Home | History | Annotate | Download | only in audioflinger
      1 /*
      2 **
      3 ** Copyright 2012, The Android Open Source Project
      4 **
      5 ** Licensed under the Apache License, Version 2.0 (the "License");
      6 ** you may not use this file except in compliance with the License.
      7 ** You may obtain a copy of the License at
      8 **
      9 **     http://www.apache.org/licenses/LICENSE-2.0
     10 **
     11 ** Unless required by applicable law or agreed to in writing, software
     12 ** distributed under the License is distributed on an "AS IS" BASIS,
     13 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     14 ** See the License for the specific language governing permissions and
     15 ** limitations under the License.
     16 */
     17 
     18 
     19 #define LOG_TAG "AudioFlinger"
     20 //#define LOG_NDEBUG 0
     21 #define ATRACE_TAG ATRACE_TAG_AUDIO
     22 
     23 #include "Configuration.h"
     24 #include <math.h>
     25 #include <fcntl.h>
     26 #include <sys/stat.h>
     27 #include <cutils/properties.h>
     28 #include <media/AudioParameter.h>
     29 #include <utils/Log.h>
     30 #include <utils/Trace.h>
     31 
     32 #include <private/media/AudioTrackShared.h>
     33 #include <hardware/audio.h>
     34 #include <audio_effects/effect_ns.h>
     35 #include <audio_effects/effect_aec.h>
     36 #include <audio_utils/primitives.h>
     37 
     38 // NBAIO implementations
     39 #include <media/nbaio/AudioStreamOutSink.h>
     40 #include <media/nbaio/MonoPipe.h>
     41 #include <media/nbaio/MonoPipeReader.h>
     42 #include <media/nbaio/Pipe.h>
     43 #include <media/nbaio/PipeReader.h>
     44 #include <media/nbaio/SourceAudioBufferProvider.h>
     45 
     46 #include <powermanager/PowerManager.h>
     47 
     48 #include <common_time/cc_helper.h>
     49 #include <common_time/local_clock.h>
     50 
     51 #include "AudioFlinger.h"
     52 #include "AudioMixer.h"
     53 #include "FastMixer.h"
     54 #include "ServiceUtilities.h"
     55 #include "SchedulingPolicyService.h"
     56 
     57 #ifdef ADD_BATTERY_DATA
     58 #include <media/IMediaPlayerService.h>
     59 #include <media/IMediaDeathNotifier.h>
     60 #endif
     61 
     62 #ifdef DEBUG_CPU_USAGE
     63 #include <cpustats/CentralTendencyStatistics.h>
     64 #include <cpustats/ThreadCpuUsage.h>
     65 #endif
     66 
     67 // ----------------------------------------------------------------------------
     68 
     69 // Note: the following macro is used for extremely verbose logging message.  In
     70 // order to run with ALOG_ASSERT turned on, we need to have LOG_NDEBUG set to
     71 // 0; but one side effect of this is to turn all LOGV's as well.  Some messages
     72 // are so verbose that we want to suppress them even when we have ALOG_ASSERT
     73 // turned on.  Do not uncomment the #def below unless you really know what you
     74 // are doing and want to see all of the extremely verbose messages.
     75 //#define VERY_VERY_VERBOSE_LOGGING
     76 #ifdef VERY_VERY_VERBOSE_LOGGING
     77 #define ALOGVV ALOGV
     78 #else
     79 #define ALOGVV(a...) do { } while(0)
     80 #endif
     81 
     82 namespace android {
     83 
     84 // retry counts for buffer fill timeout
     85 // 50 * ~20msecs = 1 second
     86 static const int8_t kMaxTrackRetries = 50;
     87 static const int8_t kMaxTrackStartupRetries = 50;
     88 // allow less retry attempts on direct output thread.
     89 // direct outputs can be a scarce resource in audio hardware and should
     90 // be released as quickly as possible.
     91 static const int8_t kMaxTrackRetriesDirect = 2;
     92 
     93 // don't warn about blocked writes or record buffer overflows more often than this
     94 static const nsecs_t kWarningThrottleNs = seconds(5);
     95 
     96 // RecordThread loop sleep time upon application overrun or audio HAL read error
     97 static const int kRecordThreadSleepUs = 5000;
     98 
     99 // maximum time to wait for setParameters to complete
    100 static const nsecs_t kSetParametersTimeoutNs = seconds(2);
    101 
    102 // minimum sleep time for the mixer thread loop when tracks are active but in underrun
    103 static const uint32_t kMinThreadSleepTimeUs = 5000;
    104 // maximum divider applied to the active sleep time in the mixer thread loop
    105 static const uint32_t kMaxThreadSleepTimeShift = 2;
    106 
    107 // minimum normal mix buffer size, expressed in milliseconds rather than frames
    108 static const uint32_t kMinNormalMixBufferSizeMs = 20;
    109 // maximum normal mix buffer size
    110 static const uint32_t kMaxNormalMixBufferSizeMs = 24;
    111 
    112 // Offloaded output thread standby delay: allows track transition without going to standby
    113 static const nsecs_t kOffloadStandbyDelayNs = seconds(1);
    114 
    115 // Whether to use fast mixer
    116 static const enum {
    117     FastMixer_Never,    // never initialize or use: for debugging only
    118     FastMixer_Always,   // always initialize and use, even if not needed: for debugging only
    119                         // normal mixer multiplier is 1
    120     FastMixer_Static,   // initialize if needed, then use all the time if initialized,
    121                         // multiplier is calculated based on min & max normal mixer buffer size
    122     FastMixer_Dynamic,  // initialize if needed, then use dynamically depending on track load,
    123                         // multiplier is calculated based on min & max normal mixer buffer size
    124     // FIXME for FastMixer_Dynamic:
    125     //  Supporting this option will require fixing HALs that can't handle large writes.
    126     //  For example, one HAL implementation returns an error from a large write,
    127     //  and another HAL implementation corrupts memory, possibly in the sample rate converter.
    128     //  We could either fix the HAL implementations, or provide a wrapper that breaks
    129     //  up large writes into smaller ones, and the wrapper would need to deal with scheduler.
    130 } kUseFastMixer = FastMixer_Static;
    131 
    132 // Priorities for requestPriority
    133 static const int kPriorityAudioApp = 2;
    134 static const int kPriorityFastMixer = 3;
    135 
    136 // IAudioFlinger::createTrack() reports back to client the total size of shared memory area
    137 // for the track.  The client then sub-divides this into smaller buffers for its use.
    138 // Currently the client uses N-buffering by default, but doesn't tell us about the value of N.
    139 // So for now we just assume that client is double-buffered for fast tracks.
    140 // FIXME It would be better for client to tell AudioFlinger the value of N,
    141 // so AudioFlinger could allocate the right amount of memory.
    142 // See the client's minBufCount and mNotificationFramesAct calculations for details.
    143 static const int kFastTrackMultiplier = 2;
    144 
    145 // ----------------------------------------------------------------------------
    146 
    147 #ifdef ADD_BATTERY_DATA
    148 // To collect the amplifier usage
    149 static void addBatteryData(uint32_t params) {
    150     sp<IMediaPlayerService> service = IMediaDeathNotifier::getMediaPlayerService();
    151     if (service == NULL) {
    152         // it already logged
    153         return;
    154     }
    155 
    156     service->addBatteryData(params);
    157 }
    158 #endif
    159 
    160 
    161 // ----------------------------------------------------------------------------
    162 //      CPU Stats
    163 // ----------------------------------------------------------------------------
    164 
    165 class CpuStats {
    166 public:
    167     CpuStats();
    168     void sample(const String8 &title);
    169 #ifdef DEBUG_CPU_USAGE
    170 private:
    171     ThreadCpuUsage mCpuUsage;           // instantaneous thread CPU usage in wall clock ns
    172     CentralTendencyStatistics mWcStats; // statistics on thread CPU usage in wall clock ns
    173 
    174     CentralTendencyStatistics mHzStats; // statistics on thread CPU usage in cycles
    175 
    176     int mCpuNum;                        // thread's current CPU number
    177     int mCpukHz;                        // frequency of thread's current CPU in kHz
    178 #endif
    179 };
    180 
    181 CpuStats::CpuStats()
    182 #ifdef DEBUG_CPU_USAGE
    183     : mCpuNum(-1), mCpukHz(-1)
    184 #endif
    185 {
    186 }
    187 
    188 void CpuStats::sample(const String8 &title) {
    189 #ifdef DEBUG_CPU_USAGE
    190     // get current thread's delta CPU time in wall clock ns
    191     double wcNs;
    192     bool valid = mCpuUsage.sampleAndEnable(wcNs);
    193 
    194     // record sample for wall clock statistics
    195     if (valid) {
    196         mWcStats.sample(wcNs);
    197     }
    198 
    199     // get the current CPU number
    200     int cpuNum = sched_getcpu();
    201 
    202     // get the current CPU frequency in kHz
    203     int cpukHz = mCpuUsage.getCpukHz(cpuNum);
    204 
    205     // check if either CPU number or frequency changed
    206     if (cpuNum != mCpuNum || cpukHz != mCpukHz) {
    207         mCpuNum = cpuNum;
    208         mCpukHz = cpukHz;
    209         // ignore sample for purposes of cycles
    210         valid = false;
    211     }
    212 
    213     // if no change in CPU number or frequency, then record sample for cycle statistics
    214     if (valid && mCpukHz > 0) {
    215         double cycles = wcNs * cpukHz * 0.000001;
    216         mHzStats.sample(cycles);
    217     }
    218 
    219     unsigned n = mWcStats.n();
    220     // mCpuUsage.elapsed() is expensive, so don't call it every loop
    221     if ((n & 127) == 1) {
    222         long long elapsed = mCpuUsage.elapsed();
    223         if (elapsed >= DEBUG_CPU_USAGE * 1000000000LL) {
    224             double perLoop = elapsed / (double) n;
    225             double perLoop100 = perLoop * 0.01;
    226             double perLoop1k = perLoop * 0.001;
    227             double mean = mWcStats.mean();
    228             double stddev = mWcStats.stddev();
    229             double minimum = mWcStats.minimum();
    230             double maximum = mWcStats.maximum();
    231             double meanCycles = mHzStats.mean();
    232             double stddevCycles = mHzStats.stddev();
    233             double minCycles = mHzStats.minimum();
    234             double maxCycles = mHzStats.maximum();
    235             mCpuUsage.resetElapsed();
    236             mWcStats.reset();
    237             mHzStats.reset();
    238             ALOGD("CPU usage for %s over past %.1f secs\n"
    239                 "  (%u mixer loops at %.1f mean ms per loop):\n"
    240                 "  us per mix loop: mean=%.0f stddev=%.0f min=%.0f max=%.0f\n"
    241                 "  %% of wall: mean=%.1f stddev=%.1f min=%.1f max=%.1f\n"
    242                 "  MHz: mean=%.1f, stddev=%.1f, min=%.1f max=%.1f",
    243                     title.string(),
    244                     elapsed * .000000001, n, perLoop * .000001,
    245                     mean * .001,
    246                     stddev * .001,
    247                     minimum * .001,
    248                     maximum * .001,
    249                     mean / perLoop100,
    250                     stddev / perLoop100,
    251                     minimum / perLoop100,
    252                     maximum / perLoop100,
    253                     meanCycles / perLoop1k,
    254                     stddevCycles / perLoop1k,
    255                     minCycles / perLoop1k,
    256                     maxCycles / perLoop1k);
    257 
    258         }
    259     }
    260 #endif
    261 };
    262 
    263 // ----------------------------------------------------------------------------
    264 //      ThreadBase
    265 // ----------------------------------------------------------------------------
    266 
    267 AudioFlinger::ThreadBase::ThreadBase(const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
    268         audio_devices_t outDevice, audio_devices_t inDevice, type_t type)
    269     :   Thread(false /*canCallJava*/),
    270         mType(type),
    271         mAudioFlinger(audioFlinger),
    272         // mSampleRate, mFrameCount, mChannelMask, mChannelCount, mFrameSize, and mFormat are
    273         // set by PlaybackThread::readOutputParameters() or RecordThread::readInputParameters()
    274         mParamStatus(NO_ERROR),
    275         //FIXME: mStandby should be true here. Is this some kind of hack?
    276         mStandby(false), mOutDevice(outDevice), mInDevice(inDevice),
    277         mAudioSource(AUDIO_SOURCE_DEFAULT), mId(id),
    278         // mName will be set by concrete (non-virtual) subclass
    279         mDeathRecipient(new PMDeathRecipient(this))
    280 {
    281 }
    282 
    283 AudioFlinger::ThreadBase::~ThreadBase()
    284 {
    285     // mConfigEvents should be empty, but just in case it isn't, free the memory it owns
    286     for (size_t i = 0; i < mConfigEvents.size(); i++) {
    287         delete mConfigEvents[i];
    288     }
    289     mConfigEvents.clear();
    290 
    291     mParamCond.broadcast();
    292     // do not lock the mutex in destructor
    293     releaseWakeLock_l();
    294     if (mPowerManager != 0) {
    295         sp<IBinder> binder = mPowerManager->asBinder();
    296         binder->unlinkToDeath(mDeathRecipient);
    297     }
    298 }
    299 
    300 void AudioFlinger::ThreadBase::exit()
    301 {
    302     ALOGV("ThreadBase::exit");
    303     // do any cleanup required for exit to succeed
    304     preExit();
    305     {
    306         // This lock prevents the following race in thread (uniprocessor for illustration):
    307         //  if (!exitPending()) {
    308         //      // context switch from here to exit()
    309         //      // exit() calls requestExit(), what exitPending() observes
    310         //      // exit() calls signal(), which is dropped since no waiters
    311         //      // context switch back from exit() to here
    312         //      mWaitWorkCV.wait(...);
    313         //      // now thread is hung
    314         //  }
    315         AutoMutex lock(mLock);
    316         requestExit();
    317         mWaitWorkCV.broadcast();
    318     }
    319     // When Thread::requestExitAndWait is made virtual and this method is renamed to
    320     // "virtual status_t requestExitAndWait()", replace by "return Thread::requestExitAndWait();"
    321     requestExitAndWait();
    322 }
    323 
    324 status_t AudioFlinger::ThreadBase::setParameters(const String8& keyValuePairs)
    325 {
    326     status_t status;
    327 
    328     ALOGV("ThreadBase::setParameters() %s", keyValuePairs.string());
    329     Mutex::Autolock _l(mLock);
    330 
    331     mNewParameters.add(keyValuePairs);
    332     mWaitWorkCV.signal();
    333     // wait condition with timeout in case the thread loop has exited
    334     // before the request could be processed
    335     if (mParamCond.waitRelative(mLock, kSetParametersTimeoutNs) == NO_ERROR) {
    336         status = mParamStatus;
    337         mWaitWorkCV.signal();
    338     } else {
    339         status = TIMED_OUT;
    340     }
    341     return status;
    342 }
    343 
    344 void AudioFlinger::ThreadBase::sendIoConfigEvent(int event, int param)
    345 {
    346     Mutex::Autolock _l(mLock);
    347     sendIoConfigEvent_l(event, param);
    348 }
    349 
    350 // sendIoConfigEvent_l() must be called with ThreadBase::mLock held
    351 void AudioFlinger::ThreadBase::sendIoConfigEvent_l(int event, int param)
    352 {
    353     IoConfigEvent *ioEvent = new IoConfigEvent(event, param);
    354     mConfigEvents.add(static_cast<ConfigEvent *>(ioEvent));
    355     ALOGV("sendIoConfigEvent() num events %d event %d, param %d", mConfigEvents.size(), event,
    356             param);
    357     mWaitWorkCV.signal();
    358 }
    359 
    360 // sendPrioConfigEvent_l() must be called with ThreadBase::mLock held
    361 void AudioFlinger::ThreadBase::sendPrioConfigEvent_l(pid_t pid, pid_t tid, int32_t prio)
    362 {
    363     PrioConfigEvent *prioEvent = new PrioConfigEvent(pid, tid, prio);
    364     mConfigEvents.add(static_cast<ConfigEvent *>(prioEvent));
    365     ALOGV("sendPrioConfigEvent_l() num events %d pid %d, tid %d prio %d",
    366           mConfigEvents.size(), pid, tid, prio);
    367     mWaitWorkCV.signal();
    368 }
    369 
    370 void AudioFlinger::ThreadBase::processConfigEvents()
    371 {
    372     mLock.lock();
    373     while (!mConfigEvents.isEmpty()) {
    374         ALOGV("processConfigEvents() remaining events %d", mConfigEvents.size());
    375         ConfigEvent *event = mConfigEvents[0];
    376         mConfigEvents.removeAt(0);
    377         // release mLock before locking AudioFlinger mLock: lock order is always
    378         // AudioFlinger then ThreadBase to avoid cross deadlock
    379         mLock.unlock();
    380         switch(event->type()) {
    381             case CFG_EVENT_PRIO: {
    382                 PrioConfigEvent *prioEvent = static_cast<PrioConfigEvent *>(event);
    383                 // FIXME Need to understand why this has be done asynchronously
    384                 int err = requestPriority(prioEvent->pid(), prioEvent->tid(), prioEvent->prio(),
    385                         true /*asynchronous*/);
    386                 if (err != 0) {
    387                     ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; "
    388                           "error %d",
    389                           prioEvent->prio(), prioEvent->pid(), prioEvent->tid(), err);
    390                 }
    391             } break;
    392             case CFG_EVENT_IO: {
    393                 IoConfigEvent *ioEvent = static_cast<IoConfigEvent *>(event);
    394                 mAudioFlinger->mLock.lock();
    395                 audioConfigChanged_l(ioEvent->event(), ioEvent->param());
    396                 mAudioFlinger->mLock.unlock();
    397             } break;
    398             default:
    399                 ALOGE("processConfigEvents() unknown event type %d", event->type());
    400                 break;
    401         }
    402         delete event;
    403         mLock.lock();
    404     }
    405     mLock.unlock();
    406 }
    407 
    408 void AudioFlinger::ThreadBase::dumpBase(int fd, const Vector<String16>& args)
    409 {
    410     const size_t SIZE = 256;
    411     char buffer[SIZE];
    412     String8 result;
    413 
    414     bool locked = AudioFlinger::dumpTryLock(mLock);
    415     if (!locked) {
    416         snprintf(buffer, SIZE, "thread %p maybe dead locked\n", this);
    417         write(fd, buffer, strlen(buffer));
    418     }
    419 
    420     snprintf(buffer, SIZE, "io handle: %d\n", mId);
    421     result.append(buffer);
    422     snprintf(buffer, SIZE, "TID: %d\n", getTid());
    423     result.append(buffer);
    424     snprintf(buffer, SIZE, "standby: %d\n", mStandby);
    425     result.append(buffer);
    426     snprintf(buffer, SIZE, "Sample rate: %u\n", mSampleRate);
    427     result.append(buffer);
    428     snprintf(buffer, SIZE, "HAL frame count: %d\n", mFrameCount);
    429     result.append(buffer);
    430     snprintf(buffer, SIZE, "Channel Count: %u\n", mChannelCount);
    431     result.append(buffer);
    432     snprintf(buffer, SIZE, "Channel Mask: 0x%08x\n", mChannelMask);
    433     result.append(buffer);
    434     snprintf(buffer, SIZE, "Format: %d\n", mFormat);
    435     result.append(buffer);
    436     snprintf(buffer, SIZE, "Frame size: %u\n", mFrameSize);
    437     result.append(buffer);
    438 
    439     snprintf(buffer, SIZE, "\nPending setParameters commands: \n");
    440     result.append(buffer);
    441     result.append(" Index Command");
    442     for (size_t i = 0; i < mNewParameters.size(); ++i) {
    443         snprintf(buffer, SIZE, "\n %02d    ", i);
    444         result.append(buffer);
    445         result.append(mNewParameters[i]);
    446     }
    447 
    448     snprintf(buffer, SIZE, "\n\nPending config events: \n");
    449     result.append(buffer);
    450     for (size_t i = 0; i < mConfigEvents.size(); i++) {
    451         mConfigEvents[i]->dump(buffer, SIZE);
    452         result.append(buffer);
    453     }
    454     result.append("\n");
    455 
    456     write(fd, result.string(), result.size());
    457 
    458     if (locked) {
    459         mLock.unlock();
    460     }
    461 }
    462 
    463 void AudioFlinger::ThreadBase::dumpEffectChains(int fd, const Vector<String16>& args)
    464 {
    465     const size_t SIZE = 256;
    466     char buffer[SIZE];
    467     String8 result;
    468 
    469     snprintf(buffer, SIZE, "\n- %d Effect Chains:\n", mEffectChains.size());
    470     write(fd, buffer, strlen(buffer));
    471 
    472     for (size_t i = 0; i < mEffectChains.size(); ++i) {
    473         sp<EffectChain> chain = mEffectChains[i];
    474         if (chain != 0) {
    475             chain->dump(fd, args);
    476         }
    477     }
    478 }
    479 
    480 void AudioFlinger::ThreadBase::acquireWakeLock(int uid)
    481 {
    482     Mutex::Autolock _l(mLock);
    483     acquireWakeLock_l(uid);
    484 }
    485 
    486 String16 AudioFlinger::ThreadBase::getWakeLockTag()
    487 {
    488     switch (mType) {
    489         case MIXER:
    490             return String16("AudioMix");
    491         case DIRECT:
    492             return String16("AudioDirectOut");
    493         case DUPLICATING:
    494             return String16("AudioDup");
    495         case RECORD:
    496             return String16("AudioIn");
    497         case OFFLOAD:
    498             return String16("AudioOffload");
    499         default:
    500             ALOG_ASSERT(false);
    501             return String16("AudioUnknown");
    502     }
    503 }
    504 
    505 void AudioFlinger::ThreadBase::acquireWakeLock_l(int uid)
    506 {
    507     getPowerManager_l();
    508     if (mPowerManager != 0) {
    509         sp<IBinder> binder = new BBinder();
    510         status_t status;
    511         if (uid >= 0) {
    512             status = mPowerManager->acquireWakeLockWithUid(POWERMANAGER_PARTIAL_WAKE_LOCK,
    513                     binder,
    514                     getWakeLockTag(),
    515                     String16("media"),
    516                     uid);
    517         } else {
    518             status = mPowerManager->acquireWakeLock(POWERMANAGER_PARTIAL_WAKE_LOCK,
    519                     binder,
    520                     getWakeLockTag(),
    521                     String16("media"));
    522         }
    523         if (status == NO_ERROR) {
    524             mWakeLockToken = binder;
    525         }
    526         ALOGV("acquireWakeLock_l() %s status %d", mName, status);
    527     }
    528 }
    529 
    530 void AudioFlinger::ThreadBase::releaseWakeLock()
    531 {
    532     Mutex::Autolock _l(mLock);
    533     releaseWakeLock_l();
    534 }
    535 
    536 void AudioFlinger::ThreadBase::releaseWakeLock_l()
    537 {
    538     if (mWakeLockToken != 0) {
    539         ALOGV("releaseWakeLock_l() %s", mName);
    540         if (mPowerManager != 0) {
    541             mPowerManager->releaseWakeLock(mWakeLockToken, 0);
    542         }
    543         mWakeLockToken.clear();
    544     }
    545 }
    546 
    547 void AudioFlinger::ThreadBase::updateWakeLockUids(const SortedVector<int> &uids) {
    548     Mutex::Autolock _l(mLock);
    549     updateWakeLockUids_l(uids);
    550 }
    551 
    552 void AudioFlinger::ThreadBase::getPowerManager_l() {
    553 
    554     if (mPowerManager == 0) {
    555         // use checkService() to avoid blocking if power service is not up yet
    556         sp<IBinder> binder =
    557             defaultServiceManager()->checkService(String16("power"));
    558         if (binder == 0) {
    559             ALOGW("Thread %s cannot connect to the power manager service", mName);
    560         } else {
    561             mPowerManager = interface_cast<IPowerManager>(binder);
    562             binder->linkToDeath(mDeathRecipient);
    563         }
    564     }
    565 }
    566 
    567 void AudioFlinger::ThreadBase::updateWakeLockUids_l(const SortedVector<int> &uids) {
    568 
    569     getPowerManager_l();
    570     if (mWakeLockToken == NULL) {
    571         ALOGE("no wake lock to update!");
    572         return;
    573     }
    574     if (mPowerManager != 0) {
    575         sp<IBinder> binder = new BBinder();
    576         status_t status;
    577         status = mPowerManager->updateWakeLockUids(mWakeLockToken, uids.size(), uids.array());
    578         ALOGV("acquireWakeLock_l() %s status %d", mName, status);
    579     }
    580 }
    581 
    582 void AudioFlinger::ThreadBase::clearPowerManager()
    583 {
    584     Mutex::Autolock _l(mLock);
    585     releaseWakeLock_l();
    586     mPowerManager.clear();
    587 }
    588 
    589 void AudioFlinger::ThreadBase::PMDeathRecipient::binderDied(const wp<IBinder>& who)
    590 {
    591     sp<ThreadBase> thread = mThread.promote();
    592     if (thread != 0) {
    593         thread->clearPowerManager();
    594     }
    595     ALOGW("power manager service died !!!");
    596 }
    597 
    598 void AudioFlinger::ThreadBase::setEffectSuspended(
    599         const effect_uuid_t *type, bool suspend, int sessionId)
    600 {
    601     Mutex::Autolock _l(mLock);
    602     setEffectSuspended_l(type, suspend, sessionId);
    603 }
    604 
    605 void AudioFlinger::ThreadBase::setEffectSuspended_l(
    606         const effect_uuid_t *type, bool suspend, int sessionId)
    607 {
    608     sp<EffectChain> chain = getEffectChain_l(sessionId);
    609     if (chain != 0) {
    610         if (type != NULL) {
    611             chain->setEffectSuspended_l(type, suspend);
    612         } else {
    613             chain->setEffectSuspendedAll_l(suspend);
    614         }
    615     }
    616 
    617     updateSuspendedSessions_l(type, suspend, sessionId);
    618 }
    619 
    620 void AudioFlinger::ThreadBase::checkSuspendOnAddEffectChain_l(const sp<EffectChain>& chain)
    621 {
    622     ssize_t index = mSuspendedSessions.indexOfKey(chain->sessionId());
    623     if (index < 0) {
    624         return;
    625     }
    626 
    627     const KeyedVector <int, sp<SuspendedSessionDesc> >& sessionEffects =
    628             mSuspendedSessions.valueAt(index);
    629 
    630     for (size_t i = 0; i < sessionEffects.size(); i++) {
    631         sp<SuspendedSessionDesc> desc = sessionEffects.valueAt(i);
    632         for (int j = 0; j < desc->mRefCount; j++) {
    633             if (sessionEffects.keyAt(i) == EffectChain::kKeyForSuspendAll) {
    634                 chain->setEffectSuspendedAll_l(true);
    635             } else {
    636                 ALOGV("checkSuspendOnAddEffectChain_l() suspending effects %08x",
    637                     desc->mType.timeLow);
    638                 chain->setEffectSuspended_l(&desc->mType, true);
    639             }
    640         }
    641     }
    642 }
    643 
    644 void AudioFlinger::ThreadBase::updateSuspendedSessions_l(const effect_uuid_t *type,
    645                                                          bool suspend,
    646                                                          int sessionId)
    647 {
    648     ssize_t index = mSuspendedSessions.indexOfKey(sessionId);
    649 
    650     KeyedVector <int, sp<SuspendedSessionDesc> > sessionEffects;
    651 
    652     if (suspend) {
    653         if (index >= 0) {
    654             sessionEffects = mSuspendedSessions.valueAt(index);
    655         } else {
    656             mSuspendedSessions.add(sessionId, sessionEffects);
    657         }
    658     } else {
    659         if (index < 0) {
    660             return;
    661         }
    662         sessionEffects = mSuspendedSessions.valueAt(index);
    663     }
    664 
    665 
    666     int key = EffectChain::kKeyForSuspendAll;
    667     if (type != NULL) {
    668         key = type->timeLow;
    669     }
    670     index = sessionEffects.indexOfKey(key);
    671 
    672     sp<SuspendedSessionDesc> desc;
    673     if (suspend) {
    674         if (index >= 0) {
    675             desc = sessionEffects.valueAt(index);
    676         } else {
    677             desc = new SuspendedSessionDesc();
    678             if (type != NULL) {
    679                 desc->mType = *type;
    680             }
    681             sessionEffects.add(key, desc);
    682             ALOGV("updateSuspendedSessions_l() suspend adding effect %08x", key);
    683         }
    684         desc->mRefCount++;
    685     } else {
    686         if (index < 0) {
    687             return;
    688         }
    689         desc = sessionEffects.valueAt(index);
    690         if (--desc->mRefCount == 0) {
    691             ALOGV("updateSuspendedSessions_l() restore removing effect %08x", key);
    692             sessionEffects.removeItemsAt(index);
    693             if (sessionEffects.isEmpty()) {
    694                 ALOGV("updateSuspendedSessions_l() restore removing session %d",
    695                                  sessionId);
    696                 mSuspendedSessions.removeItem(sessionId);
    697             }
    698         }
    699     }
    700     if (!sessionEffects.isEmpty()) {
    701         mSuspendedSessions.replaceValueFor(sessionId, sessionEffects);
    702     }
    703 }
    704 
    705 void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled(const sp<EffectModule>& effect,
    706                                                             bool enabled,
    707                                                             int sessionId)
    708 {
    709     Mutex::Autolock _l(mLock);
    710     checkSuspendOnEffectEnabled_l(effect, enabled, sessionId);
    711 }
    712 
    713 void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled_l(const sp<EffectModule>& effect,
    714                                                             bool enabled,
    715                                                             int sessionId)
    716 {
    717     if (mType != RECORD) {
    718         // suspend all effects in AUDIO_SESSION_OUTPUT_MIX when enabling any effect on
    719         // another session. This gives the priority to well behaved effect control panels
    720         // and applications not using global effects.
    721         // Enabling post processing in AUDIO_SESSION_OUTPUT_STAGE session does not affect
    722         // global effects
    723         if ((sessionId != AUDIO_SESSION_OUTPUT_MIX) && (sessionId != AUDIO_SESSION_OUTPUT_STAGE)) {
    724             setEffectSuspended_l(NULL, enabled, AUDIO_SESSION_OUTPUT_MIX);
    725         }
    726     }
    727 
    728     sp<EffectChain> chain = getEffectChain_l(sessionId);
    729     if (chain != 0) {
    730         chain->checkSuspendOnEffectEnabled(effect, enabled);
    731     }
    732 }
    733 
    734 // ThreadBase::createEffect_l() must be called with AudioFlinger::mLock held
    735 sp<AudioFlinger::EffectHandle> AudioFlinger::ThreadBase::createEffect_l(
    736         const sp<AudioFlinger::Client>& client,
    737         const sp<IEffectClient>& effectClient,
    738         int32_t priority,
    739         int sessionId,
    740         effect_descriptor_t *desc,
    741         int *enabled,
    742         status_t *status
    743         )
    744 {
    745     sp<EffectModule> effect;
    746     sp<EffectHandle> handle;
    747     status_t lStatus;
    748     sp<EffectChain> chain;
    749     bool chainCreated = false;
    750     bool effectCreated = false;
    751     bool effectRegistered = false;
    752 
    753     lStatus = initCheck();
    754     if (lStatus != NO_ERROR) {
    755         ALOGW("createEffect_l() Audio driver not initialized.");
    756         goto Exit;
    757     }
    758 
    759     // Allow global effects only on offloaded and mixer threads
    760     if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
    761         switch (mType) {
    762         case MIXER:
    763         case OFFLOAD:
    764             break;
    765         case DIRECT:
    766         case DUPLICATING:
    767         case RECORD:
    768         default:
    769             ALOGW("createEffect_l() Cannot add global effect %s on thread %s", desc->name, mName);
    770             lStatus = BAD_VALUE;
    771             goto Exit;
    772         }
    773     }
    774 
    775     // Only Pre processor effects are allowed on input threads and only on input threads
    776     if ((mType == RECORD) != ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_PRE_PROC)) {
    777         ALOGW("createEffect_l() effect %s (flags %08x) created on wrong thread type %d",
    778                 desc->name, desc->flags, mType);
    779         lStatus = BAD_VALUE;
    780         goto Exit;
    781     }
    782 
    783     ALOGV("createEffect_l() thread %p effect %s on session %d", this, desc->name, sessionId);
    784 
    785     { // scope for mLock
    786         Mutex::Autolock _l(mLock);
    787 
    788         // check for existing effect chain with the requested audio session
    789         chain = getEffectChain_l(sessionId);
    790         if (chain == 0) {
    791             // create a new chain for this session
    792             ALOGV("createEffect_l() new effect chain for session %d", sessionId);
    793             chain = new EffectChain(this, sessionId);
    794             addEffectChain_l(chain);
    795             chain->setStrategy(getStrategyForSession_l(sessionId));
    796             chainCreated = true;
    797         } else {
    798             effect = chain->getEffectFromDesc_l(desc);
    799         }
    800 
    801         ALOGV("createEffect_l() got effect %p on chain %p", effect.get(), chain.get());
    802 
    803         if (effect == 0) {
    804             int id = mAudioFlinger->nextUniqueId();
    805             // Check CPU and memory usage
    806             lStatus = AudioSystem::registerEffect(desc, mId, chain->strategy(), sessionId, id);
    807             if (lStatus != NO_ERROR) {
    808                 goto Exit;
    809             }
    810             effectRegistered = true;
    811             // create a new effect module if none present in the chain
    812             effect = new EffectModule(this, chain, desc, id, sessionId);
    813             lStatus = effect->status();
    814             if (lStatus != NO_ERROR) {
    815                 goto Exit;
    816             }
    817             effect->setOffloaded(mType == OFFLOAD, mId);
    818 
    819             lStatus = chain->addEffect_l(effect);
    820             if (lStatus != NO_ERROR) {
    821                 goto Exit;
    822             }
    823             effectCreated = true;
    824 
    825             effect->setDevice(mOutDevice);
    826             effect->setDevice(mInDevice);
    827             effect->setMode(mAudioFlinger->getMode());
    828             effect->setAudioSource(mAudioSource);
    829         }
    830         // create effect handle and connect it to effect module
    831         handle = new EffectHandle(effect, client, effectClient, priority);
    832         lStatus = effect->addHandle(handle.get());
    833         if (enabled != NULL) {
    834             *enabled = (int)effect->isEnabled();
    835         }
    836     }
    837 
    838 Exit:
    839     if (lStatus != NO_ERROR && lStatus != ALREADY_EXISTS) {
    840         Mutex::Autolock _l(mLock);
    841         if (effectCreated) {
    842             chain->removeEffect_l(effect);
    843         }
    844         if (effectRegistered) {
    845             AudioSystem::unregisterEffect(effect->id());
    846         }
    847         if (chainCreated) {
    848             removeEffectChain_l(chain);
    849         }
    850         handle.clear();
    851     }
    852 
    853     if (status != NULL) {
    854         *status = lStatus;
    855     }
    856     return handle;
    857 }
    858 
    859 sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect(int sessionId, int effectId)
    860 {
    861     Mutex::Autolock _l(mLock);
    862     return getEffect_l(sessionId, effectId);
    863 }
    864 
    865 sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect_l(int sessionId, int effectId)
    866 {
    867     sp<EffectChain> chain = getEffectChain_l(sessionId);
    868     return chain != 0 ? chain->getEffectFromId_l(effectId) : 0;
    869 }
    870 
    871 // PlaybackThread::addEffect_l() must be called with AudioFlinger::mLock and
    872 // PlaybackThread::mLock held
    873 status_t AudioFlinger::ThreadBase::addEffect_l(const sp<EffectModule>& effect)
    874 {
    875     // check for existing effect chain with the requested audio session
    876     int sessionId = effect->sessionId();
    877     sp<EffectChain> chain = getEffectChain_l(sessionId);
    878     bool chainCreated = false;
    879 
    880     ALOGD_IF((mType == OFFLOAD) && !effect->isOffloadable(),
    881              "addEffect_l() on offloaded thread %p: effect %s does not support offload flags %x",
    882                     this, effect->desc().name, effect->desc().flags);
    883 
    884     if (chain == 0) {
    885         // create a new chain for this session
    886         ALOGV("addEffect_l() new effect chain for session %d", sessionId);
    887         chain = new EffectChain(this, sessionId);
    888         addEffectChain_l(chain);
    889         chain->setStrategy(getStrategyForSession_l(sessionId));
    890         chainCreated = true;
    891     }
    892     ALOGV("addEffect_l() %p chain %p effect %p", this, chain.get(), effect.get());
    893 
    894     if (chain->getEffectFromId_l(effect->id()) != 0) {
    895         ALOGW("addEffect_l() %p effect %s already present in chain %p",
    896                 this, effect->desc().name, chain.get());
    897         return BAD_VALUE;
    898     }
    899 
    900     effect->setOffloaded(mType == OFFLOAD, mId);
    901 
    902     status_t status = chain->addEffect_l(effect);
    903     if (status != NO_ERROR) {
    904         if (chainCreated) {
    905             removeEffectChain_l(chain);
    906         }
    907         return status;
    908     }
    909 
    910     effect->setDevice(mOutDevice);
    911     effect->setDevice(mInDevice);
    912     effect->setMode(mAudioFlinger->getMode());
    913     effect->setAudioSource(mAudioSource);
    914     return NO_ERROR;
    915 }
    916 
    917 void AudioFlinger::ThreadBase::removeEffect_l(const sp<EffectModule>& effect) {
    918 
    919     ALOGV("removeEffect_l() %p effect %p", this, effect.get());
    920     effect_descriptor_t desc = effect->desc();
    921     if ((desc.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
    922         detachAuxEffect_l(effect->id());
    923     }
    924 
    925     sp<EffectChain> chain = effect->chain().promote();
    926     if (chain != 0) {
    927         // remove effect chain if removing last effect
    928         if (chain->removeEffect_l(effect) == 0) {
    929             removeEffectChain_l(chain);
    930         }
    931     } else {
    932         ALOGW("removeEffect_l() %p cannot promote chain for effect %p", this, effect.get());
    933     }
    934 }
    935 
    936 void AudioFlinger::ThreadBase::lockEffectChains_l(
    937         Vector< sp<AudioFlinger::EffectChain> >& effectChains)
    938 {
    939     effectChains = mEffectChains;
    940     for (size_t i = 0; i < mEffectChains.size(); i++) {
    941         mEffectChains[i]->lock();
    942     }
    943 }
    944 
    945 void AudioFlinger::ThreadBase::unlockEffectChains(
    946         const Vector< sp<AudioFlinger::EffectChain> >& effectChains)
    947 {
    948     for (size_t i = 0; i < effectChains.size(); i++) {
    949         effectChains[i]->unlock();
    950     }
    951 }
    952 
    953 sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain(int sessionId)
    954 {
    955     Mutex::Autolock _l(mLock);
    956     return getEffectChain_l(sessionId);
    957 }
    958 
    959 sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain_l(int sessionId) const
    960 {
    961     size_t size = mEffectChains.size();
    962     for (size_t i = 0; i < size; i++) {
    963         if (mEffectChains[i]->sessionId() == sessionId) {
    964             return mEffectChains[i];
    965         }
    966     }
    967     return 0;
    968 }
    969 
    970 void AudioFlinger::ThreadBase::setMode(audio_mode_t mode)
    971 {
    972     Mutex::Autolock _l(mLock);
    973     size_t size = mEffectChains.size();
    974     for (size_t i = 0; i < size; i++) {
    975         mEffectChains[i]->setMode_l(mode);
    976     }
    977 }
    978 
    979 void AudioFlinger::ThreadBase::disconnectEffect(const sp<EffectModule>& effect,
    980                                                     EffectHandle *handle,
    981                                                     bool unpinIfLast) {
    982 
    983     Mutex::Autolock _l(mLock);
    984     ALOGV("disconnectEffect() %p effect %p", this, effect.get());
    985     // delete the effect module if removing last handle on it
    986     if (effect->removeHandle(handle) == 0) {
    987         if (!effect->isPinned() || unpinIfLast) {
    988             removeEffect_l(effect);
    989             AudioSystem::unregisterEffect(effect->id());
    990         }
    991     }
    992 }
    993 
    994 // ----------------------------------------------------------------------------
    995 //      Playback
    996 // ----------------------------------------------------------------------------
    997 
    998 AudioFlinger::PlaybackThread::PlaybackThread(const sp<AudioFlinger>& audioFlinger,
    999                                              AudioStreamOut* output,
   1000                                              audio_io_handle_t id,
   1001                                              audio_devices_t device,
   1002                                              type_t type)
   1003     :   ThreadBase(audioFlinger, id, device, AUDIO_DEVICE_NONE, type),
   1004         mNormalFrameCount(0), mMixBuffer(NULL),
   1005         mAllocMixBuffer(NULL), mSuspended(0), mBytesWritten(0),
   1006         mActiveTracksGeneration(0),
   1007         // mStreamTypes[] initialized in constructor body
   1008         mOutput(output),
   1009         mLastWriteTime(0), mNumWrites(0), mNumDelayedWrites(0), mInWrite(false),
   1010         mMixerStatus(MIXER_IDLE),
   1011         mMixerStatusIgnoringFastTracks(MIXER_IDLE),
   1012         standbyDelay(AudioFlinger::mStandbyTimeInNsecs),
   1013         mBytesRemaining(0),
   1014         mCurrentWriteLength(0),
   1015         mUseAsyncWrite(false),
   1016         mWriteAckSequence(0),
   1017         mDrainSequence(0),
   1018         mSignalPending(false),
   1019         mScreenState(AudioFlinger::mScreenState),
   1020         // index 0 is reserved for normal mixer's submix
   1021         mFastTrackAvailMask(((1 << FastMixerState::kMaxFastTracks) - 1) & ~1),
   1022         // mLatchD, mLatchQ,
   1023         mLatchDValid(false), mLatchQValid(false)
   1024 {
   1025     snprintf(mName, kNameLength, "AudioOut_%X", id);
   1026     mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mName);
   1027 
   1028     // Assumes constructor is called by AudioFlinger with it's mLock held, but
   1029     // it would be safer to explicitly pass initial masterVolume/masterMute as
   1030     // parameter.
   1031     //
   1032     // If the HAL we are using has support for master volume or master mute,
   1033     // then do not attenuate or mute during mixing (just leave the volume at 1.0
   1034     // and the mute set to false).
   1035     mMasterVolume = audioFlinger->masterVolume_l();
   1036     mMasterMute = audioFlinger->masterMute_l();
   1037     if (mOutput && mOutput->audioHwDev) {
   1038         if (mOutput->audioHwDev->canSetMasterVolume()) {
   1039             mMasterVolume = 1.0;
   1040         }
   1041 
   1042         if (mOutput->audioHwDev->canSetMasterMute()) {
   1043             mMasterMute = false;
   1044         }
   1045     }
   1046 
   1047     readOutputParameters();
   1048 
   1049     // mStreamTypes[AUDIO_STREAM_CNT] is initialized by stream_type_t default constructor
   1050     // There is no AUDIO_STREAM_MIN, and ++ operator does not compile
   1051     for (audio_stream_type_t stream = (audio_stream_type_t) 0; stream < AUDIO_STREAM_CNT;
   1052             stream = (audio_stream_type_t) (stream + 1)) {
   1053         mStreamTypes[stream].volume = mAudioFlinger->streamVolume_l(stream);
   1054         mStreamTypes[stream].mute = mAudioFlinger->streamMute_l(stream);
   1055     }
   1056     // mStreamTypes[AUDIO_STREAM_CNT] exists but isn't explicitly initialized here,
   1057     // because mAudioFlinger doesn't have one to copy from
   1058 }
   1059 
   1060 AudioFlinger::PlaybackThread::~PlaybackThread()
   1061 {
   1062     mAudioFlinger->unregisterWriter(mNBLogWriter);
   1063     delete [] mAllocMixBuffer;
   1064 }
   1065 
   1066 void AudioFlinger::PlaybackThread::dump(int fd, const Vector<String16>& args)
   1067 {
   1068     dumpInternals(fd, args);
   1069     dumpTracks(fd, args);
   1070     dumpEffectChains(fd, args);
   1071 }
   1072 
   1073 void AudioFlinger::PlaybackThread::dumpTracks(int fd, const Vector<String16>& args)
   1074 {
   1075     const size_t SIZE = 256;
   1076     char buffer[SIZE];
   1077     String8 result;
   1078 
   1079     result.appendFormat("Output thread %p stream volumes in dB:\n    ", this);
   1080     for (int i = 0; i < AUDIO_STREAM_CNT; ++i) {
   1081         const stream_type_t *st = &mStreamTypes[i];
   1082         if (i > 0) {
   1083             result.appendFormat(", ");
   1084         }
   1085         result.appendFormat("%d:%.2g", i, 20.0 * log10(st->volume));
   1086         if (st->mute) {
   1087             result.append("M");
   1088         }
   1089     }
   1090     result.append("\n");
   1091     write(fd, result.string(), result.length());
   1092     result.clear();
   1093 
   1094     snprintf(buffer, SIZE, "Output thread %p tracks\n", this);
   1095     result.append(buffer);
   1096     Track::appendDumpHeader(result);
   1097     for (size_t i = 0; i < mTracks.size(); ++i) {
   1098         sp<Track> track = mTracks[i];
   1099         if (track != 0) {
   1100             track->dump(buffer, SIZE);
   1101             result.append(buffer);
   1102         }
   1103     }
   1104 
   1105     snprintf(buffer, SIZE, "Output thread %p active tracks\n", this);
   1106     result.append(buffer);
   1107     Track::appendDumpHeader(result);
   1108     for (size_t i = 0; i < mActiveTracks.size(); ++i) {
   1109         sp<Track> track = mActiveTracks[i].promote();
   1110         if (track != 0) {
   1111             track->dump(buffer, SIZE);
   1112             result.append(buffer);
   1113         }
   1114     }
   1115     write(fd, result.string(), result.size());
   1116 
   1117     // These values are "raw"; they will wrap around.  See prepareTracks_l() for a better way.
   1118     FastTrackUnderruns underruns = getFastTrackUnderruns(0);
   1119     fdprintf(fd, "Normal mixer raw underrun counters: partial=%u empty=%u\n",
   1120             underruns.mBitFields.mPartial, underruns.mBitFields.mEmpty);
   1121 }
   1122 
   1123 void AudioFlinger::PlaybackThread::dumpInternals(int fd, const Vector<String16>& args)
   1124 {
   1125     const size_t SIZE = 256;
   1126     char buffer[SIZE];
   1127     String8 result;
   1128 
   1129     snprintf(buffer, SIZE, "\nOutput thread %p internals\n", this);
   1130     result.append(buffer);
   1131     snprintf(buffer, SIZE, "Normal frame count: %d\n", mNormalFrameCount);
   1132     result.append(buffer);
   1133     snprintf(buffer, SIZE, "last write occurred (msecs): %llu\n",
   1134             ns2ms(systemTime() - mLastWriteTime));
   1135     result.append(buffer);
   1136     snprintf(buffer, SIZE, "total writes: %d\n", mNumWrites);
   1137     result.append(buffer);
   1138     snprintf(buffer, SIZE, "delayed writes: %d\n", mNumDelayedWrites);
   1139     result.append(buffer);
   1140     snprintf(buffer, SIZE, "blocked in write: %d\n", mInWrite);
   1141     result.append(buffer);
   1142     snprintf(buffer, SIZE, "suspend count: %d\n", mSuspended);
   1143     result.append(buffer);
   1144     snprintf(buffer, SIZE, "mix buffer : %p\n", mMixBuffer);
   1145     result.append(buffer);
   1146     write(fd, result.string(), result.size());
   1147     fdprintf(fd, "Fast track availMask=%#x\n", mFastTrackAvailMask);
   1148 
   1149     dumpBase(fd, args);
   1150 }
   1151 
   1152 // Thread virtuals
   1153 status_t AudioFlinger::PlaybackThread::readyToRun()
   1154 {
   1155     status_t status = initCheck();
   1156     if (status == NO_ERROR) {
   1157         ALOGI("AudioFlinger's thread %p ready to run", this);
   1158     } else {
   1159         ALOGE("No working audio driver found.");
   1160     }
   1161     return status;
   1162 }
   1163 
   1164 void AudioFlinger::PlaybackThread::onFirstRef()
   1165 {
   1166     run(mName, ANDROID_PRIORITY_URGENT_AUDIO);
   1167 }
   1168 
   1169 // ThreadBase virtuals
   1170 void AudioFlinger::PlaybackThread::preExit()
   1171 {
   1172     ALOGV("  preExit()");
   1173     // FIXME this is using hard-coded strings but in the future, this functionality will be
   1174     //       converted to use audio HAL extensions required to support tunneling
   1175     mOutput->stream->common.set_parameters(&mOutput->stream->common, "exiting=1");
   1176 }
   1177 
   1178 // PlaybackThread::createTrack_l() must be called with AudioFlinger::mLock held
   1179 sp<AudioFlinger::PlaybackThread::Track> AudioFlinger::PlaybackThread::createTrack_l(
   1180         const sp<AudioFlinger::Client>& client,
   1181         audio_stream_type_t streamType,
   1182         uint32_t sampleRate,
   1183         audio_format_t format,
   1184         audio_channel_mask_t channelMask,
   1185         size_t frameCount,
   1186         const sp<IMemory>& sharedBuffer,
   1187         int sessionId,
   1188         IAudioFlinger::track_flags_t *flags,
   1189         pid_t tid,
   1190         int uid,
   1191         status_t *status)
   1192 {
   1193     sp<Track> track;
   1194     status_t lStatus;
   1195 
   1196     bool isTimed = (*flags & IAudioFlinger::TRACK_TIMED) != 0;
   1197 
   1198     // client expresses a preference for FAST, but we get the final say
   1199     if (*flags & IAudioFlinger::TRACK_FAST) {
   1200       if (
   1201             // not timed
   1202             (!isTimed) &&
   1203             // either of these use cases:
   1204             (
   1205               // use case 1: shared buffer with any frame count
   1206               (
   1207                 (sharedBuffer != 0)
   1208               ) ||
   1209               // use case 2: callback handler and frame count is default or at least as large as HAL
   1210               (
   1211                 (tid != -1) &&
   1212                 ((frameCount == 0) ||
   1213                 (frameCount >= mFrameCount))
   1214               )
   1215             ) &&
   1216             // PCM data
   1217             audio_is_linear_pcm(format) &&
   1218             // mono or stereo
   1219             ( (channelMask == AUDIO_CHANNEL_OUT_MONO) ||
   1220               (channelMask == AUDIO_CHANNEL_OUT_STEREO) ) &&
   1221 #ifndef FAST_TRACKS_AT_NON_NATIVE_SAMPLE_RATE
   1222             // hardware sample rate
   1223             (sampleRate == mSampleRate) &&
   1224 #endif
   1225             // normal mixer has an associated fast mixer
   1226             hasFastMixer() &&
   1227             // there are sufficient fast track slots available
   1228             (mFastTrackAvailMask != 0)
   1229             // FIXME test that MixerThread for this fast track has a capable output HAL
   1230             // FIXME add a permission test also?
   1231         ) {
   1232         // if frameCount not specified, then it defaults to fast mixer (HAL) frame count
   1233         if (frameCount == 0) {
   1234             frameCount = mFrameCount * kFastTrackMultiplier;
   1235         }
   1236         ALOGV("AUDIO_OUTPUT_FLAG_FAST accepted: frameCount=%d mFrameCount=%d",
   1237                 frameCount, mFrameCount);
   1238       } else {
   1239         ALOGV("AUDIO_OUTPUT_FLAG_FAST denied: isTimed=%d sharedBuffer=%p frameCount=%d "
   1240                 "mFrameCount=%d format=%d isLinear=%d channelMask=%#x sampleRate=%u mSampleRate=%u "
   1241                 "hasFastMixer=%d tid=%d fastTrackAvailMask=%#x",
   1242                 isTimed, sharedBuffer.get(), frameCount, mFrameCount, format,
   1243                 audio_is_linear_pcm(format),
   1244                 channelMask, sampleRate, mSampleRate, hasFastMixer(), tid, mFastTrackAvailMask);
   1245         *flags &= ~IAudioFlinger::TRACK_FAST;
   1246         // For compatibility with AudioTrack calculation, buffer depth is forced
   1247         // to be at least 2 x the normal mixer frame count and cover audio hardware latency.
   1248         // This is probably too conservative, but legacy application code may depend on it.
   1249         // If you change this calculation, also review the start threshold which is related.
   1250         uint32_t latencyMs = mOutput->stream->get_latency(mOutput->stream);
   1251         uint32_t minBufCount = latencyMs / ((1000 * mNormalFrameCount) / mSampleRate);
   1252         if (minBufCount < 2) {
   1253             minBufCount = 2;
   1254         }
   1255         size_t minFrameCount = mNormalFrameCount * minBufCount;
   1256         if (frameCount < minFrameCount) {
   1257             frameCount = minFrameCount;
   1258         }
   1259       }
   1260     }
   1261 
   1262     if (mType == DIRECT) {
   1263         if ((format & AUDIO_FORMAT_MAIN_MASK) == AUDIO_FORMAT_PCM) {
   1264             if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
   1265                 ALOGE("createTrack_l() Bad parameter: sampleRate %u format %d, channelMask 0x%08x "
   1266                         "for output %p with format %d",
   1267                         sampleRate, format, channelMask, mOutput, mFormat);
   1268                 lStatus = BAD_VALUE;
   1269                 goto Exit;
   1270             }
   1271         }
   1272     } else if (mType == OFFLOAD) {
   1273         if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
   1274             ALOGE("createTrack_l() Bad parameter: sampleRate %d format %d, channelMask 0x%08x \""
   1275                     "for output %p with format %d",
   1276                     sampleRate, format, channelMask, mOutput, mFormat);
   1277             lStatus = BAD_VALUE;
   1278             goto Exit;
   1279         }
   1280     } else {
   1281         if ((format & AUDIO_FORMAT_MAIN_MASK) != AUDIO_FORMAT_PCM) {
   1282                 ALOGE("createTrack_l() Bad parameter: format %d \""
   1283                         "for output %p with format %d",
   1284                         format, mOutput, mFormat);
   1285                 lStatus = BAD_VALUE;
   1286                 goto Exit;
   1287         }
   1288         // Resampler implementation limits input sampling rate to 2 x output sampling rate.
   1289         if (sampleRate > mSampleRate*2) {
   1290             ALOGE("Sample rate out of range: %u mSampleRate %u", sampleRate, mSampleRate);
   1291             lStatus = BAD_VALUE;
   1292             goto Exit;
   1293         }
   1294     }
   1295 
   1296     lStatus = initCheck();
   1297     if (lStatus != NO_ERROR) {
   1298         ALOGE("Audio driver not initialized.");
   1299         goto Exit;
   1300     }
   1301 
   1302     { // scope for mLock
   1303         Mutex::Autolock _l(mLock);
   1304 
   1305         // all tracks in same audio session must share the same routing strategy otherwise
   1306         // conflicts will happen when tracks are moved from one output to another by audio policy
   1307         // manager
   1308         uint32_t strategy = AudioSystem::getStrategyForStream(streamType);
   1309         for (size_t i = 0; i < mTracks.size(); ++i) {
   1310             sp<Track> t = mTracks[i];
   1311             if (t != 0 && !t->isOutputTrack()) {
   1312                 uint32_t actual = AudioSystem::getStrategyForStream(t->streamType());
   1313                 if (sessionId == t->sessionId() && strategy != actual) {
   1314                     ALOGE("createTrack_l() mismatched strategy; expected %u but found %u",
   1315                             strategy, actual);
   1316                     lStatus = BAD_VALUE;
   1317                     goto Exit;
   1318                 }
   1319             }
   1320         }
   1321 
   1322         if (!isTimed) {
   1323             track = new Track(this, client, streamType, sampleRate, format,
   1324                     channelMask, frameCount, sharedBuffer, sessionId, uid, *flags);
   1325         } else {
   1326             track = TimedTrack::create(this, client, streamType, sampleRate, format,
   1327                     channelMask, frameCount, sharedBuffer, sessionId, uid);
   1328         }
   1329 
   1330         if (track == 0 || track->getCblk() == NULL || track->name() < 0) {
   1331             lStatus = NO_MEMORY;
   1332             // track must be cleared from the caller as the caller has the AF lock
   1333             goto Exit;
   1334         }
   1335 
   1336         mTracks.add(track);
   1337 
   1338         sp<EffectChain> chain = getEffectChain_l(sessionId);
   1339         if (chain != 0) {
   1340             ALOGV("createTrack_l() setting main buffer %p", chain->inBuffer());
   1341             track->setMainBuffer(chain->inBuffer());
   1342             chain->setStrategy(AudioSystem::getStrategyForStream(track->streamType()));
   1343             chain->incTrackCnt();
   1344         }
   1345 
   1346         if ((*flags & IAudioFlinger::TRACK_FAST) && (tid != -1)) {
   1347             pid_t callingPid = IPCThreadState::self()->getCallingPid();
   1348             // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
   1349             // so ask activity manager to do this on our behalf
   1350             sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
   1351         }
   1352     }
   1353 
   1354     lStatus = NO_ERROR;
   1355 
   1356 Exit:
   1357     if (status) {
   1358         *status = lStatus;
   1359     }
   1360     return track;
   1361 }
   1362 
   1363 uint32_t AudioFlinger::PlaybackThread::correctLatency_l(uint32_t latency) const
   1364 {
   1365     return latency;
   1366 }
   1367 
   1368 uint32_t AudioFlinger::PlaybackThread::latency() const
   1369 {
   1370     Mutex::Autolock _l(mLock);
   1371     return latency_l();
   1372 }
   1373 uint32_t AudioFlinger::PlaybackThread::latency_l() const
   1374 {
   1375     if (initCheck() == NO_ERROR) {
   1376         return correctLatency_l(mOutput->stream->get_latency(mOutput->stream));
   1377     } else {
   1378         return 0;
   1379     }
   1380 }
   1381 
   1382 void AudioFlinger::PlaybackThread::setMasterVolume(float value)
   1383 {
   1384     Mutex::Autolock _l(mLock);
   1385     // Don't apply master volume in SW if our HAL can do it for us.
   1386     if (mOutput && mOutput->audioHwDev &&
   1387         mOutput->audioHwDev->canSetMasterVolume()) {
   1388         mMasterVolume = 1.0;
   1389     } else {
   1390         mMasterVolume = value;
   1391     }
   1392 }
   1393 
   1394 void AudioFlinger::PlaybackThread::setMasterMute(bool muted)
   1395 {
   1396     Mutex::Autolock _l(mLock);
   1397     // Don't apply master mute in SW if our HAL can do it for us.
   1398     if (mOutput && mOutput->audioHwDev &&
   1399         mOutput->audioHwDev->canSetMasterMute()) {
   1400         mMasterMute = false;
   1401     } else {
   1402         mMasterMute = muted;
   1403     }
   1404 }
   1405 
   1406 void AudioFlinger::PlaybackThread::setStreamVolume(audio_stream_type_t stream, float value)
   1407 {
   1408     Mutex::Autolock _l(mLock);
   1409     mStreamTypes[stream].volume = value;
   1410     broadcast_l();
   1411 }
   1412 
   1413 void AudioFlinger::PlaybackThread::setStreamMute(audio_stream_type_t stream, bool muted)
   1414 {
   1415     Mutex::Autolock _l(mLock);
   1416     mStreamTypes[stream].mute = muted;
   1417     broadcast_l();
   1418 }
   1419 
   1420 float AudioFlinger::PlaybackThread::streamVolume(audio_stream_type_t stream) const
   1421 {
   1422     Mutex::Autolock _l(mLock);
   1423     return mStreamTypes[stream].volume;
   1424 }
   1425 
   1426 // addTrack_l() must be called with ThreadBase::mLock held
   1427 status_t AudioFlinger::PlaybackThread::addTrack_l(const sp<Track>& track)
   1428 {
   1429     status_t status = ALREADY_EXISTS;
   1430 
   1431     // set retry count for buffer fill
   1432     track->mRetryCount = kMaxTrackStartupRetries;
   1433     if (mActiveTracks.indexOf(track) < 0) {
   1434         // the track is newly added, make sure it fills up all its
   1435         // buffers before playing. This is to ensure the client will
   1436         // effectively get the latency it requested.
   1437         if (!track->isOutputTrack()) {
   1438             TrackBase::track_state state = track->mState;
   1439             mLock.unlock();
   1440             status = AudioSystem::startOutput(mId, track->streamType(), track->sessionId());
   1441             mLock.lock();
   1442             // abort track was stopped/paused while we released the lock
   1443             if (state != track->mState) {
   1444                 if (status == NO_ERROR) {
   1445                     mLock.unlock();
   1446                     AudioSystem::stopOutput(mId, track->streamType(), track->sessionId());
   1447                     mLock.lock();
   1448                 }
   1449                 return INVALID_OPERATION;
   1450             }
   1451             // abort if start is rejected by audio policy manager
   1452             if (status != NO_ERROR) {
   1453                 return PERMISSION_DENIED;
   1454             }
   1455 #ifdef ADD_BATTERY_DATA
   1456             // to track the speaker usage
   1457             addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStart);
   1458 #endif
   1459         }
   1460 
   1461         track->mFillingUpStatus = track->sharedBuffer() != 0 ? Track::FS_FILLED : Track::FS_FILLING;
   1462         track->mResetDone = false;
   1463         track->mPresentationCompleteFrames = 0;
   1464         mActiveTracks.add(track);
   1465         mWakeLockUids.add(track->uid());
   1466         mActiveTracksGeneration++;
   1467         mLatestActiveTrack = track;
   1468         sp<EffectChain> chain = getEffectChain_l(track->sessionId());
   1469         if (chain != 0) {
   1470             ALOGV("addTrack_l() starting track on chain %p for session %d", chain.get(),
   1471                     track->sessionId());
   1472             chain->incActiveTrackCnt();
   1473         }
   1474 
   1475         status = NO_ERROR;
   1476     }
   1477 
   1478     ALOGV("signal playback thread");
   1479     broadcast_l();
   1480 
   1481     return status;
   1482 }
   1483 
   1484 bool AudioFlinger::PlaybackThread::destroyTrack_l(const sp<Track>& track)
   1485 {
   1486     track->terminate();
   1487     // active tracks are removed by threadLoop()
   1488     bool trackActive = (mActiveTracks.indexOf(track) >= 0);
   1489     track->mState = TrackBase::STOPPED;
   1490     if (!trackActive) {
   1491         removeTrack_l(track);
   1492     } else if (track->isFastTrack() || track->isOffloaded()) {
   1493         track->mState = TrackBase::STOPPING_1;
   1494     }
   1495 
   1496     return trackActive;
   1497 }
   1498 
   1499 void AudioFlinger::PlaybackThread::removeTrack_l(const sp<Track>& track)
   1500 {
   1501     track->triggerEvents(AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE);
   1502     mTracks.remove(track);
   1503     deleteTrackName_l(track->name());
   1504     // redundant as track is about to be destroyed, for dumpsys only
   1505     track->mName = -1;
   1506     if (track->isFastTrack()) {
   1507         int index = track->mFastIndex;
   1508         ALOG_ASSERT(0 < index && index < (int)FastMixerState::kMaxFastTracks);
   1509         ALOG_ASSERT(!(mFastTrackAvailMask & (1 << index)));
   1510         mFastTrackAvailMask |= 1 << index;
   1511         // redundant as track is about to be destroyed, for dumpsys only
   1512         track->mFastIndex = -1;
   1513     }
   1514     sp<EffectChain> chain = getEffectChain_l(track->sessionId());
   1515     if (chain != 0) {
   1516         chain->decTrackCnt();
   1517     }
   1518 }
   1519 
   1520 void AudioFlinger::PlaybackThread::broadcast_l()
   1521 {
   1522     // Thread could be blocked waiting for async
   1523     // so signal it to handle state changes immediately
   1524     // If threadLoop is currently unlocked a signal of mWaitWorkCV will
   1525     // be lost so we also flag to prevent it blocking on mWaitWorkCV
   1526     mSignalPending = true;
   1527     mWaitWorkCV.broadcast();
   1528 }
   1529 
   1530 String8 AudioFlinger::PlaybackThread::getParameters(const String8& keys)
   1531 {
   1532     Mutex::Autolock _l(mLock);
   1533     if (initCheck() != NO_ERROR) {
   1534         return String8();
   1535     }
   1536 
   1537     char *s = mOutput->stream->common.get_parameters(&mOutput->stream->common, keys.string());
   1538     const String8 out_s8(s);
   1539     free(s);
   1540     return out_s8;
   1541 }
   1542 
   1543 // audioConfigChanged_l() must be called with AudioFlinger::mLock held
   1544 void AudioFlinger::PlaybackThread::audioConfigChanged_l(int event, int param) {
   1545     AudioSystem::OutputDescriptor desc;
   1546     void *param2 = NULL;
   1547 
   1548     ALOGV("PlaybackThread::audioConfigChanged_l, thread %p, event %d, param %d", this, event,
   1549             param);
   1550 
   1551     switch (event) {
   1552     case AudioSystem::OUTPUT_OPENED:
   1553     case AudioSystem::OUTPUT_CONFIG_CHANGED:
   1554         desc.channelMask = mChannelMask;
   1555         desc.samplingRate = mSampleRate;
   1556         desc.format = mFormat;
   1557         desc.frameCount = mNormalFrameCount; // FIXME see
   1558                                              // AudioFlinger::frameCount(audio_io_handle_t)
   1559         desc.latency = latency();
   1560         param2 = &desc;
   1561         break;
   1562 
   1563     case AudioSystem::STREAM_CONFIG_CHANGED:
   1564         param2 = &param;
   1565     case AudioSystem::OUTPUT_CLOSED:
   1566     default:
   1567         break;
   1568     }
   1569     mAudioFlinger->audioConfigChanged_l(event, mId, param2);
   1570 }
   1571 
   1572 void AudioFlinger::PlaybackThread::writeCallback()
   1573 {
   1574     ALOG_ASSERT(mCallbackThread != 0);
   1575     mCallbackThread->resetWriteBlocked();
   1576 }
   1577 
   1578 void AudioFlinger::PlaybackThread::drainCallback()
   1579 {
   1580     ALOG_ASSERT(mCallbackThread != 0);
   1581     mCallbackThread->resetDraining();
   1582 }
   1583 
   1584 void AudioFlinger::PlaybackThread::resetWriteBlocked(uint32_t sequence)
   1585 {
   1586     Mutex::Autolock _l(mLock);
   1587     // reject out of sequence requests
   1588     if ((mWriteAckSequence & 1) && (sequence == mWriteAckSequence)) {
   1589         mWriteAckSequence &= ~1;
   1590         mWaitWorkCV.signal();
   1591     }
   1592 }
   1593 
   1594 void AudioFlinger::PlaybackThread::resetDraining(uint32_t sequence)
   1595 {
   1596     Mutex::Autolock _l(mLock);
   1597     // reject out of sequence requests
   1598     if ((mDrainSequence & 1) && (sequence == mDrainSequence)) {
   1599         mDrainSequence &= ~1;
   1600         mWaitWorkCV.signal();
   1601     }
   1602 }
   1603 
   1604 // static
   1605 int AudioFlinger::PlaybackThread::asyncCallback(stream_callback_event_t event,
   1606                                                 void *param,
   1607                                                 void *cookie)
   1608 {
   1609     AudioFlinger::PlaybackThread *me = (AudioFlinger::PlaybackThread *)cookie;
   1610     ALOGV("asyncCallback() event %d", event);
   1611     switch (event) {
   1612     case STREAM_CBK_EVENT_WRITE_READY:
   1613         me->writeCallback();
   1614         break;
   1615     case STREAM_CBK_EVENT_DRAIN_READY:
   1616         me->drainCallback();
   1617         break;
   1618     default:
   1619         ALOGW("asyncCallback() unknown event %d", event);
   1620         break;
   1621     }
   1622     return 0;
   1623 }
   1624 
   1625 void AudioFlinger::PlaybackThread::readOutputParameters()
   1626 {
   1627     // unfortunately we have no way of recovering from errors here, hence the LOG_FATAL
   1628     mSampleRate = mOutput->stream->common.get_sample_rate(&mOutput->stream->common);
   1629     mChannelMask = mOutput->stream->common.get_channels(&mOutput->stream->common);
   1630     if (!audio_is_output_channel(mChannelMask)) {
   1631         LOG_FATAL("HAL channel mask %#x not valid for output", mChannelMask);
   1632     }
   1633     if ((mType == MIXER || mType == DUPLICATING) && mChannelMask != AUDIO_CHANNEL_OUT_STEREO) {
   1634         LOG_FATAL("HAL channel mask %#x not supported for mixed output; "
   1635                 "must be AUDIO_CHANNEL_OUT_STEREO", mChannelMask);
   1636     }
   1637     mChannelCount = popcount(mChannelMask);
   1638     mFormat = mOutput->stream->common.get_format(&mOutput->stream->common);
   1639     if (!audio_is_valid_format(mFormat)) {
   1640         LOG_FATAL("HAL format %d not valid for output", mFormat);
   1641     }
   1642     if ((mType == MIXER || mType == DUPLICATING) && mFormat != AUDIO_FORMAT_PCM_16_BIT) {
   1643         LOG_FATAL("HAL format %d not supported for mixed output; must be AUDIO_FORMAT_PCM_16_BIT",
   1644                 mFormat);
   1645     }
   1646     mFrameSize = audio_stream_frame_size(&mOutput->stream->common);
   1647     mFrameCount = mOutput->stream->common.get_buffer_size(&mOutput->stream->common) / mFrameSize;
   1648     if (mFrameCount & 15) {
   1649         ALOGW("HAL output buffer size is %u frames but AudioMixer requires multiples of 16 frames",
   1650                 mFrameCount);
   1651     }
   1652 
   1653     if ((mOutput->flags & AUDIO_OUTPUT_FLAG_NON_BLOCKING) &&
   1654             (mOutput->stream->set_callback != NULL)) {
   1655         if (mOutput->stream->set_callback(mOutput->stream,
   1656                                       AudioFlinger::PlaybackThread::asyncCallback, this) == 0) {
   1657             mUseAsyncWrite = true;
   1658             mCallbackThread = new AudioFlinger::AsyncCallbackThread(this);
   1659         }
   1660     }
   1661 
   1662     // Calculate size of normal mix buffer relative to the HAL output buffer size
   1663     double multiplier = 1.0;
   1664     if (mType == MIXER && (kUseFastMixer == FastMixer_Static ||
   1665             kUseFastMixer == FastMixer_Dynamic)) {
   1666         size_t minNormalFrameCount = (kMinNormalMixBufferSizeMs * mSampleRate) / 1000;
   1667         size_t maxNormalFrameCount = (kMaxNormalMixBufferSizeMs * mSampleRate) / 1000;
   1668         // round up minimum and round down maximum to nearest 16 frames to satisfy AudioMixer
   1669         minNormalFrameCount = (minNormalFrameCount + 15) & ~15;
   1670         maxNormalFrameCount = maxNormalFrameCount & ~15;
   1671         if (maxNormalFrameCount < minNormalFrameCount) {
   1672             maxNormalFrameCount = minNormalFrameCount;
   1673         }
   1674         multiplier = (double) minNormalFrameCount / (double) mFrameCount;
   1675         if (multiplier <= 1.0) {
   1676             multiplier = 1.0;
   1677         } else if (multiplier <= 2.0) {
   1678             if (2 * mFrameCount <= maxNormalFrameCount) {
   1679                 multiplier = 2.0;
   1680             } else {
   1681                 multiplier = (double) maxNormalFrameCount / (double) mFrameCount;
   1682             }
   1683         } else {
   1684             // prefer an even multiplier, for compatibility with doubling of fast tracks due to HAL
   1685             // SRC (it would be unusual for the normal mix buffer size to not be a multiple of fast
   1686             // track, but we sometimes have to do this to satisfy the maximum frame count
   1687             // constraint)
   1688             // FIXME this rounding up should not be done if no HAL SRC
   1689             uint32_t truncMult = (uint32_t) multiplier;
   1690             if ((truncMult & 1)) {
   1691                 if ((truncMult + 1) * mFrameCount <= maxNormalFrameCount) {
   1692                     ++truncMult;
   1693                 }
   1694             }
   1695             multiplier = (double) truncMult;
   1696         }
   1697     }
   1698     mNormalFrameCount = multiplier * mFrameCount;
   1699     // round up to nearest 16 frames to satisfy AudioMixer
   1700     mNormalFrameCount = (mNormalFrameCount + 15) & ~15;
   1701     ALOGI("HAL output buffer size %u frames, normal mix buffer size %u frames", mFrameCount,
   1702             mNormalFrameCount);
   1703 
   1704     delete[] mAllocMixBuffer;
   1705     size_t align = (mFrameSize < sizeof(int16_t)) ? sizeof(int16_t) : mFrameSize;
   1706     mAllocMixBuffer = new int8_t[mNormalFrameCount * mFrameSize + align - 1];
   1707     mMixBuffer = (int16_t *) ((((size_t)mAllocMixBuffer + align - 1) / align) * align);
   1708     memset(mMixBuffer, 0, mNormalFrameCount * mFrameSize);
   1709 
   1710     // force reconfiguration of effect chains and engines to take new buffer size and audio
   1711     // parameters into account
   1712     // Note that mLock is not held when readOutputParameters() is called from the constructor
   1713     // but in this case nothing is done below as no audio sessions have effect yet so it doesn't
   1714     // matter.
   1715     // create a copy of mEffectChains as calling moveEffectChain_l() can reorder some effect chains
   1716     Vector< sp<EffectChain> > effectChains = mEffectChains;
   1717     for (size_t i = 0; i < effectChains.size(); i ++) {
   1718         mAudioFlinger->moveEffectChain_l(effectChains[i]->sessionId(), this, this, false);
   1719     }
   1720 }
   1721 
   1722 
   1723 status_t AudioFlinger::PlaybackThread::getRenderPosition(size_t *halFrames, size_t *dspFrames)
   1724 {
   1725     if (halFrames == NULL || dspFrames == NULL) {
   1726         return BAD_VALUE;
   1727     }
   1728     Mutex::Autolock _l(mLock);
   1729     if (initCheck() != NO_ERROR) {
   1730         return INVALID_OPERATION;
   1731     }
   1732     size_t framesWritten = mBytesWritten / mFrameSize;
   1733     *halFrames = framesWritten;
   1734 
   1735     if (isSuspended()) {
   1736         // return an estimation of rendered frames when the output is suspended
   1737         size_t latencyFrames = (latency_l() * mSampleRate) / 1000;
   1738         *dspFrames = framesWritten >= latencyFrames ? framesWritten - latencyFrames : 0;
   1739         return NO_ERROR;
   1740     } else {
   1741         return mOutput->stream->get_render_position(mOutput->stream, dspFrames);
   1742     }
   1743 }
   1744 
   1745 uint32_t AudioFlinger::PlaybackThread::hasAudioSession(int sessionId) const
   1746 {
   1747     Mutex::Autolock _l(mLock);
   1748     uint32_t result = 0;
   1749     if (getEffectChain_l(sessionId) != 0) {
   1750         result = EFFECT_SESSION;
   1751     }
   1752 
   1753     for (size_t i = 0; i < mTracks.size(); ++i) {
   1754         sp<Track> track = mTracks[i];
   1755         if (sessionId == track->sessionId() && !track->isInvalid()) {
   1756             result |= TRACK_SESSION;
   1757             break;
   1758         }
   1759     }
   1760 
   1761     return result;
   1762 }
   1763 
   1764 uint32_t AudioFlinger::PlaybackThread::getStrategyForSession_l(int sessionId)
   1765 {
   1766     // session AUDIO_SESSION_OUTPUT_MIX is placed in same strategy as MUSIC stream so that
   1767     // it is moved to correct output by audio policy manager when A2DP is connected or disconnected
   1768     if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
   1769         return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
   1770     }
   1771     for (size_t i = 0; i < mTracks.size(); i++) {
   1772         sp<Track> track = mTracks[i];
   1773         if (sessionId == track->sessionId() && !track->isInvalid()) {
   1774             return AudioSystem::getStrategyForStream(track->streamType());
   1775         }
   1776     }
   1777     return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
   1778 }
   1779 
   1780 
   1781 AudioFlinger::AudioStreamOut* AudioFlinger::PlaybackThread::getOutput() const
   1782 {
   1783     Mutex::Autolock _l(mLock);
   1784     return mOutput;
   1785 }
   1786 
   1787 AudioFlinger::AudioStreamOut* AudioFlinger::PlaybackThread::clearOutput()
   1788 {
   1789     Mutex::Autolock _l(mLock);
   1790     AudioStreamOut *output = mOutput;
   1791     mOutput = NULL;
   1792     // FIXME FastMixer might also have a raw ptr to mOutputSink;
   1793     //       must push a NULL and wait for ack
   1794     mOutputSink.clear();
   1795     mPipeSink.clear();
   1796     mNormalSink.clear();
   1797     return output;
   1798 }
   1799 
   1800 // this method must always be called either with ThreadBase mLock held or inside the thread loop
   1801 audio_stream_t* AudioFlinger::PlaybackThread::stream() const
   1802 {
   1803     if (mOutput == NULL) {
   1804         return NULL;
   1805     }
   1806     return &mOutput->stream->common;
   1807 }
   1808 
   1809 uint32_t AudioFlinger::PlaybackThread::activeSleepTimeUs() const
   1810 {
   1811     return (uint32_t)((uint32_t)((mNormalFrameCount * 1000) / mSampleRate) * 1000);
   1812 }
   1813 
   1814 status_t AudioFlinger::PlaybackThread::setSyncEvent(const sp<SyncEvent>& event)
   1815 {
   1816     if (!isValidSyncEvent(event)) {
   1817         return BAD_VALUE;
   1818     }
   1819 
   1820     Mutex::Autolock _l(mLock);
   1821 
   1822     for (size_t i = 0; i < mTracks.size(); ++i) {
   1823         sp<Track> track = mTracks[i];
   1824         if (event->triggerSession() == track->sessionId()) {
   1825             (void) track->setSyncEvent(event);
   1826             return NO_ERROR;
   1827         }
   1828     }
   1829 
   1830     return NAME_NOT_FOUND;
   1831 }
   1832 
   1833 bool AudioFlinger::PlaybackThread::isValidSyncEvent(const sp<SyncEvent>& event) const
   1834 {
   1835     return event->type() == AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE;
   1836 }
   1837 
   1838 void AudioFlinger::PlaybackThread::threadLoop_removeTracks(
   1839         const Vector< sp<Track> >& tracksToRemove)
   1840 {
   1841     size_t count = tracksToRemove.size();
   1842     if (count) {
   1843         for (size_t i = 0 ; i < count ; i++) {
   1844             const sp<Track>& track = tracksToRemove.itemAt(i);
   1845             if (!track->isOutputTrack()) {
   1846                 AudioSystem::stopOutput(mId, track->streamType(), track->sessionId());
   1847 #ifdef ADD_BATTERY_DATA
   1848                 // to track the speaker usage
   1849                 addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStop);
   1850 #endif
   1851                 if (track->isTerminated()) {
   1852                     AudioSystem::releaseOutput(mId);
   1853                 }
   1854             }
   1855         }
   1856     }
   1857 }
   1858 
   1859 void AudioFlinger::PlaybackThread::checkSilentMode_l()
   1860 {
   1861     if (!mMasterMute) {
   1862         char value[PROPERTY_VALUE_MAX];
   1863         if (property_get("ro.audio.silent", value, "0") > 0) {
   1864             char *endptr;
   1865             unsigned long ul = strtoul(value, &endptr, 0);
   1866             if (*endptr == '\0' && ul != 0) {
   1867                 ALOGD("Silence is golden");
   1868                 // The setprop command will not allow a property to be changed after
   1869                 // the first time it is set, so we don't have to worry about un-muting.
   1870                 setMasterMute_l(true);
   1871             }
   1872         }
   1873     }
   1874 }
   1875 
   1876 // shared by MIXER and DIRECT, overridden by DUPLICATING
   1877 ssize_t AudioFlinger::PlaybackThread::threadLoop_write()
   1878 {
   1879     // FIXME rewrite to reduce number of system calls
   1880     mLastWriteTime = systemTime();
   1881     mInWrite = true;
   1882     ssize_t bytesWritten;
   1883 
   1884     // If an NBAIO sink is present, use it to write the normal mixer's submix
   1885     if (mNormalSink != 0) {
   1886 #define mBitShift 2 // FIXME
   1887         size_t count = mBytesRemaining >> mBitShift;
   1888         size_t offset = (mCurrentWriteLength - mBytesRemaining) >> 1;
   1889         ATRACE_BEGIN("write");
   1890         // update the setpoint when AudioFlinger::mScreenState changes
   1891         uint32_t screenState = AudioFlinger::mScreenState;
   1892         if (screenState != mScreenState) {
   1893             mScreenState = screenState;
   1894             MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
   1895             if (pipe != NULL) {
   1896                 pipe->setAvgFrames((mScreenState & 1) ?
   1897                         (pipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
   1898             }
   1899         }
   1900         ssize_t framesWritten = mNormalSink->write(mMixBuffer + offset, count);
   1901         ATRACE_END();
   1902         if (framesWritten > 0) {
   1903             bytesWritten = framesWritten << mBitShift;
   1904         } else {
   1905             bytesWritten = framesWritten;
   1906         }
   1907         status_t status = mNormalSink->getTimestamp(mLatchD.mTimestamp);
   1908         if (status == NO_ERROR) {
   1909             size_t totalFramesWritten = mNormalSink->framesWritten();
   1910             if (totalFramesWritten >= mLatchD.mTimestamp.mPosition) {
   1911                 mLatchD.mUnpresentedFrames = totalFramesWritten - mLatchD.mTimestamp.mPosition;
   1912                 mLatchDValid = true;
   1913             }
   1914         }
   1915     // otherwise use the HAL / AudioStreamOut directly
   1916     } else {
   1917         // Direct output and offload threads
   1918         size_t offset = (mCurrentWriteLength - mBytesRemaining);
   1919         if (mUseAsyncWrite) {
   1920             ALOGW_IF(mWriteAckSequence & 1, "threadLoop_write(): out of sequence write request");
   1921             mWriteAckSequence += 2;
   1922             mWriteAckSequence |= 1;
   1923             ALOG_ASSERT(mCallbackThread != 0);
   1924             mCallbackThread->setWriteBlocked(mWriteAckSequence);
   1925         }
   1926         // FIXME We should have an implementation of timestamps for direct output threads.
   1927         // They are used e.g for multichannel PCM playback over HDMI.
   1928         bytesWritten = mOutput->stream->write(mOutput->stream,
   1929                                                    (char *)mMixBuffer + offset, mBytesRemaining);
   1930         if (mUseAsyncWrite &&
   1931                 ((bytesWritten < 0) || (bytesWritten == (ssize_t)mBytesRemaining))) {
   1932             // do not wait for async callback in case of error of full write
   1933             mWriteAckSequence &= ~1;
   1934             ALOG_ASSERT(mCallbackThread != 0);
   1935             mCallbackThread->setWriteBlocked(mWriteAckSequence);
   1936         }
   1937     }
   1938 
   1939     mNumWrites++;
   1940     mInWrite = false;
   1941     mStandby = false;
   1942     return bytesWritten;
   1943 }
   1944 
   1945 void AudioFlinger::PlaybackThread::threadLoop_drain()
   1946 {
   1947     if (mOutput->stream->drain) {
   1948         ALOGV("draining %s", (mMixerStatus == MIXER_DRAIN_TRACK) ? "early" : "full");
   1949         if (mUseAsyncWrite) {
   1950             ALOGW_IF(mDrainSequence & 1, "threadLoop_drain(): out of sequence drain request");
   1951             mDrainSequence |= 1;
   1952             ALOG_ASSERT(mCallbackThread != 0);
   1953             mCallbackThread->setDraining(mDrainSequence);
   1954         }
   1955         mOutput->stream->drain(mOutput->stream,
   1956             (mMixerStatus == MIXER_DRAIN_TRACK) ? AUDIO_DRAIN_EARLY_NOTIFY
   1957                                                 : AUDIO_DRAIN_ALL);
   1958     }
   1959 }
   1960 
   1961 void AudioFlinger::PlaybackThread::threadLoop_exit()
   1962 {
   1963     // Default implementation has nothing to do
   1964 }
   1965 
   1966 /*
   1967 The derived values that are cached:
   1968  - mixBufferSize from frame count * frame size
   1969  - activeSleepTime from activeSleepTimeUs()
   1970  - idleSleepTime from idleSleepTimeUs()
   1971  - standbyDelay from mActiveSleepTimeUs (DIRECT only)
   1972  - maxPeriod from frame count and sample rate (MIXER only)
   1973 
   1974 The parameters that affect these derived values are:
   1975  - frame count
   1976  - frame size
   1977  - sample rate
   1978  - device type: A2DP or not
   1979  - device latency
   1980  - format: PCM or not
   1981  - active sleep time
   1982  - idle sleep time
   1983 */
   1984 
   1985 void AudioFlinger::PlaybackThread::cacheParameters_l()
   1986 {
   1987     mixBufferSize = mNormalFrameCount * mFrameSize;
   1988     activeSleepTime = activeSleepTimeUs();
   1989     idleSleepTime = idleSleepTimeUs();
   1990 }
   1991 
   1992 void AudioFlinger::PlaybackThread::invalidateTracks(audio_stream_type_t streamType)
   1993 {
   1994     ALOGV("MixerThread::invalidateTracks() mixer %p, streamType %d, mTracks.size %d",
   1995             this,  streamType, mTracks.size());
   1996     Mutex::Autolock _l(mLock);
   1997 
   1998     size_t size = mTracks.size();
   1999     for (size_t i = 0; i < size; i++) {
   2000         sp<Track> t = mTracks[i];
   2001         if (t->streamType() == streamType) {
   2002             t->invalidate();
   2003         }
   2004     }
   2005 }
   2006 
   2007 status_t AudioFlinger::PlaybackThread::addEffectChain_l(const sp<EffectChain>& chain)
   2008 {
   2009     int session = chain->sessionId();
   2010     int16_t *buffer = mMixBuffer;
   2011     bool ownsBuffer = false;
   2012 
   2013     ALOGV("addEffectChain_l() %p on thread %p for session %d", chain.get(), this, session);
   2014     if (session > 0) {
   2015         // Only one effect chain can be present in direct output thread and it uses
   2016         // the mix buffer as input
   2017         if (mType != DIRECT) {
   2018             size_t numSamples = mNormalFrameCount * mChannelCount;
   2019             buffer = new int16_t[numSamples];
   2020             memset(buffer, 0, numSamples * sizeof(int16_t));
   2021             ALOGV("addEffectChain_l() creating new input buffer %p session %d", buffer, session);
   2022             ownsBuffer = true;
   2023         }
   2024 
   2025         // Attach all tracks with same session ID to this chain.
   2026         for (size_t i = 0; i < mTracks.size(); ++i) {
   2027             sp<Track> track = mTracks[i];
   2028             if (session == track->sessionId()) {
   2029                 ALOGV("addEffectChain_l() track->setMainBuffer track %p buffer %p", track.get(),
   2030                         buffer);
   2031                 track->setMainBuffer(buffer);
   2032                 chain->incTrackCnt();
   2033             }
   2034         }
   2035 
   2036         // indicate all active tracks in the chain
   2037         for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) {
   2038             sp<Track> track = mActiveTracks[i].promote();
   2039             if (track == 0) {
   2040                 continue;
   2041             }
   2042             if (session == track->sessionId()) {
   2043                 ALOGV("addEffectChain_l() activating track %p on session %d", track.get(), session);
   2044                 chain->incActiveTrackCnt();
   2045             }
   2046         }
   2047     }
   2048 
   2049     chain->setInBuffer(buffer, ownsBuffer);
   2050     chain->setOutBuffer(mMixBuffer);
   2051     // Effect chain for session AUDIO_SESSION_OUTPUT_STAGE is inserted at end of effect
   2052     // chains list in order to be processed last as it contains output stage effects
   2053     // Effect chain for session AUDIO_SESSION_OUTPUT_MIX is inserted before
   2054     // session AUDIO_SESSION_OUTPUT_STAGE to be processed
   2055     // after track specific effects and before output stage
   2056     // It is therefore mandatory that AUDIO_SESSION_OUTPUT_MIX == 0 and
   2057     // that AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX
   2058     // Effect chain for other sessions are inserted at beginning of effect
   2059     // chains list to be processed before output mix effects. Relative order between other
   2060     // sessions is not important
   2061     size_t size = mEffectChains.size();
   2062     size_t i = 0;
   2063     for (i = 0; i < size; i++) {
   2064         if (mEffectChains[i]->sessionId() < session) {
   2065             break;
   2066         }
   2067     }
   2068     mEffectChains.insertAt(chain, i);
   2069     checkSuspendOnAddEffectChain_l(chain);
   2070 
   2071     return NO_ERROR;
   2072 }
   2073 
   2074 size_t AudioFlinger::PlaybackThread::removeEffectChain_l(const sp<EffectChain>& chain)
   2075 {
   2076     int session = chain->sessionId();
   2077 
   2078     ALOGV("removeEffectChain_l() %p from thread %p for session %d", chain.get(), this, session);
   2079 
   2080     for (size_t i = 0; i < mEffectChains.size(); i++) {
   2081         if (chain == mEffectChains[i]) {
   2082             mEffectChains.removeAt(i);
   2083             // detach all active tracks from the chain
   2084             for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) {
   2085                 sp<Track> track = mActiveTracks[i].promote();
   2086                 if (track == 0) {
   2087                     continue;
   2088                 }
   2089                 if (session == track->sessionId()) {
   2090                     ALOGV("removeEffectChain_l(): stopping track on chain %p for session Id: %d",
   2091                             chain.get(), session);
   2092                     chain->decActiveTrackCnt();
   2093                 }
   2094             }
   2095 
   2096             // detach all tracks with same session ID from this chain
   2097             for (size_t i = 0; i < mTracks.size(); ++i) {
   2098                 sp<Track> track = mTracks[i];
   2099                 if (session == track->sessionId()) {
   2100                     track->setMainBuffer(mMixBuffer);
   2101                     chain->decTrackCnt();
   2102                 }
   2103             }
   2104             break;
   2105         }
   2106     }
   2107     return mEffectChains.size();
   2108 }
   2109 
   2110 status_t AudioFlinger::PlaybackThread::attachAuxEffect(
   2111         const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId)
   2112 {
   2113     Mutex::Autolock _l(mLock);
   2114     return attachAuxEffect_l(track, EffectId);
   2115 }
   2116 
   2117 status_t AudioFlinger::PlaybackThread::attachAuxEffect_l(
   2118         const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId)
   2119 {
   2120     status_t status = NO_ERROR;
   2121 
   2122     if (EffectId == 0) {
   2123         track->setAuxBuffer(0, NULL);
   2124     } else {
   2125         // Auxiliary effects are always in audio session AUDIO_SESSION_OUTPUT_MIX
   2126         sp<EffectModule> effect = getEffect_l(AUDIO_SESSION_OUTPUT_MIX, EffectId);
   2127         if (effect != 0) {
   2128             if ((effect->desc().flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
   2129                 track->setAuxBuffer(EffectId, (int32_t *)effect->inBuffer());
   2130             } else {
   2131                 status = INVALID_OPERATION;
   2132             }
   2133         } else {
   2134             status = BAD_VALUE;
   2135         }
   2136     }
   2137     return status;
   2138 }
   2139 
   2140 void AudioFlinger::PlaybackThread::detachAuxEffect_l(int effectId)
   2141 {
   2142     for (size_t i = 0; i < mTracks.size(); ++i) {
   2143         sp<Track> track = mTracks[i];
   2144         if (track->auxEffectId() == effectId) {
   2145             attachAuxEffect_l(track, 0);
   2146         }
   2147     }
   2148 }
   2149 
   2150 bool AudioFlinger::PlaybackThread::threadLoop()
   2151 {
   2152     Vector< sp<Track> > tracksToRemove;
   2153 
   2154     standbyTime = systemTime();
   2155 
   2156     // MIXER
   2157     nsecs_t lastWarning = 0;
   2158 
   2159     // DUPLICATING
   2160     // FIXME could this be made local to while loop?
   2161     writeFrames = 0;
   2162 
   2163     int lastGeneration = 0;
   2164 
   2165     cacheParameters_l();
   2166     sleepTime = idleSleepTime;
   2167 
   2168     if (mType == MIXER) {
   2169         sleepTimeShift = 0;
   2170     }
   2171 
   2172     CpuStats cpuStats;
   2173     const String8 myName(String8::format("thread %p type %d TID %d", this, mType, gettid()));
   2174 
   2175     acquireWakeLock();
   2176 
   2177     // mNBLogWriter->log can only be called while thread mutex mLock is held.
   2178     // So if you need to log when mutex is unlocked, set logString to a non-NULL string,
   2179     // and then that string will be logged at the next convenient opportunity.
   2180     const char *logString = NULL;
   2181 
   2182     checkSilentMode_l();
   2183 
   2184     while (!exitPending())
   2185     {
   2186         cpuStats.sample(myName);
   2187 
   2188         Vector< sp<EffectChain> > effectChains;
   2189 
   2190         processConfigEvents();
   2191 
   2192         { // scope for mLock
   2193 
   2194             Mutex::Autolock _l(mLock);
   2195 
   2196             if (logString != NULL) {
   2197                 mNBLogWriter->logTimestamp();
   2198                 mNBLogWriter->log(logString);
   2199                 logString = NULL;
   2200             }
   2201 
   2202             if (mLatchDValid) {
   2203                 mLatchQ = mLatchD;
   2204                 mLatchDValid = false;
   2205                 mLatchQValid = true;
   2206             }
   2207 
   2208             if (checkForNewParameters_l()) {
   2209                 cacheParameters_l();
   2210             }
   2211 
   2212             saveOutputTracks();
   2213             if (mSignalPending) {
   2214                 // A signal was raised while we were unlocked
   2215                 mSignalPending = false;
   2216             } else if (waitingAsyncCallback_l()) {
   2217                 if (exitPending()) {
   2218                     break;
   2219                 }
   2220                 releaseWakeLock_l();
   2221                 mWakeLockUids.clear();
   2222                 mActiveTracksGeneration++;
   2223                 ALOGV("wait async completion");
   2224                 mWaitWorkCV.wait(mLock);
   2225                 ALOGV("async completion/wake");
   2226                 acquireWakeLock_l();
   2227                 standbyTime = systemTime() + standbyDelay;
   2228                 sleepTime = 0;
   2229 
   2230                 continue;
   2231             }
   2232             if ((!mActiveTracks.size() && systemTime() > standbyTime) ||
   2233                                    isSuspended()) {
   2234                 // put audio hardware into standby after short delay
   2235                 if (shouldStandby_l()) {
   2236 
   2237                     threadLoop_standby();
   2238 
   2239                     mStandby = true;
   2240                 }
   2241 
   2242                 if (!mActiveTracks.size() && mConfigEvents.isEmpty()) {
   2243                     // we're about to wait, flush the binder command buffer
   2244                     IPCThreadState::self()->flushCommands();
   2245 
   2246                     clearOutputTracks();
   2247 
   2248                     if (exitPending()) {
   2249                         break;
   2250                     }
   2251 
   2252                     releaseWakeLock_l();
   2253                     mWakeLockUids.clear();
   2254                     mActiveTracksGeneration++;
   2255                     // wait until we have something to do...
   2256                     ALOGV("%s going to sleep", myName.string());
   2257                     mWaitWorkCV.wait(mLock);
   2258                     ALOGV("%s waking up", myName.string());
   2259                     acquireWakeLock_l();
   2260 
   2261                     mMixerStatus = MIXER_IDLE;
   2262                     mMixerStatusIgnoringFastTracks = MIXER_IDLE;
   2263                     mBytesWritten = 0;
   2264                     mBytesRemaining = 0;
   2265                     checkSilentMode_l();
   2266 
   2267                     standbyTime = systemTime() + standbyDelay;
   2268                     sleepTime = idleSleepTime;
   2269                     if (mType == MIXER) {
   2270                         sleepTimeShift = 0;
   2271                     }
   2272 
   2273                     continue;
   2274                 }
   2275             }
   2276             // mMixerStatusIgnoringFastTracks is also updated internally
   2277             mMixerStatus = prepareTracks_l(&tracksToRemove);
   2278 
   2279             // compare with previously applied list
   2280             if (lastGeneration != mActiveTracksGeneration) {
   2281                 // update wakelock
   2282                 updateWakeLockUids_l(mWakeLockUids);
   2283                 lastGeneration = mActiveTracksGeneration;
   2284             }
   2285 
   2286             // prevent any changes in effect chain list and in each effect chain
   2287             // during mixing and effect process as the audio buffers could be deleted
   2288             // or modified if an effect is created or deleted
   2289             lockEffectChains_l(effectChains);
   2290         } // mLock scope ends
   2291 
   2292         if (mBytesRemaining == 0) {
   2293             mCurrentWriteLength = 0;
   2294             if (mMixerStatus == MIXER_TRACKS_READY) {
   2295                 // threadLoop_mix() sets mCurrentWriteLength
   2296                 threadLoop_mix();
   2297             } else if ((mMixerStatus != MIXER_DRAIN_TRACK)
   2298                         && (mMixerStatus != MIXER_DRAIN_ALL)) {
   2299                 // threadLoop_sleepTime sets sleepTime to 0 if data
   2300                 // must be written to HAL
   2301                 threadLoop_sleepTime();
   2302                 if (sleepTime == 0) {
   2303                     mCurrentWriteLength = mixBufferSize;
   2304                 }
   2305             }
   2306             mBytesRemaining = mCurrentWriteLength;
   2307             if (isSuspended()) {
   2308                 sleepTime = suspendSleepTimeUs();
   2309                 // simulate write to HAL when suspended
   2310                 mBytesWritten += mixBufferSize;
   2311                 mBytesRemaining = 0;
   2312             }
   2313 
   2314             // only process effects if we're going to write
   2315             if (sleepTime == 0 && mType != OFFLOAD) {
   2316                 for (size_t i = 0; i < effectChains.size(); i ++) {
   2317                     effectChains[i]->process_l();
   2318                 }
   2319             }
   2320         }
   2321         // Process effect chains for offloaded thread even if no audio
   2322         // was read from audio track: process only updates effect state
   2323         // and thus does have to be synchronized with audio writes but may have
   2324         // to be called while waiting for async write callback
   2325         if (mType == OFFLOAD) {
   2326             for (size_t i = 0; i < effectChains.size(); i ++) {
   2327                 effectChains[i]->process_l();
   2328             }
   2329         }
   2330 
   2331         // enable changes in effect chain
   2332         unlockEffectChains(effectChains);
   2333 
   2334         if (!waitingAsyncCallback()) {
   2335             // sleepTime == 0 means we must write to audio hardware
   2336             if (sleepTime == 0) {
   2337                 if (mBytesRemaining) {
   2338                     ssize_t ret = threadLoop_write();
   2339                     if (ret < 0) {
   2340                         mBytesRemaining = 0;
   2341                     } else {
   2342                         mBytesWritten += ret;
   2343                         mBytesRemaining -= ret;
   2344                     }
   2345                 } else if ((mMixerStatus == MIXER_DRAIN_TRACK) ||
   2346                         (mMixerStatus == MIXER_DRAIN_ALL)) {
   2347                     threadLoop_drain();
   2348                 }
   2349 if (mType == MIXER) {
   2350                 // write blocked detection
   2351                 nsecs_t now = systemTime();
   2352                 nsecs_t delta = now - mLastWriteTime;
   2353                 if (!mStandby && delta > maxPeriod) {
   2354                     mNumDelayedWrites++;
   2355                     if ((now - lastWarning) > kWarningThrottleNs) {
   2356                         ATRACE_NAME("underrun");
   2357                         ALOGW("write blocked for %llu msecs, %d delayed writes, thread %p",
   2358                                 ns2ms(delta), mNumDelayedWrites, this);
   2359                         lastWarning = now;
   2360                     }
   2361                 }
   2362 }
   2363 
   2364             } else {
   2365                 usleep(sleepTime);
   2366             }
   2367         }
   2368 
   2369         // Finally let go of removed track(s), without the lock held
   2370         // since we can't guarantee the destructors won't acquire that
   2371         // same lock.  This will also mutate and push a new fast mixer state.
   2372         threadLoop_removeTracks(tracksToRemove);
   2373         tracksToRemove.clear();
   2374 
   2375         // FIXME I don't understand the need for this here;
   2376         //       it was in the original code but maybe the
   2377         //       assignment in saveOutputTracks() makes this unnecessary?
   2378         clearOutputTracks();
   2379 
   2380         // Effect chains will be actually deleted here if they were removed from
   2381         // mEffectChains list during mixing or effects processing
   2382         effectChains.clear();
   2383 
   2384         // FIXME Note that the above .clear() is no longer necessary since effectChains
   2385         // is now local to this block, but will keep it for now (at least until merge done).
   2386     }
   2387 
   2388     threadLoop_exit();
   2389 
   2390     // for DuplicatingThread, standby mode is handled by the outputTracks, otherwise ...
   2391     if (mType == MIXER || mType == DIRECT || mType == OFFLOAD) {
   2392         // put output stream into standby mode
   2393         if (!mStandby) {
   2394             mOutput->stream->common.standby(&mOutput->stream->common);
   2395         }
   2396     }
   2397 
   2398     releaseWakeLock();
   2399     mWakeLockUids.clear();
   2400     mActiveTracksGeneration++;
   2401 
   2402     ALOGV("Thread %p type %d exiting", this, mType);
   2403     return false;
   2404 }
   2405 
   2406 // removeTracks_l() must be called with ThreadBase::mLock held
   2407 void AudioFlinger::PlaybackThread::removeTracks_l(const Vector< sp<Track> >& tracksToRemove)
   2408 {
   2409     size_t count = tracksToRemove.size();
   2410     if (count) {
   2411         for (size_t i=0 ; i<count ; i++) {
   2412             const sp<Track>& track = tracksToRemove.itemAt(i);
   2413             mActiveTracks.remove(track);
   2414             mWakeLockUids.remove(track->uid());
   2415             mActiveTracksGeneration++;
   2416             ALOGV("removeTracks_l removing track on session %d", track->sessionId());
   2417             sp<EffectChain> chain = getEffectChain_l(track->sessionId());
   2418             if (chain != 0) {
   2419                 ALOGV("stopping track on chain %p for session Id: %d", chain.get(),
   2420                         track->sessionId());
   2421                 chain->decActiveTrackCnt();
   2422             }
   2423             if (track->isTerminated()) {
   2424                 removeTrack_l(track);
   2425             }
   2426         }
   2427     }
   2428 
   2429 }
   2430 
   2431 status_t AudioFlinger::PlaybackThread::getTimestamp_l(AudioTimestamp& timestamp)
   2432 {
   2433     if (mNormalSink != 0) {
   2434         return mNormalSink->getTimestamp(timestamp);
   2435     }
   2436     if (mType == OFFLOAD && mOutput->stream->get_presentation_position) {
   2437         uint64_t position64;
   2438         int ret = mOutput->stream->get_presentation_position(
   2439                                                 mOutput->stream, &position64, &timestamp.mTime);
   2440         if (ret == 0) {
   2441             timestamp.mPosition = (uint32_t)position64;
   2442             return NO_ERROR;
   2443         }
   2444     }
   2445     return INVALID_OPERATION;
   2446 }
   2447 // ----------------------------------------------------------------------------
   2448 
   2449 AudioFlinger::MixerThread::MixerThread(const sp<AudioFlinger>& audioFlinger, AudioStreamOut* output,
   2450         audio_io_handle_t id, audio_devices_t device, type_t type)
   2451     :   PlaybackThread(audioFlinger, output, id, device, type),
   2452         // mAudioMixer below
   2453         // mFastMixer below
   2454         mFastMixerFutex(0)
   2455         // mOutputSink below
   2456         // mPipeSink below
   2457         // mNormalSink below
   2458 {
   2459     ALOGV("MixerThread() id=%d device=%#x type=%d", id, device, type);
   2460     ALOGV("mSampleRate=%u, mChannelMask=%#x, mChannelCount=%u, mFormat=%d, mFrameSize=%u, "
   2461             "mFrameCount=%d, mNormalFrameCount=%d",
   2462             mSampleRate, mChannelMask, mChannelCount, mFormat, mFrameSize, mFrameCount,
   2463             mNormalFrameCount);
   2464     mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
   2465 
   2466     // FIXME - Current mixer implementation only supports stereo output
   2467     if (mChannelCount != FCC_2) {
   2468         ALOGE("Invalid audio hardware channel count %d", mChannelCount);
   2469     }
   2470 
   2471     // create an NBAIO sink for the HAL output stream, and negotiate
   2472     mOutputSink = new AudioStreamOutSink(output->stream);
   2473     size_t numCounterOffers = 0;
   2474     const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount)};
   2475     ssize_t index = mOutputSink->negotiate(offers, 1, NULL, numCounterOffers);
   2476     ALOG_ASSERT(index == 0);
   2477 
   2478     // initialize fast mixer depending on configuration
   2479     bool initFastMixer;
   2480     switch (kUseFastMixer) {
   2481     case FastMixer_Never:
   2482         initFastMixer = false;
   2483         break;
   2484     case FastMixer_Always:
   2485         initFastMixer = true;
   2486         break;
   2487     case FastMixer_Static:
   2488     case FastMixer_Dynamic:
   2489         initFastMixer = mFrameCount < mNormalFrameCount;
   2490         break;
   2491     }
   2492     if (initFastMixer) {
   2493 
   2494         // create a MonoPipe to connect our submix to FastMixer
   2495         NBAIO_Format format = mOutputSink->format();
   2496         // This pipe depth compensates for scheduling latency of the normal mixer thread.
   2497         // When it wakes up after a maximum latency, it runs a few cycles quickly before
   2498         // finally blocking.  Note the pipe implementation rounds up the request to a power of 2.
   2499         MonoPipe *monoPipe = new MonoPipe(mNormalFrameCount * 4, format, true /*writeCanBlock*/);
   2500         const NBAIO_Format offers[1] = {format};
   2501         size_t numCounterOffers = 0;
   2502         ssize_t index = monoPipe->negotiate(offers, 1, NULL, numCounterOffers);
   2503         ALOG_ASSERT(index == 0);
   2504         monoPipe->setAvgFrames((mScreenState & 1) ?
   2505                 (monoPipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
   2506         mPipeSink = monoPipe;
   2507 
   2508 #ifdef TEE_SINK
   2509         if (mTeeSinkOutputEnabled) {
   2510             // create a Pipe to archive a copy of FastMixer's output for dumpsys
   2511             Pipe *teeSink = new Pipe(mTeeSinkOutputFrames, format);
   2512             numCounterOffers = 0;
   2513             index = teeSink->negotiate(offers, 1, NULL, numCounterOffers);
   2514             ALOG_ASSERT(index == 0);
   2515             mTeeSink = teeSink;
   2516             PipeReader *teeSource = new PipeReader(*teeSink);
   2517             numCounterOffers = 0;
   2518             index = teeSource->negotiate(offers, 1, NULL, numCounterOffers);
   2519             ALOG_ASSERT(index == 0);
   2520             mTeeSource = teeSource;
   2521         }
   2522 #endif
   2523 
   2524         // create fast mixer and configure it initially with just one fast track for our submix
   2525         mFastMixer = new FastMixer();
   2526         FastMixerStateQueue *sq = mFastMixer->sq();
   2527 #ifdef STATE_QUEUE_DUMP
   2528         sq->setObserverDump(&mStateQueueObserverDump);
   2529         sq->setMutatorDump(&mStateQueueMutatorDump);
   2530 #endif
   2531         FastMixerState *state = sq->begin();
   2532         FastTrack *fastTrack = &state->mFastTracks[0];
   2533         // wrap the source side of the MonoPipe to make it an AudioBufferProvider
   2534         fastTrack->mBufferProvider = new SourceAudioBufferProvider(new MonoPipeReader(monoPipe));
   2535         fastTrack->mVolumeProvider = NULL;
   2536         fastTrack->mGeneration++;
   2537         state->mFastTracksGen++;
   2538         state->mTrackMask = 1;
   2539         // fast mixer will use the HAL output sink
   2540         state->mOutputSink = mOutputSink.get();
   2541         state->mOutputSinkGen++;
   2542         state->mFrameCount = mFrameCount;
   2543         state->mCommand = FastMixerState::COLD_IDLE;
   2544         // already done in constructor initialization list
   2545         //mFastMixerFutex = 0;
   2546         state->mColdFutexAddr = &mFastMixerFutex;
   2547         state->mColdGen++;
   2548         state->mDumpState = &mFastMixerDumpState;
   2549 #ifdef TEE_SINK
   2550         state->mTeeSink = mTeeSink.get();
   2551 #endif
   2552         mFastMixerNBLogWriter = audioFlinger->newWriter_l(kFastMixerLogSize, "FastMixer");
   2553         state->mNBLogWriter = mFastMixerNBLogWriter.get();
   2554         sq->end();
   2555         sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
   2556 
   2557         // start the fast mixer
   2558         mFastMixer->run("FastMixer", PRIORITY_URGENT_AUDIO);
   2559         pid_t tid = mFastMixer->getTid();
   2560         int err = requestPriority(getpid_cached, tid, kPriorityFastMixer);
   2561         if (err != 0) {
   2562             ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
   2563                     kPriorityFastMixer, getpid_cached, tid, err);
   2564         }
   2565 
   2566 #ifdef AUDIO_WATCHDOG
   2567         // create and start the watchdog
   2568         mAudioWatchdog = new AudioWatchdog();
   2569         mAudioWatchdog->setDump(&mAudioWatchdogDump);
   2570         mAudioWatchdog->run("AudioWatchdog", PRIORITY_URGENT_AUDIO);
   2571         tid = mAudioWatchdog->getTid();
   2572         err = requestPriority(getpid_cached, tid, kPriorityFastMixer);
   2573         if (err != 0) {
   2574             ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
   2575                     kPriorityFastMixer, getpid_cached, tid, err);
   2576         }
   2577 #endif
   2578 
   2579     } else {
   2580         mFastMixer = NULL;
   2581     }
   2582 
   2583     switch (kUseFastMixer) {
   2584     case FastMixer_Never:
   2585     case FastMixer_Dynamic:
   2586         mNormalSink = mOutputSink;
   2587         break;
   2588     case FastMixer_Always:
   2589         mNormalSink = mPipeSink;
   2590         break;
   2591     case FastMixer_Static:
   2592         mNormalSink = initFastMixer ? mPipeSink : mOutputSink;
   2593         break;
   2594     }
   2595 }
   2596 
   2597 AudioFlinger::MixerThread::~MixerThread()
   2598 {
   2599     if (mFastMixer != NULL) {
   2600         FastMixerStateQueue *sq = mFastMixer->sq();
   2601         FastMixerState *state = sq->begin();
   2602         if (state->mCommand == FastMixerState::COLD_IDLE) {
   2603             int32_t old = android_atomic_inc(&mFastMixerFutex);
   2604             if (old == -1) {
   2605                 __futex_syscall3(&mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
   2606             }
   2607         }
   2608         state->mCommand = FastMixerState::EXIT;
   2609         sq->end();
   2610         sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
   2611         mFastMixer->join();
   2612         // Though the fast mixer thread has exited, it's state queue is still valid.
   2613         // We'll use that extract the final state which contains one remaining fast track
   2614         // corresponding to our sub-mix.
   2615         state = sq->begin();
   2616         ALOG_ASSERT(state->mTrackMask == 1);
   2617         FastTrack *fastTrack = &state->mFastTracks[0];
   2618         ALOG_ASSERT(fastTrack->mBufferProvider != NULL);
   2619         delete fastTrack->mBufferProvider;
   2620         sq->end(false /*didModify*/);
   2621         delete mFastMixer;
   2622 #ifdef AUDIO_WATCHDOG
   2623         if (mAudioWatchdog != 0) {
   2624             mAudioWatchdog->requestExit();
   2625             mAudioWatchdog->requestExitAndWait();
   2626             mAudioWatchdog.clear();
   2627         }
   2628 #endif
   2629     }
   2630     mAudioFlinger->unregisterWriter(mFastMixerNBLogWriter);
   2631     delete mAudioMixer;
   2632 }
   2633 
   2634 
   2635 uint32_t AudioFlinger::MixerThread::correctLatency_l(uint32_t latency) const
   2636 {
   2637     if (mFastMixer != NULL) {
   2638         MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
   2639         latency += (pipe->getAvgFrames() * 1000) / mSampleRate;
   2640     }
   2641     return latency;
   2642 }
   2643 
   2644 
   2645 void AudioFlinger::MixerThread::threadLoop_removeTracks(const Vector< sp<Track> >& tracksToRemove)
   2646 {
   2647     PlaybackThread::threadLoop_removeTracks(tracksToRemove);
   2648 }
   2649 
   2650 ssize_t AudioFlinger::MixerThread::threadLoop_write()
   2651 {
   2652     // FIXME we should only do one push per cycle; confirm this is true
   2653     // Start the fast mixer if it's not already running
   2654     if (mFastMixer != NULL) {
   2655         FastMixerStateQueue *sq = mFastMixer->sq();
   2656         FastMixerState *state = sq->begin();
   2657         if (state->mCommand != FastMixerState::MIX_WRITE &&
   2658                 (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)) {
   2659             if (state->mCommand == FastMixerState::COLD_IDLE) {
   2660                 int32_t old = android_atomic_inc(&mFastMixerFutex);
   2661                 if (old == -1) {
   2662                     __futex_syscall3(&mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
   2663                 }
   2664 #ifdef AUDIO_WATCHDOG
   2665                 if (mAudioWatchdog != 0) {
   2666                     mAudioWatchdog->resume();
   2667                 }
   2668 #endif
   2669             }
   2670             state->mCommand = FastMixerState::MIX_WRITE;
   2671             mFastMixerDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
   2672                     FastMixerDumpState::kSamplingNforLowRamDevice : FastMixerDumpState::kSamplingN);
   2673             sq->end();
   2674             sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
   2675             if (kUseFastMixer == FastMixer_Dynamic) {
   2676                 mNormalSink = mPipeSink;
   2677             }
   2678         } else {
   2679             sq->end(false /*didModify*/);
   2680         }
   2681     }
   2682     return PlaybackThread::threadLoop_write();
   2683 }
   2684 
   2685 void AudioFlinger::MixerThread::threadLoop_standby()
   2686 {
   2687     // Idle the fast mixer if it's currently running
   2688     if (mFastMixer != NULL) {
   2689         FastMixerStateQueue *sq = mFastMixer->sq();
   2690         FastMixerState *state = sq->begin();
   2691         if (!(state->mCommand & FastMixerState::IDLE)) {
   2692             state->mCommand = FastMixerState::COLD_IDLE;
   2693             state->mColdFutexAddr = &mFastMixerFutex;
   2694             state->mColdGen++;
   2695             mFastMixerFutex = 0;
   2696             sq->end();
   2697             // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
   2698             sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
   2699             if (kUseFastMixer == FastMixer_Dynamic) {
   2700                 mNormalSink = mOutputSink;
   2701             }
   2702 #ifdef AUDIO_WATCHDOG
   2703             if (mAudioWatchdog != 0) {
   2704                 mAudioWatchdog->pause();
   2705             }
   2706 #endif
   2707         } else {
   2708             sq->end(false /*didModify*/);
   2709         }
   2710     }
   2711     PlaybackThread::threadLoop_standby();
   2712 }
   2713 
   2714 // Empty implementation for standard mixer
   2715 // Overridden for offloaded playback
   2716 void AudioFlinger::PlaybackThread::flushOutput_l()
   2717 {
   2718 }
   2719 
   2720 bool AudioFlinger::PlaybackThread::waitingAsyncCallback_l()
   2721 {
   2722     return false;
   2723 }
   2724 
   2725 bool AudioFlinger::PlaybackThread::shouldStandby_l()
   2726 {
   2727     return !mStandby;
   2728 }
   2729 
   2730 bool AudioFlinger::PlaybackThread::waitingAsyncCallback()
   2731 {
   2732     Mutex::Autolock _l(mLock);
   2733     return waitingAsyncCallback_l();
   2734 }
   2735 
   2736 // shared by MIXER and DIRECT, overridden by DUPLICATING
   2737 void AudioFlinger::PlaybackThread::threadLoop_standby()
   2738 {
   2739     ALOGV("Audio hardware entering standby, mixer %p, suspend count %d", this, mSuspended);
   2740     mOutput->stream->common.standby(&mOutput->stream->common);
   2741     if (mUseAsyncWrite != 0) {
   2742         // discard any pending drain or write ack by incrementing sequence
   2743         mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
   2744         mDrainSequence = (mDrainSequence + 2) & ~1;
   2745         ALOG_ASSERT(mCallbackThread != 0);
   2746         mCallbackThread->setWriteBlocked(mWriteAckSequence);
   2747         mCallbackThread->setDraining(mDrainSequence);
   2748     }
   2749 }
   2750 
   2751 void AudioFlinger::MixerThread::threadLoop_mix()
   2752 {
   2753     // obtain the presentation timestamp of the next output buffer
   2754     int64_t pts;
   2755     status_t status = INVALID_OPERATION;
   2756 
   2757     if (mNormalSink != 0) {
   2758         status = mNormalSink->getNextWriteTimestamp(&pts);
   2759     } else {
   2760         status = mOutputSink->getNextWriteTimestamp(&pts);
   2761     }
   2762 
   2763     if (status != NO_ERROR) {
   2764         pts = AudioBufferProvider::kInvalidPTS;
   2765     }
   2766 
   2767     // mix buffers...
   2768     mAudioMixer->process(pts);
   2769     mCurrentWriteLength = mixBufferSize;
   2770     // increase sleep time progressively when application underrun condition clears.
   2771     // Only increase sleep time if the mixer is ready for two consecutive times to avoid
   2772     // that a steady state of alternating ready/not ready conditions keeps the sleep time
   2773     // such that we would underrun the audio HAL.
   2774     if ((sleepTime == 0) && (sleepTimeShift > 0)) {
   2775         sleepTimeShift--;
   2776     }
   2777     sleepTime = 0;
   2778     standbyTime = systemTime() + standbyDelay;
   2779     //TODO: delay standby when effects have a tail
   2780 }
   2781 
   2782 void AudioFlinger::MixerThread::threadLoop_sleepTime()
   2783 {
   2784     // If no tracks are ready, sleep once for the duration of an output
   2785     // buffer size, then write 0s to the output
   2786     if (sleepTime == 0) {
   2787         if (mMixerStatus == MIXER_TRACKS_ENABLED) {
   2788             sleepTime = activeSleepTime >> sleepTimeShift;
   2789             if (sleepTime < kMinThreadSleepTimeUs) {
   2790                 sleepTime = kMinThreadSleepTimeUs;
   2791             }
   2792             // reduce sleep time in case of consecutive application underruns to avoid
   2793             // starving the audio HAL. As activeSleepTimeUs() is larger than a buffer
   2794             // duration we would end up writing less data than needed by the audio HAL if
   2795             // the condition persists.
   2796             if (sleepTimeShift < kMaxThreadSleepTimeShift) {
   2797                 sleepTimeShift++;
   2798             }
   2799         } else {
   2800             sleepTime = idleSleepTime;
   2801         }
   2802     } else if (mBytesWritten != 0 || (mMixerStatus == MIXER_TRACKS_ENABLED)) {
   2803         memset (mMixBuffer, 0, mixBufferSize);
   2804         sleepTime = 0;
   2805         ALOGV_IF(mBytesWritten == 0 && (mMixerStatus == MIXER_TRACKS_ENABLED),
   2806                 "anticipated start");
   2807     }
   2808     // TODO add standby time extension fct of effect tail
   2809 }
   2810 
   2811 // prepareTracks_l() must be called with ThreadBase::mLock held
   2812 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::MixerThread::prepareTracks_l(
   2813         Vector< sp<Track> > *tracksToRemove)
   2814 {
   2815 
   2816     mixer_state mixerStatus = MIXER_IDLE;
   2817     // find out which tracks need to be processed
   2818     size_t count = mActiveTracks.size();
   2819     size_t mixedTracks = 0;
   2820     size_t tracksWithEffect = 0;
   2821     // counts only _active_ fast tracks
   2822     size_t fastTracks = 0;
   2823     uint32_t resetMask = 0; // bit mask of fast tracks that need to be reset
   2824 
   2825     float masterVolume = mMasterVolume;
   2826     bool masterMute = mMasterMute;
   2827 
   2828     if (masterMute) {
   2829         masterVolume = 0;
   2830     }
   2831     // Delegate master volume control to effect in output mix effect chain if needed
   2832     sp<EffectChain> chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX);
   2833     if (chain != 0) {
   2834         uint32_t v = (uint32_t)(masterVolume * (1 << 24));
   2835         chain->setVolume_l(&v, &v);
   2836         masterVolume = (float)((v + (1 << 23)) >> 24);
   2837         chain.clear();
   2838     }
   2839 
   2840     // prepare a new state to push
   2841     FastMixerStateQueue *sq = NULL;
   2842     FastMixerState *state = NULL;
   2843     bool didModify = false;
   2844     FastMixerStateQueue::block_t block = FastMixerStateQueue::BLOCK_UNTIL_PUSHED;
   2845     if (mFastMixer != NULL) {
   2846         sq = mFastMixer->sq();
   2847         state = sq->begin();
   2848     }
   2849 
   2850     for (size_t i=0 ; i<count ; i++) {
   2851         const sp<Track> t = mActiveTracks[i].promote();
   2852         if (t == 0) {
   2853             continue;
   2854         }
   2855 
   2856         // this const just means the local variable doesn't change
   2857         Track* const track = t.get();
   2858 
   2859         // process fast tracks
   2860         if (track->isFastTrack()) {
   2861 
   2862             // It's theoretically possible (though unlikely) for a fast track to be created
   2863             // and then removed within the same normal mix cycle.  This is not a problem, as
   2864             // the track never becomes active so it's fast mixer slot is never touched.
   2865             // The converse, of removing an (active) track and then creating a new track
   2866             // at the identical fast mixer slot within the same normal mix cycle,
   2867             // is impossible because the slot isn't marked available until the end of each cycle.
   2868             int j = track->mFastIndex;
   2869             ALOG_ASSERT(0 < j && j < (int)FastMixerState::kMaxFastTracks);
   2870             ALOG_ASSERT(!(mFastTrackAvailMask & (1 << j)));
   2871             FastTrack *fastTrack = &state->mFastTracks[j];
   2872 
   2873             // Determine whether the track is currently in underrun condition,
   2874             // and whether it had a recent underrun.
   2875             FastTrackDump *ftDump = &mFastMixerDumpState.mTracks[j];
   2876             FastTrackUnderruns underruns = ftDump->mUnderruns;
   2877             uint32_t recentFull = (underruns.mBitFields.mFull -
   2878                     track->mObservedUnderruns.mBitFields.mFull) & UNDERRUN_MASK;
   2879             uint32_t recentPartial = (underruns.mBitFields.mPartial -
   2880                     track->mObservedUnderruns.mBitFields.mPartial) & UNDERRUN_MASK;
   2881             uint32_t recentEmpty = (underruns.mBitFields.mEmpty -
   2882                     track->mObservedUnderruns.mBitFields.mEmpty) & UNDERRUN_MASK;
   2883             uint32_t recentUnderruns = recentPartial + recentEmpty;
   2884             track->mObservedUnderruns = underruns;
   2885             // don't count underruns that occur while stopping or pausing
   2886             // or stopped which can occur when flush() is called while active
   2887             if (!(track->isStopping() || track->isPausing() || track->isStopped()) &&
   2888                     recentUnderruns > 0) {
   2889                 // FIXME fast mixer will pull & mix partial buffers, but we count as a full underrun
   2890                 track->mAudioTrackServerProxy->tallyUnderrunFrames(recentUnderruns * mFrameCount);
   2891             }
   2892 
   2893             // This is similar to the state machine for normal tracks,
   2894             // with a few modifications for fast tracks.
   2895             bool isActive = true;
   2896             switch (track->mState) {
   2897             case TrackBase::STOPPING_1:
   2898                 // track stays active in STOPPING_1 state until first underrun
   2899                 if (recentUnderruns > 0 || track->isTerminated()) {
   2900                     track->mState = TrackBase::STOPPING_2;
   2901                 }
   2902                 break;
   2903             case TrackBase::PAUSING:
   2904                 // ramp down is not yet implemented
   2905                 track->setPaused();
   2906                 break;
   2907             case TrackBase::RESUMING:
   2908                 // ramp up is not yet implemented
   2909                 track->mState = TrackBase::ACTIVE;
   2910                 break;
   2911             case TrackBase::ACTIVE:
   2912                 if (recentFull > 0 || recentPartial > 0) {
   2913                     // track has provided at least some frames recently: reset retry count
   2914                     track->mRetryCount = kMaxTrackRetries;
   2915                 }
   2916                 if (recentUnderruns == 0) {
   2917                     // no recent underruns: stay active
   2918                     break;
   2919                 }
   2920                 // there has recently been an underrun of some kind
   2921                 if (track->sharedBuffer() == 0) {
   2922                     // were any of the recent underruns "empty" (no frames available)?
   2923                     if (recentEmpty == 0) {
   2924                         // no, then ignore the partial underruns as they are allowed indefinitely
   2925                         break;
   2926                     }
   2927                     // there has recently been an "empty" underrun: decrement the retry counter
   2928                     if (--(track->mRetryCount) > 0) {
   2929                         break;
   2930                     }
   2931                     // indicate to client process that the track was disabled because of underrun;
   2932                     // it will then automatically call start() when data is available
   2933                     android_atomic_or(CBLK_DISABLED, &track->mCblk->mFlags);
   2934                     // remove from active list, but state remains ACTIVE [confusing but true]
   2935                     isActive = false;
   2936                     break;
   2937                 }
   2938                 // fall through
   2939             case TrackBase::STOPPING_2:
   2940             case TrackBase::PAUSED:
   2941             case TrackBase::STOPPED:
   2942             case TrackBase::FLUSHED:   // flush() while active
   2943                 // Check for presentation complete if track is inactive
   2944                 // We have consumed all the buffers of this track.
   2945                 // This would be incomplete if we auto-paused on underrun
   2946                 {
   2947                     size_t audioHALFrames =
   2948                             (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000;
   2949                     size_t framesWritten = mBytesWritten / mFrameSize;
   2950                     if (!(mStandby || track->presentationComplete(framesWritten, audioHALFrames))) {
   2951                         // track stays in active list until presentation is complete
   2952                         break;
   2953                     }
   2954                 }
   2955                 if (track->isStopping_2()) {
   2956                     track->mState = TrackBase::STOPPED;
   2957                 }
   2958                 if (track->isStopped()) {
   2959                     // Can't reset directly, as fast mixer is still polling this track
   2960                     //   track->reset();
   2961                     // So instead mark this track as needing to be reset after push with ack
   2962                     resetMask |= 1 << i;
   2963                 }
   2964                 isActive = false;
   2965                 break;
   2966             case TrackBase::IDLE:
   2967             default:
   2968                 LOG_FATAL("unexpected track state %d", track->mState);
   2969             }
   2970 
   2971             if (isActive) {
   2972                 // was it previously inactive?
   2973                 if (!(state->mTrackMask & (1 << j))) {
   2974                     ExtendedAudioBufferProvider *eabp = track;
   2975                     VolumeProvider *vp = track;
   2976                     fastTrack->mBufferProvider = eabp;
   2977                     fastTrack->mVolumeProvider = vp;
   2978                     fastTrack->mSampleRate = track->mSampleRate;
   2979                     fastTrack->mChannelMask = track->mChannelMask;
   2980                     fastTrack->mGeneration++;
   2981                     state->mTrackMask |= 1 << j;
   2982                     didModify = true;
   2983                     // no acknowledgement required for newly active tracks
   2984                 }
   2985                 // cache the combined master volume and stream type volume for fast mixer; this
   2986                 // lacks any synchronization or barrier so VolumeProvider may read a stale value
   2987                 track->mCachedVolume = masterVolume * mStreamTypes[track->streamType()].volume;
   2988                 ++fastTracks;
   2989             } else {
   2990                 // was it previously active?
   2991                 if (state->mTrackMask & (1 << j)) {
   2992                     fastTrack->mBufferProvider = NULL;
   2993                     fastTrack->mGeneration++;
   2994                     state->mTrackMask &= ~(1 << j);
   2995                     didModify = true;
   2996                     // If any fast tracks were removed, we must wait for acknowledgement
   2997                     // because we're about to decrement the last sp<> on those tracks.
   2998                     block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
   2999                 } else {
   3000                     LOG_FATAL("fast track %d should have been active", j);
   3001                 }
   3002                 tracksToRemove->add(track);
   3003                 // Avoids a misleading display in dumpsys
   3004                 track->mObservedUnderruns.mBitFields.mMostRecent = UNDERRUN_FULL;
   3005             }
   3006             continue;
   3007         }
   3008 
   3009         {   // local variable scope to avoid goto warning
   3010 
   3011         audio_track_cblk_t* cblk = track->cblk();
   3012 
   3013         // The first time a track is added we wait
   3014         // for all its buffers to be filled before processing it
   3015         int name = track->name();
   3016         // make sure that we have enough frames to mix one full buffer.
   3017         // enforce this condition only once to enable draining the buffer in case the client
   3018         // app does not call stop() and relies on underrun to stop:
   3019         // hence the test on (mMixerStatus == MIXER_TRACKS_READY) meaning the track was mixed
   3020         // during last round
   3021         size_t desiredFrames;
   3022         uint32_t sr = track->sampleRate();
   3023         if (sr == mSampleRate) {
   3024             desiredFrames = mNormalFrameCount;
   3025         } else {
   3026             // +1 for rounding and +1 for additional sample needed for interpolation
   3027             desiredFrames = (mNormalFrameCount * sr) / mSampleRate + 1 + 1;
   3028             // add frames already consumed but not yet released by the resampler
   3029             // because cblk->framesReady() will include these frames
   3030             desiredFrames += mAudioMixer->getUnreleasedFrames(track->name());
   3031             // the minimum track buffer size is normally twice the number of frames necessary
   3032             // to fill one buffer and the resampler should not leave more than one buffer worth
   3033             // of unreleased frames after each pass, but just in case...
   3034             ALOG_ASSERT(desiredFrames <= cblk->frameCount_);
   3035         }
   3036         uint32_t minFrames = 1;
   3037         if ((track->sharedBuffer() == 0) && !track->isStopped() && !track->isPausing() &&
   3038                 (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY)) {
   3039             minFrames = desiredFrames;
   3040         }
   3041 
   3042         size_t framesReady = track->framesReady();
   3043         if ((framesReady >= minFrames) && track->isReady() &&
   3044                 !track->isPaused() && !track->isTerminated())
   3045         {
   3046             ALOGVV("track %d s=%08x [OK] on thread %p", name, cblk->mServer, this);
   3047 
   3048             mixedTracks++;
   3049 
   3050             // track->mainBuffer() != mMixBuffer means there is an effect chain
   3051             // connected to the track
   3052             chain.clear();
   3053             if (track->mainBuffer() != mMixBuffer) {
   3054                 chain = getEffectChain_l(track->sessionId());
   3055                 // Delegate volume control to effect in track effect chain if needed
   3056                 if (chain != 0) {
   3057                     tracksWithEffect++;
   3058                 } else {
   3059                     ALOGW("prepareTracks_l(): track %d attached to effect but no chain found on "
   3060                             "session %d",
   3061                             name, track->sessionId());
   3062                 }
   3063             }
   3064 
   3065 
   3066             int param = AudioMixer::VOLUME;
   3067             if (track->mFillingUpStatus == Track::FS_FILLED) {
   3068                 // no ramp for the first volume setting
   3069                 track->mFillingUpStatus = Track::FS_ACTIVE;
   3070                 if (track->mState == TrackBase::RESUMING) {
   3071                     track->mState = TrackBase::ACTIVE;
   3072                     param = AudioMixer::RAMP_VOLUME;
   3073                 }
   3074                 mAudioMixer->setParameter(name, AudioMixer::RESAMPLE, AudioMixer::RESET, NULL);
   3075             // FIXME should not make a decision based on mServer
   3076             } else if (cblk->mServer != 0) {
   3077                 // If the track is stopped before the first frame was mixed,
   3078                 // do not apply ramp
   3079                 param = AudioMixer::RAMP_VOLUME;
   3080             }
   3081 
   3082             // compute volume for this track
   3083             uint32_t vl, vr, va;
   3084             if (track->isPausing() || mStreamTypes[track->streamType()].mute) {
   3085                 vl = vr = va = 0;
   3086                 if (track->isPausing()) {
   3087                     track->setPaused();
   3088                 }
   3089             } else {
   3090 
   3091                 // read original volumes with volume control
   3092                 float typeVolume = mStreamTypes[track->streamType()].volume;
   3093                 float v = masterVolume * typeVolume;
   3094                 AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy;
   3095                 uint32_t vlr = proxy->getVolumeLR();
   3096                 vl = vlr & 0xFFFF;
   3097                 vr = vlr >> 16;
   3098                 // track volumes come from shared memory, so can't be trusted and must be clamped
   3099                 if (vl > MAX_GAIN_INT) {
   3100                     ALOGV("Track left volume out of range: %04X", vl);
   3101                     vl = MAX_GAIN_INT;
   3102                 }
   3103                 if (vr > MAX_GAIN_INT) {
   3104                     ALOGV("Track right volume out of range: %04X", vr);
   3105                     vr = MAX_GAIN_INT;
   3106                 }
   3107                 // now apply the master volume and stream type volume
   3108                 vl = (uint32_t)(v * vl) << 12;
   3109                 vr = (uint32_t)(v * vr) << 12;
   3110                 // assuming master volume and stream type volume each go up to 1.0,
   3111                 // vl and vr are now in 8.24 format
   3112 
   3113                 uint16_t sendLevel = proxy->getSendLevel_U4_12();
   3114                 // send level comes from shared memory and so may be corrupt
   3115                 if (sendLevel > MAX_GAIN_INT) {
   3116                     ALOGV("Track send level out of range: %04X", sendLevel);
   3117                     sendLevel = MAX_GAIN_INT;
   3118                 }
   3119                 va = (uint32_t)(v * sendLevel);
   3120             }
   3121 
   3122             // Delegate volume control to effect in track effect chain if needed
   3123             if (chain != 0 && chain->setVolume_l(&vl, &vr)) {
   3124                 // Do not ramp volume if volume is controlled by effect
   3125                 param = AudioMixer::VOLUME;
   3126                 track->mHasVolumeController = true;
   3127             } else {
   3128                 // force no volume ramp when volume controller was just disabled or removed
   3129                 // from effect chain to avoid volume spike
   3130                 if (track->mHasVolumeController) {
   3131                     param = AudioMixer::VOLUME;
   3132                 }
   3133                 track->mHasVolumeController = false;
   3134             }
   3135 
   3136             // Convert volumes from 8.24 to 4.12 format
   3137             // This additional clamping is needed in case chain->setVolume_l() overshot
   3138             vl = (vl + (1 << 11)) >> 12;
   3139             if (vl > MAX_GAIN_INT) {
   3140                 vl = MAX_GAIN_INT;
   3141             }
   3142             vr = (vr + (1 << 11)) >> 12;
   3143             if (vr > MAX_GAIN_INT) {
   3144                 vr = MAX_GAIN_INT;
   3145             }
   3146 
   3147             if (va > MAX_GAIN_INT) {
   3148                 va = MAX_GAIN_INT;   // va is uint32_t, so no need to check for -
   3149             }
   3150 
   3151             // XXX: these things DON'T need to be done each time
   3152             mAudioMixer->setBufferProvider(name, track);
   3153             mAudioMixer->enable(name);
   3154 
   3155             mAudioMixer->setParameter(name, param, AudioMixer::VOLUME0, (void *)vl);
   3156             mAudioMixer->setParameter(name, param, AudioMixer::VOLUME1, (void *)vr);
   3157             mAudioMixer->setParameter(name, param, AudioMixer::AUXLEVEL, (void *)va);
   3158             mAudioMixer->setParameter(
   3159                 name,
   3160                 AudioMixer::TRACK,
   3161                 AudioMixer::FORMAT, (void *)track->format());
   3162             mAudioMixer->setParameter(
   3163                 name,
   3164                 AudioMixer::TRACK,
   3165                 AudioMixer::CHANNEL_MASK, (void *)track->channelMask());
   3166             // limit track sample rate to 2 x output sample rate, which changes at re-configuration
   3167             uint32_t maxSampleRate = mSampleRate * 2;
   3168             uint32_t reqSampleRate = track->mAudioTrackServerProxy->getSampleRate();
   3169             if (reqSampleRate == 0) {
   3170                 reqSampleRate = mSampleRate;
   3171             } else if (reqSampleRate > maxSampleRate) {
   3172                 reqSampleRate = maxSampleRate;
   3173             }
   3174             mAudioMixer->setParameter(
   3175                 name,
   3176                 AudioMixer::RESAMPLE,
   3177                 AudioMixer::SAMPLE_RATE,
   3178                 (void *)reqSampleRate);
   3179             mAudioMixer->setParameter(
   3180                 name,
   3181                 AudioMixer::TRACK,
   3182                 AudioMixer::MAIN_BUFFER, (void *)track->mainBuffer());
   3183             mAudioMixer->setParameter(
   3184                 name,
   3185                 AudioMixer::TRACK,
   3186                 AudioMixer::AUX_BUFFER, (void *)track->auxBuffer());
   3187 
   3188             // reset retry count
   3189             track->mRetryCount = kMaxTrackRetries;
   3190 
   3191             // If one track is ready, set the mixer ready if:
   3192             //  - the mixer was not ready during previous round OR
   3193             //  - no other track is not ready
   3194             if (mMixerStatusIgnoringFastTracks != MIXER_TRACKS_READY ||
   3195                     mixerStatus != MIXER_TRACKS_ENABLED) {
   3196                 mixerStatus = MIXER_TRACKS_READY;
   3197             }
   3198         } else {
   3199             if (framesReady < desiredFrames && !track->isStopped() && !track->isPaused()) {
   3200                 track->mAudioTrackServerProxy->tallyUnderrunFrames(desiredFrames);
   3201             }
   3202             // clear effect chain input buffer if an active track underruns to avoid sending
   3203             // previous audio buffer again to effects
   3204             chain = getEffectChain_l(track->sessionId());
   3205             if (chain != 0) {
   3206                 chain->clearInputBuffer();
   3207             }
   3208 
   3209             ALOGVV("track %d s=%08x [NOT READY] on thread %p", name, cblk->mServer, this);
   3210             if ((track->sharedBuffer() != 0) || track->isTerminated() ||
   3211                     track->isStopped() || track->isPaused()) {
   3212                 // We have consumed all the buffers of this track.
   3213                 // Remove it from the list of active tracks.
   3214                 // TODO: use actual buffer filling status instead of latency when available from
   3215                 // audio HAL
   3216                 size_t audioHALFrames = (latency_l() * mSampleRate) / 1000;
   3217                 size_t framesWritten = mBytesWritten / mFrameSize;
   3218                 if (mStandby || track->presentationComplete(framesWritten, audioHALFrames)) {
   3219                     if (track->isStopped()) {
   3220                         track->reset();
   3221                     }
   3222                     tracksToRemove->add(track);
   3223                 }
   3224             } else {
   3225                 // No buffers for this track. Give it a few chances to
   3226                 // fill a buffer, then remove it from active list.
   3227                 if (--(track->mRetryCount) <= 0) {
   3228                     ALOGI("BUFFER TIMEOUT: remove(%d) from active list on thread %p", name, this);
   3229                     tracksToRemove->add(track);
   3230                     // indicate to client process that the track was disabled because of underrun;
   3231                     // it will then automatically call start() when data is available
   3232                     android_atomic_or(CBLK_DISABLED, &cblk->mFlags);
   3233                 // If one track is not ready, mark the mixer also not ready if:
   3234                 //  - the mixer was ready during previous round OR
   3235                 //  - no other track is ready
   3236                 } else if (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY ||
   3237                                 mixerStatus != MIXER_TRACKS_READY) {
   3238                     mixerStatus = MIXER_TRACKS_ENABLED;
   3239                 }
   3240             }
   3241             mAudioMixer->disable(name);
   3242         }
   3243 
   3244         }   // local variable scope to avoid goto warning
   3245 track_is_ready: ;
   3246 
   3247     }
   3248 
   3249     // Push the new FastMixer state if necessary
   3250     bool pauseAudioWatchdog = false;
   3251     if (didModify) {
   3252         state->mFastTracksGen++;
   3253         // if the fast mixer was active, but now there are no fast tracks, then put it in cold idle
   3254         if (kUseFastMixer == FastMixer_Dynamic &&
   3255                 state->mCommand == FastMixerState::MIX_WRITE && state->mTrackMask <= 1) {
   3256             state->mCommand = FastMixerState::COLD_IDLE;
   3257             state->mColdFutexAddr = &mFastMixerFutex;
   3258             state->mColdGen++;
   3259             mFastMixerFutex = 0;
   3260             if (kUseFastMixer == FastMixer_Dynamic) {
   3261                 mNormalSink = mOutputSink;
   3262             }
   3263             // If we go into cold idle, need to wait for acknowledgement
   3264             // so that fast mixer stops doing I/O.
   3265             block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
   3266             pauseAudioWatchdog = true;
   3267         }
   3268     }
   3269     if (sq != NULL) {
   3270         sq->end(didModify);
   3271         sq->push(block);
   3272     }
   3273 #ifdef AUDIO_WATCHDOG
   3274     if (pauseAudioWatchdog && mAudioWatchdog != 0) {
   3275         mAudioWatchdog->pause();
   3276     }
   3277 #endif
   3278 
   3279     // Now perform the deferred reset on fast tracks that have stopped
   3280     while (resetMask != 0) {
   3281         size_t i = __builtin_ctz(resetMask);
   3282         ALOG_ASSERT(i < count);
   3283         resetMask &= ~(1 << i);
   3284         sp<Track> t = mActiveTracks[i].promote();
   3285         if (t == 0) {
   3286             continue;
   3287         }
   3288         Track* track = t.get();
   3289         ALOG_ASSERT(track->isFastTrack() && track->isStopped());
   3290         track->reset();
   3291     }
   3292 
   3293     // remove all the tracks that need to be...
   3294     removeTracks_l(*tracksToRemove);
   3295 
   3296     // mix buffer must be cleared if all tracks are connected to an
   3297     // effect chain as in this case the mixer will not write to
   3298     // mix buffer and track effects will accumulate into it
   3299     if ((mBytesRemaining == 0) && ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
   3300             (mixedTracks == 0 && fastTracks > 0))) {
   3301         // FIXME as a performance optimization, should remember previous zero status
   3302         memset(mMixBuffer, 0, mNormalFrameCount * mChannelCount * sizeof(int16_t));
   3303     }
   3304 
   3305     // if any fast tracks, then status is ready
   3306     mMixerStatusIgnoringFastTracks = mixerStatus;
   3307     if (fastTracks > 0) {
   3308         mixerStatus = MIXER_TRACKS_READY;
   3309     }
   3310     return mixerStatus;
   3311 }
   3312 
   3313 // getTrackName_l() must be called with ThreadBase::mLock held
   3314 int AudioFlinger::MixerThread::getTrackName_l(audio_channel_mask_t channelMask, int sessionId)
   3315 {
   3316     return mAudioMixer->getTrackName(channelMask, sessionId);
   3317 }
   3318 
   3319 // deleteTrackName_l() must be called with ThreadBase::mLock held
   3320 void AudioFlinger::MixerThread::deleteTrackName_l(int name)
   3321 {
   3322     ALOGV("remove track (%d) and delete from mixer", name);
   3323     mAudioMixer->deleteTrackName(name);
   3324 }
   3325 
   3326 // checkForNewParameters_l() must be called with ThreadBase::mLock held
   3327 bool AudioFlinger::MixerThread::checkForNewParameters_l()
   3328 {
   3329     // if !&IDLE, holds the FastMixer state to restore after new parameters processed
   3330     FastMixerState::Command previousCommand = FastMixerState::HOT_IDLE;
   3331     bool reconfig = false;
   3332 
   3333     while (!mNewParameters.isEmpty()) {
   3334 
   3335         if (mFastMixer != NULL) {
   3336             FastMixerStateQueue *sq = mFastMixer->sq();
   3337             FastMixerState *state = sq->begin();
   3338             if (!(state->mCommand & FastMixerState::IDLE)) {
   3339                 previousCommand = state->mCommand;
   3340                 state->mCommand = FastMixerState::HOT_IDLE;
   3341                 sq->end();
   3342                 sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
   3343             } else {
   3344                 sq->end(false /*didModify*/);
   3345             }
   3346         }
   3347 
   3348         status_t status = NO_ERROR;
   3349         String8 keyValuePair = mNewParameters[0];
   3350         AudioParameter param = AudioParameter(keyValuePair);
   3351         int value;
   3352 
   3353         if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
   3354             reconfig = true;
   3355         }
   3356         if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
   3357             if ((audio_format_t) value != AUDIO_FORMAT_PCM_16_BIT) {
   3358                 status = BAD_VALUE;
   3359             } else {
   3360                 reconfig = true;
   3361             }
   3362         }
   3363         if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
   3364             if ((audio_channel_mask_t) value != AUDIO_CHANNEL_OUT_STEREO) {
   3365                 status = BAD_VALUE;
   3366             } else {
   3367                 reconfig = true;
   3368             }
   3369         }
   3370         if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
   3371             // do not accept frame count changes if tracks are open as the track buffer
   3372             // size depends on frame count and correct behavior would not be guaranteed
   3373             // if frame count is changed after track creation
   3374             if (!mTracks.isEmpty()) {
   3375                 status = INVALID_OPERATION;
   3376             } else {
   3377                 reconfig = true;
   3378             }
   3379         }
   3380         if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
   3381 #ifdef ADD_BATTERY_DATA
   3382             // when changing the audio output device, call addBatteryData to notify
   3383             // the change
   3384             if (mOutDevice != value) {
   3385                 uint32_t params = 0;
   3386                 // check whether speaker is on
   3387                 if (value & AUDIO_DEVICE_OUT_SPEAKER) {
   3388                     params |= IMediaPlayerService::kBatteryDataSpeakerOn;
   3389                 }
   3390 
   3391                 audio_devices_t deviceWithoutSpeaker
   3392                     = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER;
   3393                 // check if any other device (except speaker) is on
   3394                 if (value & deviceWithoutSpeaker ) {
   3395                     params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
   3396                 }
   3397 
   3398                 if (params != 0) {
   3399                     addBatteryData(params);
   3400                 }
   3401             }
   3402 #endif
   3403 
   3404             // forward device change to effects that have requested to be
   3405             // aware of attached audio device.
   3406             if (value != AUDIO_DEVICE_NONE) {
   3407                 mOutDevice = value;
   3408                 for (size_t i = 0; i < mEffectChains.size(); i++) {
   3409                     mEffectChains[i]->setDevice_l(mOutDevice);
   3410                 }
   3411             }
   3412         }
   3413 
   3414         if (status == NO_ERROR) {
   3415             status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
   3416                                                     keyValuePair.string());
   3417             if (!mStandby && status == INVALID_OPERATION) {
   3418                 mOutput->stream->common.standby(&mOutput->stream->common);
   3419                 mStandby = true;
   3420                 mBytesWritten = 0;
   3421                 status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
   3422                                                        keyValuePair.string());
   3423             }
   3424             if (status == NO_ERROR && reconfig) {
   3425                 readOutputParameters();
   3426                 delete mAudioMixer;
   3427                 mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
   3428                 for (size_t i = 0; i < mTracks.size() ; i++) {
   3429                     int name = getTrackName_l(mTracks[i]->mChannelMask, mTracks[i]->mSessionId);
   3430                     if (name < 0) {
   3431                         break;
   3432                     }
   3433                     mTracks[i]->mName = name;
   3434                 }
   3435                 sendIoConfigEvent_l(AudioSystem::OUTPUT_CONFIG_CHANGED);
   3436             }
   3437         }
   3438 
   3439         mNewParameters.removeAt(0);
   3440 
   3441         mParamStatus = status;
   3442         mParamCond.signal();
   3443         // wait for condition with time out in case the thread calling ThreadBase::setParameters()
   3444         // already timed out waiting for the status and will never signal the condition.
   3445         mWaitWorkCV.waitRelative(mLock, kSetParametersTimeoutNs);
   3446     }
   3447 
   3448     if (!(previousCommand & FastMixerState::IDLE)) {
   3449         ALOG_ASSERT(mFastMixer != NULL);
   3450         FastMixerStateQueue *sq = mFastMixer->sq();
   3451         FastMixerState *state = sq->begin();
   3452         ALOG_ASSERT(state->mCommand == FastMixerState::HOT_IDLE);
   3453         state->mCommand = previousCommand;
   3454         sq->end();
   3455         sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
   3456     }
   3457 
   3458     return reconfig;
   3459 }
   3460 
   3461 
   3462 void AudioFlinger::MixerThread::dumpInternals(int fd, const Vector<String16>& args)
   3463 {
   3464     const size_t SIZE = 256;
   3465     char buffer[SIZE];
   3466     String8 result;
   3467 
   3468     PlaybackThread::dumpInternals(fd, args);
   3469 
   3470     snprintf(buffer, SIZE, "AudioMixer tracks: %08x\n", mAudioMixer->trackNames());
   3471     result.append(buffer);
   3472     write(fd, result.string(), result.size());
   3473 
   3474     // Make a non-atomic copy of fast mixer dump state so it won't change underneath us
   3475     const FastMixerDumpState copy(mFastMixerDumpState);
   3476     copy.dump(fd);
   3477 
   3478 #ifdef STATE_QUEUE_DUMP
   3479     // Similar for state queue
   3480     StateQueueObserverDump observerCopy = mStateQueueObserverDump;
   3481     observerCopy.dump(fd);
   3482     StateQueueMutatorDump mutatorCopy = mStateQueueMutatorDump;
   3483     mutatorCopy.dump(fd);
   3484 #endif
   3485 
   3486 #ifdef TEE_SINK
   3487     // Write the tee output to a .wav file
   3488     dumpTee(fd, mTeeSource, mId);
   3489 #endif
   3490 
   3491 #ifdef AUDIO_WATCHDOG
   3492     if (mAudioWatchdog != 0) {
   3493         // Make a non-atomic copy of audio watchdog dump so it won't change underneath us
   3494         AudioWatchdogDump wdCopy = mAudioWatchdogDump;
   3495         wdCopy.dump(fd);
   3496     }
   3497 #endif
   3498 }
   3499 
   3500 uint32_t AudioFlinger::MixerThread::idleSleepTimeUs() const
   3501 {
   3502     return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000) / 2;
   3503 }
   3504 
   3505 uint32_t AudioFlinger::MixerThread::suspendSleepTimeUs() const
   3506 {
   3507     return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000);
   3508 }
   3509 
   3510 void AudioFlinger::MixerThread::cacheParameters_l()
   3511 {
   3512     PlaybackThread::cacheParameters_l();
   3513 
   3514     // FIXME: Relaxed timing because of a certain device that can't meet latency
   3515     // Should be reduced to 2x after the vendor fixes the driver issue
   3516     // increase threshold again due to low power audio mode. The way this warning
   3517     // threshold is calculated and its usefulness should be reconsidered anyway.
   3518     maxPeriod = seconds(mNormalFrameCount) / mSampleRate * 15;
   3519 }
   3520 
   3521 // ----------------------------------------------------------------------------
   3522 
   3523 AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
   3524         AudioStreamOut* output, audio_io_handle_t id, audio_devices_t device)
   3525     :   PlaybackThread(audioFlinger, output, id, device, DIRECT)
   3526         // mLeftVolFloat, mRightVolFloat
   3527 {
   3528 }
   3529 
   3530 AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
   3531         AudioStreamOut* output, audio_io_handle_t id, uint32_t device,
   3532         ThreadBase::type_t type)
   3533     :   PlaybackThread(audioFlinger, output, id, device, type)
   3534         // mLeftVolFloat, mRightVolFloat
   3535 {
   3536 }
   3537 
   3538 AudioFlinger::DirectOutputThread::~DirectOutputThread()
   3539 {
   3540 }
   3541 
   3542 void AudioFlinger::DirectOutputThread::processVolume_l(Track *track, bool lastTrack)
   3543 {
   3544     audio_track_cblk_t* cblk = track->cblk();
   3545     float left, right;
   3546 
   3547     if (mMasterMute || mStreamTypes[track->streamType()].mute) {
   3548         left = right = 0;
   3549     } else {
   3550         float typeVolume = mStreamTypes[track->streamType()].volume;
   3551         float v = mMasterVolume * typeVolume;
   3552         AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy;
   3553         uint32_t vlr = proxy->getVolumeLR();
   3554         float v_clamped = v * (vlr & 0xFFFF);
   3555         if (v_clamped > MAX_GAIN) v_clamped = MAX_GAIN;
   3556         left = v_clamped/MAX_GAIN;
   3557         v_clamped = v * (vlr >> 16);
   3558         if (v_clamped > MAX_GAIN) v_clamped = MAX_GAIN;
   3559         right = v_clamped/MAX_GAIN;
   3560     }
   3561 
   3562     if (lastTrack) {
   3563         if (left != mLeftVolFloat || right != mRightVolFloat) {
   3564             mLeftVolFloat = left;
   3565             mRightVolFloat = right;
   3566 
   3567             // Convert volumes from float to 8.24
   3568             uint32_t vl = (uint32_t)(left * (1 << 24));
   3569             uint32_t vr = (uint32_t)(right * (1 << 24));
   3570 
   3571             // Delegate volume control to effect in track effect chain if needed
   3572             // only one effect chain can be present on DirectOutputThread, so if
   3573             // there is one, the track is connected to it
   3574             if (!mEffectChains.isEmpty()) {
   3575                 mEffectChains[0]->setVolume_l(&vl, &vr);
   3576                 left = (float)vl / (1 << 24);
   3577                 right = (float)vr / (1 << 24);
   3578             }
   3579             if (mOutput->stream->set_volume) {
   3580                 mOutput->stream->set_volume(mOutput->stream, left, right);
   3581             }
   3582         }
   3583     }
   3584 }
   3585 
   3586 
   3587 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::DirectOutputThread::prepareTracks_l(
   3588     Vector< sp<Track> > *tracksToRemove
   3589 )
   3590 {
   3591     size_t count = mActiveTracks.size();
   3592     mixer_state mixerStatus = MIXER_IDLE;
   3593 
   3594     // find out which tracks need to be processed
   3595     for (size_t i = 0; i < count; i++) {
   3596         sp<Track> t = mActiveTracks[i].promote();
   3597         // The track died recently
   3598         if (t == 0) {
   3599             continue;
   3600         }
   3601 
   3602         Track* const track = t.get();
   3603         audio_track_cblk_t* cblk = track->cblk();
   3604         // Only consider last track started for volume and mixer state control.
   3605         // In theory an older track could underrun and restart after the new one starts
   3606         // but as we only care about the transition phase between two tracks on a
   3607         // direct output, it is not a problem to ignore the underrun case.
   3608         sp<Track> l = mLatestActiveTrack.promote();
   3609         bool last = l.get() == track;
   3610 
   3611         // The first time a track is added we wait
   3612         // for all its buffers to be filled before processing it
   3613         uint32_t minFrames;
   3614         if ((track->sharedBuffer() == 0) && !track->isStopped() && !track->isPausing()) {
   3615             minFrames = mNormalFrameCount;
   3616         } else {
   3617             minFrames = 1;
   3618         }
   3619 
   3620         if ((track->framesReady() >= minFrames) && track->isReady() &&
   3621                 !track->isPaused() && !track->isTerminated())
   3622         {
   3623             ALOGVV("track %d s=%08x [OK]", track->name(), cblk->mServer);
   3624 
   3625             if (track->mFillingUpStatus == Track::FS_FILLED) {
   3626                 track->mFillingUpStatus = Track::FS_ACTIVE;
   3627                 // make sure processVolume_l() will apply new volume even if 0
   3628                 mLeftVolFloat = mRightVolFloat = -1.0;
   3629                 if (track->mState == TrackBase::RESUMING) {
   3630                     track->mState = TrackBase::ACTIVE;
   3631                 }
   3632             }
   3633 
   3634             // compute volume for this track
   3635             processVolume_l(track, last);
   3636             if (last) {
   3637                 // reset retry count
   3638                 track->mRetryCount = kMaxTrackRetriesDirect;
   3639                 mActiveTrack = t;
   3640                 mixerStatus = MIXER_TRACKS_READY;
   3641             }
   3642         } else {
   3643             // clear effect chain input buffer if the last active track started underruns
   3644             // to avoid sending previous audio buffer again to effects
   3645             if (!mEffectChains.isEmpty() && last) {
   3646                 mEffectChains[0]->clearInputBuffer();
   3647             }
   3648 
   3649             ALOGVV("track %d s=%08x [NOT READY]", track->name(), cblk->mServer);
   3650             if ((track->sharedBuffer() != 0) || track->isTerminated() ||
   3651                     track->isStopped() || track->isPaused()) {
   3652                 // We have consumed all the buffers of this track.
   3653                 // Remove it from the list of active tracks.
   3654                 // TODO: implement behavior for compressed audio
   3655                 size_t audioHALFrames = (latency_l() * mSampleRate) / 1000;
   3656                 size_t framesWritten = mBytesWritten / mFrameSize;
   3657                 if (mStandby || !last ||
   3658                         track->presentationComplete(framesWritten, audioHALFrames)) {
   3659                     if (track->isStopped()) {
   3660                         track->reset();
   3661                     }
   3662                     tracksToRemove->add(track);
   3663                 }
   3664             } else {
   3665                 // No buffers for this track. Give it a few chances to
   3666                 // fill a buffer, then remove it from active list.
   3667                 // Only consider last track started for mixer state control
   3668                 if (--(track->mRetryCount) <= 0) {
   3669                     ALOGV("BUFFER TIMEOUT: remove(%d) from active list", track->name());
   3670                     tracksToRemove->add(track);
   3671                     // indicate to client process that the track was disabled because of underrun;
   3672                     // it will then automatically call start() when data is available
   3673                     android_atomic_or(CBLK_DISABLED, &cblk->mFlags);
   3674                 } else if (last) {
   3675                     mixerStatus = MIXER_TRACKS_ENABLED;
   3676                 }
   3677             }
   3678         }
   3679     }
   3680 
   3681     // remove all the tracks that need to be...
   3682     removeTracks_l(*tracksToRemove);
   3683 
   3684     return mixerStatus;
   3685 }
   3686 
   3687 void AudioFlinger::DirectOutputThread::threadLoop_mix()
   3688 {
   3689     size_t frameCount = mFrameCount;
   3690     int8_t *curBuf = (int8_t *)mMixBuffer;
   3691     // output audio to hardware
   3692     while (frameCount) {
   3693         AudioBufferProvider::Buffer buffer;
   3694         buffer.frameCount = frameCount;
   3695         mActiveTrack->getNextBuffer(&buffer);
   3696         if (buffer.raw == NULL) {
   3697             memset(curBuf, 0, frameCount * mFrameSize);
   3698             break;
   3699         }
   3700         memcpy(curBuf, buffer.raw, buffer.frameCount * mFrameSize);
   3701         frameCount -= buffer.frameCount;
   3702         curBuf += buffer.frameCount * mFrameSize;
   3703         mActiveTrack->releaseBuffer(&buffer);
   3704     }
   3705     mCurrentWriteLength = curBuf - (int8_t *)mMixBuffer;
   3706     sleepTime = 0;
   3707     standbyTime = systemTime() + standbyDelay;
   3708     mActiveTrack.clear();
   3709 }
   3710 
   3711 void AudioFlinger::DirectOutputThread::threadLoop_sleepTime()
   3712 {
   3713     if (sleepTime == 0) {
   3714         if (mMixerStatus == MIXER_TRACKS_ENABLED) {
   3715             sleepTime = activeSleepTime;
   3716         } else {
   3717             sleepTime = idleSleepTime;
   3718         }
   3719     } else if (mBytesWritten != 0 && audio_is_linear_pcm(mFormat)) {
   3720         memset(mMixBuffer, 0, mFrameCount * mFrameSize);
   3721         sleepTime = 0;
   3722     }
   3723 }
   3724 
   3725 // getTrackName_l() must be called with ThreadBase::mLock held
   3726 int AudioFlinger::DirectOutputThread::getTrackName_l(audio_channel_mask_t channelMask,
   3727         int sessionId)
   3728 {
   3729     return 0;
   3730 }
   3731 
   3732 // deleteTrackName_l() must be called with ThreadBase::mLock held
   3733 void AudioFlinger::DirectOutputThread::deleteTrackName_l(int name)
   3734 {
   3735 }
   3736 
   3737 // checkForNewParameters_l() must be called with ThreadBase::mLock held
   3738 bool AudioFlinger::DirectOutputThread::checkForNewParameters_l()
   3739 {
   3740     bool reconfig = false;
   3741 
   3742     while (!mNewParameters.isEmpty()) {
   3743         status_t status = NO_ERROR;
   3744         String8 keyValuePair = mNewParameters[0];
   3745         AudioParameter param = AudioParameter(keyValuePair);
   3746         int value;
   3747 
   3748         if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
   3749             // do not accept frame count changes if tracks are open as the track buffer
   3750             // size depends on frame count and correct behavior would not be garantied
   3751             // if frame count is changed after track creation
   3752             if (!mTracks.isEmpty()) {
   3753                 status = INVALID_OPERATION;
   3754             } else {
   3755                 reconfig = true;
   3756             }
   3757         }
   3758         if (status == NO_ERROR) {
   3759             status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
   3760                                                     keyValuePair.string());
   3761             if (!mStandby && status == INVALID_OPERATION) {
   3762                 mOutput->stream->common.standby(&mOutput->stream->common);
   3763                 mStandby = true;
   3764                 mBytesWritten = 0;
   3765                 status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
   3766                                                        keyValuePair.string());
   3767             }
   3768             if (status == NO_ERROR && reconfig) {
   3769                 readOutputParameters();
   3770                 sendIoConfigEvent_l(AudioSystem::OUTPUT_CONFIG_CHANGED);
   3771             }
   3772         }
   3773 
   3774         mNewParameters.removeAt(0);
   3775 
   3776         mParamStatus = status;
   3777         mParamCond.signal();
   3778         // wait for condition with time out in case the thread calling ThreadBase::setParameters()
   3779         // already timed out waiting for the status and will never signal the condition.
   3780         mWaitWorkCV.waitRelative(mLock, kSetParametersTimeoutNs);
   3781     }
   3782     return reconfig;
   3783 }
   3784 
   3785 uint32_t AudioFlinger::DirectOutputThread::activeSleepTimeUs() const
   3786 {
   3787     uint32_t time;
   3788     if (audio_is_linear_pcm(mFormat)) {
   3789         time = PlaybackThread::activeSleepTimeUs();
   3790     } else {
   3791         time = 10000;
   3792     }
   3793     return time;
   3794 }
   3795 
   3796 uint32_t AudioFlinger::DirectOutputThread::idleSleepTimeUs() const
   3797 {
   3798     uint32_t time;
   3799     if (audio_is_linear_pcm(mFormat)) {
   3800         time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000) / 2;
   3801     } else {
   3802         time = 10000;
   3803     }
   3804     return time;
   3805 }
   3806 
   3807 uint32_t AudioFlinger::DirectOutputThread::suspendSleepTimeUs() const
   3808 {
   3809     uint32_t time;
   3810     if (audio_is_linear_pcm(mFormat)) {
   3811         time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000);
   3812     } else {
   3813         time = 10000;
   3814     }
   3815     return time;
   3816 }
   3817 
   3818 void AudioFlinger::DirectOutputThread::cacheParameters_l()
   3819 {
   3820     PlaybackThread::cacheParameters_l();
   3821 
   3822     // use shorter standby delay as on normal output to release
   3823     // hardware resources as soon as possible
   3824     if (audio_is_linear_pcm(mFormat)) {
   3825         standbyDelay = microseconds(activeSleepTime*2);
   3826     } else {
   3827         standbyDelay = kOffloadStandbyDelayNs;
   3828     }
   3829 }
   3830 
   3831 // ----------------------------------------------------------------------------
   3832 
   3833 AudioFlinger::AsyncCallbackThread::AsyncCallbackThread(
   3834         const wp<AudioFlinger::PlaybackThread>& playbackThread)
   3835     :   Thread(false /*canCallJava*/),
   3836         mPlaybackThread(playbackThread),
   3837         mWriteAckSequence(0),
   3838         mDrainSequence(0)
   3839 {
   3840 }
   3841 
   3842 AudioFlinger::AsyncCallbackThread::~AsyncCallbackThread()
   3843 {
   3844 }
   3845 
   3846 void AudioFlinger::AsyncCallbackThread::onFirstRef()
   3847 {
   3848     run("Offload Cbk", ANDROID_PRIORITY_URGENT_AUDIO);
   3849 }
   3850 
   3851 bool AudioFlinger::AsyncCallbackThread::threadLoop()
   3852 {
   3853     while (!exitPending()) {
   3854         uint32_t writeAckSequence;
   3855         uint32_t drainSequence;
   3856 
   3857         {
   3858             Mutex::Autolock _l(mLock);
   3859             while (!((mWriteAckSequence & 1) ||
   3860                      (mDrainSequence & 1) ||
   3861                      exitPending())) {
   3862                 mWaitWorkCV.wait(mLock);
   3863             }
   3864 
   3865             if (exitPending()) {
   3866                 break;
   3867             }
   3868             ALOGV("AsyncCallbackThread mWriteAckSequence %d mDrainSequence %d",
   3869                   mWriteAckSequence, mDrainSequence);
   3870             writeAckSequence = mWriteAckSequence;
   3871             mWriteAckSequence &= ~1;
   3872             drainSequence = mDrainSequence;
   3873             mDrainSequence &= ~1;
   3874         }
   3875         {
   3876             sp<AudioFlinger::PlaybackThread> playbackThread = mPlaybackThread.promote();
   3877             if (playbackThread != 0) {
   3878                 if (writeAckSequence & 1) {
   3879                     playbackThread->resetWriteBlocked(writeAckSequence >> 1);
   3880                 }
   3881                 if (drainSequence & 1) {
   3882                     playbackThread->resetDraining(drainSequence >> 1);
   3883                 }
   3884             }
   3885         }
   3886     }
   3887     return false;
   3888 }
   3889 
   3890 void AudioFlinger::AsyncCallbackThread::exit()
   3891 {
   3892     ALOGV("AsyncCallbackThread::exit");
   3893     Mutex::Autolock _l(mLock);
   3894     requestExit();
   3895     mWaitWorkCV.broadcast();
   3896 }
   3897 
   3898 void AudioFlinger::AsyncCallbackThread::setWriteBlocked(uint32_t sequence)
   3899 {
   3900     Mutex::Autolock _l(mLock);
   3901     // bit 0 is cleared
   3902     mWriteAckSequence = sequence << 1;
   3903 }
   3904 
   3905 void AudioFlinger::AsyncCallbackThread::resetWriteBlocked()
   3906 {
   3907     Mutex::Autolock _l(mLock);
   3908     // ignore unexpected callbacks
   3909     if (mWriteAckSequence & 2) {
   3910         mWriteAckSequence |= 1;
   3911         mWaitWorkCV.signal();
   3912     }
   3913 }
   3914 
   3915 void AudioFlinger::AsyncCallbackThread::setDraining(uint32_t sequence)
   3916 {
   3917     Mutex::Autolock _l(mLock);
   3918     // bit 0 is cleared
   3919     mDrainSequence = sequence << 1;
   3920 }
   3921 
   3922 void AudioFlinger::AsyncCallbackThread::resetDraining()
   3923 {
   3924     Mutex::Autolock _l(mLock);
   3925     // ignore unexpected callbacks
   3926     if (mDrainSequence & 2) {
   3927         mDrainSequence |= 1;
   3928         mWaitWorkCV.signal();
   3929     }
   3930 }
   3931 
   3932 
   3933 // ----------------------------------------------------------------------------
   3934 AudioFlinger::OffloadThread::OffloadThread(const sp<AudioFlinger>& audioFlinger,
   3935         AudioStreamOut* output, audio_io_handle_t id, uint32_t device)
   3936     :   DirectOutputThread(audioFlinger, output, id, device, OFFLOAD),
   3937         mHwPaused(false),
   3938         mFlushPending(false),
   3939         mPausedBytesRemaining(0)
   3940 {
   3941     //FIXME: mStandby should be set to true by ThreadBase constructor
   3942     mStandby = true;
   3943 }
   3944 
   3945 void AudioFlinger::OffloadThread::threadLoop_exit()
   3946 {
   3947     if (mFlushPending || mHwPaused) {
   3948         // If a flush is pending or track was paused, just discard buffered data
   3949         flushHw_l();
   3950     } else {
   3951         mMixerStatus = MIXER_DRAIN_ALL;
   3952         threadLoop_drain();
   3953     }
   3954     mCallbackThread->exit();
   3955     PlaybackThread::threadLoop_exit();
   3956 }
   3957 
   3958 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::OffloadThread::prepareTracks_l(
   3959     Vector< sp<Track> > *tracksToRemove
   3960 )
   3961 {
   3962     size_t count = mActiveTracks.size();
   3963 
   3964     mixer_state mixerStatus = MIXER_IDLE;
   3965     bool doHwPause = false;
   3966     bool doHwResume = false;
   3967 
   3968     ALOGV("OffloadThread::prepareTracks_l active tracks %d", count);
   3969 
   3970     // find out which tracks need to be processed
   3971     for (size_t i = 0; i < count; i++) {
   3972         sp<Track> t = mActiveTracks[i].promote();
   3973         // The track died recently
   3974         if (t == 0) {
   3975             continue;
   3976         }
   3977         Track* const track = t.get();
   3978         audio_track_cblk_t* cblk = track->cblk();
   3979         // Only consider last track started for volume and mixer state control.
   3980         // In theory an older track could underrun and restart after the new one starts
   3981         // but as we only care about the transition phase between two tracks on a
   3982         // direct output, it is not a problem to ignore the underrun case.
   3983         sp<Track> l = mLatestActiveTrack.promote();
   3984         bool last = l.get() == track;
   3985 
   3986         if (track->isPausing()) {
   3987             track->setPaused();
   3988             if (last) {
   3989                 if (!mHwPaused) {
   3990                     doHwPause = true;
   3991                     mHwPaused = true;
   3992                 }
   3993                 // If we were part way through writing the mixbuffer to
   3994                 // the HAL we must save this until we resume
   3995                 // BUG - this will be wrong if a different track is made active,
   3996                 // in that case we want to discard the pending data in the
   3997                 // mixbuffer and tell the client to present it again when the
   3998                 // track is resumed
   3999                 mPausedWriteLength = mCurrentWriteLength;
   4000                 mPausedBytesRemaining = mBytesRemaining;
   4001                 mBytesRemaining = 0;    // stop writing
   4002             }
   4003             tracksToRemove->add(track);
   4004         } else if (track->framesReady() && track->isReady() &&
   4005                 !track->isPaused() && !track->isTerminated() && !track->isStopping_2()) {
   4006             ALOGVV("OffloadThread: track %d s=%08x [OK]", track->name(), cblk->mServer);
   4007             if (track->mFillingUpStatus == Track::FS_FILLED) {
   4008                 track->mFillingUpStatus = Track::FS_ACTIVE;
   4009                 // make sure processVolume_l() will apply new volume even if 0
   4010                 mLeftVolFloat = mRightVolFloat = -1.0;
   4011                 if (track->mState == TrackBase::RESUMING) {
   4012                     track->mState = TrackBase::ACTIVE;
   4013                     if (last) {
   4014                         if (mPausedBytesRemaining) {
   4015                             // Need to continue write that was interrupted
   4016                             mCurrentWriteLength = mPausedWriteLength;
   4017                             mBytesRemaining = mPausedBytesRemaining;
   4018                             mPausedBytesRemaining = 0;
   4019                         }
   4020                         if (mHwPaused) {
   4021                             doHwResume = true;
   4022                             mHwPaused = false;
   4023                             // threadLoop_mix() will handle the case that we need to
   4024                             // resume an interrupted write
   4025                         }
   4026                         // enable write to audio HAL
   4027                         sleepTime = 0;
   4028                     }
   4029                 }
   4030             }
   4031 
   4032             if (last) {
   4033                 sp<Track> previousTrack = mPreviousTrack.promote();
   4034                 if (previousTrack != 0) {
   4035                     if (track != previousTrack.get()) {
   4036                         // Flush any data still being written from last track
   4037                         mBytesRemaining = 0;
   4038                         if (mPausedBytesRemaining) {
   4039                             // Last track was paused so we also need to flush saved
   4040                             // mixbuffer state and invalidate track so that it will
   4041                             // re-submit that unwritten data when it is next resumed
   4042                             mPausedBytesRemaining = 0;
   4043                             // Invalidate is a bit drastic - would be more efficient
   4044                             // to have a flag to tell client that some of the
   4045                             // previously written data was lost
   4046                             previousTrack->invalidate();
   4047                         }
   4048                         // flush data already sent to the DSP if changing audio session as audio
   4049                         // comes from a different source. Also invalidate previous track to force a
   4050                         // seek when resuming.
   4051                         if (previousTrack->sessionId() != track->sessionId()) {
   4052                             previousTrack->invalidate();
   4053                             mFlushPending = true;
   4054                         }
   4055                     }
   4056                 }
   4057                 mPreviousTrack = track;
   4058                 // reset retry count
   4059                 track->mRetryCount = kMaxTrackRetriesOffload;
   4060                 mActiveTrack = t;
   4061                 mixerStatus = MIXER_TRACKS_READY;
   4062             }
   4063         } else {
   4064             ALOGVV("OffloadThread: track %d s=%08x [NOT READY]", track->name(), cblk->mServer);
   4065             if (track->isStopping_1()) {
   4066                 // Hardware buffer can hold a large amount of audio so we must
   4067                 // wait for all current track's data to drain before we say
   4068                 // that the track is stopped.
   4069                 if (mBytesRemaining == 0) {
   4070                     // Only start draining when all data in mixbuffer
   4071                     // has been written
   4072                     ALOGV("OffloadThread: underrun and STOPPING_1 -> draining, STOPPING_2");
   4073                     track->mState = TrackBase::STOPPING_2; // so presentation completes after drain
   4074                     // do not drain if no data was ever sent to HAL (mStandby == true)
   4075                     if (last && !mStandby) {
   4076                         // do not modify drain sequence if we are already draining. This happens
   4077                         // when resuming from pause after drain.
   4078                         if ((mDrainSequence & 1) == 0) {
   4079                             sleepTime = 0;
   4080                             standbyTime = systemTime() + standbyDelay;
   4081                             mixerStatus = MIXER_DRAIN_TRACK;
   4082                             mDrainSequence += 2;
   4083                         }
   4084                         if (mHwPaused) {
   4085                             // It is possible to move from PAUSED to STOPPING_1 without
   4086                             // a resume so we must ensure hardware is running
   4087                             doHwResume = true;
   4088                             mHwPaused = false;
   4089                         }
   4090                     }
   4091                 }
   4092             } else if (track->isStopping_2()) {
   4093                 // Drain has completed or we are in standby, signal presentation complete
   4094                 if (!(mDrainSequence & 1) || !last || mStandby) {
   4095                     track->mState = TrackBase::STOPPED;
   4096                     size_t audioHALFrames =
   4097                             (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000;
   4098                     size_t framesWritten =
   4099                             mBytesWritten / audio_stream_frame_size(&mOutput->stream->common);
   4100                     track->presentationComplete(framesWritten, audioHALFrames);
   4101                     track->reset();
   4102                     tracksToRemove->add(track);
   4103                 }
   4104             } else {
   4105                 // No buffers for this track. Give it a few chances to
   4106                 // fill a buffer, then remove it from active list.
   4107                 if (--(track->mRetryCount) <= 0) {
   4108                     ALOGV("OffloadThread: BUFFER TIMEOUT: remove(%d) from active list",
   4109                           track->name());
   4110                     tracksToRemove->add(track);
   4111                     // indicate to client process that the track was disabled because of underrun;
   4112                     // it will then automatically call start() when data is available
   4113                     android_atomic_or(CBLK_DISABLED, &cblk->mFlags);
   4114                 } else if (last){
   4115                     mixerStatus = MIXER_TRACKS_ENABLED;
   4116                 }
   4117             }
   4118         }
   4119         // compute volume for this track
   4120         processVolume_l(track, last);
   4121     }
   4122 
   4123     // make sure the pause/flush/resume sequence is executed in the right order.
   4124     // If a flush is pending and a track is active but the HW is not paused, force a HW pause
   4125     // before flush and then resume HW. This can happen in case of pause/flush/resume
   4126     // if resume is received before pause is executed.
   4127     if (!mStandby && (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
   4128         mOutput->stream->pause(mOutput->stream);
   4129         if (!doHwPause) {
   4130             doHwResume = true;
   4131         }
   4132     }
   4133     if (mFlushPending) {
   4134         flushHw_l();
   4135         mFlushPending = false;
   4136     }
   4137     if (!mStandby && doHwResume) {
   4138         mOutput->stream->resume(mOutput->stream);
   4139     }
   4140 
   4141     // remove all the tracks that need to be...
   4142     removeTracks_l(*tracksToRemove);
   4143 
   4144     return mixerStatus;
   4145 }
   4146 
   4147 void AudioFlinger::OffloadThread::flushOutput_l()
   4148 {
   4149     mFlushPending = true;
   4150 }
   4151 
   4152 // must be called with thread mutex locked
   4153 bool AudioFlinger::OffloadThread::waitingAsyncCallback_l()
   4154 {
   4155     ALOGVV("waitingAsyncCallback_l mWriteAckSequence %d mDrainSequence %d",
   4156           mWriteAckSequence, mDrainSequence);
   4157     if (mUseAsyncWrite && ((mWriteAckSequence & 1) || (mDrainSequence & 1))) {
   4158         return true;
   4159     }
   4160     return false;
   4161 }
   4162 
   4163 // must be called with thread mutex locked
   4164 bool AudioFlinger::OffloadThread::shouldStandby_l()
   4165 {
   4166     bool TrackPaused = false;
   4167 
   4168     // do not put the HAL in standby when paused. AwesomePlayer clear the offloaded AudioTrack
   4169     // after a timeout and we will enter standby then.
   4170     if (mTracks.size() > 0) {
   4171         TrackPaused = mTracks[mTracks.size() - 1]->isPaused();
   4172     }
   4173 
   4174     return !mStandby && !TrackPaused;
   4175 }
   4176 
   4177 
   4178 bool AudioFlinger::OffloadThread::waitingAsyncCallback()
   4179 {
   4180     Mutex::Autolock _l(mLock);
   4181     return waitingAsyncCallback_l();
   4182 }
   4183 
   4184 void AudioFlinger::OffloadThread::flushHw_l()
   4185 {
   4186     mOutput->stream->flush(mOutput->stream);
   4187     // Flush anything still waiting in the mixbuffer
   4188     mCurrentWriteLength = 0;
   4189     mBytesRemaining = 0;
   4190     mPausedWriteLength = 0;
   4191     mPausedBytesRemaining = 0;
   4192     if (mUseAsyncWrite) {
   4193         // discard any pending drain or write ack by incrementing sequence
   4194         mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
   4195         mDrainSequence = (mDrainSequence + 2) & ~1;
   4196         ALOG_ASSERT(mCallbackThread != 0);
   4197         mCallbackThread->setWriteBlocked(mWriteAckSequence);
   4198         mCallbackThread->setDraining(mDrainSequence);
   4199     }
   4200 }
   4201 
   4202 // ----------------------------------------------------------------------------
   4203 
   4204 AudioFlinger::DuplicatingThread::DuplicatingThread(const sp<AudioFlinger>& audioFlinger,
   4205         AudioFlinger::MixerThread* mainThread, audio_io_handle_t id)
   4206     :   MixerThread(audioFlinger, mainThread->getOutput(), id, mainThread->outDevice(),
   4207                 DUPLICATING),
   4208         mWaitTimeMs(UINT_MAX)
   4209 {
   4210     addOutputTrack(mainThread);
   4211 }
   4212 
   4213 AudioFlinger::DuplicatingThread::~DuplicatingThread()
   4214 {
   4215     for (size_t i = 0; i < mOutputTracks.size(); i++) {
   4216         mOutputTracks[i]->destroy();
   4217     }
   4218 }
   4219 
   4220 void AudioFlinger::DuplicatingThread::threadLoop_mix()
   4221 {
   4222     // mix buffers...
   4223     if (outputsReady(outputTracks)) {
   4224         mAudioMixer->process(AudioBufferProvider::kInvalidPTS);
   4225     } else {
   4226         memset(mMixBuffer, 0, mixBufferSize);
   4227     }
   4228     sleepTime = 0;
   4229     writeFrames = mNormalFrameCount;
   4230     mCurrentWriteLength = mixBufferSize;
   4231     standbyTime = systemTime() + standbyDelay;
   4232 }
   4233 
   4234 void AudioFlinger::DuplicatingThread::threadLoop_sleepTime()
   4235 {
   4236     if (sleepTime == 0) {
   4237         if (mMixerStatus == MIXER_TRACKS_ENABLED) {
   4238             sleepTime = activeSleepTime;
   4239         } else {
   4240             sleepTime = idleSleepTime;
   4241         }
   4242     } else if (mBytesWritten != 0) {
   4243         if (mMixerStatus == MIXER_TRACKS_ENABLED) {
   4244             writeFrames = mNormalFrameCount;
   4245             memset(mMixBuffer, 0, mixBufferSize);
   4246         } else {
   4247             // flush remaining overflow buffers in output tracks
   4248             writeFrames = 0;
   4249         }
   4250         sleepTime = 0;
   4251     }
   4252 }
   4253 
   4254 ssize_t AudioFlinger::DuplicatingThread::threadLoop_write()
   4255 {
   4256     for (size_t i = 0; i < outputTracks.size(); i++) {
   4257         outputTracks[i]->write(mMixBuffer, writeFrames);
   4258     }
   4259     mStandby = false;
   4260     return (ssize_t)mixBufferSize;
   4261 }
   4262 
   4263 void AudioFlinger::DuplicatingThread::threadLoop_standby()
   4264 {
   4265     // DuplicatingThread implements standby by stopping all tracks
   4266     for (size_t i = 0; i < outputTracks.size(); i++) {
   4267         outputTracks[i]->stop();
   4268     }
   4269 }
   4270 
   4271 void AudioFlinger::DuplicatingThread::saveOutputTracks()
   4272 {
   4273     outputTracks = mOutputTracks;
   4274 }
   4275 
   4276 void AudioFlinger::DuplicatingThread::clearOutputTracks()
   4277 {
   4278     outputTracks.clear();
   4279 }
   4280 
   4281 void AudioFlinger::DuplicatingThread::addOutputTrack(MixerThread *thread)
   4282 {
   4283     Mutex::Autolock _l(mLock);
   4284     // FIXME explain this formula
   4285     size_t frameCount = (3 * mNormalFrameCount * mSampleRate) / thread->sampleRate();
   4286     OutputTrack *outputTrack = new OutputTrack(thread,
   4287                                             this,
   4288                                             mSampleRate,
   4289                                             mFormat,
   4290                                             mChannelMask,
   4291                                             frameCount,
   4292                                             IPCThreadState::self()->getCallingUid());
   4293     if (outputTrack->cblk() != NULL) {
   4294         thread->setStreamVolume(AUDIO_STREAM_CNT, 1.0f);
   4295         mOutputTracks.add(outputTrack);
   4296         ALOGV("addOutputTrack() track %p, on thread %p", outputTrack, thread);
   4297         updateWaitTime_l();
   4298     }
   4299 }
   4300 
   4301 void AudioFlinger::DuplicatingThread::removeOutputTrack(MixerThread *thread)
   4302 {
   4303     Mutex::Autolock _l(mLock);
   4304     for (size_t i = 0; i < mOutputTracks.size(); i++) {
   4305         if (mOutputTracks[i]->thread() == thread) {
   4306             mOutputTracks[i]->destroy();
   4307             mOutputTracks.removeAt(i);
   4308             updateWaitTime_l();
   4309             return;
   4310         }
   4311     }
   4312     ALOGV("removeOutputTrack(): unkonwn thread: %p", thread);
   4313 }
   4314 
   4315 // caller must hold mLock
   4316 void AudioFlinger::DuplicatingThread::updateWaitTime_l()
   4317 {
   4318     mWaitTimeMs = UINT_MAX;
   4319     for (size_t i = 0; i < mOutputTracks.size(); i++) {
   4320         sp<ThreadBase> strong = mOutputTracks[i]->thread().promote();
   4321         if (strong != 0) {
   4322             uint32_t waitTimeMs = (strong->frameCount() * 2 * 1000) / strong->sampleRate();
   4323             if (waitTimeMs < mWaitTimeMs) {
   4324                 mWaitTimeMs = waitTimeMs;
   4325             }
   4326         }
   4327     }
   4328 }
   4329 
   4330 
   4331 bool AudioFlinger::DuplicatingThread::outputsReady(
   4332         const SortedVector< sp<OutputTrack> > &outputTracks)
   4333 {
   4334     for (size_t i = 0; i < outputTracks.size(); i++) {
   4335         sp<ThreadBase> thread = outputTracks[i]->thread().promote();
   4336         if (thread == 0) {
   4337             ALOGW("DuplicatingThread::outputsReady() could not promote thread on output track %p",
   4338                     outputTracks[i].get());
   4339             return false;
   4340         }
   4341         PlaybackThread *playbackThread = (PlaybackThread *)thread.get();
   4342         // see note at standby() declaration
   4343         if (playbackThread->standby() && !playbackThread->isSuspended()) {
   4344             ALOGV("DuplicatingThread output track %p on thread %p Not Ready", outputTracks[i].get(),
   4345                     thread.get());
   4346             return false;
   4347         }
   4348     }
   4349     return true;
   4350 }
   4351 
   4352 uint32_t AudioFlinger::DuplicatingThread::activeSleepTimeUs() const
   4353 {
   4354     return (mWaitTimeMs * 1000) / 2;
   4355 }
   4356 
   4357 void AudioFlinger::DuplicatingThread::cacheParameters_l()
   4358 {
   4359     // updateWaitTime_l() sets mWaitTimeMs, which affects activeSleepTimeUs(), so call it first
   4360     updateWaitTime_l();
   4361 
   4362     MixerThread::cacheParameters_l();
   4363 }
   4364 
   4365 // ----------------------------------------------------------------------------
   4366 //      Record
   4367 // ----------------------------------------------------------------------------
   4368 
   4369 AudioFlinger::RecordThread::RecordThread(const sp<AudioFlinger>& audioFlinger,
   4370                                          AudioStreamIn *input,
   4371                                          uint32_t sampleRate,
   4372                                          audio_channel_mask_t channelMask,
   4373                                          audio_io_handle_t id,
   4374                                          audio_devices_t outDevice,
   4375                                          audio_devices_t inDevice
   4376 #ifdef TEE_SINK
   4377                                          , const sp<NBAIO_Sink>& teeSink
   4378 #endif
   4379                                          ) :
   4380     ThreadBase(audioFlinger, id, outDevice, inDevice, RECORD),
   4381     mInput(input), mResampler(NULL), mRsmpOutBuffer(NULL), mRsmpInBuffer(NULL),
   4382     // mRsmpInIndex and mBufferSize set by readInputParameters()
   4383     mReqChannelCount(popcount(channelMask)),
   4384     mReqSampleRate(sampleRate)
   4385     // mBytesRead is only meaningful while active, and so is cleared in start()
   4386     // (but might be better to also clear here for dump?)
   4387 #ifdef TEE_SINK
   4388     , mTeeSink(teeSink)
   4389 #endif
   4390 {
   4391     snprintf(mName, kNameLength, "AudioIn_%X", id);
   4392 
   4393     readInputParameters();
   4394 }
   4395 
   4396 
   4397 AudioFlinger::RecordThread::~RecordThread()
   4398 {
   4399     delete[] mRsmpInBuffer;
   4400     delete mResampler;
   4401     delete[] mRsmpOutBuffer;
   4402 }
   4403 
   4404 void AudioFlinger::RecordThread::onFirstRef()
   4405 {
   4406     run(mName, PRIORITY_URGENT_AUDIO);
   4407 }
   4408 
   4409 status_t AudioFlinger::RecordThread::readyToRun()
   4410 {
   4411     status_t status = initCheck();
   4412     ALOGW_IF(status != NO_ERROR,"RecordThread %p could not initialize", this);
   4413     return status;
   4414 }
   4415 
   4416 bool AudioFlinger::RecordThread::threadLoop()
   4417 {
   4418     AudioBufferProvider::Buffer buffer;
   4419     sp<RecordTrack> activeTrack;
   4420     Vector< sp<EffectChain> > effectChains;
   4421 
   4422     nsecs_t lastWarning = 0;
   4423 
   4424     inputStandBy();
   4425     {
   4426         Mutex::Autolock _l(mLock);
   4427         activeTrack = mActiveTrack;
   4428         acquireWakeLock_l(activeTrack != 0 ? activeTrack->uid() : -1);
   4429     }
   4430 
   4431     // used to verify we've read at least once before evaluating how many bytes were read
   4432     bool readOnce = false;
   4433 
   4434     // start recording
   4435     while (!exitPending()) {
   4436 
   4437         processConfigEvents();
   4438 
   4439         { // scope for mLock
   4440             Mutex::Autolock _l(mLock);
   4441             checkForNewParameters_l();
   4442             if (mActiveTrack != 0 && activeTrack != mActiveTrack) {
   4443                 SortedVector<int> tmp;
   4444                 tmp.add(mActiveTrack->uid());
   4445                 updateWakeLockUids_l(tmp);
   4446             }
   4447             activeTrack = mActiveTrack;
   4448             if (mActiveTrack == 0 && mConfigEvents.isEmpty()) {
   4449                 standby();
   4450 
   4451                 if (exitPending()) {
   4452                     break;
   4453                 }
   4454 
   4455                 releaseWakeLock_l();
   4456                 ALOGV("RecordThread: loop stopping");
   4457                 // go to sleep
   4458                 mWaitWorkCV.wait(mLock);
   4459                 ALOGV("RecordThread: loop starting");
   4460                 acquireWakeLock_l(mActiveTrack != 0 ? mActiveTrack->uid() : -1);
   4461                 continue;
   4462             }
   4463             if (mActiveTrack != 0) {
   4464                 if (mActiveTrack->isTerminated()) {
   4465                     removeTrack_l(mActiveTrack);
   4466                     mActiveTrack.clear();
   4467                 } else if (mActiveTrack->mState == TrackBase::PAUSING) {
   4468                     standby();
   4469                     mActiveTrack.clear();
   4470                     mStartStopCond.broadcast();
   4471                 } else if (mActiveTrack->mState == TrackBase::RESUMING) {
   4472                     if (mReqChannelCount != mActiveTrack->channelCount()) {
   4473                         mActiveTrack.clear();
   4474                         mStartStopCond.broadcast();
   4475                     } else if (readOnce) {
   4476                         // record start succeeds only if first read from audio input
   4477                         // succeeds
   4478                         if (mBytesRead >= 0) {
   4479                             mActiveTrack->mState = TrackBase::ACTIVE;
   4480                         } else {
   4481                             mActiveTrack.clear();
   4482                         }
   4483                         mStartStopCond.broadcast();
   4484                     }
   4485                     mStandby = false;
   4486                 }
   4487             }
   4488 
   4489             lockEffectChains_l(effectChains);
   4490         }
   4491 
   4492         if (mActiveTrack != 0) {
   4493             if (mActiveTrack->mState != TrackBase::ACTIVE &&
   4494                 mActiveTrack->mState != TrackBase::RESUMING) {
   4495                 unlockEffectChains(effectChains);
   4496                 usleep(kRecordThreadSleepUs);
   4497                 continue;
   4498             }
   4499             for (size_t i = 0; i < effectChains.size(); i ++) {
   4500                 effectChains[i]->process_l();
   4501             }
   4502 
   4503             buffer.frameCount = mFrameCount;
   4504             status_t status = mActiveTrack->getNextBuffer(&buffer);
   4505             if (status == NO_ERROR) {
   4506                 readOnce = true;
   4507                 size_t framesOut = buffer.frameCount;
   4508                 if (mResampler == NULL) {
   4509                     // no resampling
   4510                     while (framesOut) {
   4511                         size_t framesIn = mFrameCount - mRsmpInIndex;
   4512                         if (framesIn) {
   4513                             int8_t *src = (int8_t *)mRsmpInBuffer + mRsmpInIndex * mFrameSize;
   4514                             int8_t *dst = buffer.i8 + (buffer.frameCount - framesOut) *
   4515                                     mActiveTrack->mFrameSize;
   4516                             if (framesIn > framesOut)
   4517                                 framesIn = framesOut;
   4518                             mRsmpInIndex += framesIn;
   4519                             framesOut -= framesIn;
   4520                             if (mChannelCount == mReqChannelCount) {
   4521                                 memcpy(dst, src, framesIn * mFrameSize);
   4522                             } else {
   4523                                 if (mChannelCount == 1) {
   4524                                     upmix_to_stereo_i16_from_mono_i16((int16_t *)dst,
   4525                                             (int16_t *)src, framesIn);
   4526                                 } else {
   4527                                     downmix_to_mono_i16_from_stereo_i16((int16_t *)dst,
   4528                                             (int16_t *)src, framesIn);
   4529                                 }
   4530                             }
   4531                         }
   4532                         if (framesOut && mFrameCount == mRsmpInIndex) {
   4533                             void *readInto;
   4534                             if (framesOut == mFrameCount && mChannelCount == mReqChannelCount) {
   4535                                 readInto = buffer.raw;
   4536                                 framesOut = 0;
   4537                             } else {
   4538                                 readInto = mRsmpInBuffer;
   4539                                 mRsmpInIndex = 0;
   4540                             }
   4541                             mBytesRead = mInput->stream->read(mInput->stream, readInto,
   4542                                     mBufferSize);
   4543                             if (mBytesRead <= 0) {
   4544                                 if ((mBytesRead < 0) && (mActiveTrack->mState == TrackBase::ACTIVE))
   4545                                 {
   4546                                     ALOGE("Error reading audio input");
   4547                                     // Force input into standby so that it tries to
   4548                                     // recover at next read attempt
   4549                                     inputStandBy();
   4550                                     usleep(kRecordThreadSleepUs);
   4551                                 }
   4552                                 mRsmpInIndex = mFrameCount;
   4553                                 framesOut = 0;
   4554                                 buffer.frameCount = 0;
   4555                             }
   4556 #ifdef TEE_SINK
   4557                             else if (mTeeSink != 0) {
   4558                                 (void) mTeeSink->write(readInto,
   4559                                         mBytesRead >> Format_frameBitShift(mTeeSink->format()));
   4560                             }
   4561 #endif
   4562                         }
   4563                     }
   4564                 } else {
   4565                     // resampling
   4566 
   4567                     // resampler accumulates, but we only have one source track
   4568                     memset(mRsmpOutBuffer, 0, framesOut * FCC_2 * sizeof(int32_t));
   4569                     // alter output frame count as if we were expecting stereo samples
   4570                     if (mChannelCount == 1 && mReqChannelCount == 1) {
   4571                         framesOut >>= 1;
   4572                     }
   4573                     mResampler->resample(mRsmpOutBuffer, framesOut,
   4574                             this /* AudioBufferProvider* */);
   4575                     // ditherAndClamp() works as long as all buffers returned by
   4576                     // mActiveTrack->getNextBuffer() are 32 bit aligned which should be always true.
   4577                     if (mChannelCount == 2 && mReqChannelCount == 1) {
   4578                         // temporarily type pun mRsmpOutBuffer from Q19.12 to int16_t
   4579                         ditherAndClamp(mRsmpOutBuffer, mRsmpOutBuffer, framesOut);
   4580                         // the resampler always outputs stereo samples:
   4581                         // do post stereo to mono conversion
   4582                         downmix_to_mono_i16_from_stereo_i16(buffer.i16, (int16_t *)mRsmpOutBuffer,
   4583                                 framesOut);
   4584                     } else {
   4585                         ditherAndClamp((int32_t *)buffer.raw, mRsmpOutBuffer, framesOut);
   4586                     }
   4587                     // now done with mRsmpOutBuffer
   4588 
   4589                 }
   4590                 if (mFramestoDrop == 0) {
   4591                     mActiveTrack->releaseBuffer(&buffer);
   4592                 } else {
   4593                     if (mFramestoDrop > 0) {
   4594                         mFramestoDrop -= buffer.frameCount;
   4595                         if (mFramestoDrop <= 0) {
   4596                             clearSyncStartEvent();
   4597                         }
   4598                     } else {
   4599                         mFramestoDrop += buffer.frameCount;
   4600                         if (mFramestoDrop >= 0 || mSyncStartEvent == 0 ||
   4601                                 mSyncStartEvent->isCancelled()) {
   4602                             ALOGW("Synced record %s, session %d, trigger session %d",
   4603                                   (mFramestoDrop >= 0) ? "timed out" : "cancelled",
   4604                                   mActiveTrack->sessionId(),
   4605                                   (mSyncStartEvent != 0) ? mSyncStartEvent->triggerSession() : 0);
   4606                             clearSyncStartEvent();
   4607                         }
   4608                     }
   4609                 }
   4610                 mActiveTrack->clearOverflow();
   4611             }
   4612             // client isn't retrieving buffers fast enough
   4613             else {
   4614                 if (!mActiveTrack->setOverflow()) {
   4615                     nsecs_t now = systemTime();
   4616                     if ((now - lastWarning) > kWarningThrottleNs) {
   4617                         ALOGW("RecordThread: buffer overflow");
   4618                         lastWarning = now;
   4619                     }
   4620                 }
   4621                 // Release the processor for a while before asking for a new buffer.
   4622                 // This will give the application more chance to read from the buffer and
   4623                 // clear the overflow.
   4624                 usleep(kRecordThreadSleepUs);
   4625             }
   4626         }
   4627         // enable changes in effect chain
   4628         unlockEffectChains(effectChains);
   4629         effectChains.clear();
   4630     }
   4631 
   4632     standby();
   4633 
   4634     {
   4635         Mutex::Autolock _l(mLock);
   4636         for (size_t i = 0; i < mTracks.size(); i++) {
   4637             sp<RecordTrack> track = mTracks[i];
   4638             track->invalidate();
   4639         }
   4640         mActiveTrack.clear();
   4641         mStartStopCond.broadcast();
   4642     }
   4643 
   4644     releaseWakeLock();
   4645 
   4646     ALOGV("RecordThread %p exiting", this);
   4647     return false;
   4648 }
   4649 
   4650 void AudioFlinger::RecordThread::standby()
   4651 {
   4652     if (!mStandby) {
   4653         inputStandBy();
   4654         mStandby = true;
   4655     }
   4656 }
   4657 
   4658 void AudioFlinger::RecordThread::inputStandBy()
   4659 {
   4660     mInput->stream->common.standby(&mInput->stream->common);
   4661 }
   4662 
   4663 sp<AudioFlinger::RecordThread::RecordTrack>  AudioFlinger::RecordThread::createRecordTrack_l(
   4664         const sp<AudioFlinger::Client>& client,
   4665         uint32_t sampleRate,
   4666         audio_format_t format,
   4667         audio_channel_mask_t channelMask,
   4668         size_t frameCount,
   4669         int sessionId,
   4670         int uid,
   4671         IAudioFlinger::track_flags_t *flags,
   4672         pid_t tid,
   4673         status_t *status)
   4674 {
   4675     sp<RecordTrack> track;
   4676     status_t lStatus;
   4677 
   4678     lStatus = initCheck();
   4679     if (lStatus != NO_ERROR) {
   4680         ALOGE("createRecordTrack_l() audio driver not initialized");
   4681         goto Exit;
   4682     }
   4683     // client expresses a preference for FAST, but we get the final say
   4684     if (*flags & IAudioFlinger::TRACK_FAST) {
   4685       if (
   4686             // use case: callback handler and frame count is default or at least as large as HAL
   4687             (
   4688                 (tid != -1) &&
   4689                 ((frameCount == 0) ||
   4690                 (frameCount >= mFrameCount))
   4691             ) &&
   4692             // FIXME when record supports non-PCM data, also check for audio_is_linear_pcm(format)
   4693             // mono or stereo
   4694             ( (channelMask == AUDIO_CHANNEL_OUT_MONO) ||
   4695               (channelMask == AUDIO_CHANNEL_OUT_STEREO) ) &&
   4696             // hardware sample rate
   4697             (sampleRate == mSampleRate) &&
   4698             // record thread has an associated fast recorder
   4699             hasFastRecorder()
   4700             // FIXME test that RecordThread for this fast track has a capable output HAL
   4701             // FIXME add a permission test also?
   4702         ) {
   4703         // if frameCount not specified, then it defaults to fast recorder (HAL) frame count
   4704         if (frameCount == 0) {
   4705             frameCount = mFrameCount * kFastTrackMultiplier;
   4706         }
   4707         ALOGV("AUDIO_INPUT_FLAG_FAST accepted: frameCount=%d mFrameCount=%d",
   4708                 frameCount, mFrameCount);
   4709       } else {
   4710         ALOGV("AUDIO_INPUT_FLAG_FAST denied: frameCount=%d "
   4711                 "mFrameCount=%d format=%d isLinear=%d channelMask=%#x sampleRate=%u mSampleRate=%u "
   4712                 "hasFastRecorder=%d tid=%d",
   4713                 frameCount, mFrameCount, format,
   4714                 audio_is_linear_pcm(format),
   4715                 channelMask, sampleRate, mSampleRate, hasFastRecorder(), tid);
   4716         *flags &= ~IAudioFlinger::TRACK_FAST;
   4717         // For compatibility with AudioRecord calculation, buffer depth is forced
   4718         // to be at least 2 x the record thread frame count and cover audio hardware latency.
   4719         // This is probably too conservative, but legacy application code may depend on it.
   4720         // If you change this calculation, also review the start threshold which is related.
   4721         uint32_t latencyMs = 50; // FIXME mInput->stream->get_latency(mInput->stream);
   4722         size_t mNormalFrameCount = 2048; // FIXME
   4723         uint32_t minBufCount = latencyMs / ((1000 * mNormalFrameCount) / mSampleRate);
   4724         if (minBufCount < 2) {
   4725             minBufCount = 2;
   4726         }
   4727         size_t minFrameCount = mNormalFrameCount * minBufCount;
   4728         if (frameCount < minFrameCount) {
   4729             frameCount = minFrameCount;
   4730         }
   4731       }
   4732     }
   4733 
   4734     // FIXME use flags and tid similar to createTrack_l()
   4735 
   4736     { // scope for mLock
   4737         Mutex::Autolock _l(mLock);
   4738 
   4739         track = new RecordTrack(this, client, sampleRate,
   4740                       format, channelMask, frameCount, sessionId, uid);
   4741 
   4742         if (track->getCblk() == 0) {
   4743             ALOGE("createRecordTrack_l() no control block");
   4744             lStatus = NO_MEMORY;
   4745             // track must be cleared from the caller as the caller has the AF lock
   4746             goto Exit;
   4747         }
   4748         mTracks.add(track);
   4749 
   4750         // disable AEC and NS if the device is a BT SCO headset supporting those pre processings
   4751         bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
   4752                         mAudioFlinger->btNrecIsOff();
   4753         setEffectSuspended_l(FX_IID_AEC, suspend, sessionId);
   4754         setEffectSuspended_l(FX_IID_NS, suspend, sessionId);
   4755 
   4756         if ((*flags & IAudioFlinger::TRACK_FAST) && (tid != -1)) {
   4757             pid_t callingPid = IPCThreadState::self()->getCallingPid();
   4758             // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
   4759             // so ask activity manager to do this on our behalf
   4760             sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
   4761         }
   4762     }
   4763     lStatus = NO_ERROR;
   4764 
   4765 Exit:
   4766     if (status) {
   4767         *status = lStatus;
   4768     }
   4769     return track;
   4770 }
   4771 
   4772 status_t AudioFlinger::RecordThread::start(RecordThread::RecordTrack* recordTrack,
   4773                                            AudioSystem::sync_event_t event,
   4774                                            int triggerSession)
   4775 {
   4776     ALOGV("RecordThread::start event %d, triggerSession %d", event, triggerSession);
   4777     sp<ThreadBase> strongMe = this;
   4778     status_t status = NO_ERROR;
   4779 
   4780     if (event == AudioSystem::SYNC_EVENT_NONE) {
   4781         clearSyncStartEvent();
   4782     } else if (event != AudioSystem::SYNC_EVENT_SAME) {
   4783         mSyncStartEvent = mAudioFlinger->createSyncEvent(event,
   4784                                        triggerSession,
   4785                                        recordTrack->sessionId(),
   4786                                        syncStartEventCallback,
   4787                                        this);
   4788         // Sync event can be cancelled by the trigger session if the track is not in a
   4789         // compatible state in which case we start record immediately
   4790         if (mSyncStartEvent->isCancelled()) {
   4791             clearSyncStartEvent();
   4792         } else {
   4793             // do not wait for the event for more than AudioSystem::kSyncRecordStartTimeOutMs
   4794             mFramestoDrop = - ((AudioSystem::kSyncRecordStartTimeOutMs * mReqSampleRate) / 1000);
   4795         }
   4796     }
   4797 
   4798     {
   4799         AutoMutex lock(mLock);
   4800         if (mActiveTrack != 0) {
   4801             if (recordTrack != mActiveTrack.get()) {
   4802                 status = -EBUSY;
   4803             } else if (mActiveTrack->mState == TrackBase::PAUSING) {
   4804                 mActiveTrack->mState = TrackBase::ACTIVE;
   4805             }
   4806             return status;
   4807         }
   4808 
   4809         recordTrack->mState = TrackBase::IDLE;
   4810         mActiveTrack = recordTrack;
   4811         mLock.unlock();
   4812         status_t status = AudioSystem::startInput(mId);
   4813         mLock.lock();
   4814         if (status != NO_ERROR) {
   4815             mActiveTrack.clear();
   4816             clearSyncStartEvent();
   4817             return status;
   4818         }
   4819         mRsmpInIndex = mFrameCount;
   4820         mBytesRead = 0;
   4821         if (mResampler != NULL) {
   4822             mResampler->reset();
   4823         }
   4824         mActiveTrack->mState = TrackBase::RESUMING;
   4825         // signal thread to start
   4826         ALOGV("Signal record thread");
   4827         mWaitWorkCV.broadcast();
   4828         // do not wait for mStartStopCond if exiting
   4829         if (exitPending()) {
   4830             mActiveTrack.clear();
   4831             status = INVALID_OPERATION;
   4832             goto startError;
   4833         }
   4834         mStartStopCond.wait(mLock);
   4835         if (mActiveTrack == 0) {
   4836             ALOGV("Record failed to start");
   4837             status = BAD_VALUE;
   4838             goto startError;
   4839         }
   4840         ALOGV("Record started OK");
   4841         return status;
   4842     }
   4843 
   4844 startError:
   4845     AudioSystem::stopInput(mId);
   4846     clearSyncStartEvent();
   4847     return status;
   4848 }
   4849 
   4850 void AudioFlinger::RecordThread::clearSyncStartEvent()
   4851 {
   4852     if (mSyncStartEvent != 0) {
   4853         mSyncStartEvent->cancel();
   4854     }
   4855     mSyncStartEvent.clear();
   4856     mFramestoDrop = 0;
   4857 }
   4858 
   4859 void AudioFlinger::RecordThread::syncStartEventCallback(const wp<SyncEvent>& event)
   4860 {
   4861     sp<SyncEvent> strongEvent = event.promote();
   4862 
   4863     if (strongEvent != 0) {
   4864         RecordThread *me = (RecordThread *)strongEvent->cookie();
   4865         me->handleSyncStartEvent(strongEvent);
   4866     }
   4867 }
   4868 
   4869 void AudioFlinger::RecordThread::handleSyncStartEvent(const sp<SyncEvent>& event)
   4870 {
   4871     if (event == mSyncStartEvent) {
   4872         // TODO: use actual buffer filling status instead of 2 buffers when info is available
   4873         // from audio HAL
   4874         mFramestoDrop = mFrameCount * 2;
   4875     }
   4876 }
   4877 
   4878 bool AudioFlinger::RecordThread::stop(RecordThread::RecordTrack* recordTrack) {
   4879     ALOGV("RecordThread::stop");
   4880     AutoMutex _l(mLock);
   4881     if (recordTrack != mActiveTrack.get() || recordTrack->mState == TrackBase::PAUSING) {
   4882         return false;
   4883     }
   4884     recordTrack->mState = TrackBase::PAUSING;
   4885     // do not wait for mStartStopCond if exiting
   4886     if (exitPending()) {
   4887         return true;
   4888     }
   4889     mStartStopCond.wait(mLock);
   4890     // if we have been restarted, recordTrack == mActiveTrack.get() here
   4891     if (exitPending() || recordTrack != mActiveTrack.get()) {
   4892         ALOGV("Record stopped OK");
   4893         return true;
   4894     }
   4895     return false;
   4896 }
   4897 
   4898 bool AudioFlinger::RecordThread::isValidSyncEvent(const sp<SyncEvent>& event) const
   4899 {
   4900     return false;
   4901 }
   4902 
   4903 status_t AudioFlinger::RecordThread::setSyncEvent(const sp<SyncEvent>& event)
   4904 {
   4905 #if 0   // This branch is currently dead code, but is preserved in case it will be needed in future
   4906     if (!isValidSyncEvent(event)) {
   4907         return BAD_VALUE;
   4908     }
   4909 
   4910     int eventSession = event->triggerSession();
   4911     status_t ret = NAME_NOT_FOUND;
   4912 
   4913     Mutex::Autolock _l(mLock);
   4914 
   4915     for (size_t i = 0; i < mTracks.size(); i++) {
   4916         sp<RecordTrack> track = mTracks[i];
   4917         if (eventSession == track->sessionId()) {
   4918             (void) track->setSyncEvent(event);
   4919             ret = NO_ERROR;
   4920         }
   4921     }
   4922     return ret;
   4923 #else
   4924     return BAD_VALUE;
   4925 #endif
   4926 }
   4927 
   4928 // destroyTrack_l() must be called with ThreadBase::mLock held
   4929 void AudioFlinger::RecordThread::destroyTrack_l(const sp<RecordTrack>& track)
   4930 {
   4931     track->terminate();
   4932     track->mState = TrackBase::STOPPED;
   4933     // active tracks are removed by threadLoop()
   4934     if (mActiveTrack != track) {
   4935         removeTrack_l(track);
   4936     }
   4937 }
   4938 
   4939 void AudioFlinger::RecordThread::removeTrack_l(const sp<RecordTrack>& track)
   4940 {
   4941     mTracks.remove(track);
   4942     // need anything related to effects here?
   4943 }
   4944 
   4945 void AudioFlinger::RecordThread::dump(int fd, const Vector<String16>& args)
   4946 {
   4947     dumpInternals(fd, args);
   4948     dumpTracks(fd, args);
   4949     dumpEffectChains(fd, args);
   4950 }
   4951 
   4952 void AudioFlinger::RecordThread::dumpInternals(int fd, const Vector<String16>& args)
   4953 {
   4954     const size_t SIZE = 256;
   4955     char buffer[SIZE];
   4956     String8 result;
   4957 
   4958     snprintf(buffer, SIZE, "\nInput thread %p internals\n", this);
   4959     result.append(buffer);
   4960 
   4961     if (mActiveTrack != 0) {
   4962         snprintf(buffer, SIZE, "In index: %d\n", mRsmpInIndex);
   4963         result.append(buffer);
   4964         snprintf(buffer, SIZE, "Buffer size: %u bytes\n", mBufferSize);
   4965         result.append(buffer);
   4966         snprintf(buffer, SIZE, "Resampling: %d\n", (mResampler != NULL));
   4967         result.append(buffer);
   4968         snprintf(buffer, SIZE, "Out channel count: %u\n", mReqChannelCount);
   4969         result.append(buffer);
   4970         snprintf(buffer, SIZE, "Out sample rate: %u\n", mReqSampleRate);
   4971         result.append(buffer);
   4972     } else {
   4973         result.append("No active record client\n");
   4974     }
   4975 
   4976     write(fd, result.string(), result.size());
   4977 
   4978     dumpBase(fd, args);
   4979 }
   4980 
   4981 void AudioFlinger::RecordThread::dumpTracks(int fd, const Vector<String16>& args)
   4982 {
   4983     const size_t SIZE = 256;
   4984     char buffer[SIZE];
   4985     String8 result;
   4986 
   4987     snprintf(buffer, SIZE, "Input thread %p tracks\n", this);
   4988     result.append(buffer);
   4989     RecordTrack::appendDumpHeader(result);
   4990     for (size_t i = 0; i < mTracks.size(); ++i) {
   4991         sp<RecordTrack> track = mTracks[i];
   4992         if (track != 0) {
   4993             track->dump(buffer, SIZE);
   4994             result.append(buffer);
   4995         }
   4996     }
   4997 
   4998     if (mActiveTrack != 0) {
   4999         snprintf(buffer, SIZE, "\nInput thread %p active tracks\n", this);
   5000         result.append(buffer);
   5001         RecordTrack::appendDumpHeader(result);
   5002         mActiveTrack->dump(buffer, SIZE);
   5003         result.append(buffer);
   5004 
   5005     }
   5006     write(fd, result.string(), result.size());
   5007 }
   5008 
   5009 // AudioBufferProvider interface
   5010 status_t AudioFlinger::RecordThread::getNextBuffer(AudioBufferProvider::Buffer* buffer, int64_t pts)
   5011 {
   5012     size_t framesReq = buffer->frameCount;
   5013     size_t framesReady = mFrameCount - mRsmpInIndex;
   5014     int channelCount;
   5015 
   5016     if (framesReady == 0) {
   5017         mBytesRead = mInput->stream->read(mInput->stream, mRsmpInBuffer, mBufferSize);
   5018         if (mBytesRead <= 0) {
   5019             if ((mBytesRead < 0) && (mActiveTrack->mState == TrackBase::ACTIVE)) {
   5020                 ALOGE("RecordThread::getNextBuffer() Error reading audio input");
   5021                 // Force input into standby so that it tries to
   5022                 // recover at next read attempt
   5023                 inputStandBy();
   5024                 usleep(kRecordThreadSleepUs);
   5025             }
   5026             buffer->raw = NULL;
   5027             buffer->frameCount = 0;
   5028             return NOT_ENOUGH_DATA;
   5029         }
   5030         mRsmpInIndex = 0;
   5031         framesReady = mFrameCount;
   5032     }
   5033 
   5034     if (framesReq > framesReady) {
   5035         framesReq = framesReady;
   5036     }
   5037 
   5038     if (mChannelCount == 1 && mReqChannelCount == 2) {
   5039         channelCount = 1;
   5040     } else {
   5041         channelCount = 2;
   5042     }
   5043     buffer->raw = mRsmpInBuffer + mRsmpInIndex * channelCount;
   5044     buffer->frameCount = framesReq;
   5045     return NO_ERROR;
   5046 }
   5047 
   5048 // AudioBufferProvider interface
   5049 void AudioFlinger::RecordThread::releaseBuffer(AudioBufferProvider::Buffer* buffer)
   5050 {
   5051     mRsmpInIndex += buffer->frameCount;
   5052     buffer->frameCount = 0;
   5053 }
   5054 
   5055 bool AudioFlinger::RecordThread::checkForNewParameters_l()
   5056 {
   5057     bool reconfig = false;
   5058 
   5059     while (!mNewParameters.isEmpty()) {
   5060         status_t status = NO_ERROR;
   5061         String8 keyValuePair = mNewParameters[0];
   5062         AudioParameter param = AudioParameter(keyValuePair);
   5063         int value;
   5064         audio_format_t reqFormat = mFormat;
   5065         uint32_t reqSamplingRate = mReqSampleRate;
   5066         uint32_t reqChannelCount = mReqChannelCount;
   5067 
   5068         if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
   5069             reqSamplingRate = value;
   5070             reconfig = true;
   5071         }
   5072         if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
   5073             if ((audio_format_t) value != AUDIO_FORMAT_PCM_16_BIT) {
   5074                 status = BAD_VALUE;
   5075             } else {
   5076                 reqFormat = (audio_format_t) value;
   5077                 reconfig = true;
   5078             }
   5079         }
   5080         if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
   5081             reqChannelCount = popcount(value);
   5082             reconfig = true;
   5083         }
   5084         if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
   5085             // do not accept frame count changes if tracks are open as the track buffer
   5086             // size depends on frame count and correct behavior would not be guaranteed
   5087             // if frame count is changed after track creation
   5088             if (mActiveTrack != 0) {
   5089                 status = INVALID_OPERATION;
   5090             } else {
   5091                 reconfig = true;
   5092             }
   5093         }
   5094         if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
   5095             // forward device change to effects that have requested to be
   5096             // aware of attached audio device.
   5097             for (size_t i = 0; i < mEffectChains.size(); i++) {
   5098                 mEffectChains[i]->setDevice_l(value);
   5099             }
   5100 
   5101             // store input device and output device but do not forward output device to audio HAL.
   5102             // Note that status is ignored by the caller for output device
   5103             // (see AudioFlinger::setParameters()
   5104             if (audio_is_output_devices(value)) {
   5105                 mOutDevice = value;
   5106                 status = BAD_VALUE;
   5107             } else {
   5108                 mInDevice = value;
   5109                 // disable AEC and NS if the device is a BT SCO headset supporting those
   5110                 // pre processings
   5111                 if (mTracks.size() > 0) {
   5112                     bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
   5113                                         mAudioFlinger->btNrecIsOff();
   5114                     for (size_t i = 0; i < mTracks.size(); i++) {
   5115                         sp<RecordTrack> track = mTracks[i];
   5116                         setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
   5117                         setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
   5118                     }
   5119                 }
   5120             }
   5121         }
   5122         if (param.getInt(String8(AudioParameter::keyInputSource), value) == NO_ERROR &&
   5123                 mAudioSource != (audio_source_t)value) {
   5124             // forward device change to effects that have requested to be
   5125             // aware of attached audio device.
   5126             for (size_t i = 0; i < mEffectChains.size(); i++) {
   5127                 mEffectChains[i]->setAudioSource_l((audio_source_t)value);
   5128             }
   5129             mAudioSource = (audio_source_t)value;
   5130         }
   5131         if (status == NO_ERROR) {
   5132             status = mInput->stream->common.set_parameters(&mInput->stream->common,
   5133                     keyValuePair.string());
   5134             if (status == INVALID_OPERATION) {
   5135                 inputStandBy();
   5136                 status = mInput->stream->common.set_parameters(&mInput->stream->common,
   5137                         keyValuePair.string());
   5138             }
   5139             if (reconfig) {
   5140                 if (status == BAD_VALUE &&
   5141                     reqFormat == mInput->stream->common.get_format(&mInput->stream->common) &&
   5142                     reqFormat == AUDIO_FORMAT_PCM_16_BIT &&
   5143                     (mInput->stream->common.get_sample_rate(&mInput->stream->common)
   5144                             <= (2 * reqSamplingRate)) &&
   5145                     popcount(mInput->stream->common.get_channels(&mInput->stream->common))
   5146                             <= FCC_2 &&
   5147                     (reqChannelCount <= FCC_2)) {
   5148                     status = NO_ERROR;
   5149                 }
   5150                 if (status == NO_ERROR) {
   5151                     readInputParameters();
   5152                     sendIoConfigEvent_l(AudioSystem::INPUT_CONFIG_CHANGED);
   5153                 }
   5154             }
   5155         }
   5156 
   5157         mNewParameters.removeAt(0);
   5158 
   5159         mParamStatus = status;
   5160         mParamCond.signal();
   5161         // wait for condition with time out in case the thread calling ThreadBase::setParameters()
   5162         // already timed out waiting for the status and will never signal the condition.
   5163         mWaitWorkCV.waitRelative(mLock, kSetParametersTimeoutNs);
   5164     }
   5165     return reconfig;
   5166 }
   5167 
   5168 String8 AudioFlinger::RecordThread::getParameters(const String8& keys)
   5169 {
   5170     Mutex::Autolock _l(mLock);
   5171     if (initCheck() != NO_ERROR) {
   5172         return String8();
   5173     }
   5174 
   5175     char *s = mInput->stream->common.get_parameters(&mInput->stream->common, keys.string());
   5176     const String8 out_s8(s);
   5177     free(s);
   5178     return out_s8;
   5179 }
   5180 
   5181 void AudioFlinger::RecordThread::audioConfigChanged_l(int event, int param) {
   5182     AudioSystem::OutputDescriptor desc;
   5183     void *param2 = NULL;
   5184 
   5185     switch (event) {
   5186     case AudioSystem::INPUT_OPENED:
   5187     case AudioSystem::INPUT_CONFIG_CHANGED:
   5188         desc.channelMask = mChannelMask;
   5189         desc.samplingRate = mSampleRate;
   5190         desc.format = mFormat;
   5191         desc.frameCount = mFrameCount;
   5192         desc.latency = 0;
   5193         param2 = &desc;
   5194         break;
   5195 
   5196     case AudioSystem::INPUT_CLOSED:
   5197     default:
   5198         break;
   5199     }
   5200     mAudioFlinger->audioConfigChanged_l(event, mId, param2);
   5201 }
   5202 
   5203 void AudioFlinger::RecordThread::readInputParameters()
   5204 {
   5205     delete[] mRsmpInBuffer;
   5206     // mRsmpInBuffer is always assigned a new[] below
   5207     delete[] mRsmpOutBuffer;
   5208     mRsmpOutBuffer = NULL;
   5209     delete mResampler;
   5210     mResampler = NULL;
   5211 
   5212     mSampleRate = mInput->stream->common.get_sample_rate(&mInput->stream->common);
   5213     mChannelMask = mInput->stream->common.get_channels(&mInput->stream->common);
   5214     mChannelCount = popcount(mChannelMask);
   5215     mFormat = mInput->stream->common.get_format(&mInput->stream->common);
   5216     if (mFormat != AUDIO_FORMAT_PCM_16_BIT) {
   5217         ALOGE("HAL format %d not supported; must be AUDIO_FORMAT_PCM_16_BIT", mFormat);
   5218     }
   5219     mFrameSize = audio_stream_frame_size(&mInput->stream->common);
   5220     mBufferSize = mInput->stream->common.get_buffer_size(&mInput->stream->common);
   5221     mFrameCount = mBufferSize / mFrameSize;
   5222     mRsmpInBuffer = new int16_t[mFrameCount * mChannelCount];
   5223 
   5224     if (mSampleRate != mReqSampleRate && mChannelCount <= FCC_2 && mReqChannelCount <= FCC_2)
   5225     {
   5226         int channelCount;
   5227         // optimization: if mono to mono, use the resampler in stereo to stereo mode to avoid
   5228         // stereo to mono post process as the resampler always outputs stereo.
   5229         if (mChannelCount == 1 && mReqChannelCount == 2) {
   5230             channelCount = 1;
   5231         } else {
   5232             channelCount = 2;
   5233         }
   5234         mResampler = AudioResampler::create(16, channelCount, mReqSampleRate);
   5235         mResampler->setSampleRate(mSampleRate);
   5236         mResampler->setVolume(AudioMixer::UNITY_GAIN, AudioMixer::UNITY_GAIN);
   5237         mRsmpOutBuffer = new int32_t[mFrameCount * FCC_2];
   5238 
   5239         // optmization: if mono to mono, alter input frame count as if we were inputing
   5240         // stereo samples
   5241         if (mChannelCount == 1 && mReqChannelCount == 1) {
   5242             mFrameCount >>= 1;
   5243         }
   5244 
   5245     }
   5246     mRsmpInIndex = mFrameCount;
   5247 }
   5248 
   5249 unsigned int AudioFlinger::RecordThread::getInputFramesLost()
   5250 {
   5251     Mutex::Autolock _l(mLock);
   5252     if (initCheck() != NO_ERROR) {
   5253         return 0;
   5254     }
   5255 
   5256     return mInput->stream->get_input_frames_lost(mInput->stream);
   5257 }
   5258 
   5259 uint32_t AudioFlinger::RecordThread::hasAudioSession(int sessionId) const
   5260 {
   5261     Mutex::Autolock _l(mLock);
   5262     uint32_t result = 0;
   5263     if (getEffectChain_l(sessionId) != 0) {
   5264         result = EFFECT_SESSION;
   5265     }
   5266 
   5267     for (size_t i = 0; i < mTracks.size(); ++i) {
   5268         if (sessionId == mTracks[i]->sessionId()) {
   5269             result |= TRACK_SESSION;
   5270             break;
   5271         }
   5272     }
   5273 
   5274     return result;
   5275 }
   5276 
   5277 KeyedVector<int, bool> AudioFlinger::RecordThread::sessionIds() const
   5278 {
   5279     KeyedVector<int, bool> ids;
   5280     Mutex::Autolock _l(mLock);
   5281     for (size_t j = 0; j < mTracks.size(); ++j) {
   5282         sp<RecordThread::RecordTrack> track = mTracks[j];
   5283         int sessionId = track->sessionId();
   5284         if (ids.indexOfKey(sessionId) < 0) {
   5285             ids.add(sessionId, true);
   5286         }
   5287     }
   5288     return ids;
   5289 }
   5290 
   5291 AudioFlinger::AudioStreamIn* AudioFlinger::RecordThread::clearInput()
   5292 {
   5293     Mutex::Autolock _l(mLock);
   5294     AudioStreamIn *input = mInput;
   5295     mInput = NULL;
   5296     return input;
   5297 }
   5298 
   5299 // this method must always be called either with ThreadBase mLock held or inside the thread loop
   5300 audio_stream_t* AudioFlinger::RecordThread::stream() const
   5301 {
   5302     if (mInput == NULL) {
   5303         return NULL;
   5304     }
   5305     return &mInput->stream->common;
   5306 }
   5307 
   5308 status_t AudioFlinger::RecordThread::addEffectChain_l(const sp<EffectChain>& chain)
   5309 {
   5310     // only one chain per input thread
   5311     if (mEffectChains.size() != 0) {
   5312         return INVALID_OPERATION;
   5313     }
   5314     ALOGV("addEffectChain_l() %p on thread %p", chain.get(), this);
   5315 
   5316     chain->setInBuffer(NULL);
   5317     chain->setOutBuffer(NULL);
   5318 
   5319     checkSuspendOnAddEffectChain_l(chain);
   5320 
   5321     mEffectChains.add(chain);
   5322 
   5323     return NO_ERROR;
   5324 }
   5325 
   5326 size_t AudioFlinger::RecordThread::removeEffectChain_l(const sp<EffectChain>& chain)
   5327 {
   5328     ALOGV("removeEffectChain_l() %p from thread %p", chain.get(), this);
   5329     ALOGW_IF(mEffectChains.size() != 1,
   5330             "removeEffectChain_l() %p invalid chain size %d on thread %p",
   5331             chain.get(), mEffectChains.size(), this);
   5332     if (mEffectChains.size() == 1) {
   5333         mEffectChains.removeAt(0);
   5334     }
   5335     return 0;
   5336 }
   5337 
   5338 }; // namespace android
   5339