Home | History | Annotate | Download | only in CodeGen
      1 //===- TargetRegisterInfo.cpp - Target Register Information Implementation ===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the TargetRegisterInfo interface.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Target/TargetRegisterInfo.h"
     15 #include "llvm/ADT/BitVector.h"
     16 #include "llvm/CodeGen/MachineFunction.h"
     17 #include "llvm/CodeGen/MachineRegisterInfo.h"
     18 #include "llvm/CodeGen/VirtRegMap.h"
     19 #include "llvm/Support/raw_ostream.h"
     20 
     21 using namespace llvm;
     22 
     23 TargetRegisterInfo::TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
     24                              regclass_iterator RCB, regclass_iterator RCE,
     25                              const char *const *SRINames,
     26                              const unsigned *SRILaneMasks,
     27                              unsigned SRICoveringLanes)
     28   : InfoDesc(ID), SubRegIndexNames(SRINames),
     29     SubRegIndexLaneMasks(SRILaneMasks),
     30     RegClassBegin(RCB), RegClassEnd(RCE),
     31     CoveringLanes(SRICoveringLanes) {
     32 }
     33 
     34 TargetRegisterInfo::~TargetRegisterInfo() {}
     35 
     36 void PrintReg::print(raw_ostream &OS) const {
     37   if (!Reg)
     38     OS << "%noreg";
     39   else if (TargetRegisterInfo::isStackSlot(Reg))
     40     OS << "SS#" << TargetRegisterInfo::stackSlot2Index(Reg);
     41   else if (TargetRegisterInfo::isVirtualRegister(Reg))
     42     OS << "%vreg" << TargetRegisterInfo::virtReg2Index(Reg);
     43   else if (TRI && Reg < TRI->getNumRegs())
     44     OS << '%' << TRI->getName(Reg);
     45   else
     46     OS << "%physreg" << Reg;
     47   if (SubIdx) {
     48     if (TRI)
     49       OS << ':' << TRI->getSubRegIndexName(SubIdx);
     50     else
     51       OS << ":sub(" << SubIdx << ')';
     52   }
     53 }
     54 
     55 void PrintRegUnit::print(raw_ostream &OS) const {
     56   // Generic printout when TRI is missing.
     57   if (!TRI) {
     58     OS << "Unit~" << Unit;
     59     return;
     60   }
     61 
     62   // Check for invalid register units.
     63   if (Unit >= TRI->getNumRegUnits()) {
     64     OS << "BadUnit~" << Unit;
     65     return;
     66   }
     67 
     68   // Normal units have at least one root.
     69   MCRegUnitRootIterator Roots(Unit, TRI);
     70   assert(Roots.isValid() && "Unit has no roots.");
     71   OS << TRI->getName(*Roots);
     72   for (++Roots; Roots.isValid(); ++Roots)
     73     OS << '~' << TRI->getName(*Roots);
     74 }
     75 
     76 /// getAllocatableClass - Return the maximal subclass of the given register
     77 /// class that is alloctable, or NULL.
     78 const TargetRegisterClass *
     79 TargetRegisterInfo::getAllocatableClass(const TargetRegisterClass *RC) const {
     80   if (!RC || RC->isAllocatable())
     81     return RC;
     82 
     83   const unsigned *SubClass = RC->getSubClassMask();
     84   for (unsigned Base = 0, BaseE = getNumRegClasses();
     85        Base < BaseE; Base += 32) {
     86     unsigned Idx = Base;
     87     for (unsigned Mask = *SubClass++; Mask; Mask >>= 1) {
     88       unsigned Offset = countTrailingZeros(Mask);
     89       const TargetRegisterClass *SubRC = getRegClass(Idx + Offset);
     90       if (SubRC->isAllocatable())
     91         return SubRC;
     92       Mask >>= Offset;
     93       Idx += Offset + 1;
     94     }
     95   }
     96   return NULL;
     97 }
     98 
     99 /// getMinimalPhysRegClass - Returns the Register Class of a physical
    100 /// register of the given type, picking the most sub register class of
    101 /// the right type that contains this physreg.
    102 const TargetRegisterClass *
    103 TargetRegisterInfo::getMinimalPhysRegClass(unsigned reg, EVT VT) const {
    104   assert(isPhysicalRegister(reg) && "reg must be a physical register");
    105 
    106   // Pick the most sub register class of the right type that contains
    107   // this physreg.
    108   const TargetRegisterClass* BestRC = 0;
    109   for (regclass_iterator I = regclass_begin(), E = regclass_end(); I != E; ++I){
    110     const TargetRegisterClass* RC = *I;
    111     if ((VT == MVT::Other || RC->hasType(VT)) && RC->contains(reg) &&
    112         (!BestRC || BestRC->hasSubClass(RC)))
    113       BestRC = RC;
    114   }
    115 
    116   assert(BestRC && "Couldn't find the register class");
    117   return BestRC;
    118 }
    119 
    120 /// getAllocatableSetForRC - Toggle the bits that represent allocatable
    121 /// registers for the specific register class.
    122 static void getAllocatableSetForRC(const MachineFunction &MF,
    123                                    const TargetRegisterClass *RC, BitVector &R){
    124   assert(RC->isAllocatable() && "invalid for nonallocatable sets");
    125   ArrayRef<uint16_t> Order = RC->getRawAllocationOrder(MF);
    126   for (unsigned i = 0; i != Order.size(); ++i)
    127     R.set(Order[i]);
    128 }
    129 
    130 BitVector TargetRegisterInfo::getAllocatableSet(const MachineFunction &MF,
    131                                           const TargetRegisterClass *RC) const {
    132   BitVector Allocatable(getNumRegs());
    133   if (RC) {
    134     // A register class with no allocatable subclass returns an empty set.
    135     const TargetRegisterClass *SubClass = getAllocatableClass(RC);
    136     if (SubClass)
    137       getAllocatableSetForRC(MF, SubClass, Allocatable);
    138   } else {
    139     for (TargetRegisterInfo::regclass_iterator I = regclass_begin(),
    140          E = regclass_end(); I != E; ++I)
    141       if ((*I)->isAllocatable())
    142         getAllocatableSetForRC(MF, *I, Allocatable);
    143   }
    144 
    145   // Mask out the reserved registers
    146   BitVector Reserved = getReservedRegs(MF);
    147   Allocatable &= Reserved.flip();
    148 
    149   return Allocatable;
    150 }
    151 
    152 static inline
    153 const TargetRegisterClass *firstCommonClass(const uint32_t *A,
    154                                             const uint32_t *B,
    155                                             const TargetRegisterInfo *TRI) {
    156   for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; I += 32)
    157     if (unsigned Common = *A++ & *B++)
    158       return TRI->getRegClass(I + countTrailingZeros(Common));
    159   return 0;
    160 }
    161 
    162 const TargetRegisterClass *
    163 TargetRegisterInfo::getCommonSubClass(const TargetRegisterClass *A,
    164                                       const TargetRegisterClass *B) const {
    165   // First take care of the trivial cases.
    166   if (A == B)
    167     return A;
    168   if (!A || !B)
    169     return 0;
    170 
    171   // Register classes are ordered topologically, so the largest common
    172   // sub-class it the common sub-class with the smallest ID.
    173   return firstCommonClass(A->getSubClassMask(), B->getSubClassMask(), this);
    174 }
    175 
    176 const TargetRegisterClass *
    177 TargetRegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A,
    178                                              const TargetRegisterClass *B,
    179                                              unsigned Idx) const {
    180   assert(A && B && "Missing register class");
    181   assert(Idx && "Bad sub-register index");
    182 
    183   // Find Idx in the list of super-register indices.
    184   for (SuperRegClassIterator RCI(B, this); RCI.isValid(); ++RCI)
    185     if (RCI.getSubReg() == Idx)
    186       // The bit mask contains all register classes that are projected into B
    187       // by Idx. Find a class that is also a sub-class of A.
    188       return firstCommonClass(RCI.getMask(), A->getSubClassMask(), this);
    189   return 0;
    190 }
    191 
    192 const TargetRegisterClass *TargetRegisterInfo::
    193 getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA,
    194                        const TargetRegisterClass *RCB, unsigned SubB,
    195                        unsigned &PreA, unsigned &PreB) const {
    196   assert(RCA && SubA && RCB && SubB && "Invalid arguments");
    197 
    198   // Search all pairs of sub-register indices that project into RCA and RCB
    199   // respectively. This is quadratic, but usually the sets are very small. On
    200   // most targets like X86, there will only be a single sub-register index
    201   // (e.g., sub_16bit projecting into GR16).
    202   //
    203   // The worst case is a register class like DPR on ARM.
    204   // We have indices dsub_0..dsub_7 projecting into that class.
    205   //
    206   // It is very common that one register class is a sub-register of the other.
    207   // Arrange for RCA to be the larger register so the answer will be found in
    208   // the first iteration. This makes the search linear for the most common
    209   // case.
    210   const TargetRegisterClass *BestRC = 0;
    211   unsigned *BestPreA = &PreA;
    212   unsigned *BestPreB = &PreB;
    213   if (RCA->getSize() < RCB->getSize()) {
    214     std::swap(RCA, RCB);
    215     std::swap(SubA, SubB);
    216     std::swap(BestPreA, BestPreB);
    217   }
    218 
    219   // Also terminate the search one we have found a register class as small as
    220   // RCA.
    221   unsigned MinSize = RCA->getSize();
    222 
    223   for (SuperRegClassIterator IA(RCA, this, true); IA.isValid(); ++IA) {
    224     unsigned FinalA = composeSubRegIndices(IA.getSubReg(), SubA);
    225     for (SuperRegClassIterator IB(RCB, this, true); IB.isValid(); ++IB) {
    226       // Check if a common super-register class exists for this index pair.
    227       const TargetRegisterClass *RC =
    228         firstCommonClass(IA.getMask(), IB.getMask(), this);
    229       if (!RC || RC->getSize() < MinSize)
    230         continue;
    231 
    232       // The indexes must compose identically: PreA+SubA == PreB+SubB.
    233       unsigned FinalB = composeSubRegIndices(IB.getSubReg(), SubB);
    234       if (FinalA != FinalB)
    235         continue;
    236 
    237       // Is RC a better candidate than BestRC?
    238       if (BestRC && RC->getSize() >= BestRC->getSize())
    239         continue;
    240 
    241       // Yes, RC is the smallest super-register seen so far.
    242       BestRC = RC;
    243       *BestPreA = IA.getSubReg();
    244       *BestPreB = IB.getSubReg();
    245 
    246       // Bail early if we reached MinSize. We won't find a better candidate.
    247       if (BestRC->getSize() == MinSize)
    248         return BestRC;
    249     }
    250   }
    251   return BestRC;
    252 }
    253 
    254 // Compute target-independent register allocator hints to help eliminate copies.
    255 void
    256 TargetRegisterInfo::getRegAllocationHints(unsigned VirtReg,
    257                                           ArrayRef<MCPhysReg> Order,
    258                                           SmallVectorImpl<MCPhysReg> &Hints,
    259                                           const MachineFunction &MF,
    260                                           const VirtRegMap *VRM) const {
    261   const MachineRegisterInfo &MRI = MF.getRegInfo();
    262   std::pair<unsigned, unsigned> Hint = MRI.getRegAllocationHint(VirtReg);
    263 
    264   // Hints with HintType != 0 were set by target-dependent code.
    265   // Such targets must provide their own implementation of
    266   // TRI::getRegAllocationHints to interpret those hint types.
    267   assert(Hint.first == 0 && "Target must implement TRI::getRegAllocationHints");
    268 
    269   // Target-independent hints are either a physical or a virtual register.
    270   unsigned Phys = Hint.second;
    271   if (VRM && isVirtualRegister(Phys))
    272     Phys = VRM->getPhys(Phys);
    273 
    274   // Check that Phys is a valid hint in VirtReg's register class.
    275   if (!isPhysicalRegister(Phys))
    276     return;
    277   if (MRI.isReserved(Phys))
    278     return;
    279   // Check that Phys is in the allocation order. We shouldn't heed hints
    280   // from VirtReg's register class if they aren't in the allocation order. The
    281   // target probably has a reason for removing the register.
    282   if (std::find(Order.begin(), Order.end(), Phys) == Order.end())
    283     return;
    284 
    285   // All clear, tell the register allocator to prefer this register.
    286   Hints.push_back(Phys);
    287 }
    288