Home | History | Annotate | Download | only in ARM
      1 //===-- ARMConstantIslandPass.cpp - ARM constant islands ------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains a pass that splits the constant pool up into 'islands'
     11 // which are scattered through-out the function.  This is required due to the
     12 // limited pc-relative displacements that ARM has.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #define DEBUG_TYPE "arm-cp-islands"
     17 #include "ARM.h"
     18 #include "ARMMachineFunctionInfo.h"
     19 #include "MCTargetDesc/ARMAddressingModes.h"
     20 #include "Thumb2InstrInfo.h"
     21 #include "llvm/ADT/STLExtras.h"
     22 #include "llvm/ADT/SmallSet.h"
     23 #include "llvm/ADT/SmallVector.h"
     24 #include "llvm/ADT/Statistic.h"
     25 #include "llvm/CodeGen/MachineConstantPool.h"
     26 #include "llvm/CodeGen/MachineFunctionPass.h"
     27 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     28 #include "llvm/CodeGen/MachineRegisterInfo.h"
     29 #include "llvm/IR/DataLayout.h"
     30 #include "llvm/Support/CommandLine.h"
     31 #include "llvm/Support/Debug.h"
     32 #include "llvm/Support/ErrorHandling.h"
     33 #include "llvm/Support/Format.h"
     34 #include "llvm/Support/raw_ostream.h"
     35 #include "llvm/Target/TargetMachine.h"
     36 #include <algorithm>
     37 using namespace llvm;
     38 
     39 STATISTIC(NumCPEs,       "Number of constpool entries");
     40 STATISTIC(NumSplit,      "Number of uncond branches inserted");
     41 STATISTIC(NumCBrFixed,   "Number of cond branches fixed");
     42 STATISTIC(NumUBrFixed,   "Number of uncond branches fixed");
     43 STATISTIC(NumTBs,        "Number of table branches generated");
     44 STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk");
     45 STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk");
     46 STATISTIC(NumCBZ,        "Number of CBZ / CBNZ formed");
     47 STATISTIC(NumJTMoved,    "Number of jump table destination blocks moved");
     48 STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted");
     49 
     50 
     51 static cl::opt<bool>
     52 AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true),
     53           cl::desc("Adjust basic block layout to better use TB[BH]"));
     54 
     55 // FIXME: This option should be removed once it has received sufficient testing.
     56 static cl::opt<bool>
     57 AlignConstantIslands("arm-align-constant-islands", cl::Hidden, cl::init(true),
     58           cl::desc("Align constant islands in code"));
     59 
     60 /// UnknownPadding - Return the worst case padding that could result from
     61 /// unknown offset bits.  This does not include alignment padding caused by
     62 /// known offset bits.
     63 ///
     64 /// @param LogAlign log2(alignment)
     65 /// @param KnownBits Number of known low offset bits.
     66 static inline unsigned UnknownPadding(unsigned LogAlign, unsigned KnownBits) {
     67   if (KnownBits < LogAlign)
     68     return (1u << LogAlign) - (1u << KnownBits);
     69   return 0;
     70 }
     71 
     72 namespace {
     73   /// ARMConstantIslands - Due to limited PC-relative displacements, ARM
     74   /// requires constant pool entries to be scattered among the instructions
     75   /// inside a function.  To do this, it completely ignores the normal LLVM
     76   /// constant pool; instead, it places constants wherever it feels like with
     77   /// special instructions.
     78   ///
     79   /// The terminology used in this pass includes:
     80   ///   Islands - Clumps of constants placed in the function.
     81   ///   Water   - Potential places where an island could be formed.
     82   ///   CPE     - A constant pool entry that has been placed somewhere, which
     83   ///             tracks a list of users.
     84   class ARMConstantIslands : public MachineFunctionPass {
     85     /// BasicBlockInfo - Information about the offset and size of a single
     86     /// basic block.
     87     struct BasicBlockInfo {
     88       /// Offset - Distance from the beginning of the function to the beginning
     89       /// of this basic block.
     90       ///
     91       /// Offsets are computed assuming worst case padding before an aligned
     92       /// block. This means that subtracting basic block offsets always gives a
     93       /// conservative estimate of the real distance which may be smaller.
     94       ///
     95       /// Because worst case padding is used, the computed offset of an aligned
     96       /// block may not actually be aligned.
     97       unsigned Offset;
     98 
     99       /// Size - Size of the basic block in bytes.  If the block contains
    100       /// inline assembly, this is a worst case estimate.
    101       ///
    102       /// The size does not include any alignment padding whether from the
    103       /// beginning of the block, or from an aligned jump table at the end.
    104       unsigned Size;
    105 
    106       /// KnownBits - The number of low bits in Offset that are known to be
    107       /// exact.  The remaining bits of Offset are an upper bound.
    108       uint8_t KnownBits;
    109 
    110       /// Unalign - When non-zero, the block contains instructions (inline asm)
    111       /// of unknown size.  The real size may be smaller than Size bytes by a
    112       /// multiple of 1 << Unalign.
    113       uint8_t Unalign;
    114 
    115       /// PostAlign - When non-zero, the block terminator contains a .align
    116       /// directive, so the end of the block is aligned to 1 << PostAlign
    117       /// bytes.
    118       uint8_t PostAlign;
    119 
    120       BasicBlockInfo() : Offset(0), Size(0), KnownBits(0), Unalign(0),
    121         PostAlign(0) {}
    122 
    123       /// Compute the number of known offset bits internally to this block.
    124       /// This number should be used to predict worst case padding when
    125       /// splitting the block.
    126       unsigned internalKnownBits() const {
    127         unsigned Bits = Unalign ? Unalign : KnownBits;
    128         // If the block size isn't a multiple of the known bits, assume the
    129         // worst case padding.
    130         if (Size & ((1u << Bits) - 1))
    131           Bits = CountTrailingZeros_32(Size);
    132         return Bits;
    133       }
    134 
    135       /// Compute the offset immediately following this block.  If LogAlign is
    136       /// specified, return the offset the successor block will get if it has
    137       /// this alignment.
    138       unsigned postOffset(unsigned LogAlign = 0) const {
    139         unsigned PO = Offset + Size;
    140         unsigned LA = std::max(unsigned(PostAlign), LogAlign);
    141         if (!LA)
    142           return PO;
    143         // Add alignment padding from the terminator.
    144         return PO + UnknownPadding(LA, internalKnownBits());
    145       }
    146 
    147       /// Compute the number of known low bits of postOffset.  If this block
    148       /// contains inline asm, the number of known bits drops to the
    149       /// instruction alignment.  An aligned terminator may increase the number
    150       /// of know bits.
    151       /// If LogAlign is given, also consider the alignment of the next block.
    152       unsigned postKnownBits(unsigned LogAlign = 0) const {
    153         return std::max(std::max(unsigned(PostAlign), LogAlign),
    154                         internalKnownBits());
    155       }
    156     };
    157 
    158     std::vector<BasicBlockInfo> BBInfo;
    159 
    160     /// WaterList - A sorted list of basic blocks where islands could be placed
    161     /// (i.e. blocks that don't fall through to the following block, due
    162     /// to a return, unreachable, or unconditional branch).
    163     std::vector<MachineBasicBlock*> WaterList;
    164 
    165     /// NewWaterList - The subset of WaterList that was created since the
    166     /// previous iteration by inserting unconditional branches.
    167     SmallSet<MachineBasicBlock*, 4> NewWaterList;
    168 
    169     typedef std::vector<MachineBasicBlock*>::iterator water_iterator;
    170 
    171     /// CPUser - One user of a constant pool, keeping the machine instruction
    172     /// pointer, the constant pool being referenced, and the max displacement
    173     /// allowed from the instruction to the CP.  The HighWaterMark records the
    174     /// highest basic block where a new CPEntry can be placed.  To ensure this
    175     /// pass terminates, the CP entries are initially placed at the end of the
    176     /// function and then move monotonically to lower addresses.  The
    177     /// exception to this rule is when the current CP entry for a particular
    178     /// CPUser is out of range, but there is another CP entry for the same
    179     /// constant value in range.  We want to use the existing in-range CP
    180     /// entry, but if it later moves out of range, the search for new water
    181     /// should resume where it left off.  The HighWaterMark is used to record
    182     /// that point.
    183     struct CPUser {
    184       MachineInstr *MI;
    185       MachineInstr *CPEMI;
    186       MachineBasicBlock *HighWaterMark;
    187     private:
    188       unsigned MaxDisp;
    189     public:
    190       bool NegOk;
    191       bool IsSoImm;
    192       bool KnownAlignment;
    193       CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp,
    194              bool neg, bool soimm)
    195         : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm),
    196           KnownAlignment(false) {
    197         HighWaterMark = CPEMI->getParent();
    198       }
    199       /// getMaxDisp - Returns the maximum displacement supported by MI.
    200       /// Correct for unknown alignment.
    201       /// Conservatively subtract 2 bytes to handle weird alignment effects.
    202       unsigned getMaxDisp() const {
    203         return (KnownAlignment ? MaxDisp : MaxDisp - 2) - 2;
    204       }
    205     };
    206 
    207     /// CPUsers - Keep track of all of the machine instructions that use various
    208     /// constant pools and their max displacement.
    209     std::vector<CPUser> CPUsers;
    210 
    211     /// CPEntry - One per constant pool entry, keeping the machine instruction
    212     /// pointer, the constpool index, and the number of CPUser's which
    213     /// reference this entry.
    214     struct CPEntry {
    215       MachineInstr *CPEMI;
    216       unsigned CPI;
    217       unsigned RefCount;
    218       CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0)
    219         : CPEMI(cpemi), CPI(cpi), RefCount(rc) {}
    220     };
    221 
    222     /// CPEntries - Keep track of all of the constant pool entry machine
    223     /// instructions. For each original constpool index (i.e. those that
    224     /// existed upon entry to this pass), it keeps a vector of entries.
    225     /// Original elements are cloned as we go along; the clones are
    226     /// put in the vector of the original element, but have distinct CPIs.
    227     std::vector<std::vector<CPEntry> > CPEntries;
    228 
    229     /// ImmBranch - One per immediate branch, keeping the machine instruction
    230     /// pointer, conditional or unconditional, the max displacement,
    231     /// and (if isCond is true) the corresponding unconditional branch
    232     /// opcode.
    233     struct ImmBranch {
    234       MachineInstr *MI;
    235       unsigned MaxDisp : 31;
    236       bool isCond : 1;
    237       int UncondBr;
    238       ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr)
    239         : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
    240     };
    241 
    242     /// ImmBranches - Keep track of all the immediate branch instructions.
    243     ///
    244     std::vector<ImmBranch> ImmBranches;
    245 
    246     /// PushPopMIs - Keep track of all the Thumb push / pop instructions.
    247     ///
    248     SmallVector<MachineInstr*, 4> PushPopMIs;
    249 
    250     /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions.
    251     SmallVector<MachineInstr*, 4> T2JumpTables;
    252 
    253     /// HasFarJump - True if any far jump instruction has been emitted during
    254     /// the branch fix up pass.
    255     bool HasFarJump;
    256 
    257     MachineFunction *MF;
    258     MachineConstantPool *MCP;
    259     const ARMBaseInstrInfo *TII;
    260     const ARMSubtarget *STI;
    261     ARMFunctionInfo *AFI;
    262     bool isThumb;
    263     bool isThumb1;
    264     bool isThumb2;
    265   public:
    266     static char ID;
    267     ARMConstantIslands() : MachineFunctionPass(ID) {}
    268 
    269     virtual bool runOnMachineFunction(MachineFunction &MF);
    270 
    271     virtual const char *getPassName() const {
    272       return "ARM constant island placement and branch shortening pass";
    273     }
    274 
    275   private:
    276     void doInitialPlacement(std::vector<MachineInstr*> &CPEMIs);
    277     CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
    278     unsigned getCPELogAlign(const MachineInstr *CPEMI);
    279     void scanFunctionJumpTables();
    280     void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs);
    281     MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI);
    282     void updateForInsertedWaterBlock(MachineBasicBlock *NewBB);
    283     void adjustBBOffsetsAfter(MachineBasicBlock *BB);
    284     bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI);
    285     int findInRangeCPEntry(CPUser& U, unsigned UserOffset);
    286     bool findAvailableWater(CPUser&U, unsigned UserOffset,
    287                             water_iterator &WaterIter);
    288     void createNewWater(unsigned CPUserIndex, unsigned UserOffset,
    289                         MachineBasicBlock *&NewMBB);
    290     bool handleConstantPoolUser(unsigned CPUserIndex);
    291     void removeDeadCPEMI(MachineInstr *CPEMI);
    292     bool removeUnusedCPEntries();
    293     bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
    294                           MachineInstr *CPEMI, unsigned Disp, bool NegOk,
    295                           bool DoDump = false);
    296     bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water,
    297                         CPUser &U, unsigned &Growth);
    298     bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp);
    299     bool fixupImmediateBr(ImmBranch &Br);
    300     bool fixupConditionalBr(ImmBranch &Br);
    301     bool fixupUnconditionalBr(ImmBranch &Br);
    302     bool undoLRSpillRestore();
    303     bool mayOptimizeThumb2Instruction(const MachineInstr *MI) const;
    304     bool optimizeThumb2Instructions();
    305     bool optimizeThumb2Branches();
    306     bool reorderThumb2JumpTables();
    307     bool optimizeThumb2JumpTables();
    308     MachineBasicBlock *adjustJTTargetBlockForward(MachineBasicBlock *BB,
    309                                                   MachineBasicBlock *JTBB);
    310 
    311     void computeBlockSize(MachineBasicBlock *MBB);
    312     unsigned getOffsetOf(MachineInstr *MI) const;
    313     unsigned getUserOffset(CPUser&) const;
    314     void dumpBBs();
    315     void verify();
    316 
    317     bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
    318                          unsigned Disp, bool NegativeOK, bool IsSoImm = false);
    319     bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
    320                          const CPUser &U) {
    321       return isOffsetInRange(UserOffset, TrialOffset,
    322                              U.getMaxDisp(), U.NegOk, U.IsSoImm);
    323     }
    324   };
    325   char ARMConstantIslands::ID = 0;
    326 }
    327 
    328 /// verify - check BBOffsets, BBSizes, alignment of islands
    329 void ARMConstantIslands::verify() {
    330 #ifndef NDEBUG
    331   for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
    332        MBBI != E; ++MBBI) {
    333     MachineBasicBlock *MBB = MBBI;
    334     unsigned MBBId = MBB->getNumber();
    335     assert(!MBBId || BBInfo[MBBId - 1].postOffset() <= BBInfo[MBBId].Offset);
    336   }
    337   DEBUG(dbgs() << "Verifying " << CPUsers.size() << " CP users.\n");
    338   for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
    339     CPUser &U = CPUsers[i];
    340     unsigned UserOffset = getUserOffset(U);
    341     // Verify offset using the real max displacement without the safety
    342     // adjustment.
    343     if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, U.getMaxDisp()+2, U.NegOk,
    344                          /* DoDump = */ true)) {
    345       DEBUG(dbgs() << "OK\n");
    346       continue;
    347     }
    348     DEBUG(dbgs() << "Out of range.\n");
    349     dumpBBs();
    350     DEBUG(MF->dump());
    351     llvm_unreachable("Constant pool entry out of range!");
    352   }
    353 #endif
    354 }
    355 
    356 /// print block size and offset information - debugging
    357 void ARMConstantIslands::dumpBBs() {
    358   DEBUG({
    359     for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) {
    360       const BasicBlockInfo &BBI = BBInfo[J];
    361       dbgs() << format("%08x BB#%u\t", BBI.Offset, J)
    362              << " kb=" << unsigned(BBI.KnownBits)
    363              << " ua=" << unsigned(BBI.Unalign)
    364              << " pa=" << unsigned(BBI.PostAlign)
    365              << format(" size=%#x\n", BBInfo[J].Size);
    366     }
    367   });
    368 }
    369 
    370 /// createARMConstantIslandPass - returns an instance of the constpool
    371 /// island pass.
    372 FunctionPass *llvm::createARMConstantIslandPass() {
    373   return new ARMConstantIslands();
    374 }
    375 
    376 bool ARMConstantIslands::runOnMachineFunction(MachineFunction &mf) {
    377   MF = &mf;
    378   MCP = mf.getConstantPool();
    379 
    380   DEBUG(dbgs() << "***** ARMConstantIslands: "
    381                << MCP->getConstants().size() << " CP entries, aligned to "
    382                << MCP->getConstantPoolAlignment() << " bytes *****\n");
    383 
    384   TII = (const ARMBaseInstrInfo*)MF->getTarget().getInstrInfo();
    385   AFI = MF->getInfo<ARMFunctionInfo>();
    386   STI = &MF->getTarget().getSubtarget<ARMSubtarget>();
    387 
    388   isThumb = AFI->isThumbFunction();
    389   isThumb1 = AFI->isThumb1OnlyFunction();
    390   isThumb2 = AFI->isThumb2Function();
    391 
    392   HasFarJump = false;
    393 
    394   // This pass invalidates liveness information when it splits basic blocks.
    395   MF->getRegInfo().invalidateLiveness();
    396 
    397   // Renumber all of the machine basic blocks in the function, guaranteeing that
    398   // the numbers agree with the position of the block in the function.
    399   MF->RenumberBlocks();
    400 
    401   // Try to reorder and otherwise adjust the block layout to make good use
    402   // of the TB[BH] instructions.
    403   bool MadeChange = false;
    404   if (isThumb2 && AdjustJumpTableBlocks) {
    405     scanFunctionJumpTables();
    406     MadeChange |= reorderThumb2JumpTables();
    407     // Data is out of date, so clear it. It'll be re-computed later.
    408     T2JumpTables.clear();
    409     // Blocks may have shifted around. Keep the numbering up to date.
    410     MF->RenumberBlocks();
    411   }
    412 
    413   // Thumb1 functions containing constant pools get 4-byte alignment.
    414   // This is so we can keep exact track of where the alignment padding goes.
    415 
    416   // ARM and Thumb2 functions need to be 4-byte aligned.
    417   if (!isThumb1)
    418     MF->ensureAlignment(2);  // 2 = log2(4)
    419 
    420   // Perform the initial placement of the constant pool entries.  To start with,
    421   // we put them all at the end of the function.
    422   std::vector<MachineInstr*> CPEMIs;
    423   if (!MCP->isEmpty())
    424     doInitialPlacement(CPEMIs);
    425 
    426   /// The next UID to take is the first unused one.
    427   AFI->initPICLabelUId(CPEMIs.size());
    428 
    429   // Do the initial scan of the function, building up information about the
    430   // sizes of each block, the location of all the water, and finding all of the
    431   // constant pool users.
    432   initializeFunctionInfo(CPEMIs);
    433   CPEMIs.clear();
    434   DEBUG(dumpBBs());
    435 
    436 
    437   /// Remove dead constant pool entries.
    438   MadeChange |= removeUnusedCPEntries();
    439 
    440   // Iteratively place constant pool entries and fix up branches until there
    441   // is no change.
    442   unsigned NoCPIters = 0, NoBRIters = 0;
    443   while (true) {
    444     DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n');
    445     bool CPChange = false;
    446     for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
    447       CPChange |= handleConstantPoolUser(i);
    448     if (CPChange && ++NoCPIters > 30)
    449       report_fatal_error("Constant Island pass failed to converge!");
    450     DEBUG(dumpBBs());
    451 
    452     // Clear NewWaterList now.  If we split a block for branches, it should
    453     // appear as "new water" for the next iteration of constant pool placement.
    454     NewWaterList.clear();
    455 
    456     DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n');
    457     bool BRChange = false;
    458     for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
    459       BRChange |= fixupImmediateBr(ImmBranches[i]);
    460     if (BRChange && ++NoBRIters > 30)
    461       report_fatal_error("Branch Fix Up pass failed to converge!");
    462     DEBUG(dumpBBs());
    463 
    464     if (!CPChange && !BRChange)
    465       break;
    466     MadeChange = true;
    467   }
    468 
    469   // Shrink 32-bit Thumb2 branch, load, and store instructions.
    470   if (isThumb2 && !STI->prefers32BitThumb())
    471     MadeChange |= optimizeThumb2Instructions();
    472 
    473   // After a while, this might be made debug-only, but it is not expensive.
    474   verify();
    475 
    476   // If LR has been forced spilled and no far jump (i.e. BL) has been issued,
    477   // undo the spill / restore of LR if possible.
    478   if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump())
    479     MadeChange |= undoLRSpillRestore();
    480 
    481   // Save the mapping between original and cloned constpool entries.
    482   for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
    483     for (unsigned j = 0, je = CPEntries[i].size(); j != je; ++j) {
    484       const CPEntry & CPE = CPEntries[i][j];
    485       AFI->recordCPEClone(i, CPE.CPI);
    486     }
    487   }
    488 
    489   DEBUG(dbgs() << '\n'; dumpBBs());
    490 
    491   BBInfo.clear();
    492   WaterList.clear();
    493   CPUsers.clear();
    494   CPEntries.clear();
    495   ImmBranches.clear();
    496   PushPopMIs.clear();
    497   T2JumpTables.clear();
    498 
    499   return MadeChange;
    500 }
    501 
    502 /// doInitialPlacement - Perform the initial placement of the constant pool
    503 /// entries.  To start with, we put them all at the end of the function.
    504 void
    505 ARMConstantIslands::doInitialPlacement(std::vector<MachineInstr*> &CPEMIs) {
    506   // Create the basic block to hold the CPE's.
    507   MachineBasicBlock *BB = MF->CreateMachineBasicBlock();
    508   MF->push_back(BB);
    509 
    510   // MachineConstantPool measures alignment in bytes. We measure in log2(bytes).
    511   unsigned MaxAlign = Log2_32(MCP->getConstantPoolAlignment());
    512 
    513   // Mark the basic block as required by the const-pool.
    514   // If AlignConstantIslands isn't set, use 4-byte alignment for everything.
    515   BB->setAlignment(AlignConstantIslands ? MaxAlign : 2);
    516 
    517   // The function needs to be as aligned as the basic blocks. The linker may
    518   // move functions around based on their alignment.
    519   MF->ensureAlignment(BB->getAlignment());
    520 
    521   // Order the entries in BB by descending alignment.  That ensures correct
    522   // alignment of all entries as long as BB is sufficiently aligned.  Keep
    523   // track of the insertion point for each alignment.  We are going to bucket
    524   // sort the entries as they are created.
    525   SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxAlign + 1, BB->end());
    526 
    527   // Add all of the constants from the constant pool to the end block, use an
    528   // identity mapping of CPI's to CPE's.
    529   const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants();
    530 
    531   const DataLayout &TD = *MF->getTarget().getDataLayout();
    532   for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
    533     unsigned Size = TD.getTypeAllocSize(CPs[i].getType());
    534     assert(Size >= 4 && "Too small constant pool entry");
    535     unsigned Align = CPs[i].getAlignment();
    536     assert(isPowerOf2_32(Align) && "Invalid alignment");
    537     // Verify that all constant pool entries are a multiple of their alignment.
    538     // If not, we would have to pad them out so that instructions stay aligned.
    539     assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!");
    540 
    541     // Insert CONSTPOOL_ENTRY before entries with a smaller alignment.
    542     unsigned LogAlign = Log2_32(Align);
    543     MachineBasicBlock::iterator InsAt = InsPoint[LogAlign];
    544     MachineInstr *CPEMI =
    545       BuildMI(*BB, InsAt, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY))
    546         .addImm(i).addConstantPoolIndex(i).addImm(Size);
    547     CPEMIs.push_back(CPEMI);
    548 
    549     // Ensure that future entries with higher alignment get inserted before
    550     // CPEMI. This is bucket sort with iterators.
    551     for (unsigned a = LogAlign + 1; a <= MaxAlign; ++a)
    552       if (InsPoint[a] == InsAt)
    553         InsPoint[a] = CPEMI;
    554 
    555     // Add a new CPEntry, but no corresponding CPUser yet.
    556     std::vector<CPEntry> CPEs;
    557     CPEs.push_back(CPEntry(CPEMI, i));
    558     CPEntries.push_back(CPEs);
    559     ++NumCPEs;
    560     DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = "
    561                  << Size << ", align = " << Align <<'\n');
    562   }
    563   DEBUG(BB->dump());
    564 }
    565 
    566 /// BBHasFallthrough - Return true if the specified basic block can fallthrough
    567 /// into the block immediately after it.
    568 static bool BBHasFallthrough(MachineBasicBlock *MBB) {
    569   // Get the next machine basic block in the function.
    570   MachineFunction::iterator MBBI = MBB;
    571   // Can't fall off end of function.
    572   if (llvm::next(MBBI) == MBB->getParent()->end())
    573     return false;
    574 
    575   MachineBasicBlock *NextBB = llvm::next(MBBI);
    576   for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
    577        E = MBB->succ_end(); I != E; ++I)
    578     if (*I == NextBB)
    579       return true;
    580 
    581   return false;
    582 }
    583 
    584 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
    585 /// look up the corresponding CPEntry.
    586 ARMConstantIslands::CPEntry
    587 *ARMConstantIslands::findConstPoolEntry(unsigned CPI,
    588                                         const MachineInstr *CPEMI) {
    589   std::vector<CPEntry> &CPEs = CPEntries[CPI];
    590   // Number of entries per constpool index should be small, just do a
    591   // linear search.
    592   for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
    593     if (CPEs[i].CPEMI == CPEMI)
    594       return &CPEs[i];
    595   }
    596   return NULL;
    597 }
    598 
    599 /// getCPELogAlign - Returns the required alignment of the constant pool entry
    600 /// represented by CPEMI.  Alignment is measured in log2(bytes) units.
    601 unsigned ARMConstantIslands::getCPELogAlign(const MachineInstr *CPEMI) {
    602   assert(CPEMI && CPEMI->getOpcode() == ARM::CONSTPOOL_ENTRY);
    603 
    604   // Everything is 4-byte aligned unless AlignConstantIslands is set.
    605   if (!AlignConstantIslands)
    606     return 2;
    607 
    608   unsigned CPI = CPEMI->getOperand(1).getIndex();
    609   assert(CPI < MCP->getConstants().size() && "Invalid constant pool index.");
    610   unsigned Align = MCP->getConstants()[CPI].getAlignment();
    611   assert(isPowerOf2_32(Align) && "Invalid CPE alignment");
    612   return Log2_32(Align);
    613 }
    614 
    615 /// scanFunctionJumpTables - Do a scan of the function, building up
    616 /// information about the sizes of each block and the locations of all
    617 /// the jump tables.
    618 void ARMConstantIslands::scanFunctionJumpTables() {
    619   for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
    620        MBBI != E; ++MBBI) {
    621     MachineBasicBlock &MBB = *MBBI;
    622 
    623     for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
    624          I != E; ++I)
    625       if (I->isBranch() && I->getOpcode() == ARM::t2BR_JT)
    626         T2JumpTables.push_back(I);
    627   }
    628 }
    629 
    630 /// initializeFunctionInfo - Do the initial scan of the function, building up
    631 /// information about the sizes of each block, the location of all the water,
    632 /// and finding all of the constant pool users.
    633 void ARMConstantIslands::
    634 initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) {
    635   BBInfo.clear();
    636   BBInfo.resize(MF->getNumBlockIDs());
    637 
    638   // First thing, compute the size of all basic blocks, and see if the function
    639   // has any inline assembly in it. If so, we have to be conservative about
    640   // alignment assumptions, as we don't know for sure the size of any
    641   // instructions in the inline assembly.
    642   for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I)
    643     computeBlockSize(I);
    644 
    645   // The known bits of the entry block offset are determined by the function
    646   // alignment.
    647   BBInfo.front().KnownBits = MF->getAlignment();
    648 
    649   // Compute block offsets and known bits.
    650   adjustBBOffsetsAfter(MF->begin());
    651 
    652   // Now go back through the instructions and build up our data structures.
    653   for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
    654        MBBI != E; ++MBBI) {
    655     MachineBasicBlock &MBB = *MBBI;
    656 
    657     // If this block doesn't fall through into the next MBB, then this is
    658     // 'water' that a constant pool island could be placed.
    659     if (!BBHasFallthrough(&MBB))
    660       WaterList.push_back(&MBB);
    661 
    662     for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
    663          I != E; ++I) {
    664       if (I->isDebugValue())
    665         continue;
    666 
    667       int Opc = I->getOpcode();
    668       if (I->isBranch()) {
    669         bool isCond = false;
    670         unsigned Bits = 0;
    671         unsigned Scale = 1;
    672         int UOpc = Opc;
    673         switch (Opc) {
    674         default:
    675           continue;  // Ignore other JT branches
    676         case ARM::t2BR_JT:
    677           T2JumpTables.push_back(I);
    678           continue;   // Does not get an entry in ImmBranches
    679         case ARM::Bcc:
    680           isCond = true;
    681           UOpc = ARM::B;
    682           // Fallthrough
    683         case ARM::B:
    684           Bits = 24;
    685           Scale = 4;
    686           break;
    687         case ARM::tBcc:
    688           isCond = true;
    689           UOpc = ARM::tB;
    690           Bits = 8;
    691           Scale = 2;
    692           break;
    693         case ARM::tB:
    694           Bits = 11;
    695           Scale = 2;
    696           break;
    697         case ARM::t2Bcc:
    698           isCond = true;
    699           UOpc = ARM::t2B;
    700           Bits = 20;
    701           Scale = 2;
    702           break;
    703         case ARM::t2B:
    704           Bits = 24;
    705           Scale = 2;
    706           break;
    707         }
    708 
    709         // Record this immediate branch.
    710         unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
    711         ImmBranches.push_back(ImmBranch(I, MaxOffs, isCond, UOpc));
    712       }
    713 
    714       if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET)
    715         PushPopMIs.push_back(I);
    716 
    717       if (Opc == ARM::CONSTPOOL_ENTRY)
    718         continue;
    719 
    720       // Scan the instructions for constant pool operands.
    721       for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op)
    722         if (I->getOperand(op).isCPI()) {
    723           // We found one.  The addressing mode tells us the max displacement
    724           // from the PC that this instruction permits.
    725 
    726           // Basic size info comes from the TSFlags field.
    727           unsigned Bits = 0;
    728           unsigned Scale = 1;
    729           bool NegOk = false;
    730           bool IsSoImm = false;
    731 
    732           switch (Opc) {
    733           default:
    734             llvm_unreachable("Unknown addressing mode for CP reference!");
    735 
    736           // Taking the address of a CP entry.
    737           case ARM::LEApcrel:
    738             // This takes a SoImm, which is 8 bit immediate rotated. We'll
    739             // pretend the maximum offset is 255 * 4. Since each instruction
    740             // 4 byte wide, this is always correct. We'll check for other
    741             // displacements that fits in a SoImm as well.
    742             Bits = 8;
    743             Scale = 4;
    744             NegOk = true;
    745             IsSoImm = true;
    746             break;
    747           case ARM::t2LEApcrel:
    748             Bits = 12;
    749             NegOk = true;
    750             break;
    751           case ARM::tLEApcrel:
    752             Bits = 8;
    753             Scale = 4;
    754             break;
    755 
    756           case ARM::LDRi12:
    757           case ARM::LDRcp:
    758           case ARM::t2LDRpci:
    759             Bits = 12;  // +-offset_12
    760             NegOk = true;
    761             break;
    762 
    763           case ARM::tLDRpci:
    764             Bits = 8;
    765             Scale = 4;  // +(offset_8*4)
    766             break;
    767 
    768           case ARM::VLDRD:
    769           case ARM::VLDRS:
    770             Bits = 8;
    771             Scale = 4;  // +-(offset_8*4)
    772             NegOk = true;
    773             break;
    774           }
    775 
    776           // Remember that this is a user of a CP entry.
    777           unsigned CPI = I->getOperand(op).getIndex();
    778           MachineInstr *CPEMI = CPEMIs[CPI];
    779           unsigned MaxOffs = ((1 << Bits)-1) * Scale;
    780           CPUsers.push_back(CPUser(I, CPEMI, MaxOffs, NegOk, IsSoImm));
    781 
    782           // Increment corresponding CPEntry reference count.
    783           CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
    784           assert(CPE && "Cannot find a corresponding CPEntry!");
    785           CPE->RefCount++;
    786 
    787           // Instructions can only use one CP entry, don't bother scanning the
    788           // rest of the operands.
    789           break;
    790         }
    791     }
    792   }
    793 }
    794 
    795 /// computeBlockSize - Compute the size and some alignment information for MBB.
    796 /// This function updates BBInfo directly.
    797 void ARMConstantIslands::computeBlockSize(MachineBasicBlock *MBB) {
    798   BasicBlockInfo &BBI = BBInfo[MBB->getNumber()];
    799   BBI.Size = 0;
    800   BBI.Unalign = 0;
    801   BBI.PostAlign = 0;
    802 
    803   for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
    804        ++I) {
    805     BBI.Size += TII->GetInstSizeInBytes(I);
    806     // For inline asm, GetInstSizeInBytes returns a conservative estimate.
    807     // The actual size may be smaller, but still a multiple of the instr size.
    808     if (I->isInlineAsm())
    809       BBI.Unalign = isThumb ? 1 : 2;
    810     // Also consider instructions that may be shrunk later.
    811     else if (isThumb && mayOptimizeThumb2Instruction(I))
    812       BBI.Unalign = 1;
    813   }
    814 
    815   // tBR_JTr contains a .align 2 directive.
    816   if (!MBB->empty() && MBB->back().getOpcode() == ARM::tBR_JTr) {
    817     BBI.PostAlign = 2;
    818     MBB->getParent()->ensureAlignment(2);
    819   }
    820 }
    821 
    822 /// getOffsetOf - Return the current offset of the specified machine instruction
    823 /// from the start of the function.  This offset changes as stuff is moved
    824 /// around inside the function.
    825 unsigned ARMConstantIslands::getOffsetOf(MachineInstr *MI) const {
    826   MachineBasicBlock *MBB = MI->getParent();
    827 
    828   // The offset is composed of two things: the sum of the sizes of all MBB's
    829   // before this instruction's block, and the offset from the start of the block
    830   // it is in.
    831   unsigned Offset = BBInfo[MBB->getNumber()].Offset;
    832 
    833   // Sum instructions before MI in MBB.
    834   for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) {
    835     assert(I != MBB->end() && "Didn't find MI in its own basic block?");
    836     Offset += TII->GetInstSizeInBytes(I);
    837   }
    838   return Offset;
    839 }
    840 
    841 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
    842 /// ID.
    843 static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
    844                               const MachineBasicBlock *RHS) {
    845   return LHS->getNumber() < RHS->getNumber();
    846 }
    847 
    848 /// updateForInsertedWaterBlock - When a block is newly inserted into the
    849 /// machine function, it upsets all of the block numbers.  Renumber the blocks
    850 /// and update the arrays that parallel this numbering.
    851 void ARMConstantIslands::updateForInsertedWaterBlock(MachineBasicBlock *NewBB) {
    852   // Renumber the MBB's to keep them consecutive.
    853   NewBB->getParent()->RenumberBlocks(NewBB);
    854 
    855   // Insert an entry into BBInfo to align it properly with the (newly
    856   // renumbered) block numbers.
    857   BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
    858 
    859   // Next, update WaterList.  Specifically, we need to add NewMBB as having
    860   // available water after it.
    861   water_iterator IP =
    862     std::lower_bound(WaterList.begin(), WaterList.end(), NewBB,
    863                      CompareMBBNumbers);
    864   WaterList.insert(IP, NewBB);
    865 }
    866 
    867 
    868 /// Split the basic block containing MI into two blocks, which are joined by
    869 /// an unconditional branch.  Update data structures and renumber blocks to
    870 /// account for this change and returns the newly created block.
    871 MachineBasicBlock *ARMConstantIslands::splitBlockBeforeInstr(MachineInstr *MI) {
    872   MachineBasicBlock *OrigBB = MI->getParent();
    873 
    874   // Create a new MBB for the code after the OrigBB.
    875   MachineBasicBlock *NewBB =
    876     MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
    877   MachineFunction::iterator MBBI = OrigBB; ++MBBI;
    878   MF->insert(MBBI, NewBB);
    879 
    880   // Splice the instructions starting with MI over to NewBB.
    881   NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
    882 
    883   // Add an unconditional branch from OrigBB to NewBB.
    884   // Note the new unconditional branch is not being recorded.
    885   // There doesn't seem to be meaningful DebugInfo available; this doesn't
    886   // correspond to anything in the source.
    887   unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B;
    888   if (!isThumb)
    889     BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB);
    890   else
    891     BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB)
    892             .addImm(ARMCC::AL).addReg(0);
    893   ++NumSplit;
    894 
    895   // Update the CFG.  All succs of OrigBB are now succs of NewBB.
    896   NewBB->transferSuccessors(OrigBB);
    897 
    898   // OrigBB branches to NewBB.
    899   OrigBB->addSuccessor(NewBB);
    900 
    901   // Update internal data structures to account for the newly inserted MBB.
    902   // This is almost the same as updateForInsertedWaterBlock, except that
    903   // the Water goes after OrigBB, not NewBB.
    904   MF->RenumberBlocks(NewBB);
    905 
    906   // Insert an entry into BBInfo to align it properly with the (newly
    907   // renumbered) block numbers.
    908   BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
    909 
    910   // Next, update WaterList.  Specifically, we need to add OrigMBB as having
    911   // available water after it (but not if it's already there, which happens
    912   // when splitting before a conditional branch that is followed by an
    913   // unconditional branch - in that case we want to insert NewBB).
    914   water_iterator IP =
    915     std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB,
    916                      CompareMBBNumbers);
    917   MachineBasicBlock* WaterBB = *IP;
    918   if (WaterBB == OrigBB)
    919     WaterList.insert(llvm::next(IP), NewBB);
    920   else
    921     WaterList.insert(IP, OrigBB);
    922   NewWaterList.insert(OrigBB);
    923 
    924   // Figure out how large the OrigBB is.  As the first half of the original
    925   // block, it cannot contain a tablejump.  The size includes
    926   // the new jump we added.  (It should be possible to do this without
    927   // recounting everything, but it's very confusing, and this is rarely
    928   // executed.)
    929   computeBlockSize(OrigBB);
    930 
    931   // Figure out how large the NewMBB is.  As the second half of the original
    932   // block, it may contain a tablejump.
    933   computeBlockSize(NewBB);
    934 
    935   // All BBOffsets following these blocks must be modified.
    936   adjustBBOffsetsAfter(OrigBB);
    937 
    938   return NewBB;
    939 }
    940 
    941 /// getUserOffset - Compute the offset of U.MI as seen by the hardware
    942 /// displacement computation.  Update U.KnownAlignment to match its current
    943 /// basic block location.
    944 unsigned ARMConstantIslands::getUserOffset(CPUser &U) const {
    945   unsigned UserOffset = getOffsetOf(U.MI);
    946   const BasicBlockInfo &BBI = BBInfo[U.MI->getParent()->getNumber()];
    947   unsigned KnownBits = BBI.internalKnownBits();
    948 
    949   // The value read from PC is offset from the actual instruction address.
    950   UserOffset += (isThumb ? 4 : 8);
    951 
    952   // Because of inline assembly, we may not know the alignment (mod 4) of U.MI.
    953   // Make sure U.getMaxDisp() returns a constrained range.
    954   U.KnownAlignment = (KnownBits >= 2);
    955 
    956   // On Thumb, offsets==2 mod 4 are rounded down by the hardware for
    957   // purposes of the displacement computation; compensate for that here.
    958   // For unknown alignments, getMaxDisp() constrains the range instead.
    959   if (isThumb && U.KnownAlignment)
    960     UserOffset &= ~3u;
    961 
    962   return UserOffset;
    963 }
    964 
    965 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool
    966 /// reference) is within MaxDisp of TrialOffset (a proposed location of a
    967 /// constant pool entry).
    968 /// UserOffset is computed by getUserOffset above to include PC adjustments. If
    969 /// the mod 4 alignment of UserOffset is not known, the uncertainty must be
    970 /// subtracted from MaxDisp instead. CPUser::getMaxDisp() does that.
    971 bool ARMConstantIslands::isOffsetInRange(unsigned UserOffset,
    972                                          unsigned TrialOffset, unsigned MaxDisp,
    973                                          bool NegativeOK, bool IsSoImm) {
    974   if (UserOffset <= TrialOffset) {
    975     // User before the Trial.
    976     if (TrialOffset - UserOffset <= MaxDisp)
    977       return true;
    978     // FIXME: Make use full range of soimm values.
    979   } else if (NegativeOK) {
    980     if (UserOffset - TrialOffset <= MaxDisp)
    981       return true;
    982     // FIXME: Make use full range of soimm values.
    983   }
    984   return false;
    985 }
    986 
    987 /// isWaterInRange - Returns true if a CPE placed after the specified
    988 /// Water (a basic block) will be in range for the specific MI.
    989 ///
    990 /// Compute how much the function will grow by inserting a CPE after Water.
    991 bool ARMConstantIslands::isWaterInRange(unsigned UserOffset,
    992                                         MachineBasicBlock* Water, CPUser &U,
    993                                         unsigned &Growth) {
    994   unsigned CPELogAlign = getCPELogAlign(U.CPEMI);
    995   unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPELogAlign);
    996   unsigned NextBlockOffset, NextBlockAlignment;
    997   MachineFunction::const_iterator NextBlock = Water;
    998   if (++NextBlock == MF->end()) {
    999     NextBlockOffset = BBInfo[Water->getNumber()].postOffset();
   1000     NextBlockAlignment = 0;
   1001   } else {
   1002     NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset;
   1003     NextBlockAlignment = NextBlock->getAlignment();
   1004   }
   1005   unsigned Size = U.CPEMI->getOperand(2).getImm();
   1006   unsigned CPEEnd = CPEOffset + Size;
   1007 
   1008   // The CPE may be able to hide in the alignment padding before the next
   1009   // block. It may also cause more padding to be required if it is more aligned
   1010   // that the next block.
   1011   if (CPEEnd > NextBlockOffset) {
   1012     Growth = CPEEnd - NextBlockOffset;
   1013     // Compute the padding that would go at the end of the CPE to align the next
   1014     // block.
   1015     Growth += OffsetToAlignment(CPEEnd, 1u << NextBlockAlignment);
   1016 
   1017     // If the CPE is to be inserted before the instruction, that will raise
   1018     // the offset of the instruction. Also account for unknown alignment padding
   1019     // in blocks between CPE and the user.
   1020     if (CPEOffset < UserOffset)
   1021       UserOffset += Growth + UnknownPadding(MF->getAlignment(), CPELogAlign);
   1022   } else
   1023     // CPE fits in existing padding.
   1024     Growth = 0;
   1025 
   1026   return isOffsetInRange(UserOffset, CPEOffset, U);
   1027 }
   1028 
   1029 /// isCPEntryInRange - Returns true if the distance between specific MI and
   1030 /// specific ConstPool entry instruction can fit in MI's displacement field.
   1031 bool ARMConstantIslands::isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
   1032                                       MachineInstr *CPEMI, unsigned MaxDisp,
   1033                                       bool NegOk, bool DoDump) {
   1034   unsigned CPEOffset  = getOffsetOf(CPEMI);
   1035 
   1036   if (DoDump) {
   1037     DEBUG({
   1038       unsigned Block = MI->getParent()->getNumber();
   1039       const BasicBlockInfo &BBI = BBInfo[Block];
   1040       dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
   1041              << " max delta=" << MaxDisp
   1042              << format(" insn address=%#x", UserOffset)
   1043              << " in BB#" << Block << ": "
   1044              << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI
   1045              << format("CPE address=%#x offset=%+d: ", CPEOffset,
   1046                        int(CPEOffset-UserOffset));
   1047     });
   1048   }
   1049 
   1050   return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk);
   1051 }
   1052 
   1053 #ifndef NDEBUG
   1054 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor
   1055 /// unconditionally branches to its only successor.
   1056 static bool BBIsJumpedOver(MachineBasicBlock *MBB) {
   1057   if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
   1058     return false;
   1059 
   1060   MachineBasicBlock *Succ = *MBB->succ_begin();
   1061   MachineBasicBlock *Pred = *MBB->pred_begin();
   1062   MachineInstr *PredMI = &Pred->back();
   1063   if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB
   1064       || PredMI->getOpcode() == ARM::t2B)
   1065     return PredMI->getOperand(0).getMBB() == Succ;
   1066   return false;
   1067 }
   1068 #endif // NDEBUG
   1069 
   1070 void ARMConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) {
   1071   unsigned BBNum = BB->getNumber();
   1072   for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) {
   1073     // Get the offset and known bits at the end of the layout predecessor.
   1074     // Include the alignment of the current block.
   1075     unsigned LogAlign = MF->getBlockNumbered(i)->getAlignment();
   1076     unsigned Offset = BBInfo[i - 1].postOffset(LogAlign);
   1077     unsigned KnownBits = BBInfo[i - 1].postKnownBits(LogAlign);
   1078 
   1079     // This is where block i begins.  Stop if the offset is already correct,
   1080     // and we have updated 2 blocks.  This is the maximum number of blocks
   1081     // changed before calling this function.
   1082     if (i > BBNum + 2 &&
   1083         BBInfo[i].Offset == Offset &&
   1084         BBInfo[i].KnownBits == KnownBits)
   1085       break;
   1086 
   1087     BBInfo[i].Offset = Offset;
   1088     BBInfo[i].KnownBits = KnownBits;
   1089   }
   1090 }
   1091 
   1092 /// decrementCPEReferenceCount - find the constant pool entry with index CPI
   1093 /// and instruction CPEMI, and decrement its refcount.  If the refcount
   1094 /// becomes 0 remove the entry and instruction.  Returns true if we removed
   1095 /// the entry, false if we didn't.
   1096 
   1097 bool ARMConstantIslands::decrementCPEReferenceCount(unsigned CPI,
   1098                                                     MachineInstr *CPEMI) {
   1099   // Find the old entry. Eliminate it if it is no longer used.
   1100   CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
   1101   assert(CPE && "Unexpected!");
   1102   if (--CPE->RefCount == 0) {
   1103     removeDeadCPEMI(CPEMI);
   1104     CPE->CPEMI = NULL;
   1105     --NumCPEs;
   1106     return true;
   1107   }
   1108   return false;
   1109 }
   1110 
   1111 /// LookForCPEntryInRange - see if the currently referenced CPE is in range;
   1112 /// if not, see if an in-range clone of the CPE is in range, and if so,
   1113 /// change the data structures so the user references the clone.  Returns:
   1114 /// 0 = no existing entry found
   1115 /// 1 = entry found, and there were no code insertions or deletions
   1116 /// 2 = entry found, and there were code insertions or deletions
   1117 int ARMConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset)
   1118 {
   1119   MachineInstr *UserMI = U.MI;
   1120   MachineInstr *CPEMI  = U.CPEMI;
   1121 
   1122   // Check to see if the CPE is already in-range.
   1123   if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk,
   1124                        true)) {
   1125     DEBUG(dbgs() << "In range\n");
   1126     return 1;
   1127   }
   1128 
   1129   // No.  Look for previously created clones of the CPE that are in range.
   1130   unsigned CPI = CPEMI->getOperand(1).getIndex();
   1131   std::vector<CPEntry> &CPEs = CPEntries[CPI];
   1132   for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
   1133     // We already tried this one
   1134     if (CPEs[i].CPEMI == CPEMI)
   1135       continue;
   1136     // Removing CPEs can leave empty entries, skip
   1137     if (CPEs[i].CPEMI == NULL)
   1138       continue;
   1139     if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(),
   1140                      U.NegOk)) {
   1141       DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
   1142                    << CPEs[i].CPI << "\n");
   1143       // Point the CPUser node to the replacement
   1144       U.CPEMI = CPEs[i].CPEMI;
   1145       // Change the CPI in the instruction operand to refer to the clone.
   1146       for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
   1147         if (UserMI->getOperand(j).isCPI()) {
   1148           UserMI->getOperand(j).setIndex(CPEs[i].CPI);
   1149           break;
   1150         }
   1151       // Adjust the refcount of the clone...
   1152       CPEs[i].RefCount++;
   1153       // ...and the original.  If we didn't remove the old entry, none of the
   1154       // addresses changed, so we don't need another pass.
   1155       return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
   1156     }
   1157   }
   1158   return 0;
   1159 }
   1160 
   1161 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
   1162 /// the specific unconditional branch instruction.
   1163 static inline unsigned getUnconditionalBrDisp(int Opc) {
   1164   switch (Opc) {
   1165   case ARM::tB:
   1166     return ((1<<10)-1)*2;
   1167   case ARM::t2B:
   1168     return ((1<<23)-1)*2;
   1169   default:
   1170     break;
   1171   }
   1172 
   1173   return ((1<<23)-1)*4;
   1174 }
   1175 
   1176 /// findAvailableWater - Look for an existing entry in the WaterList in which
   1177 /// we can place the CPE referenced from U so it's within range of U's MI.
   1178 /// Returns true if found, false if not.  If it returns true, WaterIter
   1179 /// is set to the WaterList entry.  For Thumb, prefer water that will not
   1180 /// introduce padding to water that will.  To ensure that this pass
   1181 /// terminates, the CPE location for a particular CPUser is only allowed to
   1182 /// move to a lower address, so search backward from the end of the list and
   1183 /// prefer the first water that is in range.
   1184 bool ARMConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset,
   1185                                       water_iterator &WaterIter) {
   1186   if (WaterList.empty())
   1187     return false;
   1188 
   1189   unsigned BestGrowth = ~0u;
   1190   for (water_iterator IP = prior(WaterList.end()), B = WaterList.begin();;
   1191        --IP) {
   1192     MachineBasicBlock* WaterBB = *IP;
   1193     // Check if water is in range and is either at a lower address than the
   1194     // current "high water mark" or a new water block that was created since
   1195     // the previous iteration by inserting an unconditional branch.  In the
   1196     // latter case, we want to allow resetting the high water mark back to
   1197     // this new water since we haven't seen it before.  Inserting branches
   1198     // should be relatively uncommon and when it does happen, we want to be
   1199     // sure to take advantage of it for all the CPEs near that block, so that
   1200     // we don't insert more branches than necessary.
   1201     unsigned Growth;
   1202     if (isWaterInRange(UserOffset, WaterBB, U, Growth) &&
   1203         (WaterBB->getNumber() < U.HighWaterMark->getNumber() ||
   1204          NewWaterList.count(WaterBB)) && Growth < BestGrowth) {
   1205       // This is the least amount of required padding seen so far.
   1206       BestGrowth = Growth;
   1207       WaterIter = IP;
   1208       DEBUG(dbgs() << "Found water after BB#" << WaterBB->getNumber()
   1209                    << " Growth=" << Growth << '\n');
   1210 
   1211       // Keep looking unless it is perfect.
   1212       if (BestGrowth == 0)
   1213         return true;
   1214     }
   1215     if (IP == B)
   1216       break;
   1217   }
   1218   return BestGrowth != ~0u;
   1219 }
   1220 
   1221 /// createNewWater - No existing WaterList entry will work for
   1222 /// CPUsers[CPUserIndex], so create a place to put the CPE.  The end of the
   1223 /// block is used if in range, and the conditional branch munged so control
   1224 /// flow is correct.  Otherwise the block is split to create a hole with an
   1225 /// unconditional branch around it.  In either case NewMBB is set to a
   1226 /// block following which the new island can be inserted (the WaterList
   1227 /// is not adjusted).
   1228 void ARMConstantIslands::createNewWater(unsigned CPUserIndex,
   1229                                         unsigned UserOffset,
   1230                                         MachineBasicBlock *&NewMBB) {
   1231   CPUser &U = CPUsers[CPUserIndex];
   1232   MachineInstr *UserMI = U.MI;
   1233   MachineInstr *CPEMI  = U.CPEMI;
   1234   unsigned CPELogAlign = getCPELogAlign(CPEMI);
   1235   MachineBasicBlock *UserMBB = UserMI->getParent();
   1236   const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()];
   1237 
   1238   // If the block does not end in an unconditional branch already, and if the
   1239   // end of the block is within range, make new water there.  (The addition
   1240   // below is for the unconditional branch we will be adding: 4 bytes on ARM +
   1241   // Thumb2, 2 on Thumb1.
   1242   if (BBHasFallthrough(UserMBB)) {
   1243     // Size of branch to insert.
   1244     unsigned Delta = isThumb1 ? 2 : 4;
   1245     // Compute the offset where the CPE will begin.
   1246     unsigned CPEOffset = UserBBI.postOffset(CPELogAlign) + Delta;
   1247 
   1248     if (isOffsetInRange(UserOffset, CPEOffset, U)) {
   1249       DEBUG(dbgs() << "Split at end of BB#" << UserMBB->getNumber()
   1250             << format(", expected CPE offset %#x\n", CPEOffset));
   1251       NewMBB = llvm::next(MachineFunction::iterator(UserMBB));
   1252       // Add an unconditional branch from UserMBB to fallthrough block.  Record
   1253       // it for branch lengthening; this new branch will not get out of range,
   1254       // but if the preceding conditional branch is out of range, the targets
   1255       // will be exchanged, and the altered branch may be out of range, so the
   1256       // machinery has to know about it.
   1257       int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B;
   1258       if (!isThumb)
   1259         BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB);
   1260       else
   1261         BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB)
   1262           .addImm(ARMCC::AL).addReg(0);
   1263       unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
   1264       ImmBranches.push_back(ImmBranch(&UserMBB->back(),
   1265                                       MaxDisp, false, UncondBr));
   1266       BBInfo[UserMBB->getNumber()].Size += Delta;
   1267       adjustBBOffsetsAfter(UserMBB);
   1268       return;
   1269     }
   1270   }
   1271 
   1272   // What a big block.  Find a place within the block to split it.  This is a
   1273   // little tricky on Thumb1 since instructions are 2 bytes and constant pool
   1274   // entries are 4 bytes: if instruction I references island CPE, and
   1275   // instruction I+1 references CPE', it will not work well to put CPE as far
   1276   // forward as possible, since then CPE' cannot immediately follow it (that
   1277   // location is 2 bytes farther away from I+1 than CPE was from I) and we'd
   1278   // need to create a new island.  So, we make a first guess, then walk through
   1279   // the instructions between the one currently being looked at and the
   1280   // possible insertion point, and make sure any other instructions that
   1281   // reference CPEs will be able to use the same island area; if not, we back
   1282   // up the insertion point.
   1283 
   1284   // Try to split the block so it's fully aligned.  Compute the latest split
   1285   // point where we can add a 4-byte branch instruction, and then align to
   1286   // LogAlign which is the largest possible alignment in the function.
   1287   unsigned LogAlign = MF->getAlignment();
   1288   assert(LogAlign >= CPELogAlign && "Over-aligned constant pool entry");
   1289   unsigned KnownBits = UserBBI.internalKnownBits();
   1290   unsigned UPad = UnknownPadding(LogAlign, KnownBits);
   1291   unsigned BaseInsertOffset = UserOffset + U.getMaxDisp() - UPad;
   1292   DEBUG(dbgs() << format("Split in middle of big block before %#x",
   1293                          BaseInsertOffset));
   1294 
   1295   // The 4 in the following is for the unconditional branch we'll be inserting
   1296   // (allows for long branch on Thumb1).  Alignment of the island is handled
   1297   // inside isOffsetInRange.
   1298   BaseInsertOffset -= 4;
   1299 
   1300   DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset)
   1301                << " la=" << LogAlign
   1302                << " kb=" << KnownBits
   1303                << " up=" << UPad << '\n');
   1304 
   1305   // This could point off the end of the block if we've already got constant
   1306   // pool entries following this block; only the last one is in the water list.
   1307   // Back past any possible branches (allow for a conditional and a maximally
   1308   // long unconditional).
   1309   if (BaseInsertOffset + 8 >= UserBBI.postOffset()) {
   1310     BaseInsertOffset = UserBBI.postOffset() - UPad - 8;
   1311     DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset));
   1312   }
   1313   unsigned EndInsertOffset = BaseInsertOffset + 4 + UPad +
   1314     CPEMI->getOperand(2).getImm();
   1315   MachineBasicBlock::iterator MI = UserMI;
   1316   ++MI;
   1317   unsigned CPUIndex = CPUserIndex+1;
   1318   unsigned NumCPUsers = CPUsers.size();
   1319   MachineInstr *LastIT = 0;
   1320   for (unsigned Offset = UserOffset+TII->GetInstSizeInBytes(UserMI);
   1321        Offset < BaseInsertOffset;
   1322        Offset += TII->GetInstSizeInBytes(MI),
   1323        MI = llvm::next(MI)) {
   1324     assert(MI != UserMBB->end() && "Fell off end of block");
   1325     if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) {
   1326       CPUser &U = CPUsers[CPUIndex];
   1327       if (!isOffsetInRange(Offset, EndInsertOffset, U)) {
   1328         // Shift intertion point by one unit of alignment so it is within reach.
   1329         BaseInsertOffset -= 1u << LogAlign;
   1330         EndInsertOffset  -= 1u << LogAlign;
   1331       }
   1332       // This is overly conservative, as we don't account for CPEMIs being
   1333       // reused within the block, but it doesn't matter much.  Also assume CPEs
   1334       // are added in order with alignment padding.  We may eventually be able
   1335       // to pack the aligned CPEs better.
   1336       EndInsertOffset += U.CPEMI->getOperand(2).getImm();
   1337       CPUIndex++;
   1338     }
   1339 
   1340     // Remember the last IT instruction.
   1341     if (MI->getOpcode() == ARM::t2IT)
   1342       LastIT = MI;
   1343   }
   1344 
   1345   --MI;
   1346 
   1347   // Avoid splitting an IT block.
   1348   if (LastIT) {
   1349     unsigned PredReg = 0;
   1350     ARMCC::CondCodes CC = getITInstrPredicate(MI, PredReg);
   1351     if (CC != ARMCC::AL)
   1352       MI = LastIT;
   1353   }
   1354   NewMBB = splitBlockBeforeInstr(MI);
   1355 }
   1356 
   1357 /// handleConstantPoolUser - Analyze the specified user, checking to see if it
   1358 /// is out-of-range.  If so, pick up the constant pool value and move it some
   1359 /// place in-range.  Return true if we changed any addresses (thus must run
   1360 /// another pass of branch lengthening), false otherwise.
   1361 bool ARMConstantIslands::handleConstantPoolUser(unsigned CPUserIndex) {
   1362   CPUser &U = CPUsers[CPUserIndex];
   1363   MachineInstr *UserMI = U.MI;
   1364   MachineInstr *CPEMI  = U.CPEMI;
   1365   unsigned CPI = CPEMI->getOperand(1).getIndex();
   1366   unsigned Size = CPEMI->getOperand(2).getImm();
   1367   // Compute this only once, it's expensive.
   1368   unsigned UserOffset = getUserOffset(U);
   1369 
   1370   // See if the current entry is within range, or there is a clone of it
   1371   // in range.
   1372   int result = findInRangeCPEntry(U, UserOffset);
   1373   if (result==1) return false;
   1374   else if (result==2) return true;
   1375 
   1376   // No existing clone of this CPE is within range.
   1377   // We will be generating a new clone.  Get a UID for it.
   1378   unsigned ID = AFI->createPICLabelUId();
   1379 
   1380   // Look for water where we can place this CPE.
   1381   MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock();
   1382   MachineBasicBlock *NewMBB;
   1383   water_iterator IP;
   1384   if (findAvailableWater(U, UserOffset, IP)) {
   1385     DEBUG(dbgs() << "Found water in range\n");
   1386     MachineBasicBlock *WaterBB = *IP;
   1387 
   1388     // If the original WaterList entry was "new water" on this iteration,
   1389     // propagate that to the new island.  This is just keeping NewWaterList
   1390     // updated to match the WaterList, which will be updated below.
   1391     if (NewWaterList.erase(WaterBB))
   1392       NewWaterList.insert(NewIsland);
   1393 
   1394     // The new CPE goes before the following block (NewMBB).
   1395     NewMBB = llvm::next(MachineFunction::iterator(WaterBB));
   1396 
   1397   } else {
   1398     // No water found.
   1399     DEBUG(dbgs() << "No water found\n");
   1400     createNewWater(CPUserIndex, UserOffset, NewMBB);
   1401 
   1402     // splitBlockBeforeInstr adds to WaterList, which is important when it is
   1403     // called while handling branches so that the water will be seen on the
   1404     // next iteration for constant pools, but in this context, we don't want
   1405     // it.  Check for this so it will be removed from the WaterList.
   1406     // Also remove any entry from NewWaterList.
   1407     MachineBasicBlock *WaterBB = prior(MachineFunction::iterator(NewMBB));
   1408     IP = std::find(WaterList.begin(), WaterList.end(), WaterBB);
   1409     if (IP != WaterList.end())
   1410       NewWaterList.erase(WaterBB);
   1411 
   1412     // We are adding new water.  Update NewWaterList.
   1413     NewWaterList.insert(NewIsland);
   1414   }
   1415 
   1416   // Remove the original WaterList entry; we want subsequent insertions in
   1417   // this vicinity to go after the one we're about to insert.  This
   1418   // considerably reduces the number of times we have to move the same CPE
   1419   // more than once and is also important to ensure the algorithm terminates.
   1420   if (IP != WaterList.end())
   1421     WaterList.erase(IP);
   1422 
   1423   // Okay, we know we can put an island before NewMBB now, do it!
   1424   MF->insert(NewMBB, NewIsland);
   1425 
   1426   // Update internal data structures to account for the newly inserted MBB.
   1427   updateForInsertedWaterBlock(NewIsland);
   1428 
   1429   // Decrement the old entry, and remove it if refcount becomes 0.
   1430   decrementCPEReferenceCount(CPI, CPEMI);
   1431 
   1432   // Now that we have an island to add the CPE to, clone the original CPE and
   1433   // add it to the island.
   1434   U.HighWaterMark = NewIsland;
   1435   U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY))
   1436                 .addImm(ID).addConstantPoolIndex(CPI).addImm(Size);
   1437   CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
   1438   ++NumCPEs;
   1439 
   1440   // Mark the basic block as aligned as required by the const-pool entry.
   1441   NewIsland->setAlignment(getCPELogAlign(U.CPEMI));
   1442 
   1443   // Increase the size of the island block to account for the new entry.
   1444   BBInfo[NewIsland->getNumber()].Size += Size;
   1445   adjustBBOffsetsAfter(llvm::prior(MachineFunction::iterator(NewIsland)));
   1446 
   1447   // Finally, change the CPI in the instruction operand to be ID.
   1448   for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
   1449     if (UserMI->getOperand(i).isCPI()) {
   1450       UserMI->getOperand(i).setIndex(ID);
   1451       break;
   1452     }
   1453 
   1454   DEBUG(dbgs() << "  Moved CPE to #" << ID << " CPI=" << CPI
   1455         << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset));
   1456 
   1457   return true;
   1458 }
   1459 
   1460 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update
   1461 /// sizes and offsets of impacted basic blocks.
   1462 void ARMConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) {
   1463   MachineBasicBlock *CPEBB = CPEMI->getParent();
   1464   unsigned Size = CPEMI->getOperand(2).getImm();
   1465   CPEMI->eraseFromParent();
   1466   BBInfo[CPEBB->getNumber()].Size -= Size;
   1467   // All succeeding offsets have the current size value added in, fix this.
   1468   if (CPEBB->empty()) {
   1469     BBInfo[CPEBB->getNumber()].Size = 0;
   1470 
   1471     // This block no longer needs to be aligned.
   1472     CPEBB->setAlignment(0);
   1473   } else
   1474     // Entries are sorted by descending alignment, so realign from the front.
   1475     CPEBB->setAlignment(getCPELogAlign(CPEBB->begin()));
   1476 
   1477   adjustBBOffsetsAfter(CPEBB);
   1478   // An island has only one predecessor BB and one successor BB. Check if
   1479   // this BB's predecessor jumps directly to this BB's successor. This
   1480   // shouldn't happen currently.
   1481   assert(!BBIsJumpedOver(CPEBB) && "How did this happen?");
   1482   // FIXME: remove the empty blocks after all the work is done?
   1483 }
   1484 
   1485 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts
   1486 /// are zero.
   1487 bool ARMConstantIslands::removeUnusedCPEntries() {
   1488   unsigned MadeChange = false;
   1489   for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
   1490       std::vector<CPEntry> &CPEs = CPEntries[i];
   1491       for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) {
   1492         if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) {
   1493           removeDeadCPEMI(CPEs[j].CPEMI);
   1494           CPEs[j].CPEMI = NULL;
   1495           MadeChange = true;
   1496         }
   1497       }
   1498   }
   1499   return MadeChange;
   1500 }
   1501 
   1502 /// isBBInRange - Returns true if the distance between specific MI and
   1503 /// specific BB can fit in MI's displacement field.
   1504 bool ARMConstantIslands::isBBInRange(MachineInstr *MI,MachineBasicBlock *DestBB,
   1505                                      unsigned MaxDisp) {
   1506   unsigned PCAdj      = isThumb ? 4 : 8;
   1507   unsigned BrOffset   = getOffsetOf(MI) + PCAdj;
   1508   unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
   1509 
   1510   DEBUG(dbgs() << "Branch of destination BB#" << DestBB->getNumber()
   1511                << " from BB#" << MI->getParent()->getNumber()
   1512                << " max delta=" << MaxDisp
   1513                << " from " << getOffsetOf(MI) << " to " << DestOffset
   1514                << " offset " << int(DestOffset-BrOffset) << "\t" << *MI);
   1515 
   1516   if (BrOffset <= DestOffset) {
   1517     // Branch before the Dest.
   1518     if (DestOffset-BrOffset <= MaxDisp)
   1519       return true;
   1520   } else {
   1521     if (BrOffset-DestOffset <= MaxDisp)
   1522       return true;
   1523   }
   1524   return false;
   1525 }
   1526 
   1527 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far
   1528 /// away to fit in its displacement field.
   1529 bool ARMConstantIslands::fixupImmediateBr(ImmBranch &Br) {
   1530   MachineInstr *MI = Br.MI;
   1531   MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
   1532 
   1533   // Check to see if the DestBB is already in-range.
   1534   if (isBBInRange(MI, DestBB, Br.MaxDisp))
   1535     return false;
   1536 
   1537   if (!Br.isCond)
   1538     return fixupUnconditionalBr(Br);
   1539   return fixupConditionalBr(Br);
   1540 }
   1541 
   1542 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is
   1543 /// too far away to fit in its displacement field. If the LR register has been
   1544 /// spilled in the epilogue, then we can use BL to implement a far jump.
   1545 /// Otherwise, add an intermediate branch instruction to a branch.
   1546 bool
   1547 ARMConstantIslands::fixupUnconditionalBr(ImmBranch &Br) {
   1548   MachineInstr *MI = Br.MI;
   1549   MachineBasicBlock *MBB = MI->getParent();
   1550   if (!isThumb1)
   1551     llvm_unreachable("fixupUnconditionalBr is Thumb1 only!");
   1552 
   1553   // Use BL to implement far jump.
   1554   Br.MaxDisp = (1 << 21) * 2;
   1555   MI->setDesc(TII->get(ARM::tBfar));
   1556   BBInfo[MBB->getNumber()].Size += 2;
   1557   adjustBBOffsetsAfter(MBB);
   1558   HasFarJump = true;
   1559   ++NumUBrFixed;
   1560 
   1561   DEBUG(dbgs() << "  Changed B to long jump " << *MI);
   1562 
   1563   return true;
   1564 }
   1565 
   1566 /// fixupConditionalBr - Fix up a conditional branch whose destination is too
   1567 /// far away to fit in its displacement field. It is converted to an inverse
   1568 /// conditional branch + an unconditional branch to the destination.
   1569 bool
   1570 ARMConstantIslands::fixupConditionalBr(ImmBranch &Br) {
   1571   MachineInstr *MI = Br.MI;
   1572   MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
   1573 
   1574   // Add an unconditional branch to the destination and invert the branch
   1575   // condition to jump over it:
   1576   // blt L1
   1577   // =>
   1578   // bge L2
   1579   // b   L1
   1580   // L2:
   1581   ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm();
   1582   CC = ARMCC::getOppositeCondition(CC);
   1583   unsigned CCReg = MI->getOperand(2).getReg();
   1584 
   1585   // If the branch is at the end of its MBB and that has a fall-through block,
   1586   // direct the updated conditional branch to the fall-through block. Otherwise,
   1587   // split the MBB before the next instruction.
   1588   MachineBasicBlock *MBB = MI->getParent();
   1589   MachineInstr *BMI = &MBB->back();
   1590   bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
   1591 
   1592   ++NumCBrFixed;
   1593   if (BMI != MI) {
   1594     if (llvm::next(MachineBasicBlock::iterator(MI)) == prior(MBB->end()) &&
   1595         BMI->getOpcode() == Br.UncondBr) {
   1596       // Last MI in the BB is an unconditional branch. Can we simply invert the
   1597       // condition and swap destinations:
   1598       // beq L1
   1599       // b   L2
   1600       // =>
   1601       // bne L2
   1602       // b   L1
   1603       MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB();
   1604       if (isBBInRange(MI, NewDest, Br.MaxDisp)) {
   1605         DEBUG(dbgs() << "  Invert Bcc condition and swap its destination with "
   1606                      << *BMI);
   1607         BMI->getOperand(0).setMBB(DestBB);
   1608         MI->getOperand(0).setMBB(NewDest);
   1609         MI->getOperand(1).setImm(CC);
   1610         return true;
   1611       }
   1612     }
   1613   }
   1614 
   1615   if (NeedSplit) {
   1616     splitBlockBeforeInstr(MI);
   1617     // No need for the branch to the next block. We're adding an unconditional
   1618     // branch to the destination.
   1619     int delta = TII->GetInstSizeInBytes(&MBB->back());
   1620     BBInfo[MBB->getNumber()].Size -= delta;
   1621     MBB->back().eraseFromParent();
   1622     // BBInfo[SplitBB].Offset is wrong temporarily, fixed below
   1623   }
   1624   MachineBasicBlock *NextBB = llvm::next(MachineFunction::iterator(MBB));
   1625 
   1626   DEBUG(dbgs() << "  Insert B to BB#" << DestBB->getNumber()
   1627                << " also invert condition and change dest. to BB#"
   1628                << NextBB->getNumber() << "\n");
   1629 
   1630   // Insert a new conditional branch and a new unconditional branch.
   1631   // Also update the ImmBranch as well as adding a new entry for the new branch.
   1632   BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode()))
   1633     .addMBB(NextBB).addImm(CC).addReg(CCReg);
   1634   Br.MI = &MBB->back();
   1635   BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back());
   1636   if (isThumb)
   1637     BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB)
   1638             .addImm(ARMCC::AL).addReg(0);
   1639   else
   1640     BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB);
   1641   BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back());
   1642   unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
   1643   ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
   1644 
   1645   // Remove the old conditional branch.  It may or may not still be in MBB.
   1646   BBInfo[MI->getParent()->getNumber()].Size -= TII->GetInstSizeInBytes(MI);
   1647   MI->eraseFromParent();
   1648   adjustBBOffsetsAfter(MBB);
   1649   return true;
   1650 }
   1651 
   1652 /// undoLRSpillRestore - Remove Thumb push / pop instructions that only spills
   1653 /// LR / restores LR to pc. FIXME: This is done here because it's only possible
   1654 /// to do this if tBfar is not used.
   1655 bool ARMConstantIslands::undoLRSpillRestore() {
   1656   bool MadeChange = false;
   1657   for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) {
   1658     MachineInstr *MI = PushPopMIs[i];
   1659     // First two operands are predicates.
   1660     if (MI->getOpcode() == ARM::tPOP_RET &&
   1661         MI->getOperand(2).getReg() == ARM::PC &&
   1662         MI->getNumExplicitOperands() == 3) {
   1663       // Create the new insn and copy the predicate from the old.
   1664       BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET))
   1665         .addOperand(MI->getOperand(0))
   1666         .addOperand(MI->getOperand(1));
   1667       MI->eraseFromParent();
   1668       MadeChange = true;
   1669     }
   1670   }
   1671   return MadeChange;
   1672 }
   1673 
   1674 // mayOptimizeThumb2Instruction - Returns true if optimizeThumb2Instructions
   1675 // below may shrink MI.
   1676 bool
   1677 ARMConstantIslands::mayOptimizeThumb2Instruction(const MachineInstr *MI) const {
   1678   switch(MI->getOpcode()) {
   1679     // optimizeThumb2Instructions.
   1680     case ARM::t2LEApcrel:
   1681     case ARM::t2LDRpci:
   1682     // optimizeThumb2Branches.
   1683     case ARM::t2B:
   1684     case ARM::t2Bcc:
   1685     case ARM::tBcc:
   1686     // optimizeThumb2JumpTables.
   1687     case ARM::t2BR_JT:
   1688       return true;
   1689   }
   1690   return false;
   1691 }
   1692 
   1693 bool ARMConstantIslands::optimizeThumb2Instructions() {
   1694   bool MadeChange = false;
   1695 
   1696   // Shrink ADR and LDR from constantpool.
   1697   for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
   1698     CPUser &U = CPUsers[i];
   1699     unsigned Opcode = U.MI->getOpcode();
   1700     unsigned NewOpc = 0;
   1701     unsigned Scale = 1;
   1702     unsigned Bits = 0;
   1703     switch (Opcode) {
   1704     default: break;
   1705     case ARM::t2LEApcrel:
   1706       if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
   1707         NewOpc = ARM::tLEApcrel;
   1708         Bits = 8;
   1709         Scale = 4;
   1710       }
   1711       break;
   1712     case ARM::t2LDRpci:
   1713       if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
   1714         NewOpc = ARM::tLDRpci;
   1715         Bits = 8;
   1716         Scale = 4;
   1717       }
   1718       break;
   1719     }
   1720 
   1721     if (!NewOpc)
   1722       continue;
   1723 
   1724     unsigned UserOffset = getUserOffset(U);
   1725     unsigned MaxOffs = ((1 << Bits) - 1) * Scale;
   1726 
   1727     // Be conservative with inline asm.
   1728     if (!U.KnownAlignment)
   1729       MaxOffs -= 2;
   1730 
   1731     // FIXME: Check if offset is multiple of scale if scale is not 4.
   1732     if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) {
   1733       DEBUG(dbgs() << "Shrink: " << *U.MI);
   1734       U.MI->setDesc(TII->get(NewOpc));
   1735       MachineBasicBlock *MBB = U.MI->getParent();
   1736       BBInfo[MBB->getNumber()].Size -= 2;
   1737       adjustBBOffsetsAfter(MBB);
   1738       ++NumT2CPShrunk;
   1739       MadeChange = true;
   1740     }
   1741   }
   1742 
   1743   MadeChange |= optimizeThumb2Branches();
   1744   MadeChange |= optimizeThumb2JumpTables();
   1745   return MadeChange;
   1746 }
   1747 
   1748 bool ARMConstantIslands::optimizeThumb2Branches() {
   1749   bool MadeChange = false;
   1750 
   1751   for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) {
   1752     ImmBranch &Br = ImmBranches[i];
   1753     unsigned Opcode = Br.MI->getOpcode();
   1754     unsigned NewOpc = 0;
   1755     unsigned Scale = 1;
   1756     unsigned Bits = 0;
   1757     switch (Opcode) {
   1758     default: break;
   1759     case ARM::t2B:
   1760       NewOpc = ARM::tB;
   1761       Bits = 11;
   1762       Scale = 2;
   1763       break;
   1764     case ARM::t2Bcc: {
   1765       NewOpc = ARM::tBcc;
   1766       Bits = 8;
   1767       Scale = 2;
   1768       break;
   1769     }
   1770     }
   1771     if (NewOpc) {
   1772       unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
   1773       MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
   1774       if (isBBInRange(Br.MI, DestBB, MaxOffs)) {
   1775         DEBUG(dbgs() << "Shrink branch: " << *Br.MI);
   1776         Br.MI->setDesc(TII->get(NewOpc));
   1777         MachineBasicBlock *MBB = Br.MI->getParent();
   1778         BBInfo[MBB->getNumber()].Size -= 2;
   1779         adjustBBOffsetsAfter(MBB);
   1780         ++NumT2BrShrunk;
   1781         MadeChange = true;
   1782       }
   1783     }
   1784 
   1785     Opcode = Br.MI->getOpcode();
   1786     if (Opcode != ARM::tBcc)
   1787       continue;
   1788 
   1789     // If the conditional branch doesn't kill CPSR, then CPSR can be liveout
   1790     // so this transformation is not safe.
   1791     if (!Br.MI->killsRegister(ARM::CPSR))
   1792       continue;
   1793 
   1794     NewOpc = 0;
   1795     unsigned PredReg = 0;
   1796     ARMCC::CondCodes Pred = getInstrPredicate(Br.MI, PredReg);
   1797     if (Pred == ARMCC::EQ)
   1798       NewOpc = ARM::tCBZ;
   1799     else if (Pred == ARMCC::NE)
   1800       NewOpc = ARM::tCBNZ;
   1801     if (!NewOpc)
   1802       continue;
   1803     MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
   1804     // Check if the distance is within 126. Subtract starting offset by 2
   1805     // because the cmp will be eliminated.
   1806     unsigned BrOffset = getOffsetOf(Br.MI) + 4 - 2;
   1807     unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
   1808     if (BrOffset < DestOffset && (DestOffset - BrOffset) <= 126) {
   1809       MachineBasicBlock::iterator CmpMI = Br.MI;
   1810       if (CmpMI != Br.MI->getParent()->begin()) {
   1811         --CmpMI;
   1812         if (CmpMI->getOpcode() == ARM::tCMPi8) {
   1813           unsigned Reg = CmpMI->getOperand(0).getReg();
   1814           Pred = getInstrPredicate(CmpMI, PredReg);
   1815           if (Pred == ARMCC::AL &&
   1816               CmpMI->getOperand(1).getImm() == 0 &&
   1817               isARMLowRegister(Reg)) {
   1818             MachineBasicBlock *MBB = Br.MI->getParent();
   1819             DEBUG(dbgs() << "Fold: " << *CmpMI << " and: " << *Br.MI);
   1820             MachineInstr *NewBR =
   1821               BuildMI(*MBB, CmpMI, Br.MI->getDebugLoc(), TII->get(NewOpc))
   1822               .addReg(Reg).addMBB(DestBB,Br.MI->getOperand(0).getTargetFlags());
   1823             CmpMI->eraseFromParent();
   1824             Br.MI->eraseFromParent();
   1825             Br.MI = NewBR;
   1826             BBInfo[MBB->getNumber()].Size -= 2;
   1827             adjustBBOffsetsAfter(MBB);
   1828             ++NumCBZ;
   1829             MadeChange = true;
   1830           }
   1831         }
   1832       }
   1833     }
   1834   }
   1835 
   1836   return MadeChange;
   1837 }
   1838 
   1839 /// optimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller
   1840 /// jumptables when it's possible.
   1841 bool ARMConstantIslands::optimizeThumb2JumpTables() {
   1842   bool MadeChange = false;
   1843 
   1844   // FIXME: After the tables are shrunk, can we get rid some of the
   1845   // constantpool tables?
   1846   MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
   1847   if (MJTI == 0) return false;
   1848 
   1849   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
   1850   for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
   1851     MachineInstr *MI = T2JumpTables[i];
   1852     const MCInstrDesc &MCID = MI->getDesc();
   1853     unsigned NumOps = MCID.getNumOperands();
   1854     unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 3 : 2);
   1855     MachineOperand JTOP = MI->getOperand(JTOpIdx);
   1856     unsigned JTI = JTOP.getIndex();
   1857     assert(JTI < JT.size());
   1858 
   1859     bool ByteOk = true;
   1860     bool HalfWordOk = true;
   1861     unsigned JTOffset = getOffsetOf(MI) + 4;
   1862     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
   1863     for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
   1864       MachineBasicBlock *MBB = JTBBs[j];
   1865       unsigned DstOffset = BBInfo[MBB->getNumber()].Offset;
   1866       // Negative offset is not ok. FIXME: We should change BB layout to make
   1867       // sure all the branches are forward.
   1868       if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2)
   1869         ByteOk = false;
   1870       unsigned TBHLimit = ((1<<16)-1)*2;
   1871       if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit)
   1872         HalfWordOk = false;
   1873       if (!ByteOk && !HalfWordOk)
   1874         break;
   1875     }
   1876 
   1877     if (ByteOk || HalfWordOk) {
   1878       MachineBasicBlock *MBB = MI->getParent();
   1879       unsigned BaseReg = MI->getOperand(0).getReg();
   1880       bool BaseRegKill = MI->getOperand(0).isKill();
   1881       if (!BaseRegKill)
   1882         continue;
   1883       unsigned IdxReg = MI->getOperand(1).getReg();
   1884       bool IdxRegKill = MI->getOperand(1).isKill();
   1885 
   1886       // Scan backwards to find the instruction that defines the base
   1887       // register. Due to post-RA scheduling, we can't count on it
   1888       // immediately preceding the branch instruction.
   1889       MachineBasicBlock::iterator PrevI = MI;
   1890       MachineBasicBlock::iterator B = MBB->begin();
   1891       while (PrevI != B && !PrevI->definesRegister(BaseReg))
   1892         --PrevI;
   1893 
   1894       // If for some reason we didn't find it, we can't do anything, so
   1895       // just skip this one.
   1896       if (!PrevI->definesRegister(BaseReg))
   1897         continue;
   1898 
   1899       MachineInstr *AddrMI = PrevI;
   1900       bool OptOk = true;
   1901       // Examine the instruction that calculates the jumptable entry address.
   1902       // Make sure it only defines the base register and kills any uses
   1903       // other than the index register.
   1904       for (unsigned k = 0, eee = AddrMI->getNumOperands(); k != eee; ++k) {
   1905         const MachineOperand &MO = AddrMI->getOperand(k);
   1906         if (!MO.isReg() || !MO.getReg())
   1907           continue;
   1908         if (MO.isDef() && MO.getReg() != BaseReg) {
   1909           OptOk = false;
   1910           break;
   1911         }
   1912         if (MO.isUse() && !MO.isKill() && MO.getReg() != IdxReg) {
   1913           OptOk = false;
   1914           break;
   1915         }
   1916       }
   1917       if (!OptOk)
   1918         continue;
   1919 
   1920       // Now scan back again to find the tLEApcrel or t2LEApcrelJT instruction
   1921       // that gave us the initial base register definition.
   1922       for (--PrevI; PrevI != B && !PrevI->definesRegister(BaseReg); --PrevI)
   1923         ;
   1924 
   1925       // The instruction should be a tLEApcrel or t2LEApcrelJT; we want
   1926       // to delete it as well.
   1927       MachineInstr *LeaMI = PrevI;
   1928       if ((LeaMI->getOpcode() != ARM::tLEApcrelJT &&
   1929            LeaMI->getOpcode() != ARM::t2LEApcrelJT) ||
   1930           LeaMI->getOperand(0).getReg() != BaseReg)
   1931         OptOk = false;
   1932 
   1933       if (!OptOk)
   1934         continue;
   1935 
   1936       DEBUG(dbgs() << "Shrink JT: " << *MI << "     addr: " << *AddrMI
   1937                    << "      lea: " << *LeaMI);
   1938       unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT;
   1939       MachineInstr *NewJTMI = BuildMI(MBB, MI->getDebugLoc(), TII->get(Opc))
   1940         .addReg(IdxReg, getKillRegState(IdxRegKill))
   1941         .addJumpTableIndex(JTI, JTOP.getTargetFlags())
   1942         .addImm(MI->getOperand(JTOpIdx+1).getImm());
   1943       DEBUG(dbgs() << "BB#" << MBB->getNumber() << ": " << *NewJTMI);
   1944       // FIXME: Insert an "ALIGN" instruction to ensure the next instruction
   1945       // is 2-byte aligned. For now, asm printer will fix it up.
   1946       unsigned NewSize = TII->GetInstSizeInBytes(NewJTMI);
   1947       unsigned OrigSize = TII->GetInstSizeInBytes(AddrMI);
   1948       OrigSize += TII->GetInstSizeInBytes(LeaMI);
   1949       OrigSize += TII->GetInstSizeInBytes(MI);
   1950 
   1951       AddrMI->eraseFromParent();
   1952       LeaMI->eraseFromParent();
   1953       MI->eraseFromParent();
   1954 
   1955       int delta = OrigSize - NewSize;
   1956       BBInfo[MBB->getNumber()].Size -= delta;
   1957       adjustBBOffsetsAfter(MBB);
   1958 
   1959       ++NumTBs;
   1960       MadeChange = true;
   1961     }
   1962   }
   1963 
   1964   return MadeChange;
   1965 }
   1966 
   1967 /// reorderThumb2JumpTables - Adjust the function's block layout to ensure that
   1968 /// jump tables always branch forwards, since that's what tbb and tbh need.
   1969 bool ARMConstantIslands::reorderThumb2JumpTables() {
   1970   bool MadeChange = false;
   1971 
   1972   MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
   1973   if (MJTI == 0) return false;
   1974 
   1975   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
   1976   for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
   1977     MachineInstr *MI = T2JumpTables[i];
   1978     const MCInstrDesc &MCID = MI->getDesc();
   1979     unsigned NumOps = MCID.getNumOperands();
   1980     unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 3 : 2);
   1981     MachineOperand JTOP = MI->getOperand(JTOpIdx);
   1982     unsigned JTI = JTOP.getIndex();
   1983     assert(JTI < JT.size());
   1984 
   1985     // We prefer if target blocks for the jump table come after the jump
   1986     // instruction so we can use TB[BH]. Loop through the target blocks
   1987     // and try to adjust them such that that's true.
   1988     int JTNumber = MI->getParent()->getNumber();
   1989     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
   1990     for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
   1991       MachineBasicBlock *MBB = JTBBs[j];
   1992       int DTNumber = MBB->getNumber();
   1993 
   1994       if (DTNumber < JTNumber) {
   1995         // The destination precedes the switch. Try to move the block forward
   1996         // so we have a positive offset.
   1997         MachineBasicBlock *NewBB =
   1998           adjustJTTargetBlockForward(MBB, MI->getParent());
   1999         if (NewBB)
   2000           MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB);
   2001         MadeChange = true;
   2002       }
   2003     }
   2004   }
   2005 
   2006   return MadeChange;
   2007 }
   2008 
   2009 MachineBasicBlock *ARMConstantIslands::
   2010 adjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB) {
   2011   // If the destination block is terminated by an unconditional branch,
   2012   // try to move it; otherwise, create a new block following the jump
   2013   // table that branches back to the actual target. This is a very simple
   2014   // heuristic. FIXME: We can definitely improve it.
   2015   MachineBasicBlock *TBB = 0, *FBB = 0;
   2016   SmallVector<MachineOperand, 4> Cond;
   2017   SmallVector<MachineOperand, 4> CondPrior;
   2018   MachineFunction::iterator BBi = BB;
   2019   MachineFunction::iterator OldPrior = prior(BBi);
   2020 
   2021   // If the block terminator isn't analyzable, don't try to move the block
   2022   bool B = TII->AnalyzeBranch(*BB, TBB, FBB, Cond);
   2023 
   2024   // If the block ends in an unconditional branch, move it. The prior block
   2025   // has to have an analyzable terminator for us to move this one. Be paranoid
   2026   // and make sure we're not trying to move the entry block of the function.
   2027   if (!B && Cond.empty() && BB != MF->begin() &&
   2028       !TII->AnalyzeBranch(*OldPrior, TBB, FBB, CondPrior)) {
   2029     BB->moveAfter(JTBB);
   2030     OldPrior->updateTerminator();
   2031     BB->updateTerminator();
   2032     // Update numbering to account for the block being moved.
   2033     MF->RenumberBlocks();
   2034     ++NumJTMoved;
   2035     return NULL;
   2036   }
   2037 
   2038   // Create a new MBB for the code after the jump BB.
   2039   MachineBasicBlock *NewBB =
   2040     MF->CreateMachineBasicBlock(JTBB->getBasicBlock());
   2041   MachineFunction::iterator MBBI = JTBB; ++MBBI;
   2042   MF->insert(MBBI, NewBB);
   2043 
   2044   // Add an unconditional branch from NewBB to BB.
   2045   // There doesn't seem to be meaningful DebugInfo available; this doesn't
   2046   // correspond directly to anything in the source.
   2047   assert (isThumb2 && "Adjusting for TB[BH] but not in Thumb2?");
   2048   BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B)).addMBB(BB)
   2049           .addImm(ARMCC::AL).addReg(0);
   2050 
   2051   // Update internal data structures to account for the newly inserted MBB.
   2052   MF->RenumberBlocks(NewBB);
   2053 
   2054   // Update the CFG.
   2055   NewBB->addSuccessor(BB);
   2056   JTBB->removeSuccessor(BB);
   2057   JTBB->addSuccessor(NewBB);
   2058 
   2059   ++NumJTInserted;
   2060   return NewBB;
   2061 }
   2062