Home | History | Annotate | Download | only in CodeGen
      1 //===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the TwoAddress instruction pass which is used
     11 // by most register allocators. Two-Address instructions are rewritten
     12 // from:
     13 //
     14 //     A = B op C
     15 //
     16 // to:
     17 //
     18 //     A = B
     19 //     A op= C
     20 //
     21 // Note that if a register allocator chooses to use this pass, that it
     22 // has to be capable of handling the non-SSA nature of these rewritten
     23 // virtual registers.
     24 //
     25 // It is also worth noting that the duplicate operand of the two
     26 // address instruction is removed.
     27 //
     28 //===----------------------------------------------------------------------===//
     29 
     30 #define DEBUG_TYPE "twoaddrinstr"
     31 #include "llvm/CodeGen/Passes.h"
     32 #include "llvm/ADT/BitVector.h"
     33 #include "llvm/ADT/DenseMap.h"
     34 #include "llvm/ADT/STLExtras.h"
     35 #include "llvm/ADT/SmallSet.h"
     36 #include "llvm/ADT/Statistic.h"
     37 #include "llvm/Analysis/AliasAnalysis.h"
     38 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     39 #include "llvm/CodeGen/LiveVariables.h"
     40 #include "llvm/CodeGen/MachineFunctionPass.h"
     41 #include "llvm/CodeGen/MachineInstr.h"
     42 #include "llvm/CodeGen/MachineInstrBuilder.h"
     43 #include "llvm/CodeGen/MachineRegisterInfo.h"
     44 #include "llvm/IR/Function.h"
     45 #include "llvm/MC/MCInstrItineraries.h"
     46 #include "llvm/Support/CommandLine.h"
     47 #include "llvm/Support/Debug.h"
     48 #include "llvm/Support/ErrorHandling.h"
     49 #include "llvm/Target/TargetInstrInfo.h"
     50 #include "llvm/Target/TargetMachine.h"
     51 #include "llvm/Target/TargetRegisterInfo.h"
     52 using namespace llvm;
     53 
     54 STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
     55 STATISTIC(NumCommuted        , "Number of instructions commuted to coalesce");
     56 STATISTIC(NumAggrCommuted    , "Number of instructions aggressively commuted");
     57 STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
     58 STATISTIC(Num3AddrSunk,        "Number of 3-address instructions sunk");
     59 STATISTIC(NumReSchedUps,       "Number of instructions re-scheduled up");
     60 STATISTIC(NumReSchedDowns,     "Number of instructions re-scheduled down");
     61 
     62 // Temporary flag to disable rescheduling.
     63 static cl::opt<bool>
     64 EnableRescheduling("twoaddr-reschedule",
     65                    cl::desc("Coalesce copies by rescheduling (default=true)"),
     66                    cl::init(true), cl::Hidden);
     67 
     68 namespace {
     69 class TwoAddressInstructionPass : public MachineFunctionPass {
     70   MachineFunction *MF;
     71   const TargetInstrInfo *TII;
     72   const TargetRegisterInfo *TRI;
     73   const InstrItineraryData *InstrItins;
     74   MachineRegisterInfo *MRI;
     75   LiveVariables *LV;
     76   LiveIntervals *LIS;
     77   AliasAnalysis *AA;
     78   CodeGenOpt::Level OptLevel;
     79 
     80   // The current basic block being processed.
     81   MachineBasicBlock *MBB;
     82 
     83   // DistanceMap - Keep track the distance of a MI from the start of the
     84   // current basic block.
     85   DenseMap<MachineInstr*, unsigned> DistanceMap;
     86 
     87   // Set of already processed instructions in the current block.
     88   SmallPtrSet<MachineInstr*, 8> Processed;
     89 
     90   // SrcRegMap - A map from virtual registers to physical registers which are
     91   // likely targets to be coalesced to due to copies from physical registers to
     92   // virtual registers. e.g. v1024 = move r0.
     93   DenseMap<unsigned, unsigned> SrcRegMap;
     94 
     95   // DstRegMap - A map from virtual registers to physical registers which are
     96   // likely targets to be coalesced to due to copies to physical registers from
     97   // virtual registers. e.g. r1 = move v1024.
     98   DenseMap<unsigned, unsigned> DstRegMap;
     99 
    100   bool sink3AddrInstruction(MachineInstr *MI, unsigned Reg,
    101                             MachineBasicBlock::iterator OldPos);
    102 
    103   bool noUseAfterLastDef(unsigned Reg, unsigned Dist, unsigned &LastDef);
    104 
    105   bool isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC,
    106                              MachineInstr *MI, unsigned Dist);
    107 
    108   bool commuteInstruction(MachineBasicBlock::iterator &mi,
    109                           unsigned RegB, unsigned RegC, unsigned Dist);
    110 
    111   bool isProfitableToConv3Addr(unsigned RegA, unsigned RegB);
    112 
    113   bool convertInstTo3Addr(MachineBasicBlock::iterator &mi,
    114                           MachineBasicBlock::iterator &nmi,
    115                           unsigned RegA, unsigned RegB, unsigned Dist);
    116 
    117   bool isDefTooClose(unsigned Reg, unsigned Dist, MachineInstr *MI);
    118 
    119   bool rescheduleMIBelowKill(MachineBasicBlock::iterator &mi,
    120                              MachineBasicBlock::iterator &nmi,
    121                              unsigned Reg);
    122   bool rescheduleKillAboveMI(MachineBasicBlock::iterator &mi,
    123                              MachineBasicBlock::iterator &nmi,
    124                              unsigned Reg);
    125 
    126   bool tryInstructionTransform(MachineBasicBlock::iterator &mi,
    127                                MachineBasicBlock::iterator &nmi,
    128                                unsigned SrcIdx, unsigned DstIdx,
    129                                unsigned Dist, bool shouldOnlyCommute);
    130 
    131   void scanUses(unsigned DstReg);
    132 
    133   void processCopy(MachineInstr *MI);
    134 
    135   typedef SmallVector<std::pair<unsigned, unsigned>, 4> TiedPairList;
    136   typedef SmallDenseMap<unsigned, TiedPairList> TiedOperandMap;
    137   bool collectTiedOperands(MachineInstr *MI, TiedOperandMap&);
    138   void processTiedPairs(MachineInstr *MI, TiedPairList&, unsigned &Dist);
    139   void eliminateRegSequence(MachineBasicBlock::iterator&);
    140 
    141 public:
    142   static char ID; // Pass identification, replacement for typeid
    143   TwoAddressInstructionPass() : MachineFunctionPass(ID) {
    144     initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry());
    145   }
    146 
    147   virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    148     AU.setPreservesCFG();
    149     AU.addRequired<AliasAnalysis>();
    150     AU.addPreserved<LiveVariables>();
    151     AU.addPreserved<SlotIndexes>();
    152     AU.addPreserved<LiveIntervals>();
    153     AU.addPreservedID(MachineLoopInfoID);
    154     AU.addPreservedID(MachineDominatorsID);
    155     MachineFunctionPass::getAnalysisUsage(AU);
    156   }
    157 
    158   /// runOnMachineFunction - Pass entry point.
    159   bool runOnMachineFunction(MachineFunction&);
    160 };
    161 } // end anonymous namespace
    162 
    163 char TwoAddressInstructionPass::ID = 0;
    164 INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, "twoaddressinstruction",
    165                 "Two-Address instruction pass", false, false)
    166 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
    167 INITIALIZE_PASS_END(TwoAddressInstructionPass, "twoaddressinstruction",
    168                 "Two-Address instruction pass", false, false)
    169 
    170 char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID;
    171 
    172 static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg, LiveIntervals *LIS);
    173 
    174 /// sink3AddrInstruction - A two-address instruction has been converted to a
    175 /// three-address instruction to avoid clobbering a register. Try to sink it
    176 /// past the instruction that would kill the above mentioned register to reduce
    177 /// register pressure.
    178 bool TwoAddressInstructionPass::
    179 sink3AddrInstruction(MachineInstr *MI, unsigned SavedReg,
    180                      MachineBasicBlock::iterator OldPos) {
    181   // FIXME: Shouldn't we be trying to do this before we three-addressify the
    182   // instruction?  After this transformation is done, we no longer need
    183   // the instruction to be in three-address form.
    184 
    185   // Check if it's safe to move this instruction.
    186   bool SeenStore = true; // Be conservative.
    187   if (!MI->isSafeToMove(TII, AA, SeenStore))
    188     return false;
    189 
    190   unsigned DefReg = 0;
    191   SmallSet<unsigned, 4> UseRegs;
    192 
    193   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    194     const MachineOperand &MO = MI->getOperand(i);
    195     if (!MO.isReg())
    196       continue;
    197     unsigned MOReg = MO.getReg();
    198     if (!MOReg)
    199       continue;
    200     if (MO.isUse() && MOReg != SavedReg)
    201       UseRegs.insert(MO.getReg());
    202     if (!MO.isDef())
    203       continue;
    204     if (MO.isImplicit())
    205       // Don't try to move it if it implicitly defines a register.
    206       return false;
    207     if (DefReg)
    208       // For now, don't move any instructions that define multiple registers.
    209       return false;
    210     DefReg = MO.getReg();
    211   }
    212 
    213   // Find the instruction that kills SavedReg.
    214   MachineInstr *KillMI = NULL;
    215   if (LIS) {
    216     LiveInterval &LI = LIS->getInterval(SavedReg);
    217     assert(LI.end() != LI.begin() &&
    218            "Reg should not have empty live interval.");
    219 
    220     SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
    221     LiveInterval::const_iterator I = LI.find(MBBEndIdx);
    222     if (I != LI.end() && I->start < MBBEndIdx)
    223       return false;
    224 
    225     --I;
    226     KillMI = LIS->getInstructionFromIndex(I->end);
    227   }
    228   if (!KillMI) {
    229     for (MachineRegisterInfo::use_nodbg_iterator
    230            UI = MRI->use_nodbg_begin(SavedReg),
    231            UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
    232       MachineOperand &UseMO = UI.getOperand();
    233       if (!UseMO.isKill())
    234         continue;
    235       KillMI = UseMO.getParent();
    236       break;
    237     }
    238   }
    239 
    240   // If we find the instruction that kills SavedReg, and it is in an
    241   // appropriate location, we can try to sink the current instruction
    242   // past it.
    243   if (!KillMI || KillMI->getParent() != MBB || KillMI == MI ||
    244       KillMI == OldPos || KillMI->isTerminator())
    245     return false;
    246 
    247   // If any of the definitions are used by another instruction between the
    248   // position and the kill use, then it's not safe to sink it.
    249   //
    250   // FIXME: This can be sped up if there is an easy way to query whether an
    251   // instruction is before or after another instruction. Then we can use
    252   // MachineRegisterInfo def / use instead.
    253   MachineOperand *KillMO = NULL;
    254   MachineBasicBlock::iterator KillPos = KillMI;
    255   ++KillPos;
    256 
    257   unsigned NumVisited = 0;
    258   for (MachineBasicBlock::iterator I = llvm::next(OldPos); I != KillPos; ++I) {
    259     MachineInstr *OtherMI = I;
    260     // DBG_VALUE cannot be counted against the limit.
    261     if (OtherMI->isDebugValue())
    262       continue;
    263     if (NumVisited > 30)  // FIXME: Arbitrary limit to reduce compile time cost.
    264       return false;
    265     ++NumVisited;
    266     for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
    267       MachineOperand &MO = OtherMI->getOperand(i);
    268       if (!MO.isReg())
    269         continue;
    270       unsigned MOReg = MO.getReg();
    271       if (!MOReg)
    272         continue;
    273       if (DefReg == MOReg)
    274         return false;
    275 
    276       if (MO.isKill() || (LIS && isPlainlyKilled(OtherMI, MOReg, LIS))) {
    277         if (OtherMI == KillMI && MOReg == SavedReg)
    278           // Save the operand that kills the register. We want to unset the kill
    279           // marker if we can sink MI past it.
    280           KillMO = &MO;
    281         else if (UseRegs.count(MOReg))
    282           // One of the uses is killed before the destination.
    283           return false;
    284       }
    285     }
    286   }
    287   assert(KillMO && "Didn't find kill");
    288 
    289   if (!LIS) {
    290     // Update kill and LV information.
    291     KillMO->setIsKill(false);
    292     KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
    293     KillMO->setIsKill(true);
    294 
    295     if (LV)
    296       LV->replaceKillInstruction(SavedReg, KillMI, MI);
    297   }
    298 
    299   // Move instruction to its destination.
    300   MBB->remove(MI);
    301   MBB->insert(KillPos, MI);
    302 
    303   if (LIS)
    304     LIS->handleMove(MI);
    305 
    306   ++Num3AddrSunk;
    307   return true;
    308 }
    309 
    310 /// noUseAfterLastDef - Return true if there are no intervening uses between the
    311 /// last instruction in the MBB that defines the specified register and the
    312 /// two-address instruction which is being processed. It also returns the last
    313 /// def location by reference
    314 bool TwoAddressInstructionPass::noUseAfterLastDef(unsigned Reg, unsigned Dist,
    315                                                   unsigned &LastDef) {
    316   LastDef = 0;
    317   unsigned LastUse = Dist;
    318   for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
    319          E = MRI->reg_end(); I != E; ++I) {
    320     MachineOperand &MO = I.getOperand();
    321     MachineInstr *MI = MO.getParent();
    322     if (MI->getParent() != MBB || MI->isDebugValue())
    323       continue;
    324     DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
    325     if (DI == DistanceMap.end())
    326       continue;
    327     if (MO.isUse() && DI->second < LastUse)
    328       LastUse = DI->second;
    329     if (MO.isDef() && DI->second > LastDef)
    330       LastDef = DI->second;
    331   }
    332 
    333   return !(LastUse > LastDef && LastUse < Dist);
    334 }
    335 
    336 /// isCopyToReg - Return true if the specified MI is a copy instruction or
    337 /// a extract_subreg instruction. It also returns the source and destination
    338 /// registers and whether they are physical registers by reference.
    339 static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII,
    340                         unsigned &SrcReg, unsigned &DstReg,
    341                         bool &IsSrcPhys, bool &IsDstPhys) {
    342   SrcReg = 0;
    343   DstReg = 0;
    344   if (MI.isCopy()) {
    345     DstReg = MI.getOperand(0).getReg();
    346     SrcReg = MI.getOperand(1).getReg();
    347   } else if (MI.isInsertSubreg() || MI.isSubregToReg()) {
    348     DstReg = MI.getOperand(0).getReg();
    349     SrcReg = MI.getOperand(2).getReg();
    350   } else
    351     return false;
    352 
    353   IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
    354   IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
    355   return true;
    356 }
    357 
    358 /// isPLainlyKilled - Test if the given register value, which is used by the
    359 // given instruction, is killed by the given instruction.
    360 static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg,
    361                             LiveIntervals *LIS) {
    362   if (LIS && TargetRegisterInfo::isVirtualRegister(Reg) &&
    363       !LIS->isNotInMIMap(MI)) {
    364     // FIXME: Sometimes tryInstructionTransform() will add instructions and
    365     // test whether they can be folded before keeping them. In this case it
    366     // sets a kill before recursively calling tryInstructionTransform() again.
    367     // If there is no interval available, we assume that this instruction is
    368     // one of those. A kill flag is manually inserted on the operand so the
    369     // check below will handle it.
    370     LiveInterval &LI = LIS->getInterval(Reg);
    371     // This is to match the kill flag version where undefs don't have kill
    372     // flags.
    373     if (!LI.hasAtLeastOneValue())
    374       return false;
    375 
    376     SlotIndex useIdx = LIS->getInstructionIndex(MI);
    377     LiveInterval::const_iterator I = LI.find(useIdx);
    378     assert(I != LI.end() && "Reg must be live-in to use.");
    379     return !I->end.isBlock() && SlotIndex::isSameInstr(I->end, useIdx);
    380   }
    381 
    382   return MI->killsRegister(Reg);
    383 }
    384 
    385 /// isKilled - Test if the given register value, which is used by the given
    386 /// instruction, is killed by the given instruction. This looks through
    387 /// coalescable copies to see if the original value is potentially not killed.
    388 ///
    389 /// For example, in this code:
    390 ///
    391 ///   %reg1034 = copy %reg1024
    392 ///   %reg1035 = copy %reg1025<kill>
    393 ///   %reg1036 = add %reg1034<kill>, %reg1035<kill>
    394 ///
    395 /// %reg1034 is not considered to be killed, since it is copied from a
    396 /// register which is not killed. Treating it as not killed lets the
    397 /// normal heuristics commute the (two-address) add, which lets
    398 /// coalescing eliminate the extra copy.
    399 ///
    400 /// If allowFalsePositives is true then likely kills are treated as kills even
    401 /// if it can't be proven that they are kills.
    402 static bool isKilled(MachineInstr &MI, unsigned Reg,
    403                      const MachineRegisterInfo *MRI,
    404                      const TargetInstrInfo *TII,
    405                      LiveIntervals *LIS,
    406                      bool allowFalsePositives) {
    407   MachineInstr *DefMI = &MI;
    408   for (;;) {
    409     // All uses of physical registers are likely to be kills.
    410     if (TargetRegisterInfo::isPhysicalRegister(Reg) &&
    411         (allowFalsePositives || MRI->hasOneUse(Reg)))
    412       return true;
    413     if (!isPlainlyKilled(DefMI, Reg, LIS))
    414       return false;
    415     if (TargetRegisterInfo::isPhysicalRegister(Reg))
    416       return true;
    417     MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg);
    418     // If there are multiple defs, we can't do a simple analysis, so just
    419     // go with what the kill flag says.
    420     if (llvm::next(Begin) != MRI->def_end())
    421       return true;
    422     DefMI = &*Begin;
    423     bool IsSrcPhys, IsDstPhys;
    424     unsigned SrcReg,  DstReg;
    425     // If the def is something other than a copy, then it isn't going to
    426     // be coalesced, so follow the kill flag.
    427     if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
    428       return true;
    429     Reg = SrcReg;
    430   }
    431 }
    432 
    433 /// isTwoAddrUse - Return true if the specified MI uses the specified register
    434 /// as a two-address use. If so, return the destination register by reference.
    435 static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) {
    436   for (unsigned i = 0, NumOps = MI.getNumOperands(); i != NumOps; ++i) {
    437     const MachineOperand &MO = MI.getOperand(i);
    438     if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
    439       continue;
    440     unsigned ti;
    441     if (MI.isRegTiedToDefOperand(i, &ti)) {
    442       DstReg = MI.getOperand(ti).getReg();
    443       return true;
    444     }
    445   }
    446   return false;
    447 }
    448 
    449 /// findOnlyInterestingUse - Given a register, if has a single in-basic block
    450 /// use, return the use instruction if it's a copy or a two-address use.
    451 static
    452 MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB,
    453                                      MachineRegisterInfo *MRI,
    454                                      const TargetInstrInfo *TII,
    455                                      bool &IsCopy,
    456                                      unsigned &DstReg, bool &IsDstPhys) {
    457   if (!MRI->hasOneNonDBGUse(Reg))
    458     // None or more than one use.
    459     return 0;
    460   MachineInstr &UseMI = *MRI->use_nodbg_begin(Reg);
    461   if (UseMI.getParent() != MBB)
    462     return 0;
    463   unsigned SrcReg;
    464   bool IsSrcPhys;
    465   if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
    466     IsCopy = true;
    467     return &UseMI;
    468   }
    469   IsDstPhys = false;
    470   if (isTwoAddrUse(UseMI, Reg, DstReg)) {
    471     IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
    472     return &UseMI;
    473   }
    474   return 0;
    475 }
    476 
    477 /// getMappedReg - Return the physical register the specified virtual register
    478 /// might be mapped to.
    479 static unsigned
    480 getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) {
    481   while (TargetRegisterInfo::isVirtualRegister(Reg))  {
    482     DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg);
    483     if (SI == RegMap.end())
    484       return 0;
    485     Reg = SI->second;
    486   }
    487   if (TargetRegisterInfo::isPhysicalRegister(Reg))
    488     return Reg;
    489   return 0;
    490 }
    491 
    492 /// regsAreCompatible - Return true if the two registers are equal or aliased.
    493 ///
    494 static bool
    495 regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) {
    496   if (RegA == RegB)
    497     return true;
    498   if (!RegA || !RegB)
    499     return false;
    500   return TRI->regsOverlap(RegA, RegB);
    501 }
    502 
    503 
    504 /// isProfitableToCommute - Return true if it's potentially profitable to commute
    505 /// the two-address instruction that's being processed.
    506 bool
    507 TwoAddressInstructionPass::
    508 isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC,
    509                       MachineInstr *MI, unsigned Dist) {
    510   if (OptLevel == CodeGenOpt::None)
    511     return false;
    512 
    513   // Determine if it's profitable to commute this two address instruction. In
    514   // general, we want no uses between this instruction and the definition of
    515   // the two-address register.
    516   // e.g.
    517   // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
    518   // %reg1029<def> = MOV8rr %reg1028
    519   // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
    520   // insert => %reg1030<def> = MOV8rr %reg1028
    521   // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
    522   // In this case, it might not be possible to coalesce the second MOV8rr
    523   // instruction if the first one is coalesced. So it would be profitable to
    524   // commute it:
    525   // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
    526   // %reg1029<def> = MOV8rr %reg1028
    527   // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
    528   // insert => %reg1030<def> = MOV8rr %reg1029
    529   // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead>
    530 
    531   if (!isPlainlyKilled(MI, regC, LIS))
    532     return false;
    533 
    534   // Ok, we have something like:
    535   // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
    536   // let's see if it's worth commuting it.
    537 
    538   // Look for situations like this:
    539   // %reg1024<def> = MOV r1
    540   // %reg1025<def> = MOV r0
    541   // %reg1026<def> = ADD %reg1024, %reg1025
    542   // r0            = MOV %reg1026
    543   // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
    544   unsigned ToRegA = getMappedReg(regA, DstRegMap);
    545   if (ToRegA) {
    546     unsigned FromRegB = getMappedReg(regB, SrcRegMap);
    547     unsigned FromRegC = getMappedReg(regC, SrcRegMap);
    548     bool BComp = !FromRegB || regsAreCompatible(FromRegB, ToRegA, TRI);
    549     bool CComp = !FromRegC || regsAreCompatible(FromRegC, ToRegA, TRI);
    550     if (BComp != CComp)
    551       return !BComp && CComp;
    552   }
    553 
    554   // If there is a use of regC between its last def (could be livein) and this
    555   // instruction, then bail.
    556   unsigned LastDefC = 0;
    557   if (!noUseAfterLastDef(regC, Dist, LastDefC))
    558     return false;
    559 
    560   // If there is a use of regB between its last def (could be livein) and this
    561   // instruction, then go ahead and make this transformation.
    562   unsigned LastDefB = 0;
    563   if (!noUseAfterLastDef(regB, Dist, LastDefB))
    564     return true;
    565 
    566   // Since there are no intervening uses for both registers, then commute
    567   // if the def of regC is closer. Its live interval is shorter.
    568   return LastDefB && LastDefC && LastDefC > LastDefB;
    569 }
    570 
    571 /// commuteInstruction - Commute a two-address instruction and update the basic
    572 /// block, distance map, and live variables if needed. Return true if it is
    573 /// successful.
    574 bool TwoAddressInstructionPass::
    575 commuteInstruction(MachineBasicBlock::iterator &mi,
    576                    unsigned RegB, unsigned RegC, unsigned Dist) {
    577   MachineInstr *MI = mi;
    578   DEBUG(dbgs() << "2addr: COMMUTING  : " << *MI);
    579   MachineInstr *NewMI = TII->commuteInstruction(MI);
    580 
    581   if (NewMI == 0) {
    582     DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n");
    583     return false;
    584   }
    585 
    586   DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI);
    587   assert(NewMI == MI &&
    588          "TargetInstrInfo::commuteInstruction() should not return a new "
    589          "instruction unless it was requested.");
    590 
    591   // Update source register map.
    592   unsigned FromRegC = getMappedReg(RegC, SrcRegMap);
    593   if (FromRegC) {
    594     unsigned RegA = MI->getOperand(0).getReg();
    595     SrcRegMap[RegA] = FromRegC;
    596   }
    597 
    598   return true;
    599 }
    600 
    601 /// isProfitableToConv3Addr - Return true if it is profitable to convert the
    602 /// given 2-address instruction to a 3-address one.
    603 bool
    604 TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA,unsigned RegB){
    605   // Look for situations like this:
    606   // %reg1024<def> = MOV r1
    607   // %reg1025<def> = MOV r0
    608   // %reg1026<def> = ADD %reg1024, %reg1025
    609   // r2            = MOV %reg1026
    610   // Turn ADD into a 3-address instruction to avoid a copy.
    611   unsigned FromRegB = getMappedReg(RegB, SrcRegMap);
    612   if (!FromRegB)
    613     return false;
    614   unsigned ToRegA = getMappedReg(RegA, DstRegMap);
    615   return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI));
    616 }
    617 
    618 /// convertInstTo3Addr - Convert the specified two-address instruction into a
    619 /// three address one. Return true if this transformation was successful.
    620 bool
    621 TwoAddressInstructionPass::convertInstTo3Addr(MachineBasicBlock::iterator &mi,
    622                                               MachineBasicBlock::iterator &nmi,
    623                                               unsigned RegA, unsigned RegB,
    624                                               unsigned Dist) {
    625   // FIXME: Why does convertToThreeAddress() need an iterator reference?
    626   MachineFunction::iterator MFI = MBB;
    627   MachineInstr *NewMI = TII->convertToThreeAddress(MFI, mi, LV);
    628   assert(MBB == MFI && "convertToThreeAddress changed iterator reference");
    629   if (!NewMI)
    630     return false;
    631 
    632   DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi);
    633   DEBUG(dbgs() << "2addr:         TO 3-ADDR: " << *NewMI);
    634   bool Sunk = false;
    635 
    636   if (LIS)
    637     LIS->ReplaceMachineInstrInMaps(mi, NewMI);
    638 
    639   if (NewMI->findRegisterUseOperand(RegB, false, TRI))
    640     // FIXME: Temporary workaround. If the new instruction doesn't
    641     // uses RegB, convertToThreeAddress must have created more
    642     // then one instruction.
    643     Sunk = sink3AddrInstruction(NewMI, RegB, mi);
    644 
    645   MBB->erase(mi); // Nuke the old inst.
    646 
    647   if (!Sunk) {
    648     DistanceMap.insert(std::make_pair(NewMI, Dist));
    649     mi = NewMI;
    650     nmi = llvm::next(mi);
    651   }
    652 
    653   // Update source and destination register maps.
    654   SrcRegMap.erase(RegA);
    655   DstRegMap.erase(RegB);
    656   return true;
    657 }
    658 
    659 /// scanUses - Scan forward recursively for only uses, update maps if the use
    660 /// is a copy or a two-address instruction.
    661 void
    662 TwoAddressInstructionPass::scanUses(unsigned DstReg) {
    663   SmallVector<unsigned, 4> VirtRegPairs;
    664   bool IsDstPhys;
    665   bool IsCopy = false;
    666   unsigned NewReg = 0;
    667   unsigned Reg = DstReg;
    668   while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy,
    669                                                       NewReg, IsDstPhys)) {
    670     if (IsCopy && !Processed.insert(UseMI))
    671       break;
    672 
    673     DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
    674     if (DI != DistanceMap.end())
    675       // Earlier in the same MBB.Reached via a back edge.
    676       break;
    677 
    678     if (IsDstPhys) {
    679       VirtRegPairs.push_back(NewReg);
    680       break;
    681     }
    682     bool isNew = SrcRegMap.insert(std::make_pair(NewReg, Reg)).second;
    683     if (!isNew)
    684       assert(SrcRegMap[NewReg] == Reg && "Can't map to two src registers!");
    685     VirtRegPairs.push_back(NewReg);
    686     Reg = NewReg;
    687   }
    688 
    689   if (!VirtRegPairs.empty()) {
    690     unsigned ToReg = VirtRegPairs.back();
    691     VirtRegPairs.pop_back();
    692     while (!VirtRegPairs.empty()) {
    693       unsigned FromReg = VirtRegPairs.back();
    694       VirtRegPairs.pop_back();
    695       bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
    696       if (!isNew)
    697         assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!");
    698       ToReg = FromReg;
    699     }
    700     bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second;
    701     if (!isNew)
    702       assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!");
    703   }
    704 }
    705 
    706 /// processCopy - If the specified instruction is not yet processed, process it
    707 /// if it's a copy. For a copy instruction, we find the physical registers the
    708 /// source and destination registers might be mapped to. These are kept in
    709 /// point-to maps used to determine future optimizations. e.g.
    710 /// v1024 = mov r0
    711 /// v1025 = mov r1
    712 /// v1026 = add v1024, v1025
    713 /// r1    = mov r1026
    714 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially
    715 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
    716 /// potentially joined with r1 on the output side. It's worthwhile to commute
    717 /// 'add' to eliminate a copy.
    718 void TwoAddressInstructionPass::processCopy(MachineInstr *MI) {
    719   if (Processed.count(MI))
    720     return;
    721 
    722   bool IsSrcPhys, IsDstPhys;
    723   unsigned SrcReg, DstReg;
    724   if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
    725     return;
    726 
    727   if (IsDstPhys && !IsSrcPhys)
    728     DstRegMap.insert(std::make_pair(SrcReg, DstReg));
    729   else if (!IsDstPhys && IsSrcPhys) {
    730     bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
    731     if (!isNew)
    732       assert(SrcRegMap[DstReg] == SrcReg &&
    733              "Can't map to two src physical registers!");
    734 
    735     scanUses(DstReg);
    736   }
    737 
    738   Processed.insert(MI);
    739   return;
    740 }
    741 
    742 /// rescheduleMIBelowKill - If there is one more local instruction that reads
    743 /// 'Reg' and it kills 'Reg, consider moving the instruction below the kill
    744 /// instruction in order to eliminate the need for the copy.
    745 bool TwoAddressInstructionPass::
    746 rescheduleMIBelowKill(MachineBasicBlock::iterator &mi,
    747                       MachineBasicBlock::iterator &nmi,
    748                       unsigned Reg) {
    749   // Bail immediately if we don't have LV or LIS available. We use them to find
    750   // kills efficiently.
    751   if (!LV && !LIS)
    752     return false;
    753 
    754   MachineInstr *MI = &*mi;
    755   DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
    756   if (DI == DistanceMap.end())
    757     // Must be created from unfolded load. Don't waste time trying this.
    758     return false;
    759 
    760   MachineInstr *KillMI = 0;
    761   if (LIS) {
    762     LiveInterval &LI = LIS->getInterval(Reg);
    763     assert(LI.end() != LI.begin() &&
    764            "Reg should not have empty live interval.");
    765 
    766     SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
    767     LiveInterval::const_iterator I = LI.find(MBBEndIdx);
    768     if (I != LI.end() && I->start < MBBEndIdx)
    769       return false;
    770 
    771     --I;
    772     KillMI = LIS->getInstructionFromIndex(I->end);
    773   } else {
    774     KillMI = LV->getVarInfo(Reg).findKill(MBB);
    775   }
    776   if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike())
    777     // Don't mess with copies, they may be coalesced later.
    778     return false;
    779 
    780   if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() ||
    781       KillMI->isBranch() || KillMI->isTerminator())
    782     // Don't move pass calls, etc.
    783     return false;
    784 
    785   unsigned DstReg;
    786   if (isTwoAddrUse(*KillMI, Reg, DstReg))
    787     return false;
    788 
    789   bool SeenStore = true;
    790   if (!MI->isSafeToMove(TII, AA, SeenStore))
    791     return false;
    792 
    793   if (TII->getInstrLatency(InstrItins, MI) > 1)
    794     // FIXME: Needs more sophisticated heuristics.
    795     return false;
    796 
    797   SmallSet<unsigned, 2> Uses;
    798   SmallSet<unsigned, 2> Kills;
    799   SmallSet<unsigned, 2> Defs;
    800   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    801     const MachineOperand &MO = MI->getOperand(i);
    802     if (!MO.isReg())
    803       continue;
    804     unsigned MOReg = MO.getReg();
    805     if (!MOReg)
    806       continue;
    807     if (MO.isDef())
    808       Defs.insert(MOReg);
    809     else {
    810       Uses.insert(MOReg);
    811       if (MOReg != Reg && (MO.isKill() ||
    812                            (LIS && isPlainlyKilled(MI, MOReg, LIS))))
    813         Kills.insert(MOReg);
    814     }
    815   }
    816 
    817   // Move the copies connected to MI down as well.
    818   MachineBasicBlock::iterator Begin = MI;
    819   MachineBasicBlock::iterator AfterMI = llvm::next(Begin);
    820 
    821   MachineBasicBlock::iterator End = AfterMI;
    822   while (End->isCopy() && Defs.count(End->getOperand(1).getReg())) {
    823     Defs.insert(End->getOperand(0).getReg());
    824     ++End;
    825   }
    826 
    827   // Check if the reschedule will not break depedencies.
    828   unsigned NumVisited = 0;
    829   MachineBasicBlock::iterator KillPos = KillMI;
    830   ++KillPos;
    831   for (MachineBasicBlock::iterator I = End; I != KillPos; ++I) {
    832     MachineInstr *OtherMI = I;
    833     // DBG_VALUE cannot be counted against the limit.
    834     if (OtherMI->isDebugValue())
    835       continue;
    836     if (NumVisited > 10)  // FIXME: Arbitrary limit to reduce compile time cost.
    837       return false;
    838     ++NumVisited;
    839     if (OtherMI->hasUnmodeledSideEffects() || OtherMI->isCall() ||
    840         OtherMI->isBranch() || OtherMI->isTerminator())
    841       // Don't move pass calls, etc.
    842       return false;
    843     for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
    844       const MachineOperand &MO = OtherMI->getOperand(i);
    845       if (!MO.isReg())
    846         continue;
    847       unsigned MOReg = MO.getReg();
    848       if (!MOReg)
    849         continue;
    850       if (MO.isDef()) {
    851         if (Uses.count(MOReg))
    852           // Physical register use would be clobbered.
    853           return false;
    854         if (!MO.isDead() && Defs.count(MOReg))
    855           // May clobber a physical register def.
    856           // FIXME: This may be too conservative. It's ok if the instruction
    857           // is sunken completely below the use.
    858           return false;
    859       } else {
    860         if (Defs.count(MOReg))
    861           return false;
    862         bool isKill = MO.isKill() ||
    863                       (LIS && isPlainlyKilled(OtherMI, MOReg, LIS));
    864         if (MOReg != Reg &&
    865             ((isKill && Uses.count(MOReg)) || Kills.count(MOReg)))
    866           // Don't want to extend other live ranges and update kills.
    867           return false;
    868         if (MOReg == Reg && !isKill)
    869           // We can't schedule across a use of the register in question.
    870           return false;
    871         // Ensure that if this is register in question, its the kill we expect.
    872         assert((MOReg != Reg || OtherMI == KillMI) &&
    873                "Found multiple kills of a register in a basic block");
    874       }
    875     }
    876   }
    877 
    878   // Move debug info as well.
    879   while (Begin != MBB->begin() && llvm::prior(Begin)->isDebugValue())
    880     --Begin;
    881 
    882   nmi = End;
    883   MachineBasicBlock::iterator InsertPos = KillPos;
    884   if (LIS) {
    885     // We have to move the copies first so that the MBB is still well-formed
    886     // when calling handleMove().
    887     for (MachineBasicBlock::iterator MBBI = AfterMI; MBBI != End;) {
    888       MachineInstr *CopyMI = MBBI;
    889       ++MBBI;
    890       MBB->splice(InsertPos, MBB, CopyMI);
    891       LIS->handleMove(CopyMI);
    892       InsertPos = CopyMI;
    893     }
    894     End = llvm::next(MachineBasicBlock::iterator(MI));
    895   }
    896 
    897   // Copies following MI may have been moved as well.
    898   MBB->splice(InsertPos, MBB, Begin, End);
    899   DistanceMap.erase(DI);
    900 
    901   // Update live variables
    902   if (LIS) {
    903     LIS->handleMove(MI);
    904   } else {
    905     LV->removeVirtualRegisterKilled(Reg, KillMI);
    906     LV->addVirtualRegisterKilled(Reg, MI);
    907   }
    908 
    909   DEBUG(dbgs() << "\trescheduled below kill: " << *KillMI);
    910   return true;
    911 }
    912 
    913 /// isDefTooClose - Return true if the re-scheduling will put the given
    914 /// instruction too close to the defs of its register dependencies.
    915 bool TwoAddressInstructionPass::isDefTooClose(unsigned Reg, unsigned Dist,
    916                                               MachineInstr *MI) {
    917   for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(Reg),
    918          DE = MRI->def_end(); DI != DE; ++DI) {
    919     MachineInstr *DefMI = &*DI;
    920     if (DefMI->getParent() != MBB || DefMI->isCopy() || DefMI->isCopyLike())
    921       continue;
    922     if (DefMI == MI)
    923       return true; // MI is defining something KillMI uses
    924     DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(DefMI);
    925     if (DDI == DistanceMap.end())
    926       return true;  // Below MI
    927     unsigned DefDist = DDI->second;
    928     assert(Dist > DefDist && "Visited def already?");
    929     if (TII->getInstrLatency(InstrItins, DefMI) > (Dist - DefDist))
    930       return true;
    931   }
    932   return false;
    933 }
    934 
    935 /// rescheduleKillAboveMI - If there is one more local instruction that reads
    936 /// 'Reg' and it kills 'Reg, consider moving the kill instruction above the
    937 /// current two-address instruction in order to eliminate the need for the
    938 /// copy.
    939 bool TwoAddressInstructionPass::
    940 rescheduleKillAboveMI(MachineBasicBlock::iterator &mi,
    941                       MachineBasicBlock::iterator &nmi,
    942                       unsigned Reg) {
    943   // Bail immediately if we don't have LV or LIS available. We use them to find
    944   // kills efficiently.
    945   if (!LV && !LIS)
    946     return false;
    947 
    948   MachineInstr *MI = &*mi;
    949   DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
    950   if (DI == DistanceMap.end())
    951     // Must be created from unfolded load. Don't waste time trying this.
    952     return false;
    953 
    954   MachineInstr *KillMI = 0;
    955   if (LIS) {
    956     LiveInterval &LI = LIS->getInterval(Reg);
    957     assert(LI.end() != LI.begin() &&
    958            "Reg should not have empty live interval.");
    959 
    960     SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
    961     LiveInterval::const_iterator I = LI.find(MBBEndIdx);
    962     if (I != LI.end() && I->start < MBBEndIdx)
    963       return false;
    964 
    965     --I;
    966     KillMI = LIS->getInstructionFromIndex(I->end);
    967   } else {
    968     KillMI = LV->getVarInfo(Reg).findKill(MBB);
    969   }
    970   if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike())
    971     // Don't mess with copies, they may be coalesced later.
    972     return false;
    973 
    974   unsigned DstReg;
    975   if (isTwoAddrUse(*KillMI, Reg, DstReg))
    976     return false;
    977 
    978   bool SeenStore = true;
    979   if (!KillMI->isSafeToMove(TII, AA, SeenStore))
    980     return false;
    981 
    982   SmallSet<unsigned, 2> Uses;
    983   SmallSet<unsigned, 2> Kills;
    984   SmallSet<unsigned, 2> Defs;
    985   SmallSet<unsigned, 2> LiveDefs;
    986   for (unsigned i = 0, e = KillMI->getNumOperands(); i != e; ++i) {
    987     const MachineOperand &MO = KillMI->getOperand(i);
    988     if (!MO.isReg())
    989       continue;
    990     unsigned MOReg = MO.getReg();
    991     if (MO.isUse()) {
    992       if (!MOReg)
    993         continue;
    994       if (isDefTooClose(MOReg, DI->second, MI))
    995         return false;
    996       bool isKill = MO.isKill() || (LIS && isPlainlyKilled(KillMI, MOReg, LIS));
    997       if (MOReg == Reg && !isKill)
    998         return false;
    999       Uses.insert(MOReg);
   1000       if (isKill && MOReg != Reg)
   1001         Kills.insert(MOReg);
   1002     } else if (TargetRegisterInfo::isPhysicalRegister(MOReg)) {
   1003       Defs.insert(MOReg);
   1004       if (!MO.isDead())
   1005         LiveDefs.insert(MOReg);
   1006     }
   1007   }
   1008 
   1009   // Check if the reschedule will not break depedencies.
   1010   unsigned NumVisited = 0;
   1011   MachineBasicBlock::iterator KillPos = KillMI;
   1012   for (MachineBasicBlock::iterator I = mi; I != KillPos; ++I) {
   1013     MachineInstr *OtherMI = I;
   1014     // DBG_VALUE cannot be counted against the limit.
   1015     if (OtherMI->isDebugValue())
   1016       continue;
   1017     if (NumVisited > 10)  // FIXME: Arbitrary limit to reduce compile time cost.
   1018       return false;
   1019     ++NumVisited;
   1020     if (OtherMI->hasUnmodeledSideEffects() || OtherMI->isCall() ||
   1021         OtherMI->isBranch() || OtherMI->isTerminator())
   1022       // Don't move pass calls, etc.
   1023       return false;
   1024     SmallVector<unsigned, 2> OtherDefs;
   1025     for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
   1026       const MachineOperand &MO = OtherMI->getOperand(i);
   1027       if (!MO.isReg())
   1028         continue;
   1029       unsigned MOReg = MO.getReg();
   1030       if (!MOReg)
   1031         continue;
   1032       if (MO.isUse()) {
   1033         if (Defs.count(MOReg))
   1034           // Moving KillMI can clobber the physical register if the def has
   1035           // not been seen.
   1036           return false;
   1037         if (Kills.count(MOReg))
   1038           // Don't want to extend other live ranges and update kills.
   1039           return false;
   1040         if (OtherMI != MI && MOReg == Reg &&
   1041             !(MO.isKill() || (LIS && isPlainlyKilled(OtherMI, MOReg, LIS))))
   1042           // We can't schedule across a use of the register in question.
   1043           return false;
   1044       } else {
   1045         OtherDefs.push_back(MOReg);
   1046       }
   1047     }
   1048 
   1049     for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) {
   1050       unsigned MOReg = OtherDefs[i];
   1051       if (Uses.count(MOReg))
   1052         return false;
   1053       if (TargetRegisterInfo::isPhysicalRegister(MOReg) &&
   1054           LiveDefs.count(MOReg))
   1055         return false;
   1056       // Physical register def is seen.
   1057       Defs.erase(MOReg);
   1058     }
   1059   }
   1060 
   1061   // Move the old kill above MI, don't forget to move debug info as well.
   1062   MachineBasicBlock::iterator InsertPos = mi;
   1063   while (InsertPos != MBB->begin() && llvm::prior(InsertPos)->isDebugValue())
   1064     --InsertPos;
   1065   MachineBasicBlock::iterator From = KillMI;
   1066   MachineBasicBlock::iterator To = llvm::next(From);
   1067   while (llvm::prior(From)->isDebugValue())
   1068     --From;
   1069   MBB->splice(InsertPos, MBB, From, To);
   1070 
   1071   nmi = llvm::prior(InsertPos); // Backtrack so we process the moved instr.
   1072   DistanceMap.erase(DI);
   1073 
   1074   // Update live variables
   1075   if (LIS) {
   1076     LIS->handleMove(KillMI);
   1077   } else {
   1078     LV->removeVirtualRegisterKilled(Reg, KillMI);
   1079     LV->addVirtualRegisterKilled(Reg, MI);
   1080   }
   1081 
   1082   DEBUG(dbgs() << "\trescheduled kill: " << *KillMI);
   1083   return true;
   1084 }
   1085 
   1086 /// tryInstructionTransform - For the case where an instruction has a single
   1087 /// pair of tied register operands, attempt some transformations that may
   1088 /// either eliminate the tied operands or improve the opportunities for
   1089 /// coalescing away the register copy.  Returns true if no copy needs to be
   1090 /// inserted to untie mi's operands (either because they were untied, or
   1091 /// because mi was rescheduled, and will be visited again later). If the
   1092 /// shouldOnlyCommute flag is true, only instruction commutation is attempted.
   1093 bool TwoAddressInstructionPass::
   1094 tryInstructionTransform(MachineBasicBlock::iterator &mi,
   1095                         MachineBasicBlock::iterator &nmi,
   1096                         unsigned SrcIdx, unsigned DstIdx,
   1097                         unsigned Dist, bool shouldOnlyCommute) {
   1098   if (OptLevel == CodeGenOpt::None)
   1099     return false;
   1100 
   1101   MachineInstr &MI = *mi;
   1102   unsigned regA = MI.getOperand(DstIdx).getReg();
   1103   unsigned regB = MI.getOperand(SrcIdx).getReg();
   1104 
   1105   assert(TargetRegisterInfo::isVirtualRegister(regB) &&
   1106          "cannot make instruction into two-address form");
   1107   bool regBKilled = isKilled(MI, regB, MRI, TII, LIS, true);
   1108 
   1109   if (TargetRegisterInfo::isVirtualRegister(regA))
   1110     scanUses(regA);
   1111 
   1112   // Check if it is profitable to commute the operands.
   1113   unsigned SrcOp1, SrcOp2;
   1114   unsigned regC = 0;
   1115   unsigned regCIdx = ~0U;
   1116   bool TryCommute = false;
   1117   bool AggressiveCommute = false;
   1118   if (MI.isCommutable() && MI.getNumOperands() >= 3 &&
   1119       TII->findCommutedOpIndices(&MI, SrcOp1, SrcOp2)) {
   1120     if (SrcIdx == SrcOp1)
   1121       regCIdx = SrcOp2;
   1122     else if (SrcIdx == SrcOp2)
   1123       regCIdx = SrcOp1;
   1124 
   1125     if (regCIdx != ~0U) {
   1126       regC = MI.getOperand(regCIdx).getReg();
   1127       if (!regBKilled && isKilled(MI, regC, MRI, TII, LIS, false))
   1128         // If C dies but B does not, swap the B and C operands.
   1129         // This makes the live ranges of A and C joinable.
   1130         TryCommute = true;
   1131       else if (isProfitableToCommute(regA, regB, regC, &MI, Dist)) {
   1132         TryCommute = true;
   1133         AggressiveCommute = true;
   1134       }
   1135     }
   1136   }
   1137 
   1138   // If it's profitable to commute, try to do so.
   1139   if (TryCommute && commuteInstruction(mi, regB, regC, Dist)) {
   1140     ++NumCommuted;
   1141     if (AggressiveCommute)
   1142       ++NumAggrCommuted;
   1143     return false;
   1144   }
   1145 
   1146   if (shouldOnlyCommute)
   1147     return false;
   1148 
   1149   // If there is one more use of regB later in the same MBB, consider
   1150   // re-schedule this MI below it.
   1151   if (EnableRescheduling && rescheduleMIBelowKill(mi, nmi, regB)) {
   1152     ++NumReSchedDowns;
   1153     return true;
   1154   }
   1155 
   1156   if (MI.isConvertibleTo3Addr()) {
   1157     // This instruction is potentially convertible to a true
   1158     // three-address instruction.  Check if it is profitable.
   1159     if (!regBKilled || isProfitableToConv3Addr(regA, regB)) {
   1160       // Try to convert it.
   1161       if (convertInstTo3Addr(mi, nmi, regA, regB, Dist)) {
   1162         ++NumConvertedTo3Addr;
   1163         return true; // Done with this instruction.
   1164       }
   1165     }
   1166   }
   1167 
   1168   // If there is one more use of regB later in the same MBB, consider
   1169   // re-schedule it before this MI if it's legal.
   1170   if (EnableRescheduling && rescheduleKillAboveMI(mi, nmi, regB)) {
   1171     ++NumReSchedUps;
   1172     return true;
   1173   }
   1174 
   1175   // If this is an instruction with a load folded into it, try unfolding
   1176   // the load, e.g. avoid this:
   1177   //   movq %rdx, %rcx
   1178   //   addq (%rax), %rcx
   1179   // in favor of this:
   1180   //   movq (%rax), %rcx
   1181   //   addq %rdx, %rcx
   1182   // because it's preferable to schedule a load than a register copy.
   1183   if (MI.mayLoad() && !regBKilled) {
   1184     // Determine if a load can be unfolded.
   1185     unsigned LoadRegIndex;
   1186     unsigned NewOpc =
   1187       TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
   1188                                       /*UnfoldLoad=*/true,
   1189                                       /*UnfoldStore=*/false,
   1190                                       &LoadRegIndex);
   1191     if (NewOpc != 0) {
   1192       const MCInstrDesc &UnfoldMCID = TII->get(NewOpc);
   1193       if (UnfoldMCID.getNumDefs() == 1) {
   1194         // Unfold the load.
   1195         DEBUG(dbgs() << "2addr:   UNFOLDING: " << MI);
   1196         const TargetRegisterClass *RC =
   1197           TRI->getAllocatableClass(
   1198             TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI, *MF));
   1199         unsigned Reg = MRI->createVirtualRegister(RC);
   1200         SmallVector<MachineInstr *, 2> NewMIs;
   1201         if (!TII->unfoldMemoryOperand(*MF, &MI, Reg,
   1202                                       /*UnfoldLoad=*/true,/*UnfoldStore=*/false,
   1203                                       NewMIs)) {
   1204           DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
   1205           return false;
   1206         }
   1207         assert(NewMIs.size() == 2 &&
   1208                "Unfolded a load into multiple instructions!");
   1209         // The load was previously folded, so this is the only use.
   1210         NewMIs[1]->addRegisterKilled(Reg, TRI);
   1211 
   1212         // Tentatively insert the instructions into the block so that they
   1213         // look "normal" to the transformation logic.
   1214         MBB->insert(mi, NewMIs[0]);
   1215         MBB->insert(mi, NewMIs[1]);
   1216 
   1217         DEBUG(dbgs() << "2addr:    NEW LOAD: " << *NewMIs[0]
   1218                      << "2addr:    NEW INST: " << *NewMIs[1]);
   1219 
   1220         // Transform the instruction, now that it no longer has a load.
   1221         unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA);
   1222         unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB);
   1223         MachineBasicBlock::iterator NewMI = NewMIs[1];
   1224         bool TransformResult =
   1225           tryInstructionTransform(NewMI, mi, NewSrcIdx, NewDstIdx, Dist, true);
   1226         (void)TransformResult;
   1227         assert(!TransformResult &&
   1228                "tryInstructionTransform() should return false.");
   1229         if (NewMIs[1]->getOperand(NewSrcIdx).isKill()) {
   1230           // Success, or at least we made an improvement. Keep the unfolded
   1231           // instructions and discard the original.
   1232           if (LV) {
   1233             for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
   1234               MachineOperand &MO = MI.getOperand(i);
   1235               if (MO.isReg() &&
   1236                   TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
   1237                 if (MO.isUse()) {
   1238                   if (MO.isKill()) {
   1239                     if (NewMIs[0]->killsRegister(MO.getReg()))
   1240                       LV->replaceKillInstruction(MO.getReg(), &MI, NewMIs[0]);
   1241                     else {
   1242                       assert(NewMIs[1]->killsRegister(MO.getReg()) &&
   1243                              "Kill missing after load unfold!");
   1244                       LV->replaceKillInstruction(MO.getReg(), &MI, NewMIs[1]);
   1245                     }
   1246                   }
   1247                 } else if (LV->removeVirtualRegisterDead(MO.getReg(), &MI)) {
   1248                   if (NewMIs[1]->registerDefIsDead(MO.getReg()))
   1249                     LV->addVirtualRegisterDead(MO.getReg(), NewMIs[1]);
   1250                   else {
   1251                     assert(NewMIs[0]->registerDefIsDead(MO.getReg()) &&
   1252                            "Dead flag missing after load unfold!");
   1253                     LV->addVirtualRegisterDead(MO.getReg(), NewMIs[0]);
   1254                   }
   1255                 }
   1256               }
   1257             }
   1258             LV->addVirtualRegisterKilled(Reg, NewMIs[1]);
   1259           }
   1260 
   1261           SmallVector<unsigned, 4> OrigRegs;
   1262           if (LIS) {
   1263             for (MachineInstr::const_mop_iterator MOI = MI.operands_begin(),
   1264                  MOE = MI.operands_end(); MOI != MOE; ++MOI) {
   1265               if (MOI->isReg())
   1266                 OrigRegs.push_back(MOI->getReg());
   1267             }
   1268           }
   1269 
   1270           MI.eraseFromParent();
   1271 
   1272           // Update LiveIntervals.
   1273           if (LIS) {
   1274             MachineBasicBlock::iterator Begin(NewMIs[0]);
   1275             MachineBasicBlock::iterator End(NewMIs[1]);
   1276             LIS->repairIntervalsInRange(MBB, Begin, End, OrigRegs);
   1277           }
   1278 
   1279           mi = NewMIs[1];
   1280         } else {
   1281           // Transforming didn't eliminate the tie and didn't lead to an
   1282           // improvement. Clean up the unfolded instructions and keep the
   1283           // original.
   1284           DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
   1285           NewMIs[0]->eraseFromParent();
   1286           NewMIs[1]->eraseFromParent();
   1287         }
   1288       }
   1289     }
   1290   }
   1291 
   1292   return false;
   1293 }
   1294 
   1295 // Collect tied operands of MI that need to be handled.
   1296 // Rewrite trivial cases immediately.
   1297 // Return true if any tied operands where found, including the trivial ones.
   1298 bool TwoAddressInstructionPass::
   1299 collectTiedOperands(MachineInstr *MI, TiedOperandMap &TiedOperands) {
   1300   const MCInstrDesc &MCID = MI->getDesc();
   1301   bool AnyOps = false;
   1302   unsigned NumOps = MI->getNumOperands();
   1303 
   1304   for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) {
   1305     unsigned DstIdx = 0;
   1306     if (!MI->isRegTiedToDefOperand(SrcIdx, &DstIdx))
   1307       continue;
   1308     AnyOps = true;
   1309     MachineOperand &SrcMO = MI->getOperand(SrcIdx);
   1310     MachineOperand &DstMO = MI->getOperand(DstIdx);
   1311     unsigned SrcReg = SrcMO.getReg();
   1312     unsigned DstReg = DstMO.getReg();
   1313     // Tied constraint already satisfied?
   1314     if (SrcReg == DstReg)
   1315       continue;
   1316 
   1317     assert(SrcReg && SrcMO.isUse() && "two address instruction invalid");
   1318 
   1319     // Deal with <undef> uses immediately - simply rewrite the src operand.
   1320     if (SrcMO.isUndef()) {
   1321       // Constrain the DstReg register class if required.
   1322       if (TargetRegisterInfo::isVirtualRegister(DstReg))
   1323         if (const TargetRegisterClass *RC = TII->getRegClass(MCID, SrcIdx,
   1324                                                              TRI, *MF))
   1325           MRI->constrainRegClass(DstReg, RC);
   1326       SrcMO.setReg(DstReg);
   1327       DEBUG(dbgs() << "\t\trewrite undef:\t" << *MI);
   1328       continue;
   1329     }
   1330     TiedOperands[SrcReg].push_back(std::make_pair(SrcIdx, DstIdx));
   1331   }
   1332   return AnyOps;
   1333 }
   1334 
   1335 // Process a list of tied MI operands that all use the same source register.
   1336 // The tied pairs are of the form (SrcIdx, DstIdx).
   1337 void
   1338 TwoAddressInstructionPass::processTiedPairs(MachineInstr *MI,
   1339                                             TiedPairList &TiedPairs,
   1340                                             unsigned &Dist) {
   1341   bool IsEarlyClobber = false;
   1342   for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
   1343     const MachineOperand &DstMO = MI->getOperand(TiedPairs[tpi].second);
   1344     IsEarlyClobber |= DstMO.isEarlyClobber();
   1345   }
   1346 
   1347   bool RemovedKillFlag = false;
   1348   bool AllUsesCopied = true;
   1349   unsigned LastCopiedReg = 0;
   1350   SlotIndex LastCopyIdx;
   1351   unsigned RegB = 0;
   1352   for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
   1353     unsigned SrcIdx = TiedPairs[tpi].first;
   1354     unsigned DstIdx = TiedPairs[tpi].second;
   1355 
   1356     const MachineOperand &DstMO = MI->getOperand(DstIdx);
   1357     unsigned RegA = DstMO.getReg();
   1358 
   1359     // Grab RegB from the instruction because it may have changed if the
   1360     // instruction was commuted.
   1361     RegB = MI->getOperand(SrcIdx).getReg();
   1362 
   1363     if (RegA == RegB) {
   1364       // The register is tied to multiple destinations (or else we would
   1365       // not have continued this far), but this use of the register
   1366       // already matches the tied destination.  Leave it.
   1367       AllUsesCopied = false;
   1368       continue;
   1369     }
   1370     LastCopiedReg = RegA;
   1371 
   1372     assert(TargetRegisterInfo::isVirtualRegister(RegB) &&
   1373            "cannot make instruction into two-address form");
   1374 
   1375 #ifndef NDEBUG
   1376     // First, verify that we don't have a use of "a" in the instruction
   1377     // (a = b + a for example) because our transformation will not
   1378     // work. This should never occur because we are in SSA form.
   1379     for (unsigned i = 0; i != MI->getNumOperands(); ++i)
   1380       assert(i == DstIdx ||
   1381              !MI->getOperand(i).isReg() ||
   1382              MI->getOperand(i).getReg() != RegA);
   1383 #endif
   1384 
   1385     // Emit a copy.
   1386     BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
   1387             TII->get(TargetOpcode::COPY), RegA).addReg(RegB);
   1388 
   1389     // Update DistanceMap.
   1390     MachineBasicBlock::iterator PrevMI = MI;
   1391     --PrevMI;
   1392     DistanceMap.insert(std::make_pair(PrevMI, Dist));
   1393     DistanceMap[MI] = ++Dist;
   1394 
   1395     if (LIS) {
   1396       LastCopyIdx = LIS->InsertMachineInstrInMaps(PrevMI).getRegSlot();
   1397 
   1398       if (TargetRegisterInfo::isVirtualRegister(RegA)) {
   1399         LiveInterval &LI = LIS->getInterval(RegA);
   1400         VNInfo *VNI = LI.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator());
   1401         SlotIndex endIdx =
   1402           LIS->getInstructionIndex(MI).getRegSlot(IsEarlyClobber);
   1403         LI.addRange(LiveRange(LastCopyIdx, endIdx, VNI));
   1404       }
   1405     }
   1406 
   1407     DEBUG(dbgs() << "\t\tprepend:\t" << *PrevMI);
   1408 
   1409     MachineOperand &MO = MI->getOperand(SrcIdx);
   1410     assert(MO.isReg() && MO.getReg() == RegB && MO.isUse() &&
   1411            "inconsistent operand info for 2-reg pass");
   1412     if (MO.isKill()) {
   1413       MO.setIsKill(false);
   1414       RemovedKillFlag = true;
   1415     }
   1416 
   1417     // Make sure regA is a legal regclass for the SrcIdx operand.
   1418     if (TargetRegisterInfo::isVirtualRegister(RegA) &&
   1419         TargetRegisterInfo::isVirtualRegister(RegB))
   1420       MRI->constrainRegClass(RegA, MRI->getRegClass(RegB));
   1421 
   1422     MO.setReg(RegA);
   1423 
   1424     // Propagate SrcRegMap.
   1425     SrcRegMap[RegA] = RegB;
   1426   }
   1427 
   1428 
   1429   if (AllUsesCopied) {
   1430     if (!IsEarlyClobber) {
   1431       // Replace other (un-tied) uses of regB with LastCopiedReg.
   1432       for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   1433         MachineOperand &MO = MI->getOperand(i);
   1434         if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) {
   1435           if (MO.isKill()) {
   1436             MO.setIsKill(false);
   1437             RemovedKillFlag = true;
   1438           }
   1439           MO.setReg(LastCopiedReg);
   1440         }
   1441       }
   1442     }
   1443 
   1444     // Update live variables for regB.
   1445     if (RemovedKillFlag && LV && LV->getVarInfo(RegB).removeKill(MI)) {
   1446       MachineBasicBlock::iterator PrevMI = MI;
   1447       --PrevMI;
   1448       LV->addVirtualRegisterKilled(RegB, PrevMI);
   1449     }
   1450 
   1451     // Update LiveIntervals.
   1452     if (LIS) {
   1453       LiveInterval &LI = LIS->getInterval(RegB);
   1454       SlotIndex MIIdx = LIS->getInstructionIndex(MI);
   1455       LiveInterval::const_iterator I = LI.find(MIIdx);
   1456       assert(I != LI.end() && "RegB must be live-in to use.");
   1457 
   1458       SlotIndex UseIdx = MIIdx.getRegSlot(IsEarlyClobber);
   1459       if (I->end == UseIdx)
   1460         LI.removeRange(LastCopyIdx, UseIdx);
   1461     }
   1462 
   1463   } else if (RemovedKillFlag) {
   1464     // Some tied uses of regB matched their destination registers, so
   1465     // regB is still used in this instruction, but a kill flag was
   1466     // removed from a different tied use of regB, so now we need to add
   1467     // a kill flag to one of the remaining uses of regB.
   1468     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   1469       MachineOperand &MO = MI->getOperand(i);
   1470       if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) {
   1471         MO.setIsKill(true);
   1472         break;
   1473       }
   1474     }
   1475   }
   1476 }
   1477 
   1478 /// runOnMachineFunction - Reduce two-address instructions to two operands.
   1479 ///
   1480 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &Func) {
   1481   MF = &Func;
   1482   const TargetMachine &TM = MF->getTarget();
   1483   MRI = &MF->getRegInfo();
   1484   TII = TM.getInstrInfo();
   1485   TRI = TM.getRegisterInfo();
   1486   InstrItins = TM.getInstrItineraryData();
   1487   LV = getAnalysisIfAvailable<LiveVariables>();
   1488   LIS = getAnalysisIfAvailable<LiveIntervals>();
   1489   AA = &getAnalysis<AliasAnalysis>();
   1490   OptLevel = TM.getOptLevel();
   1491 
   1492   bool MadeChange = false;
   1493 
   1494   DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
   1495   DEBUG(dbgs() << "********** Function: "
   1496         << MF->getName() << '\n');
   1497 
   1498   // This pass takes the function out of SSA form.
   1499   MRI->leaveSSA();
   1500 
   1501   TiedOperandMap TiedOperands;
   1502   for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end();
   1503        MBBI != MBBE; ++MBBI) {
   1504     MBB = MBBI;
   1505     unsigned Dist = 0;
   1506     DistanceMap.clear();
   1507     SrcRegMap.clear();
   1508     DstRegMap.clear();
   1509     Processed.clear();
   1510     for (MachineBasicBlock::iterator mi = MBB->begin(), me = MBB->end();
   1511          mi != me; ) {
   1512       MachineBasicBlock::iterator nmi = llvm::next(mi);
   1513       if (mi->isDebugValue()) {
   1514         mi = nmi;
   1515         continue;
   1516       }
   1517 
   1518       // Expand REG_SEQUENCE instructions. This will position mi at the first
   1519       // expanded instruction.
   1520       if (mi->isRegSequence())
   1521         eliminateRegSequence(mi);
   1522 
   1523       DistanceMap.insert(std::make_pair(mi, ++Dist));
   1524 
   1525       processCopy(&*mi);
   1526 
   1527       // First scan through all the tied register uses in this instruction
   1528       // and record a list of pairs of tied operands for each register.
   1529       if (!collectTiedOperands(mi, TiedOperands)) {
   1530         mi = nmi;
   1531         continue;
   1532       }
   1533 
   1534       ++NumTwoAddressInstrs;
   1535       MadeChange = true;
   1536       DEBUG(dbgs() << '\t' << *mi);
   1537 
   1538       // If the instruction has a single pair of tied operands, try some
   1539       // transformations that may either eliminate the tied operands or
   1540       // improve the opportunities for coalescing away the register copy.
   1541       if (TiedOperands.size() == 1) {
   1542         SmallVectorImpl<std::pair<unsigned, unsigned> > &TiedPairs
   1543           = TiedOperands.begin()->second;
   1544         if (TiedPairs.size() == 1) {
   1545           unsigned SrcIdx = TiedPairs[0].first;
   1546           unsigned DstIdx = TiedPairs[0].second;
   1547           unsigned SrcReg = mi->getOperand(SrcIdx).getReg();
   1548           unsigned DstReg = mi->getOperand(DstIdx).getReg();
   1549           if (SrcReg != DstReg &&
   1550               tryInstructionTransform(mi, nmi, SrcIdx, DstIdx, Dist, false)) {
   1551             // The tied operands have been eliminated or shifted further down the
   1552             // block to ease elimination. Continue processing with 'nmi'.
   1553             TiedOperands.clear();
   1554             mi = nmi;
   1555             continue;
   1556           }
   1557         }
   1558       }
   1559 
   1560       // Now iterate over the information collected above.
   1561       for (TiedOperandMap::iterator OI = TiedOperands.begin(),
   1562              OE = TiedOperands.end(); OI != OE; ++OI) {
   1563         processTiedPairs(mi, OI->second, Dist);
   1564         DEBUG(dbgs() << "\t\trewrite to:\t" << *mi);
   1565       }
   1566 
   1567       // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form.
   1568       if (mi->isInsertSubreg()) {
   1569         // From %reg = INSERT_SUBREG %reg, %subreg, subidx
   1570         // To   %reg:subidx = COPY %subreg
   1571         unsigned SubIdx = mi->getOperand(3).getImm();
   1572         mi->RemoveOperand(3);
   1573         assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx");
   1574         mi->getOperand(0).setSubReg(SubIdx);
   1575         mi->getOperand(0).setIsUndef(mi->getOperand(1).isUndef());
   1576         mi->RemoveOperand(1);
   1577         mi->setDesc(TII->get(TargetOpcode::COPY));
   1578         DEBUG(dbgs() << "\t\tconvert to:\t" << *mi);
   1579       }
   1580 
   1581       // Clear TiedOperands here instead of at the top of the loop
   1582       // since most instructions do not have tied operands.
   1583       TiedOperands.clear();
   1584       mi = nmi;
   1585     }
   1586   }
   1587 
   1588   if (LIS)
   1589     MF->verify(this, "After two-address instruction pass");
   1590 
   1591   return MadeChange;
   1592 }
   1593 
   1594 /// Eliminate a REG_SEQUENCE instruction as part of the de-ssa process.
   1595 ///
   1596 /// The instruction is turned into a sequence of sub-register copies:
   1597 ///
   1598 ///   %dst = REG_SEQUENCE %v1, ssub0, %v2, ssub1
   1599 ///
   1600 /// Becomes:
   1601 ///
   1602 ///   %dst:ssub0<def,undef> = COPY %v1
   1603 ///   %dst:ssub1<def> = COPY %v2
   1604 ///
   1605 void TwoAddressInstructionPass::
   1606 eliminateRegSequence(MachineBasicBlock::iterator &MBBI) {
   1607   MachineInstr *MI = MBBI;
   1608   unsigned DstReg = MI->getOperand(0).getReg();
   1609   if (MI->getOperand(0).getSubReg() ||
   1610       TargetRegisterInfo::isPhysicalRegister(DstReg) ||
   1611       !(MI->getNumOperands() & 1)) {
   1612     DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI);
   1613     llvm_unreachable(0);
   1614   }
   1615 
   1616   SmallVector<unsigned, 4> OrigRegs;
   1617   if (LIS) {
   1618     OrigRegs.push_back(MI->getOperand(0).getReg());
   1619     for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2)
   1620       OrigRegs.push_back(MI->getOperand(i).getReg());
   1621   }
   1622 
   1623   bool DefEmitted = false;
   1624   for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) {
   1625     MachineOperand &UseMO = MI->getOperand(i);
   1626     unsigned SrcReg = UseMO.getReg();
   1627     unsigned SubIdx = MI->getOperand(i+1).getImm();
   1628     // Nothing needs to be inserted for <undef> operands.
   1629     if (UseMO.isUndef())
   1630       continue;
   1631 
   1632     // Defer any kill flag to the last operand using SrcReg. Otherwise, we
   1633     // might insert a COPY that uses SrcReg after is was killed.
   1634     bool isKill = UseMO.isKill();
   1635     if (isKill)
   1636       for (unsigned j = i + 2; j < e; j += 2)
   1637         if (MI->getOperand(j).getReg() == SrcReg) {
   1638           MI->getOperand(j).setIsKill();
   1639           UseMO.setIsKill(false);
   1640           isKill = false;
   1641           break;
   1642         }
   1643 
   1644     // Insert the sub-register copy.
   1645     MachineInstr *CopyMI = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
   1646                                    TII->get(TargetOpcode::COPY))
   1647       .addReg(DstReg, RegState::Define, SubIdx)
   1648       .addOperand(UseMO);
   1649 
   1650     // The first def needs an <undef> flag because there is no live register
   1651     // before it.
   1652     if (!DefEmitted) {
   1653       CopyMI->getOperand(0).setIsUndef(true);
   1654       // Return an iterator pointing to the first inserted instr.
   1655       MBBI = CopyMI;
   1656     }
   1657     DefEmitted = true;
   1658 
   1659     // Update LiveVariables' kill info.
   1660     if (LV && isKill && !TargetRegisterInfo::isPhysicalRegister(SrcReg))
   1661       LV->replaceKillInstruction(SrcReg, MI, CopyMI);
   1662 
   1663     DEBUG(dbgs() << "Inserted: " << *CopyMI);
   1664   }
   1665 
   1666   MachineBasicBlock::iterator EndMBBI =
   1667       llvm::next(MachineBasicBlock::iterator(MI));
   1668 
   1669   if (!DefEmitted) {
   1670     DEBUG(dbgs() << "Turned: " << *MI << " into an IMPLICIT_DEF");
   1671     MI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
   1672     for (int j = MI->getNumOperands() - 1, ee = 0; j > ee; --j)
   1673       MI->RemoveOperand(j);
   1674   } else {
   1675     DEBUG(dbgs() << "Eliminated: " << *MI);
   1676     MI->eraseFromParent();
   1677   }
   1678 
   1679   // Udpate LiveIntervals.
   1680   if (LIS)
   1681     LIS->repairIntervalsInRange(MBB, MBBI, EndMBBI, OrigRegs);
   1682 }
   1683