Home | History | Annotate | Download | only in Writer
      1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Bitcode writer implementation.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Bitcode/ReaderWriter.h"
     15 #include "ValueEnumerator.h"
     16 #include "llvm/ADT/Triple.h"
     17 #include "llvm/Bitcode/BitstreamWriter.h"
     18 #include "llvm/Bitcode/LLVMBitCodes.h"
     19 #include "llvm/IR/Constants.h"
     20 #include "llvm/IR/DerivedTypes.h"
     21 #include "llvm/IR/InlineAsm.h"
     22 #include "llvm/IR/Instructions.h"
     23 #include "llvm/IR/Module.h"
     24 #include "llvm/IR/Operator.h"
     25 #include "llvm/IR/ValueSymbolTable.h"
     26 #include "llvm/Support/CommandLine.h"
     27 #include "llvm/Support/ErrorHandling.h"
     28 #include "llvm/Support/MathExtras.h"
     29 #include "llvm/Support/Program.h"
     30 #include "llvm/Support/raw_ostream.h"
     31 #include <cctype>
     32 #include <map>
     33 using namespace llvm;
     34 
     35 static cl::opt<bool>
     36 EnablePreserveUseListOrdering("enable-bc-uselist-preserve",
     37                               cl::desc("Turn on experimental support for "
     38                                        "use-list order preservation."),
     39                               cl::init(false), cl::Hidden);
     40 
     41 /// These are manifest constants used by the bitcode writer. They do not need to
     42 /// be kept in sync with the reader, but need to be consistent within this file.
     43 enum {
     44   // VALUE_SYMTAB_BLOCK abbrev id's.
     45   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
     46   VST_ENTRY_7_ABBREV,
     47   VST_ENTRY_6_ABBREV,
     48   VST_BBENTRY_6_ABBREV,
     49 
     50   // CONSTANTS_BLOCK abbrev id's.
     51   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
     52   CONSTANTS_INTEGER_ABBREV,
     53   CONSTANTS_CE_CAST_Abbrev,
     54   CONSTANTS_NULL_Abbrev,
     55 
     56   // FUNCTION_BLOCK abbrev id's.
     57   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
     58   FUNCTION_INST_BINOP_ABBREV,
     59   FUNCTION_INST_BINOP_FLAGS_ABBREV,
     60   FUNCTION_INST_CAST_ABBREV,
     61   FUNCTION_INST_RET_VOID_ABBREV,
     62   FUNCTION_INST_RET_VAL_ABBREV,
     63   FUNCTION_INST_UNREACHABLE_ABBREV,
     64 
     65   // SwitchInst Magic
     66   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
     67 };
     68 
     69 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
     70   switch (Opcode) {
     71   default: llvm_unreachable("Unknown cast instruction!");
     72   case Instruction::Trunc   : return bitc::CAST_TRUNC;
     73   case Instruction::ZExt    : return bitc::CAST_ZEXT;
     74   case Instruction::SExt    : return bitc::CAST_SEXT;
     75   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
     76   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
     77   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
     78   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
     79   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
     80   case Instruction::FPExt   : return bitc::CAST_FPEXT;
     81   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
     82   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
     83   case Instruction::BitCast : return bitc::CAST_BITCAST;
     84   }
     85 }
     86 
     87 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
     88   switch (Opcode) {
     89   default: llvm_unreachable("Unknown binary instruction!");
     90   case Instruction::Add:
     91   case Instruction::FAdd: return bitc::BINOP_ADD;
     92   case Instruction::Sub:
     93   case Instruction::FSub: return bitc::BINOP_SUB;
     94   case Instruction::Mul:
     95   case Instruction::FMul: return bitc::BINOP_MUL;
     96   case Instruction::UDiv: return bitc::BINOP_UDIV;
     97   case Instruction::FDiv:
     98   case Instruction::SDiv: return bitc::BINOP_SDIV;
     99   case Instruction::URem: return bitc::BINOP_UREM;
    100   case Instruction::FRem:
    101   case Instruction::SRem: return bitc::BINOP_SREM;
    102   case Instruction::Shl:  return bitc::BINOP_SHL;
    103   case Instruction::LShr: return bitc::BINOP_LSHR;
    104   case Instruction::AShr: return bitc::BINOP_ASHR;
    105   case Instruction::And:  return bitc::BINOP_AND;
    106   case Instruction::Or:   return bitc::BINOP_OR;
    107   case Instruction::Xor:  return bitc::BINOP_XOR;
    108   }
    109 }
    110 
    111 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
    112   switch (Op) {
    113   default: llvm_unreachable("Unknown RMW operation!");
    114   case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
    115   case AtomicRMWInst::Add: return bitc::RMW_ADD;
    116   case AtomicRMWInst::Sub: return bitc::RMW_SUB;
    117   case AtomicRMWInst::And: return bitc::RMW_AND;
    118   case AtomicRMWInst::Nand: return bitc::RMW_NAND;
    119   case AtomicRMWInst::Or: return bitc::RMW_OR;
    120   case AtomicRMWInst::Xor: return bitc::RMW_XOR;
    121   case AtomicRMWInst::Max: return bitc::RMW_MAX;
    122   case AtomicRMWInst::Min: return bitc::RMW_MIN;
    123   case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
    124   case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
    125   }
    126 }
    127 
    128 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) {
    129   switch (Ordering) {
    130   case NotAtomic: return bitc::ORDERING_NOTATOMIC;
    131   case Unordered: return bitc::ORDERING_UNORDERED;
    132   case Monotonic: return bitc::ORDERING_MONOTONIC;
    133   case Acquire: return bitc::ORDERING_ACQUIRE;
    134   case Release: return bitc::ORDERING_RELEASE;
    135   case AcquireRelease: return bitc::ORDERING_ACQREL;
    136   case SequentiallyConsistent: return bitc::ORDERING_SEQCST;
    137   }
    138   llvm_unreachable("Invalid ordering");
    139 }
    140 
    141 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) {
    142   switch (SynchScope) {
    143   case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
    144   case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
    145   }
    146   llvm_unreachable("Invalid synch scope");
    147 }
    148 
    149 static void WriteStringRecord(unsigned Code, StringRef Str,
    150                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
    151   SmallVector<unsigned, 64> Vals;
    152 
    153   // Code: [strchar x N]
    154   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
    155     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
    156       AbbrevToUse = 0;
    157     Vals.push_back(Str[i]);
    158   }
    159 
    160   // Emit the finished record.
    161   Stream.EmitRecord(Code, Vals, AbbrevToUse);
    162 }
    163 
    164 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
    165   switch (Kind) {
    166   case Attribute::Alignment:
    167     return bitc::ATTR_KIND_ALIGNMENT;
    168   case Attribute::AlwaysInline:
    169     return bitc::ATTR_KIND_ALWAYS_INLINE;
    170   case Attribute::Builtin:
    171     return bitc::ATTR_KIND_BUILTIN;
    172   case Attribute::ByVal:
    173     return bitc::ATTR_KIND_BY_VAL;
    174   case Attribute::Cold:
    175     return bitc::ATTR_KIND_COLD;
    176   case Attribute::InlineHint:
    177     return bitc::ATTR_KIND_INLINE_HINT;
    178   case Attribute::InReg:
    179     return bitc::ATTR_KIND_IN_REG;
    180   case Attribute::MinSize:
    181     return bitc::ATTR_KIND_MIN_SIZE;
    182   case Attribute::Naked:
    183     return bitc::ATTR_KIND_NAKED;
    184   case Attribute::Nest:
    185     return bitc::ATTR_KIND_NEST;
    186   case Attribute::NoAlias:
    187     return bitc::ATTR_KIND_NO_ALIAS;
    188   case Attribute::NoBuiltin:
    189     return bitc::ATTR_KIND_NO_BUILTIN;
    190   case Attribute::NoCapture:
    191     return bitc::ATTR_KIND_NO_CAPTURE;
    192   case Attribute::NoDuplicate:
    193     return bitc::ATTR_KIND_NO_DUPLICATE;
    194   case Attribute::NoImplicitFloat:
    195     return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
    196   case Attribute::NoInline:
    197     return bitc::ATTR_KIND_NO_INLINE;
    198   case Attribute::NonLazyBind:
    199     return bitc::ATTR_KIND_NON_LAZY_BIND;
    200   case Attribute::NoRedZone:
    201     return bitc::ATTR_KIND_NO_RED_ZONE;
    202   case Attribute::NoReturn:
    203     return bitc::ATTR_KIND_NO_RETURN;
    204   case Attribute::NoUnwind:
    205     return bitc::ATTR_KIND_NO_UNWIND;
    206   case Attribute::OptimizeForSize:
    207     return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
    208   case Attribute::ReadNone:
    209     return bitc::ATTR_KIND_READ_NONE;
    210   case Attribute::ReadOnly:
    211     return bitc::ATTR_KIND_READ_ONLY;
    212   case Attribute::Returned:
    213     return bitc::ATTR_KIND_RETURNED;
    214   case Attribute::ReturnsTwice:
    215     return bitc::ATTR_KIND_RETURNS_TWICE;
    216   case Attribute::SExt:
    217     return bitc::ATTR_KIND_S_EXT;
    218   case Attribute::StackAlignment:
    219     return bitc::ATTR_KIND_STACK_ALIGNMENT;
    220   case Attribute::StackProtect:
    221     return bitc::ATTR_KIND_STACK_PROTECT;
    222   case Attribute::StackProtectReq:
    223     return bitc::ATTR_KIND_STACK_PROTECT_REQ;
    224   case Attribute::StackProtectStrong:
    225     return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
    226   case Attribute::StructRet:
    227     return bitc::ATTR_KIND_STRUCT_RET;
    228   case Attribute::SanitizeAddress:
    229     return bitc::ATTR_KIND_SANITIZE_ADDRESS;
    230   case Attribute::SanitizeThread:
    231     return bitc::ATTR_KIND_SANITIZE_THREAD;
    232   case Attribute::SanitizeMemory:
    233     return bitc::ATTR_KIND_SANITIZE_MEMORY;
    234   case Attribute::UWTable:
    235     return bitc::ATTR_KIND_UW_TABLE;
    236   case Attribute::ZExt:
    237     return bitc::ATTR_KIND_Z_EXT;
    238   case Attribute::EndAttrKinds:
    239     llvm_unreachable("Can not encode end-attribute kinds marker.");
    240   case Attribute::None:
    241     llvm_unreachable("Can not encode none-attribute.");
    242   }
    243 
    244   llvm_unreachable("Trying to encode unknown attribute");
    245 }
    246 
    247 static void WriteAttributeGroupTable(const ValueEnumerator &VE,
    248                                      BitstreamWriter &Stream) {
    249   const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups();
    250   if (AttrGrps.empty()) return;
    251 
    252   Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
    253 
    254   SmallVector<uint64_t, 64> Record;
    255   for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) {
    256     AttributeSet AS = AttrGrps[i];
    257     for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) {
    258       AttributeSet A = AS.getSlotAttributes(i);
    259 
    260       Record.push_back(VE.getAttributeGroupID(A));
    261       Record.push_back(AS.getSlotIndex(i));
    262 
    263       for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0);
    264            I != E; ++I) {
    265         Attribute Attr = *I;
    266         if (Attr.isEnumAttribute()) {
    267           Record.push_back(0);
    268           Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
    269         } else if (Attr.isAlignAttribute()) {
    270           Record.push_back(1);
    271           Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
    272           Record.push_back(Attr.getValueAsInt());
    273         } else {
    274           StringRef Kind = Attr.getKindAsString();
    275           StringRef Val = Attr.getValueAsString();
    276 
    277           Record.push_back(Val.empty() ? 3 : 4);
    278           Record.append(Kind.begin(), Kind.end());
    279           Record.push_back(0);
    280           if (!Val.empty()) {
    281             Record.append(Val.begin(), Val.end());
    282             Record.push_back(0);
    283           }
    284         }
    285       }
    286 
    287       Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
    288       Record.clear();
    289     }
    290   }
    291 
    292   Stream.ExitBlock();
    293 }
    294 
    295 static void WriteAttributeTable(const ValueEnumerator &VE,
    296                                 BitstreamWriter &Stream) {
    297   const std::vector<AttributeSet> &Attrs = VE.getAttributes();
    298   if (Attrs.empty()) return;
    299 
    300   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
    301 
    302   SmallVector<uint64_t, 64> Record;
    303   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
    304     const AttributeSet &A = Attrs[i];
    305     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i)
    306       Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i)));
    307 
    308     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
    309     Record.clear();
    310   }
    311 
    312   Stream.ExitBlock();
    313 }
    314 
    315 /// WriteTypeTable - Write out the type table for a module.
    316 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
    317   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
    318 
    319   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
    320   SmallVector<uint64_t, 64> TypeVals;
    321 
    322   uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1);
    323 
    324   // Abbrev for TYPE_CODE_POINTER.
    325   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
    326   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
    327   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
    328   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
    329   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
    330 
    331   // Abbrev for TYPE_CODE_FUNCTION.
    332   Abbv = new BitCodeAbbrev();
    333   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
    334   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
    335   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    336   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
    337 
    338   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
    339 
    340   // Abbrev for TYPE_CODE_STRUCT_ANON.
    341   Abbv = new BitCodeAbbrev();
    342   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
    343   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
    344   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    345   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
    346 
    347   unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
    348 
    349   // Abbrev for TYPE_CODE_STRUCT_NAME.
    350   Abbv = new BitCodeAbbrev();
    351   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
    352   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    353   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
    354   unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
    355 
    356   // Abbrev for TYPE_CODE_STRUCT_NAMED.
    357   Abbv = new BitCodeAbbrev();
    358   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
    359   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
    360   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    361   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
    362 
    363   unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
    364 
    365   // Abbrev for TYPE_CODE_ARRAY.
    366   Abbv = new BitCodeAbbrev();
    367   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
    368   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
    369   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
    370 
    371   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
    372 
    373   // Emit an entry count so the reader can reserve space.
    374   TypeVals.push_back(TypeList.size());
    375   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
    376   TypeVals.clear();
    377 
    378   // Loop over all of the types, emitting each in turn.
    379   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
    380     Type *T = TypeList[i];
    381     int AbbrevToUse = 0;
    382     unsigned Code = 0;
    383 
    384     switch (T->getTypeID()) {
    385     default: llvm_unreachable("Unknown type!");
    386     case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;      break;
    387     case Type::HalfTyID:      Code = bitc::TYPE_CODE_HALF;      break;
    388     case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;     break;
    389     case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE;    break;
    390     case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80;  break;
    391     case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128;     break;
    392     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
    393     case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;     break;
    394     case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA;  break;
    395     case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX;   break;
    396     case Type::IntegerTyID:
    397       // INTEGER: [width]
    398       Code = bitc::TYPE_CODE_INTEGER;
    399       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
    400       break;
    401     case Type::PointerTyID: {
    402       PointerType *PTy = cast<PointerType>(T);
    403       // POINTER: [pointee type, address space]
    404       Code = bitc::TYPE_CODE_POINTER;
    405       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
    406       unsigned AddressSpace = PTy->getAddressSpace();
    407       TypeVals.push_back(AddressSpace);
    408       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
    409       break;
    410     }
    411     case Type::FunctionTyID: {
    412       FunctionType *FT = cast<FunctionType>(T);
    413       // FUNCTION: [isvararg, retty, paramty x N]
    414       Code = bitc::TYPE_CODE_FUNCTION;
    415       TypeVals.push_back(FT->isVarArg());
    416       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
    417       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
    418         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
    419       AbbrevToUse = FunctionAbbrev;
    420       break;
    421     }
    422     case Type::StructTyID: {
    423       StructType *ST = cast<StructType>(T);
    424       // STRUCT: [ispacked, eltty x N]
    425       TypeVals.push_back(ST->isPacked());
    426       // Output all of the element types.
    427       for (StructType::element_iterator I = ST->element_begin(),
    428            E = ST->element_end(); I != E; ++I)
    429         TypeVals.push_back(VE.getTypeID(*I));
    430 
    431       if (ST->isLiteral()) {
    432         Code = bitc::TYPE_CODE_STRUCT_ANON;
    433         AbbrevToUse = StructAnonAbbrev;
    434       } else {
    435         if (ST->isOpaque()) {
    436           Code = bitc::TYPE_CODE_OPAQUE;
    437         } else {
    438           Code = bitc::TYPE_CODE_STRUCT_NAMED;
    439           AbbrevToUse = StructNamedAbbrev;
    440         }
    441 
    442         // Emit the name if it is present.
    443         if (!ST->getName().empty())
    444           WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
    445                             StructNameAbbrev, Stream);
    446       }
    447       break;
    448     }
    449     case Type::ArrayTyID: {
    450       ArrayType *AT = cast<ArrayType>(T);
    451       // ARRAY: [numelts, eltty]
    452       Code = bitc::TYPE_CODE_ARRAY;
    453       TypeVals.push_back(AT->getNumElements());
    454       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
    455       AbbrevToUse = ArrayAbbrev;
    456       break;
    457     }
    458     case Type::VectorTyID: {
    459       VectorType *VT = cast<VectorType>(T);
    460       // VECTOR [numelts, eltty]
    461       Code = bitc::TYPE_CODE_VECTOR;
    462       TypeVals.push_back(VT->getNumElements());
    463       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
    464       break;
    465     }
    466     }
    467 
    468     // Emit the finished record.
    469     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
    470     TypeVals.clear();
    471   }
    472 
    473   Stream.ExitBlock();
    474 }
    475 
    476 static unsigned getEncodedLinkage(const GlobalValue *GV) {
    477   switch (GV->getLinkage()) {
    478   case GlobalValue::ExternalLinkage:                 return 0;
    479   case GlobalValue::WeakAnyLinkage:                  return 1;
    480   case GlobalValue::AppendingLinkage:                return 2;
    481   case GlobalValue::InternalLinkage:                 return 3;
    482   case GlobalValue::LinkOnceAnyLinkage:              return 4;
    483   case GlobalValue::DLLImportLinkage:                return 5;
    484   case GlobalValue::DLLExportLinkage:                return 6;
    485   case GlobalValue::ExternalWeakLinkage:             return 7;
    486   case GlobalValue::CommonLinkage:                   return 8;
    487   case GlobalValue::PrivateLinkage:                  return 9;
    488   case GlobalValue::WeakODRLinkage:                  return 10;
    489   case GlobalValue::LinkOnceODRLinkage:              return 11;
    490   case GlobalValue::AvailableExternallyLinkage:      return 12;
    491   case GlobalValue::LinkerPrivateLinkage:            return 13;
    492   case GlobalValue::LinkerPrivateWeakLinkage:        return 14;
    493   case GlobalValue::LinkOnceODRAutoHideLinkage:      return 15;
    494   }
    495   llvm_unreachable("Invalid linkage");
    496 }
    497 
    498 static unsigned getEncodedVisibility(const GlobalValue *GV) {
    499   switch (GV->getVisibility()) {
    500   case GlobalValue::DefaultVisibility:   return 0;
    501   case GlobalValue::HiddenVisibility:    return 1;
    502   case GlobalValue::ProtectedVisibility: return 2;
    503   }
    504   llvm_unreachable("Invalid visibility");
    505 }
    506 
    507 static unsigned getEncodedThreadLocalMode(const GlobalVariable *GV) {
    508   switch (GV->getThreadLocalMode()) {
    509     case GlobalVariable::NotThreadLocal:         return 0;
    510     case GlobalVariable::GeneralDynamicTLSModel: return 1;
    511     case GlobalVariable::LocalDynamicTLSModel:   return 2;
    512     case GlobalVariable::InitialExecTLSModel:    return 3;
    513     case GlobalVariable::LocalExecTLSModel:      return 4;
    514   }
    515   llvm_unreachable("Invalid TLS model");
    516 }
    517 
    518 // Emit top-level description of module, including target triple, inline asm,
    519 // descriptors for global variables, and function prototype info.
    520 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
    521                             BitstreamWriter &Stream) {
    522   // Emit various pieces of data attached to a module.
    523   if (!M->getTargetTriple().empty())
    524     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
    525                       0/*TODO*/, Stream);
    526   if (!M->getDataLayout().empty())
    527     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
    528                       0/*TODO*/, Stream);
    529   if (!M->getModuleInlineAsm().empty())
    530     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
    531                       0/*TODO*/, Stream);
    532 
    533   // Emit information about sections and GC, computing how many there are. Also
    534   // compute the maximum alignment value.
    535   std::map<std::string, unsigned> SectionMap;
    536   std::map<std::string, unsigned> GCMap;
    537   unsigned MaxAlignment = 0;
    538   unsigned MaxGlobalType = 0;
    539   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
    540        GV != E; ++GV) {
    541     MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
    542     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
    543     if (GV->hasSection()) {
    544       // Give section names unique ID's.
    545       unsigned &Entry = SectionMap[GV->getSection()];
    546       if (!Entry) {
    547         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
    548                           0/*TODO*/, Stream);
    549         Entry = SectionMap.size();
    550       }
    551     }
    552   }
    553   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
    554     MaxAlignment = std::max(MaxAlignment, F->getAlignment());
    555     if (F->hasSection()) {
    556       // Give section names unique ID's.
    557       unsigned &Entry = SectionMap[F->getSection()];
    558       if (!Entry) {
    559         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
    560                           0/*TODO*/, Stream);
    561         Entry = SectionMap.size();
    562       }
    563     }
    564     if (F->hasGC()) {
    565       // Same for GC names.
    566       unsigned &Entry = GCMap[F->getGC()];
    567       if (!Entry) {
    568         WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
    569                           0/*TODO*/, Stream);
    570         Entry = GCMap.size();
    571       }
    572     }
    573   }
    574 
    575   // Emit abbrev for globals, now that we know # sections and max alignment.
    576   unsigned SimpleGVarAbbrev = 0;
    577   if (!M->global_empty()) {
    578     // Add an abbrev for common globals with no visibility or thread localness.
    579     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
    580     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
    581     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
    582                               Log2_32_Ceil(MaxGlobalType+1)));
    583     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
    584     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
    585     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));      // Linkage.
    586     if (MaxAlignment == 0)                                      // Alignment.
    587       Abbv->Add(BitCodeAbbrevOp(0));
    588     else {
    589       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
    590       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
    591                                Log2_32_Ceil(MaxEncAlignment+1)));
    592     }
    593     if (SectionMap.empty())                                    // Section.
    594       Abbv->Add(BitCodeAbbrevOp(0));
    595     else
    596       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
    597                                Log2_32_Ceil(SectionMap.size()+1)));
    598     // Don't bother emitting vis + thread local.
    599     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
    600   }
    601 
    602   // Emit the global variable information.
    603   SmallVector<unsigned, 64> Vals;
    604   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
    605        GV != E; ++GV) {
    606     unsigned AbbrevToUse = 0;
    607 
    608     // GLOBALVAR: [type, isconst, initid,
    609     //             linkage, alignment, section, visibility, threadlocal,
    610     //             unnamed_addr]
    611     Vals.push_back(VE.getTypeID(GV->getType()));
    612     Vals.push_back(GV->isConstant());
    613     Vals.push_back(GV->isDeclaration() ? 0 :
    614                    (VE.getValueID(GV->getInitializer()) + 1));
    615     Vals.push_back(getEncodedLinkage(GV));
    616     Vals.push_back(Log2_32(GV->getAlignment())+1);
    617     Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
    618     if (GV->isThreadLocal() ||
    619         GV->getVisibility() != GlobalValue::DefaultVisibility ||
    620         GV->hasUnnamedAddr() || GV->isExternallyInitialized()) {
    621       Vals.push_back(getEncodedVisibility(GV));
    622       Vals.push_back(getEncodedThreadLocalMode(GV));
    623       Vals.push_back(GV->hasUnnamedAddr());
    624       Vals.push_back(GV->isExternallyInitialized());
    625     } else {
    626       AbbrevToUse = SimpleGVarAbbrev;
    627     }
    628 
    629     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
    630     Vals.clear();
    631   }
    632 
    633   // Emit the function proto information.
    634   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
    635     // FUNCTION:  [type, callingconv, isproto, linkage, paramattrs, alignment,
    636     //             section, visibility, gc, unnamed_addr]
    637     Vals.push_back(VE.getTypeID(F->getType()));
    638     Vals.push_back(F->getCallingConv());
    639     Vals.push_back(F->isDeclaration());
    640     Vals.push_back(getEncodedLinkage(F));
    641     Vals.push_back(VE.getAttributeID(F->getAttributes()));
    642     Vals.push_back(Log2_32(F->getAlignment())+1);
    643     Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
    644     Vals.push_back(getEncodedVisibility(F));
    645     Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
    646     Vals.push_back(F->hasUnnamedAddr());
    647 
    648     unsigned AbbrevToUse = 0;
    649     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
    650     Vals.clear();
    651   }
    652 
    653   // Emit the alias information.
    654   for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
    655        AI != E; ++AI) {
    656     // ALIAS: [alias type, aliasee val#, linkage, visibility]
    657     Vals.push_back(VE.getTypeID(AI->getType()));
    658     Vals.push_back(VE.getValueID(AI->getAliasee()));
    659     Vals.push_back(getEncodedLinkage(AI));
    660     Vals.push_back(getEncodedVisibility(AI));
    661     unsigned AbbrevToUse = 0;
    662     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
    663     Vals.clear();
    664   }
    665 }
    666 
    667 static uint64_t GetOptimizationFlags(const Value *V) {
    668   uint64_t Flags = 0;
    669 
    670   if (const OverflowingBinaryOperator *OBO =
    671         dyn_cast<OverflowingBinaryOperator>(V)) {
    672     if (OBO->hasNoSignedWrap())
    673       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
    674     if (OBO->hasNoUnsignedWrap())
    675       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
    676   } else if (const PossiblyExactOperator *PEO =
    677                dyn_cast<PossiblyExactOperator>(V)) {
    678     if (PEO->isExact())
    679       Flags |= 1 << bitc::PEO_EXACT;
    680   } else if (const FPMathOperator *FPMO =
    681              dyn_cast<const FPMathOperator>(V)) {
    682     if (FPMO->hasUnsafeAlgebra())
    683       Flags |= FastMathFlags::UnsafeAlgebra;
    684     if (FPMO->hasNoNaNs())
    685       Flags |= FastMathFlags::NoNaNs;
    686     if (FPMO->hasNoInfs())
    687       Flags |= FastMathFlags::NoInfs;
    688     if (FPMO->hasNoSignedZeros())
    689       Flags |= FastMathFlags::NoSignedZeros;
    690     if (FPMO->hasAllowReciprocal())
    691       Flags |= FastMathFlags::AllowReciprocal;
    692   }
    693 
    694   return Flags;
    695 }
    696 
    697 static void WriteMDNode(const MDNode *N,
    698                         const ValueEnumerator &VE,
    699                         BitstreamWriter &Stream,
    700                         SmallVectorImpl<uint64_t> &Record) {
    701   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
    702     if (N->getOperand(i)) {
    703       Record.push_back(VE.getTypeID(N->getOperand(i)->getType()));
    704       Record.push_back(VE.getValueID(N->getOperand(i)));
    705     } else {
    706       Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext())));
    707       Record.push_back(0);
    708     }
    709   }
    710   unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE :
    711                                            bitc::METADATA_NODE;
    712   Stream.EmitRecord(MDCode, Record, 0);
    713   Record.clear();
    714 }
    715 
    716 static void WriteModuleMetadata(const Module *M,
    717                                 const ValueEnumerator &VE,
    718                                 BitstreamWriter &Stream) {
    719   const ValueEnumerator::ValueList &Vals = VE.getMDValues();
    720   bool StartedMetadataBlock = false;
    721   unsigned MDSAbbrev = 0;
    722   SmallVector<uint64_t, 64> Record;
    723   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
    724 
    725     if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) {
    726       if (!N->isFunctionLocal() || !N->getFunction()) {
    727         if (!StartedMetadataBlock) {
    728           Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
    729           StartedMetadataBlock = true;
    730         }
    731         WriteMDNode(N, VE, Stream, Record);
    732       }
    733     } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) {
    734       if (!StartedMetadataBlock)  {
    735         Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
    736 
    737         // Abbrev for METADATA_STRING.
    738         BitCodeAbbrev *Abbv = new BitCodeAbbrev();
    739         Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
    740         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    741         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
    742         MDSAbbrev = Stream.EmitAbbrev(Abbv);
    743         StartedMetadataBlock = true;
    744       }
    745 
    746       // Code: [strchar x N]
    747       Record.append(MDS->begin(), MDS->end());
    748 
    749       // Emit the finished record.
    750       Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
    751       Record.clear();
    752     }
    753   }
    754 
    755   // Write named metadata.
    756   for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
    757        E = M->named_metadata_end(); I != E; ++I) {
    758     const NamedMDNode *NMD = I;
    759     if (!StartedMetadataBlock)  {
    760       Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
    761       StartedMetadataBlock = true;
    762     }
    763 
    764     // Write name.
    765     StringRef Str = NMD->getName();
    766     for (unsigned i = 0, e = Str.size(); i != e; ++i)
    767       Record.push_back(Str[i]);
    768     Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/);
    769     Record.clear();
    770 
    771     // Write named metadata operands.
    772     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
    773       Record.push_back(VE.getValueID(NMD->getOperand(i)));
    774     Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
    775     Record.clear();
    776   }
    777 
    778   if (StartedMetadataBlock)
    779     Stream.ExitBlock();
    780 }
    781 
    782 static void WriteFunctionLocalMetadata(const Function &F,
    783                                        const ValueEnumerator &VE,
    784                                        BitstreamWriter &Stream) {
    785   bool StartedMetadataBlock = false;
    786   SmallVector<uint64_t, 64> Record;
    787   const SmallVectorImpl<const MDNode *> &Vals = VE.getFunctionLocalMDValues();
    788   for (unsigned i = 0, e = Vals.size(); i != e; ++i)
    789     if (const MDNode *N = Vals[i])
    790       if (N->isFunctionLocal() && N->getFunction() == &F) {
    791         if (!StartedMetadataBlock) {
    792           Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
    793           StartedMetadataBlock = true;
    794         }
    795         WriteMDNode(N, VE, Stream, Record);
    796       }
    797 
    798   if (StartedMetadataBlock)
    799     Stream.ExitBlock();
    800 }
    801 
    802 static void WriteMetadataAttachment(const Function &F,
    803                                     const ValueEnumerator &VE,
    804                                     BitstreamWriter &Stream) {
    805   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
    806 
    807   SmallVector<uint64_t, 64> Record;
    808 
    809   // Write metadata attachments
    810   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
    811   SmallVector<std::pair<unsigned, MDNode*>, 4> MDs;
    812 
    813   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
    814     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
    815          I != E; ++I) {
    816       MDs.clear();
    817       I->getAllMetadataOtherThanDebugLoc(MDs);
    818 
    819       // If no metadata, ignore instruction.
    820       if (MDs.empty()) continue;
    821 
    822       Record.push_back(VE.getInstructionID(I));
    823 
    824       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
    825         Record.push_back(MDs[i].first);
    826         Record.push_back(VE.getValueID(MDs[i].second));
    827       }
    828       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
    829       Record.clear();
    830     }
    831 
    832   Stream.ExitBlock();
    833 }
    834 
    835 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
    836   SmallVector<uint64_t, 64> Record;
    837 
    838   // Write metadata kinds
    839   // METADATA_KIND - [n x [id, name]]
    840   SmallVector<StringRef, 8> Names;
    841   M->getMDKindNames(Names);
    842 
    843   if (Names.empty()) return;
    844 
    845   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
    846 
    847   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
    848     Record.push_back(MDKindID);
    849     StringRef KName = Names[MDKindID];
    850     Record.append(KName.begin(), KName.end());
    851 
    852     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
    853     Record.clear();
    854   }
    855 
    856   Stream.ExitBlock();
    857 }
    858 
    859 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
    860   if ((int64_t)V >= 0)
    861     Vals.push_back(V << 1);
    862   else
    863     Vals.push_back((-V << 1) | 1);
    864 }
    865 
    866 static void EmitAPInt(SmallVectorImpl<uint64_t> &Vals,
    867                       unsigned &Code, unsigned &AbbrevToUse, const APInt &Val,
    868                       bool EmitSizeForWideNumbers = false
    869                       ) {
    870   if (Val.getBitWidth() <= 64) {
    871     uint64_t V = Val.getSExtValue();
    872     emitSignedInt64(Vals, V);
    873     Code = bitc::CST_CODE_INTEGER;
    874     AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
    875   } else {
    876     // Wide integers, > 64 bits in size.
    877     // We have an arbitrary precision integer value to write whose
    878     // bit width is > 64. However, in canonical unsigned integer
    879     // format it is likely that the high bits are going to be zero.
    880     // So, we only write the number of active words.
    881     unsigned NWords = Val.getActiveWords();
    882 
    883     if (EmitSizeForWideNumbers)
    884       Vals.push_back(NWords);
    885 
    886     const uint64_t *RawWords = Val.getRawData();
    887     for (unsigned i = 0; i != NWords; ++i) {
    888       emitSignedInt64(Vals, RawWords[i]);
    889     }
    890     Code = bitc::CST_CODE_WIDE_INTEGER;
    891   }
    892 }
    893 
    894 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
    895                            const ValueEnumerator &VE,
    896                            BitstreamWriter &Stream, bool isGlobal) {
    897   if (FirstVal == LastVal) return;
    898 
    899   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
    900 
    901   unsigned AggregateAbbrev = 0;
    902   unsigned String8Abbrev = 0;
    903   unsigned CString7Abbrev = 0;
    904   unsigned CString6Abbrev = 0;
    905   // If this is a constant pool for the module, emit module-specific abbrevs.
    906   if (isGlobal) {
    907     // Abbrev for CST_CODE_AGGREGATE.
    908     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
    909     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
    910     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    911     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
    912     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
    913 
    914     // Abbrev for CST_CODE_STRING.
    915     Abbv = new BitCodeAbbrev();
    916     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
    917     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    918     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
    919     String8Abbrev = Stream.EmitAbbrev(Abbv);
    920     // Abbrev for CST_CODE_CSTRING.
    921     Abbv = new BitCodeAbbrev();
    922     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
    923     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    924     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
    925     CString7Abbrev = Stream.EmitAbbrev(Abbv);
    926     // Abbrev for CST_CODE_CSTRING.
    927     Abbv = new BitCodeAbbrev();
    928     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
    929     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    930     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
    931     CString6Abbrev = Stream.EmitAbbrev(Abbv);
    932   }
    933 
    934   SmallVector<uint64_t, 64> Record;
    935 
    936   const ValueEnumerator::ValueList &Vals = VE.getValues();
    937   Type *LastTy = 0;
    938   for (unsigned i = FirstVal; i != LastVal; ++i) {
    939     const Value *V = Vals[i].first;
    940     // If we need to switch types, do so now.
    941     if (V->getType() != LastTy) {
    942       LastTy = V->getType();
    943       Record.push_back(VE.getTypeID(LastTy));
    944       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
    945                         CONSTANTS_SETTYPE_ABBREV);
    946       Record.clear();
    947     }
    948 
    949     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
    950       Record.push_back(unsigned(IA->hasSideEffects()) |
    951                        unsigned(IA->isAlignStack()) << 1 |
    952                        unsigned(IA->getDialect()&1) << 2);
    953 
    954       // Add the asm string.
    955       const std::string &AsmStr = IA->getAsmString();
    956       Record.push_back(AsmStr.size());
    957       for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
    958         Record.push_back(AsmStr[i]);
    959 
    960       // Add the constraint string.
    961       const std::string &ConstraintStr = IA->getConstraintString();
    962       Record.push_back(ConstraintStr.size());
    963       for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
    964         Record.push_back(ConstraintStr[i]);
    965       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
    966       Record.clear();
    967       continue;
    968     }
    969     const Constant *C = cast<Constant>(V);
    970     unsigned Code = -1U;
    971     unsigned AbbrevToUse = 0;
    972     if (C->isNullValue()) {
    973       Code = bitc::CST_CODE_NULL;
    974     } else if (isa<UndefValue>(C)) {
    975       Code = bitc::CST_CODE_UNDEF;
    976     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
    977       EmitAPInt(Record, Code, AbbrevToUse, IV->getValue());
    978     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
    979       Code = bitc::CST_CODE_FLOAT;
    980       Type *Ty = CFP->getType();
    981       if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
    982         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
    983       } else if (Ty->isX86_FP80Ty()) {
    984         // api needed to prevent premature destruction
    985         // bits are not in the same order as a normal i80 APInt, compensate.
    986         APInt api = CFP->getValueAPF().bitcastToAPInt();
    987         const uint64_t *p = api.getRawData();
    988         Record.push_back((p[1] << 48) | (p[0] >> 16));
    989         Record.push_back(p[0] & 0xffffLL);
    990       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
    991         APInt api = CFP->getValueAPF().bitcastToAPInt();
    992         const uint64_t *p = api.getRawData();
    993         Record.push_back(p[0]);
    994         Record.push_back(p[1]);
    995       } else {
    996         assert (0 && "Unknown FP type!");
    997       }
    998     } else if (isa<ConstantDataSequential>(C) &&
    999                cast<ConstantDataSequential>(C)->isString()) {
   1000       const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
   1001       // Emit constant strings specially.
   1002       unsigned NumElts = Str->getNumElements();
   1003       // If this is a null-terminated string, use the denser CSTRING encoding.
   1004       if (Str->isCString()) {
   1005         Code = bitc::CST_CODE_CSTRING;
   1006         --NumElts;  // Don't encode the null, which isn't allowed by char6.
   1007       } else {
   1008         Code = bitc::CST_CODE_STRING;
   1009         AbbrevToUse = String8Abbrev;
   1010       }
   1011       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
   1012       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
   1013       for (unsigned i = 0; i != NumElts; ++i) {
   1014         unsigned char V = Str->getElementAsInteger(i);
   1015         Record.push_back(V);
   1016         isCStr7 &= (V & 128) == 0;
   1017         if (isCStrChar6)
   1018           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
   1019       }
   1020 
   1021       if (isCStrChar6)
   1022         AbbrevToUse = CString6Abbrev;
   1023       else if (isCStr7)
   1024         AbbrevToUse = CString7Abbrev;
   1025     } else if (const ConstantDataSequential *CDS =
   1026                   dyn_cast<ConstantDataSequential>(C)) {
   1027       Code = bitc::CST_CODE_DATA;
   1028       Type *EltTy = CDS->getType()->getElementType();
   1029       if (isa<IntegerType>(EltTy)) {
   1030         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
   1031           Record.push_back(CDS->getElementAsInteger(i));
   1032       } else if (EltTy->isFloatTy()) {
   1033         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
   1034           union { float F; uint32_t I; };
   1035           F = CDS->getElementAsFloat(i);
   1036           Record.push_back(I);
   1037         }
   1038       } else {
   1039         assert(EltTy->isDoubleTy() && "Unknown ConstantData element type");
   1040         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
   1041           union { double F; uint64_t I; };
   1042           F = CDS->getElementAsDouble(i);
   1043           Record.push_back(I);
   1044         }
   1045       }
   1046     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
   1047                isa<ConstantVector>(C)) {
   1048       Code = bitc::CST_CODE_AGGREGATE;
   1049       for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
   1050         Record.push_back(VE.getValueID(C->getOperand(i)));
   1051       AbbrevToUse = AggregateAbbrev;
   1052     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
   1053       switch (CE->getOpcode()) {
   1054       default:
   1055         if (Instruction::isCast(CE->getOpcode())) {
   1056           Code = bitc::CST_CODE_CE_CAST;
   1057           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
   1058           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
   1059           Record.push_back(VE.getValueID(C->getOperand(0)));
   1060           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
   1061         } else {
   1062           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
   1063           Code = bitc::CST_CODE_CE_BINOP;
   1064           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
   1065           Record.push_back(VE.getValueID(C->getOperand(0)));
   1066           Record.push_back(VE.getValueID(C->getOperand(1)));
   1067           uint64_t Flags = GetOptimizationFlags(CE);
   1068           if (Flags != 0)
   1069             Record.push_back(Flags);
   1070         }
   1071         break;
   1072       case Instruction::GetElementPtr:
   1073         Code = bitc::CST_CODE_CE_GEP;
   1074         if (cast<GEPOperator>(C)->isInBounds())
   1075           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
   1076         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
   1077           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
   1078           Record.push_back(VE.getValueID(C->getOperand(i)));
   1079         }
   1080         break;
   1081       case Instruction::Select:
   1082         Code = bitc::CST_CODE_CE_SELECT;
   1083         Record.push_back(VE.getValueID(C->getOperand(0)));
   1084         Record.push_back(VE.getValueID(C->getOperand(1)));
   1085         Record.push_back(VE.getValueID(C->getOperand(2)));
   1086         break;
   1087       case Instruction::ExtractElement:
   1088         Code = bitc::CST_CODE_CE_EXTRACTELT;
   1089         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
   1090         Record.push_back(VE.getValueID(C->getOperand(0)));
   1091         Record.push_back(VE.getValueID(C->getOperand(1)));
   1092         break;
   1093       case Instruction::InsertElement:
   1094         Code = bitc::CST_CODE_CE_INSERTELT;
   1095         Record.push_back(VE.getValueID(C->getOperand(0)));
   1096         Record.push_back(VE.getValueID(C->getOperand(1)));
   1097         Record.push_back(VE.getValueID(C->getOperand(2)));
   1098         break;
   1099       case Instruction::ShuffleVector:
   1100         // If the return type and argument types are the same, this is a
   1101         // standard shufflevector instruction.  If the types are different,
   1102         // then the shuffle is widening or truncating the input vectors, and
   1103         // the argument type must also be encoded.
   1104         if (C->getType() == C->getOperand(0)->getType()) {
   1105           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
   1106         } else {
   1107           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
   1108           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
   1109         }
   1110         Record.push_back(VE.getValueID(C->getOperand(0)));
   1111         Record.push_back(VE.getValueID(C->getOperand(1)));
   1112         Record.push_back(VE.getValueID(C->getOperand(2)));
   1113         break;
   1114       case Instruction::ICmp:
   1115       case Instruction::FCmp:
   1116         Code = bitc::CST_CODE_CE_CMP;
   1117         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
   1118         Record.push_back(VE.getValueID(C->getOperand(0)));
   1119         Record.push_back(VE.getValueID(C->getOperand(1)));
   1120         Record.push_back(CE->getPredicate());
   1121         break;
   1122       }
   1123     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
   1124       Code = bitc::CST_CODE_BLOCKADDRESS;
   1125       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
   1126       Record.push_back(VE.getValueID(BA->getFunction()));
   1127       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
   1128     } else {
   1129 #ifndef NDEBUG
   1130       C->dump();
   1131 #endif
   1132       llvm_unreachable("Unknown constant!");
   1133     }
   1134     Stream.EmitRecord(Code, Record, AbbrevToUse);
   1135     Record.clear();
   1136   }
   1137 
   1138   Stream.ExitBlock();
   1139 }
   1140 
   1141 static void WriteModuleConstants(const ValueEnumerator &VE,
   1142                                  BitstreamWriter &Stream) {
   1143   const ValueEnumerator::ValueList &Vals = VE.getValues();
   1144 
   1145   // Find the first constant to emit, which is the first non-globalvalue value.
   1146   // We know globalvalues have been emitted by WriteModuleInfo.
   1147   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
   1148     if (!isa<GlobalValue>(Vals[i].first)) {
   1149       WriteConstants(i, Vals.size(), VE, Stream, true);
   1150       return;
   1151     }
   1152   }
   1153 }
   1154 
   1155 /// PushValueAndType - The file has to encode both the value and type id for
   1156 /// many values, because we need to know what type to create for forward
   1157 /// references.  However, most operands are not forward references, so this type
   1158 /// field is not needed.
   1159 ///
   1160 /// This function adds V's value ID to Vals.  If the value ID is higher than the
   1161 /// instruction ID, then it is a forward reference, and it also includes the
   1162 /// type ID.  The value ID that is written is encoded relative to the InstID.
   1163 static bool PushValueAndType(const Value *V, unsigned InstID,
   1164                              SmallVectorImpl<unsigned> &Vals,
   1165                              ValueEnumerator &VE) {
   1166   unsigned ValID = VE.getValueID(V);
   1167   // Make encoding relative to the InstID.
   1168   Vals.push_back(InstID - ValID);
   1169   if (ValID >= InstID) {
   1170     Vals.push_back(VE.getTypeID(V->getType()));
   1171     return true;
   1172   }
   1173   return false;
   1174 }
   1175 
   1176 /// pushValue - Like PushValueAndType, but where the type of the value is
   1177 /// omitted (perhaps it was already encoded in an earlier operand).
   1178 static void pushValue(const Value *V, unsigned InstID,
   1179                       SmallVectorImpl<unsigned> &Vals,
   1180                       ValueEnumerator &VE) {
   1181   unsigned ValID = VE.getValueID(V);
   1182   Vals.push_back(InstID - ValID);
   1183 }
   1184 
   1185 static void pushValue64(const Value *V, unsigned InstID,
   1186                         SmallVectorImpl<uint64_t> &Vals,
   1187                         ValueEnumerator &VE) {
   1188   uint64_t ValID = VE.getValueID(V);
   1189   Vals.push_back(InstID - ValID);
   1190 }
   1191 
   1192 static void pushValueSigned(const Value *V, unsigned InstID,
   1193                             SmallVectorImpl<uint64_t> &Vals,
   1194                             ValueEnumerator &VE) {
   1195   unsigned ValID = VE.getValueID(V);
   1196   int64_t diff = ((int32_t)InstID - (int32_t)ValID);
   1197   emitSignedInt64(Vals, diff);
   1198 }
   1199 
   1200 /// WriteInstruction - Emit an instruction to the specified stream.
   1201 static void WriteInstruction(const Instruction &I, unsigned InstID,
   1202                              ValueEnumerator &VE, BitstreamWriter &Stream,
   1203                              SmallVectorImpl<unsigned> &Vals) {
   1204   unsigned Code = 0;
   1205   unsigned AbbrevToUse = 0;
   1206   VE.setInstructionID(&I);
   1207   switch (I.getOpcode()) {
   1208   default:
   1209     if (Instruction::isCast(I.getOpcode())) {
   1210       Code = bitc::FUNC_CODE_INST_CAST;
   1211       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
   1212         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
   1213       Vals.push_back(VE.getTypeID(I.getType()));
   1214       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
   1215     } else {
   1216       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
   1217       Code = bitc::FUNC_CODE_INST_BINOP;
   1218       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
   1219         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
   1220       pushValue(I.getOperand(1), InstID, Vals, VE);
   1221       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
   1222       uint64_t Flags = GetOptimizationFlags(&I);
   1223       if (Flags != 0) {
   1224         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
   1225           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
   1226         Vals.push_back(Flags);
   1227       }
   1228     }
   1229     break;
   1230 
   1231   case Instruction::GetElementPtr:
   1232     Code = bitc::FUNC_CODE_INST_GEP;
   1233     if (cast<GEPOperator>(&I)->isInBounds())
   1234       Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
   1235     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
   1236       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
   1237     break;
   1238   case Instruction::ExtractValue: {
   1239     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
   1240     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1241     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
   1242     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
   1243       Vals.push_back(*i);
   1244     break;
   1245   }
   1246   case Instruction::InsertValue: {
   1247     Code = bitc::FUNC_CODE_INST_INSERTVAL;
   1248     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1249     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
   1250     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
   1251     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
   1252       Vals.push_back(*i);
   1253     break;
   1254   }
   1255   case Instruction::Select:
   1256     Code = bitc::FUNC_CODE_INST_VSELECT;
   1257     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
   1258     pushValue(I.getOperand(2), InstID, Vals, VE);
   1259     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1260     break;
   1261   case Instruction::ExtractElement:
   1262     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
   1263     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1264     pushValue(I.getOperand(1), InstID, Vals, VE);
   1265     break;
   1266   case Instruction::InsertElement:
   1267     Code = bitc::FUNC_CODE_INST_INSERTELT;
   1268     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1269     pushValue(I.getOperand(1), InstID, Vals, VE);
   1270     pushValue(I.getOperand(2), InstID, Vals, VE);
   1271     break;
   1272   case Instruction::ShuffleVector:
   1273     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
   1274     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1275     pushValue(I.getOperand(1), InstID, Vals, VE);
   1276     pushValue(I.getOperand(2), InstID, Vals, VE);
   1277     break;
   1278   case Instruction::ICmp:
   1279   case Instruction::FCmp:
   1280     // compare returning Int1Ty or vector of Int1Ty
   1281     Code = bitc::FUNC_CODE_INST_CMP2;
   1282     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1283     pushValue(I.getOperand(1), InstID, Vals, VE);
   1284     Vals.push_back(cast<CmpInst>(I).getPredicate());
   1285     break;
   1286 
   1287   case Instruction::Ret:
   1288     {
   1289       Code = bitc::FUNC_CODE_INST_RET;
   1290       unsigned NumOperands = I.getNumOperands();
   1291       if (NumOperands == 0)
   1292         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
   1293       else if (NumOperands == 1) {
   1294         if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
   1295           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
   1296       } else {
   1297         for (unsigned i = 0, e = NumOperands; i != e; ++i)
   1298           PushValueAndType(I.getOperand(i), InstID, Vals, VE);
   1299       }
   1300     }
   1301     break;
   1302   case Instruction::Br:
   1303     {
   1304       Code = bitc::FUNC_CODE_INST_BR;
   1305       const BranchInst &II = cast<BranchInst>(I);
   1306       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
   1307       if (II.isConditional()) {
   1308         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
   1309         pushValue(II.getCondition(), InstID, Vals, VE);
   1310       }
   1311     }
   1312     break;
   1313   case Instruction::Switch:
   1314     {
   1315       // Redefine Vals, since here we need to use 64 bit values
   1316       // explicitly to store large APInt numbers.
   1317       SmallVector<uint64_t, 128> Vals64;
   1318 
   1319       Code = bitc::FUNC_CODE_INST_SWITCH;
   1320       const SwitchInst &SI = cast<SwitchInst>(I);
   1321 
   1322       uint32_t SwitchRecordHeader = SI.hash() | (SWITCH_INST_MAGIC << 16);
   1323       Vals64.push_back(SwitchRecordHeader);
   1324 
   1325       Vals64.push_back(VE.getTypeID(SI.getCondition()->getType()));
   1326       pushValue64(SI.getCondition(), InstID, Vals64, VE);
   1327       Vals64.push_back(VE.getValueID(SI.getDefaultDest()));
   1328       Vals64.push_back(SI.getNumCases());
   1329       for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
   1330            i != e; ++i) {
   1331         const IntegersSubset& CaseRanges = i.getCaseValueEx();
   1332         unsigned Code, Abbrev; // will unused.
   1333 
   1334         if (CaseRanges.isSingleNumber()) {
   1335           Vals64.push_back(1/*NumItems = 1*/);
   1336           Vals64.push_back(true/*IsSingleNumber = true*/);
   1337           EmitAPInt(Vals64, Code, Abbrev, CaseRanges.getSingleNumber(0), true);
   1338         } else {
   1339 
   1340           Vals64.push_back(CaseRanges.getNumItems());
   1341 
   1342           if (CaseRanges.isSingleNumbersOnly()) {
   1343             for (unsigned ri = 0, rn = CaseRanges.getNumItems();
   1344                  ri != rn; ++ri) {
   1345 
   1346               Vals64.push_back(true/*IsSingleNumber = true*/);
   1347 
   1348               EmitAPInt(Vals64, Code, Abbrev,
   1349                         CaseRanges.getSingleNumber(ri), true);
   1350             }
   1351           } else
   1352             for (unsigned ri = 0, rn = CaseRanges.getNumItems();
   1353                  ri != rn; ++ri) {
   1354               IntegersSubset::Range r = CaseRanges.getItem(ri);
   1355               bool IsSingleNumber = CaseRanges.isSingleNumber(ri);
   1356 
   1357               Vals64.push_back(IsSingleNumber);
   1358 
   1359               EmitAPInt(Vals64, Code, Abbrev, r.getLow(), true);
   1360               if (!IsSingleNumber)
   1361                 EmitAPInt(Vals64, Code, Abbrev, r.getHigh(), true);
   1362             }
   1363         }
   1364         Vals64.push_back(VE.getValueID(i.getCaseSuccessor()));
   1365       }
   1366 
   1367       Stream.EmitRecord(Code, Vals64, AbbrevToUse);
   1368 
   1369       // Also do expected action - clear external Vals collection:
   1370       Vals.clear();
   1371       return;
   1372     }
   1373     break;
   1374   case Instruction::IndirectBr:
   1375     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
   1376     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
   1377     // Encode the address operand as relative, but not the basic blocks.
   1378     pushValue(I.getOperand(0), InstID, Vals, VE);
   1379     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
   1380       Vals.push_back(VE.getValueID(I.getOperand(i)));
   1381     break;
   1382 
   1383   case Instruction::Invoke: {
   1384     const InvokeInst *II = cast<InvokeInst>(&I);
   1385     const Value *Callee(II->getCalledValue());
   1386     PointerType *PTy = cast<PointerType>(Callee->getType());
   1387     FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
   1388     Code = bitc::FUNC_CODE_INST_INVOKE;
   1389 
   1390     Vals.push_back(VE.getAttributeID(II->getAttributes()));
   1391     Vals.push_back(II->getCallingConv());
   1392     Vals.push_back(VE.getValueID(II->getNormalDest()));
   1393     Vals.push_back(VE.getValueID(II->getUnwindDest()));
   1394     PushValueAndType(Callee, InstID, Vals, VE);
   1395 
   1396     // Emit value #'s for the fixed parameters.
   1397     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
   1398       pushValue(I.getOperand(i), InstID, Vals, VE);  // fixed param.
   1399 
   1400     // Emit type/value pairs for varargs params.
   1401     if (FTy->isVarArg()) {
   1402       for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
   1403            i != e; ++i)
   1404         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
   1405     }
   1406     break;
   1407   }
   1408   case Instruction::Resume:
   1409     Code = bitc::FUNC_CODE_INST_RESUME;
   1410     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1411     break;
   1412   case Instruction::Unreachable:
   1413     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
   1414     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
   1415     break;
   1416 
   1417   case Instruction::PHI: {
   1418     const PHINode &PN = cast<PHINode>(I);
   1419     Code = bitc::FUNC_CODE_INST_PHI;
   1420     // With the newer instruction encoding, forward references could give
   1421     // negative valued IDs.  This is most common for PHIs, so we use
   1422     // signed VBRs.
   1423     SmallVector<uint64_t, 128> Vals64;
   1424     Vals64.push_back(VE.getTypeID(PN.getType()));
   1425     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
   1426       pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE);
   1427       Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
   1428     }
   1429     // Emit a Vals64 vector and exit.
   1430     Stream.EmitRecord(Code, Vals64, AbbrevToUse);
   1431     Vals64.clear();
   1432     return;
   1433   }
   1434 
   1435   case Instruction::LandingPad: {
   1436     const LandingPadInst &LP = cast<LandingPadInst>(I);
   1437     Code = bitc::FUNC_CODE_INST_LANDINGPAD;
   1438     Vals.push_back(VE.getTypeID(LP.getType()));
   1439     PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE);
   1440     Vals.push_back(LP.isCleanup());
   1441     Vals.push_back(LP.getNumClauses());
   1442     for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
   1443       if (LP.isCatch(I))
   1444         Vals.push_back(LandingPadInst::Catch);
   1445       else
   1446         Vals.push_back(LandingPadInst::Filter);
   1447       PushValueAndType(LP.getClause(I), InstID, Vals, VE);
   1448     }
   1449     break;
   1450   }
   1451 
   1452   case Instruction::Alloca:
   1453     Code = bitc::FUNC_CODE_INST_ALLOCA;
   1454     Vals.push_back(VE.getTypeID(I.getType()));
   1455     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
   1456     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
   1457     Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
   1458     break;
   1459 
   1460   case Instruction::Load:
   1461     if (cast<LoadInst>(I).isAtomic()) {
   1462       Code = bitc::FUNC_CODE_INST_LOADATOMIC;
   1463       PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1464     } else {
   1465       Code = bitc::FUNC_CODE_INST_LOAD;
   1466       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
   1467         AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
   1468     }
   1469     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
   1470     Vals.push_back(cast<LoadInst>(I).isVolatile());
   1471     if (cast<LoadInst>(I).isAtomic()) {
   1472       Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering()));
   1473       Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
   1474     }
   1475     break;
   1476   case Instruction::Store:
   1477     if (cast<StoreInst>(I).isAtomic())
   1478       Code = bitc::FUNC_CODE_INST_STOREATOMIC;
   1479     else
   1480       Code = bitc::FUNC_CODE_INST_STORE;
   1481     PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
   1482     pushValue(I.getOperand(0), InstID, Vals, VE);         // val.
   1483     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
   1484     Vals.push_back(cast<StoreInst>(I).isVolatile());
   1485     if (cast<StoreInst>(I).isAtomic()) {
   1486       Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering()));
   1487       Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
   1488     }
   1489     break;
   1490   case Instruction::AtomicCmpXchg:
   1491     Code = bitc::FUNC_CODE_INST_CMPXCHG;
   1492     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
   1493     pushValue(I.getOperand(1), InstID, Vals, VE);         // cmp.
   1494     pushValue(I.getOperand(2), InstID, Vals, VE);         // newval.
   1495     Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
   1496     Vals.push_back(GetEncodedOrdering(
   1497                      cast<AtomicCmpXchgInst>(I).getOrdering()));
   1498     Vals.push_back(GetEncodedSynchScope(
   1499                      cast<AtomicCmpXchgInst>(I).getSynchScope()));
   1500     break;
   1501   case Instruction::AtomicRMW:
   1502     Code = bitc::FUNC_CODE_INST_ATOMICRMW;
   1503     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
   1504     pushValue(I.getOperand(1), InstID, Vals, VE);         // val.
   1505     Vals.push_back(GetEncodedRMWOperation(
   1506                      cast<AtomicRMWInst>(I).getOperation()));
   1507     Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
   1508     Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
   1509     Vals.push_back(GetEncodedSynchScope(
   1510                      cast<AtomicRMWInst>(I).getSynchScope()));
   1511     break;
   1512   case Instruction::Fence:
   1513     Code = bitc::FUNC_CODE_INST_FENCE;
   1514     Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering()));
   1515     Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
   1516     break;
   1517   case Instruction::Call: {
   1518     const CallInst &CI = cast<CallInst>(I);
   1519     PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType());
   1520     FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
   1521 
   1522     Code = bitc::FUNC_CODE_INST_CALL;
   1523 
   1524     Vals.push_back(VE.getAttributeID(CI.getAttributes()));
   1525     Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()));
   1526     PushValueAndType(CI.getCalledValue(), InstID, Vals, VE);  // Callee
   1527 
   1528     // Emit value #'s for the fixed parameters.
   1529     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
   1530       // Check for labels (can happen with asm labels).
   1531       if (FTy->getParamType(i)->isLabelTy())
   1532         Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
   1533       else
   1534         pushValue(CI.getArgOperand(i), InstID, Vals, VE);  // fixed param.
   1535     }
   1536 
   1537     // Emit type/value pairs for varargs params.
   1538     if (FTy->isVarArg()) {
   1539       for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
   1540            i != e; ++i)
   1541         PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE);  // varargs
   1542     }
   1543     break;
   1544   }
   1545   case Instruction::VAArg:
   1546     Code = bitc::FUNC_CODE_INST_VAARG;
   1547     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
   1548     pushValue(I.getOperand(0), InstID, Vals, VE); // valist.
   1549     Vals.push_back(VE.getTypeID(I.getType())); // restype.
   1550     break;
   1551   }
   1552 
   1553   Stream.EmitRecord(Code, Vals, AbbrevToUse);
   1554   Vals.clear();
   1555 }
   1556 
   1557 // Emit names for globals/functions etc.
   1558 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
   1559                                   const ValueEnumerator &VE,
   1560                                   BitstreamWriter &Stream) {
   1561   if (VST.empty()) return;
   1562   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
   1563 
   1564   // FIXME: Set up the abbrev, we know how many values there are!
   1565   // FIXME: We know if the type names can use 7-bit ascii.
   1566   SmallVector<unsigned, 64> NameVals;
   1567 
   1568   for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
   1569        SI != SE; ++SI) {
   1570 
   1571     const ValueName &Name = *SI;
   1572 
   1573     // Figure out the encoding to use for the name.
   1574     bool is7Bit = true;
   1575     bool isChar6 = true;
   1576     for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
   1577          C != E; ++C) {
   1578       if (isChar6)
   1579         isChar6 = BitCodeAbbrevOp::isChar6(*C);
   1580       if ((unsigned char)*C & 128) {
   1581         is7Bit = false;
   1582         break;  // don't bother scanning the rest.
   1583       }
   1584     }
   1585 
   1586     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
   1587 
   1588     // VST_ENTRY:   [valueid, namechar x N]
   1589     // VST_BBENTRY: [bbid, namechar x N]
   1590     unsigned Code;
   1591     if (isa<BasicBlock>(SI->getValue())) {
   1592       Code = bitc::VST_CODE_BBENTRY;
   1593       if (isChar6)
   1594         AbbrevToUse = VST_BBENTRY_6_ABBREV;
   1595     } else {
   1596       Code = bitc::VST_CODE_ENTRY;
   1597       if (isChar6)
   1598         AbbrevToUse = VST_ENTRY_6_ABBREV;
   1599       else if (is7Bit)
   1600         AbbrevToUse = VST_ENTRY_7_ABBREV;
   1601     }
   1602 
   1603     NameVals.push_back(VE.getValueID(SI->getValue()));
   1604     for (const char *P = Name.getKeyData(),
   1605          *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
   1606       NameVals.push_back((unsigned char)*P);
   1607 
   1608     // Emit the finished record.
   1609     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
   1610     NameVals.clear();
   1611   }
   1612   Stream.ExitBlock();
   1613 }
   1614 
   1615 /// WriteFunction - Emit a function body to the module stream.
   1616 static void WriteFunction(const Function &F, ValueEnumerator &VE,
   1617                           BitstreamWriter &Stream) {
   1618   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
   1619   VE.incorporateFunction(F);
   1620 
   1621   SmallVector<unsigned, 64> Vals;
   1622 
   1623   // Emit the number of basic blocks, so the reader can create them ahead of
   1624   // time.
   1625   Vals.push_back(VE.getBasicBlocks().size());
   1626   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
   1627   Vals.clear();
   1628 
   1629   // If there are function-local constants, emit them now.
   1630   unsigned CstStart, CstEnd;
   1631   VE.getFunctionConstantRange(CstStart, CstEnd);
   1632   WriteConstants(CstStart, CstEnd, VE, Stream, false);
   1633 
   1634   // If there is function-local metadata, emit it now.
   1635   WriteFunctionLocalMetadata(F, VE, Stream);
   1636 
   1637   // Keep a running idea of what the instruction ID is.
   1638   unsigned InstID = CstEnd;
   1639 
   1640   bool NeedsMetadataAttachment = false;
   1641 
   1642   DebugLoc LastDL;
   1643 
   1644   // Finally, emit all the instructions, in order.
   1645   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
   1646     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
   1647          I != E; ++I) {
   1648       WriteInstruction(*I, InstID, VE, Stream, Vals);
   1649 
   1650       if (!I->getType()->isVoidTy())
   1651         ++InstID;
   1652 
   1653       // If the instruction has metadata, write a metadata attachment later.
   1654       NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
   1655 
   1656       // If the instruction has a debug location, emit it.
   1657       DebugLoc DL = I->getDebugLoc();
   1658       if (DL.isUnknown()) {
   1659         // nothing todo.
   1660       } else if (DL == LastDL) {
   1661         // Just repeat the same debug loc as last time.
   1662         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
   1663       } else {
   1664         MDNode *Scope, *IA;
   1665         DL.getScopeAndInlinedAt(Scope, IA, I->getContext());
   1666 
   1667         Vals.push_back(DL.getLine());
   1668         Vals.push_back(DL.getCol());
   1669         Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0);
   1670         Vals.push_back(IA ? VE.getValueID(IA)+1 : 0);
   1671         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
   1672         Vals.clear();
   1673 
   1674         LastDL = DL;
   1675       }
   1676     }
   1677 
   1678   // Emit names for all the instructions etc.
   1679   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
   1680 
   1681   if (NeedsMetadataAttachment)
   1682     WriteMetadataAttachment(F, VE, Stream);
   1683   VE.purgeFunction();
   1684   Stream.ExitBlock();
   1685 }
   1686 
   1687 // Emit blockinfo, which defines the standard abbreviations etc.
   1688 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
   1689   // We only want to emit block info records for blocks that have multiple
   1690   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
   1691   // Other blocks can define their abbrevs inline.
   1692   Stream.EnterBlockInfoBlock(2);
   1693 
   1694   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
   1695     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1696     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
   1697     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   1698     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   1699     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
   1700     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
   1701                                    Abbv) != VST_ENTRY_8_ABBREV)
   1702       llvm_unreachable("Unexpected abbrev ordering!");
   1703   }
   1704 
   1705   { // 7-bit fixed width VST_ENTRY strings.
   1706     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1707     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
   1708     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   1709     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   1710     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
   1711     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
   1712                                    Abbv) != VST_ENTRY_7_ABBREV)
   1713       llvm_unreachable("Unexpected abbrev ordering!");
   1714   }
   1715   { // 6-bit char6 VST_ENTRY strings.
   1716     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1717     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
   1718     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   1719     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   1720     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
   1721     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
   1722                                    Abbv) != VST_ENTRY_6_ABBREV)
   1723       llvm_unreachable("Unexpected abbrev ordering!");
   1724   }
   1725   { // 6-bit char6 VST_BBENTRY strings.
   1726     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1727     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
   1728     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   1729     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   1730     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
   1731     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
   1732                                    Abbv) != VST_BBENTRY_6_ABBREV)
   1733       llvm_unreachable("Unexpected abbrev ordering!");
   1734   }
   1735 
   1736 
   1737 
   1738   { // SETTYPE abbrev for CONSTANTS_BLOCK.
   1739     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1740     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
   1741     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
   1742                               Log2_32_Ceil(VE.getTypes().size()+1)));
   1743     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
   1744                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
   1745       llvm_unreachable("Unexpected abbrev ordering!");
   1746   }
   1747 
   1748   { // INTEGER abbrev for CONSTANTS_BLOCK.
   1749     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1750     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
   1751     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   1752     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
   1753                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
   1754       llvm_unreachable("Unexpected abbrev ordering!");
   1755   }
   1756 
   1757   { // CE_CAST abbrev for CONSTANTS_BLOCK.
   1758     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1759     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
   1760     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
   1761     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
   1762                               Log2_32_Ceil(VE.getTypes().size()+1)));
   1763     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
   1764 
   1765     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
   1766                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
   1767       llvm_unreachable("Unexpected abbrev ordering!");
   1768   }
   1769   { // NULL abbrev for CONSTANTS_BLOCK.
   1770     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1771     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
   1772     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
   1773                                    Abbv) != CONSTANTS_NULL_Abbrev)
   1774       llvm_unreachable("Unexpected abbrev ordering!");
   1775   }
   1776 
   1777   // FIXME: This should only use space for first class types!
   1778 
   1779   { // INST_LOAD abbrev for FUNCTION_BLOCK.
   1780     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1781     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
   1782     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
   1783     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
   1784     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
   1785     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
   1786                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
   1787       llvm_unreachable("Unexpected abbrev ordering!");
   1788   }
   1789   { // INST_BINOP abbrev for FUNCTION_BLOCK.
   1790     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1791     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
   1792     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
   1793     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
   1794     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
   1795     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
   1796                                    Abbv) != FUNCTION_INST_BINOP_ABBREV)
   1797       llvm_unreachable("Unexpected abbrev ordering!");
   1798   }
   1799   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
   1800     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1801     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
   1802     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
   1803     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
   1804     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
   1805     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
   1806     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
   1807                                    Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
   1808       llvm_unreachable("Unexpected abbrev ordering!");
   1809   }
   1810   { // INST_CAST abbrev for FUNCTION_BLOCK.
   1811     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1812     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
   1813     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
   1814     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
   1815                               Log2_32_Ceil(VE.getTypes().size()+1)));
   1816     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
   1817     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
   1818                                    Abbv) != FUNCTION_INST_CAST_ABBREV)
   1819       llvm_unreachable("Unexpected abbrev ordering!");
   1820   }
   1821 
   1822   { // INST_RET abbrev for FUNCTION_BLOCK.
   1823     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1824     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
   1825     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
   1826                                    Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
   1827       llvm_unreachable("Unexpected abbrev ordering!");
   1828   }
   1829   { // INST_RET abbrev for FUNCTION_BLOCK.
   1830     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1831     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
   1832     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
   1833     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
   1834                                    Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
   1835       llvm_unreachable("Unexpected abbrev ordering!");
   1836   }
   1837   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
   1838     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1839     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
   1840     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
   1841                                    Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
   1842       llvm_unreachable("Unexpected abbrev ordering!");
   1843   }
   1844 
   1845   Stream.ExitBlock();
   1846 }
   1847 
   1848 // Sort the Users based on the order in which the reader parses the bitcode
   1849 // file.
   1850 static bool bitcodereader_order(const User *lhs, const User *rhs) {
   1851   // TODO: Implement.
   1852   return true;
   1853 }
   1854 
   1855 static void WriteUseList(const Value *V, const ValueEnumerator &VE,
   1856                          BitstreamWriter &Stream) {
   1857 
   1858   // One or zero uses can't get out of order.
   1859   if (V->use_empty() || V->hasNUses(1))
   1860     return;
   1861 
   1862   // Make a copy of the in-memory use-list for sorting.
   1863   unsigned UseListSize = std::distance(V->use_begin(), V->use_end());
   1864   SmallVector<const User*, 8> UseList;
   1865   UseList.reserve(UseListSize);
   1866   for (Value::const_use_iterator I = V->use_begin(), E = V->use_end();
   1867        I != E; ++I) {
   1868     const User *U = *I;
   1869     UseList.push_back(U);
   1870   }
   1871 
   1872   // Sort the copy based on the order read by the BitcodeReader.
   1873   std::sort(UseList.begin(), UseList.end(), bitcodereader_order);
   1874 
   1875   // TODO: Generate a diff between the BitcodeWriter in-memory use-list and the
   1876   // sorted list (i.e., the expected BitcodeReader in-memory use-list).
   1877 
   1878   // TODO: Emit the USELIST_CODE_ENTRYs.
   1879 }
   1880 
   1881 static void WriteFunctionUseList(const Function *F, ValueEnumerator &VE,
   1882                                  BitstreamWriter &Stream) {
   1883   VE.incorporateFunction(*F);
   1884 
   1885   for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
   1886        AI != AE; ++AI)
   1887     WriteUseList(AI, VE, Stream);
   1888   for (Function::const_iterator BB = F->begin(), FE = F->end(); BB != FE;
   1889        ++BB) {
   1890     WriteUseList(BB, VE, Stream);
   1891     for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); II != IE;
   1892          ++II) {
   1893       WriteUseList(II, VE, Stream);
   1894       for (User::const_op_iterator OI = II->op_begin(), E = II->op_end();
   1895            OI != E; ++OI) {
   1896         if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) ||
   1897             isa<InlineAsm>(*OI))
   1898           WriteUseList(*OI, VE, Stream);
   1899       }
   1900     }
   1901   }
   1902   VE.purgeFunction();
   1903 }
   1904 
   1905 // Emit use-lists.
   1906 static void WriteModuleUseLists(const Module *M, ValueEnumerator &VE,
   1907                                 BitstreamWriter &Stream) {
   1908   Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
   1909 
   1910   // XXX: this modifies the module, but in a way that should never change the
   1911   // behavior of any pass or codegen in LLVM. The problem is that GVs may
   1912   // contain entries in the use_list that do not exist in the Module and are
   1913   // not stored in the .bc file.
   1914   for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
   1915        I != E; ++I)
   1916     I->removeDeadConstantUsers();
   1917 
   1918   // Write the global variables.
   1919   for (Module::const_global_iterator GI = M->global_begin(),
   1920          GE = M->global_end(); GI != GE; ++GI) {
   1921     WriteUseList(GI, VE, Stream);
   1922 
   1923     // Write the global variable initializers.
   1924     if (GI->hasInitializer())
   1925       WriteUseList(GI->getInitializer(), VE, Stream);
   1926   }
   1927 
   1928   // Write the functions.
   1929   for (Module::const_iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) {
   1930     WriteUseList(FI, VE, Stream);
   1931     if (!FI->isDeclaration())
   1932       WriteFunctionUseList(FI, VE, Stream);
   1933   }
   1934 
   1935   // Write the aliases.
   1936   for (Module::const_alias_iterator AI = M->alias_begin(), AE = M->alias_end();
   1937        AI != AE; ++AI) {
   1938     WriteUseList(AI, VE, Stream);
   1939     WriteUseList(AI->getAliasee(), VE, Stream);
   1940   }
   1941 
   1942   Stream.ExitBlock();
   1943 }
   1944 
   1945 /// WriteModule - Emit the specified module to the bitstream.
   1946 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
   1947   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
   1948 
   1949   SmallVector<unsigned, 1> Vals;
   1950   unsigned CurVersion = 1;
   1951   Vals.push_back(CurVersion);
   1952   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
   1953 
   1954   // Analyze the module, enumerating globals, functions, etc.
   1955   ValueEnumerator VE(M);
   1956 
   1957   // Emit blockinfo, which defines the standard abbreviations etc.
   1958   WriteBlockInfo(VE, Stream);
   1959 
   1960   // Emit information about attribute groups.
   1961   WriteAttributeGroupTable(VE, Stream);
   1962 
   1963   // Emit information about parameter attributes.
   1964   WriteAttributeTable(VE, Stream);
   1965 
   1966   // Emit information describing all of the types in the module.
   1967   WriteTypeTable(VE, Stream);
   1968 
   1969   // Emit top-level description of module, including target triple, inline asm,
   1970   // descriptors for global variables, and function prototype info.
   1971   WriteModuleInfo(M, VE, Stream);
   1972 
   1973   // Emit constants.
   1974   WriteModuleConstants(VE, Stream);
   1975 
   1976   // Emit metadata.
   1977   WriteModuleMetadata(M, VE, Stream);
   1978 
   1979   // Emit metadata.
   1980   WriteModuleMetadataStore(M, Stream);
   1981 
   1982   // Emit names for globals/functions etc.
   1983   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
   1984 
   1985   // Emit use-lists.
   1986   if (EnablePreserveUseListOrdering)
   1987     WriteModuleUseLists(M, VE, Stream);
   1988 
   1989   // Emit function bodies.
   1990   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
   1991     if (!F->isDeclaration())
   1992       WriteFunction(*F, VE, Stream);
   1993 
   1994   Stream.ExitBlock();
   1995 }
   1996 
   1997 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
   1998 /// header and trailer to make it compatible with the system archiver.  To do
   1999 /// this we emit the following header, and then emit a trailer that pads the
   2000 /// file out to be a multiple of 16 bytes.
   2001 ///
   2002 /// struct bc_header {
   2003 ///   uint32_t Magic;         // 0x0B17C0DE
   2004 ///   uint32_t Version;       // Version, currently always 0.
   2005 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
   2006 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
   2007 ///   uint32_t CPUType;       // CPU specifier.
   2008 ///   ... potentially more later ...
   2009 /// };
   2010 enum {
   2011   DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
   2012   DarwinBCHeaderSize = 5*4
   2013 };
   2014 
   2015 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
   2016                                uint32_t &Position) {
   2017   Buffer[Position + 0] = (unsigned char) (Value >>  0);
   2018   Buffer[Position + 1] = (unsigned char) (Value >>  8);
   2019   Buffer[Position + 2] = (unsigned char) (Value >> 16);
   2020   Buffer[Position + 3] = (unsigned char) (Value >> 24);
   2021   Position += 4;
   2022 }
   2023 
   2024 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
   2025                                          const Triple &TT) {
   2026   unsigned CPUType = ~0U;
   2027 
   2028   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
   2029   // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
   2030   // number from /usr/include/mach/machine.h.  It is ok to reproduce the
   2031   // specific constants here because they are implicitly part of the Darwin ABI.
   2032   enum {
   2033     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
   2034     DARWIN_CPU_TYPE_X86        = 7,
   2035     DARWIN_CPU_TYPE_ARM        = 12,
   2036     DARWIN_CPU_TYPE_POWERPC    = 18
   2037   };
   2038 
   2039   Triple::ArchType Arch = TT.getArch();
   2040   if (Arch == Triple::x86_64)
   2041     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
   2042   else if (Arch == Triple::x86)
   2043     CPUType = DARWIN_CPU_TYPE_X86;
   2044   else if (Arch == Triple::ppc)
   2045     CPUType = DARWIN_CPU_TYPE_POWERPC;
   2046   else if (Arch == Triple::ppc64)
   2047     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
   2048   else if (Arch == Triple::arm || Arch == Triple::thumb)
   2049     CPUType = DARWIN_CPU_TYPE_ARM;
   2050 
   2051   // Traditional Bitcode starts after header.
   2052   assert(Buffer.size() >= DarwinBCHeaderSize &&
   2053          "Expected header size to be reserved");
   2054   unsigned BCOffset = DarwinBCHeaderSize;
   2055   unsigned BCSize = Buffer.size()-DarwinBCHeaderSize;
   2056 
   2057   // Write the magic and version.
   2058   unsigned Position = 0;
   2059   WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position);
   2060   WriteInt32ToBuffer(0          , Buffer, Position); // Version.
   2061   WriteInt32ToBuffer(BCOffset   , Buffer, Position);
   2062   WriteInt32ToBuffer(BCSize     , Buffer, Position);
   2063   WriteInt32ToBuffer(CPUType    , Buffer, Position);
   2064 
   2065   // If the file is not a multiple of 16 bytes, insert dummy padding.
   2066   while (Buffer.size() & 15)
   2067     Buffer.push_back(0);
   2068 }
   2069 
   2070 /// WriteBitcodeToFile - Write the specified module to the specified output
   2071 /// stream.
   2072 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
   2073   SmallVector<char, 0> Buffer;
   2074   Buffer.reserve(256*1024);
   2075 
   2076   // If this is darwin or another generic macho target, reserve space for the
   2077   // header.
   2078   Triple TT(M->getTargetTriple());
   2079   if (TT.isOSDarwin())
   2080     Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0);
   2081 
   2082   // Emit the module into the buffer.
   2083   {
   2084     BitstreamWriter Stream(Buffer);
   2085 
   2086     // Emit the file header.
   2087     Stream.Emit((unsigned)'B', 8);
   2088     Stream.Emit((unsigned)'C', 8);
   2089     Stream.Emit(0x0, 4);
   2090     Stream.Emit(0xC, 4);
   2091     Stream.Emit(0xE, 4);
   2092     Stream.Emit(0xD, 4);
   2093 
   2094     // Emit the module.
   2095     WriteModule(M, Stream);
   2096   }
   2097 
   2098   if (TT.isOSDarwin())
   2099     EmitDarwinBCHeaderAndTrailer(Buffer, TT);
   2100 
   2101   // Write the generated bitstream to "Out".
   2102   Out.write((char*)&Buffer.front(), Buffer.size());
   2103 }
   2104