Home | History | Annotate | Download | only in PowerPC
      1 //===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the interfaces that PPC uses to lower LLVM code into a
     11 // selection DAG.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
     16 #define LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
     17 
     18 #include "PPC.h"
     19 #include "PPCSubtarget.h"
     20 #include "llvm/CodeGen/SelectionDAG.h"
     21 #include "llvm/Target/TargetLowering.h"
     22 
     23 namespace llvm {
     24   namespace PPCISD {
     25     enum NodeType {
     26       // Start the numbering where the builtin ops and target ops leave off.
     27       FIRST_NUMBER = ISD::BUILTIN_OP_END,
     28 
     29       /// FSEL - Traditional three-operand fsel node.
     30       ///
     31       FSEL,
     32 
     33       /// FCFID - The FCFID instruction, taking an f64 operand and producing
     34       /// and f64 value containing the FP representation of the integer that
     35       /// was temporarily in the f64 operand.
     36       FCFID,
     37 
     38       /// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64
     39       /// operand, producing an f64 value containing the integer representation
     40       /// of that FP value.
     41       FCTIDZ, FCTIWZ,
     42 
     43       /// STFIWX - The STFIWX instruction.  The first operand is an input token
     44       /// chain, then an f64 value to store, then an address to store it to.
     45       STFIWX,
     46 
     47       // VMADDFP, VNMSUBFP - The VMADDFP and VNMSUBFP instructions, taking
     48       // three v4f32 operands and producing a v4f32 result.
     49       VMADDFP, VNMSUBFP,
     50 
     51       /// VPERM - The PPC VPERM Instruction.
     52       ///
     53       VPERM,
     54 
     55       /// Hi/Lo - These represent the high and low 16-bit parts of a global
     56       /// address respectively.  These nodes have two operands, the first of
     57       /// which must be a TargetGlobalAddress, and the second of which must be a
     58       /// Constant.  Selected naively, these turn into 'lis G+C' and 'li G+C',
     59       /// though these are usually folded into other nodes.
     60       Hi, Lo,
     61 
     62       TOC_ENTRY,
     63 
     64       /// The following three target-specific nodes are used for calls through
     65       /// function pointers in the 64-bit SVR4 ABI.
     66 
     67       /// Restore the TOC from the TOC save area of the current stack frame.
     68       /// This is basically a hard coded load instruction which additionally
     69       /// takes/produces a flag.
     70       TOC_RESTORE,
     71 
     72       /// Like a regular LOAD but additionally taking/producing a flag.
     73       LOAD,
     74 
     75       /// LOAD into r2 (also taking/producing a flag). Like TOC_RESTORE, this is
     76       /// a hard coded load instruction.
     77       LOAD_TOC,
     78 
     79       /// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX)
     80       /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
     81       /// compute an allocation on the stack.
     82       DYNALLOC,
     83 
     84       /// GlobalBaseReg - On Darwin, this node represents the result of the mflr
     85       /// at function entry, used for PIC code.
     86       GlobalBaseReg,
     87 
     88       /// These nodes represent the 32-bit PPC shifts that operate on 6-bit
     89       /// shift amounts.  These nodes are generated by the multi-precision shift
     90       /// code.
     91       SRL, SRA, SHL,
     92 
     93       /// EXTSW_32 - This is the EXTSW instruction for use with "32-bit"
     94       /// registers.
     95       EXTSW_32,
     96 
     97       /// CALL - A direct function call.
     98       /// CALL_NOP_SVR4 is a call with the special  NOP which follows 64-bit
     99       /// SVR4 calls.
    100       CALL_Darwin, CALL_SVR4, CALL_NOP_SVR4,
    101 
    102       /// NOP - Special NOP which follows 64-bit SVR4 calls.
    103       NOP,
    104 
    105       /// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a
    106       /// MTCTR instruction.
    107       MTCTR,
    108 
    109       /// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a
    110       /// BCTRL instruction.
    111       BCTRL_Darwin, BCTRL_SVR4,
    112 
    113       /// Return with a flag operand, matched by 'blr'
    114       RET_FLAG,
    115 
    116       /// R32 = MFCR(CRREG, INFLAG) - Represents the MFCRpseud/MFOCRF
    117       /// instructions.  This copies the bits corresponding to the specified
    118       /// CRREG into the resultant GPR.  Bits corresponding to other CR regs
    119       /// are undefined.
    120       MFCR,
    121 
    122       /// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP*
    123       /// instructions.  For lack of better number, we use the opcode number
    124       /// encoding for the OPC field to identify the compare.  For example, 838
    125       /// is VCMPGTSH.
    126       VCMP,
    127 
    128       /// RESVEC, OUTFLAG = VCMPo(LHS, RHS, OPC) - Represents one of the
    129       /// altivec VCMP*o instructions.  For lack of better number, we use the
    130       /// opcode number encoding for the OPC field to identify the compare.  For
    131       /// example, 838 is VCMPGTSH.
    132       VCMPo,
    133 
    134       /// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This
    135       /// corresponds to the COND_BRANCH pseudo instruction.  CRRC is the
    136       /// condition register to branch on, OPC is the branch opcode to use (e.g.
    137       /// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is
    138       /// an optional input flag argument.
    139       COND_BRANCH,
    140 
    141       // The following 5 instructions are used only as part of the
    142       // long double-to-int conversion sequence.
    143 
    144       /// OUTFLAG = MFFS F8RC - This moves the FPSCR (not modelled) into the
    145       /// register.
    146       MFFS,
    147 
    148       /// OUTFLAG = MTFSB0 INFLAG - This clears a bit in the FPSCR.
    149       MTFSB0,
    150 
    151       /// OUTFLAG = MTFSB1 INFLAG - This sets a bit in the FPSCR.
    152       MTFSB1,
    153 
    154       /// F8RC, OUTFLAG = FADDRTZ F8RC, F8RC, INFLAG - This is an FADD done with
    155       /// rounding towards zero.  It has flags added so it won't move past the
    156       /// FPSCR-setting instructions.
    157       FADDRTZ,
    158 
    159       /// MTFSF = F8RC, INFLAG - This moves the register into the FPSCR.
    160       MTFSF,
    161 
    162       /// LARX = This corresponds to PPC l{w|d}arx instrcution: load and
    163       /// reserve indexed. This is used to implement atomic operations.
    164       LARX,
    165 
    166       /// STCX = This corresponds to PPC stcx. instrcution: store conditional
    167       /// indexed. This is used to implement atomic operations.
    168       STCX,
    169 
    170       /// TC_RETURN - A tail call return.
    171       ///   operand #0 chain
    172       ///   operand #1 callee (register or absolute)
    173       ///   operand #2 stack adjustment
    174       ///   operand #3 optional in flag
    175       TC_RETURN,
    176 
    177       /// ch, gl = CR6[UN]SET ch, inglue - Toggle CR bit 6 for SVR4 vararg calls
    178       CR6SET,
    179       CR6UNSET,
    180 
    181       /// G8RC = ADDIS_GOT_TPREL_HA %X2, Symbol - Used by the initial-exec
    182       /// TLS model, produces an ADDIS8 instruction that adds the GOT
    183       /// base to sym@got@tprel@ha.
    184       ADDIS_GOT_TPREL_HA,
    185 
    186       /// G8RC = LD_GOT_TPREL_L Symbol, G8RReg - Used by the initial-exec
    187       /// TLS model, produces a LD instruction with base register G8RReg
    188       /// and offset sym@got@tprel@l.  This completes the addition that
    189       /// finds the offset of "sym" relative to the thread pointer.
    190       LD_GOT_TPREL_L,
    191 
    192       /// G8RC = ADD_TLS G8RReg, Symbol - Used by the initial-exec TLS
    193       /// model, produces an ADD instruction that adds the contents of
    194       /// G8RReg to the thread pointer.  Symbol contains a relocation
    195       /// sym@tls which is to be replaced by the thread pointer and
    196       /// identifies to the linker that the instruction is part of a
    197       /// TLS sequence.
    198       ADD_TLS,
    199 
    200       /// G8RC = ADDIS_TLSGD_HA %X2, Symbol - For the general-dynamic TLS
    201       /// model, produces an ADDIS8 instruction that adds the GOT base
    202       /// register to sym@got@tlsgd@ha.
    203       ADDIS_TLSGD_HA,
    204 
    205       /// G8RC = ADDI_TLSGD_L G8RReg, Symbol - For the general-dynamic TLS
    206       /// model, produces an ADDI8 instruction that adds G8RReg to
    207       /// sym@got@tlsgd@l.
    208       ADDI_TLSGD_L,
    209 
    210       /// G8RC = GET_TLS_ADDR %X3, Symbol - For the general-dynamic TLS
    211       /// model, produces a call to __tls_get_addr(sym@tlsgd).
    212       GET_TLS_ADDR,
    213 
    214       /// G8RC = ADDIS_TLSLD_HA %X2, Symbol - For the local-dynamic TLS
    215       /// model, produces an ADDIS8 instruction that adds the GOT base
    216       /// register to sym@got@tlsld@ha.
    217       ADDIS_TLSLD_HA,
    218 
    219       /// G8RC = ADDI_TLSLD_L G8RReg, Symbol - For the local-dynamic TLS
    220       /// model, produces an ADDI8 instruction that adds G8RReg to
    221       /// sym@got@tlsld@l.
    222       ADDI_TLSLD_L,
    223 
    224       /// G8RC = GET_TLSLD_ADDR %X3, Symbol - For the local-dynamic TLS
    225       /// model, produces a call to __tls_get_addr(sym@tlsld).
    226       GET_TLSLD_ADDR,
    227 
    228       /// G8RC = ADDIS_DTPREL_HA %X3, Symbol, Chain - For the
    229       /// local-dynamic TLS model, produces an ADDIS8 instruction
    230       /// that adds X3 to sym@dtprel@ha.  The Chain operand is needed
    231       /// to tie this in place following a copy to %X3 from the result
    232       /// of a GET_TLSLD_ADDR.
    233       ADDIS_DTPREL_HA,
    234 
    235       /// G8RC = ADDI_DTPREL_L G8RReg, Symbol - For the local-dynamic TLS
    236       /// model, produces an ADDI8 instruction that adds G8RReg to
    237       /// sym@got@dtprel@l.
    238       ADDI_DTPREL_L,
    239 
    240       /// VRRC = VADD_SPLAT Elt, EltSize - Temporary node to be expanded
    241       /// during instruction selection to optimize a BUILD_VECTOR into
    242       /// operations on splats.  This is necessary to avoid losing these
    243       /// optimizations due to constant folding.
    244       VADD_SPLAT,
    245 
    246       /// STD_32 - This is the STD instruction for use with "32-bit" registers.
    247       STD_32 = ISD::FIRST_TARGET_MEMORY_OPCODE,
    248 
    249       /// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a
    250       /// byte-swapping store instruction.  It byte-swaps the low "Type" bits of
    251       /// the GPRC input, then stores it through Ptr.  Type can be either i16 or
    252       /// i32.
    253       STBRX,
    254 
    255       /// GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a
    256       /// byte-swapping load instruction.  It loads "Type" bits, byte swaps it,
    257       /// then puts it in the bottom bits of the GPRC.  TYPE can be either i16
    258       /// or i32.
    259       LBRX,
    260 
    261       /// G8RC = ADDIS_TOC_HA %X2, Symbol - For medium and large code model,
    262       /// produces an ADDIS8 instruction that adds the TOC base register to
    263       /// sym@toc@ha.
    264       ADDIS_TOC_HA,
    265 
    266       /// G8RC = LD_TOC_L Symbol, G8RReg - For medium and large code model,
    267       /// produces a LD instruction with base register G8RReg and offset
    268       /// sym@toc@l.  Preceded by an ADDIS_TOC_HA to form a full 32-bit offset.
    269       LD_TOC_L,
    270 
    271       /// G8RC = ADDI_TOC_L G8RReg, Symbol - For medium code model, produces
    272       /// an ADDI8 instruction that adds G8RReg to sym@toc@l.
    273       /// Preceded by an ADDIS_TOC_HA to form a full 32-bit offset.
    274       ADDI_TOC_L
    275     };
    276   }
    277 
    278   /// Define some predicates that are used for node matching.
    279   namespace PPC {
    280     /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
    281     /// VPKUHUM instruction.
    282     bool isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary);
    283 
    284     /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
    285     /// VPKUWUM instruction.
    286     bool isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary);
    287 
    288     /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
    289     /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
    290     bool isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
    291                             bool isUnary);
    292 
    293     /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
    294     /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
    295     bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
    296                             bool isUnary);
    297 
    298     /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
    299     /// amount, otherwise return -1.
    300     int isVSLDOIShuffleMask(SDNode *N, bool isUnary);
    301 
    302     /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
    303     /// specifies a splat of a single element that is suitable for input to
    304     /// VSPLTB/VSPLTH/VSPLTW.
    305     bool isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize);
    306 
    307     /// isAllNegativeZeroVector - Returns true if all elements of build_vector
    308     /// are -0.0.
    309     bool isAllNegativeZeroVector(SDNode *N);
    310 
    311     /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
    312     /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
    313     unsigned getVSPLTImmediate(SDNode *N, unsigned EltSize);
    314 
    315     /// get_VSPLTI_elt - If this is a build_vector of constants which can be
    316     /// formed by using a vspltis[bhw] instruction of the specified element
    317     /// size, return the constant being splatted.  The ByteSize field indicates
    318     /// the number of bytes of each element [124] -> [bhw].
    319     SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG);
    320   }
    321 
    322   class PPCTargetLowering : public TargetLowering {
    323     const PPCSubtarget &PPCSubTarget;
    324 
    325   public:
    326     explicit PPCTargetLowering(PPCTargetMachine &TM);
    327 
    328     /// getTargetNodeName() - This method returns the name of a target specific
    329     /// DAG node.
    330     virtual const char *getTargetNodeName(unsigned Opcode) const;
    331 
    332     virtual MVT getScalarShiftAmountTy(EVT LHSTy) const { return MVT::i32; }
    333 
    334     /// getSetCCResultType - Return the ISD::SETCC ValueType
    335     virtual EVT getSetCCResultType(EVT VT) const;
    336 
    337     /// getPreIndexedAddressParts - returns true by value, base pointer and
    338     /// offset pointer and addressing mode by reference if the node's address
    339     /// can be legally represented as pre-indexed load / store address.
    340     virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
    341                                            SDValue &Offset,
    342                                            ISD::MemIndexedMode &AM,
    343                                            SelectionDAG &DAG) const;
    344 
    345     /// SelectAddressRegReg - Given the specified addressed, check to see if it
    346     /// can be represented as an indexed [r+r] operation.  Returns false if it
    347     /// can be more efficiently represented with [r+imm].
    348     bool SelectAddressRegReg(SDValue N, SDValue &Base, SDValue &Index,
    349                              SelectionDAG &DAG) const;
    350 
    351     /// SelectAddressRegImm - Returns true if the address N can be represented
    352     /// by a base register plus a signed 16-bit displacement [r+imm], and if it
    353     /// is not better represented as reg+reg.
    354     bool SelectAddressRegImm(SDValue N, SDValue &Disp, SDValue &Base,
    355                              SelectionDAG &DAG) const;
    356 
    357     /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
    358     /// represented as an indexed [r+r] operation.
    359     bool SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index,
    360                                  SelectionDAG &DAG) const;
    361 
    362     /// SelectAddressRegImmShift - Returns true if the address N can be
    363     /// represented by a base register plus a signed 14-bit displacement
    364     /// [r+imm*4].  Suitable for use by STD and friends.
    365     bool SelectAddressRegImmShift(SDValue N, SDValue &Disp, SDValue &Base,
    366                                   SelectionDAG &DAG) const;
    367 
    368     Sched::Preference getSchedulingPreference(SDNode *N) const;
    369 
    370     /// LowerOperation - Provide custom lowering hooks for some operations.
    371     ///
    372     virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
    373 
    374     /// ReplaceNodeResults - Replace the results of node with an illegal result
    375     /// type with new values built out of custom code.
    376     ///
    377     virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
    378                                     SelectionDAG &DAG) const;
    379 
    380     virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
    381 
    382     virtual void computeMaskedBitsForTargetNode(const SDValue Op,
    383                                                 APInt &KnownZero,
    384                                                 APInt &KnownOne,
    385                                                 const SelectionDAG &DAG,
    386                                                 unsigned Depth = 0) const;
    387 
    388     virtual MachineBasicBlock *
    389       EmitInstrWithCustomInserter(MachineInstr *MI,
    390                                   MachineBasicBlock *MBB) const;
    391     MachineBasicBlock *EmitAtomicBinary(MachineInstr *MI,
    392                                         MachineBasicBlock *MBB, bool is64Bit,
    393                                         unsigned BinOpcode) const;
    394     MachineBasicBlock *EmitPartwordAtomicBinary(MachineInstr *MI,
    395                                                 MachineBasicBlock *MBB,
    396                                             bool is8bit, unsigned Opcode) const;
    397 
    398     ConstraintType getConstraintType(const std::string &Constraint) const;
    399 
    400     /// Examine constraint string and operand type and determine a weight value.
    401     /// The operand object must already have been set up with the operand type.
    402     ConstraintWeight getSingleConstraintMatchWeight(
    403       AsmOperandInfo &info, const char *constraint) const;
    404 
    405     std::pair<unsigned, const TargetRegisterClass*>
    406       getRegForInlineAsmConstraint(const std::string &Constraint,
    407                                    EVT VT) const;
    408 
    409     /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
    410     /// function arguments in the caller parameter area.  This is the actual
    411     /// alignment, not its logarithm.
    412     unsigned getByValTypeAlignment(Type *Ty) const;
    413 
    414     /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
    415     /// vector.  If it is invalid, don't add anything to Ops.
    416     virtual void LowerAsmOperandForConstraint(SDValue Op,
    417                                               std::string &Constraint,
    418                                               std::vector<SDValue> &Ops,
    419                                               SelectionDAG &DAG) const;
    420 
    421     /// isLegalAddressingMode - Return true if the addressing mode represented
    422     /// by AM is legal for this target, for a load/store of the specified type.
    423     virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty)const;
    424 
    425     /// isLegalAddressImmediate - Return true if the integer value can be used
    426     /// as the offset of the target addressing mode for load / store of the
    427     /// given type.
    428     virtual bool isLegalAddressImmediate(int64_t V, Type *Ty) const;
    429 
    430     /// isLegalAddressImmediate - Return true if the GlobalValue can be used as
    431     /// the offset of the target addressing mode.
    432     virtual bool isLegalAddressImmediate(GlobalValue *GV) const;
    433 
    434     virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
    435 
    436     /// getOptimalMemOpType - Returns the target specific optimal type for load
    437     /// and store operations as a result of memset, memcpy, and memmove
    438     /// lowering. If DstAlign is zero that means it's safe to destination
    439     /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
    440     /// means there isn't a need to check it against alignment requirement,
    441     /// probably because the source does not need to be loaded. If 'IsMemset' is
    442     /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
    443     /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
    444     /// source is constant so it does not need to be loaded.
    445     /// It returns EVT::Other if the type should be determined using generic
    446     /// target-independent logic.
    447     virtual EVT
    448     getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
    449                         bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
    450                         MachineFunction &MF) const;
    451 
    452     /// Is unaligned memory access allowed for the given type, and is it fast
    453     /// relative to software emulation.
    454     virtual bool allowsUnalignedMemoryAccesses(EVT VT, bool *Fast = 0) const;
    455 
    456     /// isFMAFasterThanMulAndAdd - Return true if an FMA operation is faster than
    457     /// a pair of mul and add instructions. fmuladd intrinsics will be expanded to
    458     /// FMAs when this method returns true (and FMAs are legal), otherwise fmuladd
    459     /// is expanded to mul + add.
    460     virtual bool isFMAFasterThanMulAndAdd(EVT VT) const;
    461 
    462   private:
    463     SDValue getFramePointerFrameIndex(SelectionDAG & DAG) const;
    464     SDValue getReturnAddrFrameIndex(SelectionDAG & DAG) const;
    465 
    466     bool
    467     IsEligibleForTailCallOptimization(SDValue Callee,
    468                                       CallingConv::ID CalleeCC,
    469                                       bool isVarArg,
    470                                       const SmallVectorImpl<ISD::InputArg> &Ins,
    471                                       SelectionDAG& DAG) const;
    472 
    473     SDValue EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
    474                                          int SPDiff,
    475                                          SDValue Chain,
    476                                          SDValue &LROpOut,
    477                                          SDValue &FPOpOut,
    478                                          bool isDarwinABI,
    479                                          DebugLoc dl) const;
    480 
    481     SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
    482     SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
    483     SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
    484     SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
    485     SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
    486     SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
    487     SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
    488     SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
    489     SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
    490     SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
    491     SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG,
    492                          const PPCSubtarget &Subtarget) const;
    493     SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG,
    494                        const PPCSubtarget &Subtarget) const;
    495     SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
    496                                 const PPCSubtarget &Subtarget) const;
    497     SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG,
    498                                       const PPCSubtarget &Subtarget) const;
    499     SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
    500     SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, DebugLoc dl) const;
    501     SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
    502     SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
    503     SDValue LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const;
    504     SDValue LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const;
    505     SDValue LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const;
    506     SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
    507     SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
    508     SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
    509     SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
    510     SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const;
    511 
    512     SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
    513                             CallingConv::ID CallConv, bool isVarArg,
    514                             const SmallVectorImpl<ISD::InputArg> &Ins,
    515                             DebugLoc dl, SelectionDAG &DAG,
    516                             SmallVectorImpl<SDValue> &InVals) const;
    517     SDValue FinishCall(CallingConv::ID CallConv, DebugLoc dl, bool isTailCall,
    518                        bool isVarArg,
    519                        SelectionDAG &DAG,
    520                        SmallVector<std::pair<unsigned, SDValue>, 8>
    521                          &RegsToPass,
    522                        SDValue InFlag, SDValue Chain,
    523                        SDValue &Callee,
    524                        int SPDiff, unsigned NumBytes,
    525                        const SmallVectorImpl<ISD::InputArg> &Ins,
    526                        SmallVectorImpl<SDValue> &InVals) const;
    527 
    528     virtual SDValue
    529       LowerFormalArguments(SDValue Chain,
    530                            CallingConv::ID CallConv, bool isVarArg,
    531                            const SmallVectorImpl<ISD::InputArg> &Ins,
    532                            DebugLoc dl, SelectionDAG &DAG,
    533                            SmallVectorImpl<SDValue> &InVals) const;
    534 
    535     virtual SDValue
    536       LowerCall(TargetLowering::CallLoweringInfo &CLI,
    537                 SmallVectorImpl<SDValue> &InVals) const;
    538 
    539     virtual bool
    540       CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
    541                    bool isVarArg,
    542                    const SmallVectorImpl<ISD::OutputArg> &Outs,
    543                    LLVMContext &Context) const;
    544 
    545     virtual SDValue
    546       LowerReturn(SDValue Chain,
    547                   CallingConv::ID CallConv, bool isVarArg,
    548                   const SmallVectorImpl<ISD::OutputArg> &Outs,
    549                   const SmallVectorImpl<SDValue> &OutVals,
    550                   DebugLoc dl, SelectionDAG &DAG) const;
    551 
    552     SDValue
    553       extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT, SelectionDAG &DAG,
    554                         SDValue ArgVal, DebugLoc dl) const;
    555 
    556     void
    557       setMinReservedArea(MachineFunction &MF, SelectionDAG &DAG,
    558                          unsigned nAltivecParamsAtEnd,
    559                          unsigned MinReservedArea, bool isPPC64) const;
    560 
    561     SDValue
    562       LowerFormalArguments_Darwin(SDValue Chain,
    563                                   CallingConv::ID CallConv, bool isVarArg,
    564                                   const SmallVectorImpl<ISD::InputArg> &Ins,
    565                                   DebugLoc dl, SelectionDAG &DAG,
    566                                   SmallVectorImpl<SDValue> &InVals) const;
    567     SDValue
    568       LowerFormalArguments_64SVR4(SDValue Chain,
    569                                   CallingConv::ID CallConv, bool isVarArg,
    570                                   const SmallVectorImpl<ISD::InputArg> &Ins,
    571                                   DebugLoc dl, SelectionDAG &DAG,
    572                                   SmallVectorImpl<SDValue> &InVals) const;
    573     SDValue
    574       LowerFormalArguments_32SVR4(SDValue Chain,
    575                                   CallingConv::ID CallConv, bool isVarArg,
    576                                   const SmallVectorImpl<ISD::InputArg> &Ins,
    577                                   DebugLoc dl, SelectionDAG &DAG,
    578                                   SmallVectorImpl<SDValue> &InVals) const;
    579 
    580     SDValue
    581       createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
    582                                  SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
    583                                  SelectionDAG &DAG, DebugLoc dl) const;
    584 
    585     SDValue
    586       LowerCall_Darwin(SDValue Chain, SDValue Callee,
    587                        CallingConv::ID CallConv,
    588                        bool isVarArg, bool isTailCall,
    589                        const SmallVectorImpl<ISD::OutputArg> &Outs,
    590                        const SmallVectorImpl<SDValue> &OutVals,
    591                        const SmallVectorImpl<ISD::InputArg> &Ins,
    592                        DebugLoc dl, SelectionDAG &DAG,
    593                        SmallVectorImpl<SDValue> &InVals) const;
    594     SDValue
    595       LowerCall_64SVR4(SDValue Chain, SDValue Callee,
    596                        CallingConv::ID CallConv,
    597                        bool isVarArg, bool isTailCall,
    598                        const SmallVectorImpl<ISD::OutputArg> &Outs,
    599                        const SmallVectorImpl<SDValue> &OutVals,
    600                        const SmallVectorImpl<ISD::InputArg> &Ins,
    601                        DebugLoc dl, SelectionDAG &DAG,
    602                        SmallVectorImpl<SDValue> &InVals) const;
    603     SDValue
    604     LowerCall_32SVR4(SDValue Chain, SDValue Callee, CallingConv::ID CallConv,
    605                      bool isVarArg, bool isTailCall,
    606                      const SmallVectorImpl<ISD::OutputArg> &Outs,
    607                      const SmallVectorImpl<SDValue> &OutVals,
    608                      const SmallVectorImpl<ISD::InputArg> &Ins,
    609                      DebugLoc dl, SelectionDAG &DAG,
    610                      SmallVectorImpl<SDValue> &InVals) const;
    611   };
    612 }
    613 
    614 #endif   // LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
    615