1 //===-- llvm/CodeGen/MachineRegisterInfo.h ----------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the MachineRegisterInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_CODEGEN_MACHINEREGISTERINFO_H 15 #define LLVM_CODEGEN_MACHINEREGISTERINFO_H 16 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/IndexedMap.h" 19 #include "llvm/CodeGen/MachineInstrBundle.h" 20 #include "llvm/Target/TargetMachine.h" 21 #include "llvm/Target/TargetRegisterInfo.h" 22 #include <vector> 23 24 namespace llvm { 25 26 /// MachineRegisterInfo - Keep track of information for virtual and physical 27 /// registers, including vreg register classes, use/def chains for registers, 28 /// etc. 29 class MachineRegisterInfo { 30 const TargetMachine &TM; 31 32 /// IsSSA - True when the machine function is in SSA form and virtual 33 /// registers have a single def. 34 bool IsSSA; 35 36 /// TracksLiveness - True while register liveness is being tracked accurately. 37 /// Basic block live-in lists, kill flags, and implicit defs may not be 38 /// accurate when after this flag is cleared. 39 bool TracksLiveness; 40 41 /// VRegInfo - Information we keep for each virtual register. 42 /// 43 /// Each element in this list contains the register class of the vreg and the 44 /// start of the use/def list for the register. 45 IndexedMap<std::pair<const TargetRegisterClass*, MachineOperand*>, 46 VirtReg2IndexFunctor> VRegInfo; 47 48 /// RegAllocHints - This vector records register allocation hints for virtual 49 /// registers. For each virtual register, it keeps a register and hint type 50 /// pair making up the allocation hint. Hint type is target specific except 51 /// for the value 0 which means the second value of the pair is the preferred 52 /// register for allocation. For example, if the hint is <0, 1024>, it means 53 /// the allocator should prefer the physical register allocated to the virtual 54 /// register of the hint. 55 IndexedMap<std::pair<unsigned, unsigned>, VirtReg2IndexFunctor> RegAllocHints; 56 57 /// PhysRegUseDefLists - This is an array of the head of the use/def list for 58 /// physical registers. 59 MachineOperand **PhysRegUseDefLists; 60 61 /// getRegUseDefListHead - Return the head pointer for the register use/def 62 /// list for the specified virtual or physical register. 63 MachineOperand *&getRegUseDefListHead(unsigned RegNo) { 64 if (TargetRegisterInfo::isVirtualRegister(RegNo)) 65 return VRegInfo[RegNo].second; 66 return PhysRegUseDefLists[RegNo]; 67 } 68 69 MachineOperand *getRegUseDefListHead(unsigned RegNo) const { 70 if (TargetRegisterInfo::isVirtualRegister(RegNo)) 71 return VRegInfo[RegNo].second; 72 return PhysRegUseDefLists[RegNo]; 73 } 74 75 /// Get the next element in the use-def chain. 76 static MachineOperand *getNextOperandForReg(const MachineOperand *MO) { 77 assert(MO && MO->isReg() && "This is not a register operand!"); 78 return MO->Contents.Reg.Next; 79 } 80 81 /// UsedRegUnits - This is a bit vector that is computed and set by the 82 /// register allocator, and must be kept up to date by passes that run after 83 /// register allocation (though most don't modify this). This is used 84 /// so that the code generator knows which callee save registers to save and 85 /// for other target specific uses. 86 /// This vector has bits set for register units that are modified in the 87 /// current function. It doesn't include registers clobbered by function 88 /// calls with register mask operands. 89 BitVector UsedRegUnits; 90 91 /// UsedPhysRegMask - Additional used physregs including aliases. 92 /// This bit vector represents all the registers clobbered by function calls. 93 /// It can model things that UsedRegUnits can't, such as function calls that 94 /// clobber ymm7 but preserve the low half in xmm7. 95 BitVector UsedPhysRegMask; 96 97 /// ReservedRegs - This is a bit vector of reserved registers. The target 98 /// may change its mind about which registers should be reserved. This 99 /// vector is the frozen set of reserved registers when register allocation 100 /// started. 101 BitVector ReservedRegs; 102 103 /// Keep track of the physical registers that are live in to the function. 104 /// Live in values are typically arguments in registers. LiveIn values are 105 /// allowed to have virtual registers associated with them, stored in the 106 /// second element. 107 std::vector<std::pair<unsigned, unsigned> > LiveIns; 108 109 MachineRegisterInfo(const MachineRegisterInfo&) LLVM_DELETED_FUNCTION; 110 void operator=(const MachineRegisterInfo&) LLVM_DELETED_FUNCTION; 111 public: 112 explicit MachineRegisterInfo(const TargetMachine &TM); 113 ~MachineRegisterInfo(); 114 115 const TargetRegisterInfo *getTargetRegisterInfo() const { 116 return TM.getRegisterInfo(); 117 } 118 119 //===--------------------------------------------------------------------===// 120 // Function State 121 //===--------------------------------------------------------------------===// 122 123 // isSSA - Returns true when the machine function is in SSA form. Early 124 // passes require the machine function to be in SSA form where every virtual 125 // register has a single defining instruction. 126 // 127 // The TwoAddressInstructionPass and PHIElimination passes take the machine 128 // function out of SSA form when they introduce multiple defs per virtual 129 // register. 130 bool isSSA() const { return IsSSA; } 131 132 // leaveSSA - Indicates that the machine function is no longer in SSA form. 133 void leaveSSA() { IsSSA = false; } 134 135 /// tracksLiveness - Returns true when tracking register liveness accurately. 136 /// 137 /// While this flag is true, register liveness information in basic block 138 /// live-in lists and machine instruction operands is accurate. This means it 139 /// can be used to change the code in ways that affect the values in 140 /// registers, for example by the register scavenger. 141 /// 142 /// When this flag is false, liveness is no longer reliable. 143 bool tracksLiveness() const { return TracksLiveness; } 144 145 /// invalidateLiveness - Indicates that register liveness is no longer being 146 /// tracked accurately. 147 /// 148 /// This should be called by late passes that invalidate the liveness 149 /// information. 150 void invalidateLiveness() { TracksLiveness = false; } 151 152 //===--------------------------------------------------------------------===// 153 // Register Info 154 //===--------------------------------------------------------------------===// 155 156 // Strictly for use by MachineInstr.cpp. 157 void addRegOperandToUseList(MachineOperand *MO); 158 159 // Strictly for use by MachineInstr.cpp. 160 void removeRegOperandFromUseList(MachineOperand *MO); 161 162 // Strictly for use by MachineInstr.cpp. 163 void moveOperands(MachineOperand *Dst, MachineOperand *Src, unsigned NumOps); 164 165 /// Verify the sanity of the use list for Reg. 166 void verifyUseList(unsigned Reg) const; 167 168 /// Verify the use list of all registers. 169 void verifyUseLists() const; 170 171 /// reg_begin/reg_end - Provide iteration support to walk over all definitions 172 /// and uses of a register within the MachineFunction that corresponds to this 173 /// MachineRegisterInfo object. 174 template<bool Uses, bool Defs, bool SkipDebug> 175 class defusechain_iterator; 176 177 // Make it a friend so it can access getNextOperandForReg(). 178 template<bool, bool, bool> friend class defusechain_iterator; 179 180 /// reg_iterator/reg_begin/reg_end - Walk all defs and uses of the specified 181 /// register. 182 typedef defusechain_iterator<true,true,false> reg_iterator; 183 reg_iterator reg_begin(unsigned RegNo) const { 184 return reg_iterator(getRegUseDefListHead(RegNo)); 185 } 186 static reg_iterator reg_end() { return reg_iterator(0); } 187 188 /// reg_empty - Return true if there are no instructions using or defining the 189 /// specified register (it may be live-in). 190 bool reg_empty(unsigned RegNo) const { return reg_begin(RegNo) == reg_end(); } 191 192 /// reg_nodbg_iterator/reg_nodbg_begin/reg_nodbg_end - Walk all defs and uses 193 /// of the specified register, skipping those marked as Debug. 194 typedef defusechain_iterator<true,true,true> reg_nodbg_iterator; 195 reg_nodbg_iterator reg_nodbg_begin(unsigned RegNo) const { 196 return reg_nodbg_iterator(getRegUseDefListHead(RegNo)); 197 } 198 static reg_nodbg_iterator reg_nodbg_end() { return reg_nodbg_iterator(0); } 199 200 /// reg_nodbg_empty - Return true if the only instructions using or defining 201 /// Reg are Debug instructions. 202 bool reg_nodbg_empty(unsigned RegNo) const { 203 return reg_nodbg_begin(RegNo) == reg_nodbg_end(); 204 } 205 206 /// def_iterator/def_begin/def_end - Walk all defs of the specified register. 207 typedef defusechain_iterator<false,true,false> def_iterator; 208 def_iterator def_begin(unsigned RegNo) const { 209 return def_iterator(getRegUseDefListHead(RegNo)); 210 } 211 static def_iterator def_end() { return def_iterator(0); } 212 213 /// def_empty - Return true if there are no instructions defining the 214 /// specified register (it may be live-in). 215 bool def_empty(unsigned RegNo) const { return def_begin(RegNo) == def_end(); } 216 217 /// hasOneDef - Return true if there is exactly one instruction defining the 218 /// specified register. 219 bool hasOneDef(unsigned RegNo) const { 220 def_iterator DI = def_begin(RegNo); 221 if (DI == def_end()) 222 return false; 223 return ++DI == def_end(); 224 } 225 226 /// use_iterator/use_begin/use_end - Walk all uses of the specified register. 227 typedef defusechain_iterator<true,false,false> use_iterator; 228 use_iterator use_begin(unsigned RegNo) const { 229 return use_iterator(getRegUseDefListHead(RegNo)); 230 } 231 static use_iterator use_end() { return use_iterator(0); } 232 233 /// use_empty - Return true if there are no instructions using the specified 234 /// register. 235 bool use_empty(unsigned RegNo) const { return use_begin(RegNo) == use_end(); } 236 237 /// hasOneUse - Return true if there is exactly one instruction using the 238 /// specified register. 239 bool hasOneUse(unsigned RegNo) const { 240 use_iterator UI = use_begin(RegNo); 241 if (UI == use_end()) 242 return false; 243 return ++UI == use_end(); 244 } 245 246 /// use_nodbg_iterator/use_nodbg_begin/use_nodbg_end - Walk all uses of the 247 /// specified register, skipping those marked as Debug. 248 typedef defusechain_iterator<true,false,true> use_nodbg_iterator; 249 use_nodbg_iterator use_nodbg_begin(unsigned RegNo) const { 250 return use_nodbg_iterator(getRegUseDefListHead(RegNo)); 251 } 252 static use_nodbg_iterator use_nodbg_end() { return use_nodbg_iterator(0); } 253 254 /// use_nodbg_empty - Return true if there are no non-Debug instructions 255 /// using the specified register. 256 bool use_nodbg_empty(unsigned RegNo) const { 257 return use_nodbg_begin(RegNo) == use_nodbg_end(); 258 } 259 260 /// hasOneNonDBGUse - Return true if there is exactly one non-Debug 261 /// instruction using the specified register. 262 bool hasOneNonDBGUse(unsigned RegNo) const; 263 264 /// replaceRegWith - Replace all instances of FromReg with ToReg in the 265 /// machine function. This is like llvm-level X->replaceAllUsesWith(Y), 266 /// except that it also changes any definitions of the register as well. 267 /// 268 /// Note that it is usually necessary to first constrain ToReg's register 269 /// class to match the FromReg constraints using: 270 /// 271 /// constrainRegClass(ToReg, getRegClass(FromReg)) 272 /// 273 /// That function will return NULL if the virtual registers have incompatible 274 /// constraints. 275 void replaceRegWith(unsigned FromReg, unsigned ToReg); 276 277 /// getVRegDef - Return the machine instr that defines the specified virtual 278 /// register or null if none is found. This assumes that the code is in SSA 279 /// form, so there should only be one definition. 280 MachineInstr *getVRegDef(unsigned Reg) const; 281 282 /// getUniqueVRegDef - Return the unique machine instr that defines the 283 /// specified virtual register or null if none is found. If there are 284 /// multiple definitions or no definition, return null. 285 MachineInstr *getUniqueVRegDef(unsigned Reg) const; 286 287 /// clearKillFlags - Iterate over all the uses of the given register and 288 /// clear the kill flag from the MachineOperand. This function is used by 289 /// optimization passes which extend register lifetimes and need only 290 /// preserve conservative kill flag information. 291 void clearKillFlags(unsigned Reg) const; 292 293 #ifndef NDEBUG 294 void dumpUses(unsigned RegNo) const; 295 #endif 296 297 /// isConstantPhysReg - Returns true if PhysReg is unallocatable and constant 298 /// throughout the function. It is safe to move instructions that read such 299 /// a physreg. 300 bool isConstantPhysReg(unsigned PhysReg, const MachineFunction &MF) const; 301 302 //===--------------------------------------------------------------------===// 303 // Virtual Register Info 304 //===--------------------------------------------------------------------===// 305 306 /// getRegClass - Return the register class of the specified virtual register. 307 /// 308 const TargetRegisterClass *getRegClass(unsigned Reg) const { 309 return VRegInfo[Reg].first; 310 } 311 312 /// setRegClass - Set the register class of the specified virtual register. 313 /// 314 void setRegClass(unsigned Reg, const TargetRegisterClass *RC); 315 316 /// constrainRegClass - Constrain the register class of the specified virtual 317 /// register to be a common subclass of RC and the current register class, 318 /// but only if the new class has at least MinNumRegs registers. Return the 319 /// new register class, or NULL if no such class exists. 320 /// This should only be used when the constraint is known to be trivial, like 321 /// GR32 -> GR32_NOSP. Beware of increasing register pressure. 322 /// 323 const TargetRegisterClass *constrainRegClass(unsigned Reg, 324 const TargetRegisterClass *RC, 325 unsigned MinNumRegs = 0); 326 327 /// recomputeRegClass - Try to find a legal super-class of Reg's register 328 /// class that still satisfies the constraints from the instructions using 329 /// Reg. Returns true if Reg was upgraded. 330 /// 331 /// This method can be used after constraints have been removed from a 332 /// virtual register, for example after removing instructions or splitting 333 /// the live range. 334 /// 335 bool recomputeRegClass(unsigned Reg, const TargetMachine&); 336 337 /// createVirtualRegister - Create and return a new virtual register in the 338 /// function with the specified register class. 339 /// 340 unsigned createVirtualRegister(const TargetRegisterClass *RegClass); 341 342 /// getNumVirtRegs - Return the number of virtual registers created. 343 /// 344 unsigned getNumVirtRegs() const { return VRegInfo.size(); } 345 346 /// clearVirtRegs - Remove all virtual registers (after physreg assignment). 347 void clearVirtRegs(); 348 349 /// setRegAllocationHint - Specify a register allocation hint for the 350 /// specified virtual register. 351 void setRegAllocationHint(unsigned Reg, unsigned Type, unsigned PrefReg) { 352 RegAllocHints[Reg].first = Type; 353 RegAllocHints[Reg].second = PrefReg; 354 } 355 356 /// getRegAllocationHint - Return the register allocation hint for the 357 /// specified virtual register. 358 std::pair<unsigned, unsigned> 359 getRegAllocationHint(unsigned Reg) const { 360 return RegAllocHints[Reg]; 361 } 362 363 /// getSimpleHint - Return the preferred register allocation hint, or 0 if a 364 /// standard simple hint (Type == 0) is not set. 365 unsigned getSimpleHint(unsigned Reg) const { 366 std::pair<unsigned, unsigned> Hint = getRegAllocationHint(Reg); 367 return Hint.first ? 0 : Hint.second; 368 } 369 370 371 //===--------------------------------------------------------------------===// 372 // Physical Register Use Info 373 //===--------------------------------------------------------------------===// 374 375 /// isPhysRegUsed - Return true if the specified register is used in this 376 /// function. Also check for clobbered aliases and registers clobbered by 377 /// function calls with register mask operands. 378 /// 379 /// This only works after register allocation. It is primarily used by 380 /// PrologEpilogInserter to determine which callee-saved registers need 381 /// spilling. 382 bool isPhysRegUsed(unsigned Reg) const { 383 if (UsedPhysRegMask.test(Reg)) 384 return true; 385 for (MCRegUnitIterator Units(Reg, getTargetRegisterInfo()); 386 Units.isValid(); ++Units) 387 if (UsedRegUnits.test(*Units)) 388 return true; 389 return false; 390 } 391 392 /// Mark the specified register unit as used in this function. 393 /// This should only be called during and after register allocation. 394 void setRegUnitUsed(unsigned RegUnit) { 395 UsedRegUnits.set(RegUnit); 396 } 397 398 /// setPhysRegUsed - Mark the specified register used in this function. 399 /// This should only be called during and after register allocation. 400 void setPhysRegUsed(unsigned Reg) { 401 for (MCRegUnitIterator Units(Reg, getTargetRegisterInfo()); 402 Units.isValid(); ++Units) 403 UsedRegUnits.set(*Units); 404 } 405 406 /// addPhysRegsUsedFromRegMask - Mark any registers not in RegMask as used. 407 /// This corresponds to the bit mask attached to register mask operands. 408 void addPhysRegsUsedFromRegMask(const uint32_t *RegMask) { 409 UsedPhysRegMask.setBitsNotInMask(RegMask); 410 } 411 412 /// setPhysRegUnused - Mark the specified register unused in this function. 413 /// This should only be called during and after register allocation. 414 void setPhysRegUnused(unsigned Reg) { 415 UsedPhysRegMask.reset(Reg); 416 for (MCRegUnitIterator Units(Reg, getTargetRegisterInfo()); 417 Units.isValid(); ++Units) 418 UsedRegUnits.reset(*Units); 419 } 420 421 422 //===--------------------------------------------------------------------===// 423 // Reserved Register Info 424 //===--------------------------------------------------------------------===// 425 // 426 // The set of reserved registers must be invariant during register 427 // allocation. For example, the target cannot suddenly decide it needs a 428 // frame pointer when the register allocator has already used the frame 429 // pointer register for something else. 430 // 431 // These methods can be used by target hooks like hasFP() to avoid changing 432 // the reserved register set during register allocation. 433 434 /// freezeReservedRegs - Called by the register allocator to freeze the set 435 /// of reserved registers before allocation begins. 436 void freezeReservedRegs(const MachineFunction&); 437 438 /// reservedRegsFrozen - Returns true after freezeReservedRegs() was called 439 /// to ensure the set of reserved registers stays constant. 440 bool reservedRegsFrozen() const { 441 return !ReservedRegs.empty(); 442 } 443 444 /// canReserveReg - Returns true if PhysReg can be used as a reserved 445 /// register. Any register can be reserved before freezeReservedRegs() is 446 /// called. 447 bool canReserveReg(unsigned PhysReg) const { 448 return !reservedRegsFrozen() || ReservedRegs.test(PhysReg); 449 } 450 451 /// getReservedRegs - Returns a reference to the frozen set of reserved 452 /// registers. This method should always be preferred to calling 453 /// TRI::getReservedRegs() when possible. 454 const BitVector &getReservedRegs() const { 455 assert(reservedRegsFrozen() && 456 "Reserved registers haven't been frozen yet. " 457 "Use TRI::getReservedRegs()."); 458 return ReservedRegs; 459 } 460 461 /// isReserved - Returns true when PhysReg is a reserved register. 462 /// 463 /// Reserved registers may belong to an allocatable register class, but the 464 /// target has explicitly requested that they are not used. 465 /// 466 bool isReserved(unsigned PhysReg) const { 467 return getReservedRegs().test(PhysReg); 468 } 469 470 /// isAllocatable - Returns true when PhysReg belongs to an allocatable 471 /// register class and it hasn't been reserved. 472 /// 473 /// Allocatable registers may show up in the allocation order of some virtual 474 /// register, so a register allocator needs to track its liveness and 475 /// availability. 476 bool isAllocatable(unsigned PhysReg) const { 477 return getTargetRegisterInfo()->isInAllocatableClass(PhysReg) && 478 !isReserved(PhysReg); 479 } 480 481 //===--------------------------------------------------------------------===// 482 // LiveIn Management 483 //===--------------------------------------------------------------------===// 484 485 /// addLiveIn - Add the specified register as a live-in. Note that it 486 /// is an error to add the same register to the same set more than once. 487 void addLiveIn(unsigned Reg, unsigned vreg = 0) { 488 LiveIns.push_back(std::make_pair(Reg, vreg)); 489 } 490 491 // Iteration support for the live-ins set. It's kept in sorted order 492 // by register number. 493 typedef std::vector<std::pair<unsigned,unsigned> >::const_iterator 494 livein_iterator; 495 livein_iterator livein_begin() const { return LiveIns.begin(); } 496 livein_iterator livein_end() const { return LiveIns.end(); } 497 bool livein_empty() const { return LiveIns.empty(); } 498 499 bool isLiveIn(unsigned Reg) const; 500 501 /// getLiveInPhysReg - If VReg is a live-in virtual register, return the 502 /// corresponding live-in physical register. 503 unsigned getLiveInPhysReg(unsigned VReg) const; 504 505 /// getLiveInVirtReg - If PReg is a live-in physical register, return the 506 /// corresponding live-in physical register. 507 unsigned getLiveInVirtReg(unsigned PReg) const; 508 509 /// EmitLiveInCopies - Emit copies to initialize livein virtual registers 510 /// into the given entry block. 511 void EmitLiveInCopies(MachineBasicBlock *EntryMBB, 512 const TargetRegisterInfo &TRI, 513 const TargetInstrInfo &TII); 514 515 /// defusechain_iterator - This class provides iterator support for machine 516 /// operands in the function that use or define a specific register. If 517 /// ReturnUses is true it returns uses of registers, if ReturnDefs is true it 518 /// returns defs. If neither are true then you are silly and it always 519 /// returns end(). If SkipDebug is true it skips uses marked Debug 520 /// when incrementing. 521 template<bool ReturnUses, bool ReturnDefs, bool SkipDebug> 522 class defusechain_iterator 523 : public std::iterator<std::forward_iterator_tag, MachineInstr, ptrdiff_t> { 524 MachineOperand *Op; 525 explicit defusechain_iterator(MachineOperand *op) : Op(op) { 526 // If the first node isn't one we're interested in, advance to one that 527 // we are interested in. 528 if (op) { 529 if ((!ReturnUses && op->isUse()) || 530 (!ReturnDefs && op->isDef()) || 531 (SkipDebug && op->isDebug())) 532 ++*this; 533 } 534 } 535 friend class MachineRegisterInfo; 536 public: 537 typedef std::iterator<std::forward_iterator_tag, 538 MachineInstr, ptrdiff_t>::reference reference; 539 typedef std::iterator<std::forward_iterator_tag, 540 MachineInstr, ptrdiff_t>::pointer pointer; 541 542 defusechain_iterator(const defusechain_iterator &I) : Op(I.Op) {} 543 defusechain_iterator() : Op(0) {} 544 545 bool operator==(const defusechain_iterator &x) const { 546 return Op == x.Op; 547 } 548 bool operator!=(const defusechain_iterator &x) const { 549 return !operator==(x); 550 } 551 552 /// atEnd - return true if this iterator is equal to reg_end() on the value. 553 bool atEnd() const { return Op == 0; } 554 555 // Iterator traversal: forward iteration only 556 defusechain_iterator &operator++() { // Preincrement 557 assert(Op && "Cannot increment end iterator!"); 558 Op = getNextOperandForReg(Op); 559 560 // All defs come before the uses, so stop def_iterator early. 561 if (!ReturnUses) { 562 if (Op) { 563 if (Op->isUse()) 564 Op = 0; 565 else 566 assert(!Op->isDebug() && "Can't have debug defs"); 567 } 568 } else { 569 // If this is an operand we don't care about, skip it. 570 while (Op && ((!ReturnDefs && Op->isDef()) || 571 (SkipDebug && Op->isDebug()))) 572 Op = getNextOperandForReg(Op); 573 } 574 575 return *this; 576 } 577 defusechain_iterator operator++(int) { // Postincrement 578 defusechain_iterator tmp = *this; ++*this; return tmp; 579 } 580 581 /// skipInstruction - move forward until reaching a different instruction. 582 /// Return the skipped instruction that is no longer pointed to, or NULL if 583 /// already pointing to end(). 584 MachineInstr *skipInstruction() { 585 if (!Op) return 0; 586 MachineInstr *MI = Op->getParent(); 587 do ++*this; 588 while (Op && Op->getParent() == MI); 589 return MI; 590 } 591 592 MachineInstr *skipBundle() { 593 if (!Op) return 0; 594 MachineInstr *MI = getBundleStart(Op->getParent()); 595 do ++*this; 596 while (Op && getBundleStart(Op->getParent()) == MI); 597 return MI; 598 } 599 600 MachineOperand &getOperand() const { 601 assert(Op && "Cannot dereference end iterator!"); 602 return *Op; 603 } 604 605 /// getOperandNo - Return the operand # of this MachineOperand in its 606 /// MachineInstr. 607 unsigned getOperandNo() const { 608 assert(Op && "Cannot dereference end iterator!"); 609 return Op - &Op->getParent()->getOperand(0); 610 } 611 612 // Retrieve a reference to the current operand. 613 MachineInstr &operator*() const { 614 assert(Op && "Cannot dereference end iterator!"); 615 return *Op->getParent(); 616 } 617 618 MachineInstr *operator->() const { 619 assert(Op && "Cannot dereference end iterator!"); 620 return Op->getParent(); 621 } 622 }; 623 624 }; 625 626 } // End llvm namespace 627 628 #endif 629