getOperand(2);
    444             return true;
    445           }
    446         }
    447 
    448   return false;
    449 }
    450 
    451 //===----------------------------------------------------------------------===//
    452 //                               SCEV Utilities
    453 //===----------------------------------------------------------------------===//
    454 
    455 namespace {
    456   /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
    457   /// than the complexity of the RHS.  This comparator is used to canonicalize
    458   /// expressions.
    459   class SCEVComplexityCompare {
    460     const LoopInfo *const LI;
    461   public:
    462     explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
    463 
    464     // Return true or false if LHS is less than, or at least RHS, respectively.
    465     bool operator()(const SCEV *LHS, const SCEV *RHS) const {
    466       return compare(LHS, RHS) < 0;
    467     }
    468 
    469     // Return negative, zero, or positive, if LHS is less than, equal to, or
    470     // greater than RHS, respectively. A three-way result allows recursive
    471     // comparisons to be more efficient.
    472     int compare(const SCEV *LHS, const SCEV *RHS) const {
    473       // Fast-path: SCEVs are uniqued so we can do a quick equality check.
    474       if (LHS == RHS)
    475         return 0;
    476 
    477       // Primarily, sort the SCEVs by their getSCEVType().
    478       unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
    479       if (LType != RType)
    480         return (int)LType - (int)RType;
    481 
    482       // Aside from the getSCEVType() ordering, the particular ordering
    483       // isn't very important except that it's beneficial to be consistent,
    484       // so that (a + b) and (b + a) don't end up as different expressions.
    485       switch (LType) {
    486       case scUnknown: {
    487         const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
    488         const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
    489 
    490         // Sort SCEVUnknown values with some loose heuristics. TODO: This is
    491         // not as complete as it could be.
    492         const Value *LV = LU->getValue(), *RV = RU->getValue();
    493 
    494         // Order pointer values after integer values. This helps SCEVExpander
    495         // form GEPs.
    496         bool LIsPointer = LV->getType()->isPointerTy(),
    497              RIsPointer = RV->getType()->isPointerTy();
    498         if (LIsPointer != RIsPointer)
    499           return (int)LIsPointer - (int)RIsPointer;
    500 
    501         // Compare getValueID values.
    502         unsigned LID = LV->getValueID(),
    503                  RID = RV->getValueID();
    504         if (LID != RID)
    505           return (int)LID - (int)RID;
    506 
    507         // Sort arguments by their position.
    508         if (const Argument *LA = dyn_cast<Argument>(LV)) {
    509           const Argument *RA = cast<Argument>(RV);
    510           unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
    511           return (int)LArgNo - (int)RArgNo;
    512         }
    513 
    514         // For instructions, compare their loop depth, and their operand
    515         // count.  This is pretty loose.
    516         if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
    517           const Instruction *RInst = cast<Instruction>(RV);
    518 
    519           // Compare loop depths.
    520           const BasicBlock *LParent = LInst->getParent(),
    521                            *RParent = RInst->getParent();
    522           if (LParent != RParent) {
    523             unsigned LDepth = LI->getLoopDepth(LParent),
    524                      RDepth = LI->getLoopDepth(RParent);
    525             if (LDepth != RDepth)
    526               return (int)LDepth - (int)RDepth;
    527           }
    528 
    529           // Compare the number of operands.
    530           unsigned LNumOps = LInst->getNumOperands(),
    531                    RNumOps = RInst->getNumOperands();
    532           return (int)LNumOps - (int)RNumOps;
    533         }
    534 
    535         return 0;
    536       }
    537 
    538       case scConstant: {
    539         const SCEVConstant *LC = cast<SCEVConstant>(LHS);
    540         const SCEVConstant *RC = cast<SCEVConstant>(RHS);
    541 
    542         // Compare constant values.
    543         const APInt &LA = LC->getValue()->getValue();
    544         const APInt &RA = RC->getValue()->getValue();
    545         unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
    546         if (LBitWidth != RBitWidth)
    547           return (int)LBitWidth - (int)RBitWidth;
    548         return LA.ult(RA) ? -1 : 1;
    549       }
    550 
    551       case scAddRecExpr: {
    552         const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
    553         const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
    554 
    555         // Compare addrec loop depths.
    556         const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
    557         if (LLoop != RLoop) {
    558           unsigned LDepth = LLoop->getLoopDepth(),
    559                    RDepth = RLoop->getLoopDepth();
    560           if (LDepth != RDepth)
    561             return (int)LDepth - (int)RDepth;
    562         }
    563 
    564         // Addrec complexity grows with operand count.
    565         unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
    566         if (LNumOps != RNumOps)
    567           return (int)LNumOps - (int)RNumOps;
    568 
    569         // Lexicographically compare.
    570         for (unsigned i = 0; i != LNumOps; ++i) {
    571           long X = compare(LA->getOperand(i), RA->getOperand(i));
    572           if (X != 0)
    573             return X;
    574         }
    575 
    576         return 0;
    577       }
    578 
    579       case scAddExpr:
    580       case scMulExpr:
    581       case scSMaxExpr:
    582       case scUMaxExpr: {
    583         const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
    584         const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
    585 
    586         // Lexicographically compare n-ary expressions.
    587         unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
    588         for (unsigned i = 0; i != LNumOps; ++i) {
    589           if (i >= RNumOps)
    590             return 1;
    591           long X = compare(LC->getOperand(i), RC->getOperand(i));
    592           if (X != 0)
    593             return X;
    594         }
    595         return (int)LNumOps - (int)RNumOps;
    596       }
    597 
    598       case scUDivExpr: {
    599         const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
    600         const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
    601 
    602         // Lexicographically compare udiv expressions.
    603         long X = compare(LC->getLHS(), RC->getLHS());
    604         if (X != 0)
    605           return X;
    606         return compare(LC->getRHS(), RC->getRHS());
    607       }
    608 
    609       case scTruncate:
    610       case scZeroExtend:
    611       case scSignExtend: {
    612         const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
    613         const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
    614 
    615         // Compare cast expressions by operand.
    616         return compare(LC->getOperand(), RC->getOperand());
    617       }
    618 
    619       default:
    620         llvm_unreachable("Unknown SCEV kind!");
    621       }
    622     }
    623   };
    624 }
    625 
    626 /// GroupByComplexity - Given a list of SCEV objects, order them by their
    627 /// complexity, and group objects of the same complexity together by value.
    628 /// When this routine is finished, we know that any duplicates in the vector are
    629 /// consecutive and that complexity is monotonically increasing.
    630 ///
    631 /// Note that we go take special precautions to ensure that we get deterministic
    632 /// results from this routine.  In other words, we don't want the results of
    633 /// this to depend on where the addresses of various SCEV objects happened to
    634 /// land in memory.
    635 ///
    636 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
    637                               LoopInfo *LI) {
    638   if (Ops.size() < 2) return;  // Noop
    639   if (Ops.size() == 2) {
    640     // This is the common case, which also happens to be trivially simple.
    641     // Special case it.
    642     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
    643     if (SCEVComplexityCompare(LI)(RHS, LHS))
    644       std::swap(LHS, RHS);
    645     return;
    646   }
    647 
    648   // Do the rough sort by complexity.
    649   std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
    650 
    651   // Now that we are sorted by complexity, group elements of the same
    652   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
    653   // be extremely short in practice.  Note that we take this approach because we
    654   // do not want to depend on the addresses of the objects we are grouping.
    655   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
    656     const SCEV *S = Ops[i];
    657     unsigned Complexity = S->getSCEVType();
    658 
    659     // If there are any objects of the same complexity and same value as this
    660     // one, group them.
    661     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
    662       if (Ops[j] == S) { // Found a duplicate.
    663         // Move it to immediately after i'th element.
    664         std::swap(Ops[i+1], Ops[j]);
    665         ++i;   // no need to rescan it.
    666         if (i == e-2) return;  // Done!
    667       }
    668     }
    669   }
    670 }
    671 
    672 
    673 
    674 //===----------------------------------------------------------------------===//
    675 //                      Simple SCEV method implementations
    676 //===----------------------------------------------------------------------===//
    677 
    678 /// BinomialCoefficient - Compute BC(It, K).  The result has width W.
    679 /// Assume, K > 0.
    680 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
    681                                        ScalarEvolution &SE,
    682                                        Type *ResultTy) {
    683   // Handle the simplest case efficiently.
    684   if (K == 1)
    685     return SE.getTruncateOrZeroExtend(It, ResultTy);
    686 
    687   // We are using the following formula for BC(It, K):
    688   //
    689   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
    690   //
    691   // Suppose, W is the bitwidth of the return value.  We must be prepared for
    692   // overflow.  Hence, we must assure that the result of our computation is
    693   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
    694   // safe in modular arithmetic.
    695   //
    696   // However, this code doesn't use exactly that formula; the formula it uses
    697   // is something like the following, where T is the number of factors of 2 in
    698   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
    699   // exponentiation:
    700   //
    701   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
    702   //
    703   // This formula is trivially equivalent to the previous formula.  However,
    704   // this formula can be implemented much more efficiently.  The trick is that
    705   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
    706   // arithmetic.  To do exact division in modular arithmetic, all we have
    707   // to do is multiply by the inverse.  Therefore, this step can be done at
    708   // width W.
    709   //
    710   // The next issue is how to safely do the division by 2^T.  The way this
    711   // is done is by doing the multiplication step at a width of at least W + T
    712   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
    713   // when we perform the division by 2^T (which is equivalent to a right shift
    714   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
    715   // truncated out after the division by 2^T.
    716   //
    717   // In comparison to just directly using the first formula, this technique
    718   // is much more efficient; using the first formula requires W * K bits,
    719   // but this formula less than W + K bits. Also, the first formula requires
    720   // a division step, whereas this formula only requires multiplies and shifts.
    721   //
    722   // It doesn't matter whether the subtraction step is done in the calculation
    723   // width or the input iteration count's width; if the subtraction overflows,
    724   // the result must be zero anyway.  We prefer here to do it in the width of
    725   // the induction variable because it helps a lot for certain cases; CodeGen
    726   // isn't smart enough to ignore the overflow, which leads to much less
    727   // efficient code if the width of the subtraction is wider than the native
    728   // register width.
    729   //
    730   // (It's possible to not widen at all by pulling out factors of 2 before
    731   // the multiplication; for example, K=2 can be calculated as
    732   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
    733   // extra arithmetic, so it's not an obvious win, and it gets
    734   // much more complicated for K > 3.)
    735 
    736   // Protection from insane SCEVs; this bound is conservative,
    737   // but it probably doesn't matter.
    738   if (K > 1000)
    739     return SE.getCouldNotCompute();
    740 
    741   unsigned W = SE.getTypeSizeInBits(ResultTy);
    742 
    743   // Calculate K! / 2^T and T; we divide out the factors of two before
    744   // multiplying for calculating K! / 2^T to avoid overflow.
    745   // Other overflow doesn't matter because we only care about the bottom
    746   // W bits of the result.
    747   APInt OddFactorial(W, 1);
    748   unsigned T = 1;
    749   for (unsigned i = 3; i <= K; ++i) {
    750     APInt Mult(W, i);
    751     unsigned TwoFactors = Mult.countTrailingZeros();
    752     T += TwoFactors;
    753     Mult = Mult.lshr(TwoFactors);
    754     OddFactorial *= Mult;
    755   }
    756 
    757   // We need at least W + T bits for the multiplication step
    758   unsigned CalculationBits = W + T;
    759 
    760   // Calculate 2^T, at width T+W.
    761   APInt DivFactor = APInt(CalculationBits, 1).shl(T);
    762 
    763   // Calculate the multiplicative inverse of K! / 2^T;
    764   // this multiplication factor will perform the exact division by
    765   // K! / 2^T.
    766   APInt Mod = APInt::getSignedMinValue(W+1);
    767   APInt MultiplyFactor = OddFactorial.zext(W+1);
    768   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
    769   MultiplyFactor = MultiplyFactor.trunc(W);
    770 
    771   // Calculate the product, at width T+W
    772   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
    773                                                       CalculationBits);
    774   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
    775   for (unsigned i = 1; i != K; ++i) {
    776     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
    777     Dividend = SE.getMulExpr(Dividend,
    778                              SE.getTruncateOrZeroExtend(S, CalculationTy));
    779   }
    780 
    781   // Divide by 2^T
    782   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
    783 
    784   // Truncate the result, and divide by K! / 2^T.
    785 
    786   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
    787                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
    788 }
    789 
    790 /// evaluateAtIteration - Return the value of this chain of recurrences at
    791 /// the specified iteration number.  We can evaluate this recurrence by
    792 /// multiplying each element in the chain by the binomial coefficient
    793 /// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
    794 ///
    795 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
    796 ///
    797 /// where BC(It, k) stands for binomial coefficient.
    798 ///
    799 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
    800                                                 ScalarEvolution &SE) const {
    801   const SCEV *Result = getStart();
    802   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
    803     // The computation is correct in the face of overflow provided that the
    804     // multiplication is performed _after_ the evaluation of the binomial
    805     // coefficient.
    806     const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
    807     if (isa<SCEVCouldNotCompute>(Coeff))
    808       return Coeff;
    809 
    810     Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
    811   }
    812   return Result;
    813 }
    814 
    815 //===----------------------------------------------------------------------===//
    816 //                    SCEV Expression folder implementations
    817 //===----------------------------------------------------------------------===//
    818 
    819 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
    820                                              Type *Ty) {
    821   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
    822          "This is not a truncating conversion!");
    823   assert(isSCEVable(Ty) &&
    824          "This is not a conversion to a SCEVable type!");
    825   Ty = getEffectiveSCEVType(Ty);
    826 
    827   FoldingSetNodeID ID;
    828   ID.AddInteger(scTruncate);
    829   ID.AddPointer(Op);
    830   ID.AddPointer(Ty);
    831   void *IP = 0;
    832   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
    833 
    834   // Fold if the operand is constant.
    835   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
    836     return getConstant(
    837       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
    838 
    839   // trunc(trunc(x)) --> trunc(x)
    840   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
    841     return getTruncateExpr(ST->getOperand(), Ty);
    842 
    843   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
    844   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
    845     return getTruncateOrSignExtend(SS->getOperand(), Ty);
    846 
    847   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
    848   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
    849     return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
    850 
    851   // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
    852   // eliminate all the truncates.
    853   if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
    854     SmallVector<const SCEV *, 4> Operands;
    855     bool hasTrunc = false;
    856     for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
    857       const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
    858       hasTrunc = isa<SCEVTruncateExpr>(S);
    859       Operands.push_back(S);
    860     }
    861     if (!hasTrunc)
    862       return getAddExpr(Operands);
    863     UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
    864   }
    865 
    866   // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
    867   // eliminate all the truncates.
    868   if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
    869     SmallVector<const SCEV *, 4> Operands;
    870     bool hasTrunc = false;
    871     for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
    872       const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
    873       hasTrunc = isa<SCEVTruncateExpr>(S);
    874       Operands.push_back(S);
    875     }
    876     if (!hasTrunc)
    877       return getMulExpr(Operands);
    878     UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
    879   }
    880 
    881   // If the input value is a chrec scev, truncate the chrec's operands.
    882   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
    883     SmallVector<const SCEV *, 4> Operands;
    884     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
    885       Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
    886     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
    887   }
    888 
    889   // The cast wasn't folded; create an explicit cast node. We can reuse
    890   // the existing insert position since if we get here, we won't have
    891   // made any changes which would invalidate it.
    892   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
    893                                                  Op, Ty);
    894   UniqueSCEVs.InsertNode(S, IP);
    895   return S;
    896 }
    897 
    898 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
    899                                                Type *Ty) {
    900   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
    901          "This is not an extending conversion!");
    902   assert(isSCEVable(Ty) &&
    903          "This is not a conversion to a SCEVable type!");
    904   Ty = getEffectiveSCEVType(Ty);
    905 
    906   // Fold if the operand is constant.
    907   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
    908     return getConstant(
    909       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
    910 
    911   // zext(zext(x)) --> zext(x)
    912   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
    913     return getZeroExtendExpr(SZ->getOperand(), Ty);
    914 
    915   // Before doing any expensive analysis, check to see if we've already
    916   // computed a SCEV for this Op and Ty.
    917   FoldingSetNodeID ID;
    918   ID.AddInteger(scZeroExtend);
    919   ID.AddPointer(Op);
    920   ID.AddPointer(Ty);
    921   void *IP = 0;
    922   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
    923 
    924   // zext(trunc(x)) --> zext(x) or x or trunc(x)
    925   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
    926     // It's possible the bits taken off by the truncate were all zero bits. If
    927     // so, we should be able to simplify this further.
    928     const SCEV *X = ST->getOperand();
    929     ConstantRange CR = getUnsignedRange(X);
    930     unsigned TruncBits = getTypeSizeInBits(ST->getType());
    931     unsigned NewBits = getTypeSizeInBits(Ty);
    932     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
    933             CR.zextOrTrunc(NewBits)))
    934       return getTruncateOrZeroExtend(X, Ty);
    935   }
    936 
    937   // If the input value is a chrec scev, and we can prove that the value
    938   // did not overflow the old, smaller, value, we can zero extend all of the
    939   // operands (often constants).  This allows analysis of something like
    940   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
    941   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
    942     if (AR->isAffine()) {
    943       const SCEV *Start = AR->getStart();
    944       const SCEV *Step = AR->getStepRecurrence(*this);
    945       unsigned BitWidth = getTypeSizeInBits(AR->getType());
    946       const Loop *L = AR->getLoop();
    947 
    948       // If we have special knowledge that this addrec won't overflow,
    949       // we don't need to do any further analysis.
    950       if (AR->getNoWrapFlags(SCEV::FlagNUW))
    951         return getAddRecExpr(getZeroExtendExpr(Start, Ty),
    952                              getZeroExtendExpr(Step, Ty),
    953                              L, AR->getNoWrapFlags());
    954 
    955       // Check whether the backedge-taken count is SCEVCouldNotCompute.
    956       // Note that this serves two purposes: It filters out loops that are
    957       // simply not analyzable, and it covers the case where this code is
    958       // being called from within backedge-taken count analysis, such that
    959       // attempting to ask for the backedge-taken count would likely result
    960       // in infinite recursion. In the later case, the analysis code will
    961       // cope with a conservative value, and it will take care to purge
    962       // that value once it has finished.
    963       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
    964       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
    965         // Manually compute the final value for AR, checking for
    966         // overflow.
    967 
    968         // Check whether the backedge-taken count can be losslessly casted to
    969         // the addrec's type. The count is always unsigned.
    970         const SCEV *CastedMaxBECount =
    971           getTruncateOrZeroExtend(MaxBECount, Start->getType());
    972         const SCEV *RecastedMaxBECount =
    973           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
    974         if (MaxBECount == RecastedMaxBECount) {
    975           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
    976           // Check whether Start+Step*MaxBECount has no unsigned overflow.
    977           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
    978           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
    979           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
    980           const SCEV *WideMaxBECount =
    981             getZeroExtendExpr(CastedMaxBECount, WideTy);
    982           const SCEV *OperandExtendedAdd =
    983             getAddExpr(WideStart,
    984                        getMulExpr(WideMaxBECount,
    985                                   getZeroExtendExpr(Step, WideTy)));
    986           if (ZAdd == OperandExtendedAdd) {
    987             // Cache knowledge of AR NUW, which is propagated to this AddRec.
    988             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
    989             // Return the expression with the addrec on the outside.
    990             return getAddRecExpr(getZeroExtendExpr(Start, Ty),
    991                                  getZeroExtendExpr(Step, Ty),
    992                                  L, AR->getNoWrapFlags());
    993           }
    994           // Similar to above, only this time treat the step value as signed.
    995           // This covers loops that count down.
    996           OperandExtendedAdd =
    997             getAddExpr(WideStart,
    998                        getMulExpr(WideMaxBECount,
    999                                   getSignExtendExpr(Step, WideTy)));
   1000           if (ZAdd == OperandExtendedAdd) {
   1001             // Cache knowledge of AR NW, which is propagated to this AddRec.
   1002             // Negative step causes unsigned wrap, but it still can't self-wrap.
   1003             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
   1004             // Return the expression with the addrec on the outside.
   1005             return getAddRecExpr(getZeroExtendExpr(Start, Ty),
   1006                                  getSignExtendExpr(Step, Ty),
   1007                                  L, AR->getNoWrapFlags());
   1008           }
   1009         }
   1010 
   1011         // If the backedge is guarded by a comparison with the pre-inc value
   1012         // the addrec is safe. Also, if the entry is guarded by a comparison
   1013         // with the start value and the backedge is guarded by a comparison
   1014         // with the post-inc value, the addrec is safe.
   1015         if (isKnownPositive(Step)) {
   1016           const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
   1017                                       getUnsignedRange(Step).getUnsignedMax());
   1018           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
   1019               (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
   1020                isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
   1021                                            AR->getPostIncExpr(*this), N))) {
   1022             // Cache knowledge of AR NUW, which is propagated to this AddRec.
   1023             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
   1024             // Return the expression with the addrec on the outside.
   1025             return getAddRecExpr(getZeroExtendExpr(Start, Ty),
   1026                                  getZeroExtendExpr(Step, Ty),
   1027                                  L, AR->getNoWrapFlags());
   1028           }
   1029         } else if (isKnownNegative(Step)) {
   1030           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
   1031                                       getSignedRange(Step).getSignedMin());
   1032           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
   1033               (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
   1034                isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
   1035                                            AR->getPostIncExpr(*this), N))) {
   1036             // Cache knowledge of AR NW, which is propagated to this AddRec.
   1037             // Negative step causes unsigned wrap, but it still can't self-wrap.
   1038             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
   1039             // Return the expression with the addrec on the outside.
   1040             return getAddRecExpr(getZeroExtendExpr(Start, Ty),
   1041                                  getSignExtendExpr(Step, Ty),
   1042                                  L, AR->getNoWrapFlags());
   1043           }
   1044         }
   1045       }
   1046     }
   1047 
   1048   // The cast wasn't folded; create an explicit cast node.
   1049   // Recompute the insert position, as it may have been invalidated.
   1050   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
   1051   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
   1052                                                    Op, Ty);
   1053   UniqueSCEVs.InsertNode(S, IP);
   1054   return S;
   1055 }
   1056 
   1057 // Get the limit of a recurrence such that incrementing by Step cannot cause
   1058 // signed overflow as long as the value of the recurrence within the loop does
   1059 // not exceed this limit before incrementing.
   1060 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
   1061                                            ICmpInst::Predicate *Pred,
   1062                                            ScalarEvolution *SE) {
   1063   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
   1064   if (SE->isKnownPositive(Step)) {
   1065     *Pred = ICmpInst::ICMP_SLT;
   1066     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
   1067                            SE->getSignedRange(Step).getSignedMax());
   1068   }
   1069   if (SE->isKnownNegative(Step)) {
   1070     *Pred = ICmpInst::ICMP_SGT;
   1071     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
   1072                        SE->getSignedRange(Step).getSignedMin());
   1073   }
   1074   return 0;
   1075 }
   1076 
   1077 // The recurrence AR has been shown to have no signed wrap. Typically, if we can
   1078 // prove NSW for AR, then we can just as easily prove NSW for its preincrement
   1079 // or postincrement sibling. This allows normalizing a sign extended AddRec as
   1080 // such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a
   1081 // result, the expression "Step + sext(PreIncAR)" is congruent with
   1082 // "sext(PostIncAR)"
   1083 static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR,
   1084                                             Type *Ty,
   1085                                             ScalarEvolution *SE) {
   1086   const Loop *L = AR->getLoop();
   1087   const SCEV *Start = AR->getStart();
   1088   const SCEV *Step = AR->getStepRecurrence(*SE);
   1089 
   1090   // Check for a simple looking step prior to loop entry.
   1091   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
   1092   if (!SA)
   1093     return 0;
   1094 
   1095   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
   1096   // subtraction is expensive. For this purpose, perform a quick and dirty
   1097   // difference, by checking for Step in the operand list.
   1098   SmallVector<const SCEV *, 4> DiffOps;
   1099   for (SCEVAddExpr::op_iterator I = SA->op_begin(), E = SA->op_end();
   1100        I != E; ++I) {
   1101     if (*I != Step)
   1102       DiffOps.push_back(*I);
   1103   }
   1104   if (DiffOps.size() == SA->getNumOperands())
   1105     return 0;
   1106 
   1107   // This is a postinc AR. Check for overflow on the preinc recurrence using the
   1108   // same three conditions that getSignExtendedExpr checks.
   1109 
   1110   // 1. NSW flags on the step increment.
   1111   const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
   1112   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
   1113     SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
   1114 
   1115   if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW))
   1116     return PreStart;
   1117 
   1118   // 2. Direct overflow check on the step operation's expression.
   1119   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
   1120   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
   1121   const SCEV *OperandExtendedStart =
   1122     SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy),
   1123                    SE->getSignExtendExpr(Step, WideTy));
   1124   if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) {
   1125     // Cache knowledge of PreAR NSW.
   1126     if (PreAR)
   1127       const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW);
   1128     // FIXME: this optimization needs a unit test
   1129     DEBUG(dbgs() << "SCEV: untested prestart overflow check\n");
   1130     return PreStart;
   1131   }
   1132 
   1133   // 3. Loop precondition.
   1134   ICmpInst::Predicate Pred;
   1135   const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE);
   1136 
   1137   if (OverflowLimit &&
   1138       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
   1139     return PreStart;
   1140   }
   1141   return 0;
   1142 }
   1143 
   1144 // Get the normalized sign-extended expression for this AddRec's Start.
   1145 static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR,
   1146                                             Type *Ty,
   1147                                             ScalarEvolution *SE) {
   1148   const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE);
   1149   if (!PreStart)
   1150     return SE->getSignExtendExpr(AR->getStart(), Ty);
   1151 
   1152   return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty),
   1153                         SE->getSignExtendExpr(PreStart, Ty));
   1154 }
   1155 
   1156 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
   1157                                                Type *Ty) {
   1158   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
   1159          "This is not an extending conversion!");
   1160   assert(isSCEVable(Ty) &&
   1161          "This is not a conversion to a SCEVable type!");
   1162   Ty = getEffectiveSCEVType(Ty);
   1163 
   1164   // Fold if the operand is constant.
   1165   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
   1166     return getConstant(
   1167       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
   1168 
   1169   // sext(sext(x)) --> sext(x)
   1170   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
   1171     return getSignExtendExpr(SS->getOperand(), Ty);
   1172 
   1173   // sext(zext(x)) --> zext(x)
   1174   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
   1175     return getZeroExtendExpr(SZ->getOperand(), Ty);
   1176 
   1177   // Before doing any expensive analysis, check to see if we've already
   1178   // computed a SCEV for this Op and Ty.
   1179   FoldingSetNodeID ID;
   1180   ID.AddInteger(scSignExtend);
   1181   ID.AddPointer(Op);
   1182   ID.AddPointer(Ty);
   1183   void *IP = 0;
   1184   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
   1185 
   1186   // If the input value is provably positive, build a zext instead.
   1187   if (isKnownNonNegative(Op))
   1188     return getZeroExtendExpr(Op, Ty);
   1189 
   1190   // sext(trunc(x)) --> sext(x) or x or trunc(x)
   1191   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
   1192     // It's possible the bits taken off by the truncate were all sign bits. If
   1193     // so, we should be able to simplify this further.
   1194     const SCEV *X = ST->getOperand();
   1195     ConstantRange CR = getSignedRange(X);
   1196     unsigned TruncBits = getTypeSizeInBits(ST->getType());
   1197     unsigned NewBits = getTypeSizeInBits(Ty);
   1198     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
   1199             CR.sextOrTrunc(NewBits)))
   1200       return getTruncateOrSignExtend(X, Ty);
   1201   }
   1202 
   1203   // If the input value is a chrec scev, and we can prove that the value
   1204   // did not overflow the old, smaller, value, we can sign extend all of the
   1205   // operands (often constants).  This allows analysis of something like
   1206   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
   1207   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
   1208     if (AR->isAffine()) {
   1209       const SCEV *Start = AR->getStart();
   1210       const SCEV *Step = AR->getStepRecurrence(*this);
   1211       unsigned BitWidth = getTypeSizeInBits(AR->getType());
   1212       const Loop *L = AR->getLoop();
   1213 
   1214       // If we have special knowledge that this addrec won't overflow,
   1215       // we don't need to do any further analysis.
   1216       if (AR->getNoWrapFlags(SCEV::FlagNSW))
   1217         return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
   1218                              getSignExtendExpr(Step, Ty),
   1219                              L, SCEV::FlagNSW);
   1220 
   1221       // Check whether the backedge-taken count is SCEVCouldNotCompute.
   1222       // Note that this serves two purposes: It filters out loops that are
   1223       // simply not analyzable, and it covers the case where this code is
   1224       // being called from within backedge-taken count analysis, such that
   1225       // attempting to ask for the backedge-taken count would likely result
   1226       // in infinite recursion. In the later case, the analysis code will
   1227       // cope with a conservative value, and it will take care to purge
   1228       // that value once it has finished.
   1229       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
   1230       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
   1231         // Manually compute the final value for AR, checking for
   1232         // overflow.
   1233 
   1234         // Check whether the backedge-taken count can be losslessly casted to
   1235         // the addrec's type. The count is always unsigned.
   1236         const SCEV *CastedMaxBECount =
   1237           getTruncateOrZeroExtend(MaxBECount, Start->getType());
   1238         const SCEV *RecastedMaxBECount =
   1239           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
   1240         if (MaxBECount == RecastedMaxBECount) {
   1241           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
   1242           // Check whether Start+Step*MaxBECount has no signed overflow.
   1243           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
   1244           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
   1245           const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
   1246           const SCEV *WideMaxBECount =
   1247             getZeroExtendExpr(CastedMaxBECount, WideTy);
   1248           const SCEV *OperandExtendedAdd =
   1249             getAddExpr(WideStart,
   1250                        getMulExpr(WideMaxBECount,
   1251                                   getSignExtendExpr(Step, WideTy)));
   1252           if (SAdd == OperandExtendedAdd) {
   1253             // Cache knowledge of AR NSW, which is propagated to this AddRec.
   1254             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
   1255             // Return the expression with the addrec on the outside.
   1256             return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
   1257                                  getSignExtendExpr(Step, Ty),
   1258                                  L, AR->getNoWrapFlags());
   1259           }
   1260           // Similar to above, only this time treat the step value as unsigned.
   1261           // This covers loops that count up with an unsigned step.
   1262           OperandExtendedAdd =
   1263             getAddExpr(WideStart,
   1264                        getMulExpr(WideMaxBECount,
   1265                                   getZeroExtendExpr(Step, WideTy)));
   1266           if (SAdd == OperandExtendedAdd) {
   1267             // Cache knowledge of AR NSW, which is propagated to this AddRec.
   1268             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
   1269             // Return the expression with the addrec on the outside.
   1270             return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
   1271                                  getZeroExtendExpr(Step, Ty),
   1272                                  L, AR->getNoWrapFlags());
   1273           }
   1274         }
   1275 
   1276         // If the backedge is guarded by a comparison with the pre-inc value
   1277         // the addrec is safe. Also, if the entry is guarded by a comparison
   1278         // with the start value and the backedge is guarded by a comparison
   1279         // with the post-inc value, the addrec is safe.
   1280         ICmpInst::Predicate Pred;
   1281         const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this);
   1282         if (OverflowLimit &&
   1283             (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
   1284              (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
   1285               isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
   1286                                           OverflowLimit)))) {
   1287           // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
   1288           const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
   1289           return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
   1290                                getSignExtendExpr(Step, Ty),
   1291                                L, AR->getNoWrapFlags());
   1292         }
   1293       }
   1294     }
   1295 
   1296   // The cast wasn't folded; create an explicit cast node.
   1297   // Recompute the insert position, as it may have been invalidated.
   1298   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
   1299   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
   1300                                                    Op, Ty);
   1301   UniqueSCEVs.InsertNode(S, IP);
   1302   return S;
   1303 }
   1304 
   1305 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
   1306 /// unspecified bits out to the given type.
   1307 ///
   1308 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
   1309                                               Type *Ty) {
   1310   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
   1311          "This is not an extending conversion!");
   1312   assert(isSCEVable(Ty) &&
   1313          "This is not a conversion to a SCEVable type!");
   1314   Ty = getEffectiveSCEVType(Ty);
   1315 
   1316   // Sign-extend negative constants.
   1317   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
   1318     if (SC->getValue()->getValue().isNegative())
   1319       return getSignExtendExpr(Op, Ty);
   1320 
   1321   // Peel off a truncate cast.
   1322   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
   1323     const SCEV *NewOp = T->getOperand();
   1324     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
   1325       return getAnyExtendExpr(NewOp, Ty);
   1326     return getTruncateOrNoop(NewOp, Ty);
   1327   }
   1328 
   1329   // Next try a zext cast. If the cast is folded, use it.
   1330   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
   1331   if (!isa<SCEVZeroExtendExpr>(ZExt))
   1332     return ZExt;
   1333 
   1334   // Next try a sext cast. If the cast is folded, use it.
   1335   const SCEV *SExt = getSignExtendExpr(Op, Ty);
   1336   if (!isa<SCEVSignExtendExpr>(SExt))
   1337     return SExt;
   1338 
   1339   // Force the cast to be folded into the operands of an addrec.
   1340   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
   1341     SmallVector<const SCEV *, 4> Ops;
   1342     for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
   1343          I != E; ++I)
   1344       Ops.push_back(getAnyExtendExpr(*I, Ty));
   1345     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
   1346   }
   1347 
   1348   // If the expression is obviously signed, use the sext cast value.
   1349   if (isa<SCEVSMaxExpr>(Op))
   1350     return SExt;
   1351 
   1352   // Absent any other information, use the zext cast value.
   1353   return ZExt;
   1354 }
   1355 
   1356 /// CollectAddOperandsWithScales - Process the given Ops list, which is
   1357 /// a list of operands to be added under the given scale, update the given
   1358 /// map. This is a helper function for getAddRecExpr. As an example of
   1359 /// what it does, given a sequence of operands that would form an add
   1360 /// expression like this:
   1361 ///
   1362 ///    m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
   1363 ///
   1364 /// where A and B are constants, update the map with these values:
   1365 ///
   1366 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
   1367 ///
   1368 /// and add 13 + A*B*29 to AccumulatedConstant.
   1369 /// This will allow getAddRecExpr to produce this:
   1370 ///
   1371 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
   1372 ///
   1373 /// This form often exposes folding opportunities that are hidden in
   1374 /// the original operand list.
   1375 ///
   1376 /// Return true iff it appears that any interesting folding opportunities
   1377 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
   1378 /// the common case where no interesting opportunities are present, and
   1379 /// is also used as a check to avoid infinite recursion.
   1380 ///
   1381 static bool
   1382 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
   1383                              SmallVector<const SCEV *, 8> &NewOps,
   1384                              APInt &AccumulatedConstant,
   1385                              const SCEV *const *Ops, size_t NumOperands,
   1386                              const APInt &Scale,
   1387                              ScalarEvolution &SE) {
   1388   bool Interesting = false;
   1389 
   1390   // Iterate over the add operands. They are sorted, with constants first.
   1391   unsigned i = 0;
   1392   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
   1393     ++i;
   1394     // Pull a buried constant out to the outside.
   1395     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
   1396       Interesting = true;
   1397     AccumulatedConstant += Scale * C->getValue()->getValue();
   1398   }
   1399 
   1400   // Next comes everything else. We're especially interested in multiplies
   1401   // here, but they're in the middle, so just visit the rest with one loop.
   1402   for (; i != NumOperands; ++i) {
   1403     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
   1404     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
   1405       APInt NewScale =
   1406         Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
   1407       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
   1408         // A multiplication of a constant with another add; recurse.
   1409         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
   1410         Interesting |=
   1411           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
   1412                                        Add->op_begin(), Add->getNumOperands(),
   1413                                        NewScale, SE);
   1414       } else {
   1415         // A multiplication of a constant with some other value. Update
   1416         // the map.
   1417         SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
   1418         const SCEV *Key = SE.getMulExpr(MulOps);
   1419         std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
   1420           M.insert(std::make_pair(Key, NewScale));
   1421         if (Pair.second) {
   1422           NewOps.push_back(Pair.first->first);
   1423         } else {
   1424           Pair.first->second += NewScale;
   1425           // The map already had an entry for this value, which may indicate
   1426           // a folding opportunity.
   1427           Interesting = true;
   1428         }
   1429       }
   1430     } else {
   1431       // An ordinary operand. Update the map.
   1432       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
   1433         M.insert(std::make_pair(Ops[i], Scale));
   1434       if (Pair.second) {
   1435         NewOps.push_back(Pair.first->first);
   1436       } else {
   1437         Pair.first->second += Scale;
   1438         // The map already had an entry for this value, which may indicate
   1439         // a folding opportunity.
   1440         Interesting = true;
   1441       }
   1442     }
   1443   }
   1444 
   1445   return Interesting;
   1446 }
   1447 
   1448 namespace {
   1449   struct APIntCompare {
   1450     bool operator()(const APInt &LHS, const APInt &RHS) const {
   1451       return LHS.ult(RHS);
   1452     }
   1453   };
   1454 }
   1455 
   1456 /// getAddExpr - Get a canonical add expression, or something simpler if
   1457 /// possible.
   1458 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
   1459                                         SCEV::NoWrapFlags Flags) {
   1460   assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
   1461          "only nuw or nsw allowed");
   1462   assert(!Ops.empty() && "Cannot get empty add!");
   1463   if (Ops.size() == 1) return Ops[0];
   1464 #ifndef NDEBUG
   1465   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
   1466   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
   1467     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
   1468            "SCEVAddExpr operand types don't match!");
   1469 #endif
   1470 
   1471   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
   1472   // And vice-versa.
   1473   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
   1474   SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
   1475   if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
   1476     bool All = true;
   1477     for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
   1478          E = Ops.end(); I != E; ++I)
   1479       if (!isKnownNonNegative(*I)) {
   1480         All = false;
   1481         break;
   1482       }
   1483     if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
   1484   }
   1485 
   1486   // Sort by complexity, this groups all similar expression types together.
   1487   GroupByComplexity(Ops, LI);
   1488 
   1489   // If there are any constants, fold them together.
   1490   unsigned Idx = 0;
   1491   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
   1492     ++Idx;
   1493     assert(Idx < Ops.size());
   1494     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
   1495       // We found two constants, fold them together!
   1496       Ops[0] = getConstant(LHSC->getValue()->getValue() +
   1497                            RHSC->getValue()->getValue());
   1498       if (Ops.size() == 2) return Ops[0];
   1499       Ops.erase(Ops.begin()+1);  // Erase the folded element
   1500       LHSC = cast<SCEVConstant>(Ops[0]);
   1501     }
   1502 
   1503     // If we are left with a constant zero being added, strip it off.
   1504     if (LHSC->getValue()->isZero()) {
   1505       Ops.erase(Ops.begin());
   1506       --Idx;
   1507     }
   1508 
   1509     if (Ops.size() == 1) return Ops[0];
   1510   }
   1511 
   1512   // Okay, check to see if the same value occurs in the operand list more than
   1513   // once.  If so, merge them together into an multiply expression.  Since we
   1514   // sorted the list, these values are required to be adjacent.
   1515   Type *Ty = Ops[0]->getType();
   1516   bool FoundMatch = false;
   1517   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
   1518     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
   1519       // Scan ahead to count how many equal operands there are.
   1520       unsigned Count = 2;
   1521       while (i+Count != e && Ops[i+Count] == Ops[i])
   1522         ++Count;
   1523       // Merge the values into a multiply.
   1524       const SCEV *Scale = getConstant(Ty, Count);
   1525       const SCEV *Mul = getMulExpr(Scale, Ops[i]);
   1526       if (Ops.size() == Count)
   1527         return Mul;
   1528       Ops[i] = Mul;
   1529       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
   1530       --i; e -= Count - 1;
   1531       FoundMatch = true;
   1532     }
   1533   if (FoundMatch)
   1534     return getAddExpr(Ops, Flags);
   1535 
   1536   // Check for truncates. If all the operands are truncated from the same
   1537   // type, see if factoring out the truncate would permit the result to be
   1538   // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
   1539   // if the contents of the resulting outer trunc fold to something simple.
   1540   for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
   1541     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
   1542     Type *DstType = Trunc->getType();
   1543     Type *SrcType = Trunc->getOperand()->getType();
   1544     SmallVector<const SCEV *, 8> LargeOps;
   1545     bool Ok = true;
   1546     // Check all the operands to see if they can be represented in the
   1547     // source type of the truncate.
   1548     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
   1549       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
   1550         if (T->getOperand()->getType() != SrcType) {
   1551           Ok = false;
   1552           break;
   1553         }
   1554         LargeOps.push_back(T->getOperand());
   1555       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
   1556         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
   1557       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
   1558         SmallVector<const SCEV *, 8> LargeMulOps;
   1559         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
   1560           if (const SCEVTruncateExpr *T =
   1561                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
   1562             if (T->getOperand()->getType() != SrcType) {
   1563               Ok = false;
   1564               break;
   1565             }
   1566             LargeMulOps.push_back(T->getOperand());
   1567           } else if (const SCEVConstant *C =
   1568                        dyn_cast<SCEVConstant>(M->getOperand(j))) {
   1569             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
   1570           } else {
   1571             Ok = false;
   1572             break;
   1573           }
   1574         }
   1575         if (Ok)
   1576           LargeOps.push_back(getMulExpr(LargeMulOps));
   1577       } else {
   1578         Ok = false;
   1579         break;
   1580       }
   1581     }
   1582     if (Ok) {
   1583       // Evaluate the expression in the larger type.
   1584       const SCEV *Fold = getAddExpr(LargeOps, Flags);
   1585       // If it folds to something simple, use it. Otherwise, don't.
   1586       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
   1587         return getTruncateExpr(Fold, DstType);
   1588     }
   1589   }
   1590 
   1591   // Skip past any other cast SCEVs.
   1592   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
   1593     ++Idx;
   1594 
   1595   // If there are add operands they would be next.
   1596   if (Idx < Ops.size()) {
   1597     bool DeletedAdd = false;
   1598     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
   1599       // If we have an add, expand the add operands onto the end of the operands
   1600       // list.
   1601       Ops.erase(Ops.begin()+Idx);
   1602       Ops.append(Add->op_begin(), Add->op_end());
   1603       DeletedAdd = true;
   1604     }
   1605 
   1606     // If we deleted at least one add, we added operands to the end of the list,
   1607     // and they are not necessarily sorted.  Recurse to resort and resimplify
   1608     // any operands we just acquired.
   1609     if (DeletedAdd)
   1610       return getAddExpr(Ops);
   1611   }
   1612 
   1613   // Skip over the add expression until we get to a multiply.
   1614   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
   1615     ++Idx;
   1616 
   1617   // Check to see if there are any folding opportunities present with
   1618   // operands multiplied by constant values.
   1619   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
   1620     uint64_t BitWidth = getTypeSizeInBits(Ty);
   1621     DenseMap<const SCEV *, APInt> M;
   1622     SmallVector<const SCEV *, 8> NewOps;
   1623     APInt AccumulatedConstant(BitWidth, 0);
   1624     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
   1625                                      Ops.data(), Ops.size(),
   1626                                      APInt(BitWidth, 1), *this)) {
   1627       // Some interesting folding opportunity is present, so its worthwhile to
   1628       // re-generate the operands list. Group the operands by constant scale,
   1629       // to avoid multiplying by the same constant scale multiple times.
   1630       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
   1631       for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
   1632            E = NewOps.end(); I != E; ++I)
   1633         MulOpLists[M.find(*I)->second].push_back(*I);
   1634       // Re-generate the operands list.
   1635       Ops.clear();
   1636       if (AccumulatedConstant != 0)
   1637         Ops.push_back(getConstant(AccumulatedConstant));
   1638       for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
   1639            I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
   1640         if (I->first != 0)
   1641           Ops.push_back(getMulExpr(getConstant(I->first),
   1642                                    getAddExpr(I->second)));
   1643       if (Ops.empty())
   1644         return getConstant(Ty, 0);
   1645       if (Ops.size() == 1)
   1646         return Ops[0];
   1647       return getAddExpr(Ops);
   1648     }
   1649   }
   1650 
   1651   // If we are adding something to a multiply expression, make sure the
   1652   // something is not already an operand of the multiply.  If so, merge it into
   1653   // the multiply.
   1654   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
   1655     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
   1656     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
   1657       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
   1658       if (isa<SCEVConstant>(MulOpSCEV))
   1659         continue;
   1660       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
   1661         if (MulOpSCEV == Ops[AddOp]) {
   1662           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
   1663           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
   1664           if (Mul->getNumOperands() != 2) {
   1665             // If the multiply has more than two operands, we must get the
   1666             // Y*Z term.
   1667             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
   1668                                                 Mul->op_begin()+MulOp);
   1669             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
   1670             InnerMul = getMulExpr(MulOps);
   1671           }
   1672           const SCEV *One = getConstant(Ty, 1);
   1673           const SCEV *AddOne = getAddExpr(One, InnerMul);
   1674           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
   1675           if (Ops.size() == 2) return OuterMul;
   1676           if (AddOp < Idx) {
   1677             Ops.erase(Ops.begin()+AddOp);
   1678             Ops.erase(Ops.begin()+Idx-1);
   1679           } else {
   1680             Ops.erase(Ops.begin()+Idx);
   1681             Ops.erase(Ops.begin()+AddOp-1);
   1682           }
   1683           Ops.push_back(OuterMul);
   1684           return getAddExpr(Ops);
   1685         }
   1686 
   1687       // Check this multiply against other multiplies being added together.
   1688       for (unsigned OtherMulIdx = Idx+1;
   1689            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
   1690            ++OtherMulIdx) {
   1691         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
   1692         // If MulOp occurs in OtherMul, we can fold the two multiplies
   1693         // together.
   1694         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
   1695              OMulOp != e; ++OMulOp)
   1696           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
   1697             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
   1698             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
   1699             if (Mul->getNumOperands() != 2) {
   1700               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
   1701                                                   Mul->op_begin()+MulOp);
   1702               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
   1703               InnerMul1 = getMulExpr(MulOps);
   1704             }
   1705             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
   1706             if (OtherMul->getNumOperands() != 2) {
   1707               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
   1708                                                   OtherMul->op_begin()+OMulOp);
   1709               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
   1710               InnerMul2 = getMulExpr(MulOps);
   1711             }
   1712             const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
   1713             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
   1714             if (Ops.size() == 2) return OuterMul;
   1715             Ops.erase(Ops.begin()+Idx);
   1716             Ops.erase(Ops.begin()+OtherMulIdx-1);
   1717             Ops.push_back(OuterMul);
   1718             return getAddExpr(Ops);
   1719           }
   1720       }
   1721     }
   1722   }
   1723 
   1724   // If there are any add recurrences in the operands list, see if any other
   1725   // added values are loop invariant.  If so, we can fold them into the
   1726   // recurrence.
   1727   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
   1728     ++Idx;
   1729 
   1730   // Scan over all recurrences, trying to fold loop invariants into them.
   1731   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
   1732     // Scan all of the other operands to this add and add them to the vector if
   1733     // they are loop invariant w.r.t. the recurrence.
   1734     SmallVector<const SCEV *, 8> LIOps;
   1735     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
   1736     const Loop *AddRecLoop = AddRec->getLoop();
   1737     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
   1738       if (isLoopInvariant(Ops[i], AddRecLoop)) {
   1739         LIOps.push_back(Ops[i]);
   1740         Ops.erase(Ops.begin()+i);
   1741         --i; --e;
   1742       }
   1743 
   1744     // If we found some loop invariants, fold them into the recurrence.
   1745     if (!LIOps.empty()) {
   1746       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
   1747       LIOps.push_back(AddRec->getStart());
   1748 
   1749       SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
   1750                                              AddRec->op_end());
   1751       AddRecOps[0] = getAddExpr(LIOps);
   1752 
   1753       // Build the new addrec. Propagate the NUW and NSW flags if both the
   1754       // outer add and the inner addrec are guaranteed to have no overflow.
   1755       // Always propagate NW.
   1756       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
   1757       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
   1758 
   1759       // If all of the other operands were loop invariant, we are done.
   1760       if (Ops.size() == 1) return NewRec;
   1761 
   1762       // Otherwise, add the folded AddRec by the non-invariant parts.
   1763       for (unsigned i = 0;; ++i)
   1764         if (Ops[i] == AddRec) {
   1765           Ops[i] = NewRec;
   1766           break;
   1767         }
   1768       return getAddExpr(Ops);
   1769     }
   1770 
   1771     // Okay, if there weren't any loop invariants to be folded, check to see if
   1772     // there are multiple AddRec's with the same loop induction variable being
   1773     // added together.  If so, we can fold them.
   1774     for (unsigned OtherIdx = Idx+1;
   1775          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
   1776          ++OtherIdx)
   1777       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
   1778         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
   1779         SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
   1780                                                AddRec->op_end());
   1781         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
   1782              ++OtherIdx)
   1783           if (const SCEVAddRecExpr *OtherAddRec =
   1784                 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
   1785             if (OtherAddRec->getLoop() == AddRecLoop) {
   1786               for (unsigned i = 0, e = OtherAddRec->getNumOperands();
   1787                    i != e; ++i) {
   1788                 if (i >= AddRecOps.size()) {
   1789                   AddRecOps.append(OtherAddRec->op_begin()+i,
   1790                                    OtherAddRec->op_end());
   1791                   break;
   1792                 }
   1793                 AddRecOps[i] = getAddExpr(AddRecOps[i],
   1794                                           OtherAddRec->getOperand(i));
   1795               }
   1796               Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
   1797             }
   1798         // Step size has changed, so we cannot guarantee no self-wraparound.
   1799         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
   1800         return getAddExpr(Ops);
   1801       }
   1802 
   1803     // Otherwise couldn't fold anything into this recurrence.  Move onto the
   1804     // next one.
   1805   }
   1806 
   1807   // Okay, it looks like we really DO need an add expr.  Check to see if we
   1808   // already have one, otherwise create a new one.
   1809   FoldingSetNodeID ID;
   1810   ID.AddInteger(scAddExpr);
   1811   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
   1812     ID.AddPointer(Ops[i]);
   1813   void *IP = 0;
   1814   SCEVAddExpr *S =
   1815     static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
   1816   if (!S) {
   1817     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
   1818     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
   1819     S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
   1820                                         O, Ops.size());
   1821     UniqueSCEVs.InsertNode(S, IP);
   1822   }
   1823   S->setNoWrapFlags(Flags);
   1824   return S;
   1825 }
   1826 
   1827 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
   1828   uint64_t k = i*j;
   1829   if (j > 1 && k / j != i) Overflow = true;
   1830   return k;
   1831 }
   1832 
   1833 /// Compute the result of "n choose k", the binomial coefficient.  If an
   1834 /// intermediate computation overflows, Overflow will be set and the return will
   1835 /// be garbage. Overflow is not cleared on absence of overflow.
   1836 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
   1837   // We use the multiplicative formula:
   1838   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
   1839   // At each iteration, we take the n-th term of the numeral and divide by the
   1840   // (k-n)th term of the denominator.  This division will always produce an
   1841   // integral result, and helps reduce the chance of overflow in the
   1842   // intermediate computations. However, we can still overflow even when the
   1843   // final result would fit.
   1844 
   1845   if (n == 0 || n == k) return 1;
   1846   if (k > n) return 0;
   1847 
   1848   if (k > n/2)
   1849     k = n-k;
   1850 
   1851   uint64_t r = 1;
   1852   for (uint64_t i = 1; i <= k; ++i) {
   1853     r = umul_ov(r, n-(i-1), Overflow);
   1854     r /= i;
   1855   }
   1856   return r;
   1857 }
   1858 
   1859 /// getMulExpr - Get a canonical multiply expression, or something simpler if
   1860 /// possible.
   1861 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
   1862                                         SCEV::NoWrapFlags Flags) {
   1863   assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
   1864          "only nuw or nsw allowed");
   1865   assert(!Ops.empty() && "Cannot get empty mul!");
   1866   if (Ops.size() == 1) return Ops[0];
   1867 #ifndef NDEBUG
   1868   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
   1869   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
   1870     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
   1871            "SCEVMulExpr operand types don't match!");
   1872 #endif
   1873 
   1874   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
   1875   // And vice-versa.
   1876   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
   1877   SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
   1878   if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
   1879     bool All = true;
   1880     for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
   1881          E = Ops.end(); I != E; ++I)
   1882       if (!isKnownNonNegative(*I)) {
   1883         All = false;
   1884         break;
   1885       }
   1886     if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
   1887   }
   1888 
   1889   // Sort by complexity, this groups all similar expression types together.
   1890   GroupByComplexity(Ops, LI);
   1891 
   1892   // If there are any constants, fold them together.
   1893   unsigned Idx = 0;
   1894   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
   1895 
   1896     // C1*(C2+V) -> C1*C2 + C1*V
   1897     if (Ops.size() == 2)
   1898       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
   1899         if (Add->getNumOperands() == 2 &&
   1900             isa<SCEVConstant>(Add->getOperand(0)))
   1901           return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
   1902                             getMulExpr(LHSC, Add->getOperand(1)));
   1903 
   1904     ++Idx;
   1905     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
   1906       // We found two constants, fold them together!
   1907       ConstantInt *Fold = ConstantInt::get(getContext(),
   1908                                            LHSC->getValue()->getValue() *
   1909                                            RHSC->getValue()->getValue());
   1910       Ops[0] = getConstant(Fold);
   1911       Ops.erase(Ops.begin()+1);  // Erase the folded element
   1912       if (Ops.size() == 1) return Ops[0];
   1913       LHSC = cast<SCEVConstant>(Ops[0]);
   1914     }
   1915 
   1916     // If we are left with a constant one being multiplied, strip it off.
   1917     if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
   1918       Ops.erase(Ops.begin());
   1919       --Idx;
   1920     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
   1921       // If we have a multiply of zero, it will always be zero.
   1922       return Ops[0];
   1923     } else if (Ops[0]->isAllOnesValue()) {
   1924       // If we have a mul by -1 of an add, try distributing the -1 among the
   1925       // add operands.
   1926       if (Ops.size() == 2) {
   1927         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
   1928           SmallVector<const SCEV *, 4> NewOps;
   1929           bool AnyFolded = false;
   1930           for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
   1931                  E = Add->op_end(); I != E; ++I) {
   1932             const SCEV *Mul = getMulExpr(Ops[0], *I);
   1933             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
   1934             NewOps.push_back(Mul);
   1935           }
   1936           if (AnyFolded)
   1937             return getAddExpr(NewOps);
   1938         }
   1939         else if (const SCEVAddRecExpr *
   1940                  AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
   1941           // Negation preserves a recurrence's no self-wrap property.
   1942           SmallVector<const SCEV *, 4> Operands;
   1943           for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
   1944                  E = AddRec->op_end(); I != E; ++I) {
   1945             Operands.push_back(getMulExpr(Ops[0], *I));
   1946           }
   1947           return getAddRecExpr(Operands, AddRec->getLoop(),
   1948                                AddRec->getNoWrapFlags(SCEV::FlagNW));
   1949         }
   1950       }
   1951     }
   1952 
   1953     if (Ops.size() == 1)
   1954       return Ops[0];
   1955   }
   1956 
   1957   // Skip over the add expression until we get to a multiply.
   1958   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
   1959     ++Idx;
   1960 
   1961   // If there are mul operands inline them all into this expression.
   1962   if (Idx < Ops.size()) {
   1963     bool DeletedMul = false;
   1964     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
   1965       // If we have an mul, expand the mul operands onto the end of the operands
   1966       // list.
   1967       Ops.erase(Ops.begin()+Idx);
   1968       Ops.append(Mul->op_begin(), Mul->op_end());
   1969       DeletedMul = true;
   1970     }
   1971 
   1972     // If we deleted at least one mul, we added operands to the end of the list,
   1973     // and they are not necessarily sorted.  Recurse to resort and resimplify
   1974     // any operands we just acquired.
   1975     if (DeletedMul)
   1976       return getMulExpr(Ops);
   1977   }
   1978 
   1979   // If there are any add recurrences in the operands list, see if any other
   1980   // added values are loop invariant.  If so, we can fold them into the
   1981   // recurrence.
   1982   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
   1983     ++Idx;
   1984 
   1985   // Scan over all recurrences, trying to fold loop invariants into them.
   1986   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
   1987     // Scan all of the other operands to this mul and add them to the vector if
   1988     // they are loop invariant w.r.t. the recurrence.
   1989     SmallVector<const SCEV *, 8> LIOps;
   1990     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
   1991     const Loop *AddRecLoop = AddRec->getLoop();
   1992     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
   1993       if (isLoopInvariant(Ops[i], AddRecLoop)) {
   1994         LIOps.push_back(Ops[i]);
   1995         Ops.erase(Ops.begin()+i);
   1996         --i; --e;
   1997       }
   1998 
   1999     // If we found some loop invariants, fold them into the recurrence.
   2000     if (!LIOps.empty()) {
   2001       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
   2002       SmallVector<const SCEV *, 4> NewOps;
   2003       NewOps.reserve(AddRec->getNumOperands());
   2004       const SCEV *Scale = getMulExpr(LIOps);
   2005       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
   2006         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
   2007 
   2008       // Build the new addrec. Propagate the NUW and NSW flags if both the
   2009       // outer mul and the inner addrec are guaranteed to have no overflow.
   2010       //
   2011       // No self-wrap cannot be guaranteed after changing the step size, but
   2012       // will be inferred if either NUW or NSW is true.
   2013       Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
   2014       const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
   2015 
   2016       // If all of the other operands were loop invariant, we are done.
   2017       if (Ops.size() == 1) return NewRec;
   2018 
   2019       // Otherwise, multiply the folded AddRec by the non-invariant parts.
   2020       for (unsigned i = 0;; ++i)
   2021         if (Ops[i] == AddRec) {
   2022           Ops[i] = NewRec;
   2023           break;
   2024         }
   2025       return getMulExpr(Ops);
   2026     }
   2027 
   2028     // Okay, if there weren't any loop invariants to be folded, check to see if
   2029     // there are multiple AddRec's with the same loop induction variable being
   2030     // multiplied together.  If so, we can fold them.
   2031     for (unsigned OtherIdx = Idx+1;
   2032          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
   2033          ++OtherIdx) {
   2034       if (AddRecLoop != cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop())
   2035         continue;
   2036 
   2037       // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
   2038       // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
   2039       //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
   2040       //   ]]],+,...up to x=2n}.
   2041       // Note that the arguments to choose() are always integers with values
   2042       // known at compile time, never SCEV objects.
   2043       //
   2044       // The implementation avoids pointless extra computations when the two
   2045       // addrec's are of different length (mathematically, it's equivalent to
   2046       // an infinite stream of zeros on the right).
   2047       bool OpsModified = false;
   2048       for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
   2049            ++OtherIdx) {
   2050         const SCEVAddRecExpr *OtherAddRec =
   2051           dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
   2052         if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
   2053           continue;
   2054 
   2055         bool Overflow = false;
   2056         Type *Ty = AddRec->getType();
   2057         bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
   2058         SmallVector<const SCEV*, 7> AddRecOps;
   2059         for (int x = 0, xe = AddRec->getNumOperands() +
   2060                OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
   2061           const SCEV *Term = getConstant(Ty, 0);
   2062           for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
   2063             uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
   2064             for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
   2065                    ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
   2066                  z < ze && !Overflow; ++z) {
   2067               uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
   2068               uint64_t Coeff;
   2069               if (LargerThan64Bits)
   2070                 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
   2071               else
   2072                 Coeff = Coeff1*Coeff2;
   2073               const SCEV *CoeffTerm = getConstant(Ty, Coeff);
   2074               const SCEV *Term1 = AddRec->getOperand(y-z);
   2075               const SCEV *Term2 = OtherAddRec->getOperand(z);
   2076               Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
   2077             }
   2078           }
   2079           AddRecOps.push_back(Term);
   2080         }
   2081         if (!Overflow) {
   2082           const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
   2083                                                 SCEV::FlagAnyWrap);
   2084           if (Ops.size() == 2) return NewAddRec;
   2085           Ops[Idx] = NewAddRec;
   2086           Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
   2087           OpsModified = true;
   2088           AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
   2089           if (!AddRec)
   2090             break;
   2091         }
   2092       }
   2093       if (OpsModified)
   2094         return getMulExpr(Ops);
   2095     }
   2096 
   2097     // Otherwise couldn't fold anything into this recurrence.  Move onto the
   2098     // next one.
   2099   }
   2100 
   2101   // Okay, it looks like we really DO need an mul expr.  Check to see if we
   2102   // already have one, otherwise create a new one.
   2103   FoldingSetNodeID ID;
   2104   ID.AddInteger(scMulExpr);
   2105   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
   2106     ID.AddPointer(Ops[i]);
   2107   void *IP = 0;
   2108   SCEVMulExpr *S =
   2109     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
   2110   if (!S) {
   2111     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
   2112     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
   2113     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
   2114                                         O, Ops.size());
   2115     UniqueSCEVs.InsertNode(S, IP);
   2116   }
   2117   S->setNoWrapFlags(Flags);
   2118   return S;
   2119 }
   2120 
   2121 /// getUDivExpr - Get a canonical unsigned division expression, or something
   2122 /// simpler if possible.
   2123 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
   2124                                          const SCEV *RHS) {
   2125   assert(getEffectiveSCEVType(LHS->getType()) ==
   2126          getEffectiveSCEVType(RHS->getType()) &&
   2127          "SCEVUDivExpr operand types don't match!");
   2128 
   2129   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
   2130     if (RHSC->getValue()->equalsInt(1))
   2131       return LHS;                               // X udiv 1 --> x
   2132     // If the denominator is zero, the result of the udiv is undefined. Don't
   2133     // try to analyze it, because the resolution chosen here may differ from
   2134     // the resolution chosen in other parts of the compiler.
   2135     if (!RHSC->getValue()->isZero()) {
   2136       // Determine if the division can be folded into the operands of
   2137       // its operands.
   2138       // TODO: Generalize this to non-constants by using known-bits information.
   2139       Type *Ty = LHS->getType();
   2140       unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
   2141       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
   2142       // For non-power-of-two values, effectively round the value up to the
   2143       // nearest power of two.
   2144       if (!RHSC->getValue()->getValue().isPowerOf2())
   2145         ++MaxShiftAmt;
   2146       IntegerType *ExtTy =
   2147         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
   2148       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
   2149         if (const SCEVConstant *Step =
   2150             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
   2151           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
   2152           const APInt &StepInt = Step->getValue()->getValue();
   2153           const APInt &DivInt = RHSC->getValue()->getValue();
   2154           if (!StepInt.urem(DivInt) &&
   2155               getZeroExtendExpr(AR, ExtTy) ==
   2156               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
   2157                             getZeroExtendExpr(Step, ExtTy),
   2158                             AR->getLoop(), SCEV::FlagAnyWrap)) {
   2159             SmallVector<const SCEV *, 4> Operands;
   2160             for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
   2161               Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
   2162             return getAddRecExpr(Operands, AR->getLoop(),
   2163                                  SCEV::FlagNW);
   2164           }
   2165           /// Get a canonical UDivExpr for a recurrence.
   2166           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
   2167           // We can currently only fold X%N if X is constant.
   2168           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
   2169           if (StartC && !DivInt.urem(StepInt) &&
   2170               getZeroExtendExpr(AR, ExtTy) ==
   2171               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
   2172                             getZeroExtendExpr(Step, ExtTy),
   2173                             AR->getLoop(), SCEV::FlagAnyWrap)) {
   2174             const APInt &StartInt = StartC->getValue()->getValue();
   2175             const APInt &StartRem = StartInt.urem(StepInt);
   2176             if (StartRem != 0)
   2177               LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
   2178                                   AR->getLoop(), SCEV::FlagNW);
   2179           }
   2180         }
   2181       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
   2182       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
   2183         SmallVector<const SCEV *, 4> Operands;
   2184         for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
   2185           Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
   2186         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
   2187           // Find an operand that's safely divisible.
   2188           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
   2189             const SCEV *Op = M->getOperand(i);
   2190             const SCEV *Div = getUDivExpr(Op, RHSC);
   2191             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
   2192               Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
   2193                                                       M->op_end());
   2194               Operands[i] = Div;
   2195               return getMulExpr(Operands);
   2196             }
   2197           }
   2198       }
   2199       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
   2200       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
   2201         SmallVector<const SCEV *, 4> Operands;
   2202         for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
   2203           Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
   2204         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
   2205           Operands.clear();
   2206           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
   2207             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
   2208             if (isa<SCEVUDivExpr>(Op) ||
   2209                 getMulExpr(Op, RHS) != A->getOperand(i))
   2210               break;
   2211             Operands.push_back(Op);
   2212           }
   2213           if (Operands.size() == A->getNumOperands())
   2214             return getAddExpr(Operands);
   2215         }
   2216       }
   2217 
   2218       // Fold if both operands are constant.
   2219       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
   2220         Constant *LHSCV = LHSC->getValue();
   2221         Constant *RHSCV = RHSC->getValue();
   2222         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
   2223                                                                    RHSCV)));
   2224       }
   2225     }
   2226   }
   2227 
   2228   FoldingSetNodeID ID;
   2229   ID.AddInteger(scUDivExpr);
   2230   ID.AddPointer(LHS);
   2231   ID.AddPointer(RHS);
   2232   void *IP = 0;
   2233   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
   2234   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
   2235                                              LHS, RHS);
   2236   UniqueSCEVs.InsertNode(S, IP);
   2237   return S;
   2238 }
   2239 
   2240 
   2241 /// getAddRecExpr - Get an add recurrence expression for the specified loop.
   2242 /// Simplify the expression as much as possible.
   2243 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
   2244                                            const Loop *L,
   2245                                            SCEV::NoWrapFlags Flags) {
   2246   SmallVector<const SCEV *, 4> Operands;
   2247   Operands.push_back(Start);
   2248   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
   2249     if (StepChrec->getLoop() == L) {
   2250       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
   2251       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
   2252     }
   2253 
   2254   Operands.push_back(Step);
   2255   return getAddRecExpr(Operands, L, Flags);
   2256 }
   2257 
   2258 /// getAddRecExpr - Get an add recurrence expression for the specified loop.
   2259 /// Simplify the expression as much as possible.
   2260 const SCEV *
   2261 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
   2262                                const Loop *L, SCEV::NoWrapFlags Flags) {
   2263   if (Operands.size() == 1) return Operands[0];
   2264 #ifndef NDEBUG
   2265   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
   2266   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
   2267     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
   2268            "SCEVAddRecExpr operand types don't match!");
   2269   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
   2270     assert(isLoopInvariant(Operands[i], L) &&
   2271            "SCEVAddRecExpr operand is not loop-invariant!");
   2272 #endif
   2273 
   2274   if (Operands.back()->isZero()) {
   2275     Operands.pop_back();
   2276     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
   2277   }
   2278 
   2279   // It's tempting to want to call getMaxBackedgeTakenCount count here and
   2280   // use that information to infer NUW and NSW flags. However, computing a
   2281   // BE count requires calling getAddRecExpr, so we may not yet have a
   2282   // meaningful BE count at this point (and if we don't, we'd be stuck
   2283   // with a SCEVCouldNotCompute as the cached BE count).
   2284 
   2285   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
   2286   // And vice-versa.
   2287   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
   2288   SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
   2289   if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
   2290     bool All = true;
   2291     for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
   2292          E = Operands.end(); I != E; ++I)
   2293       if (!isKnownNonNegative(*I)) {
   2294         All = false;
   2295         break;
   2296       }
   2297     if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
   2298   }
   2299 
   2300   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
   2301   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
   2302     const Loop *NestedLoop = NestedAR->getLoop();
   2303     if (L->contains(NestedLoop) ?
   2304         (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
   2305         (!NestedLoop->contains(L) &&
   2306          DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
   2307       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
   2308                                                   NestedAR->op_end());
   2309       Operands[0] = NestedAR->getStart();
   2310       // AddRecs require their operands be loop-invariant with respect to their
   2311       // loops. Don't perform this transformation if it would break this
   2312       // requirement.
   2313       bool AllInvariant = true;
   2314       for (unsigned i = 0, e = Operands.size(); i != e; ++i)
   2315         if (!isLoopInvariant(Operands[i], L)) {
   2316           AllInvariant = false;
   2317           break;
   2318         }
   2319       if (AllInvariant) {
   2320         // Create a recurrence for the outer loop with the same step size.
   2321         //
   2322         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
   2323         // inner recurrence has the same property.
   2324         SCEV::NoWrapFlags OuterFlags =
   2325           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
   2326 
   2327         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
   2328         AllInvariant = true;
   2329         for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
   2330           if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
   2331             AllInvariant = false;
   2332             break;
   2333           }
   2334         if (AllInvariant) {
   2335           // Ok, both add recurrences are valid after the transformation.
   2336           //
   2337           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
   2338           // the outer recurrence has the same property.
   2339           SCEV::NoWrapFlags InnerFlags =
   2340             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
   2341           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
   2342         }
   2343       }
   2344       // Reset Operands to its original state.
   2345       Operands[0] = NestedAR;
   2346     }
   2347   }
   2348 
   2349   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
   2350   // already have one, otherwise create a new one.
   2351   FoldingSetNodeID ID;
   2352   ID.AddInteger(scAddRecExpr);
   2353   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
   2354     ID.AddPointer(Operands[i]);
   2355   ID.AddPointer(L);
   2356   void *IP = 0;
   2357   SCEVAddRecExpr *S =
   2358     static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
   2359   if (!S) {
   2360     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
   2361     std::uninitialized_copy(Operands.begin(), Operands.end(), O);
   2362     S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
   2363                                            O, Operands.size(), L);
   2364     UniqueSCEVs.InsertNode(S, IP);
   2365   }
   2366   S->setNoWrapFlags(Flags);
   2367   return S;
   2368 }
   2369 
   2370 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
   2371                                          const SCEV *RHS) {
   2372   SmallVector<const SCEV *, 2> Ops;
   2373   Ops.push_back(LHS);
   2374   Ops.push_back(RHS);
   2375   return getSMaxExpr(Ops);
   2376 }
   2377 
   2378 const SCEV *
   2379 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
   2380   assert(!Ops.empty() && "Cannot get empty smax!");
   2381   if (Ops.size() == 1) return Ops[0];
   2382 #ifndef NDEBUG
   2383   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
   2384   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
   2385     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
   2386            "SCEVSMaxExpr operand types don't match!");
   2387 #endif
   2388 
   2389   // Sort by complexity, this groups all similar expression types together.
   2390   GroupByComplexity(Ops, LI);
   2391 
   2392   // If there are any constants, fold them together.
   2393   unsigned Idx = 0;
   2394   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
   2395     ++Idx;
   2396     assert(Idx < Ops.size());
   2397     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
   2398       // We found two constants, fold them together!
   2399       ConstantInt *Fold = ConstantInt::get(getContext(),
   2400                               APIntOps::smax(LHSC->getValue()->getValue(),
   2401                                              RHSC->getValue()->getValue()));
   2402       Ops[0] = getConstant(Fold);
   2403       Ops.erase(Ops.begin()+1);  // Erase the folded element
   2404       if (Ops.size() == 1) return Ops[0];
   2405       LHSC = cast<SCEVConstant>(Ops[0]);
   2406     }
   2407 
   2408     // If we are left with a constant minimum-int, strip it off.
   2409     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
   2410       Ops.erase(Ops.begin());
   2411       --Idx;
   2412     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
   2413       // If we have an smax with a constant maximum-int, it will always be
   2414       // maximum-int.
   2415       return Ops[0];
   2416     }
   2417 
   2418     if (Ops.size() == 1) return Ops[0];
   2419   }
   2420 
   2421   // Find the first SMax
   2422   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
   2423     ++Idx;
   2424 
   2425   // Check to see if one of the operands is an SMax. If so, expand its operands
   2426   // onto our operand list, and recurse to simplify.
   2427   if (Idx < Ops.size()) {
   2428     bool DeletedSMax = false;
   2429     while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
   2430       Ops.erase(Ops.begin()+Idx);
   2431       Ops.append(SMax->op_begin(), SMax->op_end());
   2432       DeletedSMax = true;
   2433     }
   2434 
   2435     if (DeletedSMax)
   2436       return getSMaxExpr(Ops);
   2437   }
   2438 
   2439   // Okay, check to see if the same value occurs in the operand list twice.  If
   2440   // so, delete one.  Since we sorted the list, these values are required to
   2441   // be adjacent.
   2442   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
   2443     //  X smax Y smax Y  -->  X smax Y
   2444     //  X smax Y         -->  X, if X is always greater than Y
   2445     if (Ops[i] == Ops[i+1] ||
   2446         isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
   2447       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
   2448       --i; --e;
   2449     } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
   2450       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
   2451       --i; --e;
   2452     }
   2453 
   2454   if (Ops.size() == 1) return Ops[0];
   2455 
   2456   assert(!Ops.empty() && "Reduced smax down to nothing!");
   2457 
   2458   // Okay, it looks like we really DO need an smax expr.  Check to see if we
   2459   // already have one, otherwise create a new one.
   2460   FoldingSetNodeID ID;
   2461   ID.AddInteger(scSMaxExpr);
   2462   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
   2463     ID.AddPointer(Ops[i]);
   2464   void *IP = 0;
   2465   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
   2466   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
   2467   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
   2468   SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
   2469                                              O, Ops.size());
   2470   UniqueSCEVs.InsertNode(S, IP);
   2471   return S;
   2472 }
   2473 
   2474 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
   2475                                          const SCEV *RHS) {
   2476   SmallVector<const SCEV *, 2> Ops;
   2477   Ops.push_back(LHS);
   2478   Ops.push_back(RHS);
   2479   return getUMaxExpr(Ops);
   2480 }
   2481 
   2482 const SCEV *
   2483 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
   2484   assert(!Ops.empty() && "Cannot get empty umax!");
   2485   if (Ops.size() == 1) return Ops[0];
   2486 #ifndef NDEBUG
   2487   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
   2488   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
   2489     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
   2490            "SCEVUMaxExpr operand types don't match!");
   2491 #endif
   2492 
   2493   // Sort by complexity, this groups all similar expression types together.
   2494   GroupByComplexity(Ops, LI);
   2495 
   2496   // If there are any constants, fold them together.
   2497   unsigned Idx = 0;
   2498   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
   2499     ++Idx;
   2500     assert(Idx < Ops.size());
   2501     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
   2502       // We found two constants, fold them together!
   2503       ConstantInt *Fold = ConstantInt::get(getContext(),
   2504                               APIntOps::umax(LHSC->getValue()->getValue(),
   2505                                              RHSC->getValue()->getValue()));
   2506       Ops[0] = getConstant(Fold);
   2507       Ops.erase(Ops.begin()+1);  // Erase the folded element
   2508       if (Ops.size() == 1) return Ops[0];
   2509       LHSC = cast<SCEVConstant>(Ops[0]);
   2510     }
   2511 
   2512     // If we are left with a constant minimum-int, strip it off.
   2513     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
   2514       Ops.erase(Ops.begin());
   2515       --Idx;
   2516     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
   2517       // If we have an umax with a constant maximum-int, it will always be
   2518       // maximum-int.
   2519       return Ops[0];
   2520     }
   2521 
   2522     if (Ops.size() == 1) return Ops[0];
   2523   }
   2524 
   2525   // Find the first UMax
   2526   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
   2527     ++Idx;
   2528 
   2529   // Check to see if one of the operands is a UMax. If so, expand its operands
   2530   // onto our operand list, and recurse to simplify.
   2531   if (Idx < Ops.size()) {
   2532     bool DeletedUMax = false;
   2533     while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
   2534       Ops.erase(Ops.begin()+Idx);
   2535       Ops.append(UMax->op_begin(), UMax->op_end());
   2536       DeletedUMax = true;
   2537     }
   2538 
   2539     if (DeletedUMax)
   2540       return getUMaxExpr(Ops);
   2541   }
   2542 
   2543   // Okay, check to see if the same value occurs in the operand list twice.  If
   2544   // so, delete one.  Since we sorted the list, these values are required to
   2545   // be adjacent.
   2546   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
   2547     //  X umax Y umax Y  -->  X umax Y
   2548     //  X umax Y         -->  X, if X is always greater than Y
   2549     if (Ops[i] == Ops[i+1] ||
   2550         isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
   2551       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
   2552       --i; --e;
   2553     } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
   2554       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
   2555       --i; --e;
   2556     }
   2557 
   2558   if (Ops.size() == 1) return Ops[0];
   2559 
   2560   assert(!Ops.empty() && "Reduced umax down to nothing!");
   2561 
   2562   // Okay, it looks like we really DO need a umax expr.  Check to see if we
   2563   // already have one, otherwise create a new one.
   2564   FoldingSetNodeID ID;
   2565   ID.AddInteger(scUMaxExpr);
   2566   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
   2567     ID.AddPointer(Ops[i]);
   2568   void *IP = 0;
   2569   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
   2570   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
   2571   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
   2572   SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
   2573                                              O, Ops.size());
   2574   UniqueSCEVs.InsertNode(S, IP);
   2575   return S;
   2576 }
   2577 
   2578 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
   2579                                          const SCEV *RHS) {
   2580   // ~smax(~x, ~y) == smin(x, y).
   2581   return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
   2582 }
   2583 
   2584 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
   2585                                          const SCEV *RHS) {
   2586   // ~umax(~x, ~y) == umin(x, y)
   2587   return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
   2588 }
   2589 
   2590 const SCEV *ScalarEvolution::getSizeOfExpr(Type *AllocTy) {
   2591   // If we have DataLayout, we can bypass creating a target-independent
   2592   // constant expression and then folding it back into a ConstantInt.
   2593   // This is just a compile-time optimization.
   2594   if (TD)
   2595     return getConstant(TD->getIntPtrType(getContext()),
   2596                        TD->getTypeAllocSize(AllocTy));
   2597 
   2598   Constant *C = ConstantExpr::getSizeOf(AllocTy);
   2599   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
   2600     if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
   2601       C = Folded;
   2602   Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
   2603   return getTruncateOrZeroExtend(getSCEV(C), Ty);
   2604 }
   2605 
   2606 const SCEV *ScalarEvolution::getAlignOfExpr(Type *AllocTy) {
   2607   Constant *C = ConstantExpr::getAlignOf(AllocTy);
   2608   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
   2609     if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
   2610       C = Folded;
   2611   Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
   2612   return getTruncateOrZeroExtend(getSCEV(C), Ty);
   2613 }
   2614 
   2615 const SCEV *ScalarEvolution::getOffsetOfExpr(StructType *STy,
   2616                                              unsigned FieldNo) {
   2617   // If we have DataLayout, we can bypass creating a target-independent
   2618   // constant expression and then folding it back into a ConstantInt.
   2619   // This is just a compile-time optimization.
   2620   if (TD)
   2621     return getConstant(TD->getIntPtrType(getContext()),
   2622                        TD->getStructLayout(STy)->getElementOffset(FieldNo));
   2623 
   2624   Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
   2625   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
   2626     if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
   2627       C = Folded;
   2628   Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
   2629   return getTruncateOrZeroExtend(getSCEV(C), Ty);
   2630 }
   2631 
   2632 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *CTy,
   2633                                              Constant *FieldNo) {
   2634   Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
   2635   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
   2636     if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
   2637       C = Folded;
   2638   Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
   2639   return getTruncateOrZeroExtend(getSCEV(C), Ty);
   2640 }
   2641 
   2642 const SCEV *ScalarEvolution::getUnknown(Value *V) {
   2643   // Don't attempt to do anything other than create a SCEVUnknown object
   2644   // here.  createSCEV only calls getUnknown after checking for all other
   2645   // interesting possibilities, and any other code that calls getUnknown
   2646   // is doing so in order to hide a value from SCEV canonicalization.
   2647 
   2648   FoldingSetNodeID ID;
   2649   ID.AddInteger(scUnknown);
   2650   ID.AddPointer(V);
   2651   void *IP = 0;
   2652   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
   2653     assert(cast<SCEVUnknown>(S)->getValue() == V &&
   2654            "Stale SCEVUnknown in uniquing map!");
   2655     return S;
   2656   }
   2657   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
   2658                                             FirstUnknown);
   2659   FirstUnknown = cast<SCEVUnknown>(S);
   2660   UniqueSCEVs.InsertNode(S, IP);
   2661   return S;
   2662 }
   2663 
   2664 //===----------------------------------------------------------------------===//
   2665 //            Basic SCEV Analysis and PHI Idiom Recognition Code
   2666 //
   2667 
   2668 /// isSCEVable - Test if values of the given type are analyzable within
   2669 /// the SCEV framework. This primarily includes integer types, and it
   2670 /// can optionally include pointer types if the ScalarEvolution class
   2671 /// has access to target-specific information.
   2672 bool ScalarEvolution::isSCEVable(Type *Ty) const {
   2673   // Integers and pointers are always SCEVable.
   2674   return Ty->isIntegerTy() || Ty->isPointerTy();
   2675 }
   2676 
   2677 /// getTypeSizeInBits - Return the size in bits of the specified type,
   2678 /// for which isSCEVable must return true.
   2679 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
   2680   assert(isSCEVable(Ty) && "Type is not SCEVable!");
   2681 
   2682   // If we have a DataLayout, use it!
   2683   if (TD)
   2684     return TD->getTypeSizeInBits(Ty);
   2685 
   2686   // Integer types have fixed sizes.
   2687   if (Ty->isIntegerTy())
   2688     return Ty->getPrimitiveSizeInBits();
   2689 
   2690   // The only other support type is pointer. Without DataLayout, conservatively
   2691   // assume pointers are 64-bit.
   2692   assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
   2693   return 64;
   2694 }
   2695 
   2696 /// getEffectiveSCEVType - Return a type with the same bitwidth as
   2697 /// the given type and which represents how SCEV will treat the given
   2698 /// type, for which isSCEVable must return true. For pointer types,
   2699 /// this is the pointer-sized integer type.
   2700 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
   2701   assert(isSCEVable(Ty) && "Type is not SCEVable!");
   2702 
   2703   if (Ty->isIntegerTy())
   2704     return Ty;
   2705 
   2706   // The only other support type is pointer.
   2707   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
   2708   if (TD) return TD->getIntPtrType(getContext());
   2709 
   2710   // Without DataLayout, conservatively assume pointers are 64-bit.
   2711   return Type::getInt64Ty(getContext());
   2712 }
   2713 
   2714 const SCEV *ScalarEvolution::getCouldNotCompute() {
   2715   return &CouldNotCompute;
   2716 }
   2717 
   2718 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
   2719 /// expression and create a new one.
   2720 const SCEV *ScalarEvolution::getSCEV(Value *V) {
   2721   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
   2722 
   2723   ValueExprMapType::const_iterator I = ValueExprMap.find_as(V);
   2724   if (I != ValueExprMap.end()) return I->second;
   2725   const SCEV *S = createSCEV(V);
   2726 
   2727   // The process of creating a SCEV for V may have caused other SCEVs
   2728   // to have been created, so it's necessary to insert the new entry
   2729   // from scratch, rather than trying to remember the insert position
   2730   // above.
   2731   ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
   2732   return S;
   2733 }
   2734 
   2735 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
   2736 ///
   2737 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
   2738   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
   2739     return getConstant(
   2740                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
   2741 
   2742   Type *Ty = V->getType();
   2743   Ty = getEffectiveSCEVType(Ty);
   2744   return getMulExpr(V,
   2745                   getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
   2746 }
   2747 
   2748 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
   2749 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
   2750   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
   2751     return getConstant(
   2752                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
   2753 
   2754   Type *Ty = V->getType();
   2755   Ty = getEffectiveSCEVType(Ty);
   2756   const SCEV *AllOnes =
   2757                    getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
   2758   return getMinusSCEV(AllOnes, V);
   2759 }
   2760 
   2761 /// getMinusSCEV - Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
   2762 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
   2763                                           SCEV::NoWrapFlags Flags) {
   2764   assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
   2765 
   2766   // Fast path: X - X --> 0.
   2767   if (LHS == RHS)
   2768     return getConstant(LHS->getType(), 0);
   2769 
   2770   // X - Y --> X + -Y
   2771   return getAddExpr(LHS, getNegativeSCEV(RHS), Flags);
   2772 }
   2773 
   2774 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
   2775 /// input value to the specified type.  If the type must be extended, it is zero
   2776 /// extended.
   2777 const SCEV *
   2778 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
   2779   Type *SrcTy = V->getType();
   2780   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
   2781          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
   2782          "Cannot truncate or zero extend with non-integer arguments!");
   2783   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
   2784     return V;  // No conversion
   2785   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
   2786     return getTruncateExpr(V, Ty);
   2787   return getZeroExtendExpr(V, Ty);
   2788 }
   2789 
   2790 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
   2791 /// input value to the specified type.  If the type must be extended, it is sign
   2792 /// extended.
   2793 const SCEV *
   2794 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
   2795                                          Type *Ty) {
   2796   Type *SrcTy = V->getType();
   2797   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
   2798          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
   2799          "Cannot truncate or zero extend with non-integer arguments!");
   2800   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
   2801     return V;  // No conversion
   2802   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
   2803     return getTruncateExpr(V, Ty);
   2804   return getSignExtendExpr(V, Ty);
   2805 }
   2806 
   2807 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
   2808 /// input value to the specified type.  If the type must be extended, it is zero
   2809 /// extended.  The conversion must not be narrowing.
   2810 const SCEV *
   2811 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
   2812   Type *SrcTy = V->getType();
   2813   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
   2814          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
   2815          "Cannot noop or zero extend with non-integer arguments!");
   2816   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
   2817          "getNoopOrZeroExtend cannot truncate!");
   2818   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
   2819     return V;  // No conversion
   2820   return getZeroExtendExpr(V, Ty);
   2821 }
   2822 
   2823 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
   2824 /// input value to the specified type.  If the type must be extended, it is sign
   2825 /// extended.  The conversion must not be narrowing.
   2826 const SCEV *
   2827 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
   2828   Type *SrcTy = V->getType();
   2829   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
   2830          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
   2831          "Cannot noop or sign extend with non-integer arguments!");
   2832   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
   2833          "getNoopOrSignExtend cannot truncate!");
   2834   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
   2835     return V;  // No conversion
   2836   return getSignExtendExpr(V, Ty);
   2837 }
   2838 
   2839 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
   2840 /// the input value to the specified type. If the type must be extended,
   2841 /// it is extended with unspecified bits. The conversion must not be
   2842 /// narrowing.
   2843 const SCEV *
   2844 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
   2845   Type *SrcTy = V->getType();
   2846   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
   2847          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
   2848          "Cannot noop or any extend with non-integer arguments!");
   2849   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
   2850          "getNoopOrAnyExtend cannot truncate!");
   2851   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
   2852     return V;  // No conversion
   2853   return getAnyExtendExpr(V, Ty);
   2854 }
   2855 
   2856 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
   2857 /// input value to the specified type.  The conversion must not be widening.
   2858 const SCEV *
   2859 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
   2860   Type *SrcTy = V->getType();
   2861   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
   2862          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
   2863          "Cannot truncate or noop with non-integer arguments!");
   2864   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
   2865          "getTruncateOrNoop cannot extend!");
   2866   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
   2867     return V;  // No conversion
   2868   return getTruncateExpr(V, Ty);
   2869 }
   2870 
   2871 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of
   2872 /// the types using zero-extension, and then perform a umax operation
   2873 /// with them.
   2874 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
   2875                                                         const SCEV *RHS) {
   2876   const SCEV *PromotedLHS = LHS;
   2877   const SCEV *PromotedRHS = RHS;
   2878 
   2879   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
   2880     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
   2881   else
   2882     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
   2883 
   2884   return getUMaxExpr(PromotedLHS, PromotedRHS);
   2885 }
   2886 
   2887 /// getUMinFromMismatchedTypes - Promote the operands to the wider of
   2888 /// the types using zero-extension, and then perform a umin operation
   2889 /// with them.
   2890 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
   2891                                                         const SCEV *RHS) {
   2892   const SCEV *PromotedLHS = LHS;
   2893   const SCEV *PromotedRHS = RHS;
   2894 
   2895   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
   2896     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
   2897   else
   2898     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
   2899 
   2900   return getUMinExpr(PromotedLHS, PromotedRHS);
   2901 }
   2902 
   2903 /// getPointerBase - Transitively follow the chain of pointer-type operands
   2904 /// until reaching a SCEV that does not have a single pointer operand. This
   2905 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
   2906 /// but corner cases do exist.
   2907 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
   2908   // A pointer operand may evaluate to a nonpointer expression, such as null.
   2909   if (!V->getType()->isPointerTy())
   2910     return V;
   2911 
   2912   if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
   2913     return getPointerBase(Cast->getOperand());
   2914   }
   2915   else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
   2916     const SCEV *PtrOp = 0;
   2917     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
   2918          I != E; ++I) {
   2919       if ((*I)->getType()->isPointerTy()) {
   2920         // Cannot find the base of an expression with multiple pointer operands.
   2921         if (PtrOp)
   2922           return V;
   2923         PtrOp = *I;
   2924       }
   2925     }
   2926     if (!PtrOp)
   2927       return V;
   2928     return getPointerBase(PtrOp);
   2929   }
   2930   return V;
   2931 }
   2932 
   2933 /// PushDefUseChildren - Push users of the given Instruction
   2934 /// onto the given Worklist.
   2935 static void
   2936 PushDefUseChildren(Instruction *I,
   2937                    SmallVectorImpl<Instruction *> &Worklist) {
   2938   // Push the def-use children onto the Worklist stack.
   2939   for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
   2940        UI != UE; ++UI)
   2941     Worklist.push_back(cast<Instruction>(*UI));
   2942 }
   2943 
   2944 /// ForgetSymbolicValue - This looks up computed SCEV values for all
   2945 /// instructions that depend on the given instruction and removes them from
   2946 /// the ValueExprMapType map if they reference SymName. This is used during PHI
   2947 /// resolution.
   2948 void
   2949 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
   2950   SmallVector<Instruction *, 16> Worklist;
   2951   PushDefUseChildren(PN, Worklist);
   2952 
   2953   SmallPtrSet<Instruction *, 8> Visited;
   2954   Visited.insert(PN);
   2955   while (!Worklist.empty()) {
   2956     Instruction *I = Worklist.pop_back_val();
   2957     if (!Visited.insert(I)) continue;
   2958 
   2959     ValueExprMapType::iterator It =
   2960       ValueExprMap.find_as(static_cast<Value *>(I));
   2961     if (It != ValueExprMap.end()) {
   2962       const SCEV *Old = It->second;
   2963 
   2964       // Short-circuit the def-use traversal if the symbolic name
   2965       // ceases to appear in expressions.
   2966       if (Old != SymName && !hasOperand(Old, SymName))
   2967         continue;
   2968 
   2969       // SCEVUnknown for a PHI either means that it has an unrecognized
   2970       // structure, it's a PHI that's in the progress of being computed
   2971       // by createNodeForPHI, or it's a single-value PHI. In the first case,
   2972       // additional loop trip count information isn't going to change anything.
   2973       // In the second case, createNodeForPHI will perform the necessary
   2974       // updates on its own when it gets to that point. In the third, we do
   2975       // want to forget the SCEVUnknown.
   2976       if (!isa<PHINode>(I) ||
   2977           !isa<SCEVUnknown>(Old) ||
   2978           (I != PN && Old == SymName)) {
   2979         forgetMemoizedResults(Old);
   2980         ValueExprMap.erase(It);
   2981       }
   2982     }
   2983 
   2984     PushDefUseChildren(I, Worklist);
   2985   }
   2986 }
   2987 
   2988 /// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
   2989 /// a loop header, making it a potential recurrence, or it doesn't.
   2990 ///
   2991 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
   2992   if (const Loop *L = LI->getLoopFor(PN->getParent()))
   2993     if (L->getHeader() == PN->getParent()) {
   2994       // The loop may have multiple entrances or multiple exits; we can analyze
   2995       // this phi as an addrec if it has a unique entry value and a unique
   2996       // backedge value.
   2997       Value *BEValueV = 0, *StartValueV = 0;
   2998       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
   2999         Value *V = PN->getIncomingValue(i);
   3000         if (L->contains(PN->getIncomingBlock(i))) {
   3001           if (!BEValueV) {
   3002             BEValueV = V;
   3003           } else if (BEValueV != V) {
   3004             BEValueV = 0;
   3005             break;
   3006           }
   3007         } else if (!StartValueV) {
   3008           StartValueV = V;
   3009         } else if (StartValueV != V) {
   3010           StartValueV = 0;
   3011           break;
   3012         }
   3013       }
   3014       if (BEValueV && StartValueV) {
   3015         // While we are analyzing this PHI node, handle its value symbolically.
   3016         const SCEV *SymbolicName = getUnknown(PN);
   3017         assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
   3018                "PHI node already processed?");
   3019         ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
   3020 
   3021         // Using this symbolic name for the PHI, analyze the value coming around
   3022         // the back-edge.
   3023         const SCEV *BEValue = getSCEV(BEValueV);
   3024 
   3025         // NOTE: If BEValue is loop invariant, we know that the PHI node just
   3026         // has a special value for the first iteration of the loop.
   3027 
   3028         // If the value coming around the backedge is an add with the symbolic
   3029         // value we just inserted, then we found a simple induction variable!
   3030         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
   3031           // If there is a single occurrence of the symbolic value, replace it
   3032           // with a recurrence.
   3033           unsigned FoundIndex = Add->getNumOperands();
   3034           for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
   3035             if (Add->getOperand(i) == SymbolicName)
   3036               if (FoundIndex == e) {
   3037                 FoundIndex = i;
   3038                 break;
   3039               }
   3040 
   3041           if (FoundIndex != Add->getNumOperands()) {
   3042             // Create an add with everything but the specified operand.
   3043             SmallVector<const SCEV *, 8> Ops;
   3044             for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
   3045               if (i != FoundIndex)
   3046                 Ops.push_back(Add->getOperand(i));
   3047             const SCEV *Accum = getAddExpr(Ops);
   3048 
   3049             // This is not a valid addrec if the step amount is varying each
   3050             // loop iteration, but is not itself an addrec in this loop.
   3051             if (isLoopInvariant(Accum, L) ||
   3052                 (isa<SCEVAddRecExpr>(Accum) &&
   3053                  cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
   3054               SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
   3055 
   3056               // If the increment doesn't overflow, then neither the addrec nor
   3057               // the post-increment will overflow.
   3058               if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
   3059                 if (OBO->hasNoUnsignedWrap())
   3060                   Flags = setFlags(Flags, SCEV::FlagNUW);
   3061                 if (OBO->hasNoSignedWrap())
   3062                   Flags = setFlags(Flags, SCEV::FlagNSW);
   3063               } else if (const GEPOperator *GEP =
   3064                          dyn_cast<GEPOperator>(BEValueV)) {
   3065                 // If the increment is an inbounds GEP, then we know the address
   3066                 // space cannot be wrapped around. We cannot make any guarantee
   3067                 // about signed or unsigned overflow because pointers are
   3068                 // unsigned but we may have a negative index from the base
   3069                 // pointer.
   3070                 if (GEP->isInBounds())
   3071                   Flags = setFlags(Flags, SCEV::FlagNW);
   3072               }
   3073 
   3074               const SCEV *StartVal = getSCEV(StartValueV);
   3075               const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
   3076 
   3077               // Since the no-wrap flags are on the increment, they apply to the
   3078               // post-incremented value as well.
   3079               if (isLoopInvariant(Accum, L))
   3080                 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
   3081                                     Accum, L, Flags);
   3082 
   3083               // Okay, for the entire analysis of this edge we assumed the PHI
   3084               // to be symbolic.  We now need to go back and purge all of the
   3085               // entries for the scalars that use the symbolic expression.
   3086               ForgetSymbolicName(PN, SymbolicName);
   3087               ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
   3088               return PHISCEV;
   3089             }
   3090           }
   3091         } else if (const SCEVAddRecExpr *AddRec =
   3092                      dyn_cast<SCEVAddRecExpr>(BEValue)) {
   3093           // Otherwise, this could be a loop like this:
   3094           //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
   3095           // In this case, j = {1,+,1}  and BEValue is j.
   3096           // Because the other in-value of i (0) fits the evolution of BEValue
   3097           // i really is an addrec evolution.
   3098           if (AddRec->getLoop() == L && AddRec->isAffine()) {
   3099             const SCEV *StartVal = getSCEV(StartValueV);
   3100 
   3101             // If StartVal = j.start - j.stride, we can use StartVal as the
   3102             // initial step of the addrec evolution.
   3103             if (StartVal == getMinusSCEV(AddRec->getOperand(0),
   3104                                          AddRec->getOperand(1))) {
   3105               // FIXME: For constant StartVal, we should be able to infer
   3106               // no-wrap flags.
   3107               const SCEV *PHISCEV =
   3108                 getAddRecExpr(StartVal, AddRec->getOperand(1), L,
   3109                               SCEV::FlagAnyWrap);
   3110 
   3111               // Okay, for the entire analysis of this edge we assumed the PHI
   3112               // to be symbolic.  We now need to go back and purge all of the
   3113               // entries for the scalars that use the symbolic expression.
   3114               ForgetSymbolicName(PN, SymbolicName);
   3115               ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
   3116               return PHISCEV;
   3117             }
   3118           }
   3119         }
   3120       }
   3121     }
   3122 
   3123   // If the PHI has a single incoming value, follow that value, unless the
   3124   // PHI's incoming blocks are in a different loop, in which case doing so
   3125   // risks breaking LCSSA form. Instcombine would normally zap these, but
   3126   // it doesn't have DominatorTree information, so it may miss cases.
   3127   if (Value *V = SimplifyInstruction(PN, TD, TLI, DT))
   3128     if (LI->replacementPreservesLCSSAForm(PN, V))
   3129       return getSCEV(V);
   3130 
   3131   // If it's not a loop phi, we can't handle it yet.
   3132   return getUnknown(PN);
   3133 }
   3134 
   3135 /// createNodeForGEP - Expand GEP instructions into add and multiply
   3136 /// operations. This allows them to be analyzed by regular SCEV code.
   3137 ///
   3138 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
   3139 
   3140   // Don't blindly transfer the inbounds flag from the GEP instruction to the
   3141   // Add expression, because the Instruction may be guarded by control flow
   3142   // and the no-overflow bits may not be valid for the expression in any
   3143   // context.
   3144   bool isInBounds = GEP->isInBounds();
   3145 
   3146   Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
   3147   Value *Base = GEP->getOperand(0);
   3148   // Don't attempt to analyze GEPs over unsized objects.
   3149   if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
   3150     return getUnknown(GEP);
   3151   const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
   3152   gep_type_iterator GTI = gep_type_begin(GEP);
   3153   for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
   3154                                       E = GEP->op_end();
   3155        I != E; ++I) {
   3156     Value *Index = *I;
   3157     // Compute the (potentially symbolic) offset in bytes for this index.
   3158     if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
   3159       // For a struct, add the member offset.
   3160       unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
   3161       const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
   3162 
   3163       // Add the field offset to the running total offset.
   3164       TotalOffset = getAddExpr(TotalOffset, FieldOffset);
   3165     } else {
   3166       // For an array, add the element offset, explicitly scaled.
   3167       const SCEV *ElementSize = getSizeOfExpr(*GTI);
   3168       const SCEV *IndexS = getSCEV(Index);
   3169       // Getelementptr indices are signed.
   3170       IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
   3171 
   3172       // Multiply the index by the element size to compute the element offset.
   3173       const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize,
   3174                                            isInBounds ? SCEV::FlagNSW :
   3175                                            SCEV::FlagAnyWrap);
   3176 
   3177       // Add the element offset to the running total offset.
   3178       TotalOffset = getAddExpr(TotalOffset, LocalOffset);
   3179     }
   3180   }
   3181 
   3182   // Get the SCEV for the GEP base.
   3183   const SCEV *BaseS = getSCEV(Base);
   3184 
   3185   // Add the total offset from all the GEP indices to the base.
   3186   return getAddExpr(BaseS, TotalOffset,
   3187                     isInBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap);
   3188 }
   3189 
   3190 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
   3191 /// guaranteed to end in (at every loop iteration).  It is, at the same time,
   3192 /// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
   3193 /// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
   3194 uint32_t
   3195 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
   3196   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
   3197     return C->getValue()->getValue().countTrailingZeros();
   3198 
   3199   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
   3200     return std::min(GetMinTrailingZeros(T->getOperand()),
   3201                     (uint32_t)getTypeSizeInBits(T->getType()));
   3202 
   3203   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
   3204     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
   3205     return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
   3206              getTypeSizeInBits(E->getType()) : OpRes;
   3207   }
   3208 
   3209   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
   3210     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
   3211     return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
   3212              getTypeSizeInBits(E->getType()) : OpRes;
   3213   }
   3214 
   3215   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
   3216     // The result is the min of all operands results.
   3217     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
   3218     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
   3219       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
   3220     return MinOpRes;
   3221   }
   3222 
   3223   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
   3224     // The result is the sum of all operands results.
   3225     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
   3226     uint32_t BitWidth = getTypeSizeInBits(M->getType());
   3227     for (unsigned i = 1, e = M->getNumOperands();
   3228          SumOpRes != BitWidth && i != e; ++i)
   3229       SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
   3230                           BitWidth);
   3231     return SumOpRes;
   3232   }
   3233 
   3234   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
   3235     // The result is the min of all operands results.
   3236     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
   3237     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
   3238       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
   3239     return MinOpRes;
   3240   }
   3241 
   3242   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
   3243     // The result is the min of all operands results.
   3244     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
   3245     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
   3246       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
   3247     return MinOpRes;
   3248   }
   3249 
   3250   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
   3251     // The result is the min of all operands results.
   3252     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
   3253     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
   3254       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
   3255     return MinOpRes;
   3256   }
   3257 
   3258   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
   3259     // For a SCEVUnknown, ask ValueTracking.
   3260     unsigned BitWidth = getTypeSizeInBits(U->getType());
   3261     APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
   3262     ComputeMaskedBits(U->getValue(), Zeros, Ones);
   3263     return Zeros.countTrailingOnes();
   3264   }
   3265 
   3266   // SCEVUDivExpr
   3267   return 0;
   3268 }
   3269 
   3270 /// getUnsignedRange - Determine the unsigned range for a particular SCEV.
   3271 ///
   3272 ConstantRange
   3273 ScalarEvolution::getUnsignedRange(const SCEV *S) {
   3274   // See if we've computed this range already.
   3275   DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
   3276   if (I != UnsignedRanges.end())
   3277     return I->second;
   3278 
   3279   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
   3280     return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
   3281 
   3282   unsigned BitWidth = getTypeSizeInBits(S->getType());
   3283   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
   3284 
   3285   // If the value has known zeros, the maximum unsigned value will have those
   3286   // known zeros as well.
   3287   uint32_t TZ = GetMinTrailingZeros(S);
   3288   if (TZ != 0)
   3289     ConservativeResult =
   3290       ConstantRange(APInt::getMinValue(BitWidth),
   3291                     APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
   3292 
   3293   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
   3294     ConstantRange X = getUnsignedRange(Add->getOperand(0));
   3295     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
   3296       X = X.add(getUnsignedRange(Add->getOperand(i)));
   3297     return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
   3298   }
   3299 
   3300   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
   3301     ConstantRange X = getUnsignedRange(Mul->getOperand(0));
   3302     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
   3303       X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
   3304     return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
   3305   }
   3306 
   3307   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
   3308     ConstantRange X = getUnsignedRange(SMax->getOperand(0));
   3309     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
   3310       X = X.smax(getUnsignedRange(SMax->getOperand(i)));
   3311     return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
   3312   }
   3313 
   3314   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
   3315     ConstantRange X = getUnsignedRange(UMax->getOperand(0));
   3316     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
   3317       X = X.umax(getUnsignedRange(UMax->getOperand(i)));
   3318     return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
   3319   }
   3320 
   3321   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
   3322     ConstantRange X = getUnsignedRange(UDiv->getLHS());
   3323     ConstantRange Y = getUnsignedRange(UDiv->getRHS());
   3324     return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
   3325   }
   3326 
   3327   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
   3328     ConstantRange X = getUnsignedRange(ZExt->getOperand());
   3329     return setUnsignedRange(ZExt,
   3330       ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
   3331   }
   3332 
   3333   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
   3334     ConstantRange X = getUnsignedRange(SExt->getOperand());
   3335     return setUnsignedRange(SExt,
   3336       ConservativeResult.intersectWith(X.signExtend(BitWidth)));
   3337   }
   3338 
   3339   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
   3340     ConstantRange X = getUnsignedRange(Trunc->getOperand());
   3341     return setUnsignedRange(Trunc,
   3342       ConservativeResult.intersectWith(X.truncate(BitWidth)));
   3343   }
   3344 
   3345   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
   3346     // If there's no unsigned wrap, the value will never be less than its
   3347     // initial value.
   3348     if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
   3349       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
   3350         if (!C->getValue()->isZero())
   3351           ConservativeResult =
   3352             ConservativeResult.intersectWith(
   3353               ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
   3354 
   3355     // TODO: non-affine addrec
   3356     if (AddRec->isAffine()) {
   3357       Type *Ty = AddRec->getType();
   3358       const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
   3359       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
   3360           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
   3361         MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
   3362 
   3363         const SCEV *Start = AddRec->getStart();
   3364         const SCEV *Step = AddRec->getStepRecurrence(*this);
   3365 
   3366         ConstantRange StartRange = getUnsignedRange(Start);
   3367         ConstantRange StepRange = getSignedRange(Step);
   3368         ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
   3369         ConstantRange EndRange =
   3370           StartRange.add(MaxBECountRange.multiply(StepRange));
   3371 
   3372         // Check for overflow. This must be done with ConstantRange arithmetic
   3373         // because we could be called from within the ScalarEvolution overflow
   3374         // checking code.
   3375         ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
   3376         ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
   3377         ConstantRange ExtMaxBECountRange =
   3378           MaxBECountRange.zextOrTrunc(BitWidth*2+1);
   3379         ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
   3380         if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
   3381             ExtEndRange)
   3382           return setUnsignedRange(AddRec, ConservativeResult);
   3383 
   3384         APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
   3385                                    EndRange.getUnsignedMin());
   3386         APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
   3387                                    EndRange.getUnsignedMax());
   3388         if (Min.isMinValue() && Max.isMaxValue())
   3389           return setUnsignedRange(AddRec, ConservativeResult);
   3390         return setUnsignedRange(AddRec,
   3391           ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
   3392       }
   3393     }
   3394 
   3395     return setUnsignedRange(AddRec, ConservativeResult);
   3396   }
   3397 
   3398   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
   3399     // For a SCEVUnknown, ask ValueTracking.
   3400     APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
   3401     ComputeMaskedBits(U->getValue(), Zeros, Ones, TD);
   3402     if (Ones == ~Zeros + 1)
   3403       return setUnsignedRange(U, ConservativeResult);
   3404     return setUnsignedRange(U,
   3405       ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
   3406   }
   3407 
   3408   return setUnsignedRange(S, ConservativeResult);
   3409 }
   3410 
   3411 /// getSignedRange - Determine the signed range for a particular SCEV.
   3412 ///
   3413 ConstantRange
   3414 ScalarEvolution::getSignedRange(const SCEV *S) {
   3415   // See if we've computed this range already.
   3416   DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
   3417   if (I != SignedRanges.end())
   3418     return I->second;
   3419 
   3420   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
   3421     return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
   3422 
   3423   unsigned BitWidth = getTypeSizeInBits(S->getType());
   3424   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
   3425 
   3426   // If the value has known zeros, the maximum signed value will have those
   3427   // known zeros as well.
   3428   uint32_t TZ = GetMinTrailingZeros(S);
   3429   if (TZ != 0)
   3430     ConservativeResult =
   3431       ConstantRange(APInt::getSignedMinValue(BitWidth),
   3432                     APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
   3433 
   3434   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
   3435     ConstantRange X = getSignedRange(Add->getOperand(0));
   3436     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
   3437       X = X.add(getSignedRange(Add->getOperand(i)));
   3438     return setSignedRange(Add, ConservativeResult.intersectWith(X));
   3439   }
   3440 
   3441   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
   3442     ConstantRange X = getSignedRange(Mul->getOperand(0));
   3443     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
   3444       X = X.multiply(getSignedRange(Mul->getOperand(i)));
   3445     return setSignedRange(Mul, ConservativeResult.intersectWith(X));
   3446   }
   3447 
   3448   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
   3449     ConstantRange X = getSignedRange(SMax->getOperand(0));
   3450     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
   3451       X = X.smax(getSignedRange(SMax->getOperand(i)));
   3452     return setSignedRange(SMax, ConservativeResult.intersectWith(X));
   3453   }
   3454 
   3455   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
   3456     ConstantRange X = getSignedRange(UMax->getOperand(0));
   3457     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
   3458       X = X.umax(getSignedRange(UMax->getOperand(i)));
   3459     return setSignedRange(UMax, ConservativeResult.intersectWith(X));
   3460   }
   3461 
   3462   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
   3463     ConstantRange X = getSignedRange(UDiv->getLHS());
   3464     ConstantRange Y = getSignedRange(UDiv->getRHS());
   3465     return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
   3466   }
   3467 
   3468   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
   3469     ConstantRange X = getSignedRange(ZExt->getOperand());
   3470     return setSignedRange(ZExt,
   3471       ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
   3472   }
   3473 
   3474   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
   3475     ConstantRange X = getSignedRange(SExt->getOperand());
   3476     return setSignedRange(SExt,
   3477       ConservativeResult.intersectWith(X.signExtend(BitWidth)));
   3478   }
   3479 
   3480   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
   3481     ConstantRange X = getSignedRange(Trunc->getOperand());
   3482     return setSignedRange(Trunc,
   3483       ConservativeResult.intersectWith(X.truncate(BitWidth)));
   3484   }
   3485 
   3486   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
   3487     // If there's no signed wrap, and all the operands have the same sign or
   3488     // zero, the value won't ever change sign.
   3489     if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
   3490       bool AllNonNeg = true;
   3491       bool AllNonPos = true;
   3492       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
   3493         if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
   3494         if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
   3495       }
   3496       if (AllNonNeg)
   3497         ConservativeResult = ConservativeResult.intersectWith(
   3498           ConstantRange(APInt(BitWidth, 0),
   3499                         APInt::getSignedMinValue(BitWidth)));
   3500       else if (AllNonPos)
   3501         ConservativeResult = ConservativeResult.intersectWith(
   3502           ConstantRange(APInt::getSignedMinValue(BitWidth),
   3503                         APInt(BitWidth, 1)));
   3504     }
   3505 
   3506     // TODO: non-affine addrec
   3507     if (AddRec->isAffine()) {
   3508       Type *Ty = AddRec->getType();
   3509       const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
   3510       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
   3511           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
   3512         MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
   3513 
   3514         const SCEV *Start = AddRec->getStart();
   3515         const SCEV *Step = AddRec->getStepRecurrence(*this);
   3516 
   3517         ConstantRange StartRange = getSignedRange(Start);
   3518         ConstantRange StepRange = getSignedRange(Step);
   3519         ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
   3520         ConstantRange EndRange =
   3521           StartRange.add(MaxBECountRange.multiply(StepRange));
   3522 
   3523         // Check for overflow. This must be done with ConstantRange arithmetic
   3524         // because we could be called from within the ScalarEvolution overflow
   3525         // checking code.
   3526         ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
   3527         ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
   3528         ConstantRange ExtMaxBECountRange =
   3529           MaxBECountRange.zextOrTrunc(BitWidth*2+1);
   3530         ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
   3531         if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
   3532             ExtEndRange)
   3533           return setSignedRange(AddRec, ConservativeResult);
   3534 
   3535         APInt Min = APIntOps::smin(StartRange.getSignedMin(),
   3536                                    EndRange.getSignedMin());
   3537         APInt Max = APIntOps::smax(StartRange.getSignedMax(),
   3538                                    EndRange.getSignedMax());
   3539         if (Min.isMinSignedValue() && Max.isMaxSignedValue())
   3540           return setSignedRange(AddRec, ConservativeResult);
   3541         return setSignedRange(AddRec,
   3542           ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
   3543       }
   3544     }
   3545 
   3546     return setSignedRange(AddRec, ConservativeResult);
   3547   }
   3548 
   3549   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
   3550     // For a SCEVUnknown, ask ValueTracking.
   3551     if (!U->getValue()->getType()->isIntegerTy() && !TD)
   3552       return setSignedRange(U, ConservativeResult);
   3553     unsigned NS = ComputeNumSignBits(U->getValue(), TD);
   3554     if (NS == 1)
   3555       return setSignedRange(U, ConservativeResult);
   3556     return setSignedRange(U, ConservativeResult.intersectWith(
   3557       ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
   3558                     APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
   3559   }
   3560 
   3561   return setSignedRange(S, ConservativeResult);
   3562 }
   3563 
   3564 /// createSCEV - We know that there is no SCEV for the specified value.
   3565 /// Analyze the expression.
   3566 ///
   3567 const SCEV *ScalarEvolution::createSCEV(Value *V) {
   3568   if (!isSCEVable(V->getType()))
   3569     return getUnknown(V);
   3570 
   3571   unsigned Opcode = Instruction::UserOp1;
   3572   if (Instruction *I = dyn_cast<Instruction>(V)) {
   3573     Opcode = I->getOpcode();
   3574 
   3575     // Don't attempt to analyze instructions in blocks that aren't
   3576     // reachable. Such instructions don't matter, and they aren't required
   3577     // to obey basic rules for definitions dominating uses which this
   3578     // analysis depends on.
   3579     if (!DT->isReachableFromEntry(I->getParent()))
   3580       return getUnknown(V);
   3581   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
   3582     Opcode = CE->getOpcode();
   3583   else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
   3584     return getConstant(CI);
   3585   else if (isa<ConstantPointerNull>(V))
   3586     return getConstant(V->getType(), 0);
   3587   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
   3588     return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
   3589   else
   3590     return getUnknown(V);
   3591 
   3592   Operator *U = cast<Operator>(V);
   3593   switch (Opcode) {
   3594   case Instruction::Add: {
   3595     // The simple thing to do would be to just call getSCEV on both operands
   3596     // and call getAddExpr with the result. However if we're looking at a
   3597     // bunch of things all added together, this can be quite inefficient,
   3598     // because it leads to N-1 getAddExpr calls for N ultimate operands.
   3599     // Instead, gather up all the operands and make a single getAddExpr call.
   3600     // LLVM IR canonical form means we need only traverse the left operands.
   3601     //
   3602     // Don't apply this instruction's NSW or NUW flags to the new
   3603     // expression. The instruction may be guarded by control flow that the
   3604     // no-wrap behavior depends on. Non-control-equivalent instructions can be
   3605     // mapped to the same SCEV expression, and it would be incorrect to transfer
   3606     // NSW/NUW semantics to those operations.
   3607     SmallVector<const SCEV *, 4> AddOps;
   3608     AddOps.push_back(getSCEV(U->getOperand(1)));
   3609     for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
   3610       unsigned Opcode = Op->getValueID() - Value::InstructionVal;
   3611       if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
   3612         break;
   3613       U = cast<Operator>(Op);
   3614       const SCEV *Op1 = getSCEV(U->getOperand(1));
   3615       if (Opcode == Instruction::Sub)
   3616         AddOps.push_back(getNegativeSCEV(Op1));
   3617       else
   3618         AddOps.push_back(Op1);
   3619     }
   3620     AddOps.push_back(getSCEV(U->getOperand(0)));
   3621     return getAddExpr(AddOps);
   3622   }
   3623   case Instruction::Mul: {
   3624     // Don't transfer NSW/NUW for the same reason as AddExpr.
   3625     SmallVector<const SCEV *, 4> MulOps;
   3626     MulOps.push_back(getSCEV(U->getOperand(1)));
   3627     for (Value *Op = U->getOperand(0);
   3628          Op->getValueID() == Instruction::Mul + Value::InstructionVal;
   3629          Op = U->getOperand(0)) {
   3630       U = cast<Operator>(Op);
   3631       MulOps.push_back(getSCEV(U->getOperand(1)));
   3632     }
   3633     MulOps.push_back(getSCEV(U->getOperand(0)));
   3634     return getMulExpr(MulOps);
   3635   }
   3636   case Instruction::UDiv:
   3637     return getUDivExpr(getSCEV(U->getOperand(0)),
   3638                        getSCEV(U->getOperand(1)));
   3639   case Instruction::Sub:
   3640     return getMinusSCEV(getSCEV(U->getOperand(0)),
   3641                         getSCEV(U->getOperand(1)));
   3642   case Instruction::And:
   3643     // For an expression like x&255 that merely masks off the high bits,
   3644     // use zext(trunc(x)) as the SCEV expression.
   3645     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
   3646       if (CI->isNullValue())
   3647         return getSCEV(U->getOperand(1));
   3648       if (CI->isAllOnesValue())
   3649         return getSCEV(U->getOperand(0));
   3650       const APInt &A = CI->getValue();
   3651 
   3652       // Instcombine's ShrinkDemandedConstant may strip bits out of
   3653       // constants, obscuring what would otherwise be a low-bits mask.
   3654       // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
   3655       // knew about to reconstruct a low-bits mask value.
   3656       unsigned LZ = A.countLeadingZeros();
   3657       unsigned BitWidth = A.getBitWidth();
   3658       APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
   3659       ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, TD);
   3660 
   3661       APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
   3662 
   3663       if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
   3664         return
   3665           getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
   3666                                 IntegerType::get(getContext(), BitWidth - LZ)),
   3667                             U->getType());
   3668     }
   3669     break;
   3670 
   3671   case Instruction::Or:
   3672     // If the RHS of the Or is a constant, we may have something like:
   3673     // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
   3674     // optimizations will transparently handle this case.
   3675     //
   3676     // In order for this transformation to be safe, the LHS must be of the
   3677     // form X*(2^n) and the Or constant must be less than 2^n.
   3678     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
   3679       const SCEV *LHS = getSCEV(U->getOperand(0));
   3680       const APInt &CIVal = CI->getValue();
   3681       if (GetMinTrailingZeros(LHS) >=
   3682           (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
   3683         // Build a plain add SCEV.
   3684         const SCEV *S = getAddExpr(LHS, getSCEV(CI));
   3685         // If the LHS of the add was an addrec and it has no-wrap flags,
   3686         // transfer the no-wrap flags, since an or won't introduce a wrap.
   3687         if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
   3688           const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
   3689           const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
   3690             OldAR->getNoWrapFlags());
   3691         }
   3692         return S;
   3693       }
   3694     }
   3695     break;
   3696   case Instruction::Xor:
   3697     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
   3698       // If the RHS of the xor is a signbit, then this is just an add.
   3699       // Instcombine turns add of signbit into xor as a strength reduction step.
   3700       if (CI->getValue().isSignBit())
   3701         return getAddExpr(getSCEV(U->getOperand(0)),
   3702                           getSCEV(U->getOperand(1)));
   3703 
   3704       // If the RHS of xor is -1, then this is a not operation.
   3705       if (CI->isAllOnesValue())
   3706         return getNotSCEV(getSCEV(U->getOperand(0)));
   3707 
   3708       // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
   3709       // This is a variant of the check for xor with -1, and it handles
   3710       // the case where instcombine has trimmed non-demanded bits out
   3711       // of an xor with -1.
   3712       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
   3713         if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
   3714           if (BO->getOpcode() == Instruction::And &&
   3715               LCI->getValue() == CI->getValue())
   3716             if (const SCEVZeroExtendExpr *Z =
   3717                   dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
   3718               Type *UTy = U->getType();
   3719               const SCEV *Z0 = Z->getOperand();
   3720               Type *Z0Ty = Z0->getType();
   3721               unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
   3722 
   3723               // If C is a low-bits mask, the zero extend is serving to
   3724               // mask off the high bits. Complement the operand and
   3725               // re-apply the zext.
   3726               if (APIntOps::isMask(Z0TySize, CI->getValue()))
   3727                 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
   3728 
   3729               // If C is a single bit, it may be in the sign-bit position
   3730               // before the zero-extend. In this case, represent the xor
   3731               // using an add, which is equivalent, and re-apply the zext.
   3732               APInt Trunc = CI->getValue().trunc(Z0TySize);
   3733               if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
   3734                   Trunc.isSignBit())
   3735                 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
   3736                                          UTy);
   3737             }
   3738     }
   3739     break;
   3740 
   3741   case Instruction::Shl:
   3742     // Turn shift left of a constant amount into a multiply.
   3743     if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
   3744       uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
   3745 
   3746       // If the shift count is not less than the bitwidth, the result of
   3747       // the shift is undefined. Don't try to analyze it, because the
   3748       // resolution chosen here may differ from the resolution chosen in
   3749       // other parts of the compiler.
   3750       if (SA->getValue().uge(BitWidth))
   3751         break;
   3752 
   3753       Constant *X = ConstantInt::get(getContext(),
   3754         APInt(BitWidth, 1).shl(SA->getZExtValue()));
   3755       return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
   3756     }
   3757     break;
   3758 
   3759   case Instruction::LShr:
   3760     // Turn logical shift right of a constant into a unsigned divide.
   3761     if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
   3762       uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
   3763 
   3764       // If the shift count is not less than the bitwidth, the result of
   3765       // the shift is undefined. Don't try to analyze it, because the
   3766       // resolution chosen here may differ from the resolution chosen in
   3767       // other parts of the compiler.
   3768       if (SA->getValue().uge(BitWidth))
   3769         break;
   3770 
   3771       Constant *X = ConstantInt::get(getContext(),
   3772         APInt(BitWidth, 1).shl(SA->getZExtValue()));
   3773       return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
   3774     }
   3775     break;
   3776 
   3777   case Instruction::AShr:
   3778     // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
   3779     if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
   3780       if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
   3781         if (L->getOpcode() == Instruction::Shl &&
   3782             L->getOperand(1) == U->getOperand(1)) {
   3783           uint64_t BitWidth = getTypeSizeInBits(U->getType());
   3784 
   3785           // If the shift count is not less than the bitwidth, the result of
   3786           // the shift is undefined. Don't try to analyze it, because the
   3787           // resolution chosen here may differ from the resolution chosen in
   3788           // other parts of the compiler.
   3789           if (CI->getValue().uge(BitWidth))
   3790             break;
   3791 
   3792           uint64_t Amt = BitWidth - CI->getZExtValue();
   3793           if (Amt == BitWidth)
   3794             return getSCEV(L->getOperand(0));       // shift by zero --> noop
   3795           return
   3796             getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
   3797                                               IntegerType::get(getContext(),
   3798                                                                Amt)),
   3799                               U->getType());
   3800         }
   3801     break;
   3802 
   3803   case Instruction::Trunc:
   3804     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
   3805 
   3806   case Instruction::ZExt:
   3807     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
   3808 
   3809   case Instruction::SExt:
   3810     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
   3811 
   3812   case Instruction::BitCast:
   3813     // BitCasts are no-op casts so we just eliminate the cast.
   3814     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
   3815       return getSCEV(U->getOperand(0));
   3816     break;
   3817 
   3818   // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
   3819   // lead to pointer expressions which cannot safely be expanded to GEPs,
   3820   // because ScalarEvolution doesn't respect the GEP aliasing rules when
   3821   // simplifying integer expressions.
   3822 
   3823   case Instruction::GetElementPtr:
   3824     return createNodeForGEP(cast<GEPOperator>(U));
   3825 
   3826   case Instruction::PHI:
   3827     return createNodeForPHI(cast<PHINode>(U));
   3828 
   3829   case Instruction::Select:
   3830     // This could be a smax or umax that was lowered earlier.
   3831     // Try to recover it.
   3832     if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
   3833       Value *LHS = ICI->getOperand(0);
   3834       Value *RHS = ICI->getOperand(1);
   3835       switch (ICI->getPredicate()) {
   3836       case ICmpInst::ICMP_SLT:
   3837       case ICmpInst::ICMP_SLE:
   3838         std::swap(LHS, RHS);
   3839         // fall through
   3840       case ICmpInst::ICMP_SGT:
   3841       case ICmpInst::ICMP_SGE:
   3842         // a >s b ? a+x : b+x  ->  smax(a, b)+x
   3843         // a >s b ? b+x : a+x  ->  smin(a, b)+x
   3844         if (LHS->getType() == U->getType()) {
   3845           const SCEV *LS = getSCEV(LHS);
   3846           const SCEV *RS = getSCEV(RHS);
   3847           const SCEV *LA = getSCEV(U->getOperand(1));
   3848           const SCEV *RA = getSCEV(U->getOperand(2));
   3849           const SCEV *LDiff = getMinusSCEV(LA, LS);
   3850           const SCEV *RDiff = getMinusSCEV(RA, RS);
   3851           if (LDiff == RDiff)
   3852             return getAddExpr(getSMaxExpr(LS, RS), LDiff);
   3853           LDiff = getMinusSCEV(LA, RS);
   3854           RDiff = getMinusSCEV(RA, LS);
   3855           if (LDiff == RDiff)
   3856             return getAddExpr(getSMinExpr(LS, RS), LDiff);
   3857         }
   3858         break;
   3859       case ICmpInst::ICMP_ULT:
   3860       case ICmpInst::ICMP_ULE:
   3861         std::swap(LHS, RHS);
   3862         // fall through
   3863       case ICmpInst::ICMP_UGT:
   3864       case ICmpInst::ICMP_UGE:
   3865         // a >u b ? a+x : b+x  ->  umax(a, b)+x
   3866         // a >u b ? b+x : a+x  ->  umin(a, b)+x
   3867         if (LHS->getType() == U->getType()) {
   3868           const SCEV *LS = getSCEV(LHS);
   3869           const SCEV *RS = getSCEV(RHS);
   3870           const SCEV *LA = getSCEV(U->getOperand(1));
   3871           const SCEV *RA = getSCEV(U->getOperand(2));
   3872           const SCEV *LDiff = getMinusSCEV(LA, LS);
   3873           const SCEV *RDiff = getMinusSCEV(RA, RS);
   3874           if (LDiff == RDiff)
   3875             return getAddExpr(getUMaxExpr(LS, RS), LDiff);
   3876           LDiff = getMinusSCEV(LA, RS);
   3877           RDiff = getMinusSCEV(RA, LS);
   3878           if (LDiff == RDiff)
   3879             return getAddExpr(getUMinExpr(LS, RS), LDiff);
   3880         }
   3881         break;
   3882       case ICmpInst::ICMP_NE:
   3883         // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
   3884         if (LHS->getType() == U->getType() &&
   3885             isa<ConstantInt>(RHS) &&
   3886             cast<ConstantInt>(RHS)->isZero()) {
   3887           const SCEV *One = getConstant(LHS->getType(), 1);
   3888           const SCEV *LS = getSCEV(LHS);
   3889           const SCEV *LA = getSCEV(U->getOperand(1));
   3890           const SCEV *RA = getSCEV(U->getOperand(2));
   3891           const SCEV *LDiff = getMinusSCEV(LA, LS);
   3892           const SCEV *RDiff = getMinusSCEV(RA, One);
   3893           if (LDiff == RDiff)
   3894             return getAddExpr(getUMaxExpr(One, LS), LDiff);
   3895         }
   3896         break;
   3897       case ICmpInst::ICMP_EQ:
   3898         // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
   3899         if (LHS->getType() == U->getType() &&
   3900             isa<ConstantInt>(RHS) &&
   3901             cast<ConstantInt>(RHS)->isZero()) {
   3902           const SCEV *One = getConstant(LHS->getType(), 1);
   3903           const SCEV *LS = getSCEV(LHS);
   3904           const SCEV *LA = getSCEV(U->getOperand(1));
   3905           const SCEV *RA = getSCEV(U->getOperand(2));
   3906           const SCEV *LDiff = getMinusSCEV(LA, One);
   3907           const SCEV *RDiff = getMinusSCEV(RA, LS);
   3908           if (LDiff == RDiff)
   3909             return getAddExpr(getUMaxExpr(One, LS), LDiff);
   3910         }
   3911         break;
   3912       default:
   3913         break;
   3914       }
   3915     }
   3916 
   3917   default: // We cannot analyze this expression.
   3918     break;
   3919   }
   3920 
   3921   return getUnknown(V);
   3922 }
   3923 
   3924 
   3925 
   3926 //===----------------------------------------------------------------------===//
   3927 //                   Iteration Count Computation Code
   3928 //
   3929 
   3930 /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
   3931 /// normal unsigned value. Returns 0 if the trip count is unknown or not
   3932 /// constant. Will also return 0 if the maximum trip count is very large (>=
   3933 /// 2^32).
   3934 ///
   3935 /// This "trip count" assumes that control exits via ExitingBlock. More
   3936 /// precisely, it is the number of times that control may reach ExitingBlock
   3937 /// before taking the branch. For loops with multiple exits, it may not be the
   3938 /// number times that the loop header executes because the loop may exit
   3939 /// prematurely via another branch.
   3940 unsigned ScalarEvolution::
   3941 getSmallConstantTripCount(Loop *L, BasicBlock *ExitingBlock) {
   3942   const SCEVConstant *ExitCount =
   3943     dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
   3944   if (!ExitCount)
   3945     return 0;
   3946 
   3947   ConstantInt *ExitConst = ExitCount->getValue();
   3948 
   3949   // Guard against huge trip counts.
   3950   if (ExitConst->getValue().getActiveBits() > 32)
   3951     return 0;
   3952 
   3953   // In case of integer overflow, this returns 0, which is correct.
   3954   return ((unsigned)ExitConst->getZExtValue()) + 1;
   3955 }
   3956 
   3957 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the
   3958 /// trip count of this loop as a normal unsigned value, if possible. This
   3959 /// means that the actual trip count is always a multiple of the returned
   3960 /// value (don't forget the trip count could very well be zero as well!).
   3961 ///
   3962 /// Returns 1 if the trip count is unknown or not guaranteed to be the
   3963 /// multiple of a constant (which is also the case if the trip count is simply
   3964 /// constant, use getSmallConstantTripCount for that case), Will also return 1
   3965 /// if the trip count is very large (>= 2^32).
   3966 ///
   3967 /// As explained in the comments for getSmallConstantTripCount, this assumes
   3968 /// that control exits the loop via ExitingBlock.
   3969 unsigned ScalarEvolution::
   3970 getSmallConstantTripMultiple(Loop *L, BasicBlock *ExitingBlock) {
   3971   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
   3972   if (ExitCount == getCouldNotCompute())
   3973     return 1;
   3974 
   3975   // Get the trip count from the BE count by adding 1.
   3976   const SCEV *TCMul = getAddExpr(ExitCount,
   3977                                  getConstant(ExitCount->getType(), 1));
   3978   // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
   3979   // to factor simple cases.
   3980   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
   3981     TCMul = Mul->getOperand(0);
   3982 
   3983   const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
   3984   if (!MulC)
   3985     return 1;
   3986 
   3987   ConstantInt *Result = MulC->getValue();
   3988 
   3989   // Guard against huge trip counts (this requires checking
   3990   // for zero to handle the case where the trip count == -1 and the
   3991   // addition wraps).
   3992   if (!Result || Result->getValue().getActiveBits() > 32 ||
   3993       Result->getValue().getActiveBits() == 0)
   3994     return 1;
   3995 
   3996   return (unsigned)Result->getZExtValue();
   3997 }
   3998 
   3999 // getExitCount - Get the expression for the number of loop iterations for which
   4000 // this loop is guaranteed not to exit via ExitintBlock. Otherwise return
   4001 // SCEVCouldNotCompute.
   4002 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
   4003   return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
   4004 }
   4005 
   4006 /// getBackedgeTakenCount - If the specified loop has a predictable
   4007 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
   4008 /// object. The backedge-taken count is the number of times the loop header
   4009 /// will be branched to from within the loop. This is one less than the
   4010 /// trip count of the loop, since it doesn't count the first iteration,
   4011 /// when the header is branched to from outside the loop.
   4012 ///
   4013 /// Note that it is not valid to call this method on a loop without a
   4014 /// loop-invariant backedge-taken count (see
   4015 /// hasLoopInvariantBackedgeTakenCount).
   4016 ///
   4017 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
   4018   return getBackedgeTakenInfo(L).getExact(this);
   4019 }
   4020 
   4021 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
   4022 /// return the least SCEV value that is known never to be less than the
   4023 /// actual backedge taken count.
   4024 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
   4025   return getBackedgeTakenInfo(L).getMax(this);
   4026 }
   4027 
   4028 /// PushLoopPHIs - Push PHI nodes in the header of the given loop
   4029 /// onto the given Worklist.
   4030 static void
   4031 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
   4032   BasicBlock *Header = L->getHeader();
   4033 
   4034   // Push all Loop-header PHIs onto the Worklist stack.
   4035   for (BasicBlock::iterator I = Header->begin();
   4036        PHINode *PN = dyn_cast<PHINode>(I); ++I)
   4037     Worklist.push_back(PN);
   4038 }
   4039 
   4040 const ScalarEvolution::BackedgeTakenInfo &
   4041 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
   4042   // Initially insert an invalid entry for this loop. If the insertion
   4043   // succeeds, proceed to actually compute a backedge-taken count and
   4044   // update the value. The temporary CouldNotCompute value tells SCEV
   4045   // code elsewhere that it shouldn't attempt to request a new
   4046   // backedge-taken count, which could result in infinite recursion.
   4047   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
   4048     BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
   4049   if (!Pair.second)
   4050     return Pair.first->second;
   4051 
   4052   // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
   4053   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
   4054   // must be cleared in this scope.
   4055   BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
   4056 
   4057   if (Result.getExact(this) != getCouldNotCompute()) {
   4058     assert(isLoopInvariant(Result.getExact(this), L) &&
   4059            isLoopInvariant(Result.getMax(this), L) &&
   4060            "Computed backedge-taken count isn't loop invariant for loop!");
   4061     ++NumTripCountsComputed;
   4062   }
   4063   else if (Result.getMax(this) == getCouldNotCompute() &&
   4064            isa<PHINode>(L->getHeader()->begin())) {
   4065     // Only count loops that have phi nodes as not being computable.
   4066     ++NumTripCountsNotComputed;
   4067   }
   4068 
   4069   // Now that we know more about the trip count for this loop, forget any
   4070   // existing SCEV values for PHI nodes in this loop since they are only
   4071   // conservative estimates made without the benefit of trip count
   4072   // information. This is similar to the code in forgetLoop, except that
   4073   // it handles SCEVUnknown PHI nodes specially.
   4074   if (Result.hasAnyInfo()) {
   4075     SmallVector<Instruction *, 16> Worklist;
   4076     PushLoopPHIs(L, Worklist);
   4077 
   4078     SmallPtrSet<Instruction *, 8> Visited;
   4079     while (!Worklist.empty()) {
   4080       Instruction *I = Worklist.pop_back_val();
   4081       if (!Visited.insert(I)) continue;
   4082 
   4083       ValueExprMapType::iterator It =
   4084         ValueExprMap.find_as(static_cast<Value *>(I));
   4085       if (It != ValueExprMap.end()) {
   4086         const SCEV *Old = It->second;
   4087 
   4088         // SCEVUnknown for a PHI either means that it has an unrecognized
   4089         // structure, or it's a PHI that's in the progress of being computed
   4090         // by createNodeForPHI.  In the former case, additional loop trip
   4091         // count information isn't going to change anything. In the later
   4092         // case, createNodeForPHI will perform the necessary updates on its
   4093         // own when it gets to that point.
   4094         if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
   4095           forgetMemoizedResults(Old);
   4096           ValueExprMap.erase(It);
   4097         }
   4098         if (PHINode *PN = dyn_cast<PHINode>(I))
   4099           ConstantEvolutionLoopExitValue.erase(PN);
   4100       }
   4101 
   4102       PushDefUseChildren(I, Worklist);
   4103     }
   4104   }
   4105 
   4106   // Re-lookup the insert position, since the call to
   4107   // ComputeBackedgeTakenCount above could result in a
   4108   // recusive call to getBackedgeTakenInfo (on a different
   4109   // loop), which would invalidate the iterator computed
   4110   // earlier.
   4111   return BackedgeTakenCounts.find(L)->second = Result;
   4112 }
   4113 
   4114 /// forgetLoop - This method should be called by the client when it has
   4115 /// changed a loop in a way that may effect ScalarEvolution's ability to
   4116 /// compute a trip count, or if the loop is deleted.
   4117 void ScalarEvolution::forgetLoop(const Loop *L) {
   4118   // Drop any stored trip count value.
   4119   DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
   4120     BackedgeTakenCounts.find(L);
   4121   if (BTCPos != BackedgeTakenCounts.end()) {
   4122     BTCPos->second.clear();
   4123     BackedgeTakenCounts.erase(BTCPos);
   4124   }
   4125 
   4126   // Drop information about expressions based on loop-header PHIs.
   4127   SmallVector<Instruction *, 16> Worklist;
   4128   PushLoopPHIs(L, Worklist);
   4129 
   4130   SmallPtrSet<Instruction *, 8> Visited;
   4131   while (!Worklist.empty()) {
   4132     Instruction *I = Worklist.pop_back_val();
   4133     if (!Visited.insert(I)) continue;
   4134 
   4135     ValueExprMapType::iterator It =
   4136       ValueExprMap.find_as(static_cast<Value *>(I));
   4137     if (It != ValueExprMap.end()) {
   4138       forgetMemoizedResults(It->second);
   4139       ValueExprMap.erase(It);
   4140       if (PHINode *PN = dyn_cast<PHINode>(I))
   4141         ConstantEvolutionLoopExitValue.erase(PN);
   4142     }
   4143 
   4144     PushDefUseChildren(I, Worklist);
   4145   }
   4146 
   4147   // Forget all contained loops too, to avoid dangling entries in the
   4148   // ValuesAtScopes map.
   4149   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
   4150     forgetLoop(*I);
   4151 }
   4152 
   4153 /// forgetValue - This method should be called by the client when it has
   4154 /// changed a value in a way that may effect its value, or which may
   4155 /// disconnect it from a def-use chain linking it to a loop.
   4156 void ScalarEvolution::forgetValue(Value *V) {
   4157   Instruction *I = dyn_cast<Instruction>(V);
   4158   if (!I) return;
   4159 
   4160   // Drop information about expressions based on loop-header PHIs.
   4161   SmallVector<Instruction *, 16> Worklist;
   4162   Worklist.push_back(I);
   4163 
   4164   SmallPtrSet<Instruction *, 8> Visited;
   4165   while (!Worklist.empty()) {
   4166     I = Worklist.pop_back_val();
   4167     if (!Visited.insert(I)) continue;
   4168 
   4169     ValueExprMapType::iterator It =
   4170       ValueExprMap.find_as(static_cast<Value *>(I));
   4171     if (It != ValueExprMap.end()) {
   4172       forgetMemoizedResults(It->second);
   4173       ValueExprMap.erase(It);
   4174       if (PHINode *PN = dyn_cast<PHINode>(I))
   4175         ConstantEvolutionLoopExitValue.erase(PN);
   4176     }
   4177 
   4178     PushDefUseChildren(I, Worklist);
   4179   }
   4180 }
   4181 
   4182 /// getExact - Get the exact loop backedge taken count considering all loop
   4183 /// exits. A computable result can only be return for loops with a single exit.
   4184 /// Returning the minimum taken count among all exits is incorrect because one
   4185 /// of the loop's exit limit's may have been skipped. HowFarToZero assumes that
   4186 /// the limit of each loop test is never skipped. This is a valid assumption as
   4187 /// long as the loop exits via that test. For precise results, it is the
   4188 /// caller's responsibility to specify the relevant loop exit using
   4189 /// getExact(ExitingBlock, SE).
   4190 const SCEV *
   4191 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
   4192   // If any exits were not computable, the loop is not computable.
   4193   if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
   4194 
   4195   // We need exactly one computable exit.
   4196   if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
   4197   assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
   4198 
   4199   const SCEV *BECount = 0;
   4200   for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
   4201        ENT != 0; ENT = ENT->getNextExit()) {
   4202 
   4203     assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
   4204 
   4205     if (!BECount)
   4206       BECount = ENT->ExactNotTaken;
   4207     else if (BECount != ENT->ExactNotTaken)
   4208       return SE->getCouldNotCompute();
   4209   }
   4210   assert(BECount && "Invalid not taken count for loop exit");
   4211   return BECount;
   4212 }
   4213 
   4214 /// getExact - Get the exact not taken count for this loop exit.
   4215 const SCEV *
   4216 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
   4217                                              ScalarEvolution *SE) const {
   4218   for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
   4219        ENT != 0; ENT = ENT->getNextExit()) {
   4220 
   4221     if (ENT->ExitingBlock == ExitingBlock)
   4222       return ENT->ExactNotTaken;
   4223   }
   4224   return SE->getCouldNotCompute();
   4225 }
   4226 
   4227 /// getMax - Get the max backedge taken count for the loop.
   4228 const SCEV *
   4229 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
   4230   return Max ? Max : SE->getCouldNotCompute();
   4231 }
   4232 
   4233 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
   4234 /// computable exit into a persistent ExitNotTakenInfo array.
   4235 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
   4236   SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
   4237   bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
   4238 
   4239   if (!Complete)
   4240     ExitNotTaken.setIncomplete();
   4241 
   4242   unsigned NumExits = ExitCounts.size();
   4243   if (NumExits == 0) return;
   4244 
   4245   ExitNotTaken.ExitingBlock = ExitCounts[0].first;
   4246   ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
   4247   if (NumExits == 1) return;
   4248 
   4249   // Handle the rare case of multiple computable exits.
   4250   ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
   4251 
   4252   ExitNotTakenInfo *PrevENT = &ExitNotTaken;
   4253   for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
   4254     PrevENT->setNextExit(ENT);
   4255     ENT->ExitingBlock = ExitCounts[i].first;
   4256     ENT->ExactNotTaken = ExitCounts[i].second;
   4257   }
   4258 }
   4259 
   4260 /// clear - Invalidate this result and free the ExitNotTakenInfo array.
   4261 void ScalarEvolution::BackedgeTakenInfo::clear() {
   4262   ExitNotTaken.ExitingBlock = 0;
   4263   ExitNotTaken.ExactNotTaken = 0;
   4264   delete[] ExitNotTaken.getNextExit();
   4265 }
   4266 
   4267 /// ComputeBackedgeTakenCount - Compute the number of times the backedge
   4268 /// of the specified loop will execute.
   4269 ScalarEvolution::BackedgeTakenInfo
   4270 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
   4271   SmallVector<BasicBlock *, 8> ExitingBlocks;
   4272   L->getExitingBlocks(ExitingBlocks);
   4273 
   4274   // Examine all exits and pick the most conservative values.
   4275   const SCEV *MaxBECount = getCouldNotCompute();
   4276   bool CouldComputeBECount = true;
   4277   SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
   4278   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
   4279     ExitLimit EL = ComputeExitLimit(L, ExitingBlocks[i]);
   4280     if (EL.Exact == getCouldNotCompute())
   4281       // We couldn't compute an exact value for this exit, so
   4282       // we won't be able to compute an exact value for the loop.
   4283       CouldComputeBECount = false;
   4284     else
   4285       ExitCounts.push_back(std::make_pair(ExitingBlocks[i], EL.Exact));
   4286 
   4287     if (MaxBECount == getCouldNotCompute())
   4288       MaxBECount = EL.Max;
   4289     else if (EL.Max != getCouldNotCompute()) {
   4290       // We cannot take the "min" MaxBECount, because non-unit stride loops may
   4291       // skip some loop tests. Taking the max over the exits is sufficiently
   4292       // conservative.  TODO: We could do better taking into consideration
   4293       // that (1) the loop has unit stride (2) the last loop test is
   4294       // less-than/greater-than (3) any loop test is less-than/greater-than AND
   4295       // falls-through some constant times less then the other tests.
   4296       MaxBECount = getUMaxFromMismatchedTypes(MaxBECount, EL.Max);
   4297     }
   4298   }
   4299 
   4300   return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
   4301 }
   4302 
   4303 /// ComputeExitLimit - Compute the number of times the backedge of the specified
   4304 /// loop will execute if it exits via the specified block.
   4305 ScalarEvolution::ExitLimit
   4306 ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
   4307 
   4308   // Okay, we've chosen an exiting block.  See what condition causes us to
   4309   // exit at this block.
   4310   //
   4311   // FIXME: we should be able to handle switch instructions (with a single exit)
   4312   BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
   4313   if (ExitBr == 0) return getCouldNotCompute();
   4314   assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
   4315 
   4316   // At this point, we know we have a conditional branch that determines whether
   4317   // the loop is exited.  However, we don't know if the branch is executed each
   4318   // time through the loop.  If not, then the execution count of the branch will
   4319   // not be equal to the trip count of the loop.
   4320   //
   4321   // Currently we check for this by checking to see if the Exit branch goes to
   4322   // the loop header.  If so, we know it will always execute the same number of
   4323   // times as the loop.  We also handle the case where the exit block *is* the
   4324   // loop header.  This is common for un-rotated loops.
   4325   //
   4326   // If both of those tests fail, walk up the unique predecessor chain to the
   4327   // header, stopping if there is an edge that doesn't exit the loop. If the
   4328   // header is reached, the execution count of the branch will be equal to the
   4329   // trip count of the loop.
   4330   //
   4331   //  More extensive analysis could be done to handle more cases here.
   4332   //
   4333   if (ExitBr->getSuccessor(0) != L->getHeader() &&
   4334       ExitBr->getSuccessor(1) != L->getHeader() &&
   4335       ExitBr->getParent() != L->getHeader()) {
   4336     // The simple checks failed, try climbing the unique predecessor chain
   4337     // up to the header.
   4338     bool Ok = false;
   4339     for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
   4340       BasicBlock *Pred = BB->getUniquePredecessor();
   4341       if (!Pred)
   4342         return getCouldNotCompute();
   4343       TerminatorInst *PredTerm = Pred->getTerminator();
   4344       for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
   4345         BasicBlock *PredSucc = PredTerm->getSuccessor(i);
   4346         if (PredSucc == BB)
   4347           continue;
   4348         // If the predecessor has a successor that isn't BB and isn't
   4349         // outside the loop, assume the worst.
   4350         if (L->contains(PredSucc))
   4351           return getCouldNotCompute();
   4352       }
   4353       if (Pred == L->getHeader()) {
   4354         Ok = true;
   4355         break;
   4356       }
   4357       BB = Pred;
   4358     }
   4359     if (!Ok)
   4360       return getCouldNotCompute();
   4361   }
   4362 
   4363   // Proceed to the next level to examine the exit condition expression.
   4364   return ComputeExitLimitFromCond(L, ExitBr->getCondition(),
   4365                                   ExitBr->getSuccessor(0),
   4366                                   ExitBr->getSuccessor(1));
   4367 }
   4368 
   4369 /// ComputeExitLimitFromCond - Compute the number of times the
   4370 /// backedge of the specified loop will execute if its exit condition
   4371 /// were a conditional branch of ExitCond, TBB, and FBB.
   4372 ScalarEvolution::ExitLimit
   4373 ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
   4374                                           Value *ExitCond,
   4375                                           BasicBlock *TBB,
   4376                                           BasicBlock *FBB) {
   4377   // Check if the controlling expression for this loop is an And or Or.
   4378   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
   4379     if (BO->getOpcode() == Instruction::And) {
   4380       // Recurse on the operands of the and.
   4381       ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB);
   4382       ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB);
   4383       const SCEV *BECount = getCouldNotCompute();
   4384       const SCEV *MaxBECount = getCouldNotCompute();
   4385       if (L->contains(TBB)) {
   4386         // Both conditions must be true for the loop to continue executing.
   4387         // Choose the less conservative count.
   4388         if (EL0.Exact == getCouldNotCompute() ||
   4389             EL1.Exact == getCouldNotCompute())
   4390           BECount = getCouldNotCompute();
   4391         else
   4392           BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
   4393         if (EL0.Max == getCouldNotCompute())
   4394           MaxBECount = EL1.Max;
   4395         else if (EL1.Max == getCouldNotCompute())
   4396           MaxBECount = EL0.Max;
   4397         else
   4398           MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
   4399       } else {
   4400         // Both conditions must be true at the same time for the loop to exit.
   4401         // For now, be conservative.
   4402         assert(L->contains(FBB) && "Loop block has no successor in loop!");
   4403         if (EL0.Max == EL1.Max)
   4404           MaxBECount = EL0.Max;
   4405         if (EL0.Exact == EL1.Exact)
   4406           BECount = EL0.Exact;
   4407       }
   4408 
   4409       return ExitLimit(BECount, MaxBECount);
   4410     }
   4411     if (BO->getOpcode() == Instruction::Or) {
   4412       // Recurse on the operands of the or.
   4413       ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB);
   4414       ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB);
   4415       const SCEV *BECount = getCouldNotCompute();
   4416       const SCEV *MaxBECount = getCouldNotCompute();
   4417       if (L->contains(FBB)) {
   4418         // Both conditions must be false for the loop to continue executing.
   4419         // Choose the less conservative count.
   4420         if (EL0.Exact == getCouldNotCompute() ||
   4421             EL1.Exact == getCouldNotCompute())
   4422           BECount = getCouldNotCompute();
   4423         else
   4424           BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
   4425         if (EL0.Max == getCouldNotCompute())
   4426           MaxBECount = EL1.Max;
   4427         else if (EL1.Max == getCouldNotCompute())
   4428           MaxBECount = EL0.Max;
   4429         else
   4430           MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
   4431       } else {
   4432         // Both conditions must be false at the same time for the loop to exit.
   4433         // For now, be conservative.
   4434         assert(L->contains(TBB) && "Loop block has no successor in loop!");
   4435         if (EL0.Max == EL1.Max)
   4436           MaxBECount = EL0.Max;
   4437         if (EL0.Exact == EL1.Exact)
   4438           BECount = EL0.Exact;
   4439       }
   4440 
   4441       return ExitLimit(BECount, MaxBECount);
   4442     }
   4443   }
   4444 
   4445   // With an icmp, it may be feasible to compute an exact backedge-taken count.
   4446   // Proceed to the next level to examine the icmp.
   4447   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
   4448     return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB);
   4449 
   4450   // Check for a constant condition. These are normally stripped out by
   4451   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
   4452   // preserve the CFG and is temporarily leaving constant conditions
   4453   // in place.
   4454   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
   4455     if (L->contains(FBB) == !CI->getZExtValue())
   4456       // The backedge is always taken.
   4457       return getCouldNotCompute();
   4458     else
   4459       // The backedge is never taken.
   4460       return getConstant(CI->getType(), 0);
   4461   }
   4462 
   4463   // If it's not an integer or pointer comparison then compute it the hard way.
   4464   return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
   4465 }
   4466 
   4467 /// ComputeExitLimitFromICmp - Compute the number of times the
   4468 /// backedge of the specified loop will execute if its exit condition
   4469 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
   4470 ScalarEvolution::ExitLimit
   4471 ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
   4472                                           ICmpInst *ExitCond,
   4473                                           BasicBlock *TBB,
   4474                                           BasicBlock *FBB) {
   4475 
   4476   // If the condition was exit on true, convert the condition to exit on false
   4477   ICmpInst::Predicate Cond;
   4478   if (!L->contains(FBB))
   4479     Cond = ExitCond->getPredicate();
   4480   else
   4481     Cond = ExitCond->getInversePredicate();
   4482 
   4483   // Handle common loops like: for (X = "string"; *X; ++X)
   4484   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
   4485     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
   4486       ExitLimit ItCnt =
   4487         ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
   4488       if (ItCnt.hasAnyInfo())
   4489         return ItCnt;
   4490     }
   4491 
   4492   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
   4493   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
   4494 
   4495   // Try to evaluate any dependencies out of the loop.
   4496   LHS = getSCEVAtScope(LHS, L);
   4497   RHS = getSCEVAtScope(RHS, L);
   4498 
   4499   // At this point, we would like to compute how many iterations of the
   4500   // loop the predicate will return true for these inputs.
   4501   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
   4502     // If there is a loop-invariant, force it into the RHS.
   4503     std::swap(LHS, RHS);
   4504     Cond = ICmpInst::getSwappedPredicate(Cond);
   4505   }
   4506 
   4507   // Simplify the operands before analyzing them.
   4508   (void)SimplifyICmpOperands(Cond, LHS, RHS);
   4509 
   4510   // If we have a comparison of a chrec against a constant, try to use value
   4511   // ranges to answer this query.
   4512   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
   4513     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
   4514       if (AddRec->getLoop() == L) {
   4515         // Form the constant range.
   4516         ConstantRange CompRange(
   4517             ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
   4518 
   4519         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
   4520         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
   4521       }
   4522 
   4523   switch (Cond) {
   4524   case ICmpInst::ICMP_NE: {                     // while (X != Y)
   4525     // Convert to: while (X-Y != 0)
   4526     ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L);
   4527     if (EL.hasAnyInfo()) return EL;
   4528     break;
   4529   }
   4530   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
   4531     // Convert to: while (X-Y == 0)
   4532     ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
   4533     if (EL.hasAnyInfo()) return EL;
   4534     break;
   4535   }
   4536   case ICmpInst::ICMP_SLT: {
   4537     ExitLimit EL = HowManyLessThans(LHS, RHS, L, true);
   4538     if (EL.hasAnyInfo()) return EL;
   4539     break;
   4540   }
   4541   case ICmpInst::ICMP_SGT: {
   4542     ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
   4543                                              getNotSCEV(RHS), L, true);
   4544     if (EL.hasAnyInfo()) return EL;
   4545     break;
   4546   }
   4547   case ICmpInst::ICMP_ULT: {
   4548     ExitLimit EL = HowManyLessThans(LHS, RHS, L, false);
   4549     if (EL.hasAnyInfo()) return EL;
   4550     break;
   4551   }
   4552   case ICmpInst::ICMP_UGT: {
   4553     ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
   4554                                              getNotSCEV(RHS), L, false);
   4555     if (EL.hasAnyInfo()) return EL;
   4556     break;
   4557   }
   4558   default:
   4559 #if 0
   4560     dbgs() << "ComputeBackedgeTakenCount ";
   4561     if (ExitCond->getOperand(0)->getType()->isUnsigned())
   4562       dbgs() << "[unsigned] ";
   4563     dbgs() << *LHS << "   "
   4564          << Instruction::getOpcodeName(Instruction::ICmp)
   4565          << "   " << *RHS << "\n";
   4566 #endif
   4567     break;
   4568   }
   4569   return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
   4570 }
   4571 
   4572 static ConstantInt *
   4573 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
   4574                                 ScalarEvolution &SE) {
   4575   const SCEV *InVal = SE.getConstant(C);
   4576   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
   4577   assert(isa<SCEVConstant>(Val) &&
   4578          "Evaluation of SCEV at constant didn't fold correctly?");
   4579   return cast<SCEVConstant>(Val)->getValue();
   4580 }
   4581 
   4582 /// ComputeLoadConstantCompareExitLimit - Given an exit condition of
   4583 /// 'icmp op load X, cst', try to see if we can compute the backedge
   4584 /// execution count.
   4585 ScalarEvolution::ExitLimit
   4586 ScalarEvolution::ComputeLoadConstantCompareExitLimit(
   4587   LoadInst *LI,
   4588   Constant *RHS,
   4589   const Loop *L,
   4590   ICmpInst::Predicate predicate) {
   4591 
   4592   if (LI->isVolatile()) return getCouldNotCompute();
   4593 
   4594   // Check to see if the loaded pointer is a getelementptr of a global.
   4595   // TODO: Use SCEV instead of manually grubbing with GEPs.
   4596   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
   4597   if (!GEP) return getCouldNotCompute();
   4598 
   4599   // Make sure that it is really a constant global we are gepping, with an
   4600   // initializer, and make sure the first IDX is really 0.
   4601   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
   4602   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
   4603       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
   4604       !cast<Constant>(GEP->getOperand(1))->isNullValue())
   4605     return getCouldNotCompute();
   4606 
   4607   // Okay, we allow one non-constant index into the GEP instruction.
   4608   Value *VarIdx = 0;
   4609   std::vector<Constant*> Indexes;
   4610   unsigned VarIdxNum = 0;
   4611   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
   4612     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
   4613       Indexes.push_back(CI);
   4614     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
   4615       if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
   4616       VarIdx = GEP->getOperand(i);
   4617       VarIdxNum = i-2;
   4618       Indexes.push_back(0);
   4619     }
   4620 
   4621   // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
   4622   if (!VarIdx)
   4623     return getCouldNotCompute();
   4624 
   4625   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
   4626   // Check to see if X is a loop variant variable value now.
   4627   const SCEV *Idx = getSCEV(VarIdx);
   4628   Idx = getSCEVAtScope(Idx, L);
   4629 
   4630   // We can only recognize very limited forms of loop index expressions, in
   4631   // particular, only affine AddRec's like {C1,+,C2}.
   4632   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
   4633   if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
   4634       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
   4635       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
   4636     return getCouldNotCompute();
   4637 
   4638   unsigned MaxSteps = MaxBruteForceIterations;
   4639   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
   4640     ConstantInt *ItCst = ConstantInt::get(
   4641                            cast<IntegerType>(IdxExpr->getType()), IterationNum);
   4642     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
   4643 
   4644     // Form the GEP offset.
   4645     Indexes[VarIdxNum] = Val;
   4646 
   4647     Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
   4648                                                          Indexes);
   4649     if (Result == 0) break;  // Cannot compute!
   4650 
   4651     // Evaluate the condition for this iteration.
   4652     Result = ConstantExpr::getICmp(predicate, Result, RHS);
   4653     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
   4654     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
   4655 #if 0
   4656       dbgs() << "\n***\n*** Computed loop count " << *ItCst
   4657              << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
   4658              << "***\n";
   4659 #endif
   4660       ++NumArrayLenItCounts;
   4661       return getConstant(ItCst);   // Found terminating iteration!
   4662     }
   4663   }
   4664   return getCouldNotCompute();
   4665 }
   4666 
   4667 
   4668 /// CanConstantFold - Return true if we can constant fold an instruction of the
   4669 /// specified type, assuming that all operands were constants.
   4670 static bool CanConstantFold(const Instruction *I) {
   4671   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
   4672       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
   4673       isa<LoadInst>(I))
   4674     return true;
   4675 
   4676   if (const CallInst *CI = dyn_cast<CallInst>(I))
   4677     if (const Function *F = CI->getCalledFunction())
   4678       return canConstantFoldCallTo(F);
   4679   return false;
   4680 }
   4681 
   4682 /// Determine whether this instruction can constant evolve within this loop
   4683 /// assuming its operands can all constant evolve.
   4684 static bool canConstantEvolve(Instruction *I, const Loop *L) {
   4685   // An instruction outside of the loop can't be derived from a loop PHI.
   4686   if (!L->contains(I)) return false;
   4687 
   4688   if (isa<PHINode>(I)) {
   4689     if (L->getHeader() == I->getParent())
   4690       return true;
   4691     else
   4692       // We don't currently keep track of the control flow needed to evaluate
   4693       // PHIs, so we cannot handle PHIs inside of loops.
   4694       return false;
   4695   }
   4696 
   4697   // If we won't be able to constant fold this expression even if the operands
   4698   // are constants, bail early.
   4699   return CanConstantFold(I);
   4700 }
   4701 
   4702 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
   4703 /// recursing through each instruction operand until reaching a loop header phi.
   4704 static PHINode *
   4705 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
   4706                                DenseMap<Instruction *, PHINode *> &PHIMap) {
   4707 
   4708   // Otherwise, we can evaluate this instruction if all of its operands are
   4709   // constant or derived from a PHI node themselves.
   4710   PHINode *PHI = 0;
   4711   for (Instruction::op_iterator OpI = UseInst->op_begin(),
   4712          OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
   4713 
   4714     if (isa<Constant>(*OpI)) continue;
   4715 
   4716     Instruction *OpInst = dyn_cast<Instruction>(*OpI);
   4717     if (!OpInst || !canConstantEvolve(OpInst, L)) return 0;
   4718 
   4719     PHINode *P = dyn_cast<PHINode>(OpInst);
   4720     if (!P)
   4721       // If this operand is already visited, reuse the prior result.
   4722       // We may have P != PHI if this is the deepest point at which the
   4723       // inconsistent paths meet.
   4724       P = PHIMap.lookup(OpInst);
   4725     if (!P) {
   4726       // Recurse and memoize the results, whether a phi is found or not.
   4727       // This recursive call invalidates pointers into PHIMap.
   4728       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
   4729       PHIMap[OpInst] = P;
   4730     }
   4731     if (P == 0) return 0;        // Not evolving from PHI
   4732     if (PHI && PHI != P) return 0;  // Evolving from multiple different PHIs.
   4733     PHI = P;
   4734   }
   4735   // This is a expression evolving from a constant PHI!
   4736   return PHI;
   4737 }
   4738 
   4739 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
   4740 /// in the loop that V is derived from.  We allow arbitrary operations along the
   4741 /// way, but the operands of an operation must either be constants or a value
   4742 /// derived from a constant PHI.  If this expression does not fit with these
   4743 /// constraints, return null.
   4744 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
   4745   Instruction *I = dyn_cast<Instruction>(V);
   4746   if (I == 0 || !canConstantEvolve(I, L)) return 0;
   4747 
   4748   if (PHINode *PN = dyn_cast<PHINode>(I)) {
   4749     return PN;
   4750   }
   4751 
   4752   // Record non-constant instructions contained by the loop.
   4753   DenseMap<Instruction *, PHINode *> PHIMap;
   4754   return getConstantEvolvingPHIOperands(I, L, PHIMap);
   4755 }
   4756 
   4757 /// EvaluateExpression - Given an expression that passes the
   4758 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
   4759 /// in the loop has the value PHIVal.  If we can't fold this expression for some
   4760 /// reason, return null.
   4761 static Constant *EvaluateExpression(Value *V, const Loop *L,
   4762                                     DenseMap<Instruction *, Constant *> &Vals,
   4763                                     const DataLayout *TD,
   4764                                     const TargetLibraryInfo *TLI) {
   4765   // Convenient constant check, but redundant for recursive calls.
   4766   if (Constant *C = dyn_cast<Constant>(V)) return C;
   4767   Instruction *I = dyn_cast<Instruction>(V);
   4768   if (!I) return 0;
   4769 
   4770   if (Constant *C = Vals.lookup(I)) return C;
   4771 
   4772   // An instruction inside the loop depends on a value outside the loop that we
   4773   // weren't given a mapping for, or a value such as a call inside the loop.
   4774   if (!canConstantEvolve(I, L)) return 0;
   4775 
   4776   // An unmapped PHI can be due to a branch or another loop inside this loop,
   4777   // or due to this not being the initial iteration through a loop where we
   4778   // couldn't compute the evolution of this particular PHI last time.
   4779   if (isa<PHINode>(I)) return 0;
   4780 
   4781   std::vector<Constant*> Operands(I->getNumOperands());
   4782 
   4783   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
   4784     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
   4785     if (!Operand) {
   4786       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
   4787       if (!Operands[i]) return 0;
   4788       continue;
   4789     }
   4790     Constant *C = EvaluateExpression(Operand, L, Vals, TD, TLI);
   4791     Vals[Operand] = C;
   4792     if (!C) return 0;
   4793     Operands[i] = C;
   4794   }
   4795 
   4796   if (CmpInst *CI = dyn_cast<CmpInst>(I))
   4797     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
   4798                                            Operands[1], TD, TLI);
   4799   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
   4800     if (!LI->isVolatile())
   4801       return ConstantFoldLoadFromConstPtr(Operands[0], TD);
   4802   }
   4803   return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, TD,
   4804                                   TLI);
   4805 }
   4806 
   4807 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
   4808 /// in the header of its containing loop, we know the loop executes a
   4809 /// constant number of times, and the PHI node is just a recurrence
   4810 /// involving constants, fold it.
   4811 Constant *
   4812 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
   4813                                                    const APInt &BEs,
   4814                                                    const Loop *L) {
   4815   DenseMap<PHINode*, Constant*>::const_iterator I =
   4816     ConstantEvolutionLoopExitValue.find(PN);
   4817   if (I != ConstantEvolutionLoopExitValue.end())
   4818     return I->second;
   4819 
   4820   if (BEs.ugt(MaxBruteForceIterations))
   4821     return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
   4822 
   4823   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
   4824 
   4825   DenseMap<Instruction *, Constant *> CurrentIterVals;
   4826   BasicBlock *Header = L->getHeader();
   4827   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
   4828 
   4829   // Since the loop is canonicalized, the PHI node must have two entries.  One
   4830   // entry must be a constant (coming in from outside of the loop), and the
   4831   // second must be derived from the same PHI.
   4832   bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
   4833   PHINode *PHI = 0;
   4834   for (BasicBlock::iterator I = Header->begin();
   4835        (PHI = dyn_cast<PHINode>(I)); ++I) {
   4836     Constant *StartCST =
   4837       dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
   4838     if (StartCST == 0) continue;
   4839     CurrentIterVals[PHI] = StartCST;
   4840   }
   4841   if (!CurrentIterVals.count(PN))
   4842     return RetVal = 0;
   4843 
   4844   Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
   4845 
   4846   // Execute the loop symbolically to determine the exit value.
   4847   if (BEs.getActiveBits() >= 32)
   4848     return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
   4849 
   4850   unsigned NumIterations = BEs.getZExtValue(); // must be in range
   4851   unsigned IterationNum = 0;
   4852   for (; ; ++IterationNum) {
   4853     if (IterationNum == NumIterations)
   4854       return RetVal = CurrentIterVals[PN];  // Got exit value!
   4855 
   4856     // Compute the value of the PHIs for the next iteration.
   4857     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
   4858     DenseMap<Instruction *, Constant *> NextIterVals;
   4859     Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD,
   4860                                            TLI);
   4861     if (NextPHI == 0)
   4862       return 0;        // Couldn't evaluate!
   4863     NextIterVals[PN] = NextPHI;
   4864 
   4865     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
   4866 
   4867     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
   4868     // cease to be able to evaluate one of them or if they stop evolving,
   4869     // because that doesn't necessarily prevent us from computing PN.
   4870     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
   4871     for (DenseMap<Instruction *, Constant *>::const_iterator
   4872            I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
   4873       PHINode *PHI = dyn_cast<PHINode>(I->first);
   4874       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
   4875       PHIsToCompute.push_back(std::make_pair(PHI, I->second));
   4876     }
   4877     // We use two distinct loops because EvaluateExpression may invalidate any
   4878     // iterators into CurrentIterVals.
   4879     for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator
   4880              I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) {
   4881       PHINode *PHI = I->first;
   4882       Constant *&NextPHI = NextIterVals[PHI];
   4883       if (!NextPHI) {   // Not already computed.
   4884         Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
   4885         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI);
   4886       }
   4887       if (NextPHI != I->second)
   4888         StoppedEvolving = false;
   4889     }
   4890 
   4891     // If all entries in CurrentIterVals == NextIterVals then we can stop
   4892     // iterating, the loop can't continue to change.
   4893     if (StoppedEvolving)
   4894       return RetVal = CurrentIterVals[PN];
   4895 
   4896     CurrentIterVals.swap(NextIterVals);
   4897   }
   4898 }
   4899 
   4900 /// ComputeExitCountExhaustively - If the loop is known to execute a
   4901 /// constant number of times (the condition evolves only from constants),
   4902 /// try to evaluate a few iterations of the loop until we get the exit
   4903 /// condition gets a value of ExitWhen (true or false).  If we cannot
   4904 /// evaluate the trip count of the loop, return getCouldNotCompute().
   4905 const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
   4906                                                           Value *Cond,
   4907                                                           bool ExitWhen) {
   4908   PHINode *PN = getConstantEvolvingPHI(Cond, L);
   4909   if (PN == 0) return getCouldNotCompute();
   4910 
   4911   // If the loop is canonicalized, the PHI will have exactly two entries.
   4912   // That's the only form we support here.
   4913   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
   4914 
   4915   DenseMap<Instruction *, Constant *> CurrentIterVals;
   4916   BasicBlock *Header = L->getHeader();
   4917   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
   4918 
   4919   // One entry must be a constant (coming in from outside of the loop), and the
   4920   // second must be derived from the same PHI.
   4921   bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
   4922   PHINode *PHI = 0;
   4923   for (BasicBlock::iterator I = Header->begin();
   4924        (PHI = dyn_cast<PHINode>(I)); ++I) {
   4925     Constant *StartCST =
   4926       dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
   4927     if (StartCST == 0) continue;
   4928     CurrentIterVals[PHI] = StartCST;
   4929   }
   4930   if (!CurrentIterVals.count(PN))
   4931     return getCouldNotCompute();
   4932 
   4933   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
   4934   // the loop symbolically to determine when the condition gets a value of
   4935   // "ExitWhen".
   4936 
   4937   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
   4938   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
   4939     ConstantInt *CondVal =
   4940       dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals,
   4941                                                        TD, TLI));
   4942 
   4943     // Couldn't symbolically evaluate.
   4944     if (!CondVal) return getCouldNotCompute();
   4945 
   4946     if (CondVal->getValue() == uint64_t(ExitWhen)) {
   4947       ++NumBruteForceTripCountsComputed;
   4948       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
   4949     }
   4950 
   4951     // Update all the PHI nodes for the next iteration.
   4952     DenseMap<Instruction *, Constant *> NextIterVals;
   4953 
   4954     // Create a list of which PHIs we need to compute. We want to do this before
   4955     // calling EvaluateExpression on them because that may invalidate iterators
   4956     // into CurrentIterVals.
   4957     SmallVector<PHINode *, 8> PHIsToCompute;
   4958     for (DenseMap<Instruction *, Constant *>::const_iterator
   4959            I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
   4960       PHINode *PHI = dyn_cast<PHINode>(I->first);
   4961       if (!PHI || PHI->getParent() != Header) continue;
   4962       PHIsToCompute.push_back(PHI);
   4963     }
   4964     for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(),
   4965              E = PHIsToCompute.end(); I != E; ++I) {
   4966       PHINode *PHI = *I;
   4967       Constant *&NextPHI = NextIterVals[PHI];
   4968       if (NextPHI) continue;    // Already computed!
   4969 
   4970       Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
   4971       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI);
   4972     }
   4973     CurrentIterVals.swap(NextIterVals);
   4974   }
   4975 
   4976   // Too many iterations were needed to evaluate.
   4977   return getCouldNotCompute();
   4978 }
   4979 
   4980 /// getSCEVAtScope - Return a SCEV expression for the specified value
   4981 /// at the specified scope in the program.  The L value specifies a loop
   4982 /// nest to evaluate the expression at, where null is the top-level or a
   4983 /// specified loop is immediately inside of the loop.
   4984 ///
   4985 /// This method can be used to compute the exit value for a variable defined
   4986 /// in a loop by querying what the value will hold in the parent loop.
   4987 ///
   4988 /// In the case that a relevant loop exit value cannot be computed, the
   4989 /// original value V is returned.
   4990 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
   4991   // Check to see if we've folded this expression at this loop before.
   4992   std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
   4993   std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
   4994     Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
   4995   if (!Pair.second)
   4996     return Pair.first->second ? Pair.first->second : V;
   4997 
   4998   // Otherwise compute it.
   4999   const SCEV *C = computeSCEVAtScope(V, L);
   5000   ValuesAtScopes[V][L] = C;
   5001   return C;
   5002 }
   5003 
   5004 /// This builds up a Constant using the ConstantExpr interface.  That way, we
   5005 /// will return Constants for objects which aren't represented by a
   5006 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
   5007 /// Returns NULL if the SCEV isn't representable as a Constant.
   5008 static Constant *BuildConstantFromSCEV(const SCEV *V) {
   5009   switch (V->getSCEVType()) {
   5010     default:  // TODO: smax, umax.
   5011     case scCouldNotCompute:
   5012     case scAddRecExpr:
   5013       break;
   5014     case scConstant:
   5015       return cast<SCEVConstant>(V)->getValue();
   5016     case scUnknown:
   5017       return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
   5018     case scSignExtend: {
   5019       const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
   5020       if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
   5021         return ConstantExpr::getSExt(CastOp, SS->getType());
   5022       break;
   5023     }
   5024     case scZeroExtend: {
   5025       const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
   5026       if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
   5027         return ConstantExpr::getZExt(CastOp, SZ->getType());
   5028       break;
   5029     }
   5030     case scTruncate: {
   5031       const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
   5032       if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
   5033         return ConstantExpr::getTrunc(CastOp, ST->getType());
   5034       break;
   5035     }
   5036     case scAddExpr: {
   5037       const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
   5038       if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
   5039         if (C->getType()->isPointerTy())
   5040           C = ConstantExpr::getBitCast(C, Type::getInt8PtrTy(C->getContext()));
   5041         for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
   5042           Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
   5043           if (!C2) return 0;
   5044 
   5045           // First pointer!
   5046           if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
   5047             std::swap(C, C2);
   5048             // The offsets have been converted to bytes.  We can add bytes to an
   5049             // i8* by GEP with the byte count in the first index.
   5050             C = ConstantExpr::getBitCast(C,Type::getInt8PtrTy(C->getContext()));
   5051           }
   5052 
   5053           // Don't bother trying to sum two pointers. We probably can't
   5054           // statically compute a load that results from it anyway.
   5055           if (C2->getType()->isPointerTy())
   5056             return 0;
   5057 
   5058           if (C->getType()->isPointerTy()) {
   5059             if (cast<PointerType>(C->getType())->getElementType()->isStructTy())
   5060               C2 = ConstantExpr::getIntegerCast(
   5061                   C2, Type::getInt32Ty(C->getContext()), true);
   5062             C = ConstantExpr::getGetElementPtr(C, C2);
   5063           } else
   5064             C = ConstantExpr::getAdd(C, C2);
   5065         }
   5066         return C;
   5067       }
   5068       break;
   5069     }
   5070     case scMulExpr: {
   5071       const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
   5072       if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
   5073         // Don't bother with pointers at all.
   5074         if (C->getType()->isPointerTy()) return 0;
   5075         for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
   5076           Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
   5077           if (!C2 || C2->getType()->isPointerTy()) return 0;
   5078           C = ConstantExpr::getMul(C, C2);
   5079         }
   5080         return C;
   5081       }
   5082       break;
   5083     }
   5084     case scUDivExpr: {
   5085       const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
   5086       if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
   5087         if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
   5088           if (LHS->getType() == RHS->getType())
   5089             return ConstantExpr::getUDiv(LHS, RHS);
   5090       break;
   5091     }
   5092   }
   5093   return 0;
   5094 }
   5095 
   5096 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
   5097   if (isa<SCEVConstant>(V)) return V;
   5098 
   5099   // If this instruction is evolved from a constant-evolving PHI, compute the
   5100   // exit value from the loop without using SCEVs.
   5101   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
   5102     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
   5103       const Loop *LI = (*this->LI)[I->getParent()];
   5104       if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
   5105         if (PHINode *PN = dyn_cast<PHINode>(I))
   5106           if (PN->getParent() == LI->getHeader()) {
   5107             // Okay, there is no closed form solution for the PHI node.  Check
   5108             // to see if the loop that contains it has a known backedge-taken
   5109             // count.  If so, we may be able to force computation of the exit
   5110             // value.
   5111             const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
   5112             if (const SCEVConstant *BTCC =
   5113                   dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
   5114               // Okay, we know how many times the containing loop executes.  If
   5115               // this is a constant evolving PHI node, get the final value at
   5116               // the specified iteration number.
   5117               Constant *RV = getConstantEvolutionLoopExitValue(PN,
   5118                                                    BTCC->getValue()->getValue(),
   5119                                                                LI);
   5120               if (RV) return getSCEV(RV);
   5121             }
   5122           }
   5123 
   5124       // Okay, this is an expression that we cannot symbolically evaluate
   5125       // into a SCEV.  Check to see if it's possible to symbolically evaluate
   5126       // the arguments into constants, and if so, try to constant propagate the
   5127       // result.  This is particularly useful for computing loop exit values.
   5128       if (CanConstantFold(I)) {
   5129         SmallVector<Constant *, 4> Operands;
   5130         bool MadeImprovement = false;
   5131         for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
   5132           Value *Op = I->getOperand(i);
   5133           if (Constant *C = dyn_cast<Constant>(Op)) {
   5134             Operands.push_back(C);
   5135             continue;
   5136           }
   5137 
   5138           // If any of the operands is non-constant and if they are
   5139           // non-integer and non-pointer, don't even try to analyze them
   5140           // with scev techniques.
   5141           if (!isSCEVable(Op->getType()))
   5142             return V;
   5143 
   5144           const SCEV *OrigV = getSCEV(Op);
   5145           const SCEV *OpV = getSCEVAtScope(OrigV, L);
   5146           MadeImprovement |= OrigV != OpV;
   5147 
   5148           Constant *C = BuildConstantFromSCEV(OpV);
   5149           if (!C) return V;
   5150           if (C->getType() != Op->getType())
   5151             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
   5152                                                               Op->getType(),
   5153                                                               false),
   5154                                       C, Op->getType());
   5155           Operands.push_back(C);
   5156         }
   5157 
   5158         // Check to see if getSCEVAtScope actually made an improvement.
   5159         if (MadeImprovement) {
   5160           Constant *C = 0;
   5161           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
   5162             C = ConstantFoldCompareInstOperands(CI->getPredicate(),
   5163                                                 Operands[0], Operands[1], TD,
   5164                                                 TLI);
   5165           else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
   5166             if (!LI->isVolatile())
   5167               C = ConstantFoldLoadFromConstPtr(Operands[0], TD);
   5168           } else
   5169             C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
   5170                                          Operands, TD, TLI);
   5171           if (!C) return V;
   5172           return getSCEV(C);
   5173         }
   5174       }
   5175     }
   5176 
   5177     // This is some other type of SCEVUnknown, just return it.
   5178     return V;
   5179   }
   5180 
   5181   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
   5182     // Avoid performing the look-up in the common case where the specified
   5183     // expression has no loop-variant portions.
   5184     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
   5185       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
   5186       if (OpAtScope != Comm->getOperand(i)) {
   5187         // Okay, at least one of these operands is loop variant but might be
   5188         // foldable.  Build a new instance of the folded commutative expression.
   5189         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
   5190                                             Comm->op_begin()+i);
   5191         NewOps.push_back(OpAtScope);
   5192 
   5193         for (++i; i != e; ++i) {
   5194           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
   5195           NewOps.push_back(OpAtScope);
   5196         }
   5197         if (isa<SCEVAddExpr>(Comm))
   5198           return getAddExpr(NewOps);
   5199         if (isa<SCEVMulExpr>(Comm))
   5200           return getMulExpr(NewOps);
   5201         if (isa<SCEVSMaxExpr>(Comm))
   5202           return getSMaxExpr(NewOps);
   5203         if (isa<SCEVUMaxExpr>(Comm))
   5204           return getUMaxExpr(NewOps);
   5205         llvm_unreachable("Unknown commutative SCEV type!");
   5206       }
   5207     }
   5208     // If we got here, all operands are loop invariant.
   5209     return Comm;
   5210   }
   5211 
   5212   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
   5213     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
   5214     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
   5215     if (LHS == Div->getLHS() && RHS == Div->getRHS())
   5216       return Div;   // must be loop invariant
   5217     return getUDivExpr(LHS, RHS);
   5218   }
   5219 
   5220   // If this is a loop recurrence for a loop that does not contain L, then we
   5221   // are dealing with the final value computed by the loop.
   5222   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
   5223     // First, attempt to evaluate each operand.
   5224     // Avoid performing the look-up in the common case where the specified
   5225     // expression has no loop-variant portions.
   5226     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
   5227       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
   5228       if (OpAtScope == AddRec->getOperand(i))
   5229         continue;
   5230 
   5231       // Okay, at least one of these operands is loop variant but might be
   5232       // foldable.  Build a new instance of the folded commutative expression.
   5233       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
   5234                                           AddRec->op_begin()+i);
   5235       NewOps.push_back(OpAtScope);
   5236       for (++i; i != e; ++i)
   5237         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
   5238 
   5239       const SCEV *FoldedRec =
   5240         getAddRecExpr(NewOps, AddRec->getLoop(),
   5241                       AddRec->getNoWrapFlags(SCEV::FlagNW));
   5242       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
   5243       // The addrec may be folded to a nonrecurrence, for example, if the
   5244       // induction variable is multiplied by zero after constant folding. Go
   5245       // ahead and return the folded value.
   5246       if (!AddRec)
   5247         return FoldedRec;
   5248       break;
   5249     }
   5250 
   5251     // If the scope is outside the addrec's loop, evaluate it by using the
   5252     // loop exit value of the addrec.
   5253     if (!AddRec->getLoop()->contains(L)) {
   5254       // To evaluate this recurrence, we need to know how many times the AddRec
   5255       // loop iterates.  Compute this now.
   5256       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
   5257       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
   5258 
   5259       // Then, evaluate the AddRec.
   5260       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
   5261     }
   5262 
   5263     return AddRec;
   5264   }
   5265 
   5266   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
   5267     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
   5268     if (Op == Cast->getOperand())
   5269       return Cast;  // must be loop invariant
   5270     return getZeroExtendExpr(Op, Cast->getType());
   5271   }
   5272 
   5273   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
   5274     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
   5275     if (Op == Cast->getOperand())
   5276       return Cast;  // must be loop invariant
   5277     return getSignExtendExpr(Op, Cast->getType());
   5278   }
   5279 
   5280   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
   5281     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
   5282     if (Op == Cast->getOperand())
   5283       return Cast;  // must be loop invariant
   5284     return getTruncateExpr(Op, Cast->getType());
   5285   }
   5286 
   5287   llvm_unreachable("Unknown SCEV type!");
   5288 }
   5289 
   5290 /// getSCEVAtScope - This is a convenience function which does
   5291 /// getSCEVAtScope(getSCEV(V), L).
   5292 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
   5293   return getSCEVAtScope(getSCEV(V), L);
   5294 }
   5295 
   5296 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
   5297 /// following equation:
   5298 ///
   5299 ///     A * X = B (mod N)
   5300 ///
   5301 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
   5302 /// A and B isn't important.
   5303 ///
   5304 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
   5305 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
   5306                                                ScalarEvolution &SE) {
   5307   uint32_t BW = A.getBitWidth();
   5308   assert(BW == B.getBitWidth() && "Bit widths must be the same.");
   5309   assert(A != 0 && "A must be non-zero.");
   5310 
   5311   // 1. D = gcd(A, N)
   5312   //
   5313   // The gcd of A and N may have only one prime factor: 2. The number of
   5314   // trailing zeros in A is its multiplicity
   5315   uint32_t Mult2 = A.countTrailingZeros();
   5316   // D = 2^Mult2
   5317 
   5318   // 2. Check if B is divisible by D.
   5319   //
   5320   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
   5321   // is not less than multiplicity of this prime factor for D.
   5322   if (B.countTrailingZeros() < Mult2)
   5323     return SE.getCouldNotCompute();
   5324 
   5325   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
   5326   // modulo (N / D).
   5327   //
   5328   // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
   5329   // bit width during computations.
   5330   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
   5331   APInt Mod(BW + 1, 0);
   5332   Mod.setBit(BW - Mult2);  // Mod = N / D
   5333   APInt I = AD.multiplicativeInverse(Mod);
   5334 
   5335   // 4. Compute the minimum unsigned root of the equation:
   5336   // I * (B / D) mod (N / D)
   5337   APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
   5338 
   5339   // The result is guaranteed to be less than 2^BW so we may truncate it to BW
   5340   // bits.
   5341   return SE.getConstant(Result.trunc(BW));
   5342 }
   5343 
   5344 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the
   5345 /// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
   5346 /// might be the same) or two SCEVCouldNotCompute objects.
   5347 ///
   5348 static std::pair<const SCEV *,const SCEV *>
   5349 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
   5350   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
   5351   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
   5352   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
   5353   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
   5354 
   5355   // We currently can only solve this if the coefficients are constants.
   5356   if (!LC || !MC || !NC) {
   5357     const SCEV *CNC = SE.getCouldNotCompute();
   5358     return std::make_pair(CNC, CNC);
   5359   }
   5360 
   5361   uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
   5362   const APInt &L = LC->getValue()->getValue();
   5363   const APInt &M = MC->getValue()->getValue();
   5364   const APInt &N = NC->getValue()->getValue();
   5365   APInt Two(BitWidth, 2);
   5366   APInt Four(BitWidth, 4);
   5367 
   5368   {
   5369     using namespace APIntOps;
   5370     const APInt& C = L;
   5371     // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
   5372     // The B coefficient is M-N/2
   5373     APInt B(M);
   5374     B -= sdiv(N,Two);
   5375 
   5376     // The A coefficient is N/2
   5377     APInt A(N.sdiv(Two));
   5378 
   5379     // Compute the B^2-4ac term.
   5380     APInt SqrtTerm(B);
   5381     SqrtTerm *= B;
   5382     SqrtTerm -= Four * (A * C);
   5383 
   5384     if (SqrtTerm.isNegative()) {
   5385       // The loop is provably infinite.
   5386       const SCEV *CNC = SE.getCouldNotCompute();
   5387       return std::make_pair(CNC, CNC);
   5388     }
   5389 
   5390     // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
   5391     // integer value or else APInt::sqrt() will assert.
   5392     APInt SqrtVal(SqrtTerm.sqrt());
   5393 
   5394     // Compute the two solutions for the quadratic formula.
   5395     // The divisions must be performed as signed divisions.
   5396     APInt NegB(-B);
   5397     APInt TwoA(A << 1);
   5398     if (TwoA.isMinValue()) {
   5399       const SCEV *CNC = SE.getCouldNotCompute();
   5400       return std::make_pair(CNC, CNC);
   5401     }
   5402 
   5403     LLVMContext &Context = SE.getContext();
   5404 
   5405     ConstantInt *Solution1 =
   5406       ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
   5407     ConstantInt *Solution2 =
   5408       ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
   5409 
   5410     return std::make_pair(SE.getConstant(Solution1),
   5411                           SE.getConstant(Solution2));
   5412   } // end APIntOps namespace
   5413 }
   5414 
   5415 /// HowFarToZero - Return the number of times a backedge comparing the specified
   5416 /// value to zero will execute.  If not computable, return CouldNotCompute.
   5417 ///
   5418 /// This is only used for loops with a "x != y" exit test. The exit condition is
   5419 /// now expressed as a single expression, V = x-y. So the exit test is
   5420 /// effectively V != 0.  We know and take advantage of the fact that this
   5421 /// expression only being used in a comparison by zero context.
   5422 ScalarEvolution::ExitLimit
   5423 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
   5424   // If the value is a constant
   5425   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
   5426     // If the value is already zero, the branch will execute zero times.
   5427     if (C->getValue()->isZero()) return C;
   5428     return getCouldNotCompute();  // Otherwise it will loop infinitely.
   5429   }
   5430 
   5431   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
   5432   if (!AddRec || AddRec->getLoop() != L)
   5433     return getCouldNotCompute();
   5434 
   5435   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
   5436   // the quadratic equation to solve it.
   5437   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
   5438     std::pair<const SCEV *,const SCEV *> Roots =
   5439       SolveQuadraticEquation(AddRec, *this);
   5440     const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
   5441     const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
   5442     if (R1 && R2) {
   5443 #if 0
   5444       dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
   5445              << "  sol#2: " << *R2 << "\n";
   5446 #endif
   5447       // Pick the smallest positive root value.
   5448       if (ConstantInt *CB =
   5449           dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
   5450                                                       R1->getValue(),
   5451                                                       R2->getValue()))) {
   5452         if (CB->getZExtValue() == false)
   5453           std::swap(R1, R2);   // R1 is the minimum root now.
   5454 
   5455         // We can only use this value if the chrec ends up with an exact zero
   5456         // value at this index.  When solving for "X*X != 5", for example, we
   5457         // should not accept a root of 2.
   5458         const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
   5459         if (Val->isZero())
   5460           return R1;  // We found a quadratic root!
   5461       }
   5462     }
   5463     return getCouldNotCompute();
   5464   }
   5465 
   5466   // Otherwise we can only handle this if it is affine.
   5467   if (!AddRec->isAffine())
   5468     return getCouldNotCompute();
   5469 
   5470   // If this is an affine expression, the execution count of this branch is
   5471   // the minimum unsigned root of the following equation:
   5472   //
   5473   //     Start + Step*N = 0 (mod 2^BW)
   5474   //
   5475   // equivalent to:
   5476   //
   5477   //             Step*N = -Start (mod 2^BW)
   5478   //
   5479   // where BW is the common bit width of Start and Step.
   5480 
   5481   // Get the initial value for the loop.
   5482   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
   5483   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
   5484 
   5485   // For now we handle only constant steps.
   5486   //
   5487   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
   5488   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
   5489   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
   5490   // We have not yet seen any such cases.
   5491   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
   5492   if (StepC == 0 || StepC->getValue()->equalsInt(0))
   5493     return getCouldNotCompute();
   5494 
   5495   // For positive steps (counting up until unsigned overflow):
   5496   //   N = -Start/Step (as unsigned)
   5497   // For negative steps (counting down to zero):
   5498   //   N = Start/-Step
   5499   // First compute the unsigned distance from zero in the direction of Step.
   5500   bool CountDown = StepC->getValue()->getValue().isNegative();
   5501   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
   5502 
   5503   // Handle unitary steps, which cannot wraparound.
   5504   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
   5505   //   N = Distance (as unsigned)
   5506   if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
   5507     ConstantRange CR = getUnsignedRange(Start);
   5508     const SCEV *MaxBECount;
   5509     if (!CountDown && CR.getUnsignedMin().isMinValue())
   5510       // When counting up, the worst starting value is 1, not 0.
   5511       MaxBECount = CR.getUnsignedMax().isMinValue()
   5512         ? getConstant(APInt::getMinValue(CR.getBitWidth()))
   5513         : getConstant(APInt::getMaxValue(CR.getBitWidth()));
   5514     else
   5515       MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
   5516                                          : -CR.getUnsignedMin());
   5517     return ExitLimit(Distance, MaxBECount);
   5518   }
   5519 
   5520   // If the recurrence is known not to wraparound, unsigned divide computes the
   5521   // back edge count. We know that the value will either become zero (and thus
   5522   // the loop terminates), that the loop will terminate through some other exit
   5523   // condition first, or that the loop has undefined behavior.  This means
   5524   // we can't "miss" the exit value, even with nonunit stride.
   5525   //
   5526   // FIXME: Prove that loops always exhibits *acceptable* undefined
   5527   // behavior. Loops must exhibit defined behavior until a wrapped value is
   5528   // actually used. So the trip count computed by udiv could be smaller than the
   5529   // number of well-defined iterations.
   5530   if (AddRec->getNoWrapFlags(SCEV::FlagNW)) {
   5531     // FIXME: We really want an "isexact" bit for udiv.
   5532     return getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
   5533   }
   5534   // Then, try to solve the above equation provided that Start is constant.
   5535   if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
   5536     return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
   5537                                         -StartC->getValue()->getValue(),
   5538                                         *this);
   5539   return getCouldNotCompute();
   5540 }
   5541 
   5542 /// HowFarToNonZero - Return the number of times a backedge checking the
   5543 /// specified value for nonzero will execute.  If not computable, return
   5544 /// CouldNotCompute
   5545 ScalarEvolution::ExitLimit
   5546 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
   5547   // Loops that look like: while (X == 0) are very strange indeed.  We don't
   5548   // handle them yet except for the trivial case.  This could be expanded in the
   5549   // future as needed.
   5550 
   5551   // If the value is a constant, check to see if it is known to be non-zero
   5552   // already.  If so, the backedge will execute zero times.
   5553   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
   5554     if (!C->getValue()->isNullValue())
   5555       return getConstant(C->getType(), 0);
   5556     return getCouldNotCompute();  // Otherwise it will loop infinitely.
   5557   }
   5558 
   5559   // We could implement others, but I really doubt anyone writes loops like
   5560   // this, and if they did, they would already be constant folded.
   5561   return getCouldNotCompute();
   5562 }
   5563 
   5564 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
   5565 /// (which may not be an immediate predecessor) which has exactly one
   5566 /// successor from which BB is reachable, or null if no such block is
   5567 /// found.
   5568 ///
   5569 std::pair<BasicBlock *, BasicBlock *>
   5570 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
   5571   // If the block has a unique predecessor, then there is no path from the
   5572   // predecessor to the block that does not go through the direct edge
   5573   // from the predecessor to the block.
   5574   if (BasicBlock *Pred = BB->getSinglePredecessor())
   5575     return std::make_pair(Pred, BB);
   5576 
   5577   // A loop's header is defined to be a block that dominates the loop.
   5578   // If the header has a unique predecessor outside the loop, it must be
   5579   // a block that has exactly one successor that can reach the loop.
   5580   if (Loop *L = LI->getLoopFor(BB))
   5581     return std::make_pair(L->getLoopPredecessor(), L->getHeader());
   5582 
   5583   return std::pair<BasicBlock *, BasicBlock *>();
   5584 }
   5585 
   5586 /// HasSameValue - SCEV structural equivalence is usually sufficient for
   5587 /// testing whether two expressions are equal, however for the purposes of
   5588 /// looking for a condition guarding a loop, it can be useful to be a little
   5589 /// more general, since a front-end may have replicated the controlling
   5590 /// expression.
   5591 ///
   5592 static bool HasSameValue(const SCEV *A, const SCEV *B) {
   5593   // Quick check to see if they are the same SCEV.
   5594   if (A == B) return true;
   5595 
   5596   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
   5597   // two different instructions with the same value. Check for this case.
   5598   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
   5599     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
   5600       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
   5601         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
   5602           if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
   5603             return true;
   5604 
   5605   // Otherwise assume they may have a different value.
   5606   return false;
   5607 }
   5608 
   5609 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
   5610 /// predicate Pred. Return true iff any changes were made.
   5611 ///
   5612 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
   5613                                            const SCEV *&LHS, const SCEV *&RHS,
   5614                                            unsigned Depth) {
   5615   bool Changed = false;
   5616 
   5617   // If we hit the max recursion limit bail out.
   5618   if (Depth >= 3)
   5619     return false;
   5620 
   5621   // Canonicalize a constant to the right side.
   5622   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
   5623     // Check for both operands constant.
   5624     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
   5625       if (ConstantExpr::getICmp(Pred,
   5626                                 LHSC->getValue(),
   5627                                 RHSC->getValue())->isNullValue())
   5628         goto trivially_false;
   5629       else
   5630         goto trivially_true;
   5631     }
   5632     // Otherwise swap the operands to put the constant on the right.
   5633     std::swap(LHS, RHS);
   5634     Pred = ICmpInst::getSwappedPredicate(Pred);
   5635     Changed = true;
   5636   }
   5637 
   5638   // If we're comparing an addrec with a value which is loop-invariant in the
   5639   // addrec's loop, put the addrec on the left. Also make a dominance check,
   5640   // as both operands could be addrecs loop-invariant in each other's loop.
   5641   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
   5642     const Loop *L = AR->getLoop();
   5643     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
   5644       std::swap(LHS, RHS);
   5645       Pred = ICmpInst::getSwappedPredicate(Pred);
   5646       Changed = true;
   5647     }
   5648   }
   5649 
   5650   // If there's a constant operand, canonicalize comparisons with boundary
   5651   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
   5652   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
   5653     const APInt &RA = RC->getValue()->getValue();
   5654     switch (Pred) {
   5655     default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
   5656     case ICmpInst::ICMP_EQ:
   5657     case ICmpInst::ICMP_NE:
   5658       // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
   5659       if (!RA)
   5660         if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
   5661           if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
   5662             if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
   5663                 ME->getOperand(0)->isAllOnesValue()) {
   5664               RHS = AE->getOperand(1);
   5665               LHS = ME->getOperand(1);
   5666               Changed = true;
   5667             }
   5668       break;
   5669     case ICmpInst::ICMP_UGE:
   5670       if ((RA - 1).isMinValue()) {
   5671         Pred = ICmpInst::ICMP_NE;
   5672         RHS = getConstant(RA - 1);
   5673         Changed = true;
   5674         break;
   5675       }
   5676       if (RA.isMaxValue()) {
   5677         Pred = ICmpInst::ICMP_EQ;
   5678         Changed = true;
   5679         break;
   5680       }
   5681       if (RA.isMinValue()) goto trivially_true;
   5682 
   5683       Pred = ICmpInst::ICMP_UGT;
   5684       RHS = getConstant(RA - 1);
   5685       Changed = true;
   5686       break;
   5687     case ICmpInst::ICMP_ULE:
   5688       if ((RA + 1).isMaxValue()) {
   5689         Pred = ICmpInst::ICMP_NE;
   5690         RHS = getConstant(RA + 1);
   5691         Changed = true;
   5692         break;
   5693       }
   5694       if (RA.isMinValue()) {
   5695         Pred = ICmpInst::ICMP_EQ;
   5696         Changed = true;
   5697         break;
   5698       }
   5699       if (RA.isMaxValue()) goto trivially_true;
   5700 
   5701       Pred = ICmpInst::ICMP_ULT;
   5702       RHS = getConstant(RA + 1);
   5703       Changed = true;
   5704       break;
   5705     case ICmpInst::ICMP_SGE:
   5706       if ((RA - 1).isMinSignedValue()) {
   5707         Pred = ICmpInst::ICMP_NE;
   5708         RHS = getConstant(RA - 1);
   5709         Changed = true;
   5710         break;
   5711       }
   5712       if (RA.isMaxSignedValue()) {
   5713         Pred = ICmpInst::ICMP_EQ;
   5714         Changed = true;
   5715         break;
   5716       }
   5717       if (RA.isMinSignedValue()) goto trivially_true;
   5718 
   5719       Pred = ICmpInst::ICMP_SGT;
   5720       RHS = getConstant(RA - 1);
   5721       Changed = true;
   5722       break;
   5723     case ICmpInst::ICMP_SLE:
   5724       if ((RA + 1).isMaxSignedValue()) {
   5725         Pred = ICmpInst::ICMP_NE;
   5726         RHS = getConstant(RA + 1);
   5727         Changed = true;
   5728         break;
   5729       }
   5730       if (RA.isMinSignedValue()) {
   5731         Pred = ICmpInst::ICMP_EQ;
   5732         Changed = true;
   5733         break;
   5734       }
   5735       if (RA.isMaxSignedValue()) goto trivially_true;
   5736 
   5737       Pred = ICmpInst::ICMP_SLT;
   5738       RHS = getConstant(RA + 1);
   5739       Changed = true;
   5740       break;
   5741     case ICmpInst::ICMP_UGT:
   5742       if (RA.isMinValue()) {
   5743         Pred = ICmpInst::ICMP_NE;
   5744         Changed = true;
   5745         break;
   5746       }
   5747       if ((RA + 1).isMaxValue()) {
   5748         Pred = ICmpInst::ICMP_EQ;
   5749         RHS = getConstant(RA + 1);
   5750         Changed = true;
   5751         break;
   5752       }
   5753       if (RA.isMaxValue()) goto trivially_false;
   5754       break;
   5755     case ICmpInst::ICMP_ULT:
   5756       if (RA.isMaxValue()) {
   5757         Pred = ICmpInst::ICMP_NE;
   5758         Changed = true;
   5759         break;
   5760       }
   5761       if ((RA - 1).isMinValue()) {
   5762         Pred = ICmpInst::ICMP_EQ;
   5763         RHS = getConstant(RA - 1);
   5764         Changed = true;
   5765         break;
   5766       }
   5767       if (RA.isMinValue()) goto trivially_false;
   5768       break;
   5769     case ICmpInst::ICMP_SGT:
   5770       if (RA.isMinSignedValue()) {
   5771         Pred = ICmpInst::ICMP_NE;
   5772         Changed = true;
   5773         break;
   5774       }
   5775       if ((RA + 1).isMaxSignedValue()) {
   5776         Pred = ICmpInst::ICMP_EQ;
   5777         RHS = getConstant(RA + 1);
   5778         Changed = true;
   5779         break;
   5780       }
   5781       if (RA.isMaxSignedValue()) goto trivially_false;
   5782       break;
   5783     case ICmpInst::ICMP_SLT:
   5784       if (RA.isMaxSignedValue()) {
   5785         Pred = ICmpInst::ICMP_NE;
   5786         Changed = true;
   5787         break;
   5788       }
   5789       if ((RA - 1).isMinSignedValue()) {
   5790        Pred = ICmpInst::ICMP_EQ;
   5791        RHS = getConstant(RA - 1);
   5792         Changed = true;
   5793        break;
   5794       }
   5795       if (RA.isMinSignedValue()) goto trivially_false;
   5796       break;
   5797     }
   5798   }
   5799 
   5800   // Check for obvious equality.
   5801   if (HasSameValue(LHS, RHS)) {
   5802     if (ICmpInst::isTrueWhenEqual(Pred))
   5803       goto trivially_true;
   5804     if (ICmpInst::isFalseWhenEqual(Pred))
   5805       goto trivially_false;
   5806   }
   5807 
   5808   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
   5809   // adding or subtracting 1 from one of the operands.
   5810   switch (Pred) {
   5811   case ICmpInst::ICMP_SLE:
   5812     if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
   5813       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
   5814                        SCEV::FlagNSW);
   5815       Pred = ICmpInst::ICMP_SLT;
   5816       Changed = true;
   5817     } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
   5818       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
   5819                        SCEV::FlagNSW);
   5820       Pred = ICmpInst::ICMP_SLT;
   5821       Changed = true;
   5822     }
   5823     break;
   5824   case ICmpInst::ICMP_SGE:
   5825     if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
   5826       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
   5827                        SCEV::FlagNSW);
   5828       Pred = ICmpInst::ICMP_SGT;
   5829       Changed = true;
   5830     } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
   5831       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
   5832                        SCEV::FlagNSW);
   5833       Pred = ICmpInst::ICMP_SGT;
   5834       Changed = true;
   5835     }
   5836     break;
   5837   case ICmpInst::ICMP_ULE:
   5838     if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
   5839       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
   5840                        SCEV::FlagNUW);
   5841       Pred = ICmpInst::ICMP_ULT;
   5842       Changed = true;
   5843     } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
   5844       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
   5845                        SCEV::FlagNUW);
   5846       Pred = ICmpInst::ICMP_ULT;
   5847       Changed = true;
   5848     }
   5849     break;
   5850   case ICmpInst::ICMP_UGE:
   5851     if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
   5852       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
   5853                        SCEV::FlagNUW);
   5854       Pred = ICmpInst::ICMP_UGT;
   5855       Changed = true;
   5856     } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
   5857       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
   5858                        SCEV::FlagNUW);
   5859       Pred = ICmpInst::ICMP_UGT;
   5860       Changed = true;
   5861     }
   5862     break;
   5863   default:
   5864     break;
   5865   }
   5866 
   5867   // TODO: More simplifications are possible here.
   5868 
   5869   // Recursively simplify until we either hit a recursion limit or nothing
   5870   // changes.
   5871   if (Changed)
   5872     return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
   5873 
   5874   return Changed;
   5875 
   5876 trivially_true:
   5877   // Return 0 == 0.
   5878   LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
   5879   Pred = ICmpInst::ICMP_EQ;
   5880   return true;
   5881 
   5882 trivially_false:
   5883   // Return 0 != 0.
   5884   LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
   5885   Pred = ICmpInst::ICMP_NE;
   5886   return true;
   5887 }
   5888 
   5889 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
   5890   return getSignedRange(S).getSignedMax().isNegative();
   5891 }
   5892 
   5893 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
   5894   return getSignedRange(S).getSignedMin().isStrictlyPositive();
   5895 }
   5896 
   5897 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
   5898   return !getSignedRange(S).getSignedMin().isNegative();
   5899 }
   5900 
   5901 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
   5902   return !getSignedRange(S).getSignedMax().isStrictlyPositive();
   5903 }
   5904 
   5905 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
   5906   return isKnownNegative(S) || isKnownPositive(S);
   5907 }
   5908 
   5909 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
   5910                                        const SCEV *LHS, const SCEV *RHS) {
   5911   // Canonicalize the inputs first.
   5912   (void)SimplifyICmpOperands(Pred, LHS, RHS);
   5913 
   5914   // If LHS or RHS is an addrec, check to see if the condition is true in
   5915   // every iteration of the loop.
   5916   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
   5917     if (isLoopEntryGuardedByCond(
   5918           AR->getLoop(), Pred, AR->getStart(), RHS) &&
   5919         isLoopBackedgeGuardedByCond(
   5920           AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
   5921       return true;
   5922   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
   5923     if (isLoopEntryGuardedByCond(
   5924           AR->getLoop(), Pred, LHS, AR->getStart()) &&
   5925         isLoopBackedgeGuardedByCond(
   5926           AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
   5927       return true;
   5928 
   5929   // Otherwise see what can be done with known constant ranges.
   5930   return isKnownPredicateWithRanges(Pred, LHS, RHS);
   5931 }
   5932 
   5933 bool
   5934 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
   5935                                             const SCEV *LHS, const SCEV *RHS) {
   5936   if (HasSameValue(LHS, RHS))
   5937     return ICmpInst::isTrueWhenEqual(Pred);
   5938 
   5939   // This code is split out from isKnownPredicate because it is called from
   5940   // within isLoopEntryGuardedByCond.
   5941   switch (Pred) {
   5942   default:
   5943     llvm_unreachable("Unexpected ICmpInst::Predicate value!");
   5944   case ICmpInst::ICMP_SGT:
   5945     Pred = ICmpInst::ICMP_SLT;
   5946     std::swap(LHS, RHS);
   5947   case ICmpInst::ICMP_SLT: {
   5948     ConstantRange LHSRange = getSignedRange(LHS);
   5949     ConstantRange RHSRange = getSignedRange(RHS);
   5950     if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
   5951       return true;
   5952     if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
   5953       return false;
   5954     break;
   5955   }
   5956   case ICmpInst::ICMP_SGE:
   5957     Pred = ICmpInst::ICMP_SLE;
   5958     std::swap(LHS, RHS);
   5959   case ICmpInst::ICMP_SLE: {
   5960     ConstantRange LHSRange = getSignedRange(LHS);
   5961     ConstantRange RHSRange = getSignedRange(RHS);
   5962     if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
   5963       return true;
   5964     if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
   5965       return false;
   5966     break;
   5967   }
   5968   case ICmpInst::ICMP_UGT:
   5969     Pred = ICmpInst::ICMP_ULT;
   5970     std::swap(LHS, RHS);
   5971   case ICmpInst::ICMP_ULT: {
   5972     ConstantRange LHSRange = getUnsignedRange(LHS);
   5973     ConstantRange RHSRange = getUnsignedRange(RHS);
   5974     if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
   5975       return true;
   5976     if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
   5977       return false;
   5978     break;
   5979   }
   5980   case ICmpInst::ICMP_UGE:
   5981     Pred = ICmpInst::ICMP_ULE;
   5982     std::swap(LHS, RHS);
   5983   case ICmpInst::ICMP_ULE: {
   5984     ConstantRange LHSRange = getUnsignedRange(LHS);
   5985     ConstantRange RHSRange = getUnsignedRange(RHS);
   5986     if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
   5987       return true;
   5988     if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
   5989       return false;
   5990     break;
   5991   }
   5992   case ICmpInst::ICMP_NE: {
   5993     if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
   5994       return true;
   5995     if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
   5996       return true;
   5997 
   5998     const SCEV *Diff = getMinusSCEV(LHS, RHS);
   5999     if (isKnownNonZero(Diff))
   6000       return true;
   6001     break;
   6002   }
   6003   case ICmpInst::ICMP_EQ:
   6004     // The check at the top of the function catches the case where
   6005     // the values are known to be equal.
   6006     break;
   6007   }
   6008   return false;
   6009 }
   6010 
   6011 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
   6012 /// protected by a conditional between LHS and RHS.  This is used to
   6013 /// to eliminate casts.
   6014 bool
   6015 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
   6016                                              ICmpInst::Predicate Pred,
   6017                                              const SCEV *LHS, const SCEV *RHS) {
   6018   // Interpret a null as meaning no loop, where there is obviously no guard
   6019   // (interprocedural conditions notwithstanding).
   6020   if (!L) return true;
   6021 
   6022   BasicBlock *Latch = L->getLoopLatch();
   6023   if (!Latch)
   6024     return false;
   6025 
   6026   BranchInst *LoopContinuePredicate =
   6027     dyn_cast<BranchInst>(Latch->getTerminator());
   6028   if (!LoopContinuePredicate ||
   6029       LoopContinuePredicate->isUnconditional())
   6030     return false;
   6031 
   6032   return isImpliedCond(Pred, LHS, RHS,
   6033                        LoopContinuePredicate->getCondition(),
   6034                        LoopContinuePredicate->getSuccessor(0) != L->getHeader());
   6035 }
   6036 
   6037 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
   6038 /// by a conditional between LHS and RHS.  This is used to help avoid max
   6039 /// expressions in loop trip counts, and to eliminate casts.
   6040 bool
   6041 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
   6042                                           ICmpInst::Predicate Pred,
   6043                                           const SCEV *LHS, const SCEV *RHS) {
   6044   // Interpret a null as meaning no loop, where there is obviously no guard
   6045   // (interprocedural conditions notwithstanding).
   6046   if (!L) return false;
   6047 
   6048   // Starting at the loop predecessor, climb up the predecessor chain, as long
   6049   // as there are predecessors that can be found that have unique successors
   6050   // leading to the original header.
   6051   for (std::pair<BasicBlock *, BasicBlock *>
   6052          Pair(L->getLoopPredecessor(), L->getHeader());
   6053        Pair.first;
   6054        Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
   6055 
   6056     BranchInst *LoopEntryPredicate =
   6057       dyn_cast<BranchInst>(Pair.first->getTerminator());
   6058     if (!LoopEntryPredicate ||
   6059         LoopEntryPredicate->isUnconditional())
   6060       continue;
   6061 
   6062     if (isImpliedCond(Pred, LHS, RHS,
   6063                       LoopEntryPredicate->getCondition(),
   6064                       LoopEntryPredicate->getSuccessor(0) != Pair.second))
   6065       return true;
   6066   }
   6067 
   6068   return false;
   6069 }
   6070 
   6071 /// RAII wrapper to prevent recursive application of isImpliedCond.
   6072 /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
   6073 /// currently evaluating isImpliedCond.
   6074 struct MarkPendingLoopPredicate {
   6075   Value *Cond;
   6076   DenseSet<Value*> &LoopPreds;
   6077   bool Pending;
   6078 
   6079   MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
   6080     : Cond(C), LoopPreds(LP) {
   6081     Pending = !LoopPreds.insert(Cond).second;
   6082   }
   6083   ~MarkPendingLoopPredicate() {
   6084     if (!Pending)
   6085       LoopPreds.erase(Cond);
   6086   }
   6087 };
   6088 
   6089 /// isImpliedCond - Test whether the condition described by Pred, LHS,
   6090 /// and RHS is true whenever the given Cond value evaluates to true.
   6091 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
   6092                                     const SCEV *LHS, const SCEV *RHS,
   6093                                     Value *FoundCondValue,
   6094                                     bool Inverse) {
   6095   MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
   6096   if (Mark.Pending)
   6097     return false;
   6098 
   6099   // Recursively handle And and Or conditions.
   6100   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
   6101     if (BO->getOpcode() == Instruction::And) {
   6102       if (!Inverse)
   6103         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
   6104                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
   6105     } else if (BO->getOpcode() == Instruction::Or) {
   6106       if (Inverse)
   6107         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
   6108                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
   6109     }
   6110   }
   6111 
   6112   ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
   6113   if (!ICI) return false;
   6114 
   6115   // Bail if the ICmp's operands' types are wider than the needed type
   6116   // before attempting to call getSCEV on them. This avoids infinite
   6117   // recursion, since the analysis of widening casts can require loop
   6118   // exit condition information for overflow checking, which would
   6119   // lead back here.
   6120   if (getTypeSizeInBits(LHS->getType()) <
   6121       getTypeSizeInBits(ICI->getOperand(0)->getType()))
   6122     return false;
   6123 
   6124   // Now that we found a conditional branch that dominates the loop or controls
   6125   // the loop latch. Check to see if it is the comparison we are looking for.
   6126   ICmpInst::Predicate FoundPred;
   6127   if (Inverse)
   6128     FoundPred = ICI->getInversePredicate();
   6129   else
   6130     FoundPred = ICI->getPredicate();
   6131 
   6132   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
   6133   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
   6134 
   6135   // Balance the types. The case where FoundLHS' type is wider than
   6136   // LHS' type is checked for above.
   6137   if (getTypeSizeInBits(LHS->getType()) >
   6138       getTypeSizeInBits(FoundLHS->getType())) {
   6139     if (CmpInst::isSigned(Pred)) {
   6140       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
   6141       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
   6142     } else {
   6143       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
   6144       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
   6145     }
   6146   }
   6147 
   6148   // Canonicalize the query to match the way instcombine will have
   6149   // canonicalized the comparison.
   6150   if (SimplifyICmpOperands(Pred, LHS, RHS))
   6151     if (LHS == RHS)
   6152       return CmpInst::isTrueWhenEqual(Pred);
   6153   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
   6154     if (FoundLHS == FoundRHS)
   6155       return CmpInst::isFalseWhenEqual(FoundPred);
   6156 
   6157   // Check to see if we can make the LHS or RHS match.
   6158   if (LHS == FoundRHS || RHS == FoundLHS) {
   6159     if (isa<SCEVConstant>(RHS)) {
   6160       std::swap(FoundLHS, FoundRHS);
   6161       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
   6162     } else {
   6163       std::swap(LHS, RHS);
   6164       Pred = ICmpInst::getSwappedPredicate(Pred);
   6165     }
   6166   }
   6167 
   6168   // Check whether the found predicate is the same as the desired predicate.
   6169   if (FoundPred == Pred)
   6170     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
   6171 
   6172   // Check whether swapping the found predicate makes it the same as the
   6173   // desired predicate.
   6174   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
   6175     if (isa<SCEVConstant>(RHS))
   6176       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
   6177     else
   6178       return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
   6179                                    RHS, LHS, FoundLHS, FoundRHS);
   6180   }
   6181 
   6182   // Check whether the actual condition is beyond sufficient.
   6183   if (FoundPred == ICmpInst::ICMP_EQ)
   6184     if (ICmpInst::isTrueWhenEqual(Pred))
   6185       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
   6186         return true;
   6187   if (Pred == ICmpInst::ICMP_NE)
   6188     if (!ICmpInst::isTrueWhenEqual(FoundPred))
   6189       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
   6190         return true;
   6191 
   6192   // Otherwise assume the worst.
   6193   return false;
   6194 }
   6195 
   6196 /// isImpliedCondOperands - Test whether the condition described by Pred,
   6197 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
   6198 /// and FoundRHS is true.
   6199 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
   6200                                             const SCEV *LHS, const SCEV *RHS,
   6201                                             const SCEV *FoundLHS,
   6202                                             const SCEV *FoundRHS) {
   6203   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
   6204                                      FoundLHS, FoundRHS) ||
   6205          // ~x < ~y --> x > y
   6206          isImpliedCondOperandsHelper(Pred, LHS, RHS,
   6207                                      getNotSCEV(FoundRHS),
   6208                                      getNotSCEV(FoundLHS));
   6209 }
   6210 
   6211 /// isImpliedCondOperandsHelper - Test whether the condition described by
   6212 /// Pred, LHS, and RHS is true whenever the condition described by Pred,
   6213 /// FoundLHS, and FoundRHS is true.
   6214 bool
   6215 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
   6216                                              const SCEV *LHS, const SCEV *RHS,
   6217                                              const SCEV *FoundLHS,
   6218                                              const SCEV *FoundRHS) {
   6219   switch (Pred) {
   6220   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
   6221   case ICmpInst::ICMP_EQ:
   6222   case ICmpInst::ICMP_NE:
   6223     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
   6224       return true;
   6225     break;
   6226   case ICmpInst::ICMP_SLT:
   6227   case ICmpInst::ICMP_SLE:
   6228     if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
   6229         isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
   6230       return true;
   6231     break;
   6232   case ICmpInst::ICMP_SGT:
   6233   case ICmpInst::ICMP_SGE:
   6234     if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
   6235         isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
   6236       return true;
   6237     break;
   6238   case ICmpInst::ICMP_ULT:
   6239   case ICmpInst::ICMP_ULE:
   6240     if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
   6241         isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
   6242       return true;
   6243     break;
   6244   case ICmpInst::ICMP_UGT:
   6245   case ICmpInst::ICMP_UGE:
   6246     if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
   6247         isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
   6248       return true;
   6249     break;
   6250   }
   6251 
   6252   return false;
   6253 }
   6254 
   6255 /// getBECount - Subtract the end and start values and divide by the step,
   6256 /// rounding up, to get the number of times the backedge is executed. Return
   6257 /// CouldNotCompute if an intermediate computation overflows.
   6258 const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
   6259                                         const SCEV *End,
   6260                                         const SCEV *Step,
   6261                                         bool NoWrap) {
   6262   assert(!isKnownNegative(Step) &&
   6263          "This code doesn't handle negative strides yet!");
   6264 
   6265   Type *Ty = Start->getType();
   6266 
   6267   // When Start == End, we have an exact BECount == 0. Short-circuit this case
   6268   // here because SCEV may not be able to determine that the unsigned division
   6269   // after rounding is zero.
   6270   if (Start == End)
   6271     return getConstant(Ty, 0);
   6272 
   6273   const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
   6274   const SCEV *Diff = getMinusSCEV(End, Start);
   6275   const SCEV *RoundUp = getAddExpr(Step, NegOne);
   6276 
   6277   // Add an adjustment to the difference between End and Start so that
   6278   // the division will effectively round up.
   6279   const SCEV *Add = getAddExpr(Diff, RoundUp);
   6280 
   6281   if (!NoWrap) {
   6282     // Check Add for unsigned overflow.
   6283     // TODO: More sophisticated things could be done here.
   6284     Type *WideTy = IntegerType::get(getContext(),
   6285                                           getTypeSizeInBits(Ty) + 1);
   6286     const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
   6287     const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
   6288     const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
   6289     if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
   6290       return getCouldNotCompute();
   6291   }
   6292 
   6293   return getUDivExpr(Add, Step);
   6294 }
   6295 
   6296 /// HowManyLessThans - Return the number of times a backedge containing the
   6297 /// specified less-than comparison will execute.  If not computable, return
   6298 /// CouldNotCompute.
   6299 ScalarEvolution::ExitLimit
   6300 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
   6301                                   const Loop *L, bool isSigned) {
   6302   // Only handle:  "ADDREC < LoopInvariant".
   6303   if (!isLoopInvariant(RHS, L)) return getCouldNotCompute();
   6304 
   6305   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
   6306   if (!AddRec || AddRec->getLoop() != L)
   6307     return getCouldNotCompute();
   6308 
   6309   // Check to see if we have a flag which makes analysis easy.
   6310   bool NoWrap = isSigned ?
   6311     AddRec->getNoWrapFlags((SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNW)) :
   6312     AddRec->getNoWrapFlags((SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNW));
   6313 
   6314   if (AddRec->isAffine()) {
   6315     unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
   6316     const SCEV *Step = AddRec->getStepRecurrence(*this);
   6317 
   6318     if (Step->isZero())
   6319       return getCouldNotCompute();
   6320     if (Step->isOne()) {
   6321       // With unit stride, the iteration never steps past the limit value.
   6322     } else if (isKnownPositive(Step)) {
   6323       // Test whether a positive iteration can step past the limit
   6324       // value and past the maximum value for its type in a single step.
   6325       // Note that it's not sufficient to check NoWrap here, because even
   6326       // though the value after a wrap is undefined, it's not undefined
   6327       // behavior, so if wrap does occur, the loop could either terminate or
   6328       // loop infinitely, but in either case, the loop is guaranteed to
   6329       // iterate at least until the iteration where the wrapping occurs.
   6330       const SCEV *One = getConstant(Step->getType(), 1);
   6331       if (isSigned) {
   6332         APInt Max = APInt::getSignedMaxValue(BitWidth);
   6333         if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
   6334               .slt(getSignedRange(RHS).getSignedMax()))
   6335           return getCouldNotCompute();
   6336       } else {
   6337         APInt Max = APInt::getMaxValue(BitWidth);
   6338         if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
   6339               .ult(getUnsignedRange(RHS).getUnsignedMax()))
   6340           return getCouldNotCompute();
   6341       }
   6342     } else
   6343       // TODO: Handle negative strides here and below.
   6344       return getCouldNotCompute();
   6345 
   6346     // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
   6347     // m.  So, we count the number of iterations in which {n,+,s} < m is true.
   6348     // Note that we cannot simply return max(m-n,0)/s because it's not safe to
   6349     // treat m-n as signed nor unsigned due to overflow possibility.
   6350 
   6351     // First, we get the value of the LHS in the first iteration: n
   6352     const SCEV *Start = AddRec->getOperand(0);
   6353 
   6354     // Determine the minimum constant start value.
   6355     const SCEV *MinStart = getConstant(isSigned ?
   6356       getSignedRange(Start).getSignedMin() :
   6357       getUnsignedRange(Start).getUnsignedMin());
   6358 
   6359     // If we know that the condition is true in order to enter the loop,
   6360     // then we know that it will run exactly (m-n)/s times. Otherwise, we
   6361     // only know that it will execute (max(m,n)-n)/s times. In both cases,
   6362     // the division must round up.
   6363     const SCEV *End = RHS;
   6364     if (!isLoopEntryGuardedByCond(L,
   6365                                   isSigned ? ICmpInst::ICMP_SLT :
   6366                                              ICmpInst::ICMP_ULT,
   6367                                   getMinusSCEV(Start, Step), RHS))
   6368       End = isSigned ? getSMaxExpr(RHS, Start)
   6369                      : getUMaxExpr(RHS, Start);
   6370 
   6371     // Determine the maximum constant end value.
   6372     const SCEV *MaxEnd = getConstant(isSigned ?
   6373       getSignedRange(End).getSignedMax() :
   6374       getUnsignedRange(End).getUnsignedMax());
   6375 
   6376     // If MaxEnd is within a step of the maximum integer value in its type,
   6377     // adjust it down to the minimum value which would produce the same effect.
   6378     // This allows the subsequent ceiling division of (N+(step-1))/step to
   6379     // compute the correct value.
   6380     const SCEV *StepMinusOne = getMinusSCEV(Step,
   6381                                             getConstant(Step->getType(), 1));
   6382     MaxEnd = isSigned ?
   6383       getSMinExpr(MaxEnd,
   6384                   getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
   6385                                StepMinusOne)) :
   6386       getUMinExpr(MaxEnd,
   6387                   getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
   6388                                StepMinusOne));
   6389 
   6390     // Finally, we subtract these two values and divide, rounding up, to get
   6391     // the number of times the backedge is executed.
   6392     const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
   6393 
   6394     // The maximum backedge count is similar, except using the minimum start
   6395     // value and the maximum end value.
   6396     // If we already have an exact constant BECount, use it instead.
   6397     const SCEV *MaxBECount = isa<SCEVConstant>(BECount) ? BECount
   6398       : getBECount(MinStart, MaxEnd, Step, NoWrap);
   6399 
   6400     // If the stride is nonconstant, and NoWrap == true, then
   6401     // getBECount(MinStart, MaxEnd) may not compute. This would result in an
   6402     // exact BECount and invalid MaxBECount, which should be avoided to catch
   6403     // more optimization opportunities.
   6404     if (isa<SCEVCouldNotCompute>(MaxBECount))
   6405       MaxBECount = BECount;
   6406 
   6407     return ExitLimit(BECount, MaxBECount);
   6408   }
   6409 
   6410   return getCouldNotCompute();
   6411 }
   6412 
   6413 /// getNumIterationsInRange - Return the number of iterations of this loop that
   6414 /// produce values in the specified constant range.  Another way of looking at
   6415 /// this is that it returns the first iteration number where the value is not in
   6416 /// the condition, thus computing the exit count. If the iteration count can't
   6417 /// be computed, an instance of SCEVCouldNotCompute is returned.
   6418 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
   6419                                                     ScalarEvolution &SE) const {
   6420   if (Range.isFullSet())  // Infinite loop.
   6421     return SE.getCouldNotCompute();
   6422 
   6423   // If the start is a non-zero constant, shift the range to simplify things.
   6424   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
   6425     if (!SC->getValue()->isZero()) {
   6426       SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
   6427       Operands[0] = SE.getConstant(SC->getType(), 0);
   6428       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
   6429                                              getNoWrapFlags(FlagNW));
   6430       if (const SCEVAddRecExpr *ShiftedAddRec =
   6431             dyn_cast<SCEVAddRecExpr>(Shifted))
   6432         return ShiftedAddRec->getNumIterationsInRange(
   6433                            Range.subtract(SC->getValue()->getValue()), SE);
   6434       // This is strange and shouldn't happen.
   6435       return SE.getCouldNotCompute();
   6436     }
   6437 
   6438   // The only time we can solve this is when we have all constant indices.
   6439   // Otherwise, we cannot determine the overflow conditions.
   6440   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
   6441     if (!isa<SCEVConstant>(getOperand(i)))
   6442       return SE.getCouldNotCompute();
   6443 
   6444 
   6445   // Okay at this point we know that all elements of the chrec are constants and
   6446   // that the start element is zero.
   6447 
   6448   // First check to see if the range contains zero.  If not, the first
   6449   // iteration exits.
   6450   unsigned BitWidth = SE.getTypeSizeInBits(getType());
   6451   if (!Range.contains(APInt(BitWidth, 0)))
   6452     return SE.getConstant(getType(), 0);
   6453 
   6454   if (isAffine()) {
   6455     // If this is an affine expression then we have this situation:
   6456     //   Solve {0,+,A} in Range  ===  Ax in Range
   6457 
   6458     // We know that zero is in the range.  If A is positive then we know that
   6459     // the upper value of the range must be the first possible exit value.
   6460     // If A is negative then the lower of the range is the last possible loop
   6461     // value.  Also note that we already checked for a full range.
   6462     APInt One(BitWidth,1);
   6463     APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
   6464     APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
   6465 
   6466     // The exit value should be (End+A)/A.
   6467     APInt ExitVal = (End + A).udiv(A);
   6468     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
   6469 
   6470     // Evaluate at the exit value.  If we really did fall out of the valid
   6471     // range, then we computed our trip count, otherwise wrap around or other
   6472     // things must have happened.
   6473     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
   6474     if (Range.contains(Val->getValue()))
   6475       return SE.getCouldNotCompute();  // Something strange happened
   6476 
   6477     // Ensure that the previous value is in the range.  This is a sanity check.
   6478     assert(Range.contains(
   6479            EvaluateConstantChrecAtConstant(this,
   6480            ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
   6481            "Linear scev computation is off in a bad way!");
   6482     return SE.getConstant(ExitValue);
   6483   } else if (isQuadratic()) {
   6484     // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
   6485     // quadratic equation to solve it.  To do this, we must frame our problem in
   6486     // terms of figuring out when zero is crossed, instead of when
   6487     // Range.getUpper() is crossed.
   6488     SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
   6489     NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
   6490     const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
   6491                                              // getNoWrapFlags(FlagNW)
   6492                                              FlagAnyWrap);
   6493 
   6494     // Next, solve the constructed addrec
   6495     std::pair<const SCEV *,const SCEV *> Roots =
   6496       SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
   6497     const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
   6498     const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
   6499     if (R1) {
   6500       // Pick the smallest positive root value.
   6501       if (ConstantInt *CB =
   6502           dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
   6503                          R1->getValue(), R2->getValue()))) {
   6504         if (CB->getZExtValue() == false)
   6505           std::swap(R1, R2);   // R1 is the minimum root now.
   6506 
   6507         // Make sure the root is not off by one.  The returned iteration should
   6508         // not be in the range, but the previous one should be.  When solving
   6509         // for "X*X < 5", for example, we should not return a root of 2.
   6510         ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
   6511                                                              R1->getValue(),
   6512                                                              SE);
   6513         if (Range.contains(R1Val->getValue())) {
   6514           // The next iteration must be out of the range...
   6515           ConstantInt *NextVal =
   6516                 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
   6517 
   6518           R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
   6519           if (!Range.contains(R1Val->getValue()))
   6520             return SE.getConstant(NextVal);
   6521           return SE.getCouldNotCompute();  // Something strange happened
   6522         }
   6523 
   6524         // If R1 was not in the range, then it is a good return value.  Make
   6525         // sure that R1-1 WAS in the range though, just in case.
   6526         ConstantInt *NextVal =
   6527                ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
   6528         R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
   6529         if (Range.contains(R1Val->getValue()))
   6530           return R1;
   6531         return SE.getCouldNotCompute();  // Something strange happened
   6532       }
   6533     }
   6534   }
   6535 
   6536   return SE.getCouldNotCompute();
   6537 }
   6538 
   6539 
   6540 
   6541 //===----------------------------------------------------------------------===//
   6542 //                   SCEVCallbackVH Class Implementation
   6543 //===----------------------------------------------------------------------===//
   6544 
   6545 void ScalarEvolution::SCEVCallbackVH::deleted() {
   6546   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
   6547   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
   6548     SE->ConstantEvolutionLoopExitValue.erase(PN);
   6549   SE->ValueExprMap.erase(getValPtr());
   6550   // this now dangles!
   6551 }
   6552 
   6553 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
   6554   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
   6555 
   6556   // Forget all the expressions associated with users of the old value,
   6557   // so that future queries will recompute the expressions using the new
   6558   // value.
   6559   Value *Old = getValPtr();
   6560   SmallVector<User *, 16> Worklist;
   6561   SmallPtrSet<User *, 8> Visited;
   6562   for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
   6563        UI != UE; ++UI)
   6564     Worklist.push_back(*UI);
   6565   while (!Worklist.empty()) {
   6566     User *U = Worklist.pop_back_val();
   6567     // Deleting the Old value will cause this to dangle. Postpone
   6568     // that until everything else is done.
   6569     if (U == Old)
   6570       continue;
   6571     if (!Visited.insert(U))
   6572       continue;
   6573     if (PHINode *PN = dyn_cast<PHINode>(U))
   6574       SE->ConstantEvolutionLoopExitValue.erase(PN);
   6575     SE->ValueExprMap.erase(U);
   6576     for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
   6577          UI != UE; ++UI)
   6578       Worklist.push_back(*UI);
   6579   }
   6580   // Delete the Old value.
   6581   if (PHINode *PN = dyn_cast<PHINode>(Old))
   6582     SE->ConstantEvolutionLoopExitValue.erase(PN);
   6583   SE->ValueExprMap.erase(Old);
   6584   // this now dangles!
   6585 }
   6586 
   6587 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
   6588   : CallbackVH(V), SE(se) {}
   6589 
   6590 //===----------------------------------------------------------------------===//
   6591 //                   ScalarEvolution Class Implementation
   6592 //===----------------------------------------------------------------------===//
   6593 
   6594 ScalarEvolution::ScalarEvolution()
   6595   : FunctionPass(ID), FirstUnknown(0) {
   6596   initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
   6597 }
   6598 
   6599 bool ScalarEvolution::runOnFunction(Function &F) {
   6600   this->F = &F;
   6601   LI = &getAnalysis<LoopInfo>();
   6602   TD = getAnalysisIfAvailable<DataLayout>();
   6603   TLI = &getAnalysis<TargetLibraryInfo>();
   6604   DT = &getAnalysis<DominatorTree>();
   6605   return false;
   6606 }
   6607 
   6608 void ScalarEvolution::releaseMemory() {
   6609   // Iterate through all the SCEVUnknown instances and call their
   6610   // destructors, so that they release their references to their values.
   6611   for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
   6612     U->~SCEVUnknown();
   6613   FirstUnknown = 0;
   6614 
   6615   ValueExprMap.clear();
   6616 
   6617   // Free any extra memory created for ExitNotTakenInfo in the unlikely event
   6618   // that a loop had multiple computable exits.
   6619   for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
   6620          BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
   6621        I != E; ++I) {
   6622     I->second.clear();
   6623   }
   6624 
   6625   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
   6626 
   6627   BackedgeTakenCounts.clear();
   6628   ConstantEvolutionLoopExitValue.clear();
   6629   ValuesAtScopes.clear();
   6630   LoopDispositions.clear();
   6631   BlockDispositions.clear();
   6632   UnsignedRanges.clear();
   6633   SignedRanges.clear();
   6634   UniqueSCEVs.clear();
   6635   SCEVAllocator.Reset();
   6636 }
   6637 
   6638 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
   6639   AU.setPreservesAll();
   6640   AU.addRequiredTransitive<LoopInfo>();
   6641   AU.addRequiredTransitive<DominatorTree>();
   6642   AU.addRequired<TargetLibraryInfo>();
   6643 }
   6644 
   6645 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
   6646   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
   6647 }
   6648 
   6649 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
   6650                           const Loop *L) {
   6651   // Print all inner loops first
   6652   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
   6653     PrintLoopInfo(OS, SE, *I);
   6654 
   6655   OS << "Loop ";
   6656   WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
   6657   OS << ": ";
   6658 
   6659   SmallVector<BasicBlock *, 8> ExitBlocks;
   6660   L->getExitBlocks(ExitBlocks);
   6661   if (ExitBlocks.size() != 1)
   6662     OS << "<multiple exits> ";
   6663 
   6664   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
   6665     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
   6666   } else {
   6667     OS << "Unpredictable backedge-taken count. ";
   6668   }
   6669 
   6670   OS << "\n"
   6671         "Loop ";
   6672   WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
   6673   OS << ": ";
   6674 
   6675   if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
   6676     OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
   6677   } else {
   6678     OS << "Unpredictable max backedge-taken count. ";
   6679   }
   6680 
   6681   OS << "\n";
   6682 }
   6683 
   6684 void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
   6685   // ScalarEvolution's implementation of the print method is to print
   6686   // out SCEV values of all instructions that are interesting. Doing
   6687   // this potentially causes it to create new SCEV objects though,
   6688   // which technically conflicts with the const qualifier. This isn't
   6689   // observable from outside the class though, so casting away the
   6690   // const isn't dangerous.
   6691   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
   6692 
   6693   OS << "Classifying expressions for: ";
   6694   WriteAsOperand(OS, F, /*PrintType=*/false);
   6695   OS << "\n";
   6696   for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
   6697     if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
   6698       OS << *I << '\n';
   6699       OS << "  -->  ";
   6700       const SCEV *SV = SE.getSCEV(&*I);
   6701       SV->print(OS);
   6702 
   6703       const Loop *L = LI->getLoopFor((*I).getParent());
   6704 
   6705       const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
   6706       if (AtUse != SV) {
   6707         OS << "  -->  ";
   6708         AtUse->print(OS);
   6709       }
   6710 
   6711       if (L) {
   6712         OS << "\t\t" "Exits: ";
   6713         const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
   6714         if (!SE.isLoopInvariant(ExitValue, L)) {
   6715           OS << "<<Unknown>>";
   6716         } else {
   6717           OS << *ExitValue;
   6718         }
   6719       }
   6720 
   6721       OS << "\n";
   6722     }
   6723 
   6724   OS << "Determining loop execution counts for: ";
   6725   WriteAsOperand(OS, F, /*PrintType=*/false);
   6726   OS << "\n";
   6727   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
   6728     PrintLoopInfo(OS, &SE, *I);
   6729 }
   6730 
   6731 ScalarEvolution::LoopDisposition
   6732 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
   6733   std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S];
   6734   std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair =
   6735     Values.insert(std::make_pair(L, LoopVariant));
   6736   if (!Pair.second)
   6737     return Pair.first->second;
   6738 
   6739   LoopDisposition D = computeLoopDisposition(S, L);
   6740   return LoopDispositions[S][L] = D;
   6741 }
   6742 
   6743 ScalarEvolution::LoopDisposition
   6744 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
   6745   switch (S->getSCEVType()) {
   6746   case scConstant:
   6747     return LoopInvariant;
   6748   case scTruncate:
   6749   case scZeroExtend:
   6750   case scSignExtend:
   6751     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
   6752   case scAddRecExpr: {
   6753     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
   6754 
   6755     // If L is the addrec's loop, it's computable.
   6756     if (AR->getLoop() == L)
   6757       return LoopComputable;
   6758 
   6759     // Add recurrences are never invariant in the function-body (null loop).
   6760     if (!L)
   6761       return LoopVariant;
   6762 
   6763     // This recurrence is variant w.r.t. L if L contains AR's loop.
   6764     if (L->contains(AR->getLoop()))
   6765       return LoopVariant;
   6766 
   6767     // This recurrence is invariant w.r.t. L if AR's loop contains L.
   6768     if (AR->getLoop()->contains(L))
   6769       return LoopInvariant;
   6770 
   6771     // This recurrence is variant w.r.t. L if any of its operands
   6772     // are variant.
   6773     for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
   6774          I != E; ++I)
   6775       if (!isLoopInvariant(*I, L))
   6776         return LoopVariant;
   6777 
   6778     // Otherwise it's loop-invariant.
   6779     return LoopInvariant;
   6780   }
   6781   case scAddExpr:
   6782   case scMulExpr:
   6783   case scUMaxExpr:
   6784   case scSMaxExpr: {
   6785     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
   6786     bool HasVarying = false;
   6787     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
   6788          I != E; ++I) {
   6789       LoopDisposition D = getLoopDisposition(*I, L);
   6790       if (D == LoopVariant)
   6791         return LoopVariant;
   6792       if (D == LoopComputable)
   6793         HasVarying = true;
   6794     }
   6795     return HasVarying ? LoopComputable : LoopInvariant;
   6796   }
   6797   case scUDivExpr: {
   6798     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
   6799     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
   6800     if (LD == LoopVariant)
   6801       return LoopVariant;
   6802     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
   6803     if (RD == LoopVariant)
   6804       return LoopVariant;
   6805     return (LD == LoopInvariant && RD == LoopInvariant) ?
   6806            LoopInvariant : LoopComputable;
   6807   }
   6808   case scUnknown:
   6809     // All non-instruction values are loop invariant.  All instructions are loop
   6810     // invariant if they are not contained in the specified loop.
   6811     // Instructions are never considered invariant in the function body
   6812     // (null loop) because they are defined within the "loop".
   6813     if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
   6814       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
   6815     return LoopInvariant;
   6816   case scCouldNotCompute:
   6817     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
   6818   default: llvm_unreachable("Unknown SCEV kind!");
   6819   }
   6820 }
   6821 
   6822 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
   6823   return getLoopDisposition(S, L) == LoopInvariant;
   6824 }
   6825 
   6826 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
   6827   return getLoopDisposition(S, L) == LoopComputable;
   6828 }
   6829 
   6830 ScalarEvolution::BlockDisposition
   6831 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
   6832   std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S];
   6833   std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool>
   6834     Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock));
   6835   if (!Pair.second)
   6836     return Pair.first->second;
   6837 
   6838   BlockDisposition D = computeBlockDisposition(S, BB);
   6839   return BlockDispositions[S][BB] = D;
   6840 }
   6841 
   6842 ScalarEvolution::BlockDisposition
   6843 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
   6844   switch (S->getSCEVType()) {
   6845   case scConstant:
   6846     return ProperlyDominatesBlock;
   6847   case scTruncate:
   6848   case scZeroExtend:
   6849   case scSignExtend:
   6850     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
   6851   case scAddRecExpr: {
   6852     // This uses a "dominates" query instead of "properly dominates" query
   6853     // to test for proper dominance too, because the instruction which
   6854     // produces the addrec's value is a PHI, and a PHI effectively properly
   6855     // dominates its entire containing block.
   6856     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
   6857     if (!DT->dominates(AR->getLoop()->getHeader(), BB))
   6858       return DoesNotDominateBlock;
   6859   }
   6860   // FALL THROUGH into SCEVNAryExpr handling.
   6861   case scAddExpr:
   6862   case scMulExpr:
   6863   case scUMaxExpr:
   6864   case scSMaxExpr: {
   6865     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
   6866     bool Proper = true;
   6867     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
   6868          I != E; ++I) {
   6869       BlockDisposition D = getBlockDisposition(*I, BB);
   6870       if (D == DoesNotDominateBlock)
   6871         return DoesNotDominateBlock;
   6872       if (D == DominatesBlock)
   6873         Proper = false;
   6874     }
   6875     return Proper ? ProperlyDominatesBlock : DominatesBlock;
   6876   }
   6877   case scUDivExpr: {
   6878     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
   6879     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
   6880     BlockDisposition LD = getBlockDisposition(LHS, BB);
   6881     if (LD == DoesNotDominateBlock)
   6882       return DoesNotDominateBlock;
   6883     BlockDisposition RD = getBlockDisposition(RHS, BB);
   6884     if (RD == DoesNotDominateBlock)
   6885       return DoesNotDominateBlock;
   6886     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
   6887       ProperlyDominatesBlock : DominatesBlock;
   6888   }
   6889   case scUnknown:
   6890     if (Instruction *I =
   6891           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
   6892       if (I->getParent() == BB)
   6893         return DominatesBlock;
   6894       if (DT->properlyDominates(I->getParent(), BB))
   6895         return ProperlyDominatesBlock;
   6896       return DoesNotDominateBlock;
   6897     }
   6898     return ProperlyDominatesBlock;
   6899   case scCouldNotCompute:
   6900     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
   6901   default:
   6902     llvm_unreachable("Unknown SCEV kind!");
   6903   }
   6904 }
   6905 
   6906 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
   6907   return getBlockDisposition(S, BB) >= DominatesBlock;
   6908 }
   6909 
   6910 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
   6911   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
   6912 }
   6913 
   6914 namespace {
   6915 // Search for a SCEV expression node within an expression tree.
   6916 // Implements SCEVTraversal::Visitor.
   6917 struct SCEVSearch {
   6918   const SCEV *Node;
   6919   bool IsFound;
   6920 
   6921   SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
   6922 
   6923   bool follow(const SCEV *S) {
   6924     IsFound |= (S == Node);
   6925     return !IsFound;
   6926   }
   6927   bool isDone() const { return IsFound; }
   6928 };
   6929 }
   6930 
   6931 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
   6932   SCEVSearch Search(Op);
   6933   visitAll(S, Search);
   6934   return Search.IsFound;
   6935 }
   6936 
   6937 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
   6938   ValuesAtScopes.erase(S);
   6939   LoopDispositions.erase(S);
   6940   BlockDispositions.erase(S);
   6941   UnsignedRanges.erase(S);
   6942   SignedRanges.erase(S);
   6943 }
   6944 
   6945 typedef DenseMap<const Loop *, std::string> VerifyMap;
   6946 
   6947 /// replaceSubString - Replaces all occurences of From in Str with To.
   6948 static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
   6949   size_t Pos = 0;
   6950   while ((Pos = Str.find(From, Pos)) != std::string::npos) {
   6951     Str.replace(Pos, From.size(), To.data(), To.size());
   6952     Pos += To.size();
   6953   }
   6954 }
   6955 
   6956 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
   6957 static void
   6958 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
   6959   for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) {
   6960     getLoopBackedgeTakenCounts(*I, Map, SE); // recurse.
   6961 
   6962     std::string &S = Map[L];
   6963     if (S.empty()) {
   6964       raw_string_ostream OS(S);
   6965       SE.getBackedgeTakenCount(L)->print(OS);
   6966 
   6967       // false and 0 are semantically equivalent. This can happen in dead loops.
   6968       replaceSubString(OS.str(), "false", "0");
   6969       // Remove wrap flags, their use in SCEV is highly fragile.
   6970       // FIXME: Remove this when SCEV gets smarter about them.
   6971       replaceSubString(OS.str(), "<nw>", "");
   6972       replaceSubString(OS.str(), "<nsw>", "");
   6973       replaceSubString(OS.str(), "<nuw>", "");
   6974     }
   6975   }
   6976 }
   6977 
   6978 void ScalarEvolution::verifyAnalysis() const {
   6979   if (!VerifySCEV)
   6980     return;
   6981 
   6982   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
   6983 
   6984   // Gather stringified backedge taken counts for all loops using SCEV's caches.
   6985   // FIXME: It would be much better to store actual values instead of strings,
   6986   //        but SCEV pointers will change if we drop the caches.
   6987   VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
   6988   for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
   6989     getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
   6990 
   6991   // Gather stringified backedge taken counts for all loops without using
   6992   // SCEV's caches.
   6993   SE.releaseMemory();
   6994   for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
   6995     getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE);
   6996 
   6997   // Now compare whether they're the same with and without caches. This allows
   6998   // verifying that no pass changed the cache.
   6999   assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
   7000          "New loops suddenly appeared!");
   7001 
   7002   for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
   7003                            OldE = BackedgeDumpsOld.end(),
   7004                            NewI = BackedgeDumpsNew.begin();
   7005        OldI != OldE; ++OldI, ++NewI) {
   7006     assert(OldI->first == NewI->first && "Loop order changed!");
   7007 
   7008     // Compare the stringified SCEVs. We don't care if undef backedgetaken count
   7009     // changes.
   7010     // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
   7011     // means that a pass is buggy or SCEV has to learn a new pattern but is
   7012     // usually not harmful.
   7013     if (OldI->second != NewI->second &&
   7014         OldI->second.find("undef") == std::string::npos &&
   7015         NewI->second.find("undef") == std::string::npos &&
   7016         OldI->second != "***COULDNOTCOMPUTE***" &&
   7017         NewI->second != "***COULDNOTCOMPUTE***") {
   7018       dbgs() << "SCEVValidator: SCEV for loop '"
   7019              << OldI->first->getHeader()->getName()
   7020              << "' changed from '" << OldI->second
   7021              << "' to '" << NewI->second << "'!\n";
   7022       std::abort();
   7023     }
   7024   }
   7025 
   7026   // TODO: Verify more things.
   7027 }
   7028