Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombineCasts.cpp -----------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the visit functions for cast operations.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "InstCombine.h"
     15 #include "llvm/Analysis/ConstantFolding.h"
     16 #include "llvm/IR/DataLayout.h"
     17 #include "llvm/Support/PatternMatch.h"
     18 #include "llvm/Target/TargetLibraryInfo.h"
     19 using namespace llvm;
     20 using namespace PatternMatch;
     21 
     22 /// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
     23 /// expression.  If so, decompose it, returning some value X, such that Val is
     24 /// X*Scale+Offset.
     25 ///
     26 static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
     27                                         uint64_t &Offset) {
     28   if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
     29     Offset = CI->getZExtValue();
     30     Scale  = 0;
     31     return ConstantInt::get(Val->getType(), 0);
     32   }
     33 
     34   if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
     35     // Cannot look past anything that might overflow.
     36     OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
     37     if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) {
     38       Scale = 1;
     39       Offset = 0;
     40       return Val;
     41     }
     42 
     43     if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
     44       if (I->getOpcode() == Instruction::Shl) {
     45         // This is a value scaled by '1 << the shift amt'.
     46         Scale = UINT64_C(1) << RHS->getZExtValue();
     47         Offset = 0;
     48         return I->getOperand(0);
     49       }
     50 
     51       if (I->getOpcode() == Instruction::Mul) {
     52         // This value is scaled by 'RHS'.
     53         Scale = RHS->getZExtValue();
     54         Offset = 0;
     55         return I->getOperand(0);
     56       }
     57 
     58       if (I->getOpcode() == Instruction::Add) {
     59         // We have X+C.  Check to see if we really have (X*C2)+C1,
     60         // where C1 is divisible by C2.
     61         unsigned SubScale;
     62         Value *SubVal =
     63           DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
     64         Offset += RHS->getZExtValue();
     65         Scale = SubScale;
     66         return SubVal;
     67       }
     68     }
     69   }
     70 
     71   // Otherwise, we can't look past this.
     72   Scale = 1;
     73   Offset = 0;
     74   return Val;
     75 }
     76 
     77 /// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
     78 /// try to eliminate the cast by moving the type information into the alloc.
     79 Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
     80                                                    AllocaInst &AI) {
     81   // This requires DataLayout to get the alloca alignment and size information.
     82   if (!TD) return 0;
     83 
     84   PointerType *PTy = cast<PointerType>(CI.getType());
     85 
     86   BuilderTy AllocaBuilder(*Builder);
     87   AllocaBuilder.SetInsertPoint(AI.getParent(), &AI);
     88 
     89   // Get the type really allocated and the type casted to.
     90   Type *AllocElTy = AI.getAllocatedType();
     91   Type *CastElTy = PTy->getElementType();
     92   if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
     93 
     94   unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy);
     95   unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy);
     96   if (CastElTyAlign < AllocElTyAlign) return 0;
     97 
     98   // If the allocation has multiple uses, only promote it if we are strictly
     99   // increasing the alignment of the resultant allocation.  If we keep it the
    100   // same, we open the door to infinite loops of various kinds.
    101   if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return 0;
    102 
    103   uint64_t AllocElTySize = TD->getTypeAllocSize(AllocElTy);
    104   uint64_t CastElTySize = TD->getTypeAllocSize(CastElTy);
    105   if (CastElTySize == 0 || AllocElTySize == 0) return 0;
    106 
    107   // If the allocation has multiple uses, only promote it if we're not
    108   // shrinking the amount of memory being allocated.
    109   uint64_t AllocElTyStoreSize = TD->getTypeStoreSize(AllocElTy);
    110   uint64_t CastElTyStoreSize = TD->getTypeStoreSize(CastElTy);
    111   if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return 0;
    112 
    113   // See if we can satisfy the modulus by pulling a scale out of the array
    114   // size argument.
    115   unsigned ArraySizeScale;
    116   uint64_t ArrayOffset;
    117   Value *NumElements = // See if the array size is a decomposable linear expr.
    118     DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
    119 
    120   // If we can now satisfy the modulus, by using a non-1 scale, we really can
    121   // do the xform.
    122   if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
    123       (AllocElTySize*ArrayOffset   ) % CastElTySize != 0) return 0;
    124 
    125   unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
    126   Value *Amt = 0;
    127   if (Scale == 1) {
    128     Amt = NumElements;
    129   } else {
    130     Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
    131     // Insert before the alloca, not before the cast.
    132     Amt = AllocaBuilder.CreateMul(Amt, NumElements);
    133   }
    134 
    135   if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
    136     Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
    137                                   Offset, true);
    138     Amt = AllocaBuilder.CreateAdd(Amt, Off);
    139   }
    140 
    141   AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
    142   New->setAlignment(AI.getAlignment());
    143   New->takeName(&AI);
    144 
    145   // If the allocation has multiple real uses, insert a cast and change all
    146   // things that used it to use the new cast.  This will also hack on CI, but it
    147   // will die soon.
    148   if (!AI.hasOneUse()) {
    149     // New is the allocation instruction, pointer typed. AI is the original
    150     // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
    151     Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
    152     ReplaceInstUsesWith(AI, NewCast);
    153   }
    154   return ReplaceInstUsesWith(CI, New);
    155 }
    156 
    157 /// EvaluateInDifferentType - Given an expression that
    158 /// CanEvaluateTruncated or CanEvaluateSExtd returns true for, actually
    159 /// insert the code to evaluate the expression.
    160 Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
    161                                              bool isSigned) {
    162   if (Constant *C = dyn_cast<Constant>(V)) {
    163     C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
    164     // If we got a constantexpr back, try to simplify it with TD info.
    165     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
    166       C = ConstantFoldConstantExpression(CE, TD, TLI);
    167     return C;
    168   }
    169 
    170   // Otherwise, it must be an instruction.
    171   Instruction *I = cast<Instruction>(V);
    172   Instruction *Res = 0;
    173   unsigned Opc = I->getOpcode();
    174   switch (Opc) {
    175   case Instruction::Add:
    176   case Instruction::Sub:
    177   case Instruction::Mul:
    178   case Instruction::And:
    179   case Instruction::Or:
    180   case Instruction::Xor:
    181   case Instruction::AShr:
    182   case Instruction::LShr:
    183   case Instruction::Shl:
    184   case Instruction::UDiv:
    185   case Instruction::URem: {
    186     Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
    187     Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
    188     Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
    189     break;
    190   }
    191   case Instruction::Trunc:
    192   case Instruction::ZExt:
    193   case Instruction::SExt:
    194     // If the source type of the cast is the type we're trying for then we can
    195     // just return the source.  There's no need to insert it because it is not
    196     // new.
    197     if (I->getOperand(0)->getType() == Ty)
    198       return I->getOperand(0);
    199 
    200     // Otherwise, must be the same type of cast, so just reinsert a new one.
    201     // This also handles the case of zext(trunc(x)) -> zext(x).
    202     Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
    203                                       Opc == Instruction::SExt);
    204     break;
    205   case Instruction::Select: {
    206     Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
    207     Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
    208     Res = SelectInst::Create(I->getOperand(0), True, False);
    209     break;
    210   }
    211   case Instruction::PHI: {
    212     PHINode *OPN = cast<PHINode>(I);
    213     PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
    214     for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
    215       Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
    216       NPN->addIncoming(V, OPN->getIncomingBlock(i));
    217     }
    218     Res = NPN;
    219     break;
    220   }
    221   default:
    222     // TODO: Can handle more cases here.
    223     llvm_unreachable("Unreachable!");
    224   }
    225 
    226   Res->takeName(I);
    227   return InsertNewInstWith(Res, *I);
    228 }
    229 
    230 
    231 /// This function is a wrapper around CastInst::isEliminableCastPair. It
    232 /// simply extracts arguments and returns what that function returns.
    233 static Instruction::CastOps
    234 isEliminableCastPair(
    235   const CastInst *CI, ///< The first cast instruction
    236   unsigned opcode,       ///< The opcode of the second cast instruction
    237   Type *DstTy,     ///< The target type for the second cast instruction
    238   DataLayout *TD         ///< The target data for pointer size
    239 ) {
    240 
    241   Type *SrcTy = CI->getOperand(0)->getType();   // A from above
    242   Type *MidTy = CI->getType();                  // B from above
    243 
    244   // Get the opcodes of the two Cast instructions
    245   Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
    246   Instruction::CastOps secondOp = Instruction::CastOps(opcode);
    247   Type *SrcIntPtrTy = TD && SrcTy->isPtrOrPtrVectorTy() ?
    248     TD->getIntPtrType(SrcTy) : 0;
    249   Type *MidIntPtrTy = TD && MidTy->isPtrOrPtrVectorTy() ?
    250     TD->getIntPtrType(MidTy) : 0;
    251   Type *DstIntPtrTy = TD && DstTy->isPtrOrPtrVectorTy() ?
    252     TD->getIntPtrType(DstTy) : 0;
    253   unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
    254                                                 DstTy, SrcIntPtrTy, MidIntPtrTy,
    255                                                 DstIntPtrTy);
    256 
    257   // We don't want to form an inttoptr or ptrtoint that converts to an integer
    258   // type that differs from the pointer size.
    259   if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
    260       (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
    261     Res = 0;
    262 
    263   return Instruction::CastOps(Res);
    264 }
    265 
    266 /// ShouldOptimizeCast - Return true if the cast from "V to Ty" actually
    267 /// results in any code being generated and is interesting to optimize out. If
    268 /// the cast can be eliminated by some other simple transformation, we prefer
    269 /// to do the simplification first.
    270 bool InstCombiner::ShouldOptimizeCast(Instruction::CastOps opc, const Value *V,
    271                                       Type *Ty) {
    272   // Noop casts and casts of constants should be eliminated trivially.
    273   if (V->getType() == Ty || isa<Constant>(V)) return false;
    274 
    275   // If this is another cast that can be eliminated, we prefer to have it
    276   // eliminated.
    277   if (const CastInst *CI = dyn_cast<CastInst>(V))
    278     if (isEliminableCastPair(CI, opc, Ty, TD))
    279       return false;
    280 
    281   // If this is a vector sext from a compare, then we don't want to break the
    282   // idiom where each element of the extended vector is either zero or all ones.
    283   if (opc == Instruction::SExt && isa<CmpInst>(V) && Ty->isVectorTy())
    284     return false;
    285 
    286   return true;
    287 }
    288 
    289 
    290 /// @brief Implement the transforms common to all CastInst visitors.
    291 Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
    292   Value *Src = CI.getOperand(0);
    293 
    294   // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
    295   // eliminate it now.
    296   if (CastInst *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
    297     if (Instruction::CastOps opc =
    298         isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
    299       // The first cast (CSrc) is eliminable so we need to fix up or replace
    300       // the second cast (CI). CSrc will then have a good chance of being dead.
    301       return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
    302     }
    303   }
    304 
    305   // If we are casting a select then fold the cast into the select
    306   if (SelectInst *SI = dyn_cast<SelectInst>(Src))
    307     if (Instruction *NV = FoldOpIntoSelect(CI, SI))
    308       return NV;
    309 
    310   // If we are casting a PHI then fold the cast into the PHI
    311   if (isa<PHINode>(Src)) {
    312     // We don't do this if this would create a PHI node with an illegal type if
    313     // it is currently legal.
    314     if (!Src->getType()->isIntegerTy() ||
    315         !CI.getType()->isIntegerTy() ||
    316         ShouldChangeType(CI.getType(), Src->getType()))
    317       if (Instruction *NV = FoldOpIntoPhi(CI))
    318         return NV;
    319   }
    320 
    321   return 0;
    322 }
    323 
    324 /// CanEvaluateTruncated - Return true if we can evaluate the specified
    325 /// expression tree as type Ty instead of its larger type, and arrive with the
    326 /// same value.  This is used by code that tries to eliminate truncates.
    327 ///
    328 /// Ty will always be a type smaller than V.  We should return true if trunc(V)
    329 /// can be computed by computing V in the smaller type.  If V is an instruction,
    330 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
    331 /// makes sense if x and y can be efficiently truncated.
    332 ///
    333 /// This function works on both vectors and scalars.
    334 ///
    335 static bool CanEvaluateTruncated(Value *V, Type *Ty) {
    336   // We can always evaluate constants in another type.
    337   if (isa<Constant>(V))
    338     return true;
    339 
    340   Instruction *I = dyn_cast<Instruction>(V);
    341   if (!I) return false;
    342 
    343   Type *OrigTy = V->getType();
    344 
    345   // If this is an extension from the dest type, we can eliminate it, even if it
    346   // has multiple uses.
    347   if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
    348       I->getOperand(0)->getType() == Ty)
    349     return true;
    350 
    351   // We can't extend or shrink something that has multiple uses: doing so would
    352   // require duplicating the instruction in general, which isn't profitable.
    353   if (!I->hasOneUse()) return false;
    354 
    355   unsigned Opc = I->getOpcode();
    356   switch (Opc) {
    357   case Instruction::Add:
    358   case Instruction::Sub:
    359   case Instruction::Mul:
    360   case Instruction::And:
    361   case Instruction::Or:
    362   case Instruction::Xor:
    363     // These operators can all arbitrarily be extended or truncated.
    364     return CanEvaluateTruncated(I->getOperand(0), Ty) &&
    365            CanEvaluateTruncated(I->getOperand(1), Ty);
    366 
    367   case Instruction::UDiv:
    368   case Instruction::URem: {
    369     // UDiv and URem can be truncated if all the truncated bits are zero.
    370     uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
    371     uint32_t BitWidth = Ty->getScalarSizeInBits();
    372     if (BitWidth < OrigBitWidth) {
    373       APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth);
    374       if (MaskedValueIsZero(I->getOperand(0), Mask) &&
    375           MaskedValueIsZero(I->getOperand(1), Mask)) {
    376         return CanEvaluateTruncated(I->getOperand(0), Ty) &&
    377                CanEvaluateTruncated(I->getOperand(1), Ty);
    378       }
    379     }
    380     break;
    381   }
    382   case Instruction::Shl:
    383     // If we are truncating the result of this SHL, and if it's a shift of a
    384     // constant amount, we can always perform a SHL in a smaller type.
    385     if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
    386       uint32_t BitWidth = Ty->getScalarSizeInBits();
    387       if (CI->getLimitedValue(BitWidth) < BitWidth)
    388         return CanEvaluateTruncated(I->getOperand(0), Ty);
    389     }
    390     break;
    391   case Instruction::LShr:
    392     // If this is a truncate of a logical shr, we can truncate it to a smaller
    393     // lshr iff we know that the bits we would otherwise be shifting in are
    394     // already zeros.
    395     if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
    396       uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
    397       uint32_t BitWidth = Ty->getScalarSizeInBits();
    398       if (MaskedValueIsZero(I->getOperand(0),
    399             APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
    400           CI->getLimitedValue(BitWidth) < BitWidth) {
    401         return CanEvaluateTruncated(I->getOperand(0), Ty);
    402       }
    403     }
    404     break;
    405   case Instruction::Trunc:
    406     // trunc(trunc(x)) -> trunc(x)
    407     return true;
    408   case Instruction::ZExt:
    409   case Instruction::SExt:
    410     // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
    411     // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
    412     return true;
    413   case Instruction::Select: {
    414     SelectInst *SI = cast<SelectInst>(I);
    415     return CanEvaluateTruncated(SI->getTrueValue(), Ty) &&
    416            CanEvaluateTruncated(SI->getFalseValue(), Ty);
    417   }
    418   case Instruction::PHI: {
    419     // We can change a phi if we can change all operands.  Note that we never
    420     // get into trouble with cyclic PHIs here because we only consider
    421     // instructions with a single use.
    422     PHINode *PN = cast<PHINode>(I);
    423     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    424       if (!CanEvaluateTruncated(PN->getIncomingValue(i), Ty))
    425         return false;
    426     return true;
    427   }
    428   default:
    429     // TODO: Can handle more cases here.
    430     break;
    431   }
    432 
    433   return false;
    434 }
    435 
    436 Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
    437   if (Instruction *Result = commonCastTransforms(CI))
    438     return Result;
    439 
    440   // See if we can simplify any instructions used by the input whose sole
    441   // purpose is to compute bits we don't care about.
    442   if (SimplifyDemandedInstructionBits(CI))
    443     return &CI;
    444 
    445   Value *Src = CI.getOperand(0);
    446   Type *DestTy = CI.getType(), *SrcTy = Src->getType();
    447 
    448   // Attempt to truncate the entire input expression tree to the destination
    449   // type.   Only do this if the dest type is a simple type, don't convert the
    450   // expression tree to something weird like i93 unless the source is also
    451   // strange.
    452   if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
    453       CanEvaluateTruncated(Src, DestTy)) {
    454 
    455     // If this cast is a truncate, evaluting in a different type always
    456     // eliminates the cast, so it is always a win.
    457     DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
    458           " to avoid cast: " << CI << '\n');
    459     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
    460     assert(Res->getType() == DestTy);
    461     return ReplaceInstUsesWith(CI, Res);
    462   }
    463 
    464   // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector.
    465   if (DestTy->getScalarSizeInBits() == 1) {
    466     Constant *One = ConstantInt::get(Src->getType(), 1);
    467     Src = Builder->CreateAnd(Src, One);
    468     Value *Zero = Constant::getNullValue(Src->getType());
    469     return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
    470   }
    471 
    472   // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
    473   Value *A = 0; ConstantInt *Cst = 0;
    474   if (Src->hasOneUse() &&
    475       match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) {
    476     // We have three types to worry about here, the type of A, the source of
    477     // the truncate (MidSize), and the destination of the truncate. We know that
    478     // ASize < MidSize   and MidSize > ResultSize, but don't know the relation
    479     // between ASize and ResultSize.
    480     unsigned ASize = A->getType()->getPrimitiveSizeInBits();
    481 
    482     // If the shift amount is larger than the size of A, then the result is
    483     // known to be zero because all the input bits got shifted out.
    484     if (Cst->getZExtValue() >= ASize)
    485       return ReplaceInstUsesWith(CI, Constant::getNullValue(CI.getType()));
    486 
    487     // Since we're doing an lshr and a zero extend, and know that the shift
    488     // amount is smaller than ASize, it is always safe to do the shift in A's
    489     // type, then zero extend or truncate to the result.
    490     Value *Shift = Builder->CreateLShr(A, Cst->getZExtValue());
    491     Shift->takeName(Src);
    492     return CastInst::CreateIntegerCast(Shift, CI.getType(), false);
    493   }
    494 
    495   // Transform "trunc (and X, cst)" -> "and (trunc X), cst" so long as the dest
    496   // type isn't non-native.
    497   if (Src->hasOneUse() && isa<IntegerType>(Src->getType()) &&
    498       ShouldChangeType(Src->getType(), CI.getType()) &&
    499       match(Src, m_And(m_Value(A), m_ConstantInt(Cst)))) {
    500     Value *NewTrunc = Builder->CreateTrunc(A, CI.getType(), A->getName()+".tr");
    501     return BinaryOperator::CreateAnd(NewTrunc,
    502                                      ConstantExpr::getTrunc(Cst, CI.getType()));
    503   }
    504 
    505   return 0;
    506 }
    507 
    508 /// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
    509 /// in order to eliminate the icmp.
    510 Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
    511                                              bool DoXform) {
    512   // If we are just checking for a icmp eq of a single bit and zext'ing it
    513   // to an integer, then shift the bit to the appropriate place and then
    514   // cast to integer to avoid the comparison.
    515   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
    516     const APInt &Op1CV = Op1C->getValue();
    517 
    518     // zext (x <s  0) to i32 --> x>>u31      true if signbit set.
    519     // zext (x >s -1) to i32 --> (x>>u31)^1  true if signbit clear.
    520     if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
    521         (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
    522       if (!DoXform) return ICI;
    523 
    524       Value *In = ICI->getOperand(0);
    525       Value *Sh = ConstantInt::get(In->getType(),
    526                                    In->getType()->getScalarSizeInBits()-1);
    527       In = Builder->CreateLShr(In, Sh, In->getName()+".lobit");
    528       if (In->getType() != CI.getType())
    529         In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/);
    530 
    531       if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
    532         Constant *One = ConstantInt::get(In->getType(), 1);
    533         In = Builder->CreateXor(In, One, In->getName()+".not");
    534       }
    535 
    536       return ReplaceInstUsesWith(CI, In);
    537     }
    538 
    539     // zext (X == 0) to i32 --> X^1      iff X has only the low bit set.
    540     // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
    541     // zext (X == 1) to i32 --> X        iff X has only the low bit set.
    542     // zext (X == 2) to i32 --> X>>1     iff X has only the 2nd bit set.
    543     // zext (X != 0) to i32 --> X        iff X has only the low bit set.
    544     // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set.
    545     // zext (X != 1) to i32 --> X^1      iff X has only the low bit set.
    546     // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
    547     if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
    548         // This only works for EQ and NE
    549         ICI->isEquality()) {
    550       // If Op1C some other power of two, convert:
    551       uint32_t BitWidth = Op1C->getType()->getBitWidth();
    552       APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
    553       ComputeMaskedBits(ICI->getOperand(0), KnownZero, KnownOne);
    554 
    555       APInt KnownZeroMask(~KnownZero);
    556       if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
    557         if (!DoXform) return ICI;
    558 
    559         bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
    560         if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
    561           // (X&4) == 2 --> false
    562           // (X&4) != 2 --> true
    563           Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()),
    564                                            isNE);
    565           Res = ConstantExpr::getZExt(Res, CI.getType());
    566           return ReplaceInstUsesWith(CI, Res);
    567         }
    568 
    569         uint32_t ShiftAmt = KnownZeroMask.logBase2();
    570         Value *In = ICI->getOperand(0);
    571         if (ShiftAmt) {
    572           // Perform a logical shr by shiftamt.
    573           // Insert the shift to put the result in the low bit.
    574           In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt),
    575                                    In->getName()+".lobit");
    576         }
    577 
    578         if ((Op1CV != 0) == isNE) { // Toggle the low bit.
    579           Constant *One = ConstantInt::get(In->getType(), 1);
    580           In = Builder->CreateXor(In, One);
    581         }
    582 
    583         if (CI.getType() == In->getType())
    584           return ReplaceInstUsesWith(CI, In);
    585         return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
    586       }
    587     }
    588   }
    589 
    590   // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
    591   // It is also profitable to transform icmp eq into not(xor(A, B)) because that
    592   // may lead to additional simplifications.
    593   if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
    594     if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
    595       uint32_t BitWidth = ITy->getBitWidth();
    596       Value *LHS = ICI->getOperand(0);
    597       Value *RHS = ICI->getOperand(1);
    598 
    599       APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0);
    600       APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0);
    601       ComputeMaskedBits(LHS, KnownZeroLHS, KnownOneLHS);
    602       ComputeMaskedBits(RHS, KnownZeroRHS, KnownOneRHS);
    603 
    604       if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) {
    605         APInt KnownBits = KnownZeroLHS | KnownOneLHS;
    606         APInt UnknownBit = ~KnownBits;
    607         if (UnknownBit.countPopulation() == 1) {
    608           if (!DoXform) return ICI;
    609 
    610           Value *Result = Builder->CreateXor(LHS, RHS);
    611 
    612           // Mask off any bits that are set and won't be shifted away.
    613           if (KnownOneLHS.uge(UnknownBit))
    614             Result = Builder->CreateAnd(Result,
    615                                         ConstantInt::get(ITy, UnknownBit));
    616 
    617           // Shift the bit we're testing down to the lsb.
    618           Result = Builder->CreateLShr(
    619                Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
    620 
    621           if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
    622             Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1));
    623           Result->takeName(ICI);
    624           return ReplaceInstUsesWith(CI, Result);
    625         }
    626       }
    627     }
    628   }
    629 
    630   return 0;
    631 }
    632 
    633 /// CanEvaluateZExtd - Determine if the specified value can be computed in the
    634 /// specified wider type and produce the same low bits.  If not, return false.
    635 ///
    636 /// If this function returns true, it can also return a non-zero number of bits
    637 /// (in BitsToClear) which indicates that the value it computes is correct for
    638 /// the zero extend, but that the additional BitsToClear bits need to be zero'd
    639 /// out.  For example, to promote something like:
    640 ///
    641 ///   %B = trunc i64 %A to i32
    642 ///   %C = lshr i32 %B, 8
    643 ///   %E = zext i32 %C to i64
    644 ///
    645 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
    646 /// set to 8 to indicate that the promoted value needs to have bits 24-31
    647 /// cleared in addition to bits 32-63.  Since an 'and' will be generated to
    648 /// clear the top bits anyway, doing this has no extra cost.
    649 ///
    650 /// This function works on both vectors and scalars.
    651 static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) {
    652   BitsToClear = 0;
    653   if (isa<Constant>(V))
    654     return true;
    655 
    656   Instruction *I = dyn_cast<Instruction>(V);
    657   if (!I) return false;
    658 
    659   // If the input is a truncate from the destination type, we can trivially
    660   // eliminate it.
    661   if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
    662     return true;
    663 
    664   // We can't extend or shrink something that has multiple uses: doing so would
    665   // require duplicating the instruction in general, which isn't profitable.
    666   if (!I->hasOneUse()) return false;
    667 
    668   unsigned Opc = I->getOpcode(), Tmp;
    669   switch (Opc) {
    670   case Instruction::ZExt:  // zext(zext(x)) -> zext(x).
    671   case Instruction::SExt:  // zext(sext(x)) -> sext(x).
    672   case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
    673     return true;
    674   case Instruction::And:
    675   case Instruction::Or:
    676   case Instruction::Xor:
    677   case Instruction::Add:
    678   case Instruction::Sub:
    679   case Instruction::Mul:
    680     if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear) ||
    681         !CanEvaluateZExtd(I->getOperand(1), Ty, Tmp))
    682       return false;
    683     // These can all be promoted if neither operand has 'bits to clear'.
    684     if (BitsToClear == 0 && Tmp == 0)
    685       return true;
    686 
    687     // If the operation is an AND/OR/XOR and the bits to clear are zero in the
    688     // other side, BitsToClear is ok.
    689     if (Tmp == 0 &&
    690         (Opc == Instruction::And || Opc == Instruction::Or ||
    691          Opc == Instruction::Xor)) {
    692       // We use MaskedValueIsZero here for generality, but the case we care
    693       // about the most is constant RHS.
    694       unsigned VSize = V->getType()->getScalarSizeInBits();
    695       if (MaskedValueIsZero(I->getOperand(1),
    696                             APInt::getHighBitsSet(VSize, BitsToClear)))
    697         return true;
    698     }
    699 
    700     // Otherwise, we don't know how to analyze this BitsToClear case yet.
    701     return false;
    702 
    703   case Instruction::Shl:
    704     // We can promote shl(x, cst) if we can promote x.  Since shl overwrites the
    705     // upper bits we can reduce BitsToClear by the shift amount.
    706     if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
    707       if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear))
    708         return false;
    709       uint64_t ShiftAmt = Amt->getZExtValue();
    710       BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0;
    711       return true;
    712     }
    713     return false;
    714   case Instruction::LShr:
    715     // We can promote lshr(x, cst) if we can promote x.  This requires the
    716     // ultimate 'and' to clear out the high zero bits we're clearing out though.
    717     if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
    718       if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear))
    719         return false;
    720       BitsToClear += Amt->getZExtValue();
    721       if (BitsToClear > V->getType()->getScalarSizeInBits())
    722         BitsToClear = V->getType()->getScalarSizeInBits();
    723       return true;
    724     }
    725     // Cannot promote variable LSHR.
    726     return false;
    727   case Instruction::Select:
    728     if (!CanEvaluateZExtd(I->getOperand(1), Ty, Tmp) ||
    729         !CanEvaluateZExtd(I->getOperand(2), Ty, BitsToClear) ||
    730         // TODO: If important, we could handle the case when the BitsToClear are
    731         // known zero in the disagreeing side.
    732         Tmp != BitsToClear)
    733       return false;
    734     return true;
    735 
    736   case Instruction::PHI: {
    737     // We can change a phi if we can change all operands.  Note that we never
    738     // get into trouble with cyclic PHIs here because we only consider
    739     // instructions with a single use.
    740     PHINode *PN = cast<PHINode>(I);
    741     if (!CanEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear))
    742       return false;
    743     for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
    744       if (!CanEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp) ||
    745           // TODO: If important, we could handle the case when the BitsToClear
    746           // are known zero in the disagreeing input.
    747           Tmp != BitsToClear)
    748         return false;
    749     return true;
    750   }
    751   default:
    752     // TODO: Can handle more cases here.
    753     return false;
    754   }
    755 }
    756 
    757 Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
    758   // If this zero extend is only used by a truncate, let the truncate be
    759   // eliminated before we try to optimize this zext.
    760   if (CI.hasOneUse() && isa<TruncInst>(CI.use_back()))
    761     return 0;
    762 
    763   // If one of the common conversion will work, do it.
    764   if (Instruction *Result = commonCastTransforms(CI))
    765     return Result;
    766 
    767   // See if we can simplify any instructions used by the input whose sole
    768   // purpose is to compute bits we don't care about.
    769   if (SimplifyDemandedInstructionBits(CI))
    770     return &CI;
    771 
    772   Value *Src = CI.getOperand(0);
    773   Type *SrcTy = Src->getType(), *DestTy = CI.getType();
    774 
    775   // Attempt to extend the entire input expression tree to the destination
    776   // type.   Only do this if the dest type is a simple type, don't convert the
    777   // expression tree to something weird like i93 unless the source is also
    778   // strange.
    779   unsigned BitsToClear;
    780   if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
    781       CanEvaluateZExtd(Src, DestTy, BitsToClear)) {
    782     assert(BitsToClear < SrcTy->getScalarSizeInBits() &&
    783            "Unreasonable BitsToClear");
    784 
    785     // Okay, we can transform this!  Insert the new expression now.
    786     DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
    787           " to avoid zero extend: " << CI);
    788     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
    789     assert(Res->getType() == DestTy);
    790 
    791     uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
    792     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
    793 
    794     // If the high bits are already filled with zeros, just replace this
    795     // cast with the result.
    796     if (MaskedValueIsZero(Res, APInt::getHighBitsSet(DestBitSize,
    797                                                      DestBitSize-SrcBitsKept)))
    798       return ReplaceInstUsesWith(CI, Res);
    799 
    800     // We need to emit an AND to clear the high bits.
    801     Constant *C = ConstantInt::get(Res->getType(),
    802                                APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
    803     return BinaryOperator::CreateAnd(Res, C);
    804   }
    805 
    806   // If this is a TRUNC followed by a ZEXT then we are dealing with integral
    807   // types and if the sizes are just right we can convert this into a logical
    808   // 'and' which will be much cheaper than the pair of casts.
    809   if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast
    810     // TODO: Subsume this into EvaluateInDifferentType.
    811 
    812     // Get the sizes of the types involved.  We know that the intermediate type
    813     // will be smaller than A or C, but don't know the relation between A and C.
    814     Value *A = CSrc->getOperand(0);
    815     unsigned SrcSize = A->getType()->getScalarSizeInBits();
    816     unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
    817     unsigned DstSize = CI.getType()->getScalarSizeInBits();
    818     // If we're actually extending zero bits, then if
    819     // SrcSize <  DstSize: zext(a & mask)
    820     // SrcSize == DstSize: a & mask
    821     // SrcSize  > DstSize: trunc(a) & mask
    822     if (SrcSize < DstSize) {
    823       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
    824       Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
    825       Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask");
    826       return new ZExtInst(And, CI.getType());
    827     }
    828 
    829     if (SrcSize == DstSize) {
    830       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
    831       return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
    832                                                            AndValue));
    833     }
    834     if (SrcSize > DstSize) {
    835       Value *Trunc = Builder->CreateTrunc(A, CI.getType());
    836       APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
    837       return BinaryOperator::CreateAnd(Trunc,
    838                                        ConstantInt::get(Trunc->getType(),
    839                                                         AndValue));
    840     }
    841   }
    842 
    843   if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
    844     return transformZExtICmp(ICI, CI);
    845 
    846   BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
    847   if (SrcI && SrcI->getOpcode() == Instruction::Or) {
    848     // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
    849     // of the (zext icmp) will be transformed.
    850     ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
    851     ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
    852     if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
    853         (transformZExtICmp(LHS, CI, false) ||
    854          transformZExtICmp(RHS, CI, false))) {
    855       Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName());
    856       Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName());
    857       return BinaryOperator::Create(Instruction::Or, LCast, RCast);
    858     }
    859   }
    860 
    861   // zext(trunc(t) & C) -> (t & zext(C)).
    862   if (SrcI && SrcI->getOpcode() == Instruction::And && SrcI->hasOneUse())
    863     if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
    864       if (TruncInst *TI = dyn_cast<TruncInst>(SrcI->getOperand(0))) {
    865         Value *TI0 = TI->getOperand(0);
    866         if (TI0->getType() == CI.getType())
    867           return
    868             BinaryOperator::CreateAnd(TI0,
    869                                 ConstantExpr::getZExt(C, CI.getType()));
    870       }
    871 
    872   // zext((trunc(t) & C) ^ C) -> ((t & zext(C)) ^ zext(C)).
    873   if (SrcI && SrcI->getOpcode() == Instruction::Xor && SrcI->hasOneUse())
    874     if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
    875       if (BinaryOperator *And = dyn_cast<BinaryOperator>(SrcI->getOperand(0)))
    876         if (And->getOpcode() == Instruction::And && And->hasOneUse() &&
    877             And->getOperand(1) == C)
    878           if (TruncInst *TI = dyn_cast<TruncInst>(And->getOperand(0))) {
    879             Value *TI0 = TI->getOperand(0);
    880             if (TI0->getType() == CI.getType()) {
    881               Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
    882               Value *NewAnd = Builder->CreateAnd(TI0, ZC);
    883               return BinaryOperator::CreateXor(NewAnd, ZC);
    884             }
    885           }
    886 
    887   // zext (xor i1 X, true) to i32  --> xor (zext i1 X to i32), 1
    888   Value *X;
    889   if (SrcI && SrcI->hasOneUse() && SrcI->getType()->isIntegerTy(1) &&
    890       match(SrcI, m_Not(m_Value(X))) &&
    891       (!X->hasOneUse() || !isa<CmpInst>(X))) {
    892     Value *New = Builder->CreateZExt(X, CI.getType());
    893     return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
    894   }
    895 
    896   return 0;
    897 }
    898 
    899 /// transformSExtICmp - Transform (sext icmp) to bitwise / integer operations
    900 /// in order to eliminate the icmp.
    901 Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
    902   Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1);
    903   ICmpInst::Predicate Pred = ICI->getPredicate();
    904 
    905   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
    906     // (x <s  0) ? -1 : 0 -> ashr x, 31        -> all ones if negative
    907     // (x >s -1) ? -1 : 0 -> not (ashr x, 31)  -> all ones if positive
    908     if ((Pred == ICmpInst::ICMP_SLT && Op1C->isZero()) ||
    909         (Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) {
    910 
    911       Value *Sh = ConstantInt::get(Op0->getType(),
    912                                    Op0->getType()->getScalarSizeInBits()-1);
    913       Value *In = Builder->CreateAShr(Op0, Sh, Op0->getName()+".lobit");
    914       if (In->getType() != CI.getType())
    915         In = Builder->CreateIntCast(In, CI.getType(), true/*SExt*/);
    916 
    917       if (Pred == ICmpInst::ICMP_SGT)
    918         In = Builder->CreateNot(In, In->getName()+".not");
    919       return ReplaceInstUsesWith(CI, In);
    920     }
    921 
    922     // If we know that only one bit of the LHS of the icmp can be set and we
    923     // have an equality comparison with zero or a power of 2, we can transform
    924     // the icmp and sext into bitwise/integer operations.
    925     if (ICI->hasOneUse() &&
    926         ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
    927       unsigned BitWidth = Op1C->getType()->getBitWidth();
    928       APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
    929       ComputeMaskedBits(Op0, KnownZero, KnownOne);
    930 
    931       APInt KnownZeroMask(~KnownZero);
    932       if (KnownZeroMask.isPowerOf2()) {
    933         Value *In = ICI->getOperand(0);
    934 
    935         // If the icmp tests for a known zero bit we can constant fold it.
    936         if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
    937           Value *V = Pred == ICmpInst::ICMP_NE ?
    938                        ConstantInt::getAllOnesValue(CI.getType()) :
    939                        ConstantInt::getNullValue(CI.getType());
    940           return ReplaceInstUsesWith(CI, V);
    941         }
    942 
    943         if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
    944           // sext ((x & 2^n) == 0)   -> (x >> n) - 1
    945           // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
    946           unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
    947           // Perform a right shift to place the desired bit in the LSB.
    948           if (ShiftAmt)
    949             In = Builder->CreateLShr(In,
    950                                      ConstantInt::get(In->getType(), ShiftAmt));
    951 
    952           // At this point "In" is either 1 or 0. Subtract 1 to turn
    953           // {1, 0} -> {0, -1}.
    954           In = Builder->CreateAdd(In,
    955                                   ConstantInt::getAllOnesValue(In->getType()),
    956                                   "sext");
    957         } else {
    958           // sext ((x & 2^n) != 0)   -> (x << bitwidth-n) a>> bitwidth-1
    959           // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
    960           unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
    961           // Perform a left shift to place the desired bit in the MSB.
    962           if (ShiftAmt)
    963             In = Builder->CreateShl(In,
    964                                     ConstantInt::get(In->getType(), ShiftAmt));
    965 
    966           // Distribute the bit over the whole bit width.
    967           In = Builder->CreateAShr(In, ConstantInt::get(In->getType(),
    968                                                         BitWidth - 1), "sext");
    969         }
    970 
    971         if (CI.getType() == In->getType())
    972           return ReplaceInstUsesWith(CI, In);
    973         return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/);
    974       }
    975     }
    976   }
    977 
    978   // vector (x <s 0) ? -1 : 0 -> ashr x, 31   -> all ones if signed.
    979   if (VectorType *VTy = dyn_cast<VectorType>(CI.getType())) {
    980     if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_Zero()) &&
    981         Op0->getType() == CI.getType()) {
    982       Type *EltTy = VTy->getElementType();
    983 
    984       // splat the shift constant to a constant vector.
    985       Constant *VSh = ConstantInt::get(VTy, EltTy->getScalarSizeInBits()-1);
    986       Value *In = Builder->CreateAShr(Op0, VSh, Op0->getName()+".lobit");
    987       return ReplaceInstUsesWith(CI, In);
    988     }
    989   }
    990 
    991   return 0;
    992 }
    993 
    994 /// CanEvaluateSExtd - Return true if we can take the specified value
    995 /// and return it as type Ty without inserting any new casts and without
    996 /// changing the value of the common low bits.  This is used by code that tries
    997 /// to promote integer operations to a wider types will allow us to eliminate
    998 /// the extension.
    999 ///
   1000 /// This function works on both vectors and scalars.
   1001 ///
   1002 static bool CanEvaluateSExtd(Value *V, Type *Ty) {
   1003   assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
   1004          "Can't sign extend type to a smaller type");
   1005   // If this is a constant, it can be trivially promoted.
   1006   if (isa<Constant>(V))
   1007     return true;
   1008 
   1009   Instruction *I = dyn_cast<Instruction>(V);
   1010   if (!I) return false;
   1011 
   1012   // If this is a truncate from the dest type, we can trivially eliminate it.
   1013   if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
   1014     return true;
   1015 
   1016   // We can't extend or shrink something that has multiple uses: doing so would
   1017   // require duplicating the instruction in general, which isn't profitable.
   1018   if (!I->hasOneUse()) return false;
   1019 
   1020   switch (I->getOpcode()) {
   1021   case Instruction::SExt:  // sext(sext(x)) -> sext(x)
   1022   case Instruction::ZExt:  // sext(zext(x)) -> zext(x)
   1023   case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
   1024     return true;
   1025   case Instruction::And:
   1026   case Instruction::Or:
   1027   case Instruction::Xor:
   1028   case Instruction::Add:
   1029   case Instruction::Sub:
   1030   case Instruction::Mul:
   1031     // These operators can all arbitrarily be extended if their inputs can.
   1032     return CanEvaluateSExtd(I->getOperand(0), Ty) &&
   1033            CanEvaluateSExtd(I->getOperand(1), Ty);
   1034 
   1035   //case Instruction::Shl:   TODO
   1036   //case Instruction::LShr:  TODO
   1037 
   1038   case Instruction::Select:
   1039     return CanEvaluateSExtd(I->getOperand(1), Ty) &&
   1040            CanEvaluateSExtd(I->getOperand(2), Ty);
   1041 
   1042   case Instruction::PHI: {
   1043     // We can change a phi if we can change all operands.  Note that we never
   1044     // get into trouble with cyclic PHIs here because we only consider
   1045     // instructions with a single use.
   1046     PHINode *PN = cast<PHINode>(I);
   1047     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
   1048       if (!CanEvaluateSExtd(PN->getIncomingValue(i), Ty)) return false;
   1049     return true;
   1050   }
   1051   default:
   1052     // TODO: Can handle more cases here.
   1053     break;
   1054   }
   1055 
   1056   return false;
   1057 }
   1058 
   1059 Instruction *InstCombiner::visitSExt(SExtInst &CI) {
   1060   // If this sign extend is only used by a truncate, let the truncate be
   1061   // eliminated before we try to optimize this sext.
   1062   if (CI.hasOneUse() && isa<TruncInst>(CI.use_back()))
   1063     return 0;
   1064 
   1065   if (Instruction *I = commonCastTransforms(CI))
   1066     return I;
   1067 
   1068   // See if we can simplify any instructions used by the input whose sole
   1069   // purpose is to compute bits we don't care about.
   1070   if (SimplifyDemandedInstructionBits(CI))
   1071     return &CI;
   1072 
   1073   Value *Src = CI.getOperand(0);
   1074   Type *SrcTy = Src->getType(), *DestTy = CI.getType();
   1075 
   1076   // Attempt to extend the entire input expression tree to the destination
   1077   // type.   Only do this if the dest type is a simple type, don't convert the
   1078   // expression tree to something weird like i93 unless the source is also
   1079   // strange.
   1080   if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
   1081       CanEvaluateSExtd(Src, DestTy)) {
   1082     // Okay, we can transform this!  Insert the new expression now.
   1083     DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
   1084           " to avoid sign extend: " << CI);
   1085     Value *Res = EvaluateInDifferentType(Src, DestTy, true);
   1086     assert(Res->getType() == DestTy);
   1087 
   1088     uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
   1089     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
   1090 
   1091     // If the high bits are already filled with sign bit, just replace this
   1092     // cast with the result.
   1093     if (ComputeNumSignBits(Res) > DestBitSize - SrcBitSize)
   1094       return ReplaceInstUsesWith(CI, Res);
   1095 
   1096     // We need to emit a shl + ashr to do the sign extend.
   1097     Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
   1098     return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"),
   1099                                       ShAmt);
   1100   }
   1101 
   1102   // If this input is a trunc from our destination, then turn sext(trunc(x))
   1103   // into shifts.
   1104   if (TruncInst *TI = dyn_cast<TruncInst>(Src))
   1105     if (TI->hasOneUse() && TI->getOperand(0)->getType() == DestTy) {
   1106       uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
   1107       uint32_t DestBitSize = DestTy->getScalarSizeInBits();
   1108 
   1109       // We need to emit a shl + ashr to do the sign extend.
   1110       Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
   1111       Value *Res = Builder->CreateShl(TI->getOperand(0), ShAmt, "sext");
   1112       return BinaryOperator::CreateAShr(Res, ShAmt);
   1113     }
   1114 
   1115   if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
   1116     return transformSExtICmp(ICI, CI);
   1117 
   1118   // If the input is a shl/ashr pair of a same constant, then this is a sign
   1119   // extension from a smaller value.  If we could trust arbitrary bitwidth
   1120   // integers, we could turn this into a truncate to the smaller bit and then
   1121   // use a sext for the whole extension.  Since we don't, look deeper and check
   1122   // for a truncate.  If the source and dest are the same type, eliminate the
   1123   // trunc and extend and just do shifts.  For example, turn:
   1124   //   %a = trunc i32 %i to i8
   1125   //   %b = shl i8 %a, 6
   1126   //   %c = ashr i8 %b, 6
   1127   //   %d = sext i8 %c to i32
   1128   // into:
   1129   //   %a = shl i32 %i, 30
   1130   //   %d = ashr i32 %a, 30
   1131   Value *A = 0;
   1132   // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
   1133   ConstantInt *BA = 0, *CA = 0;
   1134   if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
   1135                         m_ConstantInt(CA))) &&
   1136       BA == CA && A->getType() == CI.getType()) {
   1137     unsigned MidSize = Src->getType()->getScalarSizeInBits();
   1138     unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
   1139     unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
   1140     Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
   1141     A = Builder->CreateShl(A, ShAmtV, CI.getName());
   1142     return BinaryOperator::CreateAShr(A, ShAmtV);
   1143   }
   1144 
   1145   return 0;
   1146 }
   1147 
   1148 
   1149 /// FitsInFPType - Return a Constant* for the specified FP constant if it fits
   1150 /// in the specified FP type without changing its value.
   1151 static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
   1152   bool losesInfo;
   1153   APFloat F = CFP->getValueAPF();
   1154   (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
   1155   if (!losesInfo)
   1156     return ConstantFP::get(CFP->getContext(), F);
   1157   return 0;
   1158 }
   1159 
   1160 /// LookThroughFPExtensions - If this is an fp extension instruction, look
   1161 /// through it until we get the source value.
   1162 static Value *LookThroughFPExtensions(Value *V) {
   1163   if (Instruction *I = dyn_cast<Instruction>(V))
   1164     if (I->getOpcode() == Instruction::FPExt)
   1165       return LookThroughFPExtensions(I->getOperand(0));
   1166 
   1167   // If this value is a constant, return the constant in the smallest FP type
   1168   // that can accurately represent it.  This allows us to turn
   1169   // (float)((double)X+2.0) into x+2.0f.
   1170   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
   1171     if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext()))
   1172       return V;  // No constant folding of this.
   1173     // See if the value can be truncated to half and then reextended.
   1174     if (Value *V = FitsInFPType(CFP, APFloat::IEEEhalf))
   1175       return V;
   1176     // See if the value can be truncated to float and then reextended.
   1177     if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle))
   1178       return V;
   1179     if (CFP->getType()->isDoubleTy())
   1180       return V;  // Won't shrink.
   1181     if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble))
   1182       return V;
   1183     // Don't try to shrink to various long double types.
   1184   }
   1185 
   1186   return V;
   1187 }
   1188 
   1189 Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
   1190   if (Instruction *I = commonCastTransforms(CI))
   1191     return I;
   1192 
   1193   // If we have fptrunc(fadd (fpextend x), (fpextend y)), where x and y are
   1194   // smaller than the destination type, we can eliminate the truncate by doing
   1195   // the add as the smaller type.  This applies to fadd/fsub/fmul/fdiv as well
   1196   // as many builtins (sqrt, etc).
   1197   BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
   1198   if (OpI && OpI->hasOneUse()) {
   1199     switch (OpI->getOpcode()) {
   1200     default: break;
   1201     case Instruction::FAdd:
   1202     case Instruction::FSub:
   1203     case Instruction::FMul:
   1204     case Instruction::FDiv:
   1205     case Instruction::FRem:
   1206       Type *SrcTy = OpI->getType();
   1207       Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0));
   1208       Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1));
   1209       if (LHSTrunc->getType() != SrcTy &&
   1210           RHSTrunc->getType() != SrcTy) {
   1211         unsigned DstSize = CI.getType()->getScalarSizeInBits();
   1212         // If the source types were both smaller than the destination type of
   1213         // the cast, do this xform.
   1214         if (LHSTrunc->getType()->getScalarSizeInBits() <= DstSize &&
   1215             RHSTrunc->getType()->getScalarSizeInBits() <= DstSize) {
   1216           LHSTrunc = Builder->CreateFPExt(LHSTrunc, CI.getType());
   1217           RHSTrunc = Builder->CreateFPExt(RHSTrunc, CI.getType());
   1218           return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc);
   1219         }
   1220       }
   1221       break;
   1222     }
   1223 
   1224     // (fptrunc (fneg x)) -> (fneg (fptrunc x))
   1225     if (BinaryOperator::isFNeg(OpI)) {
   1226       Value *InnerTrunc = Builder->CreateFPTrunc(OpI->getOperand(1),
   1227                                                  CI.getType());
   1228       return BinaryOperator::CreateFNeg(InnerTrunc);
   1229     }
   1230   }
   1231 
   1232   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI.getOperand(0));
   1233   if (II) {
   1234     switch (II->getIntrinsicID()) {
   1235       default: break;
   1236       case Intrinsic::fabs: {
   1237         // (fptrunc (fabs x)) -> (fabs (fptrunc x))
   1238         Value *InnerTrunc = Builder->CreateFPTrunc(II->getArgOperand(0),
   1239                                                    CI.getType());
   1240         Type *IntrinsicType[] = { CI.getType() };
   1241         Function *Overload =
   1242           Intrinsic::getDeclaration(CI.getParent()->getParent()->getParent(),
   1243                                     II->getIntrinsicID(), IntrinsicType);
   1244 
   1245         Value *Args[] = { InnerTrunc };
   1246         return CallInst::Create(Overload, Args, II->getName());
   1247       }
   1248     }
   1249   }
   1250 
   1251   // Fold (fptrunc (sqrt (fpext x))) -> (sqrtf x)
   1252   CallInst *Call = dyn_cast<CallInst>(CI.getOperand(0));
   1253   if (Call && Call->getCalledFunction() && TLI->has(LibFunc::sqrtf) &&
   1254       Call->getCalledFunction()->getName() == TLI->getName(LibFunc::sqrt) &&
   1255       Call->getNumArgOperands() == 1 &&
   1256       Call->hasOneUse()) {
   1257     CastInst *Arg = dyn_cast<CastInst>(Call->getArgOperand(0));
   1258     if (Arg && Arg->getOpcode() == Instruction::FPExt &&
   1259         CI.getType()->isFloatTy() &&
   1260         Call->getType()->isDoubleTy() &&
   1261         Arg->getType()->isDoubleTy() &&
   1262         Arg->getOperand(0)->getType()->isFloatTy()) {
   1263       Function *Callee = Call->getCalledFunction();
   1264       Module *M = CI.getParent()->getParent()->getParent();
   1265       Constant *SqrtfFunc = M->getOrInsertFunction("sqrtf",
   1266                                                    Callee->getAttributes(),
   1267                                                    Builder->getFloatTy(),
   1268                                                    Builder->getFloatTy(),
   1269                                                    NULL);
   1270       CallInst *ret = CallInst::Create(SqrtfFunc, Arg->getOperand(0),
   1271                                        "sqrtfcall");
   1272       ret->setAttributes(Callee->getAttributes());
   1273 
   1274 
   1275       // Remove the old Call.  With -fmath-errno, it won't get marked readnone.
   1276       ReplaceInstUsesWith(*Call, UndefValue::get(Call->getType()));
   1277       EraseInstFromFunction(*Call);
   1278       return ret;
   1279     }
   1280   }
   1281 
   1282   return 0;
   1283 }
   1284 
   1285 Instruction *InstCombiner::visitFPExt(CastInst &CI) {
   1286   return commonCastTransforms(CI);
   1287 }
   1288 
   1289 Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
   1290   Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
   1291   if (OpI == 0)
   1292     return commonCastTransforms(FI);
   1293 
   1294   // fptoui(uitofp(X)) --> X
   1295   // fptoui(sitofp(X)) --> X
   1296   // This is safe if the intermediate type has enough bits in its mantissa to
   1297   // accurately represent all values of X.  For example, do not do this with
   1298   // i64->float->i64.  This is also safe for sitofp case, because any negative
   1299   // 'X' value would cause an undefined result for the fptoui.
   1300   if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
   1301       OpI->getOperand(0)->getType() == FI.getType() &&
   1302       (int)FI.getType()->getScalarSizeInBits() < /*extra bit for sign */
   1303                     OpI->getType()->getFPMantissaWidth())
   1304     return ReplaceInstUsesWith(FI, OpI->getOperand(0));
   1305 
   1306   return commonCastTransforms(FI);
   1307 }
   1308 
   1309 Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
   1310   Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
   1311   if (OpI == 0)
   1312     return commonCastTransforms(FI);
   1313 
   1314   // fptosi(sitofp(X)) --> X
   1315   // fptosi(uitofp(X)) --> X
   1316   // This is safe if the intermediate type has enough bits in its mantissa to
   1317   // accurately represent all values of X.  For example, do not do this with
   1318   // i64->float->i64.  This is also safe for sitofp case, because any negative
   1319   // 'X' value would cause an undefined result for the fptoui.
   1320   if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
   1321       OpI->getOperand(0)->getType() == FI.getType() &&
   1322       (int)FI.getType()->getScalarSizeInBits() <=
   1323                     OpI->getType()->getFPMantissaWidth())
   1324     return ReplaceInstUsesWith(FI, OpI->getOperand(0));
   1325 
   1326   return commonCastTransforms(FI);
   1327 }
   1328 
   1329 Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
   1330   return commonCastTransforms(CI);
   1331 }
   1332 
   1333 Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
   1334   return commonCastTransforms(CI);
   1335 }
   1336 
   1337 Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
   1338   // If the source integer type is not the intptr_t type for this target, do a
   1339   // trunc or zext to the intptr_t type, then inttoptr of it.  This allows the
   1340   // cast to be exposed to other transforms.
   1341   if (TD && CI.getOperand(0)->getType()->getScalarSizeInBits() !=
   1342       TD->getPointerSizeInBits()) {
   1343     Type *Ty = TD->getIntPtrType(CI.getContext());
   1344     if (CI.getType()->isVectorTy()) // Handle vectors of pointers.
   1345       Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements());
   1346 
   1347     Value *P = Builder->CreateZExtOrTrunc(CI.getOperand(0), Ty);
   1348     return new IntToPtrInst(P, CI.getType());
   1349   }
   1350 
   1351   if (Instruction *I = commonCastTransforms(CI))
   1352     return I;
   1353 
   1354   return 0;
   1355 }
   1356 
   1357 /// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
   1358 Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
   1359   Value *Src = CI.getOperand(0);
   1360 
   1361   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
   1362     // If casting the result of a getelementptr instruction with no offset, turn
   1363     // this into a cast of the original pointer!
   1364     if (GEP->hasAllZeroIndices()) {
   1365       // Changing the cast operand is usually not a good idea but it is safe
   1366       // here because the pointer operand is being replaced with another
   1367       // pointer operand so the opcode doesn't need to change.
   1368       Worklist.Add(GEP);
   1369       CI.setOperand(0, GEP->getOperand(0));
   1370       return &CI;
   1371     }
   1372 
   1373     // If the GEP has a single use, and the base pointer is a bitcast, and the
   1374     // GEP computes a constant offset, see if we can convert these three
   1375     // instructions into fewer.  This typically happens with unions and other
   1376     // non-type-safe code.
   1377     APInt Offset(TD ? TD->getPointerSizeInBits() : 1, 0);
   1378     if (TD && GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0)) &&
   1379         GEP->accumulateConstantOffset(*TD, Offset)) {
   1380       // Get the base pointer input of the bitcast, and the type it points to.
   1381       Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0);
   1382       Type *GEPIdxTy =
   1383       cast<PointerType>(OrigBase->getType())->getElementType();
   1384       SmallVector<Value*, 8> NewIndices;
   1385       if (FindElementAtOffset(GEPIdxTy, Offset.getSExtValue(), NewIndices)) {
   1386         // If we were able to index down into an element, create the GEP
   1387         // and bitcast the result.  This eliminates one bitcast, potentially
   1388         // two.
   1389         Value *NGEP = cast<GEPOperator>(GEP)->isInBounds() ?
   1390         Builder->CreateInBoundsGEP(OrigBase, NewIndices) :
   1391         Builder->CreateGEP(OrigBase, NewIndices);
   1392         NGEP->takeName(GEP);
   1393 
   1394         if (isa<BitCastInst>(CI))
   1395           return new BitCastInst(NGEP, CI.getType());
   1396         assert(isa<PtrToIntInst>(CI));
   1397         return new PtrToIntInst(NGEP, CI.getType());
   1398       }
   1399     }
   1400   }
   1401 
   1402   return commonCastTransforms(CI);
   1403 }
   1404 
   1405 Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
   1406   // If the destination integer type is not the intptr_t type for this target,
   1407   // do a ptrtoint to intptr_t then do a trunc or zext.  This allows the cast
   1408   // to be exposed to other transforms.
   1409   if (TD && CI.getType()->getScalarSizeInBits() != TD->getPointerSizeInBits()) {
   1410     Type *Ty = TD->getIntPtrType(CI.getContext());
   1411     if (CI.getType()->isVectorTy()) // Handle vectors of pointers.
   1412       Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements());
   1413 
   1414     Value *P = Builder->CreatePtrToInt(CI.getOperand(0), Ty);
   1415     return CastInst::CreateIntegerCast(P, CI.getType(), /*isSigned=*/false);
   1416   }
   1417 
   1418   return commonPointerCastTransforms(CI);
   1419 }
   1420 
   1421 /// OptimizeVectorResize - This input value (which is known to have vector type)
   1422 /// is being zero extended or truncated to the specified vector type.  Try to
   1423 /// replace it with a shuffle (and vector/vector bitcast) if possible.
   1424 ///
   1425 /// The source and destination vector types may have different element types.
   1426 static Instruction *OptimizeVectorResize(Value *InVal, VectorType *DestTy,
   1427                                          InstCombiner &IC) {
   1428   // We can only do this optimization if the output is a multiple of the input
   1429   // element size, or the input is a multiple of the output element size.
   1430   // Convert the input type to have the same element type as the output.
   1431   VectorType *SrcTy = cast<VectorType>(InVal->getType());
   1432 
   1433   if (SrcTy->getElementType() != DestTy->getElementType()) {
   1434     // The input types don't need to be identical, but for now they must be the
   1435     // same size.  There is no specific reason we couldn't handle things like
   1436     // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
   1437     // there yet.
   1438     if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
   1439         DestTy->getElementType()->getPrimitiveSizeInBits())
   1440       return 0;
   1441 
   1442     SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
   1443     InVal = IC.Builder->CreateBitCast(InVal, SrcTy);
   1444   }
   1445 
   1446   // Now that the element types match, get the shuffle mask and RHS of the
   1447   // shuffle to use, which depends on whether we're increasing or decreasing the
   1448   // size of the input.
   1449   SmallVector<uint32_t, 16> ShuffleMask;
   1450   Value *V2;
   1451 
   1452   if (SrcTy->getNumElements() > DestTy->getNumElements()) {
   1453     // If we're shrinking the number of elements, just shuffle in the low
   1454     // elements from the input and use undef as the second shuffle input.
   1455     V2 = UndefValue::get(SrcTy);
   1456     for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i)
   1457       ShuffleMask.push_back(i);
   1458 
   1459   } else {
   1460     // If we're increasing the number of elements, shuffle in all of the
   1461     // elements from InVal and fill the rest of the result elements with zeros
   1462     // from a constant zero.
   1463     V2 = Constant::getNullValue(SrcTy);
   1464     unsigned SrcElts = SrcTy->getNumElements();
   1465     for (unsigned i = 0, e = SrcElts; i != e; ++i)
   1466       ShuffleMask.push_back(i);
   1467 
   1468     // The excess elements reference the first element of the zero input.
   1469     for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i)
   1470       ShuffleMask.push_back(SrcElts);
   1471   }
   1472 
   1473   return new ShuffleVectorInst(InVal, V2,
   1474                                ConstantDataVector::get(V2->getContext(),
   1475                                                        ShuffleMask));
   1476 }
   1477 
   1478 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
   1479   return Value % Ty->getPrimitiveSizeInBits() == 0;
   1480 }
   1481 
   1482 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
   1483   return Value / Ty->getPrimitiveSizeInBits();
   1484 }
   1485 
   1486 /// CollectInsertionElements - V is a value which is inserted into a vector of
   1487 /// VecEltTy.  Look through the value to see if we can decompose it into
   1488 /// insertions into the vector.  See the example in the comment for
   1489 /// OptimizeIntegerToVectorInsertions for the pattern this handles.
   1490 /// The type of V is always a non-zero multiple of VecEltTy's size.
   1491 ///
   1492 /// This returns false if the pattern can't be matched or true if it can,
   1493 /// filling in Elements with the elements found here.
   1494 static bool CollectInsertionElements(Value *V, unsigned ElementIndex,
   1495                                      SmallVectorImpl<Value*> &Elements,
   1496                                      Type *VecEltTy) {
   1497   // Undef values never contribute useful bits to the result.
   1498   if (isa<UndefValue>(V)) return true;
   1499 
   1500   // If we got down to a value of the right type, we win, try inserting into the
   1501   // right element.
   1502   if (V->getType() == VecEltTy) {
   1503     // Inserting null doesn't actually insert any elements.
   1504     if (Constant *C = dyn_cast<Constant>(V))
   1505       if (C->isNullValue())
   1506         return true;
   1507 
   1508     // Fail if multiple elements are inserted into this slot.
   1509     if (ElementIndex >= Elements.size() || Elements[ElementIndex] != 0)
   1510       return false;
   1511 
   1512     Elements[ElementIndex] = V;
   1513     return true;
   1514   }
   1515 
   1516   if (Constant *C = dyn_cast<Constant>(V)) {
   1517     // Figure out the # elements this provides, and bitcast it or slice it up
   1518     // as required.
   1519     unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
   1520                                         VecEltTy);
   1521     // If the constant is the size of a vector element, we just need to bitcast
   1522     // it to the right type so it gets properly inserted.
   1523     if (NumElts == 1)
   1524       return CollectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
   1525                                       ElementIndex, Elements, VecEltTy);
   1526 
   1527     // Okay, this is a constant that covers multiple elements.  Slice it up into
   1528     // pieces and insert each element-sized piece into the vector.
   1529     if (!isa<IntegerType>(C->getType()))
   1530       C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
   1531                                        C->getType()->getPrimitiveSizeInBits()));
   1532     unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
   1533     Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
   1534 
   1535     for (unsigned i = 0; i != NumElts; ++i) {
   1536       Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
   1537                                                                i*ElementSize));
   1538       Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
   1539       if (!CollectInsertionElements(Piece, ElementIndex+i, Elements, VecEltTy))
   1540         return false;
   1541     }
   1542     return true;
   1543   }
   1544 
   1545   if (!V->hasOneUse()) return false;
   1546 
   1547   Instruction *I = dyn_cast<Instruction>(V);
   1548   if (I == 0) return false;
   1549   switch (I->getOpcode()) {
   1550   default: return false; // Unhandled case.
   1551   case Instruction::BitCast:
   1552     return CollectInsertionElements(I->getOperand(0), ElementIndex,
   1553                                     Elements, VecEltTy);
   1554   case Instruction::ZExt:
   1555     if (!isMultipleOfTypeSize(
   1556                           I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
   1557                               VecEltTy))
   1558       return false;
   1559     return CollectInsertionElements(I->getOperand(0), ElementIndex,
   1560                                     Elements, VecEltTy);
   1561   case Instruction::Or:
   1562     return CollectInsertionElements(I->getOperand(0), ElementIndex,
   1563                                     Elements, VecEltTy) &&
   1564            CollectInsertionElements(I->getOperand(1), ElementIndex,
   1565                                     Elements, VecEltTy);
   1566   case Instruction::Shl: {
   1567     // Must be shifting by a constant that is a multiple of the element size.
   1568     ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
   1569     if (CI == 0) return false;
   1570     if (!isMultipleOfTypeSize(CI->getZExtValue(), VecEltTy)) return false;
   1571     unsigned IndexShift = getTypeSizeIndex(CI->getZExtValue(), VecEltTy);
   1572 
   1573     return CollectInsertionElements(I->getOperand(0), ElementIndex+IndexShift,
   1574                                     Elements, VecEltTy);
   1575   }
   1576 
   1577   }
   1578 }
   1579 
   1580 
   1581 /// OptimizeIntegerToVectorInsertions - If the input is an 'or' instruction, we
   1582 /// may be doing shifts and ors to assemble the elements of the vector manually.
   1583 /// Try to rip the code out and replace it with insertelements.  This is to
   1584 /// optimize code like this:
   1585 ///
   1586 ///    %tmp37 = bitcast float %inc to i32
   1587 ///    %tmp38 = zext i32 %tmp37 to i64
   1588 ///    %tmp31 = bitcast float %inc5 to i32
   1589 ///    %tmp32 = zext i32 %tmp31 to i64
   1590 ///    %tmp33 = shl i64 %tmp32, 32
   1591 ///    %ins35 = or i64 %tmp33, %tmp38
   1592 ///    %tmp43 = bitcast i64 %ins35 to <2 x float>
   1593 ///
   1594 /// Into two insertelements that do "buildvector{%inc, %inc5}".
   1595 static Value *OptimizeIntegerToVectorInsertions(BitCastInst &CI,
   1596                                                 InstCombiner &IC) {
   1597   VectorType *DestVecTy = cast<VectorType>(CI.getType());
   1598   Value *IntInput = CI.getOperand(0);
   1599 
   1600   SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
   1601   if (!CollectInsertionElements(IntInput, 0, Elements,
   1602                                 DestVecTy->getElementType()))
   1603     return 0;
   1604 
   1605   // If we succeeded, we know that all of the element are specified by Elements
   1606   // or are zero if Elements has a null entry.  Recast this as a set of
   1607   // insertions.
   1608   Value *Result = Constant::getNullValue(CI.getType());
   1609   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
   1610     if (Elements[i] == 0) continue;  // Unset element.
   1611 
   1612     Result = IC.Builder->CreateInsertElement(Result, Elements[i],
   1613                                              IC.Builder->getInt32(i));
   1614   }
   1615 
   1616   return Result;
   1617 }
   1618 
   1619 
   1620 /// OptimizeIntToFloatBitCast - See if we can optimize an integer->float/double
   1621 /// bitcast.  The various long double bitcasts can't get in here.
   1622 static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI,InstCombiner &IC){
   1623   // We need to know the target byte order to perform this optimization.
   1624   if (!IC.getDataLayout()) return 0;
   1625 
   1626   Value *Src = CI.getOperand(0);
   1627   Type *DestTy = CI.getType();
   1628 
   1629   // If this is a bitcast from int to float, check to see if the int is an
   1630   // extraction from a vector.
   1631   Value *VecInput = 0;
   1632   // bitcast(trunc(bitcast(somevector)))
   1633   if (match(Src, m_Trunc(m_BitCast(m_Value(VecInput)))) &&
   1634       isa<VectorType>(VecInput->getType())) {
   1635     VectorType *VecTy = cast<VectorType>(VecInput->getType());
   1636     unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
   1637 
   1638     if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0) {
   1639       // If the element type of the vector doesn't match the result type,
   1640       // bitcast it to be a vector type we can extract from.
   1641       if (VecTy->getElementType() != DestTy) {
   1642         VecTy = VectorType::get(DestTy,
   1643                                 VecTy->getPrimitiveSizeInBits() / DestWidth);
   1644         VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
   1645       }
   1646 
   1647       unsigned Elt = 0;
   1648       if (IC.getDataLayout()->isBigEndian())
   1649         Elt = VecTy->getPrimitiveSizeInBits() / DestWidth - 1;
   1650       return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt));
   1651     }
   1652   }
   1653 
   1654   // bitcast(trunc(lshr(bitcast(somevector), cst))
   1655   ConstantInt *ShAmt = 0;
   1656   if (match(Src, m_Trunc(m_LShr(m_BitCast(m_Value(VecInput)),
   1657                                 m_ConstantInt(ShAmt)))) &&
   1658       isa<VectorType>(VecInput->getType())) {
   1659     VectorType *VecTy = cast<VectorType>(VecInput->getType());
   1660     unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
   1661     if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0 &&
   1662         ShAmt->getZExtValue() % DestWidth == 0) {
   1663       // If the element type of the vector doesn't match the result type,
   1664       // bitcast it to be a vector type we can extract from.
   1665       if (VecTy->getElementType() != DestTy) {
   1666         VecTy = VectorType::get(DestTy,
   1667                                 VecTy->getPrimitiveSizeInBits() / DestWidth);
   1668         VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
   1669       }
   1670 
   1671       unsigned Elt = ShAmt->getZExtValue() / DestWidth;
   1672       if (IC.getDataLayout()->isBigEndian())
   1673         Elt = VecTy->getPrimitiveSizeInBits() / DestWidth - 1 - Elt;
   1674       return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt));
   1675     }
   1676   }
   1677   return 0;
   1678 }
   1679 
   1680 Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
   1681   // If the operands are integer typed then apply the integer transforms,
   1682   // otherwise just apply the common ones.
   1683   Value *Src = CI.getOperand(0);
   1684   Type *SrcTy = Src->getType();
   1685   Type *DestTy = CI.getType();
   1686 
   1687   // Get rid of casts from one type to the same type. These are useless and can
   1688   // be replaced by the operand.
   1689   if (DestTy == Src->getType())
   1690     return ReplaceInstUsesWith(CI, Src);
   1691 
   1692   if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
   1693     PointerType *SrcPTy = cast<PointerType>(SrcTy);
   1694     Type *DstElTy = DstPTy->getElementType();
   1695     Type *SrcElTy = SrcPTy->getElementType();
   1696 
   1697     // If the address spaces don't match, don't eliminate the bitcast, which is
   1698     // required for changing types.
   1699     if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace())
   1700       return 0;
   1701 
   1702     // If we are casting a alloca to a pointer to a type of the same
   1703     // size, rewrite the allocation instruction to allocate the "right" type.
   1704     // There is no need to modify malloc calls because it is their bitcast that
   1705     // needs to be cleaned up.
   1706     if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
   1707       if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
   1708         return V;
   1709 
   1710     // If the source and destination are pointers, and this cast is equivalent
   1711     // to a getelementptr X, 0, 0, 0...  turn it into the appropriate gep.
   1712     // This can enhance SROA and other transforms that want type-safe pointers.
   1713     Constant *ZeroUInt =
   1714       Constant::getNullValue(Type::getInt32Ty(CI.getContext()));
   1715     unsigned NumZeros = 0;
   1716     while (SrcElTy != DstElTy &&
   1717            isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
   1718            SrcElTy->getNumContainedTypes() /* not "{}" */) {
   1719       SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
   1720       ++NumZeros;
   1721     }
   1722 
   1723     // If we found a path from the src to dest, create the getelementptr now.
   1724     if (SrcElTy == DstElTy) {
   1725       SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
   1726       return GetElementPtrInst::CreateInBounds(Src, Idxs);
   1727     }
   1728   }
   1729 
   1730   // Try to optimize int -> float bitcasts.
   1731   if ((DestTy->isFloatTy() || DestTy->isDoubleTy()) && isa<IntegerType>(SrcTy))
   1732     if (Instruction *I = OptimizeIntToFloatBitCast(CI, *this))
   1733       return I;
   1734 
   1735   if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
   1736     if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) {
   1737       Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType());
   1738       return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
   1739                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
   1740       // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
   1741     }
   1742 
   1743     if (isa<IntegerType>(SrcTy)) {
   1744       // If this is a cast from an integer to vector, check to see if the input
   1745       // is a trunc or zext of a bitcast from vector.  If so, we can replace all
   1746       // the casts with a shuffle and (potentially) a bitcast.
   1747       if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
   1748         CastInst *SrcCast = cast<CastInst>(Src);
   1749         if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
   1750           if (isa<VectorType>(BCIn->getOperand(0)->getType()))
   1751             if (Instruction *I = OptimizeVectorResize(BCIn->getOperand(0),
   1752                                                cast<VectorType>(DestTy), *this))
   1753               return I;
   1754       }
   1755 
   1756       // If the input is an 'or' instruction, we may be doing shifts and ors to
   1757       // assemble the elements of the vector manually.  Try to rip the code out
   1758       // and replace it with insertelements.
   1759       if (Value *V = OptimizeIntegerToVectorInsertions(CI, *this))
   1760         return ReplaceInstUsesWith(CI, V);
   1761     }
   1762   }
   1763 
   1764   if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
   1765     if (SrcVTy->getNumElements() == 1) {
   1766       // If our destination is not a vector, then make this a straight
   1767       // scalar-scalar cast.
   1768       if (!DestTy->isVectorTy()) {
   1769         Value *Elem =
   1770           Builder->CreateExtractElement(Src,
   1771                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
   1772         return CastInst::Create(Instruction::BitCast, Elem, DestTy);
   1773       }
   1774 
   1775       // Otherwise, see if our source is an insert. If so, then use the scalar
   1776       // component directly.
   1777       if (InsertElementInst *IEI =
   1778             dyn_cast<InsertElementInst>(CI.getOperand(0)))
   1779         return CastInst::Create(Instruction::BitCast, IEI->getOperand(1),
   1780                                 DestTy);
   1781     }
   1782   }
   1783 
   1784   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
   1785     // Okay, we have (bitcast (shuffle ..)).  Check to see if this is
   1786     // a bitcast to a vector with the same # elts.
   1787     if (SVI->hasOneUse() && DestTy->isVectorTy() &&
   1788         cast<VectorType>(DestTy)->getNumElements() ==
   1789               SVI->getType()->getNumElements() &&
   1790         SVI->getType()->getNumElements() ==
   1791           cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements()) {
   1792       BitCastInst *Tmp;
   1793       // If either of the operands is a cast from CI.getType(), then
   1794       // evaluating the shuffle in the casted destination's type will allow
   1795       // us to eliminate at least one cast.
   1796       if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
   1797            Tmp->getOperand(0)->getType() == DestTy) ||
   1798           ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
   1799            Tmp->getOperand(0)->getType() == DestTy)) {
   1800         Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy);
   1801         Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy);
   1802         // Return a new shuffle vector.  Use the same element ID's, as we
   1803         // know the vector types match #elts.
   1804         return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
   1805       }
   1806     }
   1807   }
   1808 
   1809   if (SrcTy->isPointerTy())
   1810     return commonPointerCastTransforms(CI);
   1811   return commonCastTransforms(CI);
   1812 }
   1813