1 //===- InstCombineCasts.cpp -----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visit functions for cast operations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombine.h" 15 #include "llvm/Analysis/ConstantFolding.h" 16 #include "llvm/IR/DataLayout.h" 17 #include "llvm/Support/PatternMatch.h" 18 #include "llvm/Target/TargetLibraryInfo.h" 19 using namespace llvm; 20 using namespace PatternMatch; 21 22 /// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear 23 /// expression. If so, decompose it, returning some value X, such that Val is 24 /// X*Scale+Offset. 25 /// 26 static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale, 27 uint64_t &Offset) { 28 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { 29 Offset = CI->getZExtValue(); 30 Scale = 0; 31 return ConstantInt::get(Val->getType(), 0); 32 } 33 34 if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) { 35 // Cannot look past anything that might overflow. 36 OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val); 37 if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) { 38 Scale = 1; 39 Offset = 0; 40 return Val; 41 } 42 43 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) { 44 if (I->getOpcode() == Instruction::Shl) { 45 // This is a value scaled by '1 << the shift amt'. 46 Scale = UINT64_C(1) << RHS->getZExtValue(); 47 Offset = 0; 48 return I->getOperand(0); 49 } 50 51 if (I->getOpcode() == Instruction::Mul) { 52 // This value is scaled by 'RHS'. 53 Scale = RHS->getZExtValue(); 54 Offset = 0; 55 return I->getOperand(0); 56 } 57 58 if (I->getOpcode() == Instruction::Add) { 59 // We have X+C. Check to see if we really have (X*C2)+C1, 60 // where C1 is divisible by C2. 61 unsigned SubScale; 62 Value *SubVal = 63 DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset); 64 Offset += RHS->getZExtValue(); 65 Scale = SubScale; 66 return SubVal; 67 } 68 } 69 } 70 71 // Otherwise, we can't look past this. 72 Scale = 1; 73 Offset = 0; 74 return Val; 75 } 76 77 /// PromoteCastOfAllocation - If we find a cast of an allocation instruction, 78 /// try to eliminate the cast by moving the type information into the alloc. 79 Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI, 80 AllocaInst &AI) { 81 // This requires DataLayout to get the alloca alignment and size information. 82 if (!TD) return 0; 83 84 PointerType *PTy = cast<PointerType>(CI.getType()); 85 86 BuilderTy AllocaBuilder(*Builder); 87 AllocaBuilder.SetInsertPoint(AI.getParent(), &AI); 88 89 // Get the type really allocated and the type casted to. 90 Type *AllocElTy = AI.getAllocatedType(); 91 Type *CastElTy = PTy->getElementType(); 92 if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0; 93 94 unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy); 95 unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy); 96 if (CastElTyAlign < AllocElTyAlign) return 0; 97 98 // If the allocation has multiple uses, only promote it if we are strictly 99 // increasing the alignment of the resultant allocation. If we keep it the 100 // same, we open the door to infinite loops of various kinds. 101 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return 0; 102 103 uint64_t AllocElTySize = TD->getTypeAllocSize(AllocElTy); 104 uint64_t CastElTySize = TD->getTypeAllocSize(CastElTy); 105 if (CastElTySize == 0 || AllocElTySize == 0) return 0; 106 107 // If the allocation has multiple uses, only promote it if we're not 108 // shrinking the amount of memory being allocated. 109 uint64_t AllocElTyStoreSize = TD->getTypeStoreSize(AllocElTy); 110 uint64_t CastElTyStoreSize = TD->getTypeStoreSize(CastElTy); 111 if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return 0; 112 113 // See if we can satisfy the modulus by pulling a scale out of the array 114 // size argument. 115 unsigned ArraySizeScale; 116 uint64_t ArrayOffset; 117 Value *NumElements = // See if the array size is a decomposable linear expr. 118 DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset); 119 120 // If we can now satisfy the modulus, by using a non-1 scale, we really can 121 // do the xform. 122 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 || 123 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return 0; 124 125 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize; 126 Value *Amt = 0; 127 if (Scale == 1) { 128 Amt = NumElements; 129 } else { 130 Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale); 131 // Insert before the alloca, not before the cast. 132 Amt = AllocaBuilder.CreateMul(Amt, NumElements); 133 } 134 135 if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) { 136 Value *Off = ConstantInt::get(AI.getArraySize()->getType(), 137 Offset, true); 138 Amt = AllocaBuilder.CreateAdd(Amt, Off); 139 } 140 141 AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt); 142 New->setAlignment(AI.getAlignment()); 143 New->takeName(&AI); 144 145 // If the allocation has multiple real uses, insert a cast and change all 146 // things that used it to use the new cast. This will also hack on CI, but it 147 // will die soon. 148 if (!AI.hasOneUse()) { 149 // New is the allocation instruction, pointer typed. AI is the original 150 // allocation instruction, also pointer typed. Thus, cast to use is BitCast. 151 Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast"); 152 ReplaceInstUsesWith(AI, NewCast); 153 } 154 return ReplaceInstUsesWith(CI, New); 155 } 156 157 /// EvaluateInDifferentType - Given an expression that 158 /// CanEvaluateTruncated or CanEvaluateSExtd returns true for, actually 159 /// insert the code to evaluate the expression. 160 Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty, 161 bool isSigned) { 162 if (Constant *C = dyn_cast<Constant>(V)) { 163 C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/); 164 // If we got a constantexpr back, try to simplify it with TD info. 165 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 166 C = ConstantFoldConstantExpression(CE, TD, TLI); 167 return C; 168 } 169 170 // Otherwise, it must be an instruction. 171 Instruction *I = cast<Instruction>(V); 172 Instruction *Res = 0; 173 unsigned Opc = I->getOpcode(); 174 switch (Opc) { 175 case Instruction::Add: 176 case Instruction::Sub: 177 case Instruction::Mul: 178 case Instruction::And: 179 case Instruction::Or: 180 case Instruction::Xor: 181 case Instruction::AShr: 182 case Instruction::LShr: 183 case Instruction::Shl: 184 case Instruction::UDiv: 185 case Instruction::URem: { 186 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned); 187 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 188 Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 189 break; 190 } 191 case Instruction::Trunc: 192 case Instruction::ZExt: 193 case Instruction::SExt: 194 // If the source type of the cast is the type we're trying for then we can 195 // just return the source. There's no need to insert it because it is not 196 // new. 197 if (I->getOperand(0)->getType() == Ty) 198 return I->getOperand(0); 199 200 // Otherwise, must be the same type of cast, so just reinsert a new one. 201 // This also handles the case of zext(trunc(x)) -> zext(x). 202 Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty, 203 Opc == Instruction::SExt); 204 break; 205 case Instruction::Select: { 206 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 207 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned); 208 Res = SelectInst::Create(I->getOperand(0), True, False); 209 break; 210 } 211 case Instruction::PHI: { 212 PHINode *OPN = cast<PHINode>(I); 213 PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues()); 214 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) { 215 Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned); 216 NPN->addIncoming(V, OPN->getIncomingBlock(i)); 217 } 218 Res = NPN; 219 break; 220 } 221 default: 222 // TODO: Can handle more cases here. 223 llvm_unreachable("Unreachable!"); 224 } 225 226 Res->takeName(I); 227 return InsertNewInstWith(Res, *I); 228 } 229 230 231 /// This function is a wrapper around CastInst::isEliminableCastPair. It 232 /// simply extracts arguments and returns what that function returns. 233 static Instruction::CastOps 234 isEliminableCastPair( 235 const CastInst *CI, ///< The first cast instruction 236 unsigned opcode, ///< The opcode of the second cast instruction 237 Type *DstTy, ///< The target type for the second cast instruction 238 DataLayout *TD ///< The target data for pointer size 239 ) { 240 241 Type *SrcTy = CI->getOperand(0)->getType(); // A from above 242 Type *MidTy = CI->getType(); // B from above 243 244 // Get the opcodes of the two Cast instructions 245 Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode()); 246 Instruction::CastOps secondOp = Instruction::CastOps(opcode); 247 Type *SrcIntPtrTy = TD && SrcTy->isPtrOrPtrVectorTy() ? 248 TD->getIntPtrType(SrcTy) : 0; 249 Type *MidIntPtrTy = TD && MidTy->isPtrOrPtrVectorTy() ? 250 TD->getIntPtrType(MidTy) : 0; 251 Type *DstIntPtrTy = TD && DstTy->isPtrOrPtrVectorTy() ? 252 TD->getIntPtrType(DstTy) : 0; 253 unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, 254 DstTy, SrcIntPtrTy, MidIntPtrTy, 255 DstIntPtrTy); 256 257 // We don't want to form an inttoptr or ptrtoint that converts to an integer 258 // type that differs from the pointer size. 259 if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) || 260 (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy)) 261 Res = 0; 262 263 return Instruction::CastOps(Res); 264 } 265 266 /// ShouldOptimizeCast - Return true if the cast from "V to Ty" actually 267 /// results in any code being generated and is interesting to optimize out. If 268 /// the cast can be eliminated by some other simple transformation, we prefer 269 /// to do the simplification first. 270 bool InstCombiner::ShouldOptimizeCast(Instruction::CastOps opc, const Value *V, 271 Type *Ty) { 272 // Noop casts and casts of constants should be eliminated trivially. 273 if (V->getType() == Ty || isa<Constant>(V)) return false; 274 275 // If this is another cast that can be eliminated, we prefer to have it 276 // eliminated. 277 if (const CastInst *CI = dyn_cast<CastInst>(V)) 278 if (isEliminableCastPair(CI, opc, Ty, TD)) 279 return false; 280 281 // If this is a vector sext from a compare, then we don't want to break the 282 // idiom where each element of the extended vector is either zero or all ones. 283 if (opc == Instruction::SExt && isa<CmpInst>(V) && Ty->isVectorTy()) 284 return false; 285 286 return true; 287 } 288 289 290 /// @brief Implement the transforms common to all CastInst visitors. 291 Instruction *InstCombiner::commonCastTransforms(CastInst &CI) { 292 Value *Src = CI.getOperand(0); 293 294 // Many cases of "cast of a cast" are eliminable. If it's eliminable we just 295 // eliminate it now. 296 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast 297 if (Instruction::CastOps opc = 298 isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) { 299 // The first cast (CSrc) is eliminable so we need to fix up or replace 300 // the second cast (CI). CSrc will then have a good chance of being dead. 301 return CastInst::Create(opc, CSrc->getOperand(0), CI.getType()); 302 } 303 } 304 305 // If we are casting a select then fold the cast into the select 306 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) 307 if (Instruction *NV = FoldOpIntoSelect(CI, SI)) 308 return NV; 309 310 // If we are casting a PHI then fold the cast into the PHI 311 if (isa<PHINode>(Src)) { 312 // We don't do this if this would create a PHI node with an illegal type if 313 // it is currently legal. 314 if (!Src->getType()->isIntegerTy() || 315 !CI.getType()->isIntegerTy() || 316 ShouldChangeType(CI.getType(), Src->getType())) 317 if (Instruction *NV = FoldOpIntoPhi(CI)) 318 return NV; 319 } 320 321 return 0; 322 } 323 324 /// CanEvaluateTruncated - Return true if we can evaluate the specified 325 /// expression tree as type Ty instead of its larger type, and arrive with the 326 /// same value. This is used by code that tries to eliminate truncates. 327 /// 328 /// Ty will always be a type smaller than V. We should return true if trunc(V) 329 /// can be computed by computing V in the smaller type. If V is an instruction, 330 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only 331 /// makes sense if x and y can be efficiently truncated. 332 /// 333 /// This function works on both vectors and scalars. 334 /// 335 static bool CanEvaluateTruncated(Value *V, Type *Ty) { 336 // We can always evaluate constants in another type. 337 if (isa<Constant>(V)) 338 return true; 339 340 Instruction *I = dyn_cast<Instruction>(V); 341 if (!I) return false; 342 343 Type *OrigTy = V->getType(); 344 345 // If this is an extension from the dest type, we can eliminate it, even if it 346 // has multiple uses. 347 if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) && 348 I->getOperand(0)->getType() == Ty) 349 return true; 350 351 // We can't extend or shrink something that has multiple uses: doing so would 352 // require duplicating the instruction in general, which isn't profitable. 353 if (!I->hasOneUse()) return false; 354 355 unsigned Opc = I->getOpcode(); 356 switch (Opc) { 357 case Instruction::Add: 358 case Instruction::Sub: 359 case Instruction::Mul: 360 case Instruction::And: 361 case Instruction::Or: 362 case Instruction::Xor: 363 // These operators can all arbitrarily be extended or truncated. 364 return CanEvaluateTruncated(I->getOperand(0), Ty) && 365 CanEvaluateTruncated(I->getOperand(1), Ty); 366 367 case Instruction::UDiv: 368 case Instruction::URem: { 369 // UDiv and URem can be truncated if all the truncated bits are zero. 370 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 371 uint32_t BitWidth = Ty->getScalarSizeInBits(); 372 if (BitWidth < OrigBitWidth) { 373 APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth); 374 if (MaskedValueIsZero(I->getOperand(0), Mask) && 375 MaskedValueIsZero(I->getOperand(1), Mask)) { 376 return CanEvaluateTruncated(I->getOperand(0), Ty) && 377 CanEvaluateTruncated(I->getOperand(1), Ty); 378 } 379 } 380 break; 381 } 382 case Instruction::Shl: 383 // If we are truncating the result of this SHL, and if it's a shift of a 384 // constant amount, we can always perform a SHL in a smaller type. 385 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 386 uint32_t BitWidth = Ty->getScalarSizeInBits(); 387 if (CI->getLimitedValue(BitWidth) < BitWidth) 388 return CanEvaluateTruncated(I->getOperand(0), Ty); 389 } 390 break; 391 case Instruction::LShr: 392 // If this is a truncate of a logical shr, we can truncate it to a smaller 393 // lshr iff we know that the bits we would otherwise be shifting in are 394 // already zeros. 395 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 396 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 397 uint32_t BitWidth = Ty->getScalarSizeInBits(); 398 if (MaskedValueIsZero(I->getOperand(0), 399 APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) && 400 CI->getLimitedValue(BitWidth) < BitWidth) { 401 return CanEvaluateTruncated(I->getOperand(0), Ty); 402 } 403 } 404 break; 405 case Instruction::Trunc: 406 // trunc(trunc(x)) -> trunc(x) 407 return true; 408 case Instruction::ZExt: 409 case Instruction::SExt: 410 // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest 411 // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest 412 return true; 413 case Instruction::Select: { 414 SelectInst *SI = cast<SelectInst>(I); 415 return CanEvaluateTruncated(SI->getTrueValue(), Ty) && 416 CanEvaluateTruncated(SI->getFalseValue(), Ty); 417 } 418 case Instruction::PHI: { 419 // We can change a phi if we can change all operands. Note that we never 420 // get into trouble with cyclic PHIs here because we only consider 421 // instructions with a single use. 422 PHINode *PN = cast<PHINode>(I); 423 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 424 if (!CanEvaluateTruncated(PN->getIncomingValue(i), Ty)) 425 return false; 426 return true; 427 } 428 default: 429 // TODO: Can handle more cases here. 430 break; 431 } 432 433 return false; 434 } 435 436 Instruction *InstCombiner::visitTrunc(TruncInst &CI) { 437 if (Instruction *Result = commonCastTransforms(CI)) 438 return Result; 439 440 // See if we can simplify any instructions used by the input whose sole 441 // purpose is to compute bits we don't care about. 442 if (SimplifyDemandedInstructionBits(CI)) 443 return &CI; 444 445 Value *Src = CI.getOperand(0); 446 Type *DestTy = CI.getType(), *SrcTy = Src->getType(); 447 448 // Attempt to truncate the entire input expression tree to the destination 449 // type. Only do this if the dest type is a simple type, don't convert the 450 // expression tree to something weird like i93 unless the source is also 451 // strange. 452 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) && 453 CanEvaluateTruncated(Src, DestTy)) { 454 455 // If this cast is a truncate, evaluting in a different type always 456 // eliminates the cast, so it is always a win. 457 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" 458 " to avoid cast: " << CI << '\n'); 459 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 460 assert(Res->getType() == DestTy); 461 return ReplaceInstUsesWith(CI, Res); 462 } 463 464 // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector. 465 if (DestTy->getScalarSizeInBits() == 1) { 466 Constant *One = ConstantInt::get(Src->getType(), 1); 467 Src = Builder->CreateAnd(Src, One); 468 Value *Zero = Constant::getNullValue(Src->getType()); 469 return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero); 470 } 471 472 // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion. 473 Value *A = 0; ConstantInt *Cst = 0; 474 if (Src->hasOneUse() && 475 match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) { 476 // We have three types to worry about here, the type of A, the source of 477 // the truncate (MidSize), and the destination of the truncate. We know that 478 // ASize < MidSize and MidSize > ResultSize, but don't know the relation 479 // between ASize and ResultSize. 480 unsigned ASize = A->getType()->getPrimitiveSizeInBits(); 481 482 // If the shift amount is larger than the size of A, then the result is 483 // known to be zero because all the input bits got shifted out. 484 if (Cst->getZExtValue() >= ASize) 485 return ReplaceInstUsesWith(CI, Constant::getNullValue(CI.getType())); 486 487 // Since we're doing an lshr and a zero extend, and know that the shift 488 // amount is smaller than ASize, it is always safe to do the shift in A's 489 // type, then zero extend or truncate to the result. 490 Value *Shift = Builder->CreateLShr(A, Cst->getZExtValue()); 491 Shift->takeName(Src); 492 return CastInst::CreateIntegerCast(Shift, CI.getType(), false); 493 } 494 495 // Transform "trunc (and X, cst)" -> "and (trunc X), cst" so long as the dest 496 // type isn't non-native. 497 if (Src->hasOneUse() && isa<IntegerType>(Src->getType()) && 498 ShouldChangeType(Src->getType(), CI.getType()) && 499 match(Src, m_And(m_Value(A), m_ConstantInt(Cst)))) { 500 Value *NewTrunc = Builder->CreateTrunc(A, CI.getType(), A->getName()+".tr"); 501 return BinaryOperator::CreateAnd(NewTrunc, 502 ConstantExpr::getTrunc(Cst, CI.getType())); 503 } 504 505 return 0; 506 } 507 508 /// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations 509 /// in order to eliminate the icmp. 510 Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI, 511 bool DoXform) { 512 // If we are just checking for a icmp eq of a single bit and zext'ing it 513 // to an integer, then shift the bit to the appropriate place and then 514 // cast to integer to avoid the comparison. 515 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) { 516 const APInt &Op1CV = Op1C->getValue(); 517 518 // zext (x <s 0) to i32 --> x>>u31 true if signbit set. 519 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear. 520 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) || 521 (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) { 522 if (!DoXform) return ICI; 523 524 Value *In = ICI->getOperand(0); 525 Value *Sh = ConstantInt::get(In->getType(), 526 In->getType()->getScalarSizeInBits()-1); 527 In = Builder->CreateLShr(In, Sh, In->getName()+".lobit"); 528 if (In->getType() != CI.getType()) 529 In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/); 530 531 if (ICI->getPredicate() == ICmpInst::ICMP_SGT) { 532 Constant *One = ConstantInt::get(In->getType(), 1); 533 In = Builder->CreateXor(In, One, In->getName()+".not"); 534 } 535 536 return ReplaceInstUsesWith(CI, In); 537 } 538 539 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set. 540 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 541 // zext (X == 1) to i32 --> X iff X has only the low bit set. 542 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set. 543 // zext (X != 0) to i32 --> X iff X has only the low bit set. 544 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set. 545 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set. 546 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 547 if ((Op1CV == 0 || Op1CV.isPowerOf2()) && 548 // This only works for EQ and NE 549 ICI->isEquality()) { 550 // If Op1C some other power of two, convert: 551 uint32_t BitWidth = Op1C->getType()->getBitWidth(); 552 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 553 ComputeMaskedBits(ICI->getOperand(0), KnownZero, KnownOne); 554 555 APInt KnownZeroMask(~KnownZero); 556 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1? 557 if (!DoXform) return ICI; 558 559 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE; 560 if (Op1CV != 0 && (Op1CV != KnownZeroMask)) { 561 // (X&4) == 2 --> false 562 // (X&4) != 2 --> true 563 Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()), 564 isNE); 565 Res = ConstantExpr::getZExt(Res, CI.getType()); 566 return ReplaceInstUsesWith(CI, Res); 567 } 568 569 uint32_t ShiftAmt = KnownZeroMask.logBase2(); 570 Value *In = ICI->getOperand(0); 571 if (ShiftAmt) { 572 // Perform a logical shr by shiftamt. 573 // Insert the shift to put the result in the low bit. 574 In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt), 575 In->getName()+".lobit"); 576 } 577 578 if ((Op1CV != 0) == isNE) { // Toggle the low bit. 579 Constant *One = ConstantInt::get(In->getType(), 1); 580 In = Builder->CreateXor(In, One); 581 } 582 583 if (CI.getType() == In->getType()) 584 return ReplaceInstUsesWith(CI, In); 585 return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/); 586 } 587 } 588 } 589 590 // icmp ne A, B is equal to xor A, B when A and B only really have one bit. 591 // It is also profitable to transform icmp eq into not(xor(A, B)) because that 592 // may lead to additional simplifications. 593 if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) { 594 if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) { 595 uint32_t BitWidth = ITy->getBitWidth(); 596 Value *LHS = ICI->getOperand(0); 597 Value *RHS = ICI->getOperand(1); 598 599 APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0); 600 APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0); 601 ComputeMaskedBits(LHS, KnownZeroLHS, KnownOneLHS); 602 ComputeMaskedBits(RHS, KnownZeroRHS, KnownOneRHS); 603 604 if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) { 605 APInt KnownBits = KnownZeroLHS | KnownOneLHS; 606 APInt UnknownBit = ~KnownBits; 607 if (UnknownBit.countPopulation() == 1) { 608 if (!DoXform) return ICI; 609 610 Value *Result = Builder->CreateXor(LHS, RHS); 611 612 // Mask off any bits that are set and won't be shifted away. 613 if (KnownOneLHS.uge(UnknownBit)) 614 Result = Builder->CreateAnd(Result, 615 ConstantInt::get(ITy, UnknownBit)); 616 617 // Shift the bit we're testing down to the lsb. 618 Result = Builder->CreateLShr( 619 Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros())); 620 621 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 622 Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1)); 623 Result->takeName(ICI); 624 return ReplaceInstUsesWith(CI, Result); 625 } 626 } 627 } 628 } 629 630 return 0; 631 } 632 633 /// CanEvaluateZExtd - Determine if the specified value can be computed in the 634 /// specified wider type and produce the same low bits. If not, return false. 635 /// 636 /// If this function returns true, it can also return a non-zero number of bits 637 /// (in BitsToClear) which indicates that the value it computes is correct for 638 /// the zero extend, but that the additional BitsToClear bits need to be zero'd 639 /// out. For example, to promote something like: 640 /// 641 /// %B = trunc i64 %A to i32 642 /// %C = lshr i32 %B, 8 643 /// %E = zext i32 %C to i64 644 /// 645 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be 646 /// set to 8 to indicate that the promoted value needs to have bits 24-31 647 /// cleared in addition to bits 32-63. Since an 'and' will be generated to 648 /// clear the top bits anyway, doing this has no extra cost. 649 /// 650 /// This function works on both vectors and scalars. 651 static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) { 652 BitsToClear = 0; 653 if (isa<Constant>(V)) 654 return true; 655 656 Instruction *I = dyn_cast<Instruction>(V); 657 if (!I) return false; 658 659 // If the input is a truncate from the destination type, we can trivially 660 // eliminate it. 661 if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty) 662 return true; 663 664 // We can't extend or shrink something that has multiple uses: doing so would 665 // require duplicating the instruction in general, which isn't profitable. 666 if (!I->hasOneUse()) return false; 667 668 unsigned Opc = I->getOpcode(), Tmp; 669 switch (Opc) { 670 case Instruction::ZExt: // zext(zext(x)) -> zext(x). 671 case Instruction::SExt: // zext(sext(x)) -> sext(x). 672 case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x) 673 return true; 674 case Instruction::And: 675 case Instruction::Or: 676 case Instruction::Xor: 677 case Instruction::Add: 678 case Instruction::Sub: 679 case Instruction::Mul: 680 if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear) || 681 !CanEvaluateZExtd(I->getOperand(1), Ty, Tmp)) 682 return false; 683 // These can all be promoted if neither operand has 'bits to clear'. 684 if (BitsToClear == 0 && Tmp == 0) 685 return true; 686 687 // If the operation is an AND/OR/XOR and the bits to clear are zero in the 688 // other side, BitsToClear is ok. 689 if (Tmp == 0 && 690 (Opc == Instruction::And || Opc == Instruction::Or || 691 Opc == Instruction::Xor)) { 692 // We use MaskedValueIsZero here for generality, but the case we care 693 // about the most is constant RHS. 694 unsigned VSize = V->getType()->getScalarSizeInBits(); 695 if (MaskedValueIsZero(I->getOperand(1), 696 APInt::getHighBitsSet(VSize, BitsToClear))) 697 return true; 698 } 699 700 // Otherwise, we don't know how to analyze this BitsToClear case yet. 701 return false; 702 703 case Instruction::Shl: 704 // We can promote shl(x, cst) if we can promote x. Since shl overwrites the 705 // upper bits we can reduce BitsToClear by the shift amount. 706 if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) { 707 if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear)) 708 return false; 709 uint64_t ShiftAmt = Amt->getZExtValue(); 710 BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0; 711 return true; 712 } 713 return false; 714 case Instruction::LShr: 715 // We can promote lshr(x, cst) if we can promote x. This requires the 716 // ultimate 'and' to clear out the high zero bits we're clearing out though. 717 if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) { 718 if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear)) 719 return false; 720 BitsToClear += Amt->getZExtValue(); 721 if (BitsToClear > V->getType()->getScalarSizeInBits()) 722 BitsToClear = V->getType()->getScalarSizeInBits(); 723 return true; 724 } 725 // Cannot promote variable LSHR. 726 return false; 727 case Instruction::Select: 728 if (!CanEvaluateZExtd(I->getOperand(1), Ty, Tmp) || 729 !CanEvaluateZExtd(I->getOperand(2), Ty, BitsToClear) || 730 // TODO: If important, we could handle the case when the BitsToClear are 731 // known zero in the disagreeing side. 732 Tmp != BitsToClear) 733 return false; 734 return true; 735 736 case Instruction::PHI: { 737 // We can change a phi if we can change all operands. Note that we never 738 // get into trouble with cyclic PHIs here because we only consider 739 // instructions with a single use. 740 PHINode *PN = cast<PHINode>(I); 741 if (!CanEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear)) 742 return false; 743 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) 744 if (!CanEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp) || 745 // TODO: If important, we could handle the case when the BitsToClear 746 // are known zero in the disagreeing input. 747 Tmp != BitsToClear) 748 return false; 749 return true; 750 } 751 default: 752 // TODO: Can handle more cases here. 753 return false; 754 } 755 } 756 757 Instruction *InstCombiner::visitZExt(ZExtInst &CI) { 758 // If this zero extend is only used by a truncate, let the truncate be 759 // eliminated before we try to optimize this zext. 760 if (CI.hasOneUse() && isa<TruncInst>(CI.use_back())) 761 return 0; 762 763 // If one of the common conversion will work, do it. 764 if (Instruction *Result = commonCastTransforms(CI)) 765 return Result; 766 767 // See if we can simplify any instructions used by the input whose sole 768 // purpose is to compute bits we don't care about. 769 if (SimplifyDemandedInstructionBits(CI)) 770 return &CI; 771 772 Value *Src = CI.getOperand(0); 773 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 774 775 // Attempt to extend the entire input expression tree to the destination 776 // type. Only do this if the dest type is a simple type, don't convert the 777 // expression tree to something weird like i93 unless the source is also 778 // strange. 779 unsigned BitsToClear; 780 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) && 781 CanEvaluateZExtd(Src, DestTy, BitsToClear)) { 782 assert(BitsToClear < SrcTy->getScalarSizeInBits() && 783 "Unreasonable BitsToClear"); 784 785 // Okay, we can transform this! Insert the new expression now. 786 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" 787 " to avoid zero extend: " << CI); 788 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 789 assert(Res->getType() == DestTy); 790 791 uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear; 792 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 793 794 // If the high bits are already filled with zeros, just replace this 795 // cast with the result. 796 if (MaskedValueIsZero(Res, APInt::getHighBitsSet(DestBitSize, 797 DestBitSize-SrcBitsKept))) 798 return ReplaceInstUsesWith(CI, Res); 799 800 // We need to emit an AND to clear the high bits. 801 Constant *C = ConstantInt::get(Res->getType(), 802 APInt::getLowBitsSet(DestBitSize, SrcBitsKept)); 803 return BinaryOperator::CreateAnd(Res, C); 804 } 805 806 // If this is a TRUNC followed by a ZEXT then we are dealing with integral 807 // types and if the sizes are just right we can convert this into a logical 808 // 'and' which will be much cheaper than the pair of casts. 809 if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast 810 // TODO: Subsume this into EvaluateInDifferentType. 811 812 // Get the sizes of the types involved. We know that the intermediate type 813 // will be smaller than A or C, but don't know the relation between A and C. 814 Value *A = CSrc->getOperand(0); 815 unsigned SrcSize = A->getType()->getScalarSizeInBits(); 816 unsigned MidSize = CSrc->getType()->getScalarSizeInBits(); 817 unsigned DstSize = CI.getType()->getScalarSizeInBits(); 818 // If we're actually extending zero bits, then if 819 // SrcSize < DstSize: zext(a & mask) 820 // SrcSize == DstSize: a & mask 821 // SrcSize > DstSize: trunc(a) & mask 822 if (SrcSize < DstSize) { 823 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 824 Constant *AndConst = ConstantInt::get(A->getType(), AndValue); 825 Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask"); 826 return new ZExtInst(And, CI.getType()); 827 } 828 829 if (SrcSize == DstSize) { 830 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 831 return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(), 832 AndValue)); 833 } 834 if (SrcSize > DstSize) { 835 Value *Trunc = Builder->CreateTrunc(A, CI.getType()); 836 APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize)); 837 return BinaryOperator::CreateAnd(Trunc, 838 ConstantInt::get(Trunc->getType(), 839 AndValue)); 840 } 841 } 842 843 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) 844 return transformZExtICmp(ICI, CI); 845 846 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src); 847 if (SrcI && SrcI->getOpcode() == Instruction::Or) { 848 // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one 849 // of the (zext icmp) will be transformed. 850 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0)); 851 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1)); 852 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() && 853 (transformZExtICmp(LHS, CI, false) || 854 transformZExtICmp(RHS, CI, false))) { 855 Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName()); 856 Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName()); 857 return BinaryOperator::Create(Instruction::Or, LCast, RCast); 858 } 859 } 860 861 // zext(trunc(t) & C) -> (t & zext(C)). 862 if (SrcI && SrcI->getOpcode() == Instruction::And && SrcI->hasOneUse()) 863 if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1))) 864 if (TruncInst *TI = dyn_cast<TruncInst>(SrcI->getOperand(0))) { 865 Value *TI0 = TI->getOperand(0); 866 if (TI0->getType() == CI.getType()) 867 return 868 BinaryOperator::CreateAnd(TI0, 869 ConstantExpr::getZExt(C, CI.getType())); 870 } 871 872 // zext((trunc(t) & C) ^ C) -> ((t & zext(C)) ^ zext(C)). 873 if (SrcI && SrcI->getOpcode() == Instruction::Xor && SrcI->hasOneUse()) 874 if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1))) 875 if (BinaryOperator *And = dyn_cast<BinaryOperator>(SrcI->getOperand(0))) 876 if (And->getOpcode() == Instruction::And && And->hasOneUse() && 877 And->getOperand(1) == C) 878 if (TruncInst *TI = dyn_cast<TruncInst>(And->getOperand(0))) { 879 Value *TI0 = TI->getOperand(0); 880 if (TI0->getType() == CI.getType()) { 881 Constant *ZC = ConstantExpr::getZExt(C, CI.getType()); 882 Value *NewAnd = Builder->CreateAnd(TI0, ZC); 883 return BinaryOperator::CreateXor(NewAnd, ZC); 884 } 885 } 886 887 // zext (xor i1 X, true) to i32 --> xor (zext i1 X to i32), 1 888 Value *X; 889 if (SrcI && SrcI->hasOneUse() && SrcI->getType()->isIntegerTy(1) && 890 match(SrcI, m_Not(m_Value(X))) && 891 (!X->hasOneUse() || !isa<CmpInst>(X))) { 892 Value *New = Builder->CreateZExt(X, CI.getType()); 893 return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1)); 894 } 895 896 return 0; 897 } 898 899 /// transformSExtICmp - Transform (sext icmp) to bitwise / integer operations 900 /// in order to eliminate the icmp. 901 Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) { 902 Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1); 903 ICmpInst::Predicate Pred = ICI->getPredicate(); 904 905 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { 906 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if negative 907 // (x >s -1) ? -1 : 0 -> not (ashr x, 31) -> all ones if positive 908 if ((Pred == ICmpInst::ICMP_SLT && Op1C->isZero()) || 909 (Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) { 910 911 Value *Sh = ConstantInt::get(Op0->getType(), 912 Op0->getType()->getScalarSizeInBits()-1); 913 Value *In = Builder->CreateAShr(Op0, Sh, Op0->getName()+".lobit"); 914 if (In->getType() != CI.getType()) 915 In = Builder->CreateIntCast(In, CI.getType(), true/*SExt*/); 916 917 if (Pred == ICmpInst::ICMP_SGT) 918 In = Builder->CreateNot(In, In->getName()+".not"); 919 return ReplaceInstUsesWith(CI, In); 920 } 921 922 // If we know that only one bit of the LHS of the icmp can be set and we 923 // have an equality comparison with zero or a power of 2, we can transform 924 // the icmp and sext into bitwise/integer operations. 925 if (ICI->hasOneUse() && 926 ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){ 927 unsigned BitWidth = Op1C->getType()->getBitWidth(); 928 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 929 ComputeMaskedBits(Op0, KnownZero, KnownOne); 930 931 APInt KnownZeroMask(~KnownZero); 932 if (KnownZeroMask.isPowerOf2()) { 933 Value *In = ICI->getOperand(0); 934 935 // If the icmp tests for a known zero bit we can constant fold it. 936 if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) { 937 Value *V = Pred == ICmpInst::ICMP_NE ? 938 ConstantInt::getAllOnesValue(CI.getType()) : 939 ConstantInt::getNullValue(CI.getType()); 940 return ReplaceInstUsesWith(CI, V); 941 } 942 943 if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) { 944 // sext ((x & 2^n) == 0) -> (x >> n) - 1 945 // sext ((x & 2^n) != 2^n) -> (x >> n) - 1 946 unsigned ShiftAmt = KnownZeroMask.countTrailingZeros(); 947 // Perform a right shift to place the desired bit in the LSB. 948 if (ShiftAmt) 949 In = Builder->CreateLShr(In, 950 ConstantInt::get(In->getType(), ShiftAmt)); 951 952 // At this point "In" is either 1 or 0. Subtract 1 to turn 953 // {1, 0} -> {0, -1}. 954 In = Builder->CreateAdd(In, 955 ConstantInt::getAllOnesValue(In->getType()), 956 "sext"); 957 } else { 958 // sext ((x & 2^n) != 0) -> (x << bitwidth-n) a>> bitwidth-1 959 // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1 960 unsigned ShiftAmt = KnownZeroMask.countLeadingZeros(); 961 // Perform a left shift to place the desired bit in the MSB. 962 if (ShiftAmt) 963 In = Builder->CreateShl(In, 964 ConstantInt::get(In->getType(), ShiftAmt)); 965 966 // Distribute the bit over the whole bit width. 967 In = Builder->CreateAShr(In, ConstantInt::get(In->getType(), 968 BitWidth - 1), "sext"); 969 } 970 971 if (CI.getType() == In->getType()) 972 return ReplaceInstUsesWith(CI, In); 973 return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/); 974 } 975 } 976 } 977 978 // vector (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if signed. 979 if (VectorType *VTy = dyn_cast<VectorType>(CI.getType())) { 980 if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_Zero()) && 981 Op0->getType() == CI.getType()) { 982 Type *EltTy = VTy->getElementType(); 983 984 // splat the shift constant to a constant vector. 985 Constant *VSh = ConstantInt::get(VTy, EltTy->getScalarSizeInBits()-1); 986 Value *In = Builder->CreateAShr(Op0, VSh, Op0->getName()+".lobit"); 987 return ReplaceInstUsesWith(CI, In); 988 } 989 } 990 991 return 0; 992 } 993 994 /// CanEvaluateSExtd - Return true if we can take the specified value 995 /// and return it as type Ty without inserting any new casts and without 996 /// changing the value of the common low bits. This is used by code that tries 997 /// to promote integer operations to a wider types will allow us to eliminate 998 /// the extension. 999 /// 1000 /// This function works on both vectors and scalars. 1001 /// 1002 static bool CanEvaluateSExtd(Value *V, Type *Ty) { 1003 assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() && 1004 "Can't sign extend type to a smaller type"); 1005 // If this is a constant, it can be trivially promoted. 1006 if (isa<Constant>(V)) 1007 return true; 1008 1009 Instruction *I = dyn_cast<Instruction>(V); 1010 if (!I) return false; 1011 1012 // If this is a truncate from the dest type, we can trivially eliminate it. 1013 if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty) 1014 return true; 1015 1016 // We can't extend or shrink something that has multiple uses: doing so would 1017 // require duplicating the instruction in general, which isn't profitable. 1018 if (!I->hasOneUse()) return false; 1019 1020 switch (I->getOpcode()) { 1021 case Instruction::SExt: // sext(sext(x)) -> sext(x) 1022 case Instruction::ZExt: // sext(zext(x)) -> zext(x) 1023 case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x) 1024 return true; 1025 case Instruction::And: 1026 case Instruction::Or: 1027 case Instruction::Xor: 1028 case Instruction::Add: 1029 case Instruction::Sub: 1030 case Instruction::Mul: 1031 // These operators can all arbitrarily be extended if their inputs can. 1032 return CanEvaluateSExtd(I->getOperand(0), Ty) && 1033 CanEvaluateSExtd(I->getOperand(1), Ty); 1034 1035 //case Instruction::Shl: TODO 1036 //case Instruction::LShr: TODO 1037 1038 case Instruction::Select: 1039 return CanEvaluateSExtd(I->getOperand(1), Ty) && 1040 CanEvaluateSExtd(I->getOperand(2), Ty); 1041 1042 case Instruction::PHI: { 1043 // We can change a phi if we can change all operands. Note that we never 1044 // get into trouble with cyclic PHIs here because we only consider 1045 // instructions with a single use. 1046 PHINode *PN = cast<PHINode>(I); 1047 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1048 if (!CanEvaluateSExtd(PN->getIncomingValue(i), Ty)) return false; 1049 return true; 1050 } 1051 default: 1052 // TODO: Can handle more cases here. 1053 break; 1054 } 1055 1056 return false; 1057 } 1058 1059 Instruction *InstCombiner::visitSExt(SExtInst &CI) { 1060 // If this sign extend is only used by a truncate, let the truncate be 1061 // eliminated before we try to optimize this sext. 1062 if (CI.hasOneUse() && isa<TruncInst>(CI.use_back())) 1063 return 0; 1064 1065 if (Instruction *I = commonCastTransforms(CI)) 1066 return I; 1067 1068 // See if we can simplify any instructions used by the input whose sole 1069 // purpose is to compute bits we don't care about. 1070 if (SimplifyDemandedInstructionBits(CI)) 1071 return &CI; 1072 1073 Value *Src = CI.getOperand(0); 1074 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 1075 1076 // Attempt to extend the entire input expression tree to the destination 1077 // type. Only do this if the dest type is a simple type, don't convert the 1078 // expression tree to something weird like i93 unless the source is also 1079 // strange. 1080 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) && 1081 CanEvaluateSExtd(Src, DestTy)) { 1082 // Okay, we can transform this! Insert the new expression now. 1083 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" 1084 " to avoid sign extend: " << CI); 1085 Value *Res = EvaluateInDifferentType(Src, DestTy, true); 1086 assert(Res->getType() == DestTy); 1087 1088 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits(); 1089 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 1090 1091 // If the high bits are already filled with sign bit, just replace this 1092 // cast with the result. 1093 if (ComputeNumSignBits(Res) > DestBitSize - SrcBitSize) 1094 return ReplaceInstUsesWith(CI, Res); 1095 1096 // We need to emit a shl + ashr to do the sign extend. 1097 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize); 1098 return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"), 1099 ShAmt); 1100 } 1101 1102 // If this input is a trunc from our destination, then turn sext(trunc(x)) 1103 // into shifts. 1104 if (TruncInst *TI = dyn_cast<TruncInst>(Src)) 1105 if (TI->hasOneUse() && TI->getOperand(0)->getType() == DestTy) { 1106 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits(); 1107 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 1108 1109 // We need to emit a shl + ashr to do the sign extend. 1110 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize); 1111 Value *Res = Builder->CreateShl(TI->getOperand(0), ShAmt, "sext"); 1112 return BinaryOperator::CreateAShr(Res, ShAmt); 1113 } 1114 1115 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) 1116 return transformSExtICmp(ICI, CI); 1117 1118 // If the input is a shl/ashr pair of a same constant, then this is a sign 1119 // extension from a smaller value. If we could trust arbitrary bitwidth 1120 // integers, we could turn this into a truncate to the smaller bit and then 1121 // use a sext for the whole extension. Since we don't, look deeper and check 1122 // for a truncate. If the source and dest are the same type, eliminate the 1123 // trunc and extend and just do shifts. For example, turn: 1124 // %a = trunc i32 %i to i8 1125 // %b = shl i8 %a, 6 1126 // %c = ashr i8 %b, 6 1127 // %d = sext i8 %c to i32 1128 // into: 1129 // %a = shl i32 %i, 30 1130 // %d = ashr i32 %a, 30 1131 Value *A = 0; 1132 // TODO: Eventually this could be subsumed by EvaluateInDifferentType. 1133 ConstantInt *BA = 0, *CA = 0; 1134 if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)), 1135 m_ConstantInt(CA))) && 1136 BA == CA && A->getType() == CI.getType()) { 1137 unsigned MidSize = Src->getType()->getScalarSizeInBits(); 1138 unsigned SrcDstSize = CI.getType()->getScalarSizeInBits(); 1139 unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize; 1140 Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt); 1141 A = Builder->CreateShl(A, ShAmtV, CI.getName()); 1142 return BinaryOperator::CreateAShr(A, ShAmtV); 1143 } 1144 1145 return 0; 1146 } 1147 1148 1149 /// FitsInFPType - Return a Constant* for the specified FP constant if it fits 1150 /// in the specified FP type without changing its value. 1151 static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) { 1152 bool losesInfo; 1153 APFloat F = CFP->getValueAPF(); 1154 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo); 1155 if (!losesInfo) 1156 return ConstantFP::get(CFP->getContext(), F); 1157 return 0; 1158 } 1159 1160 /// LookThroughFPExtensions - If this is an fp extension instruction, look 1161 /// through it until we get the source value. 1162 static Value *LookThroughFPExtensions(Value *V) { 1163 if (Instruction *I = dyn_cast<Instruction>(V)) 1164 if (I->getOpcode() == Instruction::FPExt) 1165 return LookThroughFPExtensions(I->getOperand(0)); 1166 1167 // If this value is a constant, return the constant in the smallest FP type 1168 // that can accurately represent it. This allows us to turn 1169 // (float)((double)X+2.0) into x+2.0f. 1170 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 1171 if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext())) 1172 return V; // No constant folding of this. 1173 // See if the value can be truncated to half and then reextended. 1174 if (Value *V = FitsInFPType(CFP, APFloat::IEEEhalf)) 1175 return V; 1176 // See if the value can be truncated to float and then reextended. 1177 if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle)) 1178 return V; 1179 if (CFP->getType()->isDoubleTy()) 1180 return V; // Won't shrink. 1181 if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble)) 1182 return V; 1183 // Don't try to shrink to various long double types. 1184 } 1185 1186 return V; 1187 } 1188 1189 Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) { 1190 if (Instruction *I = commonCastTransforms(CI)) 1191 return I; 1192 1193 // If we have fptrunc(fadd (fpextend x), (fpextend y)), where x and y are 1194 // smaller than the destination type, we can eliminate the truncate by doing 1195 // the add as the smaller type. This applies to fadd/fsub/fmul/fdiv as well 1196 // as many builtins (sqrt, etc). 1197 BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0)); 1198 if (OpI && OpI->hasOneUse()) { 1199 switch (OpI->getOpcode()) { 1200 default: break; 1201 case Instruction::FAdd: 1202 case Instruction::FSub: 1203 case Instruction::FMul: 1204 case Instruction::FDiv: 1205 case Instruction::FRem: 1206 Type *SrcTy = OpI->getType(); 1207 Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0)); 1208 Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1)); 1209 if (LHSTrunc->getType() != SrcTy && 1210 RHSTrunc->getType() != SrcTy) { 1211 unsigned DstSize = CI.getType()->getScalarSizeInBits(); 1212 // If the source types were both smaller than the destination type of 1213 // the cast, do this xform. 1214 if (LHSTrunc->getType()->getScalarSizeInBits() <= DstSize && 1215 RHSTrunc->getType()->getScalarSizeInBits() <= DstSize) { 1216 LHSTrunc = Builder->CreateFPExt(LHSTrunc, CI.getType()); 1217 RHSTrunc = Builder->CreateFPExt(RHSTrunc, CI.getType()); 1218 return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc); 1219 } 1220 } 1221 break; 1222 } 1223 1224 // (fptrunc (fneg x)) -> (fneg (fptrunc x)) 1225 if (BinaryOperator::isFNeg(OpI)) { 1226 Value *InnerTrunc = Builder->CreateFPTrunc(OpI->getOperand(1), 1227 CI.getType()); 1228 return BinaryOperator::CreateFNeg(InnerTrunc); 1229 } 1230 } 1231 1232 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI.getOperand(0)); 1233 if (II) { 1234 switch (II->getIntrinsicID()) { 1235 default: break; 1236 case Intrinsic::fabs: { 1237 // (fptrunc (fabs x)) -> (fabs (fptrunc x)) 1238 Value *InnerTrunc = Builder->CreateFPTrunc(II->getArgOperand(0), 1239 CI.getType()); 1240 Type *IntrinsicType[] = { CI.getType() }; 1241 Function *Overload = 1242 Intrinsic::getDeclaration(CI.getParent()->getParent()->getParent(), 1243 II->getIntrinsicID(), IntrinsicType); 1244 1245 Value *Args[] = { InnerTrunc }; 1246 return CallInst::Create(Overload, Args, II->getName()); 1247 } 1248 } 1249 } 1250 1251 // Fold (fptrunc (sqrt (fpext x))) -> (sqrtf x) 1252 CallInst *Call = dyn_cast<CallInst>(CI.getOperand(0)); 1253 if (Call && Call->getCalledFunction() && TLI->has(LibFunc::sqrtf) && 1254 Call->getCalledFunction()->getName() == TLI->getName(LibFunc::sqrt) && 1255 Call->getNumArgOperands() == 1 && 1256 Call->hasOneUse()) { 1257 CastInst *Arg = dyn_cast<CastInst>(Call->getArgOperand(0)); 1258 if (Arg && Arg->getOpcode() == Instruction::FPExt && 1259 CI.getType()->isFloatTy() && 1260 Call->getType()->isDoubleTy() && 1261 Arg->getType()->isDoubleTy() && 1262 Arg->getOperand(0)->getType()->isFloatTy()) { 1263 Function *Callee = Call->getCalledFunction(); 1264 Module *M = CI.getParent()->getParent()->getParent(); 1265 Constant *SqrtfFunc = M->getOrInsertFunction("sqrtf", 1266 Callee->getAttributes(), 1267 Builder->getFloatTy(), 1268 Builder->getFloatTy(), 1269 NULL); 1270 CallInst *ret = CallInst::Create(SqrtfFunc, Arg->getOperand(0), 1271 "sqrtfcall"); 1272 ret->setAttributes(Callee->getAttributes()); 1273 1274 1275 // Remove the old Call. With -fmath-errno, it won't get marked readnone. 1276 ReplaceInstUsesWith(*Call, UndefValue::get(Call->getType())); 1277 EraseInstFromFunction(*Call); 1278 return ret; 1279 } 1280 } 1281 1282 return 0; 1283 } 1284 1285 Instruction *InstCombiner::visitFPExt(CastInst &CI) { 1286 return commonCastTransforms(CI); 1287 } 1288 1289 Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) { 1290 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); 1291 if (OpI == 0) 1292 return commonCastTransforms(FI); 1293 1294 // fptoui(uitofp(X)) --> X 1295 // fptoui(sitofp(X)) --> X 1296 // This is safe if the intermediate type has enough bits in its mantissa to 1297 // accurately represent all values of X. For example, do not do this with 1298 // i64->float->i64. This is also safe for sitofp case, because any negative 1299 // 'X' value would cause an undefined result for the fptoui. 1300 if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) && 1301 OpI->getOperand(0)->getType() == FI.getType() && 1302 (int)FI.getType()->getScalarSizeInBits() < /*extra bit for sign */ 1303 OpI->getType()->getFPMantissaWidth()) 1304 return ReplaceInstUsesWith(FI, OpI->getOperand(0)); 1305 1306 return commonCastTransforms(FI); 1307 } 1308 1309 Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) { 1310 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); 1311 if (OpI == 0) 1312 return commonCastTransforms(FI); 1313 1314 // fptosi(sitofp(X)) --> X 1315 // fptosi(uitofp(X)) --> X 1316 // This is safe if the intermediate type has enough bits in its mantissa to 1317 // accurately represent all values of X. For example, do not do this with 1318 // i64->float->i64. This is also safe for sitofp case, because any negative 1319 // 'X' value would cause an undefined result for the fptoui. 1320 if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) && 1321 OpI->getOperand(0)->getType() == FI.getType() && 1322 (int)FI.getType()->getScalarSizeInBits() <= 1323 OpI->getType()->getFPMantissaWidth()) 1324 return ReplaceInstUsesWith(FI, OpI->getOperand(0)); 1325 1326 return commonCastTransforms(FI); 1327 } 1328 1329 Instruction *InstCombiner::visitUIToFP(CastInst &CI) { 1330 return commonCastTransforms(CI); 1331 } 1332 1333 Instruction *InstCombiner::visitSIToFP(CastInst &CI) { 1334 return commonCastTransforms(CI); 1335 } 1336 1337 Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) { 1338 // If the source integer type is not the intptr_t type for this target, do a 1339 // trunc or zext to the intptr_t type, then inttoptr of it. This allows the 1340 // cast to be exposed to other transforms. 1341 if (TD && CI.getOperand(0)->getType()->getScalarSizeInBits() != 1342 TD->getPointerSizeInBits()) { 1343 Type *Ty = TD->getIntPtrType(CI.getContext()); 1344 if (CI.getType()->isVectorTy()) // Handle vectors of pointers. 1345 Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements()); 1346 1347 Value *P = Builder->CreateZExtOrTrunc(CI.getOperand(0), Ty); 1348 return new IntToPtrInst(P, CI.getType()); 1349 } 1350 1351 if (Instruction *I = commonCastTransforms(CI)) 1352 return I; 1353 1354 return 0; 1355 } 1356 1357 /// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint) 1358 Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) { 1359 Value *Src = CI.getOperand(0); 1360 1361 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) { 1362 // If casting the result of a getelementptr instruction with no offset, turn 1363 // this into a cast of the original pointer! 1364 if (GEP->hasAllZeroIndices()) { 1365 // Changing the cast operand is usually not a good idea but it is safe 1366 // here because the pointer operand is being replaced with another 1367 // pointer operand so the opcode doesn't need to change. 1368 Worklist.Add(GEP); 1369 CI.setOperand(0, GEP->getOperand(0)); 1370 return &CI; 1371 } 1372 1373 // If the GEP has a single use, and the base pointer is a bitcast, and the 1374 // GEP computes a constant offset, see if we can convert these three 1375 // instructions into fewer. This typically happens with unions and other 1376 // non-type-safe code. 1377 APInt Offset(TD ? TD->getPointerSizeInBits() : 1, 0); 1378 if (TD && GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0)) && 1379 GEP->accumulateConstantOffset(*TD, Offset)) { 1380 // Get the base pointer input of the bitcast, and the type it points to. 1381 Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0); 1382 Type *GEPIdxTy = 1383 cast<PointerType>(OrigBase->getType())->getElementType(); 1384 SmallVector<Value*, 8> NewIndices; 1385 if (FindElementAtOffset(GEPIdxTy, Offset.getSExtValue(), NewIndices)) { 1386 // If we were able to index down into an element, create the GEP 1387 // and bitcast the result. This eliminates one bitcast, potentially 1388 // two. 1389 Value *NGEP = cast<GEPOperator>(GEP)->isInBounds() ? 1390 Builder->CreateInBoundsGEP(OrigBase, NewIndices) : 1391 Builder->CreateGEP(OrigBase, NewIndices); 1392 NGEP->takeName(GEP); 1393 1394 if (isa<BitCastInst>(CI)) 1395 return new BitCastInst(NGEP, CI.getType()); 1396 assert(isa<PtrToIntInst>(CI)); 1397 return new PtrToIntInst(NGEP, CI.getType()); 1398 } 1399 } 1400 } 1401 1402 return commonCastTransforms(CI); 1403 } 1404 1405 Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) { 1406 // If the destination integer type is not the intptr_t type for this target, 1407 // do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast 1408 // to be exposed to other transforms. 1409 if (TD && CI.getType()->getScalarSizeInBits() != TD->getPointerSizeInBits()) { 1410 Type *Ty = TD->getIntPtrType(CI.getContext()); 1411 if (CI.getType()->isVectorTy()) // Handle vectors of pointers. 1412 Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements()); 1413 1414 Value *P = Builder->CreatePtrToInt(CI.getOperand(0), Ty); 1415 return CastInst::CreateIntegerCast(P, CI.getType(), /*isSigned=*/false); 1416 } 1417 1418 return commonPointerCastTransforms(CI); 1419 } 1420 1421 /// OptimizeVectorResize - This input value (which is known to have vector type) 1422 /// is being zero extended or truncated to the specified vector type. Try to 1423 /// replace it with a shuffle (and vector/vector bitcast) if possible. 1424 /// 1425 /// The source and destination vector types may have different element types. 1426 static Instruction *OptimizeVectorResize(Value *InVal, VectorType *DestTy, 1427 InstCombiner &IC) { 1428 // We can only do this optimization if the output is a multiple of the input 1429 // element size, or the input is a multiple of the output element size. 1430 // Convert the input type to have the same element type as the output. 1431 VectorType *SrcTy = cast<VectorType>(InVal->getType()); 1432 1433 if (SrcTy->getElementType() != DestTy->getElementType()) { 1434 // The input types don't need to be identical, but for now they must be the 1435 // same size. There is no specific reason we couldn't handle things like 1436 // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten 1437 // there yet. 1438 if (SrcTy->getElementType()->getPrimitiveSizeInBits() != 1439 DestTy->getElementType()->getPrimitiveSizeInBits()) 1440 return 0; 1441 1442 SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements()); 1443 InVal = IC.Builder->CreateBitCast(InVal, SrcTy); 1444 } 1445 1446 // Now that the element types match, get the shuffle mask and RHS of the 1447 // shuffle to use, which depends on whether we're increasing or decreasing the 1448 // size of the input. 1449 SmallVector<uint32_t, 16> ShuffleMask; 1450 Value *V2; 1451 1452 if (SrcTy->getNumElements() > DestTy->getNumElements()) { 1453 // If we're shrinking the number of elements, just shuffle in the low 1454 // elements from the input and use undef as the second shuffle input. 1455 V2 = UndefValue::get(SrcTy); 1456 for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i) 1457 ShuffleMask.push_back(i); 1458 1459 } else { 1460 // If we're increasing the number of elements, shuffle in all of the 1461 // elements from InVal and fill the rest of the result elements with zeros 1462 // from a constant zero. 1463 V2 = Constant::getNullValue(SrcTy); 1464 unsigned SrcElts = SrcTy->getNumElements(); 1465 for (unsigned i = 0, e = SrcElts; i != e; ++i) 1466 ShuffleMask.push_back(i); 1467 1468 // The excess elements reference the first element of the zero input. 1469 for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i) 1470 ShuffleMask.push_back(SrcElts); 1471 } 1472 1473 return new ShuffleVectorInst(InVal, V2, 1474 ConstantDataVector::get(V2->getContext(), 1475 ShuffleMask)); 1476 } 1477 1478 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) { 1479 return Value % Ty->getPrimitiveSizeInBits() == 0; 1480 } 1481 1482 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) { 1483 return Value / Ty->getPrimitiveSizeInBits(); 1484 } 1485 1486 /// CollectInsertionElements - V is a value which is inserted into a vector of 1487 /// VecEltTy. Look through the value to see if we can decompose it into 1488 /// insertions into the vector. See the example in the comment for 1489 /// OptimizeIntegerToVectorInsertions for the pattern this handles. 1490 /// The type of V is always a non-zero multiple of VecEltTy's size. 1491 /// 1492 /// This returns false if the pattern can't be matched or true if it can, 1493 /// filling in Elements with the elements found here. 1494 static bool CollectInsertionElements(Value *V, unsigned ElementIndex, 1495 SmallVectorImpl<Value*> &Elements, 1496 Type *VecEltTy) { 1497 // Undef values never contribute useful bits to the result. 1498 if (isa<UndefValue>(V)) return true; 1499 1500 // If we got down to a value of the right type, we win, try inserting into the 1501 // right element. 1502 if (V->getType() == VecEltTy) { 1503 // Inserting null doesn't actually insert any elements. 1504 if (Constant *C = dyn_cast<Constant>(V)) 1505 if (C->isNullValue()) 1506 return true; 1507 1508 // Fail if multiple elements are inserted into this slot. 1509 if (ElementIndex >= Elements.size() || Elements[ElementIndex] != 0) 1510 return false; 1511 1512 Elements[ElementIndex] = V; 1513 return true; 1514 } 1515 1516 if (Constant *C = dyn_cast<Constant>(V)) { 1517 // Figure out the # elements this provides, and bitcast it or slice it up 1518 // as required. 1519 unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(), 1520 VecEltTy); 1521 // If the constant is the size of a vector element, we just need to bitcast 1522 // it to the right type so it gets properly inserted. 1523 if (NumElts == 1) 1524 return CollectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy), 1525 ElementIndex, Elements, VecEltTy); 1526 1527 // Okay, this is a constant that covers multiple elements. Slice it up into 1528 // pieces and insert each element-sized piece into the vector. 1529 if (!isa<IntegerType>(C->getType())) 1530 C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(), 1531 C->getType()->getPrimitiveSizeInBits())); 1532 unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits(); 1533 Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize); 1534 1535 for (unsigned i = 0; i != NumElts; ++i) { 1536 Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(), 1537 i*ElementSize)); 1538 Piece = ConstantExpr::getTrunc(Piece, ElementIntTy); 1539 if (!CollectInsertionElements(Piece, ElementIndex+i, Elements, VecEltTy)) 1540 return false; 1541 } 1542 return true; 1543 } 1544 1545 if (!V->hasOneUse()) return false; 1546 1547 Instruction *I = dyn_cast<Instruction>(V); 1548 if (I == 0) return false; 1549 switch (I->getOpcode()) { 1550 default: return false; // Unhandled case. 1551 case Instruction::BitCast: 1552 return CollectInsertionElements(I->getOperand(0), ElementIndex, 1553 Elements, VecEltTy); 1554 case Instruction::ZExt: 1555 if (!isMultipleOfTypeSize( 1556 I->getOperand(0)->getType()->getPrimitiveSizeInBits(), 1557 VecEltTy)) 1558 return false; 1559 return CollectInsertionElements(I->getOperand(0), ElementIndex, 1560 Elements, VecEltTy); 1561 case Instruction::Or: 1562 return CollectInsertionElements(I->getOperand(0), ElementIndex, 1563 Elements, VecEltTy) && 1564 CollectInsertionElements(I->getOperand(1), ElementIndex, 1565 Elements, VecEltTy); 1566 case Instruction::Shl: { 1567 // Must be shifting by a constant that is a multiple of the element size. 1568 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 1569 if (CI == 0) return false; 1570 if (!isMultipleOfTypeSize(CI->getZExtValue(), VecEltTy)) return false; 1571 unsigned IndexShift = getTypeSizeIndex(CI->getZExtValue(), VecEltTy); 1572 1573 return CollectInsertionElements(I->getOperand(0), ElementIndex+IndexShift, 1574 Elements, VecEltTy); 1575 } 1576 1577 } 1578 } 1579 1580 1581 /// OptimizeIntegerToVectorInsertions - If the input is an 'or' instruction, we 1582 /// may be doing shifts and ors to assemble the elements of the vector manually. 1583 /// Try to rip the code out and replace it with insertelements. This is to 1584 /// optimize code like this: 1585 /// 1586 /// %tmp37 = bitcast float %inc to i32 1587 /// %tmp38 = zext i32 %tmp37 to i64 1588 /// %tmp31 = bitcast float %inc5 to i32 1589 /// %tmp32 = zext i32 %tmp31 to i64 1590 /// %tmp33 = shl i64 %tmp32, 32 1591 /// %ins35 = or i64 %tmp33, %tmp38 1592 /// %tmp43 = bitcast i64 %ins35 to <2 x float> 1593 /// 1594 /// Into two insertelements that do "buildvector{%inc, %inc5}". 1595 static Value *OptimizeIntegerToVectorInsertions(BitCastInst &CI, 1596 InstCombiner &IC) { 1597 VectorType *DestVecTy = cast<VectorType>(CI.getType()); 1598 Value *IntInput = CI.getOperand(0); 1599 1600 SmallVector<Value*, 8> Elements(DestVecTy->getNumElements()); 1601 if (!CollectInsertionElements(IntInput, 0, Elements, 1602 DestVecTy->getElementType())) 1603 return 0; 1604 1605 // If we succeeded, we know that all of the element are specified by Elements 1606 // or are zero if Elements has a null entry. Recast this as a set of 1607 // insertions. 1608 Value *Result = Constant::getNullValue(CI.getType()); 1609 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 1610 if (Elements[i] == 0) continue; // Unset element. 1611 1612 Result = IC.Builder->CreateInsertElement(Result, Elements[i], 1613 IC.Builder->getInt32(i)); 1614 } 1615 1616 return Result; 1617 } 1618 1619 1620 /// OptimizeIntToFloatBitCast - See if we can optimize an integer->float/double 1621 /// bitcast. The various long double bitcasts can't get in here. 1622 static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI,InstCombiner &IC){ 1623 // We need to know the target byte order to perform this optimization. 1624 if (!IC.getDataLayout()) return 0; 1625 1626 Value *Src = CI.getOperand(0); 1627 Type *DestTy = CI.getType(); 1628 1629 // If this is a bitcast from int to float, check to see if the int is an 1630 // extraction from a vector. 1631 Value *VecInput = 0; 1632 // bitcast(trunc(bitcast(somevector))) 1633 if (match(Src, m_Trunc(m_BitCast(m_Value(VecInput)))) && 1634 isa<VectorType>(VecInput->getType())) { 1635 VectorType *VecTy = cast<VectorType>(VecInput->getType()); 1636 unsigned DestWidth = DestTy->getPrimitiveSizeInBits(); 1637 1638 if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0) { 1639 // If the element type of the vector doesn't match the result type, 1640 // bitcast it to be a vector type we can extract from. 1641 if (VecTy->getElementType() != DestTy) { 1642 VecTy = VectorType::get(DestTy, 1643 VecTy->getPrimitiveSizeInBits() / DestWidth); 1644 VecInput = IC.Builder->CreateBitCast(VecInput, VecTy); 1645 } 1646 1647 unsigned Elt = 0; 1648 if (IC.getDataLayout()->isBigEndian()) 1649 Elt = VecTy->getPrimitiveSizeInBits() / DestWidth - 1; 1650 return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt)); 1651 } 1652 } 1653 1654 // bitcast(trunc(lshr(bitcast(somevector), cst)) 1655 ConstantInt *ShAmt = 0; 1656 if (match(Src, m_Trunc(m_LShr(m_BitCast(m_Value(VecInput)), 1657 m_ConstantInt(ShAmt)))) && 1658 isa<VectorType>(VecInput->getType())) { 1659 VectorType *VecTy = cast<VectorType>(VecInput->getType()); 1660 unsigned DestWidth = DestTy->getPrimitiveSizeInBits(); 1661 if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0 && 1662 ShAmt->getZExtValue() % DestWidth == 0) { 1663 // If the element type of the vector doesn't match the result type, 1664 // bitcast it to be a vector type we can extract from. 1665 if (VecTy->getElementType() != DestTy) { 1666 VecTy = VectorType::get(DestTy, 1667 VecTy->getPrimitiveSizeInBits() / DestWidth); 1668 VecInput = IC.Builder->CreateBitCast(VecInput, VecTy); 1669 } 1670 1671 unsigned Elt = ShAmt->getZExtValue() / DestWidth; 1672 if (IC.getDataLayout()->isBigEndian()) 1673 Elt = VecTy->getPrimitiveSizeInBits() / DestWidth - 1 - Elt; 1674 return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt)); 1675 } 1676 } 1677 return 0; 1678 } 1679 1680 Instruction *InstCombiner::visitBitCast(BitCastInst &CI) { 1681 // If the operands are integer typed then apply the integer transforms, 1682 // otherwise just apply the common ones. 1683 Value *Src = CI.getOperand(0); 1684 Type *SrcTy = Src->getType(); 1685 Type *DestTy = CI.getType(); 1686 1687 // Get rid of casts from one type to the same type. These are useless and can 1688 // be replaced by the operand. 1689 if (DestTy == Src->getType()) 1690 return ReplaceInstUsesWith(CI, Src); 1691 1692 if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) { 1693 PointerType *SrcPTy = cast<PointerType>(SrcTy); 1694 Type *DstElTy = DstPTy->getElementType(); 1695 Type *SrcElTy = SrcPTy->getElementType(); 1696 1697 // If the address spaces don't match, don't eliminate the bitcast, which is 1698 // required for changing types. 1699 if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace()) 1700 return 0; 1701 1702 // If we are casting a alloca to a pointer to a type of the same 1703 // size, rewrite the allocation instruction to allocate the "right" type. 1704 // There is no need to modify malloc calls because it is their bitcast that 1705 // needs to be cleaned up. 1706 if (AllocaInst *AI = dyn_cast<AllocaInst>(Src)) 1707 if (Instruction *V = PromoteCastOfAllocation(CI, *AI)) 1708 return V; 1709 1710 // If the source and destination are pointers, and this cast is equivalent 1711 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep. 1712 // This can enhance SROA and other transforms that want type-safe pointers. 1713 Constant *ZeroUInt = 1714 Constant::getNullValue(Type::getInt32Ty(CI.getContext())); 1715 unsigned NumZeros = 0; 1716 while (SrcElTy != DstElTy && 1717 isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() && 1718 SrcElTy->getNumContainedTypes() /* not "{}" */) { 1719 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt); 1720 ++NumZeros; 1721 } 1722 1723 // If we found a path from the src to dest, create the getelementptr now. 1724 if (SrcElTy == DstElTy) { 1725 SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt); 1726 return GetElementPtrInst::CreateInBounds(Src, Idxs); 1727 } 1728 } 1729 1730 // Try to optimize int -> float bitcasts. 1731 if ((DestTy->isFloatTy() || DestTy->isDoubleTy()) && isa<IntegerType>(SrcTy)) 1732 if (Instruction *I = OptimizeIntToFloatBitCast(CI, *this)) 1733 return I; 1734 1735 if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) { 1736 if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) { 1737 Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType()); 1738 return InsertElementInst::Create(UndefValue::get(DestTy), Elem, 1739 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 1740 // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast) 1741 } 1742 1743 if (isa<IntegerType>(SrcTy)) { 1744 // If this is a cast from an integer to vector, check to see if the input 1745 // is a trunc or zext of a bitcast from vector. If so, we can replace all 1746 // the casts with a shuffle and (potentially) a bitcast. 1747 if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) { 1748 CastInst *SrcCast = cast<CastInst>(Src); 1749 if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0))) 1750 if (isa<VectorType>(BCIn->getOperand(0)->getType())) 1751 if (Instruction *I = OptimizeVectorResize(BCIn->getOperand(0), 1752 cast<VectorType>(DestTy), *this)) 1753 return I; 1754 } 1755 1756 // If the input is an 'or' instruction, we may be doing shifts and ors to 1757 // assemble the elements of the vector manually. Try to rip the code out 1758 // and replace it with insertelements. 1759 if (Value *V = OptimizeIntegerToVectorInsertions(CI, *this)) 1760 return ReplaceInstUsesWith(CI, V); 1761 } 1762 } 1763 1764 if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) { 1765 if (SrcVTy->getNumElements() == 1) { 1766 // If our destination is not a vector, then make this a straight 1767 // scalar-scalar cast. 1768 if (!DestTy->isVectorTy()) { 1769 Value *Elem = 1770 Builder->CreateExtractElement(Src, 1771 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 1772 return CastInst::Create(Instruction::BitCast, Elem, DestTy); 1773 } 1774 1775 // Otherwise, see if our source is an insert. If so, then use the scalar 1776 // component directly. 1777 if (InsertElementInst *IEI = 1778 dyn_cast<InsertElementInst>(CI.getOperand(0))) 1779 return CastInst::Create(Instruction::BitCast, IEI->getOperand(1), 1780 DestTy); 1781 } 1782 } 1783 1784 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) { 1785 // Okay, we have (bitcast (shuffle ..)). Check to see if this is 1786 // a bitcast to a vector with the same # elts. 1787 if (SVI->hasOneUse() && DestTy->isVectorTy() && 1788 cast<VectorType>(DestTy)->getNumElements() == 1789 SVI->getType()->getNumElements() && 1790 SVI->getType()->getNumElements() == 1791 cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements()) { 1792 BitCastInst *Tmp; 1793 // If either of the operands is a cast from CI.getType(), then 1794 // evaluating the shuffle in the casted destination's type will allow 1795 // us to eliminate at least one cast. 1796 if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) && 1797 Tmp->getOperand(0)->getType() == DestTy) || 1798 ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) && 1799 Tmp->getOperand(0)->getType() == DestTy)) { 1800 Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy); 1801 Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy); 1802 // Return a new shuffle vector. Use the same element ID's, as we 1803 // know the vector types match #elts. 1804 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2)); 1805 } 1806 } 1807 } 1808 1809 if (SrcTy->isPointerTy()) 1810 return commonPointerCastTransforms(CI); 1811 return commonCastTransforms(CI); 1812 } 1813