1 //==--- InstrEmitter.cpp - Emit MachineInstrs for the SelectionDAG class ---==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the Emit routines for the SelectionDAG class, which creates 11 // MachineInstrs based on the decisions of the SelectionDAG instruction 12 // selection. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #define DEBUG_TYPE "instr-emitter" 17 #include "InstrEmitter.h" 18 #include "SDNodeDbgValue.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/CodeGen/MachineConstantPool.h" 21 #include "llvm/CodeGen/MachineFunction.h" 22 #include "llvm/CodeGen/MachineInstrBuilder.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/MathExtras.h" 28 #include "llvm/Target/TargetInstrInfo.h" 29 #include "llvm/Target/TargetLowering.h" 30 #include "llvm/Target/TargetMachine.h" 31 using namespace llvm; 32 33 /// MinRCSize - Smallest register class we allow when constraining virtual 34 /// registers. If satisfying all register class constraints would require 35 /// using a smaller register class, emit a COPY to a new virtual register 36 /// instead. 37 const unsigned MinRCSize = 4; 38 39 /// CountResults - The results of target nodes have register or immediate 40 /// operands first, then an optional chain, and optional glue operands (which do 41 /// not go into the resulting MachineInstr). 42 unsigned InstrEmitter::CountResults(SDNode *Node) { 43 unsigned N = Node->getNumValues(); 44 while (N && Node->getValueType(N - 1) == MVT::Glue) 45 --N; 46 if (N && Node->getValueType(N - 1) == MVT::Other) 47 --N; // Skip over chain result. 48 return N; 49 } 50 51 /// countOperands - The inputs to target nodes have any actual inputs first, 52 /// followed by an optional chain operand, then an optional glue operand. 53 /// Compute the number of actual operands that will go into the resulting 54 /// MachineInstr. 55 /// 56 /// Also count physreg RegisterSDNode and RegisterMaskSDNode operands preceding 57 /// the chain and glue. These operands may be implicit on the machine instr. 58 static unsigned countOperands(SDNode *Node, unsigned NumExpUses, 59 unsigned &NumImpUses) { 60 unsigned N = Node->getNumOperands(); 61 while (N && Node->getOperand(N - 1).getValueType() == MVT::Glue) 62 --N; 63 if (N && Node->getOperand(N - 1).getValueType() == MVT::Other) 64 --N; // Ignore chain if it exists. 65 66 // Count RegisterSDNode and RegisterMaskSDNode operands for NumImpUses. 67 NumImpUses = N - NumExpUses; 68 for (unsigned I = N; I > NumExpUses; --I) { 69 if (isa<RegisterMaskSDNode>(Node->getOperand(I - 1))) 70 continue; 71 if (RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Node->getOperand(I - 1))) 72 if (TargetRegisterInfo::isPhysicalRegister(RN->getReg())) 73 continue; 74 NumImpUses = N - I; 75 break; 76 } 77 78 return N; 79 } 80 81 /// EmitCopyFromReg - Generate machine code for an CopyFromReg node or an 82 /// implicit physical register output. 83 void InstrEmitter:: 84 EmitCopyFromReg(SDNode *Node, unsigned ResNo, bool IsClone, bool IsCloned, 85 unsigned SrcReg, DenseMap<SDValue, unsigned> &VRBaseMap) { 86 unsigned VRBase = 0; 87 if (TargetRegisterInfo::isVirtualRegister(SrcReg)) { 88 // Just use the input register directly! 89 SDValue Op(Node, ResNo); 90 if (IsClone) 91 VRBaseMap.erase(Op); 92 bool isNew = VRBaseMap.insert(std::make_pair(Op, SrcReg)).second; 93 (void)isNew; // Silence compiler warning. 94 assert(isNew && "Node emitted out of order - early"); 95 return; 96 } 97 98 // If the node is only used by a CopyToReg and the dest reg is a vreg, use 99 // the CopyToReg'd destination register instead of creating a new vreg. 100 bool MatchReg = true; 101 const TargetRegisterClass *UseRC = NULL; 102 MVT VT = Node->getSimpleValueType(ResNo); 103 104 // Stick to the preferred register classes for legal types. 105 if (TLI->isTypeLegal(VT)) 106 UseRC = TLI->getRegClassFor(VT); 107 108 if (!IsClone && !IsCloned) 109 for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end(); 110 UI != E; ++UI) { 111 SDNode *User = *UI; 112 bool Match = true; 113 if (User->getOpcode() == ISD::CopyToReg && 114 User->getOperand(2).getNode() == Node && 115 User->getOperand(2).getResNo() == ResNo) { 116 unsigned DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg(); 117 if (TargetRegisterInfo::isVirtualRegister(DestReg)) { 118 VRBase = DestReg; 119 Match = false; 120 } else if (DestReg != SrcReg) 121 Match = false; 122 } else { 123 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 124 SDValue Op = User->getOperand(i); 125 if (Op.getNode() != Node || Op.getResNo() != ResNo) 126 continue; 127 MVT VT = Node->getSimpleValueType(Op.getResNo()); 128 if (VT == MVT::Other || VT == MVT::Glue) 129 continue; 130 Match = false; 131 if (User->isMachineOpcode()) { 132 const MCInstrDesc &II = TII->get(User->getMachineOpcode()); 133 const TargetRegisterClass *RC = 0; 134 if (i+II.getNumDefs() < II.getNumOperands()) { 135 RC = TRI->getAllocatableClass( 136 TII->getRegClass(II, i+II.getNumDefs(), TRI, *MF)); 137 } 138 if (!UseRC) 139 UseRC = RC; 140 else if (RC) { 141 const TargetRegisterClass *ComRC = 142 TRI->getCommonSubClass(UseRC, RC); 143 // If multiple uses expect disjoint register classes, we emit 144 // copies in AddRegisterOperand. 145 if (ComRC) 146 UseRC = ComRC; 147 } 148 } 149 } 150 } 151 MatchReg &= Match; 152 if (VRBase) 153 break; 154 } 155 156 const TargetRegisterClass *SrcRC = 0, *DstRC = 0; 157 SrcRC = TRI->getMinimalPhysRegClass(SrcReg, VT); 158 159 // Figure out the register class to create for the destreg. 160 if (VRBase) { 161 DstRC = MRI->getRegClass(VRBase); 162 } else if (UseRC) { 163 assert(UseRC->hasType(VT) && "Incompatible phys register def and uses!"); 164 DstRC = UseRC; 165 } else { 166 DstRC = TLI->getRegClassFor(VT); 167 } 168 169 // If all uses are reading from the src physical register and copying the 170 // register is either impossible or very expensive, then don't create a copy. 171 if (MatchReg && SrcRC->getCopyCost() < 0) { 172 VRBase = SrcReg; 173 } else { 174 // Create the reg, emit the copy. 175 VRBase = MRI->createVirtualRegister(DstRC); 176 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY), 177 VRBase).addReg(SrcReg); 178 } 179 180 SDValue Op(Node, ResNo); 181 if (IsClone) 182 VRBaseMap.erase(Op); 183 bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second; 184 (void)isNew; // Silence compiler warning. 185 assert(isNew && "Node emitted out of order - early"); 186 } 187 188 /// getDstOfCopyToRegUse - If the only use of the specified result number of 189 /// node is a CopyToReg, return its destination register. Return 0 otherwise. 190 unsigned InstrEmitter::getDstOfOnlyCopyToRegUse(SDNode *Node, 191 unsigned ResNo) const { 192 if (!Node->hasOneUse()) 193 return 0; 194 195 SDNode *User = *Node->use_begin(); 196 if (User->getOpcode() == ISD::CopyToReg && 197 User->getOperand(2).getNode() == Node && 198 User->getOperand(2).getResNo() == ResNo) { 199 unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg(); 200 if (TargetRegisterInfo::isVirtualRegister(Reg)) 201 return Reg; 202 } 203 return 0; 204 } 205 206 void InstrEmitter::CreateVirtualRegisters(SDNode *Node, 207 MachineInstrBuilder &MIB, 208 const MCInstrDesc &II, 209 bool IsClone, bool IsCloned, 210 DenseMap<SDValue, unsigned> &VRBaseMap) { 211 assert(Node->getMachineOpcode() != TargetOpcode::IMPLICIT_DEF && 212 "IMPLICIT_DEF should have been handled as a special case elsewhere!"); 213 214 for (unsigned i = 0; i < II.getNumDefs(); ++i) { 215 // If the specific node value is only used by a CopyToReg and the dest reg 216 // is a vreg in the same register class, use the CopyToReg'd destination 217 // register instead of creating a new vreg. 218 unsigned VRBase = 0; 219 const TargetRegisterClass *RC = 220 TRI->getAllocatableClass(TII->getRegClass(II, i, TRI, *MF)); 221 if (II.OpInfo[i].isOptionalDef()) { 222 // Optional def must be a physical register. 223 unsigned NumResults = CountResults(Node); 224 VRBase = cast<RegisterSDNode>(Node->getOperand(i-NumResults))->getReg(); 225 assert(TargetRegisterInfo::isPhysicalRegister(VRBase)); 226 MIB.addReg(VRBase, RegState::Define); 227 } 228 229 if (!VRBase && !IsClone && !IsCloned) 230 for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end(); 231 UI != E; ++UI) { 232 SDNode *User = *UI; 233 if (User->getOpcode() == ISD::CopyToReg && 234 User->getOperand(2).getNode() == Node && 235 User->getOperand(2).getResNo() == i) { 236 unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg(); 237 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 238 const TargetRegisterClass *RegRC = MRI->getRegClass(Reg); 239 if (RegRC == RC) { 240 VRBase = Reg; 241 MIB.addReg(VRBase, RegState::Define); 242 break; 243 } 244 } 245 } 246 } 247 248 // Create the result registers for this node and add the result regs to 249 // the machine instruction. 250 if (VRBase == 0) { 251 assert(RC && "Isn't a register operand!"); 252 VRBase = MRI->createVirtualRegister(RC); 253 MIB.addReg(VRBase, RegState::Define); 254 } 255 256 SDValue Op(Node, i); 257 if (IsClone) 258 VRBaseMap.erase(Op); 259 bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second; 260 (void)isNew; // Silence compiler warning. 261 assert(isNew && "Node emitted out of order - early"); 262 } 263 } 264 265 /// getVR - Return the virtual register corresponding to the specified result 266 /// of the specified node. 267 unsigned InstrEmitter::getVR(SDValue Op, 268 DenseMap<SDValue, unsigned> &VRBaseMap) { 269 if (Op.isMachineOpcode() && 270 Op.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) { 271 // Add an IMPLICIT_DEF instruction before every use. 272 unsigned VReg = getDstOfOnlyCopyToRegUse(Op.getNode(), Op.getResNo()); 273 // IMPLICIT_DEF can produce any type of result so its MCInstrDesc 274 // does not include operand register class info. 275 if (!VReg) { 276 const TargetRegisterClass *RC = 277 TLI->getRegClassFor(Op.getSimpleValueType()); 278 VReg = MRI->createVirtualRegister(RC); 279 } 280 BuildMI(*MBB, InsertPos, Op.getDebugLoc(), 281 TII->get(TargetOpcode::IMPLICIT_DEF), VReg); 282 return VReg; 283 } 284 285 DenseMap<SDValue, unsigned>::iterator I = VRBaseMap.find(Op); 286 assert(I != VRBaseMap.end() && "Node emitted out of order - late"); 287 return I->second; 288 } 289 290 291 /// AddRegisterOperand - Add the specified register as an operand to the 292 /// specified machine instr. Insert register copies if the register is 293 /// not in the required register class. 294 void 295 InstrEmitter::AddRegisterOperand(MachineInstrBuilder &MIB, 296 SDValue Op, 297 unsigned IIOpNum, 298 const MCInstrDesc *II, 299 DenseMap<SDValue, unsigned> &VRBaseMap, 300 bool IsDebug, bool IsClone, bool IsCloned) { 301 assert(Op.getValueType() != MVT::Other && 302 Op.getValueType() != MVT::Glue && 303 "Chain and glue operands should occur at end of operand list!"); 304 // Get/emit the operand. 305 unsigned VReg = getVR(Op, VRBaseMap); 306 assert(TargetRegisterInfo::isVirtualRegister(VReg) && "Not a vreg?"); 307 308 const MCInstrDesc &MCID = MIB->getDesc(); 309 bool isOptDef = IIOpNum < MCID.getNumOperands() && 310 MCID.OpInfo[IIOpNum].isOptionalDef(); 311 312 // If the instruction requires a register in a different class, create 313 // a new virtual register and copy the value into it, but first attempt to 314 // shrink VReg's register class within reason. For example, if VReg == GR32 315 // and II requires a GR32_NOSP, just constrain VReg to GR32_NOSP. 316 if (II) { 317 const TargetRegisterClass *DstRC = 0; 318 if (IIOpNum < II->getNumOperands()) 319 DstRC = TRI->getAllocatableClass(TII->getRegClass(*II,IIOpNum,TRI,*MF)); 320 if (DstRC && !MRI->constrainRegClass(VReg, DstRC, MinRCSize)) { 321 unsigned NewVReg = MRI->createVirtualRegister(DstRC); 322 BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(), 323 TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg); 324 VReg = NewVReg; 325 } 326 } 327 328 // If this value has only one use, that use is a kill. This is a 329 // conservative approximation. InstrEmitter does trivial coalescing 330 // with CopyFromReg nodes, so don't emit kill flags for them. 331 // Avoid kill flags on Schedule cloned nodes, since there will be 332 // multiple uses. 333 // Tied operands are never killed, so we need to check that. And that 334 // means we need to determine the index of the operand. 335 bool isKill = Op.hasOneUse() && 336 Op.getNode()->getOpcode() != ISD::CopyFromReg && 337 !IsDebug && 338 !(IsClone || IsCloned); 339 if (isKill) { 340 unsigned Idx = MIB->getNumOperands(); 341 while (Idx > 0 && 342 MIB->getOperand(Idx-1).isReg() && 343 MIB->getOperand(Idx-1).isImplicit()) 344 --Idx; 345 bool isTied = MCID.getOperandConstraint(Idx, MCOI::TIED_TO) != -1; 346 if (isTied) 347 isKill = false; 348 } 349 350 MIB.addReg(VReg, getDefRegState(isOptDef) | getKillRegState(isKill) | 351 getDebugRegState(IsDebug)); 352 } 353 354 /// AddOperand - Add the specified operand to the specified machine instr. II 355 /// specifies the instruction information for the node, and IIOpNum is the 356 /// operand number (in the II) that we are adding. 357 void InstrEmitter::AddOperand(MachineInstrBuilder &MIB, 358 SDValue Op, 359 unsigned IIOpNum, 360 const MCInstrDesc *II, 361 DenseMap<SDValue, unsigned> &VRBaseMap, 362 bool IsDebug, bool IsClone, bool IsCloned) { 363 if (Op.isMachineOpcode()) { 364 AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap, 365 IsDebug, IsClone, IsCloned); 366 } else if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 367 MIB.addImm(C->getSExtValue()); 368 } else if (ConstantFPSDNode *F = dyn_cast<ConstantFPSDNode>(Op)) { 369 MIB.addFPImm(F->getConstantFPValue()); 370 } else if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(Op)) { 371 // Turn additional physreg operands into implicit uses on non-variadic 372 // instructions. This is used by call and return instructions passing 373 // arguments in registers. 374 bool Imp = II && (IIOpNum >= II->getNumOperands() && !II->isVariadic()); 375 MIB.addReg(R->getReg(), getImplRegState(Imp)); 376 } else if (RegisterMaskSDNode *RM = dyn_cast<RegisterMaskSDNode>(Op)) { 377 MIB.addRegMask(RM->getRegMask()); 378 } else if (GlobalAddressSDNode *TGA = dyn_cast<GlobalAddressSDNode>(Op)) { 379 MIB.addGlobalAddress(TGA->getGlobal(), TGA->getOffset(), 380 TGA->getTargetFlags()); 381 } else if (BasicBlockSDNode *BBNode = dyn_cast<BasicBlockSDNode>(Op)) { 382 MIB.addMBB(BBNode->getBasicBlock()); 383 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) { 384 MIB.addFrameIndex(FI->getIndex()); 385 } else if (JumpTableSDNode *JT = dyn_cast<JumpTableSDNode>(Op)) { 386 MIB.addJumpTableIndex(JT->getIndex(), JT->getTargetFlags()); 387 } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) { 388 int Offset = CP->getOffset(); 389 unsigned Align = CP->getAlignment(); 390 Type *Type = CP->getType(); 391 // MachineConstantPool wants an explicit alignment. 392 if (Align == 0) { 393 Align = TM->getDataLayout()->getPrefTypeAlignment(Type); 394 if (Align == 0) { 395 // Alignment of vector types. FIXME! 396 Align = TM->getDataLayout()->getTypeAllocSize(Type); 397 } 398 } 399 400 unsigned Idx; 401 MachineConstantPool *MCP = MF->getConstantPool(); 402 if (CP->isMachineConstantPoolEntry()) 403 Idx = MCP->getConstantPoolIndex(CP->getMachineCPVal(), Align); 404 else 405 Idx = MCP->getConstantPoolIndex(CP->getConstVal(), Align); 406 MIB.addConstantPoolIndex(Idx, Offset, CP->getTargetFlags()); 407 } else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) { 408 MIB.addExternalSymbol(ES->getSymbol(), ES->getTargetFlags()); 409 } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op)) { 410 MIB.addBlockAddress(BA->getBlockAddress(), 411 BA->getOffset(), 412 BA->getTargetFlags()); 413 } else if (TargetIndexSDNode *TI = dyn_cast<TargetIndexSDNode>(Op)) { 414 MIB.addTargetIndex(TI->getIndex(), TI->getOffset(), TI->getTargetFlags()); 415 } else { 416 assert(Op.getValueType() != MVT::Other && 417 Op.getValueType() != MVT::Glue && 418 "Chain and glue operands should occur at end of operand list!"); 419 AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap, 420 IsDebug, IsClone, IsCloned); 421 } 422 } 423 424 unsigned InstrEmitter::ConstrainForSubReg(unsigned VReg, unsigned SubIdx, 425 MVT VT, DebugLoc DL) { 426 const TargetRegisterClass *VRC = MRI->getRegClass(VReg); 427 const TargetRegisterClass *RC = TRI->getSubClassWithSubReg(VRC, SubIdx); 428 429 // RC is a sub-class of VRC that supports SubIdx. Try to constrain VReg 430 // within reason. 431 if (RC && RC != VRC) 432 RC = MRI->constrainRegClass(VReg, RC, MinRCSize); 433 434 // VReg has been adjusted. It can be used with SubIdx operands now. 435 if (RC) 436 return VReg; 437 438 // VReg couldn't be reasonably constrained. Emit a COPY to a new virtual 439 // register instead. 440 RC = TRI->getSubClassWithSubReg(TLI->getRegClassFor(VT), SubIdx); 441 assert(RC && "No legal register class for VT supports that SubIdx"); 442 unsigned NewReg = MRI->createVirtualRegister(RC); 443 BuildMI(*MBB, InsertPos, DL, TII->get(TargetOpcode::COPY), NewReg) 444 .addReg(VReg); 445 return NewReg; 446 } 447 448 /// EmitSubregNode - Generate machine code for subreg nodes. 449 /// 450 void InstrEmitter::EmitSubregNode(SDNode *Node, 451 DenseMap<SDValue, unsigned> &VRBaseMap, 452 bool IsClone, bool IsCloned) { 453 unsigned VRBase = 0; 454 unsigned Opc = Node->getMachineOpcode(); 455 456 // If the node is only used by a CopyToReg and the dest reg is a vreg, use 457 // the CopyToReg'd destination register instead of creating a new vreg. 458 for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end(); 459 UI != E; ++UI) { 460 SDNode *User = *UI; 461 if (User->getOpcode() == ISD::CopyToReg && 462 User->getOperand(2).getNode() == Node) { 463 unsigned DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg(); 464 if (TargetRegisterInfo::isVirtualRegister(DestReg)) { 465 VRBase = DestReg; 466 break; 467 } 468 } 469 } 470 471 if (Opc == TargetOpcode::EXTRACT_SUBREG) { 472 // EXTRACT_SUBREG is lowered as %dst = COPY %src:sub. There are no 473 // constraints on the %dst register, COPY can target all legal register 474 // classes. 475 unsigned SubIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue(); 476 const TargetRegisterClass *TRC = 477 TLI->getRegClassFor(Node->getSimpleValueType(0)); 478 479 unsigned VReg = getVR(Node->getOperand(0), VRBaseMap); 480 MachineInstr *DefMI = MRI->getVRegDef(VReg); 481 unsigned SrcReg, DstReg, DefSubIdx; 482 if (DefMI && 483 TII->isCoalescableExtInstr(*DefMI, SrcReg, DstReg, DefSubIdx) && 484 SubIdx == DefSubIdx && 485 TRC == MRI->getRegClass(SrcReg)) { 486 // Optimize these: 487 // r1025 = s/zext r1024, 4 488 // r1026 = extract_subreg r1025, 4 489 // to a copy 490 // r1026 = copy r1024 491 VRBase = MRI->createVirtualRegister(TRC); 492 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), 493 TII->get(TargetOpcode::COPY), VRBase).addReg(SrcReg); 494 MRI->clearKillFlags(SrcReg); 495 } else { 496 // VReg may not support a SubIdx sub-register, and we may need to 497 // constrain its register class or issue a COPY to a compatible register 498 // class. 499 VReg = ConstrainForSubReg(VReg, SubIdx, 500 Node->getOperand(0).getSimpleValueType(), 501 Node->getDebugLoc()); 502 503 // Create the destreg if it is missing. 504 if (VRBase == 0) 505 VRBase = MRI->createVirtualRegister(TRC); 506 507 // Create the extract_subreg machine instruction. 508 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), 509 TII->get(TargetOpcode::COPY), VRBase).addReg(VReg, 0, SubIdx); 510 } 511 } else if (Opc == TargetOpcode::INSERT_SUBREG || 512 Opc == TargetOpcode::SUBREG_TO_REG) { 513 SDValue N0 = Node->getOperand(0); 514 SDValue N1 = Node->getOperand(1); 515 SDValue N2 = Node->getOperand(2); 516 unsigned SubIdx = cast<ConstantSDNode>(N2)->getZExtValue(); 517 518 // Figure out the register class to create for the destreg. It should be 519 // the largest legal register class supporting SubIdx sub-registers. 520 // RegisterCoalescer will constrain it further if it decides to eliminate 521 // the INSERT_SUBREG instruction. 522 // 523 // %dst = INSERT_SUBREG %src, %sub, SubIdx 524 // 525 // is lowered by TwoAddressInstructionPass to: 526 // 527 // %dst = COPY %src 528 // %dst:SubIdx = COPY %sub 529 // 530 // There is no constraint on the %src register class. 531 // 532 const TargetRegisterClass *SRC = TLI->getRegClassFor(Node->getSimpleValueType(0)); 533 SRC = TRI->getSubClassWithSubReg(SRC, SubIdx); 534 assert(SRC && "No register class supports VT and SubIdx for INSERT_SUBREG"); 535 536 if (VRBase == 0 || !SRC->hasSubClassEq(MRI->getRegClass(VRBase))) 537 VRBase = MRI->createVirtualRegister(SRC); 538 539 // Create the insert_subreg or subreg_to_reg machine instruction. 540 MachineInstrBuilder MIB = 541 BuildMI(*MF, Node->getDebugLoc(), TII->get(Opc), VRBase); 542 543 // If creating a subreg_to_reg, then the first input operand 544 // is an implicit value immediate, otherwise it's a register 545 if (Opc == TargetOpcode::SUBREG_TO_REG) { 546 const ConstantSDNode *SD = cast<ConstantSDNode>(N0); 547 MIB.addImm(SD->getZExtValue()); 548 } else 549 AddOperand(MIB, N0, 0, 0, VRBaseMap, /*IsDebug=*/false, 550 IsClone, IsCloned); 551 // Add the subregster being inserted 552 AddOperand(MIB, N1, 0, 0, VRBaseMap, /*IsDebug=*/false, 553 IsClone, IsCloned); 554 MIB.addImm(SubIdx); 555 MBB->insert(InsertPos, MIB); 556 } else 557 llvm_unreachable("Node is not insert_subreg, extract_subreg, or subreg_to_reg"); 558 559 SDValue Op(Node, 0); 560 bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second; 561 (void)isNew; // Silence compiler warning. 562 assert(isNew && "Node emitted out of order - early"); 563 } 564 565 /// EmitCopyToRegClassNode - Generate machine code for COPY_TO_REGCLASS nodes. 566 /// COPY_TO_REGCLASS is just a normal copy, except that the destination 567 /// register is constrained to be in a particular register class. 568 /// 569 void 570 InstrEmitter::EmitCopyToRegClassNode(SDNode *Node, 571 DenseMap<SDValue, unsigned> &VRBaseMap) { 572 unsigned VReg = getVR(Node->getOperand(0), VRBaseMap); 573 574 // Create the new VReg in the destination class and emit a copy. 575 unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue(); 576 const TargetRegisterClass *DstRC = 577 TRI->getAllocatableClass(TRI->getRegClass(DstRCIdx)); 578 unsigned NewVReg = MRI->createVirtualRegister(DstRC); 579 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY), 580 NewVReg).addReg(VReg); 581 582 SDValue Op(Node, 0); 583 bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second; 584 (void)isNew; // Silence compiler warning. 585 assert(isNew && "Node emitted out of order - early"); 586 } 587 588 /// EmitRegSequence - Generate machine code for REG_SEQUENCE nodes. 589 /// 590 void InstrEmitter::EmitRegSequence(SDNode *Node, 591 DenseMap<SDValue, unsigned> &VRBaseMap, 592 bool IsClone, bool IsCloned) { 593 unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue(); 594 const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx); 595 unsigned NewVReg = MRI->createVirtualRegister(TRI->getAllocatableClass(RC)); 596 const MCInstrDesc &II = TII->get(TargetOpcode::REG_SEQUENCE); 597 MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II, NewVReg); 598 unsigned NumOps = Node->getNumOperands(); 599 assert((NumOps & 1) == 1 && 600 "REG_SEQUENCE must have an odd number of operands!"); 601 for (unsigned i = 1; i != NumOps; ++i) { 602 SDValue Op = Node->getOperand(i); 603 if ((i & 1) == 0) { 604 RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(i-1)); 605 // Skip physical registers as they don't have a vreg to get and we'll 606 // insert copies for them in TwoAddressInstructionPass anyway. 607 if (!R || !TargetRegisterInfo::isPhysicalRegister(R->getReg())) { 608 unsigned SubIdx = cast<ConstantSDNode>(Op)->getZExtValue(); 609 unsigned SubReg = getVR(Node->getOperand(i-1), VRBaseMap); 610 const TargetRegisterClass *TRC = MRI->getRegClass(SubReg); 611 const TargetRegisterClass *SRC = 612 TRI->getMatchingSuperRegClass(RC, TRC, SubIdx); 613 if (SRC && SRC != RC) { 614 MRI->setRegClass(NewVReg, SRC); 615 RC = SRC; 616 } 617 } 618 } 619 AddOperand(MIB, Op, i+1, &II, VRBaseMap, /*IsDebug=*/false, 620 IsClone, IsCloned); 621 } 622 623 MBB->insert(InsertPos, MIB); 624 SDValue Op(Node, 0); 625 bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second; 626 (void)isNew; // Silence compiler warning. 627 assert(isNew && "Node emitted out of order - early"); 628 } 629 630 /// EmitDbgValue - Generate machine instruction for a dbg_value node. 631 /// 632 MachineInstr * 633 InstrEmitter::EmitDbgValue(SDDbgValue *SD, 634 DenseMap<SDValue, unsigned> &VRBaseMap) { 635 uint64_t Offset = SD->getOffset(); 636 MDNode* MDPtr = SD->getMDPtr(); 637 DebugLoc DL = SD->getDebugLoc(); 638 639 if (SD->getKind() == SDDbgValue::FRAMEIX) { 640 // Stack address; this needs to be lowered in target-dependent fashion. 641 // EmitTargetCodeForFrameDebugValue is responsible for allocation. 642 return BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 643 .addFrameIndex(SD->getFrameIx()).addImm(Offset).addMetadata(MDPtr); 644 } 645 // Otherwise, we're going to create an instruction here. 646 const MCInstrDesc &II = TII->get(TargetOpcode::DBG_VALUE); 647 MachineInstrBuilder MIB = BuildMI(*MF, DL, II); 648 if (SD->getKind() == SDDbgValue::SDNODE) { 649 SDNode *Node = SD->getSDNode(); 650 SDValue Op = SDValue(Node, SD->getResNo()); 651 // It's possible we replaced this SDNode with other(s) and therefore 652 // didn't generate code for it. It's better to catch these cases where 653 // they happen and transfer the debug info, but trying to guarantee that 654 // in all cases would be very fragile; this is a safeguard for any 655 // that were missed. 656 DenseMap<SDValue, unsigned>::iterator I = VRBaseMap.find(Op); 657 if (I==VRBaseMap.end()) 658 MIB.addReg(0U); // undef 659 else 660 AddOperand(MIB, Op, (*MIB).getNumOperands(), &II, VRBaseMap, 661 /*IsDebug=*/true, /*IsClone=*/false, /*IsCloned=*/false); 662 } else if (SD->getKind() == SDDbgValue::CONST) { 663 const Value *V = SD->getConst(); 664 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 665 if (CI->getBitWidth() > 64) 666 MIB.addCImm(CI); 667 else 668 MIB.addImm(CI->getSExtValue()); 669 } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) { 670 MIB.addFPImm(CF); 671 } else { 672 // Could be an Undef. In any case insert an Undef so we can see what we 673 // dropped. 674 MIB.addReg(0U); 675 } 676 } else { 677 // Insert an Undef so we can see what we dropped. 678 MIB.addReg(0U); 679 } 680 681 if (Offset != 0) // Indirect addressing. 682 MIB.addImm(Offset); 683 else 684 MIB.addReg(0U, RegState::Debug); 685 686 MIB.addMetadata(MDPtr); 687 688 return &*MIB; 689 } 690 691 /// EmitMachineNode - Generate machine code for a target-specific node and 692 /// needed dependencies. 693 /// 694 void InstrEmitter:: 695 EmitMachineNode(SDNode *Node, bool IsClone, bool IsCloned, 696 DenseMap<SDValue, unsigned> &VRBaseMap) { 697 unsigned Opc = Node->getMachineOpcode(); 698 699 // Handle subreg insert/extract specially 700 if (Opc == TargetOpcode::EXTRACT_SUBREG || 701 Opc == TargetOpcode::INSERT_SUBREG || 702 Opc == TargetOpcode::SUBREG_TO_REG) { 703 EmitSubregNode(Node, VRBaseMap, IsClone, IsCloned); 704 return; 705 } 706 707 // Handle COPY_TO_REGCLASS specially. 708 if (Opc == TargetOpcode::COPY_TO_REGCLASS) { 709 EmitCopyToRegClassNode(Node, VRBaseMap); 710 return; 711 } 712 713 // Handle REG_SEQUENCE specially. 714 if (Opc == TargetOpcode::REG_SEQUENCE) { 715 EmitRegSequence(Node, VRBaseMap, IsClone, IsCloned); 716 return; 717 } 718 719 if (Opc == TargetOpcode::IMPLICIT_DEF) 720 // We want a unique VR for each IMPLICIT_DEF use. 721 return; 722 723 const MCInstrDesc &II = TII->get(Opc); 724 unsigned NumResults = CountResults(Node); 725 unsigned NumImpUses = 0; 726 unsigned NodeOperands = 727 countOperands(Node, II.getNumOperands() - II.getNumDefs(), NumImpUses); 728 bool HasPhysRegOuts = NumResults > II.getNumDefs() && II.getImplicitDefs()!=0; 729 #ifndef NDEBUG 730 unsigned NumMIOperands = NodeOperands + NumResults; 731 if (II.isVariadic()) 732 assert(NumMIOperands >= II.getNumOperands() && 733 "Too few operands for a variadic node!"); 734 else 735 assert(NumMIOperands >= II.getNumOperands() && 736 NumMIOperands <= II.getNumOperands() + II.getNumImplicitDefs() + 737 NumImpUses && 738 "#operands for dag node doesn't match .td file!"); 739 #endif 740 741 // Create the new machine instruction. 742 MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II); 743 744 // Add result register values for things that are defined by this 745 // instruction. 746 if (NumResults) 747 CreateVirtualRegisters(Node, MIB, II, IsClone, IsCloned, VRBaseMap); 748 749 // Emit all of the actual operands of this instruction, adding them to the 750 // instruction as appropriate. 751 bool HasOptPRefs = II.getNumDefs() > NumResults; 752 assert((!HasOptPRefs || !HasPhysRegOuts) && 753 "Unable to cope with optional defs and phys regs defs!"); 754 unsigned NumSkip = HasOptPRefs ? II.getNumDefs() - NumResults : 0; 755 for (unsigned i = NumSkip; i != NodeOperands; ++i) 756 AddOperand(MIB, Node->getOperand(i), i-NumSkip+II.getNumDefs(), &II, 757 VRBaseMap, /*IsDebug=*/false, IsClone, IsCloned); 758 759 // Transfer all of the memory reference descriptions of this instruction. 760 MIB.setMemRefs(cast<MachineSDNode>(Node)->memoperands_begin(), 761 cast<MachineSDNode>(Node)->memoperands_end()); 762 763 // Insert the instruction into position in the block. This needs to 764 // happen before any custom inserter hook is called so that the 765 // hook knows where in the block to insert the replacement code. 766 MBB->insert(InsertPos, MIB); 767 768 // The MachineInstr may also define physregs instead of virtregs. These 769 // physreg values can reach other instructions in different ways: 770 // 771 // 1. When there is a use of a Node value beyond the explicitly defined 772 // virtual registers, we emit a CopyFromReg for one of the implicitly 773 // defined physregs. This only happens when HasPhysRegOuts is true. 774 // 775 // 2. A CopyFromReg reading a physreg may be glued to this instruction. 776 // 777 // 3. A glued instruction may implicitly use a physreg. 778 // 779 // 4. A glued instruction may use a RegisterSDNode operand. 780 // 781 // Collect all the used physreg defs, and make sure that any unused physreg 782 // defs are marked as dead. 783 SmallVector<unsigned, 8> UsedRegs; 784 785 // Additional results must be physical register defs. 786 if (HasPhysRegOuts) { 787 for (unsigned i = II.getNumDefs(); i < NumResults; ++i) { 788 unsigned Reg = II.getImplicitDefs()[i - II.getNumDefs()]; 789 if (!Node->hasAnyUseOfValue(i)) 790 continue; 791 // This implicitly defined physreg has a use. 792 UsedRegs.push_back(Reg); 793 EmitCopyFromReg(Node, i, IsClone, IsCloned, Reg, VRBaseMap); 794 } 795 } 796 797 // Scan the glue chain for any used physregs. 798 if (Node->getValueType(Node->getNumValues()-1) == MVT::Glue) { 799 for (SDNode *F = Node->getGluedUser(); F; F = F->getGluedUser()) { 800 if (F->getOpcode() == ISD::CopyFromReg) { 801 UsedRegs.push_back(cast<RegisterSDNode>(F->getOperand(1))->getReg()); 802 continue; 803 } else if (F->getOpcode() == ISD::CopyToReg) { 804 // Skip CopyToReg nodes that are internal to the glue chain. 805 continue; 806 } 807 // Collect declared implicit uses. 808 const MCInstrDesc &MCID = TII->get(F->getMachineOpcode()); 809 UsedRegs.append(MCID.getImplicitUses(), 810 MCID.getImplicitUses() + MCID.getNumImplicitUses()); 811 // In addition to declared implicit uses, we must also check for 812 // direct RegisterSDNode operands. 813 for (unsigned i = 0, e = F->getNumOperands(); i != e; ++i) 814 if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(F->getOperand(i))) { 815 unsigned Reg = R->getReg(); 816 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 817 UsedRegs.push_back(Reg); 818 } 819 } 820 } 821 822 // Finally mark unused registers as dead. 823 if (!UsedRegs.empty() || II.getImplicitDefs()) 824 MIB->setPhysRegsDeadExcept(UsedRegs, *TRI); 825 826 // Run post-isel target hook to adjust this instruction if needed. 827 #ifdef NDEBUG 828 if (II.hasPostISelHook()) 829 #endif 830 TLI->AdjustInstrPostInstrSelection(MIB, Node); 831 } 832 833 /// EmitSpecialNode - Generate machine code for a target-independent node and 834 /// needed dependencies. 835 void InstrEmitter:: 836 EmitSpecialNode(SDNode *Node, bool IsClone, bool IsCloned, 837 DenseMap<SDValue, unsigned> &VRBaseMap) { 838 switch (Node->getOpcode()) { 839 default: 840 #ifndef NDEBUG 841 Node->dump(); 842 #endif 843 llvm_unreachable("This target-independent node should have been selected!"); 844 case ISD::EntryToken: 845 llvm_unreachable("EntryToken should have been excluded from the schedule!"); 846 case ISD::MERGE_VALUES: 847 case ISD::TokenFactor: // fall thru 848 break; 849 case ISD::CopyToReg: { 850 unsigned SrcReg; 851 SDValue SrcVal = Node->getOperand(2); 852 if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(SrcVal)) 853 SrcReg = R->getReg(); 854 else 855 SrcReg = getVR(SrcVal, VRBaseMap); 856 857 unsigned DestReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg(); 858 if (SrcReg == DestReg) // Coalesced away the copy? Ignore. 859 break; 860 861 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY), 862 DestReg).addReg(SrcReg); 863 break; 864 } 865 case ISD::CopyFromReg: { 866 unsigned SrcReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg(); 867 EmitCopyFromReg(Node, 0, IsClone, IsCloned, SrcReg, VRBaseMap); 868 break; 869 } 870 case ISD::EH_LABEL: { 871 MCSymbol *S = cast<EHLabelSDNode>(Node)->getLabel(); 872 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), 873 TII->get(TargetOpcode::EH_LABEL)).addSym(S); 874 break; 875 } 876 877 case ISD::LIFETIME_START: 878 case ISD::LIFETIME_END: { 879 unsigned TarOp = (Node->getOpcode() == ISD::LIFETIME_START) ? 880 TargetOpcode::LIFETIME_START : TargetOpcode::LIFETIME_END; 881 882 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Node->getOperand(1)); 883 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TarOp)) 884 .addFrameIndex(FI->getIndex()); 885 break; 886 } 887 888 case ISD::INLINEASM: { 889 unsigned NumOps = Node->getNumOperands(); 890 if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue) 891 --NumOps; // Ignore the glue operand. 892 893 // Create the inline asm machine instruction. 894 MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), 895 TII->get(TargetOpcode::INLINEASM)); 896 897 // Add the asm string as an external symbol operand. 898 SDValue AsmStrV = Node->getOperand(InlineAsm::Op_AsmString); 899 const char *AsmStr = cast<ExternalSymbolSDNode>(AsmStrV)->getSymbol(); 900 MIB.addExternalSymbol(AsmStr); 901 902 // Add the HasSideEffect, isAlignStack, AsmDialect, MayLoad and MayStore 903 // bits. 904 int64_t ExtraInfo = 905 cast<ConstantSDNode>(Node->getOperand(InlineAsm::Op_ExtraInfo))-> 906 getZExtValue(); 907 MIB.addImm(ExtraInfo); 908 909 // Remember to operand index of the group flags. 910 SmallVector<unsigned, 8> GroupIdx; 911 912 // Add all of the operand registers to the instruction. 913 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) { 914 unsigned Flags = 915 cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue(); 916 const unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); 917 918 GroupIdx.push_back(MIB->getNumOperands()); 919 MIB.addImm(Flags); 920 ++i; // Skip the ID value. 921 922 switch (InlineAsm::getKind(Flags)) { 923 default: llvm_unreachable("Bad flags!"); 924 case InlineAsm::Kind_RegDef: 925 for (unsigned j = 0; j != NumVals; ++j, ++i) { 926 unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg(); 927 // FIXME: Add dead flags for physical and virtual registers defined. 928 // For now, mark physical register defs as implicit to help fast 929 // regalloc. This makes inline asm look a lot like calls. 930 MIB.addReg(Reg, RegState::Define | 931 getImplRegState(TargetRegisterInfo::isPhysicalRegister(Reg))); 932 } 933 break; 934 case InlineAsm::Kind_RegDefEarlyClobber: 935 case InlineAsm::Kind_Clobber: 936 for (unsigned j = 0; j != NumVals; ++j, ++i) { 937 unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg(); 938 MIB.addReg(Reg, RegState::Define | RegState::EarlyClobber | 939 getImplRegState(TargetRegisterInfo::isPhysicalRegister(Reg))); 940 } 941 break; 942 case InlineAsm::Kind_RegUse: // Use of register. 943 case InlineAsm::Kind_Imm: // Immediate. 944 case InlineAsm::Kind_Mem: // Addressing mode. 945 // The addressing mode has been selected, just add all of the 946 // operands to the machine instruction. 947 for (unsigned j = 0; j != NumVals; ++j, ++i) 948 AddOperand(MIB, Node->getOperand(i), 0, 0, VRBaseMap, 949 /*IsDebug=*/false, IsClone, IsCloned); 950 951 // Manually set isTied bits. 952 if (InlineAsm::getKind(Flags) == InlineAsm::Kind_RegUse) { 953 unsigned DefGroup = 0; 954 if (InlineAsm::isUseOperandTiedToDef(Flags, DefGroup)) { 955 unsigned DefIdx = GroupIdx[DefGroup] + 1; 956 unsigned UseIdx = GroupIdx.back() + 1; 957 for (unsigned j = 0; j != NumVals; ++j) 958 MIB->tieOperands(DefIdx + j, UseIdx + j); 959 } 960 } 961 break; 962 } 963 } 964 965 // Get the mdnode from the asm if it exists and add it to the instruction. 966 SDValue MDV = Node->getOperand(InlineAsm::Op_MDNode); 967 const MDNode *MD = cast<MDNodeSDNode>(MDV)->getMD(); 968 if (MD) 969 MIB.addMetadata(MD); 970 971 MBB->insert(InsertPos, MIB); 972 break; 973 } 974 } 975 } 976 977 /// InstrEmitter - Construct an InstrEmitter and set it to start inserting 978 /// at the given position in the given block. 979 InstrEmitter::InstrEmitter(MachineBasicBlock *mbb, 980 MachineBasicBlock::iterator insertpos) 981 : MF(mbb->getParent()), 982 MRI(&MF->getRegInfo()), 983 TM(&MF->getTarget()), 984 TII(TM->getInstrInfo()), 985 TRI(TM->getRegisterInfo()), 986 TLI(TM->getTargetLowering()), 987 MBB(mbb), InsertPos(insertpos) { 988 } 989