Home | History | Annotate | Download | only in SystemZ
      1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the SystemZTargetLowering class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #define DEBUG_TYPE "systemz-lower"
     15 
     16 #include "SystemZISelLowering.h"
     17 #include "SystemZCallingConv.h"
     18 #include "SystemZConstantPoolValue.h"
     19 #include "SystemZMachineFunctionInfo.h"
     20 #include "SystemZTargetMachine.h"
     21 #include "llvm/CodeGen/CallingConvLower.h"
     22 #include "llvm/CodeGen/MachineInstrBuilder.h"
     23 #include "llvm/CodeGen/MachineRegisterInfo.h"
     24 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
     25 
     26 using namespace llvm;
     27 
     28 // Classify VT as either 32 or 64 bit.
     29 static bool is32Bit(EVT VT) {
     30   switch (VT.getSimpleVT().SimpleTy) {
     31   case MVT::i32:
     32     return true;
     33   case MVT::i64:
     34     return false;
     35   default:
     36     llvm_unreachable("Unsupported type");
     37   }
     38 }
     39 
     40 // Return a version of MachineOperand that can be safely used before the
     41 // final use.
     42 static MachineOperand earlyUseOperand(MachineOperand Op) {
     43   if (Op.isReg())
     44     Op.setIsKill(false);
     45   return Op;
     46 }
     47 
     48 SystemZTargetLowering::SystemZTargetLowering(SystemZTargetMachine &tm)
     49   : TargetLowering(tm, new TargetLoweringObjectFileELF()),
     50     Subtarget(*tm.getSubtargetImpl()), TM(tm) {
     51   MVT PtrVT = getPointerTy();
     52 
     53   // Set up the register classes.
     54   addRegisterClass(MVT::i32,  &SystemZ::GR32BitRegClass);
     55   addRegisterClass(MVT::i64,  &SystemZ::GR64BitRegClass);
     56   addRegisterClass(MVT::f32,  &SystemZ::FP32BitRegClass);
     57   addRegisterClass(MVT::f64,  &SystemZ::FP64BitRegClass);
     58   addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
     59 
     60   // Compute derived properties from the register classes
     61   computeRegisterProperties();
     62 
     63   // Set up special registers.
     64   setExceptionPointerRegister(SystemZ::R6D);
     65   setExceptionSelectorRegister(SystemZ::R7D);
     66   setStackPointerRegisterToSaveRestore(SystemZ::R15D);
     67 
     68   // TODO: It may be better to default to latency-oriented scheduling, however
     69   // LLVM's current latency-oriented scheduler can't handle physreg definitions
     70   // such as SystemZ has with CC, so set this to the register-pressure
     71   // scheduler, because it can.
     72   setSchedulingPreference(Sched::RegPressure);
     73 
     74   setBooleanContents(ZeroOrOneBooleanContent);
     75   setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
     76 
     77   // Instructions are strings of 2-byte aligned 2-byte values.
     78   setMinFunctionAlignment(2);
     79 
     80   // Handle operations that are handled in a similar way for all types.
     81   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
     82        I <= MVT::LAST_FP_VALUETYPE;
     83        ++I) {
     84     MVT VT = MVT::SimpleValueType(I);
     85     if (isTypeLegal(VT)) {
     86       // Expand SETCC(X, Y, COND) into SELECT_CC(X, Y, 1, 0, COND).
     87       setOperationAction(ISD::SETCC, VT, Expand);
     88 
     89       // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
     90       setOperationAction(ISD::SELECT, VT, Expand);
     91 
     92       // Lower SELECT_CC and BR_CC into separate comparisons and branches.
     93       setOperationAction(ISD::SELECT_CC, VT, Custom);
     94       setOperationAction(ISD::BR_CC,     VT, Custom);
     95     }
     96   }
     97 
     98   // Expand jump table branches as address arithmetic followed by an
     99   // indirect jump.
    100   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
    101 
    102   // Expand BRCOND into a BR_CC (see above).
    103   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
    104 
    105   // Handle integer types.
    106   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
    107        I <= MVT::LAST_INTEGER_VALUETYPE;
    108        ++I) {
    109     MVT VT = MVT::SimpleValueType(I);
    110     if (isTypeLegal(VT)) {
    111       // Expand individual DIV and REMs into DIVREMs.
    112       setOperationAction(ISD::SDIV, VT, Expand);
    113       setOperationAction(ISD::UDIV, VT, Expand);
    114       setOperationAction(ISD::SREM, VT, Expand);
    115       setOperationAction(ISD::UREM, VT, Expand);
    116       setOperationAction(ISD::SDIVREM, VT, Custom);
    117       setOperationAction(ISD::UDIVREM, VT, Custom);
    118 
    119       // Expand ATOMIC_LOAD and ATOMIC_STORE using ATOMIC_CMP_SWAP.
    120       // FIXME: probably much too conservative.
    121       setOperationAction(ISD::ATOMIC_LOAD,  VT, Expand);
    122       setOperationAction(ISD::ATOMIC_STORE, VT, Expand);
    123 
    124       // No special instructions for these.
    125       setOperationAction(ISD::CTPOP,           VT, Expand);
    126       setOperationAction(ISD::CTTZ,            VT, Expand);
    127       setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
    128       setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
    129       setOperationAction(ISD::ROTR,            VT, Expand);
    130 
    131       // Use *MUL_LOHI where possible and a wider multiplication otherwise.
    132       setOperationAction(ISD::MULHS, VT, Expand);
    133       setOperationAction(ISD::MULHU, VT, Expand);
    134 
    135       // We have instructions for signed but not unsigned FP conversion.
    136       setOperationAction(ISD::FP_TO_UINT, VT, Expand);
    137     }
    138   }
    139 
    140   // Type legalization will convert 8- and 16-bit atomic operations into
    141   // forms that operate on i32s (but still keeping the original memory VT).
    142   // Lower them into full i32 operations.
    143   setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
    144   setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
    145   setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
    146   setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
    147   setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
    148   setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
    149   setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
    150   setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
    151   setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
    152   setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
    153   setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
    154   setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Custom);
    155 
    156   // We have instructions for signed but not unsigned FP conversion.
    157   // Handle unsigned 32-bit types as signed 64-bit types.
    158   setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
    159   setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
    160 
    161   // We have native support for a 64-bit CTLZ, via FLOGR.
    162   setOperationAction(ISD::CTLZ, MVT::i32, Promote);
    163   setOperationAction(ISD::CTLZ, MVT::i64, Legal);
    164 
    165   // Give LowerOperation the chance to replace 64-bit ORs with subregs.
    166   setOperationAction(ISD::OR, MVT::i64, Custom);
    167 
    168   // The architecture has 32-bit SMUL_LOHI and UMUL_LOHI (MR and MLR),
    169   // but they aren't really worth using.  There is no 64-bit SMUL_LOHI,
    170   // but there is a 64-bit UMUL_LOHI: MLGR.
    171   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
    172   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
    173   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
    174   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Custom);
    175 
    176   // FIXME: Can we support these natively?
    177   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
    178   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
    179   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
    180 
    181   // We have native instructions for i8, i16 and i32 extensions, but not i1.
    182   setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
    183   setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
    184   setLoadExtAction(ISD::EXTLOAD,  MVT::i1, Promote);
    185   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
    186 
    187   // Handle the various types of symbolic address.
    188   setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
    189   setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
    190   setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
    191   setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
    192   setOperationAction(ISD::JumpTable,        PtrVT, Custom);
    193 
    194   // We need to handle dynamic allocations specially because of the
    195   // 160-byte area at the bottom of the stack.
    196   setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
    197 
    198   // Use custom expanders so that we can force the function to use
    199   // a frame pointer.
    200   setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
    201   setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
    202 
    203   // Handle floating-point types.
    204   for (unsigned I = MVT::FIRST_FP_VALUETYPE;
    205        I <= MVT::LAST_FP_VALUETYPE;
    206        ++I) {
    207     MVT VT = MVT::SimpleValueType(I);
    208     if (isTypeLegal(VT)) {
    209       // We can use FI for FRINT.
    210       setOperationAction(ISD::FRINT, VT, Legal);
    211 
    212       // No special instructions for these.
    213       setOperationAction(ISD::FSIN, VT, Expand);
    214       setOperationAction(ISD::FCOS, VT, Expand);
    215       setOperationAction(ISD::FREM, VT, Expand);
    216     }
    217   }
    218 
    219   // We have fused multiply-addition for f32 and f64 but not f128.
    220   setOperationAction(ISD::FMA, MVT::f32,  Legal);
    221   setOperationAction(ISD::FMA, MVT::f64,  Legal);
    222   setOperationAction(ISD::FMA, MVT::f128, Expand);
    223 
    224   // Needed so that we don't try to implement f128 constant loads using
    225   // a load-and-extend of a f80 constant (in cases where the constant
    226   // would fit in an f80).
    227   setLoadExtAction(ISD::EXTLOAD, MVT::f80, Expand);
    228 
    229   // Floating-point truncation and stores need to be done separately.
    230   setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
    231   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
    232   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
    233 
    234   // We have 64-bit FPR<->GPR moves, but need special handling for
    235   // 32-bit forms.
    236   setOperationAction(ISD::BITCAST, MVT::i32, Custom);
    237   setOperationAction(ISD::BITCAST, MVT::f32, Custom);
    238 
    239   // VASTART and VACOPY need to deal with the SystemZ-specific varargs
    240   // structure, but VAEND is a no-op.
    241   setOperationAction(ISD::VASTART, MVT::Other, Custom);
    242   setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
    243   setOperationAction(ISD::VAEND,   MVT::Other, Expand);
    244 
    245   // We want to use MVC in preference to even a single load/store pair.
    246   MaxStoresPerMemcpy = 0;
    247   MaxStoresPerMemcpyOptSize = 0;
    248 
    249   // The main memset sequence is a byte store followed by an MVC.
    250   // Two STC or MV..I stores win over that, but the kind of fused stores
    251   // generated by target-independent code don't when the byte value is
    252   // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
    253   // than "STC;MVC".  Handle the choice in target-specific code instead.
    254   MaxStoresPerMemset = 0;
    255   MaxStoresPerMemsetOptSize = 0;
    256 }
    257 
    258 bool
    259 SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
    260   VT = VT.getScalarType();
    261 
    262   if (!VT.isSimple())
    263     return false;
    264 
    265   switch (VT.getSimpleVT().SimpleTy) {
    266   case MVT::f32:
    267   case MVT::f64:
    268     return true;
    269   case MVT::f128:
    270     return false;
    271   default:
    272     break;
    273   }
    274 
    275   return false;
    276 }
    277 
    278 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
    279   // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
    280   return Imm.isZero() || Imm.isNegZero();
    281 }
    282 
    283 bool SystemZTargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
    284                                                           bool *Fast) const {
    285   // Unaligned accesses should never be slower than the expanded version.
    286   // We check specifically for aligned accesses in the few cases where
    287   // they are required.
    288   if (Fast)
    289     *Fast = true;
    290   return true;
    291 }
    292 
    293 bool SystemZTargetLowering::isLegalAddressingMode(const AddrMode &AM,
    294                                                   Type *Ty) const {
    295   // Punt on globals for now, although they can be used in limited
    296   // RELATIVE LONG cases.
    297   if (AM.BaseGV)
    298     return false;
    299 
    300   // Require a 20-bit signed offset.
    301   if (!isInt<20>(AM.BaseOffs))
    302     return false;
    303 
    304   // Indexing is OK but no scale factor can be applied.
    305   return AM.Scale == 0 || AM.Scale == 1;
    306 }
    307 
    308 //===----------------------------------------------------------------------===//
    309 // Inline asm support
    310 //===----------------------------------------------------------------------===//
    311 
    312 TargetLowering::ConstraintType
    313 SystemZTargetLowering::getConstraintType(const std::string &Constraint) const {
    314   if (Constraint.size() == 1) {
    315     switch (Constraint[0]) {
    316     case 'a': // Address register
    317     case 'd': // Data register (equivalent to 'r')
    318     case 'f': // Floating-point register
    319     case 'r': // General-purpose register
    320       return C_RegisterClass;
    321 
    322     case 'Q': // Memory with base and unsigned 12-bit displacement
    323     case 'R': // Likewise, plus an index
    324     case 'S': // Memory with base and signed 20-bit displacement
    325     case 'T': // Likewise, plus an index
    326     case 'm': // Equivalent to 'T'.
    327       return C_Memory;
    328 
    329     case 'I': // Unsigned 8-bit constant
    330     case 'J': // Unsigned 12-bit constant
    331     case 'K': // Signed 16-bit constant
    332     case 'L': // Signed 20-bit displacement (on all targets we support)
    333     case 'M': // 0x7fffffff
    334       return C_Other;
    335 
    336     default:
    337       break;
    338     }
    339   }
    340   return TargetLowering::getConstraintType(Constraint);
    341 }
    342 
    343 TargetLowering::ConstraintWeight SystemZTargetLowering::
    344 getSingleConstraintMatchWeight(AsmOperandInfo &info,
    345                                const char *constraint) const {
    346   ConstraintWeight weight = CW_Invalid;
    347   Value *CallOperandVal = info.CallOperandVal;
    348   // If we don't have a value, we can't do a match,
    349   // but allow it at the lowest weight.
    350   if (CallOperandVal == NULL)
    351     return CW_Default;
    352   Type *type = CallOperandVal->getType();
    353   // Look at the constraint type.
    354   switch (*constraint) {
    355   default:
    356     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
    357     break;
    358 
    359   case 'a': // Address register
    360   case 'd': // Data register (equivalent to 'r')
    361   case 'r': // General-purpose register
    362     if (CallOperandVal->getType()->isIntegerTy())
    363       weight = CW_Register;
    364     break;
    365 
    366   case 'f': // Floating-point register
    367     if (type->isFloatingPointTy())
    368       weight = CW_Register;
    369     break;
    370 
    371   case 'I': // Unsigned 8-bit constant
    372     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
    373       if (isUInt<8>(C->getZExtValue()))
    374         weight = CW_Constant;
    375     break;
    376 
    377   case 'J': // Unsigned 12-bit constant
    378     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
    379       if (isUInt<12>(C->getZExtValue()))
    380         weight = CW_Constant;
    381     break;
    382 
    383   case 'K': // Signed 16-bit constant
    384     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
    385       if (isInt<16>(C->getSExtValue()))
    386         weight = CW_Constant;
    387     break;
    388 
    389   case 'L': // Signed 20-bit displacement (on all targets we support)
    390     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
    391       if (isInt<20>(C->getSExtValue()))
    392         weight = CW_Constant;
    393     break;
    394 
    395   case 'M': // 0x7fffffff
    396     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
    397       if (C->getZExtValue() == 0x7fffffff)
    398         weight = CW_Constant;
    399     break;
    400   }
    401   return weight;
    402 }
    403 
    404 // Parse a "{tNNN}" register constraint for which the register type "t"
    405 // has already been verified.  MC is the class associated with "t" and
    406 // Map maps 0-based register numbers to LLVM register numbers.
    407 static std::pair<unsigned, const TargetRegisterClass *>
    408 parseRegisterNumber(const std::string &Constraint,
    409                     const TargetRegisterClass *RC, const unsigned *Map) {
    410   assert(*(Constraint.end()-1) == '}' && "Missing '}'");
    411   if (isdigit(Constraint[2])) {
    412     std::string Suffix(Constraint.data() + 2, Constraint.size() - 2);
    413     unsigned Index = atoi(Suffix.c_str());
    414     if (Index < 16 && Map[Index])
    415       return std::make_pair(Map[Index], RC);
    416   }
    417   return std::make_pair(0u, static_cast<TargetRegisterClass*>(0));
    418 }
    419 
    420 std::pair<unsigned, const TargetRegisterClass *> SystemZTargetLowering::
    421 getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const {
    422   if (Constraint.size() == 1) {
    423     // GCC Constraint Letters
    424     switch (Constraint[0]) {
    425     default: break;
    426     case 'd': // Data register (equivalent to 'r')
    427     case 'r': // General-purpose register
    428       if (VT == MVT::i64)
    429         return std::make_pair(0U, &SystemZ::GR64BitRegClass);
    430       else if (VT == MVT::i128)
    431         return std::make_pair(0U, &SystemZ::GR128BitRegClass);
    432       return std::make_pair(0U, &SystemZ::GR32BitRegClass);
    433 
    434     case 'a': // Address register
    435       if (VT == MVT::i64)
    436         return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
    437       else if (VT == MVT::i128)
    438         return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
    439       return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
    440 
    441     case 'f': // Floating-point register
    442       if (VT == MVT::f64)
    443         return std::make_pair(0U, &SystemZ::FP64BitRegClass);
    444       else if (VT == MVT::f128)
    445         return std::make_pair(0U, &SystemZ::FP128BitRegClass);
    446       return std::make_pair(0U, &SystemZ::FP32BitRegClass);
    447     }
    448   }
    449   if (Constraint[0] == '{') {
    450     // We need to override the default register parsing for GPRs and FPRs
    451     // because the interpretation depends on VT.  The internal names of
    452     // the registers are also different from the external names
    453     // (F0D and F0S instead of F0, etc.).
    454     if (Constraint[1] == 'r') {
    455       if (VT == MVT::i32)
    456         return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
    457                                    SystemZMC::GR32Regs);
    458       if (VT == MVT::i128)
    459         return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
    460                                    SystemZMC::GR128Regs);
    461       return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
    462                                  SystemZMC::GR64Regs);
    463     }
    464     if (Constraint[1] == 'f') {
    465       if (VT == MVT::f32)
    466         return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
    467                                    SystemZMC::FP32Regs);
    468       if (VT == MVT::f128)
    469         return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
    470                                    SystemZMC::FP128Regs);
    471       return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
    472                                  SystemZMC::FP64Regs);
    473     }
    474   }
    475   return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
    476 }
    477 
    478 void SystemZTargetLowering::
    479 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
    480                              std::vector<SDValue> &Ops,
    481                              SelectionDAG &DAG) const {
    482   // Only support length 1 constraints for now.
    483   if (Constraint.length() == 1) {
    484     switch (Constraint[0]) {
    485     case 'I': // Unsigned 8-bit constant
    486       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
    487         if (isUInt<8>(C->getZExtValue()))
    488           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
    489                                               Op.getValueType()));
    490       return;
    491 
    492     case 'J': // Unsigned 12-bit constant
    493       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
    494         if (isUInt<12>(C->getZExtValue()))
    495           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
    496                                               Op.getValueType()));
    497       return;
    498 
    499     case 'K': // Signed 16-bit constant
    500       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
    501         if (isInt<16>(C->getSExtValue()))
    502           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
    503                                               Op.getValueType()));
    504       return;
    505 
    506     case 'L': // Signed 20-bit displacement (on all targets we support)
    507       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
    508         if (isInt<20>(C->getSExtValue()))
    509           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
    510                                               Op.getValueType()));
    511       return;
    512 
    513     case 'M': // 0x7fffffff
    514       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
    515         if (C->getZExtValue() == 0x7fffffff)
    516           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
    517                                               Op.getValueType()));
    518       return;
    519     }
    520   }
    521   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
    522 }
    523 
    524 //===----------------------------------------------------------------------===//
    525 // Calling conventions
    526 //===----------------------------------------------------------------------===//
    527 
    528 #include "SystemZGenCallingConv.inc"
    529 
    530 // Value is a value that has been passed to us in the location described by VA
    531 // (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
    532 // any loads onto Chain.
    533 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDLoc DL,
    534                                    CCValAssign &VA, SDValue Chain,
    535                                    SDValue Value) {
    536   // If the argument has been promoted from a smaller type, insert an
    537   // assertion to capture this.
    538   if (VA.getLocInfo() == CCValAssign::SExt)
    539     Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
    540                         DAG.getValueType(VA.getValVT()));
    541   else if (VA.getLocInfo() == CCValAssign::ZExt)
    542     Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
    543                         DAG.getValueType(VA.getValVT()));
    544 
    545   if (VA.isExtInLoc())
    546     Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
    547   else if (VA.getLocInfo() == CCValAssign::Indirect)
    548     Value = DAG.getLoad(VA.getValVT(), DL, Chain, Value,
    549                         MachinePointerInfo(), false, false, false, 0);
    550   else
    551     assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
    552   return Value;
    553 }
    554 
    555 // Value is a value of type VA.getValVT() that we need to copy into
    556 // the location described by VA.  Return a copy of Value converted to
    557 // VA.getValVT().  The caller is responsible for handling indirect values.
    558 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDLoc DL,
    559                                    CCValAssign &VA, SDValue Value) {
    560   switch (VA.getLocInfo()) {
    561   case CCValAssign::SExt:
    562     return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
    563   case CCValAssign::ZExt:
    564     return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
    565   case CCValAssign::AExt:
    566     return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
    567   case CCValAssign::Full:
    568     return Value;
    569   default:
    570     llvm_unreachable("Unhandled getLocInfo()");
    571   }
    572 }
    573 
    574 SDValue SystemZTargetLowering::
    575 LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
    576                      const SmallVectorImpl<ISD::InputArg> &Ins,
    577                      SDLoc DL, SelectionDAG &DAG,
    578                      SmallVectorImpl<SDValue> &InVals) const {
    579   MachineFunction &MF = DAG.getMachineFunction();
    580   MachineFrameInfo *MFI = MF.getFrameInfo();
    581   MachineRegisterInfo &MRI = MF.getRegInfo();
    582   SystemZMachineFunctionInfo *FuncInfo =
    583     MF.getInfo<SystemZMachineFunctionInfo>();
    584   const SystemZFrameLowering *TFL =
    585     static_cast<const SystemZFrameLowering *>(TM.getFrameLowering());
    586 
    587   // Assign locations to all of the incoming arguments.
    588   SmallVector<CCValAssign, 16> ArgLocs;
    589   CCState CCInfo(CallConv, IsVarArg, MF, TM, ArgLocs, *DAG.getContext());
    590   CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
    591 
    592   unsigned NumFixedGPRs = 0;
    593   unsigned NumFixedFPRs = 0;
    594   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
    595     SDValue ArgValue;
    596     CCValAssign &VA = ArgLocs[I];
    597     EVT LocVT = VA.getLocVT();
    598     if (VA.isRegLoc()) {
    599       // Arguments passed in registers
    600       const TargetRegisterClass *RC;
    601       switch (LocVT.getSimpleVT().SimpleTy) {
    602       default:
    603         // Integers smaller than i64 should be promoted to i64.
    604         llvm_unreachable("Unexpected argument type");
    605       case MVT::i32:
    606         NumFixedGPRs += 1;
    607         RC = &SystemZ::GR32BitRegClass;
    608         break;
    609       case MVT::i64:
    610         NumFixedGPRs += 1;
    611         RC = &SystemZ::GR64BitRegClass;
    612         break;
    613       case MVT::f32:
    614         NumFixedFPRs += 1;
    615         RC = &SystemZ::FP32BitRegClass;
    616         break;
    617       case MVT::f64:
    618         NumFixedFPRs += 1;
    619         RC = &SystemZ::FP64BitRegClass;
    620         break;
    621       }
    622 
    623       unsigned VReg = MRI.createVirtualRegister(RC);
    624       MRI.addLiveIn(VA.getLocReg(), VReg);
    625       ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
    626     } else {
    627       assert(VA.isMemLoc() && "Argument not register or memory");
    628 
    629       // Create the frame index object for this incoming parameter.
    630       int FI = MFI->CreateFixedObject(LocVT.getSizeInBits() / 8,
    631                                       VA.getLocMemOffset(), true);
    632 
    633       // Create the SelectionDAG nodes corresponding to a load
    634       // from this parameter.  Unpromoted ints and floats are
    635       // passed as right-justified 8-byte values.
    636       EVT PtrVT = getPointerTy();
    637       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
    638       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
    639         FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant(4));
    640       ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
    641                              MachinePointerInfo::getFixedStack(FI),
    642                              false, false, false, 0);
    643     }
    644 
    645     // Convert the value of the argument register into the value that's
    646     // being passed.
    647     InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
    648   }
    649 
    650   if (IsVarArg) {
    651     // Save the number of non-varargs registers for later use by va_start, etc.
    652     FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
    653     FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
    654 
    655     // Likewise the address (in the form of a frame index) of where the
    656     // first stack vararg would be.  The 1-byte size here is arbitrary.
    657     int64_t StackSize = CCInfo.getNextStackOffset();
    658     FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize, true));
    659 
    660     // ...and a similar frame index for the caller-allocated save area
    661     // that will be used to store the incoming registers.
    662     int64_t RegSaveOffset = TFL->getOffsetOfLocalArea();
    663     unsigned RegSaveIndex = MFI->CreateFixedObject(1, RegSaveOffset, true);
    664     FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
    665 
    666     // Store the FPR varargs in the reserved frame slots.  (We store the
    667     // GPRs as part of the prologue.)
    668     if (NumFixedFPRs < SystemZ::NumArgFPRs) {
    669       SDValue MemOps[SystemZ::NumArgFPRs];
    670       for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
    671         unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]);
    672         int FI = MFI->CreateFixedObject(8, RegSaveOffset + Offset, true);
    673         SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
    674         unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
    675                                      &SystemZ::FP64BitRegClass);
    676         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
    677         MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
    678                                  MachinePointerInfo::getFixedStack(FI),
    679                                  false, false, 0);
    680 
    681       }
    682       // Join the stores, which are independent of one another.
    683       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
    684                           &MemOps[NumFixedFPRs],
    685                           SystemZ::NumArgFPRs - NumFixedFPRs);
    686     }
    687   }
    688 
    689   return Chain;
    690 }
    691 
    692 SDValue
    693 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
    694                                  SmallVectorImpl<SDValue> &InVals) const {
    695   SelectionDAG &DAG = CLI.DAG;
    696   SDLoc &DL = CLI.DL;
    697   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
    698   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
    699   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
    700   SDValue Chain = CLI.Chain;
    701   SDValue Callee = CLI.Callee;
    702   bool &isTailCall = CLI.IsTailCall;
    703   CallingConv::ID CallConv = CLI.CallConv;
    704   bool IsVarArg = CLI.IsVarArg;
    705   MachineFunction &MF = DAG.getMachineFunction();
    706   EVT PtrVT = getPointerTy();
    707 
    708   // SystemZ target does not yet support tail call optimization.
    709   isTailCall = false;
    710 
    711   // Analyze the operands of the call, assigning locations to each operand.
    712   SmallVector<CCValAssign, 16> ArgLocs;
    713   CCState ArgCCInfo(CallConv, IsVarArg, MF, TM, ArgLocs, *DAG.getContext());
    714   ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
    715 
    716   // Get a count of how many bytes are to be pushed on the stack.
    717   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
    718 
    719   // Mark the start of the call.
    720   Chain = DAG.getCALLSEQ_START(Chain, DAG.getConstant(NumBytes, PtrVT, true),
    721                                DL);
    722 
    723   // Copy argument values to their designated locations.
    724   SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
    725   SmallVector<SDValue, 8> MemOpChains;
    726   SDValue StackPtr;
    727   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
    728     CCValAssign &VA = ArgLocs[I];
    729     SDValue ArgValue = OutVals[I];
    730 
    731     if (VA.getLocInfo() == CCValAssign::Indirect) {
    732       // Store the argument in a stack slot and pass its address.
    733       SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
    734       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
    735       MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, SpillSlot,
    736                                          MachinePointerInfo::getFixedStack(FI),
    737                                          false, false, 0));
    738       ArgValue = SpillSlot;
    739     } else
    740       ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
    741 
    742     if (VA.isRegLoc())
    743       // Queue up the argument copies and emit them at the end.
    744       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
    745     else {
    746       assert(VA.isMemLoc() && "Argument not register or memory");
    747 
    748       // Work out the address of the stack slot.  Unpromoted ints and
    749       // floats are passed as right-justified 8-byte values.
    750       if (!StackPtr.getNode())
    751         StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
    752       unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
    753       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
    754         Offset += 4;
    755       SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
    756                                     DAG.getIntPtrConstant(Offset));
    757 
    758       // Emit the store.
    759       MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, Address,
    760                                          MachinePointerInfo(),
    761                                          false, false, 0));
    762     }
    763   }
    764 
    765   // Join the stores, which are independent of one another.
    766   if (!MemOpChains.empty())
    767     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
    768                         &MemOpChains[0], MemOpChains.size());
    769 
    770   // Build a sequence of copy-to-reg nodes, chained and glued together.
    771   SDValue Glue;
    772   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
    773     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
    774                              RegsToPass[I].second, Glue);
    775     Glue = Chain.getValue(1);
    776   }
    777 
    778   // Accept direct calls by converting symbolic call addresses to the
    779   // associated Target* opcodes.
    780   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
    781     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
    782     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
    783   } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
    784     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
    785     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
    786   }
    787 
    788   // The first call operand is the chain and the second is the target address.
    789   SmallVector<SDValue, 8> Ops;
    790   Ops.push_back(Chain);
    791   Ops.push_back(Callee);
    792 
    793   // Add argument registers to the end of the list so that they are
    794   // known live into the call.
    795   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
    796     Ops.push_back(DAG.getRegister(RegsToPass[I].first,
    797                                   RegsToPass[I].second.getValueType()));
    798 
    799   // Glue the call to the argument copies, if any.
    800   if (Glue.getNode())
    801     Ops.push_back(Glue);
    802 
    803   // Emit the call.
    804   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
    805   Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, &Ops[0], Ops.size());
    806   Glue = Chain.getValue(1);
    807 
    808   // Mark the end of the call, which is glued to the call itself.
    809   Chain = DAG.getCALLSEQ_END(Chain,
    810                              DAG.getConstant(NumBytes, PtrVT, true),
    811                              DAG.getConstant(0, PtrVT, true),
    812                              Glue, DL);
    813   Glue = Chain.getValue(1);
    814 
    815   // Assign locations to each value returned by this call.
    816   SmallVector<CCValAssign, 16> RetLocs;
    817   CCState RetCCInfo(CallConv, IsVarArg, MF, TM, RetLocs, *DAG.getContext());
    818   RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
    819 
    820   // Copy all of the result registers out of their specified physreg.
    821   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
    822     CCValAssign &VA = RetLocs[I];
    823 
    824     // Copy the value out, gluing the copy to the end of the call sequence.
    825     SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
    826                                           VA.getLocVT(), Glue);
    827     Chain = RetValue.getValue(1);
    828     Glue = RetValue.getValue(2);
    829 
    830     // Convert the value of the return register into the value that's
    831     // being returned.
    832     InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
    833   }
    834 
    835   return Chain;
    836 }
    837 
    838 SDValue
    839 SystemZTargetLowering::LowerReturn(SDValue Chain,
    840                                    CallingConv::ID CallConv, bool IsVarArg,
    841                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
    842                                    const SmallVectorImpl<SDValue> &OutVals,
    843                                    SDLoc DL, SelectionDAG &DAG) const {
    844   MachineFunction &MF = DAG.getMachineFunction();
    845 
    846   // Assign locations to each returned value.
    847   SmallVector<CCValAssign, 16> RetLocs;
    848   CCState RetCCInfo(CallConv, IsVarArg, MF, TM, RetLocs, *DAG.getContext());
    849   RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
    850 
    851   // Quick exit for void returns
    852   if (RetLocs.empty())
    853     return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
    854 
    855   // Copy the result values into the output registers.
    856   SDValue Glue;
    857   SmallVector<SDValue, 4> RetOps;
    858   RetOps.push_back(Chain);
    859   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
    860     CCValAssign &VA = RetLocs[I];
    861     SDValue RetValue = OutVals[I];
    862 
    863     // Make the return register live on exit.
    864     assert(VA.isRegLoc() && "Can only return in registers!");
    865 
    866     // Promote the value as required.
    867     RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
    868 
    869     // Chain and glue the copies together.
    870     unsigned Reg = VA.getLocReg();
    871     Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
    872     Glue = Chain.getValue(1);
    873     RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
    874   }
    875 
    876   // Update chain and glue.
    877   RetOps[0] = Chain;
    878   if (Glue.getNode())
    879     RetOps.push_back(Glue);
    880 
    881   return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other,
    882                      RetOps.data(), RetOps.size());
    883 }
    884 
    885 // CC is a comparison that will be implemented using an integer or
    886 // floating-point comparison.  Return the condition code mask for
    887 // a branch on true.  In the integer case, CCMASK_CMP_UO is set for
    888 // unsigned comparisons and clear for signed ones.  In the floating-point
    889 // case, CCMASK_CMP_UO has its normal mask meaning (unordered).
    890 static unsigned CCMaskForCondCode(ISD::CondCode CC) {
    891 #define CONV(X) \
    892   case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
    893   case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
    894   case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
    895 
    896   switch (CC) {
    897   default:
    898     llvm_unreachable("Invalid integer condition!");
    899 
    900   CONV(EQ);
    901   CONV(NE);
    902   CONV(GT);
    903   CONV(GE);
    904   CONV(LT);
    905   CONV(LE);
    906 
    907   case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
    908   case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
    909   }
    910 #undef CONV
    911 }
    912 
    913 // If a comparison described by IsUnsigned, CCMask, CmpOp0 and CmpOp1
    914 // can be converted to a comparison against zero, adjust the operands
    915 // as necessary.
    916 static void adjustZeroCmp(SelectionDAG &DAG, bool &IsUnsigned,
    917                           SDValue &CmpOp0, SDValue &CmpOp1,
    918                           unsigned &CCMask) {
    919   if (IsUnsigned)
    920     return;
    921 
    922   ConstantSDNode *ConstOp1 = dyn_cast<ConstantSDNode>(CmpOp1.getNode());
    923   if (!ConstOp1)
    924     return;
    925 
    926   int64_t Value = ConstOp1->getSExtValue();
    927   if ((Value == -1 && CCMask == SystemZ::CCMASK_CMP_GT) ||
    928       (Value == -1 && CCMask == SystemZ::CCMASK_CMP_LE) ||
    929       (Value == 1 && CCMask == SystemZ::CCMASK_CMP_LT) ||
    930       (Value == 1 && CCMask == SystemZ::CCMASK_CMP_GE)) {
    931     CCMask ^= SystemZ::CCMASK_CMP_EQ;
    932     CmpOp1 = DAG.getConstant(0, CmpOp1.getValueType());
    933   }
    934 }
    935 
    936 // If a comparison described by IsUnsigned, CCMask, CmpOp0 and CmpOp1
    937 // is suitable for CLI(Y), CHHSI or CLHHSI, adjust the operands as necessary.
    938 static void adjustSubwordCmp(SelectionDAG &DAG, bool &IsUnsigned,
    939                              SDValue &CmpOp0, SDValue &CmpOp1,
    940                              unsigned &CCMask) {
    941   // For us to make any changes, it must a comparison between a single-use
    942   // load and a constant.
    943   if (!CmpOp0.hasOneUse() ||
    944       CmpOp0.getOpcode() != ISD::LOAD ||
    945       CmpOp1.getOpcode() != ISD::Constant)
    946     return;
    947 
    948   // We must have an 8- or 16-bit load.
    949   LoadSDNode *Load = cast<LoadSDNode>(CmpOp0);
    950   unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits();
    951   if (NumBits != 8 && NumBits != 16)
    952     return;
    953 
    954   // The load must be an extending one and the constant must be within the
    955   // range of the unextended value.
    956   ConstantSDNode *Constant = cast<ConstantSDNode>(CmpOp1);
    957   uint64_t Value = Constant->getZExtValue();
    958   uint64_t Mask = (1 << NumBits) - 1;
    959   if (Load->getExtensionType() == ISD::SEXTLOAD) {
    960     int64_t SignedValue = Constant->getSExtValue();
    961     if (uint64_t(SignedValue) + (1ULL << (NumBits - 1)) > Mask)
    962       return;
    963     // Unsigned comparison between two sign-extended values is equivalent
    964     // to unsigned comparison between two zero-extended values.
    965     if (IsUnsigned)
    966       Value &= Mask;
    967     else if (CCMask == SystemZ::CCMASK_CMP_EQ ||
    968              CCMask == SystemZ::CCMASK_CMP_NE)
    969       // Any choice of IsUnsigned is OK for equality comparisons.
    970       // We could use either CHHSI or CLHHSI for 16-bit comparisons,
    971       // but since we use CLHHSI for zero extensions, it seems better
    972       // to be consistent and do the same here.
    973       Value &= Mask, IsUnsigned = true;
    974     else if (NumBits == 8) {
    975       // Try to treat the comparison as unsigned, so that we can use CLI.
    976       // Adjust CCMask and Value as necessary.
    977       if (Value == 0 && CCMask == SystemZ::CCMASK_CMP_LT)
    978         // Test whether the high bit of the byte is set.
    979         Value = 127, CCMask = SystemZ::CCMASK_CMP_GT, IsUnsigned = true;
    980       else if (Value == 0 && CCMask == SystemZ::CCMASK_CMP_GE)
    981         // Test whether the high bit of the byte is clear.
    982         Value = 128, CCMask = SystemZ::CCMASK_CMP_LT, IsUnsigned = true;
    983       else
    984         // No instruction exists for this combination.
    985         return;
    986     }
    987   } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
    988     if (Value > Mask)
    989       return;
    990     // Signed comparison between two zero-extended values is equivalent
    991     // to unsigned comparison.
    992     IsUnsigned = true;
    993   } else
    994     return;
    995 
    996   // Make sure that the first operand is an i32 of the right extension type.
    997   ISD::LoadExtType ExtType = IsUnsigned ? ISD::ZEXTLOAD : ISD::SEXTLOAD;
    998   if (CmpOp0.getValueType() != MVT::i32 ||
    999       Load->getExtensionType() != ExtType)
   1000     CmpOp0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32,
   1001                             Load->getChain(), Load->getBasePtr(),
   1002                             Load->getPointerInfo(), Load->getMemoryVT(),
   1003                             Load->isVolatile(), Load->isNonTemporal(),
   1004                             Load->getAlignment());
   1005 
   1006   // Make sure that the second operand is an i32 with the right value.
   1007   if (CmpOp1.getValueType() != MVT::i32 ||
   1008       Value != Constant->getZExtValue())
   1009     CmpOp1 = DAG.getConstant(Value, MVT::i32);
   1010 }
   1011 
   1012 // Return true if a comparison described by CCMask, CmpOp0 and CmpOp1
   1013 // is an equality comparison that is better implemented using unsigned
   1014 // rather than signed comparison instructions.
   1015 static bool preferUnsignedComparison(SelectionDAG &DAG, SDValue CmpOp0,
   1016                                      SDValue CmpOp1, unsigned CCMask) {
   1017   // The test must be for equality or inequality.
   1018   if (CCMask != SystemZ::CCMASK_CMP_EQ && CCMask != SystemZ::CCMASK_CMP_NE)
   1019     return false;
   1020 
   1021   if (CmpOp1.getOpcode() == ISD::Constant) {
   1022     uint64_t Value = cast<ConstantSDNode>(CmpOp1)->getSExtValue();
   1023 
   1024     // If we're comparing with memory, prefer unsigned comparisons for
   1025     // values that are in the unsigned 16-bit range but not the signed
   1026     // 16-bit range.  We want to use CLFHSI and CLGHSI.
   1027     if (CmpOp0.hasOneUse() &&
   1028         ISD::isNormalLoad(CmpOp0.getNode()) &&
   1029         (Value >= 32768 && Value < 65536))
   1030       return true;
   1031 
   1032     // Use unsigned comparisons for values that are in the CLGFI range
   1033     // but not in the CGFI range.
   1034     if (CmpOp0.getValueType() == MVT::i64 && (Value >> 31) == 1)
   1035       return true;
   1036 
   1037     return false;
   1038   }
   1039 
   1040   // Prefer CL for zero-extended loads.
   1041   if (CmpOp1.getOpcode() == ISD::ZERO_EXTEND ||
   1042       ISD::isZEXTLoad(CmpOp1.getNode()))
   1043     return true;
   1044 
   1045   // ...and for "in-register" zero extensions.
   1046   if (CmpOp1.getOpcode() == ISD::AND && CmpOp1.getValueType() == MVT::i64) {
   1047     SDValue Mask = CmpOp1.getOperand(1);
   1048     if (Mask.getOpcode() == ISD::Constant &&
   1049         cast<ConstantSDNode>(Mask)->getZExtValue() == 0xffffffff)
   1050       return true;
   1051   }
   1052 
   1053   return false;
   1054 }
   1055 
   1056 // Return a target node that compares CmpOp0 with CmpOp1 and stores a
   1057 // 2-bit result in CC.  Set CCValid to the CCMASK_* of all possible
   1058 // 2-bit results and CCMask to the subset of those results that are
   1059 // associated with Cond.
   1060 static SDValue emitCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
   1061                        ISD::CondCode Cond, unsigned &CCValid,
   1062                        unsigned &CCMask) {
   1063   bool IsUnsigned = false;
   1064   CCMask = CCMaskForCondCode(Cond);
   1065   if (CmpOp0.getValueType().isFloatingPoint())
   1066     CCValid = SystemZ::CCMASK_FCMP;
   1067   else {
   1068     IsUnsigned = CCMask & SystemZ::CCMASK_CMP_UO;
   1069     CCValid = SystemZ::CCMASK_ICMP;
   1070     CCMask &= CCValid;
   1071     adjustZeroCmp(DAG, IsUnsigned, CmpOp0, CmpOp1, CCMask);
   1072     adjustSubwordCmp(DAG, IsUnsigned, CmpOp0, CmpOp1, CCMask);
   1073     if (preferUnsignedComparison(DAG, CmpOp0, CmpOp1, CCMask))
   1074       IsUnsigned = true;
   1075   }
   1076 
   1077   SDLoc DL(CmpOp0);
   1078   return DAG.getNode((IsUnsigned ? SystemZISD::UCMP : SystemZISD::CMP),
   1079                      DL, MVT::Glue, CmpOp0, CmpOp1);
   1080 }
   1081 
   1082 // Lower a binary operation that produces two VT results, one in each
   1083 // half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
   1084 // Extend extends Op0 to a GR128, and Opcode performs the GR128 operation
   1085 // on the extended Op0 and (unextended) Op1.  Store the even register result
   1086 // in Even and the odd register result in Odd.
   1087 static void lowerGR128Binary(SelectionDAG &DAG, SDLoc DL, EVT VT,
   1088                              unsigned Extend, unsigned Opcode,
   1089                              SDValue Op0, SDValue Op1,
   1090                              SDValue &Even, SDValue &Odd) {
   1091   SDNode *In128 = DAG.getMachineNode(Extend, DL, MVT::Untyped, Op0);
   1092   SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped,
   1093                                SDValue(In128, 0), Op1);
   1094   bool Is32Bit = is32Bit(VT);
   1095   SDValue SubReg0 = DAG.getTargetConstant(SystemZ::even128(Is32Bit), VT);
   1096   SDValue SubReg1 = DAG.getTargetConstant(SystemZ::odd128(Is32Bit), VT);
   1097   SDNode *Reg0 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
   1098                                     VT, Result, SubReg0);
   1099   SDNode *Reg1 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
   1100                                     VT, Result, SubReg1);
   1101   Even = SDValue(Reg0, 0);
   1102   Odd = SDValue(Reg1, 0);
   1103 }
   1104 
   1105 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
   1106   SDValue Chain    = Op.getOperand(0);
   1107   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
   1108   SDValue CmpOp0   = Op.getOperand(2);
   1109   SDValue CmpOp1   = Op.getOperand(3);
   1110   SDValue Dest     = Op.getOperand(4);
   1111   SDLoc DL(Op);
   1112 
   1113   unsigned CCValid, CCMask;
   1114   SDValue Flags = emitCmp(DAG, CmpOp0, CmpOp1, CC, CCValid, CCMask);
   1115   return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(),
   1116                      Chain, DAG.getConstant(CCValid, MVT::i32),
   1117                      DAG.getConstant(CCMask, MVT::i32), Dest, Flags);
   1118 }
   1119 
   1120 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
   1121                                               SelectionDAG &DAG) const {
   1122   SDValue CmpOp0   = Op.getOperand(0);
   1123   SDValue CmpOp1   = Op.getOperand(1);
   1124   SDValue TrueOp   = Op.getOperand(2);
   1125   SDValue FalseOp  = Op.getOperand(3);
   1126   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
   1127   SDLoc DL(Op);
   1128 
   1129   unsigned CCValid, CCMask;
   1130   SDValue Flags = emitCmp(DAG, CmpOp0, CmpOp1, CC, CCValid, CCMask);
   1131 
   1132   SmallVector<SDValue, 5> Ops;
   1133   Ops.push_back(TrueOp);
   1134   Ops.push_back(FalseOp);
   1135   Ops.push_back(DAG.getConstant(CCValid, MVT::i32));
   1136   Ops.push_back(DAG.getConstant(CCMask, MVT::i32));
   1137   Ops.push_back(Flags);
   1138 
   1139   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
   1140   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, &Ops[0], Ops.size());
   1141 }
   1142 
   1143 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
   1144                                                   SelectionDAG &DAG) const {
   1145   SDLoc DL(Node);
   1146   const GlobalValue *GV = Node->getGlobal();
   1147   int64_t Offset = Node->getOffset();
   1148   EVT PtrVT = getPointerTy();
   1149   Reloc::Model RM = TM.getRelocationModel();
   1150   CodeModel::Model CM = TM.getCodeModel();
   1151 
   1152   SDValue Result;
   1153   if (Subtarget.isPC32DBLSymbol(GV, RM, CM)) {
   1154     // Make sure that the offset is aligned to a halfword.  If it isn't,
   1155     // create an "anchor" at the previous 12-bit boundary.
   1156     // FIXME check whether there is a better way of handling this.
   1157     if (Offset & 1) {
   1158       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
   1159                                           Offset & ~uint64_t(0xfff));
   1160       Offset &= 0xfff;
   1161     } else {
   1162       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Offset);
   1163       Offset = 0;
   1164     }
   1165     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
   1166   } else {
   1167     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
   1168     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
   1169     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
   1170                          MachinePointerInfo::getGOT(), false, false, false, 0);
   1171   }
   1172 
   1173   // If there was a non-zero offset that we didn't fold, create an explicit
   1174   // addition for it.
   1175   if (Offset != 0)
   1176     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
   1177                          DAG.getConstant(Offset, PtrVT));
   1178 
   1179   return Result;
   1180 }
   1181 
   1182 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
   1183 						     SelectionDAG &DAG) const {
   1184   SDLoc DL(Node);
   1185   const GlobalValue *GV = Node->getGlobal();
   1186   EVT PtrVT = getPointerTy();
   1187   TLSModel::Model model = TM.getTLSModel(GV);
   1188 
   1189   if (model != TLSModel::LocalExec)
   1190     llvm_unreachable("only local-exec TLS mode supported");
   1191 
   1192   // The high part of the thread pointer is in access register 0.
   1193   SDValue TPHi = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
   1194                              DAG.getConstant(0, MVT::i32));
   1195   TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
   1196 
   1197   // The low part of the thread pointer is in access register 1.
   1198   SDValue TPLo = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
   1199                              DAG.getConstant(1, MVT::i32));
   1200   TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
   1201 
   1202   // Merge them into a single 64-bit address.
   1203   SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
   1204 				    DAG.getConstant(32, PtrVT));
   1205   SDValue TP = DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
   1206 
   1207   // Get the offset of GA from the thread pointer.
   1208   SystemZConstantPoolValue *CPV =
   1209     SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
   1210 
   1211   // Force the offset into the constant pool and load it from there.
   1212   SDValue CPAddr = DAG.getConstantPool(CPV, PtrVT, 8);
   1213   SDValue Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(),
   1214 			       CPAddr, MachinePointerInfo::getConstantPool(),
   1215 			       false, false, false, 0);
   1216 
   1217   // Add the base and offset together.
   1218   return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
   1219 }
   1220 
   1221 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
   1222                                                  SelectionDAG &DAG) const {
   1223   SDLoc DL(Node);
   1224   const BlockAddress *BA = Node->getBlockAddress();
   1225   int64_t Offset = Node->getOffset();
   1226   EVT PtrVT = getPointerTy();
   1227 
   1228   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
   1229   Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
   1230   return Result;
   1231 }
   1232 
   1233 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
   1234                                               SelectionDAG &DAG) const {
   1235   SDLoc DL(JT);
   1236   EVT PtrVT = getPointerTy();
   1237   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
   1238 
   1239   // Use LARL to load the address of the table.
   1240   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
   1241 }
   1242 
   1243 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
   1244                                                  SelectionDAG &DAG) const {
   1245   SDLoc DL(CP);
   1246   EVT PtrVT = getPointerTy();
   1247 
   1248   SDValue Result;
   1249   if (CP->isMachineConstantPoolEntry())
   1250     Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
   1251 				       CP->getAlignment());
   1252   else
   1253     Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
   1254 				       CP->getAlignment(), CP->getOffset());
   1255 
   1256   // Use LARL to load the address of the constant pool entry.
   1257   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
   1258 }
   1259 
   1260 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
   1261                                             SelectionDAG &DAG) const {
   1262   SDLoc DL(Op);
   1263   SDValue In = Op.getOperand(0);
   1264   EVT InVT = In.getValueType();
   1265   EVT ResVT = Op.getValueType();
   1266 
   1267   SDValue SubReg32 = DAG.getTargetConstant(SystemZ::subreg_32bit, MVT::i64);
   1268   SDValue Shift32 = DAG.getConstant(32, MVT::i64);
   1269   if (InVT == MVT::i32 && ResVT == MVT::f32) {
   1270     SDValue In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
   1271     SDValue Shift = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, Shift32);
   1272     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, Shift);
   1273     SDNode *Out = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
   1274                                      MVT::f32, Out64, SubReg32);
   1275     return SDValue(Out, 0);
   1276   }
   1277   if (InVT == MVT::f32 && ResVT == MVT::i32) {
   1278     SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
   1279     SDNode *In64 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
   1280                                       MVT::f64, SDValue(U64, 0), In, SubReg32);
   1281     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, SDValue(In64, 0));
   1282     SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, Shift32);
   1283     SDValue Out = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
   1284     return Out;
   1285   }
   1286   llvm_unreachable("Unexpected bitcast combination");
   1287 }
   1288 
   1289 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
   1290                                             SelectionDAG &DAG) const {
   1291   MachineFunction &MF = DAG.getMachineFunction();
   1292   SystemZMachineFunctionInfo *FuncInfo =
   1293     MF.getInfo<SystemZMachineFunctionInfo>();
   1294   EVT PtrVT = getPointerTy();
   1295 
   1296   SDValue Chain   = Op.getOperand(0);
   1297   SDValue Addr    = Op.getOperand(1);
   1298   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
   1299   SDLoc DL(Op);
   1300 
   1301   // The initial values of each field.
   1302   const unsigned NumFields = 4;
   1303   SDValue Fields[NumFields] = {
   1304     DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), PtrVT),
   1305     DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), PtrVT),
   1306     DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
   1307     DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
   1308   };
   1309 
   1310   // Store each field into its respective slot.
   1311   SDValue MemOps[NumFields];
   1312   unsigned Offset = 0;
   1313   for (unsigned I = 0; I < NumFields; ++I) {
   1314     SDValue FieldAddr = Addr;
   1315     if (Offset != 0)
   1316       FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
   1317                               DAG.getIntPtrConstant(Offset));
   1318     MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
   1319                              MachinePointerInfo(SV, Offset),
   1320                              false, false, 0);
   1321     Offset += 8;
   1322   }
   1323   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps, NumFields);
   1324 }
   1325 
   1326 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
   1327                                            SelectionDAG &DAG) const {
   1328   SDValue Chain      = Op.getOperand(0);
   1329   SDValue DstPtr     = Op.getOperand(1);
   1330   SDValue SrcPtr     = Op.getOperand(2);
   1331   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
   1332   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
   1333   SDLoc DL(Op);
   1334 
   1335   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32),
   1336                        /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false,
   1337                        MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
   1338 }
   1339 
   1340 SDValue SystemZTargetLowering::
   1341 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
   1342   SDValue Chain = Op.getOperand(0);
   1343   SDValue Size  = Op.getOperand(1);
   1344   SDLoc DL(Op);
   1345 
   1346   unsigned SPReg = getStackPointerRegisterToSaveRestore();
   1347 
   1348   // Get a reference to the stack pointer.
   1349   SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
   1350 
   1351   // Get the new stack pointer value.
   1352   SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, Size);
   1353 
   1354   // Copy the new stack pointer back.
   1355   Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
   1356 
   1357   // The allocated data lives above the 160 bytes allocated for the standard
   1358   // frame, plus any outgoing stack arguments.  We don't know how much that
   1359   // amounts to yet, so emit a special ADJDYNALLOC placeholder.
   1360   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
   1361   SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
   1362 
   1363   SDValue Ops[2] = { Result, Chain };
   1364   return DAG.getMergeValues(Ops, 2, DL);
   1365 }
   1366 
   1367 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
   1368                                               SelectionDAG &DAG) const {
   1369   EVT VT = Op.getValueType();
   1370   SDLoc DL(Op);
   1371   assert(!is32Bit(VT) && "Only support 64-bit UMUL_LOHI");
   1372 
   1373   // UMUL_LOHI64 returns the low result in the odd register and the high
   1374   // result in the even register.  UMUL_LOHI is defined to return the
   1375   // low half first, so the results are in reverse order.
   1376   SDValue Ops[2];
   1377   lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
   1378                    Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
   1379   return DAG.getMergeValues(Ops, 2, DL);
   1380 }
   1381 
   1382 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
   1383                                             SelectionDAG &DAG) const {
   1384   SDValue Op0 = Op.getOperand(0);
   1385   SDValue Op1 = Op.getOperand(1);
   1386   EVT VT = Op.getValueType();
   1387   SDLoc DL(Op);
   1388   unsigned Opcode;
   1389 
   1390   // We use DSGF for 32-bit division.
   1391   if (is32Bit(VT)) {
   1392     Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
   1393     Opcode = SystemZISD::SDIVREM32;
   1394   } else if (DAG.ComputeNumSignBits(Op1) > 32) {
   1395     Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
   1396     Opcode = SystemZISD::SDIVREM32;
   1397   } else
   1398     Opcode = SystemZISD::SDIVREM64;
   1399 
   1400   // DSG(F) takes a 64-bit dividend, so the even register in the GR128
   1401   // input is "don't care".  The instruction returns the remainder in
   1402   // the even register and the quotient in the odd register.
   1403   SDValue Ops[2];
   1404   lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, Opcode,
   1405                    Op0, Op1, Ops[1], Ops[0]);
   1406   return DAG.getMergeValues(Ops, 2, DL);
   1407 }
   1408 
   1409 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
   1410                                             SelectionDAG &DAG) const {
   1411   EVT VT = Op.getValueType();
   1412   SDLoc DL(Op);
   1413 
   1414   // DL(G) uses a double-width dividend, so we need to clear the even
   1415   // register in the GR128 input.  The instruction returns the remainder
   1416   // in the even register and the quotient in the odd register.
   1417   SDValue Ops[2];
   1418   if (is32Bit(VT))
   1419     lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_32, SystemZISD::UDIVREM32,
   1420                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
   1421   else
   1422     lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_64, SystemZISD::UDIVREM64,
   1423                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
   1424   return DAG.getMergeValues(Ops, 2, DL);
   1425 }
   1426 
   1427 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
   1428   assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
   1429 
   1430   // Get the known-zero masks for each operand.
   1431   SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) };
   1432   APInt KnownZero[2], KnownOne[2];
   1433   DAG.ComputeMaskedBits(Ops[0], KnownZero[0], KnownOne[0]);
   1434   DAG.ComputeMaskedBits(Ops[1], KnownZero[1], KnownOne[1]);
   1435 
   1436   // See if the upper 32 bits of one operand and the lower 32 bits of the
   1437   // other are known zero.  They are the low and high operands respectively.
   1438   uint64_t Masks[] = { KnownZero[0].getZExtValue(),
   1439                        KnownZero[1].getZExtValue() };
   1440   unsigned High, Low;
   1441   if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
   1442     High = 1, Low = 0;
   1443   else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
   1444     High = 0, Low = 1;
   1445   else
   1446     return Op;
   1447 
   1448   SDValue LowOp = Ops[Low];
   1449   SDValue HighOp = Ops[High];
   1450 
   1451   // If the high part is a constant, we're better off using IILH.
   1452   if (HighOp.getOpcode() == ISD::Constant)
   1453     return Op;
   1454 
   1455   // If the low part is a constant that is outside the range of LHI,
   1456   // then we're better off using IILF.
   1457   if (LowOp.getOpcode() == ISD::Constant) {
   1458     int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
   1459     if (!isInt<16>(Value))
   1460       return Op;
   1461   }
   1462 
   1463   // Check whether the high part is an AND that doesn't change the
   1464   // high 32 bits and just masks out low bits.  We can skip it if so.
   1465   if (HighOp.getOpcode() == ISD::AND &&
   1466       HighOp.getOperand(1).getOpcode() == ISD::Constant) {
   1467     ConstantSDNode *MaskNode = cast<ConstantSDNode>(HighOp.getOperand(1));
   1468     uint64_t Mask = MaskNode->getZExtValue() | Masks[High];
   1469     if ((Mask >> 32) == 0xffffffff)
   1470       HighOp = HighOp.getOperand(0);
   1471   }
   1472 
   1473   // Take advantage of the fact that all GR32 operations only change the
   1474   // low 32 bits by truncating Low to an i32 and inserting it directly
   1475   // using a subreg.  The interesting cases are those where the truncation
   1476   // can be folded.
   1477   SDLoc DL(Op);
   1478   SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
   1479   SDValue SubReg32 = DAG.getTargetConstant(SystemZ::subreg_32bit, MVT::i64);
   1480   SDNode *Result = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
   1481                                       MVT::i64, HighOp, Low32, SubReg32);
   1482   return SDValue(Result, 0);
   1483 }
   1484 
   1485 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
   1486 // two into the fullword ATOMIC_LOADW_* operation given by Opcode.
   1487 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
   1488                                                 SelectionDAG &DAG,
   1489                                                 unsigned Opcode) const {
   1490   AtomicSDNode *Node = cast<AtomicSDNode>(Op.getNode());
   1491 
   1492   // 32-bit operations need no code outside the main loop.
   1493   EVT NarrowVT = Node->getMemoryVT();
   1494   EVT WideVT = MVT::i32;
   1495   if (NarrowVT == WideVT)
   1496     return Op;
   1497 
   1498   int64_t BitSize = NarrowVT.getSizeInBits();
   1499   SDValue ChainIn = Node->getChain();
   1500   SDValue Addr = Node->getBasePtr();
   1501   SDValue Src2 = Node->getVal();
   1502   MachineMemOperand *MMO = Node->getMemOperand();
   1503   SDLoc DL(Node);
   1504   EVT PtrVT = Addr.getValueType();
   1505 
   1506   // Convert atomic subtracts of constants into additions.
   1507   if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
   1508     if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Src2)) {
   1509       Opcode = SystemZISD::ATOMIC_LOADW_ADD;
   1510       Src2 = DAG.getConstant(-Const->getSExtValue(), Src2.getValueType());
   1511     }
   1512 
   1513   // Get the address of the containing word.
   1514   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
   1515                                     DAG.getConstant(-4, PtrVT));
   1516 
   1517   // Get the number of bits that the word must be rotated left in order
   1518   // to bring the field to the top bits of a GR32.
   1519   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
   1520                                  DAG.getConstant(3, PtrVT));
   1521   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
   1522 
   1523   // Get the complementing shift amount, for rotating a field in the top
   1524   // bits back to its proper position.
   1525   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
   1526                                     DAG.getConstant(0, WideVT), BitShift);
   1527 
   1528   // Extend the source operand to 32 bits and prepare it for the inner loop.
   1529   // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
   1530   // operations require the source to be shifted in advance.  (This shift
   1531   // can be folded if the source is constant.)  For AND and NAND, the lower
   1532   // bits must be set, while for other opcodes they should be left clear.
   1533   if (Opcode != SystemZISD::ATOMIC_SWAPW)
   1534     Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
   1535                        DAG.getConstant(32 - BitSize, WideVT));
   1536   if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
   1537       Opcode == SystemZISD::ATOMIC_LOADW_NAND)
   1538     Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
   1539                        DAG.getConstant(uint32_t(-1) >> BitSize, WideVT));
   1540 
   1541   // Construct the ATOMIC_LOADW_* node.
   1542   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
   1543   SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
   1544                     DAG.getConstant(BitSize, WideVT) };
   1545   SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
   1546                                              array_lengthof(Ops),
   1547                                              NarrowVT, MMO);
   1548 
   1549   // Rotate the result of the final CS so that the field is in the lower
   1550   // bits of a GR32, then truncate it.
   1551   SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
   1552                                     DAG.getConstant(BitSize, WideVT));
   1553   SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
   1554 
   1555   SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
   1556   return DAG.getMergeValues(RetOps, 2, DL);
   1557 }
   1558 
   1559 // Node is an 8- or 16-bit ATOMIC_CMP_SWAP operation.  Lower the first two
   1560 // into a fullword ATOMIC_CMP_SWAPW operation.
   1561 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
   1562                                                     SelectionDAG &DAG) const {
   1563   AtomicSDNode *Node = cast<AtomicSDNode>(Op.getNode());
   1564 
   1565   // We have native support for 32-bit compare and swap.
   1566   EVT NarrowVT = Node->getMemoryVT();
   1567   EVT WideVT = MVT::i32;
   1568   if (NarrowVT == WideVT)
   1569     return Op;
   1570 
   1571   int64_t BitSize = NarrowVT.getSizeInBits();
   1572   SDValue ChainIn = Node->getOperand(0);
   1573   SDValue Addr = Node->getOperand(1);
   1574   SDValue CmpVal = Node->getOperand(2);
   1575   SDValue SwapVal = Node->getOperand(3);
   1576   MachineMemOperand *MMO = Node->getMemOperand();
   1577   SDLoc DL(Node);
   1578   EVT PtrVT = Addr.getValueType();
   1579 
   1580   // Get the address of the containing word.
   1581   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
   1582                                     DAG.getConstant(-4, PtrVT));
   1583 
   1584   // Get the number of bits that the word must be rotated left in order
   1585   // to bring the field to the top bits of a GR32.
   1586   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
   1587                                  DAG.getConstant(3, PtrVT));
   1588   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
   1589 
   1590   // Get the complementing shift amount, for rotating a field in the top
   1591   // bits back to its proper position.
   1592   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
   1593                                     DAG.getConstant(0, WideVT), BitShift);
   1594 
   1595   // Construct the ATOMIC_CMP_SWAPW node.
   1596   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
   1597   SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
   1598                     NegBitShift, DAG.getConstant(BitSize, WideVT) };
   1599   SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
   1600                                              VTList, Ops, array_lengthof(Ops),
   1601                                              NarrowVT, MMO);
   1602   return AtomicOp;
   1603 }
   1604 
   1605 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
   1606                                               SelectionDAG &DAG) const {
   1607   MachineFunction &MF = DAG.getMachineFunction();
   1608   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
   1609   return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
   1610                             SystemZ::R15D, Op.getValueType());
   1611 }
   1612 
   1613 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
   1614                                                  SelectionDAG &DAG) const {
   1615   MachineFunction &MF = DAG.getMachineFunction();
   1616   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
   1617   return DAG.getCopyToReg(Op.getOperand(0), SDLoc(Op),
   1618                           SystemZ::R15D, Op.getOperand(1));
   1619 }
   1620 
   1621 SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
   1622                                               SelectionDAG &DAG) const {
   1623   switch (Op.getOpcode()) {
   1624   case ISD::BR_CC:
   1625     return lowerBR_CC(Op, DAG);
   1626   case ISD::SELECT_CC:
   1627     return lowerSELECT_CC(Op, DAG);
   1628   case ISD::GlobalAddress:
   1629     return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
   1630   case ISD::GlobalTLSAddress:
   1631     return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
   1632   case ISD::BlockAddress:
   1633     return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
   1634   case ISD::JumpTable:
   1635     return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
   1636   case ISD::ConstantPool:
   1637     return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
   1638   case ISD::BITCAST:
   1639     return lowerBITCAST(Op, DAG);
   1640   case ISD::VASTART:
   1641     return lowerVASTART(Op, DAG);
   1642   case ISD::VACOPY:
   1643     return lowerVACOPY(Op, DAG);
   1644   case ISD::DYNAMIC_STACKALLOC:
   1645     return lowerDYNAMIC_STACKALLOC(Op, DAG);
   1646   case ISD::UMUL_LOHI:
   1647     return lowerUMUL_LOHI(Op, DAG);
   1648   case ISD::SDIVREM:
   1649     return lowerSDIVREM(Op, DAG);
   1650   case ISD::UDIVREM:
   1651     return lowerUDIVREM(Op, DAG);
   1652   case ISD::OR:
   1653     return lowerOR(Op, DAG);
   1654   case ISD::ATOMIC_SWAP:
   1655     return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_SWAPW);
   1656   case ISD::ATOMIC_LOAD_ADD:
   1657     return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
   1658   case ISD::ATOMIC_LOAD_SUB:
   1659     return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
   1660   case ISD::ATOMIC_LOAD_AND:
   1661     return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
   1662   case ISD::ATOMIC_LOAD_OR:
   1663     return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
   1664   case ISD::ATOMIC_LOAD_XOR:
   1665     return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
   1666   case ISD::ATOMIC_LOAD_NAND:
   1667     return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
   1668   case ISD::ATOMIC_LOAD_MIN:
   1669     return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
   1670   case ISD::ATOMIC_LOAD_MAX:
   1671     return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
   1672   case ISD::ATOMIC_LOAD_UMIN:
   1673     return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
   1674   case ISD::ATOMIC_LOAD_UMAX:
   1675     return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
   1676   case ISD::ATOMIC_CMP_SWAP:
   1677     return lowerATOMIC_CMP_SWAP(Op, DAG);
   1678   case ISD::STACKSAVE:
   1679     return lowerSTACKSAVE(Op, DAG);
   1680   case ISD::STACKRESTORE:
   1681     return lowerSTACKRESTORE(Op, DAG);
   1682   default:
   1683     llvm_unreachable("Unexpected node to lower");
   1684   }
   1685 }
   1686 
   1687 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
   1688 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
   1689   switch (Opcode) {
   1690     OPCODE(RET_FLAG);
   1691     OPCODE(CALL);
   1692     OPCODE(PCREL_WRAPPER);
   1693     OPCODE(CMP);
   1694     OPCODE(UCMP);
   1695     OPCODE(BR_CCMASK);
   1696     OPCODE(SELECT_CCMASK);
   1697     OPCODE(ADJDYNALLOC);
   1698     OPCODE(EXTRACT_ACCESS);
   1699     OPCODE(UMUL_LOHI64);
   1700     OPCODE(SDIVREM64);
   1701     OPCODE(UDIVREM32);
   1702     OPCODE(UDIVREM64);
   1703     OPCODE(MVC);
   1704     OPCODE(ATOMIC_SWAPW);
   1705     OPCODE(ATOMIC_LOADW_ADD);
   1706     OPCODE(ATOMIC_LOADW_SUB);
   1707     OPCODE(ATOMIC_LOADW_AND);
   1708     OPCODE(ATOMIC_LOADW_OR);
   1709     OPCODE(ATOMIC_LOADW_XOR);
   1710     OPCODE(ATOMIC_LOADW_NAND);
   1711     OPCODE(ATOMIC_LOADW_MIN);
   1712     OPCODE(ATOMIC_LOADW_MAX);
   1713     OPCODE(ATOMIC_LOADW_UMIN);
   1714     OPCODE(ATOMIC_LOADW_UMAX);
   1715     OPCODE(ATOMIC_CMP_SWAPW);
   1716   }
   1717   return NULL;
   1718 #undef OPCODE
   1719 }
   1720 
   1721 //===----------------------------------------------------------------------===//
   1722 // Custom insertion
   1723 //===----------------------------------------------------------------------===//
   1724 
   1725 // Create a new basic block after MBB.
   1726 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) {
   1727   MachineFunction &MF = *MBB->getParent();
   1728   MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
   1729   MF.insert(llvm::next(MachineFunction::iterator(MBB)), NewMBB);
   1730   return NewMBB;
   1731 }
   1732 
   1733 // Split MBB after MI and return the new block (the one that contains
   1734 // instructions after MI).
   1735 static MachineBasicBlock *splitBlockAfter(MachineInstr *MI,
   1736                                           MachineBasicBlock *MBB) {
   1737   MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
   1738   NewMBB->splice(NewMBB->begin(), MBB,
   1739                  llvm::next(MachineBasicBlock::iterator(MI)),
   1740                  MBB->end());
   1741   NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
   1742   return NewMBB;
   1743 }
   1744 
   1745 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
   1746 MachineBasicBlock *
   1747 SystemZTargetLowering::emitSelect(MachineInstr *MI,
   1748                                   MachineBasicBlock *MBB) const {
   1749   const SystemZInstrInfo *TII = TM.getInstrInfo();
   1750 
   1751   unsigned DestReg  = MI->getOperand(0).getReg();
   1752   unsigned TrueReg  = MI->getOperand(1).getReg();
   1753   unsigned FalseReg = MI->getOperand(2).getReg();
   1754   unsigned CCValid  = MI->getOperand(3).getImm();
   1755   unsigned CCMask   = MI->getOperand(4).getImm();
   1756   DebugLoc DL       = MI->getDebugLoc();
   1757 
   1758   MachineBasicBlock *StartMBB = MBB;
   1759   MachineBasicBlock *JoinMBB  = splitBlockAfter(MI, MBB);
   1760   MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
   1761 
   1762   //  StartMBB:
   1763   //   BRC CCMask, JoinMBB
   1764   //   # fallthrough to FalseMBB
   1765   MBB = StartMBB;
   1766   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
   1767     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
   1768   MBB->addSuccessor(JoinMBB);
   1769   MBB->addSuccessor(FalseMBB);
   1770 
   1771   //  FalseMBB:
   1772   //   # fallthrough to JoinMBB
   1773   MBB = FalseMBB;
   1774   MBB->addSuccessor(JoinMBB);
   1775 
   1776   //  JoinMBB:
   1777   //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
   1778   //  ...
   1779   MBB = JoinMBB;
   1780   BuildMI(*MBB, MBB->begin(), DL, TII->get(SystemZ::PHI), DestReg)
   1781     .addReg(TrueReg).addMBB(StartMBB)
   1782     .addReg(FalseReg).addMBB(FalseMBB);
   1783 
   1784   MI->eraseFromParent();
   1785   return JoinMBB;
   1786 }
   1787 
   1788 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
   1789 // StoreOpcode is the store to use and Invert says whether the store should
   1790 // happen when the condition is false rather than true.  If a STORE ON
   1791 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
   1792 MachineBasicBlock *
   1793 SystemZTargetLowering::emitCondStore(MachineInstr *MI,
   1794                                      MachineBasicBlock *MBB,
   1795                                      unsigned StoreOpcode, unsigned STOCOpcode,
   1796                                      bool Invert) const {
   1797   const SystemZInstrInfo *TII = TM.getInstrInfo();
   1798 
   1799   unsigned SrcReg     = MI->getOperand(0).getReg();
   1800   MachineOperand Base = MI->getOperand(1);
   1801   int64_t Disp        = MI->getOperand(2).getImm();
   1802   unsigned IndexReg   = MI->getOperand(3).getReg();
   1803   unsigned CCValid    = MI->getOperand(4).getImm();
   1804   unsigned CCMask     = MI->getOperand(5).getImm();
   1805   DebugLoc DL         = MI->getDebugLoc();
   1806 
   1807   StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
   1808 
   1809   // Use STOCOpcode if possible.  We could use different store patterns in
   1810   // order to avoid matching the index register, but the performance trade-offs
   1811   // might be more complicated in that case.
   1812   if (STOCOpcode && !IndexReg && TM.getSubtargetImpl()->hasLoadStoreOnCond()) {
   1813     if (Invert)
   1814       CCMask ^= CCValid;
   1815     BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
   1816       .addReg(SrcReg).addOperand(Base).addImm(Disp)
   1817       .addImm(CCValid).addImm(CCMask);
   1818     MI->eraseFromParent();
   1819     return MBB;
   1820   }
   1821 
   1822   // Get the condition needed to branch around the store.
   1823   if (!Invert)
   1824     CCMask ^= CCValid;
   1825 
   1826   MachineBasicBlock *StartMBB = MBB;
   1827   MachineBasicBlock *JoinMBB  = splitBlockAfter(MI, MBB);
   1828   MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
   1829 
   1830   //  StartMBB:
   1831   //   BRC CCMask, JoinMBB
   1832   //   # fallthrough to FalseMBB
   1833   MBB = StartMBB;
   1834   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
   1835     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
   1836   MBB->addSuccessor(JoinMBB);
   1837   MBB->addSuccessor(FalseMBB);
   1838 
   1839   //  FalseMBB:
   1840   //   store %SrcReg, %Disp(%Index,%Base)
   1841   //   # fallthrough to JoinMBB
   1842   MBB = FalseMBB;
   1843   BuildMI(MBB, DL, TII->get(StoreOpcode))
   1844     .addReg(SrcReg).addOperand(Base).addImm(Disp).addReg(IndexReg);
   1845   MBB->addSuccessor(JoinMBB);
   1846 
   1847   MI->eraseFromParent();
   1848   return JoinMBB;
   1849 }
   1850 
   1851 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
   1852 // or ATOMIC_SWAP{,W} instruction MI.  BinOpcode is the instruction that
   1853 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
   1854 // BitSize is the width of the field in bits, or 0 if this is a partword
   1855 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
   1856 // is one of the operands.  Invert says whether the field should be
   1857 // inverted after performing BinOpcode (e.g. for NAND).
   1858 MachineBasicBlock *
   1859 SystemZTargetLowering::emitAtomicLoadBinary(MachineInstr *MI,
   1860                                             MachineBasicBlock *MBB,
   1861                                             unsigned BinOpcode,
   1862                                             unsigned BitSize,
   1863                                             bool Invert) const {
   1864   const SystemZInstrInfo *TII = TM.getInstrInfo();
   1865   MachineFunction &MF = *MBB->getParent();
   1866   MachineRegisterInfo &MRI = MF.getRegInfo();
   1867   bool IsSubWord = (BitSize < 32);
   1868 
   1869   // Extract the operands.  Base can be a register or a frame index.
   1870   // Src2 can be a register or immediate.
   1871   unsigned Dest        = MI->getOperand(0).getReg();
   1872   MachineOperand Base  = earlyUseOperand(MI->getOperand(1));
   1873   int64_t Disp         = MI->getOperand(2).getImm();
   1874   MachineOperand Src2  = earlyUseOperand(MI->getOperand(3));
   1875   unsigned BitShift    = (IsSubWord ? MI->getOperand(4).getReg() : 0);
   1876   unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0);
   1877   DebugLoc DL          = MI->getDebugLoc();
   1878   if (IsSubWord)
   1879     BitSize = MI->getOperand(6).getImm();
   1880 
   1881   // Subword operations use 32-bit registers.
   1882   const TargetRegisterClass *RC = (BitSize <= 32 ?
   1883                                    &SystemZ::GR32BitRegClass :
   1884                                    &SystemZ::GR64BitRegClass);
   1885   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
   1886   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
   1887 
   1888   // Get the right opcodes for the displacement.
   1889   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
   1890   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
   1891   assert(LOpcode && CSOpcode && "Displacement out of range");
   1892 
   1893   // Create virtual registers for temporary results.
   1894   unsigned OrigVal       = MRI.createVirtualRegister(RC);
   1895   unsigned OldVal        = MRI.createVirtualRegister(RC);
   1896   unsigned NewVal        = (BinOpcode || IsSubWord ?
   1897                             MRI.createVirtualRegister(RC) : Src2.getReg());
   1898   unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
   1899   unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
   1900 
   1901   // Insert a basic block for the main loop.
   1902   MachineBasicBlock *StartMBB = MBB;
   1903   MachineBasicBlock *DoneMBB  = splitBlockAfter(MI, MBB);
   1904   MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
   1905 
   1906   //  StartMBB:
   1907   //   ...
   1908   //   %OrigVal = L Disp(%Base)
   1909   //   # fall through to LoopMMB
   1910   MBB = StartMBB;
   1911   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
   1912     .addOperand(Base).addImm(Disp).addReg(0);
   1913   MBB->addSuccessor(LoopMBB);
   1914 
   1915   //  LoopMBB:
   1916   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
   1917   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
   1918   //   %RotatedNewVal = OP %RotatedOldVal, %Src2
   1919   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
   1920   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
   1921   //   JNE LoopMBB
   1922   //   # fall through to DoneMMB
   1923   MBB = LoopMBB;
   1924   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
   1925     .addReg(OrigVal).addMBB(StartMBB)
   1926     .addReg(Dest).addMBB(LoopMBB);
   1927   if (IsSubWord)
   1928     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
   1929       .addReg(OldVal).addReg(BitShift).addImm(0);
   1930   if (Invert) {
   1931     // Perform the operation normally and then invert every bit of the field.
   1932     unsigned Tmp = MRI.createVirtualRegister(RC);
   1933     BuildMI(MBB, DL, TII->get(BinOpcode), Tmp)
   1934       .addReg(RotatedOldVal).addOperand(Src2);
   1935     if (BitSize < 32)
   1936       // XILF with the upper BitSize bits set.
   1937       BuildMI(MBB, DL, TII->get(SystemZ::XILF32), RotatedNewVal)
   1938         .addReg(Tmp).addImm(uint32_t(~0 << (32 - BitSize)));
   1939     else if (BitSize == 32)
   1940       // XILF with every bit set.
   1941       BuildMI(MBB, DL, TII->get(SystemZ::XILF32), RotatedNewVal)
   1942         .addReg(Tmp).addImm(~uint32_t(0));
   1943     else {
   1944       // Use LCGR and add -1 to the result, which is more compact than
   1945       // an XILF, XILH pair.
   1946       unsigned Tmp2 = MRI.createVirtualRegister(RC);
   1947       BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
   1948       BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
   1949         .addReg(Tmp2).addImm(-1);
   1950     }
   1951   } else if (BinOpcode)
   1952     // A simply binary operation.
   1953     BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
   1954       .addReg(RotatedOldVal).addOperand(Src2);
   1955   else if (IsSubWord)
   1956     // Use RISBG to rotate Src2 into position and use it to replace the
   1957     // field in RotatedOldVal.
   1958     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
   1959       .addReg(RotatedOldVal).addReg(Src2.getReg())
   1960       .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
   1961   if (IsSubWord)
   1962     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
   1963       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
   1964   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
   1965     .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
   1966   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
   1967     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
   1968   MBB->addSuccessor(LoopMBB);
   1969   MBB->addSuccessor(DoneMBB);
   1970 
   1971   MI->eraseFromParent();
   1972   return DoneMBB;
   1973 }
   1974 
   1975 // Implement EmitInstrWithCustomInserter for pseudo
   1976 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
   1977 // instruction that should be used to compare the current field with the
   1978 // minimum or maximum value.  KeepOldMask is the BRC condition-code mask
   1979 // for when the current field should be kept.  BitSize is the width of
   1980 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
   1981 MachineBasicBlock *
   1982 SystemZTargetLowering::emitAtomicLoadMinMax(MachineInstr *MI,
   1983                                             MachineBasicBlock *MBB,
   1984                                             unsigned CompareOpcode,
   1985                                             unsigned KeepOldMask,
   1986                                             unsigned BitSize) const {
   1987   const SystemZInstrInfo *TII = TM.getInstrInfo();
   1988   MachineFunction &MF = *MBB->getParent();
   1989   MachineRegisterInfo &MRI = MF.getRegInfo();
   1990   bool IsSubWord = (BitSize < 32);
   1991 
   1992   // Extract the operands.  Base can be a register or a frame index.
   1993   unsigned Dest        = MI->getOperand(0).getReg();
   1994   MachineOperand Base  = earlyUseOperand(MI->getOperand(1));
   1995   int64_t  Disp        = MI->getOperand(2).getImm();
   1996   unsigned Src2        = MI->getOperand(3).getReg();
   1997   unsigned BitShift    = (IsSubWord ? MI->getOperand(4).getReg() : 0);
   1998   unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0);
   1999   DebugLoc DL          = MI->getDebugLoc();
   2000   if (IsSubWord)
   2001     BitSize = MI->getOperand(6).getImm();
   2002 
   2003   // Subword operations use 32-bit registers.
   2004   const TargetRegisterClass *RC = (BitSize <= 32 ?
   2005                                    &SystemZ::GR32BitRegClass :
   2006                                    &SystemZ::GR64BitRegClass);
   2007   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
   2008   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
   2009 
   2010   // Get the right opcodes for the displacement.
   2011   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
   2012   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
   2013   assert(LOpcode && CSOpcode && "Displacement out of range");
   2014 
   2015   // Create virtual registers for temporary results.
   2016   unsigned OrigVal       = MRI.createVirtualRegister(RC);
   2017   unsigned OldVal        = MRI.createVirtualRegister(RC);
   2018   unsigned NewVal        = MRI.createVirtualRegister(RC);
   2019   unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
   2020   unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
   2021   unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
   2022 
   2023   // Insert 3 basic blocks for the loop.
   2024   MachineBasicBlock *StartMBB  = MBB;
   2025   MachineBasicBlock *DoneMBB   = splitBlockAfter(MI, MBB);
   2026   MachineBasicBlock *LoopMBB   = emitBlockAfter(StartMBB);
   2027   MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB);
   2028   MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB);
   2029 
   2030   //  StartMBB:
   2031   //   ...
   2032   //   %OrigVal     = L Disp(%Base)
   2033   //   # fall through to LoopMMB
   2034   MBB = StartMBB;
   2035   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
   2036     .addOperand(Base).addImm(Disp).addReg(0);
   2037   MBB->addSuccessor(LoopMBB);
   2038 
   2039   //  LoopMBB:
   2040   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
   2041   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
   2042   //   CompareOpcode %RotatedOldVal, %Src2
   2043   //   BRC KeepOldMask, UpdateMBB
   2044   MBB = LoopMBB;
   2045   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
   2046     .addReg(OrigVal).addMBB(StartMBB)
   2047     .addReg(Dest).addMBB(UpdateMBB);
   2048   if (IsSubWord)
   2049     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
   2050       .addReg(OldVal).addReg(BitShift).addImm(0);
   2051   BuildMI(MBB, DL, TII->get(CompareOpcode))
   2052     .addReg(RotatedOldVal).addReg(Src2);
   2053   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
   2054     .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
   2055   MBB->addSuccessor(UpdateMBB);
   2056   MBB->addSuccessor(UseAltMBB);
   2057 
   2058   //  UseAltMBB:
   2059   //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
   2060   //   # fall through to UpdateMMB
   2061   MBB = UseAltMBB;
   2062   if (IsSubWord)
   2063     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
   2064       .addReg(RotatedOldVal).addReg(Src2)
   2065       .addImm(32).addImm(31 + BitSize).addImm(0);
   2066   MBB->addSuccessor(UpdateMBB);
   2067 
   2068   //  UpdateMBB:
   2069   //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
   2070   //                        [ %RotatedAltVal, UseAltMBB ]
   2071   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
   2072   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
   2073   //   JNE LoopMBB
   2074   //   # fall through to DoneMMB
   2075   MBB = UpdateMBB;
   2076   BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
   2077     .addReg(RotatedOldVal).addMBB(LoopMBB)
   2078     .addReg(RotatedAltVal).addMBB(UseAltMBB);
   2079   if (IsSubWord)
   2080     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
   2081       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
   2082   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
   2083     .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
   2084   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
   2085     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
   2086   MBB->addSuccessor(LoopMBB);
   2087   MBB->addSuccessor(DoneMBB);
   2088 
   2089   MI->eraseFromParent();
   2090   return DoneMBB;
   2091 }
   2092 
   2093 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
   2094 // instruction MI.
   2095 MachineBasicBlock *
   2096 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr *MI,
   2097                                           MachineBasicBlock *MBB) const {
   2098   const SystemZInstrInfo *TII = TM.getInstrInfo();
   2099   MachineFunction &MF = *MBB->getParent();
   2100   MachineRegisterInfo &MRI = MF.getRegInfo();
   2101 
   2102   // Extract the operands.  Base can be a register or a frame index.
   2103   unsigned Dest        = MI->getOperand(0).getReg();
   2104   MachineOperand Base  = earlyUseOperand(MI->getOperand(1));
   2105   int64_t  Disp        = MI->getOperand(2).getImm();
   2106   unsigned OrigCmpVal  = MI->getOperand(3).getReg();
   2107   unsigned OrigSwapVal = MI->getOperand(4).getReg();
   2108   unsigned BitShift    = MI->getOperand(5).getReg();
   2109   unsigned NegBitShift = MI->getOperand(6).getReg();
   2110   int64_t  BitSize     = MI->getOperand(7).getImm();
   2111   DebugLoc DL          = MI->getDebugLoc();
   2112 
   2113   const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
   2114 
   2115   // Get the right opcodes for the displacement.
   2116   unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
   2117   unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
   2118   assert(LOpcode && CSOpcode && "Displacement out of range");
   2119 
   2120   // Create virtual registers for temporary results.
   2121   unsigned OrigOldVal   = MRI.createVirtualRegister(RC);
   2122   unsigned OldVal       = MRI.createVirtualRegister(RC);
   2123   unsigned CmpVal       = MRI.createVirtualRegister(RC);
   2124   unsigned SwapVal      = MRI.createVirtualRegister(RC);
   2125   unsigned StoreVal     = MRI.createVirtualRegister(RC);
   2126   unsigned RetryOldVal  = MRI.createVirtualRegister(RC);
   2127   unsigned RetryCmpVal  = MRI.createVirtualRegister(RC);
   2128   unsigned RetrySwapVal = MRI.createVirtualRegister(RC);
   2129 
   2130   // Insert 2 basic blocks for the loop.
   2131   MachineBasicBlock *StartMBB = MBB;
   2132   MachineBasicBlock *DoneMBB  = splitBlockAfter(MI, MBB);
   2133   MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
   2134   MachineBasicBlock *SetMBB   = emitBlockAfter(LoopMBB);
   2135 
   2136   //  StartMBB:
   2137   //   ...
   2138   //   %OrigOldVal     = L Disp(%Base)
   2139   //   # fall through to LoopMMB
   2140   MBB = StartMBB;
   2141   BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
   2142     .addOperand(Base).addImm(Disp).addReg(0);
   2143   MBB->addSuccessor(LoopMBB);
   2144 
   2145   //  LoopMBB:
   2146   //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
   2147   //   %CmpVal        = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
   2148   //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
   2149   //   %Dest          = RLL %OldVal, BitSize(%BitShift)
   2150   //                      ^^ The low BitSize bits contain the field
   2151   //                         of interest.
   2152   //   %RetryCmpVal   = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
   2153   //                      ^^ Replace the upper 32-BitSize bits of the
   2154   //                         comparison value with those that we loaded,
   2155   //                         so that we can use a full word comparison.
   2156   //   CR %Dest, %RetryCmpVal
   2157   //   JNE DoneMBB
   2158   //   # Fall through to SetMBB
   2159   MBB = LoopMBB;
   2160   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
   2161     .addReg(OrigOldVal).addMBB(StartMBB)
   2162     .addReg(RetryOldVal).addMBB(SetMBB);
   2163   BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
   2164     .addReg(OrigCmpVal).addMBB(StartMBB)
   2165     .addReg(RetryCmpVal).addMBB(SetMBB);
   2166   BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
   2167     .addReg(OrigSwapVal).addMBB(StartMBB)
   2168     .addReg(RetrySwapVal).addMBB(SetMBB);
   2169   BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
   2170     .addReg(OldVal).addReg(BitShift).addImm(BitSize);
   2171   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
   2172     .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
   2173   BuildMI(MBB, DL, TII->get(SystemZ::CR))
   2174     .addReg(Dest).addReg(RetryCmpVal);
   2175   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
   2176     .addImm(SystemZ::CCMASK_ICMP)
   2177     .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
   2178   MBB->addSuccessor(DoneMBB);
   2179   MBB->addSuccessor(SetMBB);
   2180 
   2181   //  SetMBB:
   2182   //   %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
   2183   //                      ^^ Replace the upper 32-BitSize bits of the new
   2184   //                         value with those that we loaded.
   2185   //   %StoreVal    = RLL %RetrySwapVal, -BitSize(%NegBitShift)
   2186   //                      ^^ Rotate the new field to its proper position.
   2187   //   %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
   2188   //   JNE LoopMBB
   2189   //   # fall through to ExitMMB
   2190   MBB = SetMBB;
   2191   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
   2192     .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
   2193   BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
   2194     .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
   2195   BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
   2196     .addReg(OldVal).addReg(StoreVal).addOperand(Base).addImm(Disp);
   2197   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
   2198     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
   2199   MBB->addSuccessor(LoopMBB);
   2200   MBB->addSuccessor(DoneMBB);
   2201 
   2202   MI->eraseFromParent();
   2203   return DoneMBB;
   2204 }
   2205 
   2206 // Emit an extension from a GR32 or GR64 to a GR128.  ClearEven is true
   2207 // if the high register of the GR128 value must be cleared or false if
   2208 // it's "don't care".  SubReg is subreg_odd32 when extending a GR32
   2209 // and subreg_odd when extending a GR64.
   2210 MachineBasicBlock *
   2211 SystemZTargetLowering::emitExt128(MachineInstr *MI,
   2212                                   MachineBasicBlock *MBB,
   2213                                   bool ClearEven, unsigned SubReg) const {
   2214   const SystemZInstrInfo *TII = TM.getInstrInfo();
   2215   MachineFunction &MF = *MBB->getParent();
   2216   MachineRegisterInfo &MRI = MF.getRegInfo();
   2217   DebugLoc DL = MI->getDebugLoc();
   2218 
   2219   unsigned Dest  = MI->getOperand(0).getReg();
   2220   unsigned Src   = MI->getOperand(1).getReg();
   2221   unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
   2222 
   2223   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
   2224   if (ClearEven) {
   2225     unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
   2226     unsigned Zero64   = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
   2227 
   2228     BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
   2229       .addImm(0);
   2230     BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
   2231       .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_high);
   2232     In128 = NewIn128;
   2233   }
   2234   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
   2235     .addReg(In128).addReg(Src).addImm(SubReg);
   2236 
   2237   MI->eraseFromParent();
   2238   return MBB;
   2239 }
   2240 
   2241 MachineBasicBlock *
   2242 SystemZTargetLowering::emitMVCWrapper(MachineInstr *MI,
   2243                                       MachineBasicBlock *MBB) const {
   2244   const SystemZInstrInfo *TII = TM.getInstrInfo();
   2245   DebugLoc DL = MI->getDebugLoc();
   2246 
   2247   MachineOperand DestBase = MI->getOperand(0);
   2248   uint64_t       DestDisp = MI->getOperand(1).getImm();
   2249   MachineOperand SrcBase  = MI->getOperand(2);
   2250   uint64_t       SrcDisp  = MI->getOperand(3).getImm();
   2251   uint64_t       Length   = MI->getOperand(4).getImm();
   2252 
   2253   BuildMI(*MBB, MI, DL, TII->get(SystemZ::MVC))
   2254     .addOperand(DestBase).addImm(DestDisp).addImm(Length)
   2255     .addOperand(SrcBase).addImm(SrcDisp);
   2256 
   2257   MI->eraseFromParent();
   2258   return MBB;
   2259 }
   2260 
   2261 MachineBasicBlock *SystemZTargetLowering::
   2262 EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const {
   2263   switch (MI->getOpcode()) {
   2264   case SystemZ::Select32:
   2265   case SystemZ::SelectF32:
   2266   case SystemZ::Select64:
   2267   case SystemZ::SelectF64:
   2268   case SystemZ::SelectF128:
   2269     return emitSelect(MI, MBB);
   2270 
   2271   case SystemZ::CondStore8_32:
   2272     return emitCondStore(MI, MBB, SystemZ::STC32, 0, false);
   2273   case SystemZ::CondStore8_32Inv:
   2274     return emitCondStore(MI, MBB, SystemZ::STC32, 0, true);
   2275   case SystemZ::CondStore16_32:
   2276     return emitCondStore(MI, MBB, SystemZ::STH32, 0, false);
   2277   case SystemZ::CondStore16_32Inv:
   2278     return emitCondStore(MI, MBB, SystemZ::STH32, 0, true);
   2279   case SystemZ::CondStore32_32:
   2280     return emitCondStore(MI, MBB, SystemZ::ST32, SystemZ::STOC32, false);
   2281   case SystemZ::CondStore32_32Inv:
   2282     return emitCondStore(MI, MBB, SystemZ::ST32, SystemZ::STOC32, true);
   2283   case SystemZ::CondStore8:
   2284     return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
   2285   case SystemZ::CondStore8Inv:
   2286     return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
   2287   case SystemZ::CondStore16:
   2288     return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
   2289   case SystemZ::CondStore16Inv:
   2290     return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
   2291   case SystemZ::CondStore32:
   2292     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
   2293   case SystemZ::CondStore32Inv:
   2294     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
   2295   case SystemZ::CondStore64:
   2296     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
   2297   case SystemZ::CondStore64Inv:
   2298     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
   2299   case SystemZ::CondStoreF32:
   2300     return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
   2301   case SystemZ::CondStoreF32Inv:
   2302     return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
   2303   case SystemZ::CondStoreF64:
   2304     return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
   2305   case SystemZ::CondStoreF64Inv:
   2306     return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
   2307 
   2308   case SystemZ::AEXT128_64:
   2309     return emitExt128(MI, MBB, false, SystemZ::subreg_low);
   2310   case SystemZ::ZEXT128_32:
   2311     return emitExt128(MI, MBB, true, SystemZ::subreg_low32);
   2312   case SystemZ::ZEXT128_64:
   2313     return emitExt128(MI, MBB, true, SystemZ::subreg_low);
   2314 
   2315   case SystemZ::ATOMIC_SWAPW:
   2316     return emitAtomicLoadBinary(MI, MBB, 0, 0);
   2317   case SystemZ::ATOMIC_SWAP_32:
   2318     return emitAtomicLoadBinary(MI, MBB, 0, 32);
   2319   case SystemZ::ATOMIC_SWAP_64:
   2320     return emitAtomicLoadBinary(MI, MBB, 0, 64);
   2321 
   2322   case SystemZ::ATOMIC_LOADW_AR:
   2323     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
   2324   case SystemZ::ATOMIC_LOADW_AFI:
   2325     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
   2326   case SystemZ::ATOMIC_LOAD_AR:
   2327     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
   2328   case SystemZ::ATOMIC_LOAD_AHI:
   2329     return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
   2330   case SystemZ::ATOMIC_LOAD_AFI:
   2331     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
   2332   case SystemZ::ATOMIC_LOAD_AGR:
   2333     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
   2334   case SystemZ::ATOMIC_LOAD_AGHI:
   2335     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
   2336   case SystemZ::ATOMIC_LOAD_AGFI:
   2337     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
   2338 
   2339   case SystemZ::ATOMIC_LOADW_SR:
   2340     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
   2341   case SystemZ::ATOMIC_LOAD_SR:
   2342     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
   2343   case SystemZ::ATOMIC_LOAD_SGR:
   2344     return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
   2345 
   2346   case SystemZ::ATOMIC_LOADW_NR:
   2347     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
   2348   case SystemZ::ATOMIC_LOADW_NILH:
   2349     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH32, 0);
   2350   case SystemZ::ATOMIC_LOAD_NR:
   2351     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
   2352   case SystemZ::ATOMIC_LOAD_NILL32:
   2353     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL32, 32);
   2354   case SystemZ::ATOMIC_LOAD_NILH32:
   2355     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH32, 32);
   2356   case SystemZ::ATOMIC_LOAD_NILF32:
   2357     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF32, 32);
   2358   case SystemZ::ATOMIC_LOAD_NGR:
   2359     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
   2360   case SystemZ::ATOMIC_LOAD_NILL:
   2361     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 64);
   2362   case SystemZ::ATOMIC_LOAD_NILH:
   2363     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 64);
   2364   case SystemZ::ATOMIC_LOAD_NIHL:
   2365     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL, 64);
   2366   case SystemZ::ATOMIC_LOAD_NIHH:
   2367     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH, 64);
   2368   case SystemZ::ATOMIC_LOAD_NILF:
   2369     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 64);
   2370   case SystemZ::ATOMIC_LOAD_NIHF:
   2371     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF, 64);
   2372 
   2373   case SystemZ::ATOMIC_LOADW_OR:
   2374     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
   2375   case SystemZ::ATOMIC_LOADW_OILH:
   2376     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH32, 0);
   2377   case SystemZ::ATOMIC_LOAD_OR:
   2378     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
   2379   case SystemZ::ATOMIC_LOAD_OILL32:
   2380     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL32, 32);
   2381   case SystemZ::ATOMIC_LOAD_OILH32:
   2382     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH32, 32);
   2383   case SystemZ::ATOMIC_LOAD_OILF32:
   2384     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF32, 32);
   2385   case SystemZ::ATOMIC_LOAD_OGR:
   2386     return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
   2387   case SystemZ::ATOMIC_LOAD_OILL:
   2388     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 64);
   2389   case SystemZ::ATOMIC_LOAD_OILH:
   2390     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 64);
   2391   case SystemZ::ATOMIC_LOAD_OIHL:
   2392     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL, 64);
   2393   case SystemZ::ATOMIC_LOAD_OIHH:
   2394     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH, 64);
   2395   case SystemZ::ATOMIC_LOAD_OILF:
   2396     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 64);
   2397   case SystemZ::ATOMIC_LOAD_OIHF:
   2398     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF, 64);
   2399 
   2400   case SystemZ::ATOMIC_LOADW_XR:
   2401     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
   2402   case SystemZ::ATOMIC_LOADW_XILF:
   2403     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF32, 0);
   2404   case SystemZ::ATOMIC_LOAD_XR:
   2405     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
   2406   case SystemZ::ATOMIC_LOAD_XILF32:
   2407     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF32, 32);
   2408   case SystemZ::ATOMIC_LOAD_XGR:
   2409     return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
   2410   case SystemZ::ATOMIC_LOAD_XILF:
   2411     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 64);
   2412   case SystemZ::ATOMIC_LOAD_XIHF:
   2413     return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF, 64);
   2414 
   2415   case SystemZ::ATOMIC_LOADW_NRi:
   2416     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
   2417   case SystemZ::ATOMIC_LOADW_NILHi:
   2418     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH32, 0, true);
   2419   case SystemZ::ATOMIC_LOAD_NRi:
   2420     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
   2421   case SystemZ::ATOMIC_LOAD_NILL32i:
   2422     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL32, 32, true);
   2423   case SystemZ::ATOMIC_LOAD_NILH32i:
   2424     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH32, 32, true);
   2425   case SystemZ::ATOMIC_LOAD_NILF32i:
   2426     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF32, 32, true);
   2427   case SystemZ::ATOMIC_LOAD_NGRi:
   2428     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
   2429   case SystemZ::ATOMIC_LOAD_NILLi:
   2430     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 64, true);
   2431   case SystemZ::ATOMIC_LOAD_NILHi:
   2432     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 64, true);
   2433   case SystemZ::ATOMIC_LOAD_NIHLi:
   2434     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL, 64, true);
   2435   case SystemZ::ATOMIC_LOAD_NIHHi:
   2436     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH, 64, true);
   2437   case SystemZ::ATOMIC_LOAD_NILFi:
   2438     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 64, true);
   2439   case SystemZ::ATOMIC_LOAD_NIHFi:
   2440     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF, 64, true);
   2441 
   2442   case SystemZ::ATOMIC_LOADW_MIN:
   2443     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
   2444                                 SystemZ::CCMASK_CMP_LE, 0);
   2445   case SystemZ::ATOMIC_LOAD_MIN_32:
   2446     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
   2447                                 SystemZ::CCMASK_CMP_LE, 32);
   2448   case SystemZ::ATOMIC_LOAD_MIN_64:
   2449     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
   2450                                 SystemZ::CCMASK_CMP_LE, 64);
   2451 
   2452   case SystemZ::ATOMIC_LOADW_MAX:
   2453     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
   2454                                 SystemZ::CCMASK_CMP_GE, 0);
   2455   case SystemZ::ATOMIC_LOAD_MAX_32:
   2456     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
   2457                                 SystemZ::CCMASK_CMP_GE, 32);
   2458   case SystemZ::ATOMIC_LOAD_MAX_64:
   2459     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
   2460                                 SystemZ::CCMASK_CMP_GE, 64);
   2461 
   2462   case SystemZ::ATOMIC_LOADW_UMIN:
   2463     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
   2464                                 SystemZ::CCMASK_CMP_LE, 0);
   2465   case SystemZ::ATOMIC_LOAD_UMIN_32:
   2466     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
   2467                                 SystemZ::CCMASK_CMP_LE, 32);
   2468   case SystemZ::ATOMIC_LOAD_UMIN_64:
   2469     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
   2470                                 SystemZ::CCMASK_CMP_LE, 64);
   2471 
   2472   case SystemZ::ATOMIC_LOADW_UMAX:
   2473     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
   2474                                 SystemZ::CCMASK_CMP_GE, 0);
   2475   case SystemZ::ATOMIC_LOAD_UMAX_32:
   2476     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
   2477                                 SystemZ::CCMASK_CMP_GE, 32);
   2478   case SystemZ::ATOMIC_LOAD_UMAX_64:
   2479     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
   2480                                 SystemZ::CCMASK_CMP_GE, 64);
   2481 
   2482   case SystemZ::ATOMIC_CMP_SWAPW:
   2483     return emitAtomicCmpSwapW(MI, MBB);
   2484   case SystemZ::MVCWrapper:
   2485     return emitMVCWrapper(MI, MBB);
   2486   default:
   2487     llvm_unreachable("Unexpected instr type to insert");
   2488   }
   2489 }
   2490