1 //===-- RegAllocFast.cpp - A fast register allocator for debug code -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This register allocator allocates registers to a basic block at a time, 11 // attempting to keep values in registers and reusing registers as appropriate. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "regalloc" 16 #include "llvm/CodeGen/Passes.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/IndexedMap.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/SparseSet.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineInstr.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/RegAllocRegistry.h" 30 #include "llvm/CodeGen/RegisterClassInfo.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetInstrInfo.h" 37 #include "llvm/Target/TargetMachine.h" 38 #include <algorithm> 39 using namespace llvm; 40 41 STATISTIC(NumStores, "Number of stores added"); 42 STATISTIC(NumLoads , "Number of loads added"); 43 STATISTIC(NumCopies, "Number of copies coalesced"); 44 45 static RegisterRegAlloc 46 fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator); 47 48 namespace { 49 class RAFast : public MachineFunctionPass { 50 public: 51 static char ID; 52 RAFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1), 53 isBulkSpilling(false) {} 54 private: 55 const TargetMachine *TM; 56 MachineFunction *MF; 57 MachineRegisterInfo *MRI; 58 const TargetRegisterInfo *TRI; 59 const TargetInstrInfo *TII; 60 RegisterClassInfo RegClassInfo; 61 62 // Basic block currently being allocated. 63 MachineBasicBlock *MBB; 64 65 // StackSlotForVirtReg - Maps virtual regs to the frame index where these 66 // values are spilled. 67 IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg; 68 69 // Everything we know about a live virtual register. 70 struct LiveReg { 71 MachineInstr *LastUse; // Last instr to use reg. 72 unsigned VirtReg; // Virtual register number. 73 unsigned PhysReg; // Currently held here. 74 unsigned short LastOpNum; // OpNum on LastUse. 75 bool Dirty; // Register needs spill. 76 77 explicit LiveReg(unsigned v) 78 : LastUse(0), VirtReg(v), PhysReg(0), LastOpNum(0), Dirty(false) {} 79 80 unsigned getSparseSetIndex() const { 81 return TargetRegisterInfo::virtReg2Index(VirtReg); 82 } 83 }; 84 85 typedef SparseSet<LiveReg> LiveRegMap; 86 87 // LiveVirtRegs - This map contains entries for each virtual register 88 // that is currently available in a physical register. 89 LiveRegMap LiveVirtRegs; 90 91 DenseMap<unsigned, SmallVector<MachineInstr *, 4> > LiveDbgValueMap; 92 93 // RegState - Track the state of a physical register. 94 enum RegState { 95 // A disabled register is not available for allocation, but an alias may 96 // be in use. A register can only be moved out of the disabled state if 97 // all aliases are disabled. 98 regDisabled, 99 100 // A free register is not currently in use and can be allocated 101 // immediately without checking aliases. 102 regFree, 103 104 // A reserved register has been assigned explicitly (e.g., setting up a 105 // call parameter), and it remains reserved until it is used. 106 regReserved 107 108 // A register state may also be a virtual register number, indication that 109 // the physical register is currently allocated to a virtual register. In 110 // that case, LiveVirtRegs contains the inverse mapping. 111 }; 112 113 // PhysRegState - One of the RegState enums, or a virtreg. 114 std::vector<unsigned> PhysRegState; 115 116 // Set of register units. 117 typedef SparseSet<unsigned> UsedInInstrSet; 118 119 // Set of register units that are used in the current instruction, and so 120 // cannot be allocated. 121 UsedInInstrSet UsedInInstr; 122 123 // Mark a physreg as used in this instruction. 124 void markRegUsedInInstr(unsigned PhysReg) { 125 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 126 UsedInInstr.insert(*Units); 127 } 128 129 // Check if a physreg or any of its aliases are used in this instruction. 130 bool isRegUsedInInstr(unsigned PhysReg) const { 131 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 132 if (UsedInInstr.count(*Units)) 133 return true; 134 return false; 135 } 136 137 // SkippedInstrs - Descriptors of instructions whose clobber list was 138 // ignored because all registers were spilled. It is still necessary to 139 // mark all the clobbered registers as used by the function. 140 SmallPtrSet<const MCInstrDesc*, 4> SkippedInstrs; 141 142 // isBulkSpilling - This flag is set when LiveRegMap will be cleared 143 // completely after spilling all live registers. LiveRegMap entries should 144 // not be erased. 145 bool isBulkSpilling; 146 147 enum { 148 spillClean = 1, 149 spillDirty = 100, 150 spillImpossible = ~0u 151 }; 152 public: 153 virtual const char *getPassName() const { 154 return "Fast Register Allocator"; 155 } 156 157 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 158 AU.setPreservesCFG(); 159 MachineFunctionPass::getAnalysisUsage(AU); 160 } 161 162 private: 163 bool runOnMachineFunction(MachineFunction &Fn); 164 void AllocateBasicBlock(); 165 void handleThroughOperands(MachineInstr *MI, 166 SmallVectorImpl<unsigned> &VirtDead); 167 int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC); 168 bool isLastUseOfLocalReg(MachineOperand&); 169 170 void addKillFlag(const LiveReg&); 171 void killVirtReg(LiveRegMap::iterator); 172 void killVirtReg(unsigned VirtReg); 173 void spillVirtReg(MachineBasicBlock::iterator MI, LiveRegMap::iterator); 174 void spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg); 175 176 void usePhysReg(MachineOperand&); 177 void definePhysReg(MachineInstr *MI, unsigned PhysReg, RegState NewState); 178 unsigned calcSpillCost(unsigned PhysReg) const; 179 void assignVirtToPhysReg(LiveReg&, unsigned PhysReg); 180 LiveRegMap::iterator findLiveVirtReg(unsigned VirtReg) { 181 return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg)); 182 } 183 LiveRegMap::const_iterator findLiveVirtReg(unsigned VirtReg) const { 184 return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg)); 185 } 186 LiveRegMap::iterator assignVirtToPhysReg(unsigned VReg, unsigned PhysReg); 187 LiveRegMap::iterator allocVirtReg(MachineInstr *MI, LiveRegMap::iterator, 188 unsigned Hint); 189 LiveRegMap::iterator defineVirtReg(MachineInstr *MI, unsigned OpNum, 190 unsigned VirtReg, unsigned Hint); 191 LiveRegMap::iterator reloadVirtReg(MachineInstr *MI, unsigned OpNum, 192 unsigned VirtReg, unsigned Hint); 193 void spillAll(MachineBasicBlock::iterator MI); 194 bool setPhysReg(MachineInstr *MI, unsigned OpNum, unsigned PhysReg); 195 }; 196 char RAFast::ID = 0; 197 } 198 199 /// getStackSpaceFor - This allocates space for the specified virtual register 200 /// to be held on the stack. 201 int RAFast::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) { 202 // Find the location Reg would belong... 203 int SS = StackSlotForVirtReg[VirtReg]; 204 if (SS != -1) 205 return SS; // Already has space allocated? 206 207 // Allocate a new stack object for this spill location... 208 int FrameIdx = MF->getFrameInfo()->CreateSpillStackObject(RC->getSize(), 209 RC->getAlignment()); 210 211 // Assign the slot. 212 StackSlotForVirtReg[VirtReg] = FrameIdx; 213 return FrameIdx; 214 } 215 216 /// isLastUseOfLocalReg - Return true if MO is the only remaining reference to 217 /// its virtual register, and it is guaranteed to be a block-local register. 218 /// 219 bool RAFast::isLastUseOfLocalReg(MachineOperand &MO) { 220 // If the register has ever been spilled or reloaded, we conservatively assume 221 // it is a global register used in multiple blocks. 222 if (StackSlotForVirtReg[MO.getReg()] != -1) 223 return false; 224 225 // Check that the use/def chain has exactly one operand - MO. 226 MachineRegisterInfo::reg_nodbg_iterator I = MRI->reg_nodbg_begin(MO.getReg()); 227 if (&I.getOperand() != &MO) 228 return false; 229 return ++I == MRI->reg_nodbg_end(); 230 } 231 232 /// addKillFlag - Set kill flags on last use of a virtual register. 233 void RAFast::addKillFlag(const LiveReg &LR) { 234 if (!LR.LastUse) return; 235 MachineOperand &MO = LR.LastUse->getOperand(LR.LastOpNum); 236 if (MO.isUse() && !LR.LastUse->isRegTiedToDefOperand(LR.LastOpNum)) { 237 if (MO.getReg() == LR.PhysReg) 238 MO.setIsKill(); 239 else 240 LR.LastUse->addRegisterKilled(LR.PhysReg, TRI, true); 241 } 242 } 243 244 /// killVirtReg - Mark virtreg as no longer available. 245 void RAFast::killVirtReg(LiveRegMap::iterator LRI) { 246 addKillFlag(*LRI); 247 assert(PhysRegState[LRI->PhysReg] == LRI->VirtReg && 248 "Broken RegState mapping"); 249 PhysRegState[LRI->PhysReg] = regFree; 250 // Erase from LiveVirtRegs unless we're spilling in bulk. 251 if (!isBulkSpilling) 252 LiveVirtRegs.erase(LRI); 253 } 254 255 /// killVirtReg - Mark virtreg as no longer available. 256 void RAFast::killVirtReg(unsigned VirtReg) { 257 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 258 "killVirtReg needs a virtual register"); 259 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 260 if (LRI != LiveVirtRegs.end()) 261 killVirtReg(LRI); 262 } 263 264 /// spillVirtReg - This method spills the value specified by VirtReg into the 265 /// corresponding stack slot if needed. 266 void RAFast::spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg) { 267 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 268 "Spilling a physical register is illegal!"); 269 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 270 assert(LRI != LiveVirtRegs.end() && "Spilling unmapped virtual register"); 271 spillVirtReg(MI, LRI); 272 } 273 274 /// spillVirtReg - Do the actual work of spilling. 275 void RAFast::spillVirtReg(MachineBasicBlock::iterator MI, 276 LiveRegMap::iterator LRI) { 277 LiveReg &LR = *LRI; 278 assert(PhysRegState[LR.PhysReg] == LRI->VirtReg && "Broken RegState mapping"); 279 280 if (LR.Dirty) { 281 // If this physreg is used by the instruction, we want to kill it on the 282 // instruction, not on the spill. 283 bool SpillKill = LR.LastUse != MI; 284 LR.Dirty = false; 285 DEBUG(dbgs() << "Spilling " << PrintReg(LRI->VirtReg, TRI) 286 << " in " << PrintReg(LR.PhysReg, TRI)); 287 const TargetRegisterClass *RC = MRI->getRegClass(LRI->VirtReg); 288 int FI = getStackSpaceFor(LRI->VirtReg, RC); 289 DEBUG(dbgs() << " to stack slot #" << FI << "\n"); 290 TII->storeRegToStackSlot(*MBB, MI, LR.PhysReg, SpillKill, FI, RC, TRI); 291 ++NumStores; // Update statistics 292 293 // If this register is used by DBG_VALUE then insert new DBG_VALUE to 294 // identify spilled location as the place to find corresponding variable's 295 // value. 296 SmallVectorImpl<MachineInstr *> &LRIDbgValues = 297 LiveDbgValueMap[LRI->VirtReg]; 298 for (unsigned li = 0, le = LRIDbgValues.size(); li != le; ++li) { 299 MachineInstr *DBG = LRIDbgValues[li]; 300 const MDNode *MDPtr = DBG->getOperand(2).getMetadata(); 301 bool IsIndirect = DBG->getOperand(1).isImm(); // Register-indirect value? 302 uint64_t Offset = IsIndirect ? DBG->getOperand(1).getImm() : 0; 303 DebugLoc DL; 304 if (MI == MBB->end()) { 305 // If MI is at basic block end then use last instruction's location. 306 MachineBasicBlock::iterator EI = MI; 307 DL = (--EI)->getDebugLoc(); 308 } else 309 DL = MI->getDebugLoc(); 310 MachineBasicBlock *MBB = DBG->getParent(); 311 MachineInstr *NewDV = 312 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::DBG_VALUE)) 313 .addFrameIndex(FI).addImm(Offset).addMetadata(MDPtr); 314 (void)NewDV; 315 DEBUG(dbgs() << "Inserting debug info due to spill:" << "\n" << *NewDV); 316 } 317 // Now this register is spilled there is should not be any DBG_VALUE 318 // pointing to this register because they are all pointing to spilled value 319 // now. 320 LRIDbgValues.clear(); 321 if (SpillKill) 322 LR.LastUse = 0; // Don't kill register again 323 } 324 killVirtReg(LRI); 325 } 326 327 /// spillAll - Spill all dirty virtregs without killing them. 328 void RAFast::spillAll(MachineBasicBlock::iterator MI) { 329 if (LiveVirtRegs.empty()) return; 330 isBulkSpilling = true; 331 // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order 332 // of spilling here is deterministic, if arbitrary. 333 for (LiveRegMap::iterator i = LiveVirtRegs.begin(), e = LiveVirtRegs.end(); 334 i != e; ++i) 335 spillVirtReg(MI, i); 336 LiveVirtRegs.clear(); 337 isBulkSpilling = false; 338 } 339 340 /// usePhysReg - Handle the direct use of a physical register. 341 /// Check that the register is not used by a virtreg. 342 /// Kill the physreg, marking it free. 343 /// This may add implicit kills to MO->getParent() and invalidate MO. 344 void RAFast::usePhysReg(MachineOperand &MO) { 345 unsigned PhysReg = MO.getReg(); 346 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && 347 "Bad usePhysReg operand"); 348 markRegUsedInInstr(PhysReg); 349 switch (PhysRegState[PhysReg]) { 350 case regDisabled: 351 break; 352 case regReserved: 353 PhysRegState[PhysReg] = regFree; 354 // Fall through 355 case regFree: 356 MO.setIsKill(); 357 return; 358 default: 359 // The physreg was allocated to a virtual register. That means the value we 360 // wanted has been clobbered. 361 llvm_unreachable("Instruction uses an allocated register"); 362 } 363 364 // Maybe a superregister is reserved? 365 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 366 unsigned Alias = *AI; 367 switch (PhysRegState[Alias]) { 368 case regDisabled: 369 break; 370 case regReserved: 371 assert(TRI->isSuperRegister(PhysReg, Alias) && 372 "Instruction is not using a subregister of a reserved register"); 373 // Leave the superregister in the working set. 374 PhysRegState[Alias] = regFree; 375 MO.getParent()->addRegisterKilled(Alias, TRI, true); 376 return; 377 case regFree: 378 if (TRI->isSuperRegister(PhysReg, Alias)) { 379 // Leave the superregister in the working set. 380 MO.getParent()->addRegisterKilled(Alias, TRI, true); 381 return; 382 } 383 // Some other alias was in the working set - clear it. 384 PhysRegState[Alias] = regDisabled; 385 break; 386 default: 387 llvm_unreachable("Instruction uses an alias of an allocated register"); 388 } 389 } 390 391 // All aliases are disabled, bring register into working set. 392 PhysRegState[PhysReg] = regFree; 393 MO.setIsKill(); 394 } 395 396 /// definePhysReg - Mark PhysReg as reserved or free after spilling any 397 /// virtregs. This is very similar to defineVirtReg except the physreg is 398 /// reserved instead of allocated. 399 void RAFast::definePhysReg(MachineInstr *MI, unsigned PhysReg, 400 RegState NewState) { 401 markRegUsedInInstr(PhysReg); 402 switch (unsigned VirtReg = PhysRegState[PhysReg]) { 403 case regDisabled: 404 break; 405 default: 406 spillVirtReg(MI, VirtReg); 407 // Fall through. 408 case regFree: 409 case regReserved: 410 PhysRegState[PhysReg] = NewState; 411 return; 412 } 413 414 // This is a disabled register, disable all aliases. 415 PhysRegState[PhysReg] = NewState; 416 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 417 unsigned Alias = *AI; 418 switch (unsigned VirtReg = PhysRegState[Alias]) { 419 case regDisabled: 420 break; 421 default: 422 spillVirtReg(MI, VirtReg); 423 // Fall through. 424 case regFree: 425 case regReserved: 426 PhysRegState[Alias] = regDisabled; 427 if (TRI->isSuperRegister(PhysReg, Alias)) 428 return; 429 break; 430 } 431 } 432 } 433 434 435 // calcSpillCost - Return the cost of spilling clearing out PhysReg and 436 // aliases so it is free for allocation. 437 // Returns 0 when PhysReg is free or disabled with all aliases disabled - it 438 // can be allocated directly. 439 // Returns spillImpossible when PhysReg or an alias can't be spilled. 440 unsigned RAFast::calcSpillCost(unsigned PhysReg) const { 441 if (isRegUsedInInstr(PhysReg)) { 442 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is already used in instr.\n"); 443 return spillImpossible; 444 } 445 switch (unsigned VirtReg = PhysRegState[PhysReg]) { 446 case regDisabled: 447 break; 448 case regFree: 449 return 0; 450 case regReserved: 451 DEBUG(dbgs() << PrintReg(VirtReg, TRI) << " corresponding " 452 << PrintReg(PhysReg, TRI) << " is reserved already.\n"); 453 return spillImpossible; 454 default: { 455 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg); 456 assert(I != LiveVirtRegs.end() && "Missing VirtReg entry"); 457 return I->Dirty ? spillDirty : spillClean; 458 } 459 } 460 461 // This is a disabled register, add up cost of aliases. 462 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is disabled.\n"); 463 unsigned Cost = 0; 464 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 465 unsigned Alias = *AI; 466 switch (unsigned VirtReg = PhysRegState[Alias]) { 467 case regDisabled: 468 break; 469 case regFree: 470 ++Cost; 471 break; 472 case regReserved: 473 return spillImpossible; 474 default: { 475 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg); 476 assert(I != LiveVirtRegs.end() && "Missing VirtReg entry"); 477 Cost += I->Dirty ? spillDirty : spillClean; 478 break; 479 } 480 } 481 } 482 return Cost; 483 } 484 485 486 /// assignVirtToPhysReg - This method updates local state so that we know 487 /// that PhysReg is the proper container for VirtReg now. The physical 488 /// register must not be used for anything else when this is called. 489 /// 490 void RAFast::assignVirtToPhysReg(LiveReg &LR, unsigned PhysReg) { 491 DEBUG(dbgs() << "Assigning " << PrintReg(LR.VirtReg, TRI) << " to " 492 << PrintReg(PhysReg, TRI) << "\n"); 493 PhysRegState[PhysReg] = LR.VirtReg; 494 assert(!LR.PhysReg && "Already assigned a physreg"); 495 LR.PhysReg = PhysReg; 496 } 497 498 RAFast::LiveRegMap::iterator 499 RAFast::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) { 500 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 501 assert(LRI != LiveVirtRegs.end() && "VirtReg disappeared"); 502 assignVirtToPhysReg(*LRI, PhysReg); 503 return LRI; 504 } 505 506 /// allocVirtReg - Allocate a physical register for VirtReg. 507 RAFast::LiveRegMap::iterator RAFast::allocVirtReg(MachineInstr *MI, 508 LiveRegMap::iterator LRI, 509 unsigned Hint) { 510 const unsigned VirtReg = LRI->VirtReg; 511 512 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 513 "Can only allocate virtual registers"); 514 515 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg); 516 517 // Ignore invalid hints. 518 if (Hint && (!TargetRegisterInfo::isPhysicalRegister(Hint) || 519 !RC->contains(Hint) || !MRI->isAllocatable(Hint))) 520 Hint = 0; 521 522 // Take hint when possible. 523 if (Hint) { 524 // Ignore the hint if we would have to spill a dirty register. 525 unsigned Cost = calcSpillCost(Hint); 526 if (Cost < spillDirty) { 527 if (Cost) 528 definePhysReg(MI, Hint, regFree); 529 // definePhysReg may kill virtual registers and modify LiveVirtRegs. 530 // That invalidates LRI, so run a new lookup for VirtReg. 531 return assignVirtToPhysReg(VirtReg, Hint); 532 } 533 } 534 535 ArrayRef<MCPhysReg> AO = RegClassInfo.getOrder(RC); 536 537 // First try to find a completely free register. 538 for (ArrayRef<MCPhysReg>::iterator I = AO.begin(), E = AO.end(); I != E; ++I){ 539 unsigned PhysReg = *I; 540 if (PhysRegState[PhysReg] == regFree && !isRegUsedInInstr(PhysReg)) { 541 assignVirtToPhysReg(*LRI, PhysReg); 542 return LRI; 543 } 544 } 545 546 DEBUG(dbgs() << "Allocating " << PrintReg(VirtReg) << " from " 547 << RC->getName() << "\n"); 548 549 unsigned BestReg = 0, BestCost = spillImpossible; 550 for (ArrayRef<MCPhysReg>::iterator I = AO.begin(), E = AO.end(); I != E; ++I){ 551 unsigned Cost = calcSpillCost(*I); 552 DEBUG(dbgs() << "\tRegister: " << PrintReg(*I, TRI) << "\n"); 553 DEBUG(dbgs() << "\tCost: " << Cost << "\n"); 554 DEBUG(dbgs() << "\tBestCost: " << BestCost << "\n"); 555 // Cost is 0 when all aliases are already disabled. 556 if (Cost == 0) { 557 assignVirtToPhysReg(*LRI, *I); 558 return LRI; 559 } 560 if (Cost < BestCost) 561 BestReg = *I, BestCost = Cost; 562 } 563 564 if (BestReg) { 565 definePhysReg(MI, BestReg, regFree); 566 // definePhysReg may kill virtual registers and modify LiveVirtRegs. 567 // That invalidates LRI, so run a new lookup for VirtReg. 568 return assignVirtToPhysReg(VirtReg, BestReg); 569 } 570 571 // Nothing we can do. Report an error and keep going with a bad allocation. 572 MI->emitError("ran out of registers during register allocation"); 573 definePhysReg(MI, *AO.begin(), regFree); 574 return assignVirtToPhysReg(VirtReg, *AO.begin()); 575 } 576 577 /// defineVirtReg - Allocate a register for VirtReg and mark it as dirty. 578 RAFast::LiveRegMap::iterator 579 RAFast::defineVirtReg(MachineInstr *MI, unsigned OpNum, 580 unsigned VirtReg, unsigned Hint) { 581 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 582 "Not a virtual register"); 583 LiveRegMap::iterator LRI; 584 bool New; 585 tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 586 if (New) { 587 // If there is no hint, peek at the only use of this register. 588 if ((!Hint || !TargetRegisterInfo::isPhysicalRegister(Hint)) && 589 MRI->hasOneNonDBGUse(VirtReg)) { 590 const MachineInstr &UseMI = *MRI->use_nodbg_begin(VirtReg); 591 // It's a copy, use the destination register as a hint. 592 if (UseMI.isCopyLike()) 593 Hint = UseMI.getOperand(0).getReg(); 594 } 595 LRI = allocVirtReg(MI, LRI, Hint); 596 } else if (LRI->LastUse) { 597 // Redefining a live register - kill at the last use, unless it is this 598 // instruction defining VirtReg multiple times. 599 if (LRI->LastUse != MI || LRI->LastUse->getOperand(LRI->LastOpNum).isUse()) 600 addKillFlag(*LRI); 601 } 602 assert(LRI->PhysReg && "Register not assigned"); 603 LRI->LastUse = MI; 604 LRI->LastOpNum = OpNum; 605 LRI->Dirty = true; 606 markRegUsedInInstr(LRI->PhysReg); 607 return LRI; 608 } 609 610 /// reloadVirtReg - Make sure VirtReg is available in a physreg and return it. 611 RAFast::LiveRegMap::iterator 612 RAFast::reloadVirtReg(MachineInstr *MI, unsigned OpNum, 613 unsigned VirtReg, unsigned Hint) { 614 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 615 "Not a virtual register"); 616 LiveRegMap::iterator LRI; 617 bool New; 618 tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 619 MachineOperand &MO = MI->getOperand(OpNum); 620 if (New) { 621 LRI = allocVirtReg(MI, LRI, Hint); 622 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg); 623 int FrameIndex = getStackSpaceFor(VirtReg, RC); 624 DEBUG(dbgs() << "Reloading " << PrintReg(VirtReg, TRI) << " into " 625 << PrintReg(LRI->PhysReg, TRI) << "\n"); 626 TII->loadRegFromStackSlot(*MBB, MI, LRI->PhysReg, FrameIndex, RC, TRI); 627 ++NumLoads; 628 } else if (LRI->Dirty) { 629 if (isLastUseOfLocalReg(MO)) { 630 DEBUG(dbgs() << "Killing last use: " << MO << "\n"); 631 if (MO.isUse()) 632 MO.setIsKill(); 633 else 634 MO.setIsDead(); 635 } else if (MO.isKill()) { 636 DEBUG(dbgs() << "Clearing dubious kill: " << MO << "\n"); 637 MO.setIsKill(false); 638 } else if (MO.isDead()) { 639 DEBUG(dbgs() << "Clearing dubious dead: " << MO << "\n"); 640 MO.setIsDead(false); 641 } 642 } else if (MO.isKill()) { 643 // We must remove kill flags from uses of reloaded registers because the 644 // register would be killed immediately, and there might be a second use: 645 // %foo = OR %x<kill>, %x 646 // This would cause a second reload of %x into a different register. 647 DEBUG(dbgs() << "Clearing clean kill: " << MO << "\n"); 648 MO.setIsKill(false); 649 } else if (MO.isDead()) { 650 DEBUG(dbgs() << "Clearing clean dead: " << MO << "\n"); 651 MO.setIsDead(false); 652 } 653 assert(LRI->PhysReg && "Register not assigned"); 654 LRI->LastUse = MI; 655 LRI->LastOpNum = OpNum; 656 markRegUsedInInstr(LRI->PhysReg); 657 return LRI; 658 } 659 660 // setPhysReg - Change operand OpNum in MI the refer the PhysReg, considering 661 // subregs. This may invalidate any operand pointers. 662 // Return true if the operand kills its register. 663 bool RAFast::setPhysReg(MachineInstr *MI, unsigned OpNum, unsigned PhysReg) { 664 MachineOperand &MO = MI->getOperand(OpNum); 665 bool Dead = MO.isDead(); 666 if (!MO.getSubReg()) { 667 MO.setReg(PhysReg); 668 return MO.isKill() || Dead; 669 } 670 671 // Handle subregister index. 672 MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : 0); 673 MO.setSubReg(0); 674 675 // A kill flag implies killing the full register. Add corresponding super 676 // register kill. 677 if (MO.isKill()) { 678 MI->addRegisterKilled(PhysReg, TRI, true); 679 return true; 680 } 681 682 // A <def,read-undef> of a sub-register requires an implicit def of the full 683 // register. 684 if (MO.isDef() && MO.isUndef()) 685 MI->addRegisterDefined(PhysReg, TRI); 686 687 return Dead; 688 } 689 690 // Handle special instruction operand like early clobbers and tied ops when 691 // there are additional physreg defines. 692 void RAFast::handleThroughOperands(MachineInstr *MI, 693 SmallVectorImpl<unsigned> &VirtDead) { 694 DEBUG(dbgs() << "Scanning for through registers:"); 695 SmallSet<unsigned, 8> ThroughRegs; 696 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 697 MachineOperand &MO = MI->getOperand(i); 698 if (!MO.isReg()) continue; 699 unsigned Reg = MO.getReg(); 700 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 701 continue; 702 if (MO.isEarlyClobber() || MI->isRegTiedToDefOperand(i) || 703 (MO.getSubReg() && MI->readsVirtualRegister(Reg))) { 704 if (ThroughRegs.insert(Reg)) 705 DEBUG(dbgs() << ' ' << PrintReg(Reg)); 706 } 707 } 708 709 // If any physreg defines collide with preallocated through registers, 710 // we must spill and reallocate. 711 DEBUG(dbgs() << "\nChecking for physdef collisions.\n"); 712 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 713 MachineOperand &MO = MI->getOperand(i); 714 if (!MO.isReg() || !MO.isDef()) continue; 715 unsigned Reg = MO.getReg(); 716 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 717 markRegUsedInInstr(Reg); 718 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 719 if (ThroughRegs.count(PhysRegState[*AI])) 720 definePhysReg(MI, *AI, regFree); 721 } 722 } 723 724 SmallVector<unsigned, 8> PartialDefs; 725 DEBUG(dbgs() << "Allocating tied uses.\n"); 726 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 727 MachineOperand &MO = MI->getOperand(i); 728 if (!MO.isReg()) continue; 729 unsigned Reg = MO.getReg(); 730 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 731 if (MO.isUse()) { 732 unsigned DefIdx = 0; 733 if (!MI->isRegTiedToDefOperand(i, &DefIdx)) continue; 734 DEBUG(dbgs() << "Operand " << i << "("<< MO << ") is tied to operand " 735 << DefIdx << ".\n"); 736 LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, 0); 737 unsigned PhysReg = LRI->PhysReg; 738 setPhysReg(MI, i, PhysReg); 739 // Note: we don't update the def operand yet. That would cause the normal 740 // def-scan to attempt spilling. 741 } else if (MO.getSubReg() && MI->readsVirtualRegister(Reg)) { 742 DEBUG(dbgs() << "Partial redefine: " << MO << "\n"); 743 // Reload the register, but don't assign to the operand just yet. 744 // That would confuse the later phys-def processing pass. 745 LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, 0); 746 PartialDefs.push_back(LRI->PhysReg); 747 } 748 } 749 750 DEBUG(dbgs() << "Allocating early clobbers.\n"); 751 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 752 MachineOperand &MO = MI->getOperand(i); 753 if (!MO.isReg()) continue; 754 unsigned Reg = MO.getReg(); 755 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 756 if (!MO.isEarlyClobber()) 757 continue; 758 // Note: defineVirtReg may invalidate MO. 759 LiveRegMap::iterator LRI = defineVirtReg(MI, i, Reg, 0); 760 unsigned PhysReg = LRI->PhysReg; 761 if (setPhysReg(MI, i, PhysReg)) 762 VirtDead.push_back(Reg); 763 } 764 765 // Restore UsedInInstr to a state usable for allocating normal virtual uses. 766 UsedInInstr.clear(); 767 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 768 MachineOperand &MO = MI->getOperand(i); 769 if (!MO.isReg() || (MO.isDef() && !MO.isEarlyClobber())) continue; 770 unsigned Reg = MO.getReg(); 771 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 772 DEBUG(dbgs() << "\tSetting " << PrintReg(Reg, TRI) 773 << " as used in instr\n"); 774 markRegUsedInInstr(Reg); 775 } 776 777 // Also mark PartialDefs as used to avoid reallocation. 778 for (unsigned i = 0, e = PartialDefs.size(); i != e; ++i) 779 markRegUsedInInstr(PartialDefs[i]); 780 } 781 782 void RAFast::AllocateBasicBlock() { 783 DEBUG(dbgs() << "\nAllocating " << *MBB); 784 785 PhysRegState.assign(TRI->getNumRegs(), regDisabled); 786 assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?"); 787 788 MachineBasicBlock::iterator MII = MBB->begin(); 789 790 // Add live-in registers as live. 791 for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(), 792 E = MBB->livein_end(); I != E; ++I) 793 if (MRI->isAllocatable(*I)) 794 definePhysReg(MII, *I, regReserved); 795 796 SmallVector<unsigned, 8> VirtDead; 797 SmallVector<MachineInstr*, 32> Coalesced; 798 799 // Otherwise, sequentially allocate each instruction in the MBB. 800 while (MII != MBB->end()) { 801 MachineInstr *MI = MII++; 802 const MCInstrDesc &MCID = MI->getDesc(); 803 DEBUG({ 804 dbgs() << "\n>> " << *MI << "Regs:"; 805 for (unsigned Reg = 1, E = TRI->getNumRegs(); Reg != E; ++Reg) { 806 if (PhysRegState[Reg] == regDisabled) continue; 807 dbgs() << " " << TRI->getName(Reg); 808 switch(PhysRegState[Reg]) { 809 case regFree: 810 break; 811 case regReserved: 812 dbgs() << "*"; 813 break; 814 default: { 815 dbgs() << '=' << PrintReg(PhysRegState[Reg]); 816 LiveRegMap::iterator I = findLiveVirtReg(PhysRegState[Reg]); 817 assert(I != LiveVirtRegs.end() && "Missing VirtReg entry"); 818 if (I->Dirty) 819 dbgs() << "*"; 820 assert(I->PhysReg == Reg && "Bad inverse map"); 821 break; 822 } 823 } 824 } 825 dbgs() << '\n'; 826 // Check that LiveVirtRegs is the inverse. 827 for (LiveRegMap::iterator i = LiveVirtRegs.begin(), 828 e = LiveVirtRegs.end(); i != e; ++i) { 829 assert(TargetRegisterInfo::isVirtualRegister(i->VirtReg) && 830 "Bad map key"); 831 assert(TargetRegisterInfo::isPhysicalRegister(i->PhysReg) && 832 "Bad map value"); 833 assert(PhysRegState[i->PhysReg] == i->VirtReg && "Bad inverse map"); 834 } 835 }); 836 837 // Debug values are not allowed to change codegen in any way. 838 if (MI->isDebugValue()) { 839 bool ScanDbgValue = true; 840 while (ScanDbgValue) { 841 ScanDbgValue = false; 842 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 843 MachineOperand &MO = MI->getOperand(i); 844 if (!MO.isReg()) continue; 845 unsigned Reg = MO.getReg(); 846 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 847 LiveRegMap::iterator LRI = findLiveVirtReg(Reg); 848 if (LRI != LiveVirtRegs.end()) 849 setPhysReg(MI, i, LRI->PhysReg); 850 else { 851 int SS = StackSlotForVirtReg[Reg]; 852 if (SS == -1) { 853 // We can't allocate a physreg for a DebugValue, sorry! 854 DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE"); 855 MO.setReg(0); 856 } 857 else { 858 // Modify DBG_VALUE now that the value is in a spill slot. 859 bool IsIndirect = MI->getOperand(1).isImm(); 860 uint64_t Offset = IsIndirect ? MI->getOperand(1).getImm() : 0; 861 const MDNode *MDPtr = 862 MI->getOperand(MI->getNumOperands()-1).getMetadata(); 863 DebugLoc DL = MI->getDebugLoc(); 864 MachineBasicBlock *MBB = MI->getParent(); 865 MachineInstr *NewDV = BuildMI(*MBB, MBB->erase(MI), DL, 866 TII->get(TargetOpcode::DBG_VALUE)) 867 .addFrameIndex(SS).addImm(Offset).addMetadata(MDPtr); 868 DEBUG(dbgs() << "Modifying debug info due to spill:" 869 << "\t" << *NewDV); 870 // Scan NewDV operands from the beginning. 871 MI = NewDV; 872 ScanDbgValue = true; 873 break; 874 } 875 } 876 LiveDbgValueMap[Reg].push_back(MI); 877 } 878 } 879 // Next instruction. 880 continue; 881 } 882 883 // If this is a copy, we may be able to coalesce. 884 unsigned CopySrc = 0, CopyDst = 0, CopySrcSub = 0, CopyDstSub = 0; 885 if (MI->isCopy()) { 886 CopyDst = MI->getOperand(0).getReg(); 887 CopySrc = MI->getOperand(1).getReg(); 888 CopyDstSub = MI->getOperand(0).getSubReg(); 889 CopySrcSub = MI->getOperand(1).getSubReg(); 890 } 891 892 // Track registers used by instruction. 893 UsedInInstr.clear(); 894 895 // First scan. 896 // Mark physreg uses and early clobbers as used. 897 // Find the end of the virtreg operands 898 unsigned VirtOpEnd = 0; 899 bool hasTiedOps = false; 900 bool hasEarlyClobbers = false; 901 bool hasPartialRedefs = false; 902 bool hasPhysDefs = false; 903 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 904 MachineOperand &MO = MI->getOperand(i); 905 // Make sure MRI knows about registers clobbered by regmasks. 906 if (MO.isRegMask()) { 907 MRI->addPhysRegsUsedFromRegMask(MO.getRegMask()); 908 continue; 909 } 910 if (!MO.isReg()) continue; 911 unsigned Reg = MO.getReg(); 912 if (!Reg) continue; 913 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 914 VirtOpEnd = i+1; 915 if (MO.isUse()) { 916 hasTiedOps = hasTiedOps || 917 MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1; 918 } else { 919 if (MO.isEarlyClobber()) 920 hasEarlyClobbers = true; 921 if (MO.getSubReg() && MI->readsVirtualRegister(Reg)) 922 hasPartialRedefs = true; 923 } 924 continue; 925 } 926 if (!MRI->isAllocatable(Reg)) continue; 927 if (MO.isUse()) { 928 usePhysReg(MO); 929 } else if (MO.isEarlyClobber()) { 930 definePhysReg(MI, Reg, (MO.isImplicit() || MO.isDead()) ? 931 regFree : regReserved); 932 hasEarlyClobbers = true; 933 } else 934 hasPhysDefs = true; 935 } 936 937 // The instruction may have virtual register operands that must be allocated 938 // the same register at use-time and def-time: early clobbers and tied 939 // operands. If there are also physical defs, these registers must avoid 940 // both physical defs and uses, making them more constrained than normal 941 // operands. 942 // Similarly, if there are multiple defs and tied operands, we must make 943 // sure the same register is allocated to uses and defs. 944 // We didn't detect inline asm tied operands above, so just make this extra 945 // pass for all inline asm. 946 if (MI->isInlineAsm() || hasEarlyClobbers || hasPartialRedefs || 947 (hasTiedOps && (hasPhysDefs || MCID.getNumDefs() > 1))) { 948 handleThroughOperands(MI, VirtDead); 949 // Don't attempt coalescing when we have funny stuff going on. 950 CopyDst = 0; 951 // Pretend we have early clobbers so the use operands get marked below. 952 // This is not necessary for the common case of a single tied use. 953 hasEarlyClobbers = true; 954 } 955 956 // Second scan. 957 // Allocate virtreg uses. 958 for (unsigned i = 0; i != VirtOpEnd; ++i) { 959 MachineOperand &MO = MI->getOperand(i); 960 if (!MO.isReg()) continue; 961 unsigned Reg = MO.getReg(); 962 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 963 if (MO.isUse()) { 964 LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, CopyDst); 965 unsigned PhysReg = LRI->PhysReg; 966 CopySrc = (CopySrc == Reg || CopySrc == PhysReg) ? PhysReg : 0; 967 if (setPhysReg(MI, i, PhysReg)) 968 killVirtReg(LRI); 969 } 970 } 971 972 for (UsedInInstrSet::iterator 973 I = UsedInInstr.begin(), E = UsedInInstr.end(); I != E; ++I) 974 MRI->setRegUnitUsed(*I); 975 976 // Track registers defined by instruction - early clobbers and tied uses at 977 // this point. 978 UsedInInstr.clear(); 979 if (hasEarlyClobbers) { 980 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 981 MachineOperand &MO = MI->getOperand(i); 982 if (!MO.isReg()) continue; 983 unsigned Reg = MO.getReg(); 984 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 985 // Look for physreg defs and tied uses. 986 if (!MO.isDef() && !MI->isRegTiedToDefOperand(i)) continue; 987 markRegUsedInInstr(Reg); 988 } 989 } 990 991 unsigned DefOpEnd = MI->getNumOperands(); 992 if (MI->isCall()) { 993 // Spill all virtregs before a call. This serves two purposes: 1. If an 994 // exception is thrown, the landing pad is going to expect to find 995 // registers in their spill slots, and 2. we don't have to wade through 996 // all the <imp-def> operands on the call instruction. 997 DefOpEnd = VirtOpEnd; 998 DEBUG(dbgs() << " Spilling remaining registers before call.\n"); 999 spillAll(MI); 1000 1001 // The imp-defs are skipped below, but we still need to mark those 1002 // registers as used by the function. 1003 SkippedInstrs.insert(&MCID); 1004 } 1005 1006 // Third scan. 1007 // Allocate defs and collect dead defs. 1008 for (unsigned i = 0; i != DefOpEnd; ++i) { 1009 MachineOperand &MO = MI->getOperand(i); 1010 if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber()) 1011 continue; 1012 unsigned Reg = MO.getReg(); 1013 1014 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1015 if (!MRI->isAllocatable(Reg)) continue; 1016 definePhysReg(MI, Reg, (MO.isImplicit() || MO.isDead()) ? 1017 regFree : regReserved); 1018 continue; 1019 } 1020 LiveRegMap::iterator LRI = defineVirtReg(MI, i, Reg, CopySrc); 1021 unsigned PhysReg = LRI->PhysReg; 1022 if (setPhysReg(MI, i, PhysReg)) { 1023 VirtDead.push_back(Reg); 1024 CopyDst = 0; // cancel coalescing; 1025 } else 1026 CopyDst = (CopyDst == Reg || CopyDst == PhysReg) ? PhysReg : 0; 1027 } 1028 1029 // Kill dead defs after the scan to ensure that multiple defs of the same 1030 // register are allocated identically. We didn't need to do this for uses 1031 // because we are crerating our own kill flags, and they are always at the 1032 // last use. 1033 for (unsigned i = 0, e = VirtDead.size(); i != e; ++i) 1034 killVirtReg(VirtDead[i]); 1035 VirtDead.clear(); 1036 1037 for (UsedInInstrSet::iterator 1038 I = UsedInInstr.begin(), E = UsedInInstr.end(); I != E; ++I) 1039 MRI->setRegUnitUsed(*I); 1040 1041 if (CopyDst && CopyDst == CopySrc && CopyDstSub == CopySrcSub) { 1042 DEBUG(dbgs() << "-- coalescing: " << *MI); 1043 Coalesced.push_back(MI); 1044 } else { 1045 DEBUG(dbgs() << "<< " << *MI); 1046 } 1047 } 1048 1049 // Spill all physical registers holding virtual registers now. 1050 DEBUG(dbgs() << "Spilling live registers at end of block.\n"); 1051 spillAll(MBB->getFirstTerminator()); 1052 1053 // Erase all the coalesced copies. We are delaying it until now because 1054 // LiveVirtRegs might refer to the instrs. 1055 for (unsigned i = 0, e = Coalesced.size(); i != e; ++i) 1056 MBB->erase(Coalesced[i]); 1057 NumCopies += Coalesced.size(); 1058 1059 DEBUG(MBB->dump()); 1060 } 1061 1062 /// runOnMachineFunction - Register allocate the whole function 1063 /// 1064 bool RAFast::runOnMachineFunction(MachineFunction &Fn) { 1065 DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n" 1066 << "********** Function: " << Fn.getName() << '\n'); 1067 MF = &Fn; 1068 MRI = &MF->getRegInfo(); 1069 TM = &Fn.getTarget(); 1070 TRI = TM->getRegisterInfo(); 1071 TII = TM->getInstrInfo(); 1072 MRI->freezeReservedRegs(Fn); 1073 RegClassInfo.runOnMachineFunction(Fn); 1074 UsedInInstr.clear(); 1075 UsedInInstr.setUniverse(TRI->getNumRegUnits()); 1076 1077 assert(!MRI->isSSA() && "regalloc requires leaving SSA"); 1078 1079 // initialize the virtual->physical register map to have a 'null' 1080 // mapping for all virtual registers 1081 StackSlotForVirtReg.resize(MRI->getNumVirtRegs()); 1082 LiveVirtRegs.setUniverse(MRI->getNumVirtRegs()); 1083 1084 // Loop over all of the basic blocks, eliminating virtual register references 1085 for (MachineFunction::iterator MBBi = Fn.begin(), MBBe = Fn.end(); 1086 MBBi != MBBe; ++MBBi) { 1087 MBB = &*MBBi; 1088 AllocateBasicBlock(); 1089 } 1090 1091 // Add the clobber lists for all the instructions we skipped earlier. 1092 for (SmallPtrSet<const MCInstrDesc*, 4>::const_iterator 1093 I = SkippedInstrs.begin(), E = SkippedInstrs.end(); I != E; ++I) 1094 if (const uint16_t *Defs = (*I)->getImplicitDefs()) 1095 while (*Defs) 1096 MRI->setPhysRegUsed(*Defs++); 1097 1098 // All machine operands and other references to virtual registers have been 1099 // replaced. Remove the virtual registers. 1100 MRI->clearVirtRegs(); 1101 1102 SkippedInstrs.clear(); 1103 StackSlotForVirtReg.clear(); 1104 LiveDbgValueMap.clear(); 1105 return true; 1106 } 1107 1108 FunctionPass *llvm::createFastRegisterAllocator() { 1109 return new RAFast(); 1110 } 1111