Home | History | Annotate | Download | only in AArch64
      1 //===- AArch64FrameLowering.cpp - AArch64 Frame Information ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the AArch64 implementation of TargetFrameLowering class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "AArch64.h"
     15 #include "AArch64FrameLowering.h"
     16 #include "AArch64MachineFunctionInfo.h"
     17 #include "AArch64InstrInfo.h"
     18 #include "llvm/CodeGen/MachineFrameInfo.h"
     19 #include "llvm/CodeGen/MachineFunction.h"
     20 #include "llvm/CodeGen/MachineInstrBuilder.h"
     21 #include "llvm/CodeGen/MachineMemOperand.h"
     22 #include "llvm/CodeGen/MachineModuleInfo.h"
     23 #include "llvm/CodeGen/MachineRegisterInfo.h"
     24 #include "llvm/CodeGen/RegisterScavenging.h"
     25 #include "llvm/IR/Function.h"
     26 #include "llvm/MC/MachineLocation.h"
     27 #include "llvm/Support/Debug.h"
     28 #include "llvm/Support/ErrorHandling.h"
     29 
     30 using namespace llvm;
     31 
     32 void AArch64FrameLowering::splitSPAdjustments(uint64_t Total,
     33                                               uint64_t &Initial,
     34                                               uint64_t &Residual) const {
     35   // 0x1f0 here is a pessimistic (i.e. realistic) boundary: x-register LDP
     36   // instructions have a 7-bit signed immediate scaled by 8, giving a reach of
     37   // 0x1f8, but stack adjustment should always be a multiple of 16.
     38   if (Total <= 0x1f0) {
     39     Initial = Total;
     40     Residual = 0;
     41   } else {
     42     Initial = 0x1f0;
     43     Residual = Total - Initial;
     44   }
     45 }
     46 
     47 void AArch64FrameLowering::emitPrologue(MachineFunction &MF) const {
     48   AArch64MachineFunctionInfo *FuncInfo =
     49     MF.getInfo<AArch64MachineFunctionInfo>();
     50   MachineBasicBlock &MBB = MF.front();
     51   MachineBasicBlock::iterator MBBI = MBB.begin();
     52   MachineFrameInfo *MFI = MF.getFrameInfo();
     53   const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
     54   DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
     55 
     56   MachineModuleInfo &MMI = MF.getMMI();
     57   std::vector<MachineMove> &Moves = MMI.getFrameMoves();
     58   bool NeedsFrameMoves = MMI.hasDebugInfo()
     59     || MF.getFunction()->needsUnwindTableEntry();
     60 
     61   uint64_t NumInitialBytes, NumResidualBytes;
     62 
     63   // Currently we expect the stack to be laid out by
     64   //     sub sp, sp, #initial
     65   //     stp x29, x30, [sp, #offset]
     66   //     ...
     67   //     str xxx, [sp, #offset]
     68   //     sub sp, sp, #rest (possibly via extra instructions).
     69   if (MFI->getCalleeSavedInfo().size()) {
     70     // If there are callee-saved registers, we want to store them efficiently as
     71     // a block, and virtual base assignment happens too early to do it for us so
     72     // we adjust the stack in two phases: first just for callee-saved fiddling,
     73     // then to allocate the rest of the frame.
     74     splitSPAdjustments(MFI->getStackSize(), NumInitialBytes, NumResidualBytes);
     75   } else {
     76     // If there aren't any callee-saved registers, two-phase adjustment is
     77     // inefficient. It's more efficient to adjust with NumInitialBytes too
     78     // because when we're in a "callee pops argument space" situation, that pop
     79     // must be tacked onto Initial for correctness.
     80     NumInitialBytes = MFI->getStackSize();
     81     NumResidualBytes = 0;
     82   }
     83 
     84   // Tell everyone else how much adjustment we're expecting them to use. In
     85   // particular if an adjustment is required for a tail call the epilogue could
     86   // have a different view of things.
     87   FuncInfo->setInitialStackAdjust(NumInitialBytes);
     88 
     89   emitSPUpdate(MBB, MBBI, DL, TII, AArch64::X16, -NumInitialBytes,
     90                MachineInstr::FrameSetup);
     91 
     92   if (NeedsFrameMoves && NumInitialBytes) {
     93     // We emit this update even if the CFA is set from a frame pointer later so
     94     // that the CFA is valid in the interim.
     95     MCSymbol *SPLabel = MMI.getContext().CreateTempSymbol();
     96     BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::PROLOG_LABEL))
     97       .addSym(SPLabel);
     98 
     99     MachineLocation Dst(MachineLocation::VirtualFP);
    100     MachineLocation Src(AArch64::XSP, NumInitialBytes);
    101     Moves.push_back(MachineMove(SPLabel, Dst, Src));
    102   }
    103 
    104   // Otherwise we need to set the frame pointer and/or add a second stack
    105   // adjustment.
    106 
    107   bool FPNeedsSetting = hasFP(MF);
    108   for (; MBBI != MBB.end(); ++MBBI) {
    109     // Note that this search makes strong assumptions about the operation used
    110     // to store the frame-pointer: it must be "STP x29, x30, ...". This could
    111     // change in future, but until then there's no point in implementing
    112     // untestable more generic cases.
    113     if (FPNeedsSetting && MBBI->getOpcode() == AArch64::LSPair64_STR
    114                        && MBBI->getOperand(0).getReg() == AArch64::X29) {
    115       int64_t X29FrameIdx = MBBI->getOperand(2).getIndex();
    116       FuncInfo->setFramePointerOffset(MFI->getObjectOffset(X29FrameIdx));
    117 
    118       ++MBBI;
    119       emitRegUpdate(MBB, MBBI, DL, TII, AArch64::X29, AArch64::XSP,
    120                     AArch64::X29,
    121                     NumInitialBytes + MFI->getObjectOffset(X29FrameIdx),
    122                     MachineInstr::FrameSetup);
    123 
    124       // The offset adjustment used when emitting debugging locations relative
    125       // to whatever frame base is set. AArch64 uses the default frame base (FP
    126       // or SP) and this adjusts the calculations to be correct.
    127       MFI->setOffsetAdjustment(- MFI->getObjectOffset(X29FrameIdx)
    128                                - MFI->getStackSize());
    129 
    130       if (NeedsFrameMoves) {
    131         MCSymbol *FPLabel = MMI.getContext().CreateTempSymbol();
    132         BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::PROLOG_LABEL))
    133           .addSym(FPLabel);
    134         MachineLocation Dst(MachineLocation::VirtualFP);
    135         MachineLocation Src(AArch64::X29, -MFI->getObjectOffset(X29FrameIdx));
    136         Moves.push_back(MachineMove(FPLabel, Dst, Src));
    137       }
    138 
    139       FPNeedsSetting = false;
    140     }
    141 
    142     if (!MBBI->getFlag(MachineInstr::FrameSetup))
    143       break;
    144   }
    145 
    146   assert(!FPNeedsSetting && "Frame pointer couldn't be set");
    147 
    148   emitSPUpdate(MBB, MBBI, DL, TII, AArch64::X16, -NumResidualBytes,
    149                MachineInstr::FrameSetup);
    150 
    151   // Now we emit the rest of the frame setup information, if necessary: we've
    152   // already noted the FP and initial SP moves so we're left with the prologue's
    153   // final SP update and callee-saved register locations.
    154   if (!NeedsFrameMoves)
    155     return;
    156 
    157   // Reuse the label if appropriate, so create it in this outer scope.
    158   MCSymbol *CSLabel = 0;
    159 
    160   // The rest of the stack adjustment
    161   if (!hasFP(MF) && NumResidualBytes) {
    162     CSLabel = MMI.getContext().CreateTempSymbol();
    163     BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::PROLOG_LABEL))
    164       .addSym(CSLabel);
    165 
    166     MachineLocation Dst(MachineLocation::VirtualFP);
    167     MachineLocation Src(AArch64::XSP, NumResidualBytes + NumInitialBytes);
    168     Moves.push_back(MachineMove(CSLabel, Dst, Src));
    169   }
    170 
    171   // And any callee-saved registers (it's fine to leave them to the end here,
    172   // because the old values are still valid at this point.
    173   const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
    174   if (CSI.size()) {
    175     if (!CSLabel) {
    176       CSLabel = MMI.getContext().CreateTempSymbol();
    177       BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::PROLOG_LABEL))
    178         .addSym(CSLabel);
    179     }
    180 
    181     for (std::vector<CalleeSavedInfo>::const_iterator I = CSI.begin(),
    182            E = CSI.end(); I != E; ++I) {
    183       MachineLocation Dst(MachineLocation::VirtualFP,
    184                           MFI->getObjectOffset(I->getFrameIdx()));
    185       MachineLocation Src(I->getReg());
    186       Moves.push_back(MachineMove(CSLabel, Dst, Src));
    187     }
    188   }
    189 }
    190 
    191 void
    192 AArch64FrameLowering::emitEpilogue(MachineFunction &MF,
    193                                    MachineBasicBlock &MBB) const {
    194   AArch64MachineFunctionInfo *FuncInfo =
    195     MF.getInfo<AArch64MachineFunctionInfo>();
    196 
    197   MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
    198   DebugLoc DL = MBBI->getDebugLoc();
    199   const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
    200   MachineFrameInfo &MFI = *MF.getFrameInfo();
    201   unsigned RetOpcode = MBBI->getOpcode();
    202 
    203   // Initial and residual are named for consitency with the prologue. Note that
    204   // in the epilogue, the residual adjustment is executed first.
    205   uint64_t NumInitialBytes = FuncInfo->getInitialStackAdjust();
    206   uint64_t NumResidualBytes = MFI.getStackSize() - NumInitialBytes;
    207   uint64_t ArgumentPopSize = 0;
    208   if (RetOpcode == AArch64::TC_RETURNdi ||
    209       RetOpcode == AArch64::TC_RETURNxi) {
    210     MachineOperand &JumpTarget = MBBI->getOperand(0);
    211     MachineOperand &StackAdjust = MBBI->getOperand(1);
    212 
    213     MachineInstrBuilder MIB;
    214     if (RetOpcode == AArch64::TC_RETURNdi) {
    215       MIB = BuildMI(MBB, MBBI, DL, TII.get(AArch64::TAIL_Bimm));
    216       if (JumpTarget.isGlobal()) {
    217         MIB.addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset(),
    218                              JumpTarget.getTargetFlags());
    219       } else {
    220         assert(JumpTarget.isSymbol() && "unexpected tail call destination");
    221         MIB.addExternalSymbol(JumpTarget.getSymbolName(),
    222                               JumpTarget.getTargetFlags());
    223       }
    224     } else {
    225       assert(RetOpcode == AArch64::TC_RETURNxi && JumpTarget.isReg()
    226              && "Unexpected tail call");
    227 
    228       MIB = BuildMI(MBB, MBBI, DL, TII.get(AArch64::TAIL_BRx));
    229       MIB.addReg(JumpTarget.getReg(), RegState::Kill);
    230     }
    231 
    232     // Add the extra operands onto the new tail call instruction even though
    233     // they're not used directly (so that liveness is tracked properly etc).
    234     for (unsigned i = 2, e = MBBI->getNumOperands(); i != e; ++i)
    235         MIB->addOperand(MBBI->getOperand(i));
    236 
    237 
    238     // Delete the pseudo instruction TC_RETURN.
    239     MachineInstr *NewMI = prior(MBBI);
    240     MBB.erase(MBBI);
    241     MBBI = NewMI;
    242 
    243     // For a tail-call in a callee-pops-arguments environment, some or all of
    244     // the stack may actually be in use for the call's arguments, this is
    245     // calculated during LowerCall and consumed here...
    246     ArgumentPopSize = StackAdjust.getImm();
    247   } else {
    248     // ... otherwise the amount to pop is *all* of the argument space,
    249     // conveniently stored in the MachineFunctionInfo by
    250     // LowerFormalArguments. This will, of course, be zero for the C calling
    251     // convention.
    252     ArgumentPopSize = FuncInfo->getArgumentStackToRestore();
    253   }
    254 
    255   assert(NumInitialBytes % 16 == 0 && NumResidualBytes % 16 == 0
    256          && "refusing to adjust stack by misaligned amt");
    257 
    258   // We may need to address callee-saved registers differently, so find out the
    259   // bound on the frame indices.
    260   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
    261   int MinCSFI = 0;
    262   int MaxCSFI = -1;
    263 
    264   if (CSI.size()) {
    265     MinCSFI = CSI[0].getFrameIdx();
    266     MaxCSFI = CSI[CSI.size() - 1].getFrameIdx();
    267   }
    268 
    269   // The "residual" stack update comes first from this direction and guarantees
    270   // that SP is NumInitialBytes below its value on function entry, either by a
    271   // direct update or restoring it from the frame pointer.
    272   if (NumInitialBytes + ArgumentPopSize != 0) {
    273     emitSPUpdate(MBB, MBBI, DL, TII, AArch64::X16,
    274                  NumInitialBytes + ArgumentPopSize);
    275     --MBBI;
    276   }
    277 
    278 
    279   // MBBI now points to the instruction just past the last callee-saved
    280   // restoration (either RET/B if NumInitialBytes == 0, or the "ADD sp, sp"
    281   // otherwise).
    282 
    283   // Now we need to find out where to put the bulk of the stack adjustment
    284   MachineBasicBlock::iterator FirstEpilogue = MBBI;
    285   while (MBBI != MBB.begin()) {
    286     --MBBI;
    287 
    288     unsigned FrameOp;
    289     for (FrameOp = 0; FrameOp < MBBI->getNumOperands(); ++FrameOp) {
    290       if (MBBI->getOperand(FrameOp).isFI())
    291         break;
    292     }
    293 
    294     // If this instruction doesn't have a frame index we've reached the end of
    295     // the callee-save restoration.
    296     if (FrameOp == MBBI->getNumOperands())
    297       break;
    298 
    299     // Likewise if it *is* a local reference, but not to a callee-saved object.
    300     int FrameIdx = MBBI->getOperand(FrameOp).getIndex();
    301     if (FrameIdx < MinCSFI || FrameIdx > MaxCSFI)
    302       break;
    303 
    304     FirstEpilogue = MBBI;
    305   }
    306 
    307   if (MF.getFrameInfo()->hasVarSizedObjects()) {
    308     int64_t StaticFrameBase;
    309     StaticFrameBase = -(NumInitialBytes + FuncInfo->getFramePointerOffset());
    310     emitRegUpdate(MBB, FirstEpilogue, DL, TII,
    311                   AArch64::XSP, AArch64::X29, AArch64::NoRegister,
    312                   StaticFrameBase);
    313   } else {
    314     emitSPUpdate(MBB, FirstEpilogue, DL,TII, AArch64::X16, NumResidualBytes);
    315   }
    316 }
    317 
    318 int64_t
    319 AArch64FrameLowering::resolveFrameIndexReference(MachineFunction &MF,
    320                                                  int FrameIndex,
    321                                                  unsigned &FrameReg,
    322                                                  int SPAdj,
    323                                                  bool IsCalleeSaveOp) const {
    324   AArch64MachineFunctionInfo *FuncInfo =
    325     MF.getInfo<AArch64MachineFunctionInfo>();
    326   MachineFrameInfo *MFI = MF.getFrameInfo();
    327 
    328   int64_t TopOfFrameOffset = MFI->getObjectOffset(FrameIndex);
    329 
    330   assert(!(IsCalleeSaveOp && FuncInfo->getInitialStackAdjust() == 0)
    331          && "callee-saved register in unexpected place");
    332 
    333   // If the frame for this function is particularly large, we adjust the stack
    334   // in two phases which means the callee-save related operations see a
    335   // different (intermediate) stack size.
    336   int64_t FrameRegPos;
    337   if (IsCalleeSaveOp) {
    338     FrameReg = AArch64::XSP;
    339     FrameRegPos = -static_cast<int64_t>(FuncInfo->getInitialStackAdjust());
    340   } else if (useFPForAddressing(MF)) {
    341     // Have to use the frame pointer since we have no idea where SP is.
    342     FrameReg = AArch64::X29;
    343     FrameRegPos = FuncInfo->getFramePointerOffset();
    344   } else {
    345     FrameReg = AArch64::XSP;
    346     FrameRegPos = -static_cast<int64_t>(MFI->getStackSize()) + SPAdj;
    347   }
    348 
    349   return TopOfFrameOffset - FrameRegPos;
    350 }
    351 
    352 void
    353 AArch64FrameLowering::processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
    354                                                        RegScavenger *RS) const {
    355   const AArch64RegisterInfo *RegInfo =
    356     static_cast<const AArch64RegisterInfo *>(MF.getTarget().getRegisterInfo());
    357   MachineFrameInfo *MFI = MF.getFrameInfo();
    358   const AArch64InstrInfo &TII =
    359     *static_cast<const AArch64InstrInfo *>(MF.getTarget().getInstrInfo());
    360 
    361   if (hasFP(MF)) {
    362     MF.getRegInfo().setPhysRegUsed(AArch64::X29);
    363     MF.getRegInfo().setPhysRegUsed(AArch64::X30);
    364   }
    365 
    366   // If addressing of local variables is going to be more complicated than
    367   // shoving a base register and an offset into the instruction then we may well
    368   // need to scavenge registers. We should either specifically add an
    369   // callee-save register for this purpose or allocate an extra spill slot.
    370 
    371   bool BigStack =
    372     (RS && MFI->estimateStackSize(MF) >= TII.estimateRSStackLimit(MF))
    373     || MFI->hasVarSizedObjects() // Access will be from X29: messes things up
    374     || (MFI->adjustsStack() && !hasReservedCallFrame(MF));
    375 
    376   if (!BigStack)
    377     return;
    378 
    379   // We certainly need some slack space for the scavenger, preferably an extra
    380   // register.
    381   const uint16_t *CSRegs = RegInfo->getCalleeSavedRegs();
    382   uint16_t ExtraReg = AArch64::NoRegister;
    383 
    384   for (unsigned i = 0; CSRegs[i]; ++i) {
    385     if (AArch64::GPR64RegClass.contains(CSRegs[i]) &&
    386         !MF.getRegInfo().isPhysRegUsed(CSRegs[i])) {
    387       ExtraReg = CSRegs[i];
    388       break;
    389     }
    390   }
    391 
    392   if (ExtraReg != 0) {
    393     MF.getRegInfo().setPhysRegUsed(ExtraReg);
    394   } else {
    395     // Create a stack slot for scavenging purposes. PrologEpilogInserter
    396     // helpfully places it near either SP or FP for us to avoid
    397     // infinitely-regression during scavenging.
    398     const TargetRegisterClass *RC = &AArch64::GPR64RegClass;
    399     RS->setScavengingFrameIndex(MFI->CreateStackObject(RC->getSize(),
    400                                                        RC->getAlignment(),
    401                                                        false));
    402   }
    403 }
    404 
    405 bool AArch64FrameLowering::determinePrologueDeath(MachineBasicBlock &MBB,
    406                                                   unsigned Reg) const {
    407   // If @llvm.returnaddress is called then it will refer to X30 by some means;
    408   // the prologue store does not kill the register.
    409   if (Reg == AArch64::X30) {
    410     if (MBB.getParent()->getFrameInfo()->isReturnAddressTaken()
    411         && MBB.getParent()->getRegInfo().isLiveIn(Reg))
    412     return false;
    413   }
    414 
    415   // In all other cases, physical registers are dead after they've been saved
    416   // but live at the beginning of the prologue block.
    417   MBB.addLiveIn(Reg);
    418   return true;
    419 }
    420 
    421 void
    422 AArch64FrameLowering::emitFrameMemOps(bool isPrologue, MachineBasicBlock &MBB,
    423                                       MachineBasicBlock::iterator MBBI,
    424                                       const std::vector<CalleeSavedInfo> &CSI,
    425                                       const TargetRegisterInfo *TRI,
    426                                       LoadStoreMethod PossClasses[],
    427                                       unsigned NumClasses) const {
    428   DebugLoc DL = MBB.findDebugLoc(MBBI);
    429   MachineFunction &MF = *MBB.getParent();
    430   MachineFrameInfo &MFI = *MF.getFrameInfo();
    431   const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
    432 
    433   // A certain amount of implicit contract is present here. The actual stack
    434   // offsets haven't been allocated officially yet, so for strictly correct code
    435   // we rely on the fact that the elements of CSI are allocated in order
    436   // starting at SP, purely as dictated by size and alignment. In practice since
    437   // this function handles the only accesses to those slots it's not quite so
    438   // important.
    439   //
    440   // We have also ordered the Callee-saved register list in AArch64CallingConv
    441   // so that the above scheme puts registers in order: in particular we want
    442   // &X30 to be &X29+8 for an ABI-correct frame record (PCS 5.2.2)
    443   for (unsigned i = 0, e = CSI.size(); i < e; ++i) {
    444     unsigned Reg = CSI[i].getReg();
    445 
    446     // First we need to find out which register class the register belongs to so
    447     // that we can use the correct load/store instrucitons.
    448     unsigned ClassIdx;
    449     for (ClassIdx = 0; ClassIdx < NumClasses; ++ClassIdx) {
    450       if (PossClasses[ClassIdx].RegClass->contains(Reg))
    451         break;
    452     }
    453     assert(ClassIdx != NumClasses
    454            && "Asked to store register in unexpected class");
    455     const TargetRegisterClass &TheClass = *PossClasses[ClassIdx].RegClass;
    456 
    457     // Now we need to decide whether it's possible to emit a paired instruction:
    458     // for this we want the next register to be in the same class.
    459     MachineInstrBuilder NewMI;
    460     bool Pair = false;
    461     if (i + 1 < CSI.size() && TheClass.contains(CSI[i+1].getReg())) {
    462       Pair = true;
    463       unsigned StLow = 0, StHigh = 0;
    464       if (isPrologue) {
    465         // Most of these registers will be live-in to the MBB and killed by our
    466         // store, though there are exceptions (see determinePrologueDeath).
    467         StLow = getKillRegState(determinePrologueDeath(MBB, CSI[i+1].getReg()));
    468         StHigh = getKillRegState(determinePrologueDeath(MBB, CSI[i].getReg()));
    469       } else {
    470         StLow = RegState::Define;
    471         StHigh = RegState::Define;
    472       }
    473 
    474       NewMI = BuildMI(MBB, MBBI, DL, TII.get(PossClasses[ClassIdx].PairOpcode))
    475                 .addReg(CSI[i+1].getReg(), StLow)
    476                 .addReg(CSI[i].getReg(), StHigh);
    477 
    478       // If it's a paired op, we've consumed two registers
    479       ++i;
    480     } else {
    481       unsigned State;
    482       if (isPrologue) {
    483         State = getKillRegState(determinePrologueDeath(MBB, CSI[i].getReg()));
    484       } else {
    485         State = RegState::Define;
    486       }
    487 
    488       NewMI = BuildMI(MBB, MBBI, DL,
    489                       TII.get(PossClasses[ClassIdx].SingleOpcode))
    490                 .addReg(CSI[i].getReg(), State);
    491     }
    492 
    493     // Note that the FrameIdx refers to the second register in a pair: it will
    494     // be allocated the smaller numeric address and so is the one an LDP/STP
    495     // address must use.
    496     int FrameIdx = CSI[i].getFrameIdx();
    497     MachineMemOperand::MemOperandFlags Flags;
    498     Flags = isPrologue ? MachineMemOperand::MOStore : MachineMemOperand::MOLoad;
    499     MachineMemOperand *MMO =
    500       MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
    501                              Flags,
    502                              Pair ? TheClass.getSize() * 2 : TheClass.getSize(),
    503                              MFI.getObjectAlignment(FrameIdx));
    504 
    505     NewMI.addFrameIndex(FrameIdx)
    506       .addImm(0)                  // address-register offset
    507       .addMemOperand(MMO);
    508 
    509     if (isPrologue)
    510       NewMI.setMIFlags(MachineInstr::FrameSetup);
    511 
    512     // For aesthetic reasons, during an epilogue we want to emit complementary
    513     // operations to the prologue, but in the opposite order. So we still
    514     // iterate through the CalleeSavedInfo list in order, but we put the
    515     // instructions successively earlier in the MBB.
    516     if (!isPrologue)
    517       --MBBI;
    518   }
    519 }
    520 
    521 bool
    522 AArch64FrameLowering::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
    523                                         MachineBasicBlock::iterator MBBI,
    524                                         const std::vector<CalleeSavedInfo> &CSI,
    525                                         const TargetRegisterInfo *TRI) const {
    526   if (CSI.empty())
    527     return false;
    528 
    529   static LoadStoreMethod PossibleClasses[] = {
    530     {&AArch64::GPR64RegClass, AArch64::LSPair64_STR, AArch64::LS64_STR},
    531     {&AArch64::FPR64RegClass, AArch64::LSFPPair64_STR, AArch64::LSFP64_STR},
    532   };
    533   unsigned NumClasses = llvm::array_lengthof(PossibleClasses);
    534 
    535   emitFrameMemOps(/* isPrologue = */ true, MBB, MBBI, CSI, TRI,
    536                   PossibleClasses, NumClasses);
    537 
    538   return true;
    539 }
    540 
    541 bool
    542 AArch64FrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
    543                                         MachineBasicBlock::iterator MBBI,
    544                                         const std::vector<CalleeSavedInfo> &CSI,
    545                                         const TargetRegisterInfo *TRI) const {
    546 
    547   if (CSI.empty())
    548     return false;
    549 
    550   static LoadStoreMethod PossibleClasses[] = {
    551     {&AArch64::GPR64RegClass, AArch64::LSPair64_LDR, AArch64::LS64_LDR},
    552     {&AArch64::FPR64RegClass, AArch64::LSFPPair64_LDR, AArch64::LSFP64_LDR},
    553   };
    554   unsigned NumClasses = llvm::array_lengthof(PossibleClasses);
    555 
    556   emitFrameMemOps(/* isPrologue = */ false, MBB, MBBI, CSI, TRI,
    557                   PossibleClasses, NumClasses);
    558 
    559   return true;
    560 }
    561 
    562 bool
    563 AArch64FrameLowering::hasFP(const MachineFunction &MF) const {
    564   const MachineFrameInfo *MFI = MF.getFrameInfo();
    565   const TargetRegisterInfo *RI = MF.getTarget().getRegisterInfo();
    566 
    567   // This is a decision of ABI compliance. The AArch64 PCS gives various options
    568   // for conformance, and even at the most stringent level more or less permits
    569   // elimination for leaf functions because there's no loss of functionality
    570   // (for debugging etc)..
    571   if (MF.getTarget().Options.DisableFramePointerElim(MF) && MFI->hasCalls())
    572     return true;
    573 
    574   // The following are hard-limits: incorrect code will be generated if we try
    575   // to omit the frame.
    576   return (RI->needsStackRealignment(MF) ||
    577           MFI->hasVarSizedObjects() ||
    578           MFI->isFrameAddressTaken());
    579 }
    580 
    581 bool
    582 AArch64FrameLowering::useFPForAddressing(const MachineFunction &MF) const {
    583   return MF.getFrameInfo()->hasVarSizedObjects();
    584 }
    585 
    586 bool
    587 AArch64FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
    588   const MachineFrameInfo *MFI = MF.getFrameInfo();
    589 
    590   // Of the various reasons for having a frame pointer, it's actually only
    591   // variable-sized objects that prevent reservation of a call frame.
    592   return !(hasFP(MF) && MFI->hasVarSizedObjects());
    593 }
    594 
    595 void
    596 AArch64FrameLowering::eliminateCallFramePseudoInstr(
    597                                 MachineFunction &MF,
    598                                 MachineBasicBlock &MBB,
    599                                 MachineBasicBlock::iterator MI) const {
    600   const AArch64InstrInfo &TII =
    601     *static_cast<const AArch64InstrInfo *>(MF.getTarget().getInstrInfo());
    602   DebugLoc dl = MI->getDebugLoc();
    603   int Opcode = MI->getOpcode();
    604   bool IsDestroy = Opcode == TII.getCallFrameDestroyOpcode();
    605   uint64_t CalleePopAmount = IsDestroy ? MI->getOperand(1).getImm() : 0;
    606 
    607   if (!hasReservedCallFrame(MF)) {
    608     unsigned Align = getStackAlignment();
    609 
    610     int64_t Amount = MI->getOperand(0).getImm();
    611     Amount = RoundUpToAlignment(Amount, Align);
    612     if (!IsDestroy) Amount = -Amount;
    613 
    614     // N.b. if CalleePopAmount is valid but zero (i.e. callee would pop, but it
    615     // doesn't have to pop anything), then the first operand will be zero too so
    616     // this adjustment is a no-op.
    617     if (CalleePopAmount == 0) {
    618       // FIXME: in-function stack adjustment for calls is limited to 12-bits
    619       // because there's no guaranteed temporary register available. Mostly call
    620       // frames will be allocated at the start of a function so this is OK, but
    621       // it is a limitation that needs dealing with.
    622       assert(Amount > -0xfff && Amount < 0xfff && "call frame too large");
    623       emitSPUpdate(MBB, MI, dl, TII, AArch64::NoRegister, Amount);
    624     }
    625   } else if (CalleePopAmount != 0) {
    626     // If the calling convention demands that the callee pops arguments from the
    627     // stack, we want to add it back if we have a reserved call frame.
    628     assert(CalleePopAmount < 0xfff && "call frame too large");
    629     emitSPUpdate(MBB, MI, dl, TII, AArch64::NoRegister, -CalleePopAmount);
    630   }
    631 
    632   MBB.erase(MI);
    633 }
    634