Home | History | Annotate | Download | only in CodeGen
      1 //===-- RegAllocFast.cpp - A fast register allocator for debug code -------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This register allocator allocates registers to a basic block at a time,
     11 // attempting to keep values in registers and reusing registers as appropriate.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #define DEBUG_TYPE "regalloc"
     16 #include "llvm/CodeGen/Passes.h"
     17 #include "llvm/ADT/DenseMap.h"
     18 #include "llvm/ADT/IndexedMap.h"
     19 #include "llvm/ADT/STLExtras.h"
     20 #include "llvm/ADT/SmallSet.h"
     21 #include "llvm/ADT/SmallVector.h"
     22 #include "llvm/ADT/SparseSet.h"
     23 #include "llvm/ADT/Statistic.h"
     24 #include "llvm/CodeGen/MachineFrameInfo.h"
     25 #include "llvm/CodeGen/MachineFunctionPass.h"
     26 #include "llvm/CodeGen/MachineInstr.h"
     27 #include "llvm/CodeGen/MachineInstrBuilder.h"
     28 #include "llvm/CodeGen/MachineRegisterInfo.h"
     29 #include "llvm/CodeGen/RegAllocRegistry.h"
     30 #include "llvm/CodeGen/RegisterClassInfo.h"
     31 #include "llvm/IR/BasicBlock.h"
     32 #include "llvm/Support/CommandLine.h"
     33 #include "llvm/Support/Debug.h"
     34 #include "llvm/Support/ErrorHandling.h"
     35 #include "llvm/Support/raw_ostream.h"
     36 #include "llvm/Target/TargetInstrInfo.h"
     37 #include "llvm/Target/TargetMachine.h"
     38 #include <algorithm>
     39 using namespace llvm;
     40 
     41 STATISTIC(NumStores, "Number of stores added");
     42 STATISTIC(NumLoads , "Number of loads added");
     43 STATISTIC(NumCopies, "Number of copies coalesced");
     44 
     45 static RegisterRegAlloc
     46   fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator);
     47 
     48 namespace {
     49   class RAFast : public MachineFunctionPass {
     50   public:
     51     static char ID;
     52     RAFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1),
     53                isBulkSpilling(false) {}
     54   private:
     55     const TargetMachine *TM;
     56     MachineFunction *MF;
     57     MachineRegisterInfo *MRI;
     58     const TargetRegisterInfo *TRI;
     59     const TargetInstrInfo *TII;
     60     RegisterClassInfo RegClassInfo;
     61 
     62     // Basic block currently being allocated.
     63     MachineBasicBlock *MBB;
     64 
     65     // StackSlotForVirtReg - Maps virtual regs to the frame index where these
     66     // values are spilled.
     67     IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg;
     68 
     69     // Everything we know about a live virtual register.
     70     struct LiveReg {
     71       MachineInstr *LastUse;    // Last instr to use reg.
     72       unsigned VirtReg;         // Virtual register number.
     73       unsigned PhysReg;         // Currently held here.
     74       unsigned short LastOpNum; // OpNum on LastUse.
     75       bool Dirty;               // Register needs spill.
     76 
     77       explicit LiveReg(unsigned v)
     78         : LastUse(0), VirtReg(v), PhysReg(0), LastOpNum(0), Dirty(false) {}
     79 
     80       unsigned getSparseSetIndex() const {
     81         return TargetRegisterInfo::virtReg2Index(VirtReg);
     82       }
     83     };
     84 
     85     typedef SparseSet<LiveReg> LiveRegMap;
     86 
     87     // LiveVirtRegs - This map contains entries for each virtual register
     88     // that is currently available in a physical register.
     89     LiveRegMap LiveVirtRegs;
     90 
     91     DenseMap<unsigned, SmallVector<MachineInstr *, 4> > LiveDbgValueMap;
     92 
     93     // RegState - Track the state of a physical register.
     94     enum RegState {
     95       // A disabled register is not available for allocation, but an alias may
     96       // be in use. A register can only be moved out of the disabled state if
     97       // all aliases are disabled.
     98       regDisabled,
     99 
    100       // A free register is not currently in use and can be allocated
    101       // immediately without checking aliases.
    102       regFree,
    103 
    104       // A reserved register has been assigned explicitly (e.g., setting up a
    105       // call parameter), and it remains reserved until it is used.
    106       regReserved
    107 
    108       // A register state may also be a virtual register number, indication that
    109       // the physical register is currently allocated to a virtual register. In
    110       // that case, LiveVirtRegs contains the inverse mapping.
    111     };
    112 
    113     // PhysRegState - One of the RegState enums, or a virtreg.
    114     std::vector<unsigned> PhysRegState;
    115 
    116     // Set of register units.
    117     typedef SparseSet<unsigned> UsedInInstrSet;
    118 
    119     // Set of register units that are used in the current instruction, and so
    120     // cannot be allocated.
    121     UsedInInstrSet UsedInInstr;
    122 
    123     // Mark a physreg as used in this instruction.
    124     void markRegUsedInInstr(unsigned PhysReg) {
    125       for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
    126         UsedInInstr.insert(*Units);
    127     }
    128 
    129     // Check if a physreg or any of its aliases are used in this instruction.
    130     bool isRegUsedInInstr(unsigned PhysReg) const {
    131       for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
    132         if (UsedInInstr.count(*Units))
    133           return true;
    134       return false;
    135     }
    136 
    137     // SkippedInstrs - Descriptors of instructions whose clobber list was
    138     // ignored because all registers were spilled. It is still necessary to
    139     // mark all the clobbered registers as used by the function.
    140     SmallPtrSet<const MCInstrDesc*, 4> SkippedInstrs;
    141 
    142     // isBulkSpilling - This flag is set when LiveRegMap will be cleared
    143     // completely after spilling all live registers. LiveRegMap entries should
    144     // not be erased.
    145     bool isBulkSpilling;
    146 
    147     enum {
    148       spillClean = 1,
    149       spillDirty = 100,
    150       spillImpossible = ~0u
    151     };
    152   public:
    153     virtual const char *getPassName() const {
    154       return "Fast Register Allocator";
    155     }
    156 
    157     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    158       AU.setPreservesCFG();
    159       MachineFunctionPass::getAnalysisUsage(AU);
    160     }
    161 
    162   private:
    163     bool runOnMachineFunction(MachineFunction &Fn);
    164     void AllocateBasicBlock();
    165     void handleThroughOperands(MachineInstr *MI,
    166                                SmallVectorImpl<unsigned> &VirtDead);
    167     int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC);
    168     bool isLastUseOfLocalReg(MachineOperand&);
    169 
    170     void addKillFlag(const LiveReg&);
    171     void killVirtReg(LiveRegMap::iterator);
    172     void killVirtReg(unsigned VirtReg);
    173     void spillVirtReg(MachineBasicBlock::iterator MI, LiveRegMap::iterator);
    174     void spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg);
    175 
    176     void usePhysReg(MachineOperand&);
    177     void definePhysReg(MachineInstr *MI, unsigned PhysReg, RegState NewState);
    178     unsigned calcSpillCost(unsigned PhysReg) const;
    179     void assignVirtToPhysReg(LiveReg&, unsigned PhysReg);
    180     LiveRegMap::iterator findLiveVirtReg(unsigned VirtReg) {
    181       return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg));
    182     }
    183     LiveRegMap::const_iterator findLiveVirtReg(unsigned VirtReg) const {
    184       return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg));
    185     }
    186     LiveRegMap::iterator assignVirtToPhysReg(unsigned VReg, unsigned PhysReg);
    187     LiveRegMap::iterator allocVirtReg(MachineInstr *MI, LiveRegMap::iterator,
    188                                       unsigned Hint);
    189     LiveRegMap::iterator defineVirtReg(MachineInstr *MI, unsigned OpNum,
    190                                        unsigned VirtReg, unsigned Hint);
    191     LiveRegMap::iterator reloadVirtReg(MachineInstr *MI, unsigned OpNum,
    192                                        unsigned VirtReg, unsigned Hint);
    193     void spillAll(MachineBasicBlock::iterator MI);
    194     bool setPhysReg(MachineInstr *MI, unsigned OpNum, unsigned PhysReg);
    195   };
    196   char RAFast::ID = 0;
    197 }
    198 
    199 /// getStackSpaceFor - This allocates space for the specified virtual register
    200 /// to be held on the stack.
    201 int RAFast::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) {
    202   // Find the location Reg would belong...
    203   int SS = StackSlotForVirtReg[VirtReg];
    204   if (SS != -1)
    205     return SS;          // Already has space allocated?
    206 
    207   // Allocate a new stack object for this spill location...
    208   int FrameIdx = MF->getFrameInfo()->CreateSpillStackObject(RC->getSize(),
    209                                                             RC->getAlignment());
    210 
    211   // Assign the slot.
    212   StackSlotForVirtReg[VirtReg] = FrameIdx;
    213   return FrameIdx;
    214 }
    215 
    216 /// isLastUseOfLocalReg - Return true if MO is the only remaining reference to
    217 /// its virtual register, and it is guaranteed to be a block-local register.
    218 ///
    219 bool RAFast::isLastUseOfLocalReg(MachineOperand &MO) {
    220   // If the register has ever been spilled or reloaded, we conservatively assume
    221   // it is a global register used in multiple blocks.
    222   if (StackSlotForVirtReg[MO.getReg()] != -1)
    223     return false;
    224 
    225   // Check that the use/def chain has exactly one operand - MO.
    226   MachineRegisterInfo::reg_nodbg_iterator I = MRI->reg_nodbg_begin(MO.getReg());
    227   if (&I.getOperand() != &MO)
    228     return false;
    229   return ++I == MRI->reg_nodbg_end();
    230 }
    231 
    232 /// addKillFlag - Set kill flags on last use of a virtual register.
    233 void RAFast::addKillFlag(const LiveReg &LR) {
    234   if (!LR.LastUse) return;
    235   MachineOperand &MO = LR.LastUse->getOperand(LR.LastOpNum);
    236   if (MO.isUse() && !LR.LastUse->isRegTiedToDefOperand(LR.LastOpNum)) {
    237     if (MO.getReg() == LR.PhysReg)
    238       MO.setIsKill();
    239     else
    240       LR.LastUse->addRegisterKilled(LR.PhysReg, TRI, true);
    241   }
    242 }
    243 
    244 /// killVirtReg - Mark virtreg as no longer available.
    245 void RAFast::killVirtReg(LiveRegMap::iterator LRI) {
    246   addKillFlag(*LRI);
    247   assert(PhysRegState[LRI->PhysReg] == LRI->VirtReg &&
    248          "Broken RegState mapping");
    249   PhysRegState[LRI->PhysReg] = regFree;
    250   // Erase from LiveVirtRegs unless we're spilling in bulk.
    251   if (!isBulkSpilling)
    252     LiveVirtRegs.erase(LRI);
    253 }
    254 
    255 /// killVirtReg - Mark virtreg as no longer available.
    256 void RAFast::killVirtReg(unsigned VirtReg) {
    257   assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
    258          "killVirtReg needs a virtual register");
    259   LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
    260   if (LRI != LiveVirtRegs.end())
    261     killVirtReg(LRI);
    262 }
    263 
    264 /// spillVirtReg - This method spills the value specified by VirtReg into the
    265 /// corresponding stack slot if needed.
    266 void RAFast::spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg) {
    267   assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
    268          "Spilling a physical register is illegal!");
    269   LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
    270   assert(LRI != LiveVirtRegs.end() && "Spilling unmapped virtual register");
    271   spillVirtReg(MI, LRI);
    272 }
    273 
    274 /// spillVirtReg - Do the actual work of spilling.
    275 void RAFast::spillVirtReg(MachineBasicBlock::iterator MI,
    276                           LiveRegMap::iterator LRI) {
    277   LiveReg &LR = *LRI;
    278   assert(PhysRegState[LR.PhysReg] == LRI->VirtReg && "Broken RegState mapping");
    279 
    280   if (LR.Dirty) {
    281     // If this physreg is used by the instruction, we want to kill it on the
    282     // instruction, not on the spill.
    283     bool SpillKill = LR.LastUse != MI;
    284     LR.Dirty = false;
    285     DEBUG(dbgs() << "Spilling " << PrintReg(LRI->VirtReg, TRI)
    286                  << " in " << PrintReg(LR.PhysReg, TRI));
    287     const TargetRegisterClass *RC = MRI->getRegClass(LRI->VirtReg);
    288     int FI = getStackSpaceFor(LRI->VirtReg, RC);
    289     DEBUG(dbgs() << " to stack slot #" << FI << "\n");
    290     TII->storeRegToStackSlot(*MBB, MI, LR.PhysReg, SpillKill, FI, RC, TRI);
    291     ++NumStores;   // Update statistics
    292 
    293     // If this register is used by DBG_VALUE then insert new DBG_VALUE to
    294     // identify spilled location as the place to find corresponding variable's
    295     // value.
    296     SmallVectorImpl<MachineInstr *> &LRIDbgValues =
    297       LiveDbgValueMap[LRI->VirtReg];
    298     for (unsigned li = 0, le = LRIDbgValues.size(); li != le; ++li) {
    299       MachineInstr *DBG = LRIDbgValues[li];
    300       const MDNode *MDPtr = DBG->getOperand(2).getMetadata();
    301       bool IsIndirect = DBG->getOperand(1).isImm(); // Register-indirect value?
    302       uint64_t Offset = IsIndirect ? DBG->getOperand(1).getImm() : 0;
    303       DebugLoc DL;
    304       if (MI == MBB->end()) {
    305         // If MI is at basic block end then use last instruction's location.
    306         MachineBasicBlock::iterator EI = MI;
    307         DL = (--EI)->getDebugLoc();
    308       } else
    309         DL = MI->getDebugLoc();
    310       MachineBasicBlock *MBB = DBG->getParent();
    311       MachineInstr *NewDV =
    312           BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::DBG_VALUE))
    313               .addFrameIndex(FI).addImm(Offset).addMetadata(MDPtr);
    314       (void)NewDV;
    315       DEBUG(dbgs() << "Inserting debug info due to spill:" << "\n" << *NewDV);
    316     }
    317     // Now this register is spilled there is should not be any DBG_VALUE
    318     // pointing to this register because they are all pointing to spilled value
    319     // now.
    320     LRIDbgValues.clear();
    321     if (SpillKill)
    322       LR.LastUse = 0; // Don't kill register again
    323   }
    324   killVirtReg(LRI);
    325 }
    326 
    327 /// spillAll - Spill all dirty virtregs without killing them.
    328 void RAFast::spillAll(MachineBasicBlock::iterator MI) {
    329   if (LiveVirtRegs.empty()) return;
    330   isBulkSpilling = true;
    331   // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order
    332   // of spilling here is deterministic, if arbitrary.
    333   for (LiveRegMap::iterator i = LiveVirtRegs.begin(), e = LiveVirtRegs.end();
    334        i != e; ++i)
    335     spillVirtReg(MI, i);
    336   LiveVirtRegs.clear();
    337   isBulkSpilling = false;
    338 }
    339 
    340 /// usePhysReg - Handle the direct use of a physical register.
    341 /// Check that the register is not used by a virtreg.
    342 /// Kill the physreg, marking it free.
    343 /// This may add implicit kills to MO->getParent() and invalidate MO.
    344 void RAFast::usePhysReg(MachineOperand &MO) {
    345   unsigned PhysReg = MO.getReg();
    346   assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) &&
    347          "Bad usePhysReg operand");
    348   markRegUsedInInstr(PhysReg);
    349   switch (PhysRegState[PhysReg]) {
    350   case regDisabled:
    351     break;
    352   case regReserved:
    353     PhysRegState[PhysReg] = regFree;
    354     // Fall through
    355   case regFree:
    356     MO.setIsKill();
    357     return;
    358   default:
    359     // The physreg was allocated to a virtual register. That means the value we
    360     // wanted has been clobbered.
    361     llvm_unreachable("Instruction uses an allocated register");
    362   }
    363 
    364   // Maybe a superregister is reserved?
    365   for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
    366     unsigned Alias = *AI;
    367     switch (PhysRegState[Alias]) {
    368     case regDisabled:
    369       break;
    370     case regReserved:
    371       assert(TRI->isSuperRegister(PhysReg, Alias) &&
    372              "Instruction is not using a subregister of a reserved register");
    373       // Leave the superregister in the working set.
    374       PhysRegState[Alias] = regFree;
    375       MO.getParent()->addRegisterKilled(Alias, TRI, true);
    376       return;
    377     case regFree:
    378       if (TRI->isSuperRegister(PhysReg, Alias)) {
    379         // Leave the superregister in the working set.
    380         MO.getParent()->addRegisterKilled(Alias, TRI, true);
    381         return;
    382       }
    383       // Some other alias was in the working set - clear it.
    384       PhysRegState[Alias] = regDisabled;
    385       break;
    386     default:
    387       llvm_unreachable("Instruction uses an alias of an allocated register");
    388     }
    389   }
    390 
    391   // All aliases are disabled, bring register into working set.
    392   PhysRegState[PhysReg] = regFree;
    393   MO.setIsKill();
    394 }
    395 
    396 /// definePhysReg - Mark PhysReg as reserved or free after spilling any
    397 /// virtregs. This is very similar to defineVirtReg except the physreg is
    398 /// reserved instead of allocated.
    399 void RAFast::definePhysReg(MachineInstr *MI, unsigned PhysReg,
    400                            RegState NewState) {
    401   markRegUsedInInstr(PhysReg);
    402   switch (unsigned VirtReg = PhysRegState[PhysReg]) {
    403   case regDisabled:
    404     break;
    405   default:
    406     spillVirtReg(MI, VirtReg);
    407     // Fall through.
    408   case regFree:
    409   case regReserved:
    410     PhysRegState[PhysReg] = NewState;
    411     return;
    412   }
    413 
    414   // This is a disabled register, disable all aliases.
    415   PhysRegState[PhysReg] = NewState;
    416   for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
    417     unsigned Alias = *AI;
    418     switch (unsigned VirtReg = PhysRegState[Alias]) {
    419     case regDisabled:
    420       break;
    421     default:
    422       spillVirtReg(MI, VirtReg);
    423       // Fall through.
    424     case regFree:
    425     case regReserved:
    426       PhysRegState[Alias] = regDisabled;
    427       if (TRI->isSuperRegister(PhysReg, Alias))
    428         return;
    429       break;
    430     }
    431   }
    432 }
    433 
    434 
    435 // calcSpillCost - Return the cost of spilling clearing out PhysReg and
    436 // aliases so it is free for allocation.
    437 // Returns 0 when PhysReg is free or disabled with all aliases disabled - it
    438 // can be allocated directly.
    439 // Returns spillImpossible when PhysReg or an alias can't be spilled.
    440 unsigned RAFast::calcSpillCost(unsigned PhysReg) const {
    441   if (isRegUsedInInstr(PhysReg)) {
    442     DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is already used in instr.\n");
    443     return spillImpossible;
    444   }
    445   switch (unsigned VirtReg = PhysRegState[PhysReg]) {
    446   case regDisabled:
    447     break;
    448   case regFree:
    449     return 0;
    450   case regReserved:
    451     DEBUG(dbgs() << PrintReg(VirtReg, TRI) << " corresponding "
    452                  << PrintReg(PhysReg, TRI) << " is reserved already.\n");
    453     return spillImpossible;
    454   default: {
    455     LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg);
    456     assert(I != LiveVirtRegs.end() && "Missing VirtReg entry");
    457     return I->Dirty ? spillDirty : spillClean;
    458   }
    459   }
    460 
    461   // This is a disabled register, add up cost of aliases.
    462   DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is disabled.\n");
    463   unsigned Cost = 0;
    464   for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
    465     unsigned Alias = *AI;
    466     switch (unsigned VirtReg = PhysRegState[Alias]) {
    467     case regDisabled:
    468       break;
    469     case regFree:
    470       ++Cost;
    471       break;
    472     case regReserved:
    473       return spillImpossible;
    474     default: {
    475       LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg);
    476       assert(I != LiveVirtRegs.end() && "Missing VirtReg entry");
    477       Cost += I->Dirty ? spillDirty : spillClean;
    478       break;
    479     }
    480     }
    481   }
    482   return Cost;
    483 }
    484 
    485 
    486 /// assignVirtToPhysReg - This method updates local state so that we know
    487 /// that PhysReg is the proper container for VirtReg now.  The physical
    488 /// register must not be used for anything else when this is called.
    489 ///
    490 void RAFast::assignVirtToPhysReg(LiveReg &LR, unsigned PhysReg) {
    491   DEBUG(dbgs() << "Assigning " << PrintReg(LR.VirtReg, TRI) << " to "
    492                << PrintReg(PhysReg, TRI) << "\n");
    493   PhysRegState[PhysReg] = LR.VirtReg;
    494   assert(!LR.PhysReg && "Already assigned a physreg");
    495   LR.PhysReg = PhysReg;
    496 }
    497 
    498 RAFast::LiveRegMap::iterator
    499 RAFast::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) {
    500   LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
    501   assert(LRI != LiveVirtRegs.end() && "VirtReg disappeared");
    502   assignVirtToPhysReg(*LRI, PhysReg);
    503   return LRI;
    504 }
    505 
    506 /// allocVirtReg - Allocate a physical register for VirtReg.
    507 RAFast::LiveRegMap::iterator RAFast::allocVirtReg(MachineInstr *MI,
    508                                                   LiveRegMap::iterator LRI,
    509                                                   unsigned Hint) {
    510   const unsigned VirtReg = LRI->VirtReg;
    511 
    512   assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
    513          "Can only allocate virtual registers");
    514 
    515   const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
    516 
    517   // Ignore invalid hints.
    518   if (Hint && (!TargetRegisterInfo::isPhysicalRegister(Hint) ||
    519                !RC->contains(Hint) || !MRI->isAllocatable(Hint)))
    520     Hint = 0;
    521 
    522   // Take hint when possible.
    523   if (Hint) {
    524     // Ignore the hint if we would have to spill a dirty register.
    525     unsigned Cost = calcSpillCost(Hint);
    526     if (Cost < spillDirty) {
    527       if (Cost)
    528         definePhysReg(MI, Hint, regFree);
    529       // definePhysReg may kill virtual registers and modify LiveVirtRegs.
    530       // That invalidates LRI, so run a new lookup for VirtReg.
    531       return assignVirtToPhysReg(VirtReg, Hint);
    532     }
    533   }
    534 
    535   ArrayRef<MCPhysReg> AO = RegClassInfo.getOrder(RC);
    536 
    537   // First try to find a completely free register.
    538   for (ArrayRef<MCPhysReg>::iterator I = AO.begin(), E = AO.end(); I != E; ++I){
    539     unsigned PhysReg = *I;
    540     if (PhysRegState[PhysReg] == regFree && !isRegUsedInInstr(PhysReg)) {
    541       assignVirtToPhysReg(*LRI, PhysReg);
    542       return LRI;
    543     }
    544   }
    545 
    546   DEBUG(dbgs() << "Allocating " << PrintReg(VirtReg) << " from "
    547                << RC->getName() << "\n");
    548 
    549   unsigned BestReg = 0, BestCost = spillImpossible;
    550   for (ArrayRef<MCPhysReg>::iterator I = AO.begin(), E = AO.end(); I != E; ++I){
    551     unsigned Cost = calcSpillCost(*I);
    552     DEBUG(dbgs() << "\tRegister: " << PrintReg(*I, TRI) << "\n");
    553     DEBUG(dbgs() << "\tCost: " << Cost << "\n");
    554     DEBUG(dbgs() << "\tBestCost: " << BestCost << "\n");
    555     // Cost is 0 when all aliases are already disabled.
    556     if (Cost == 0) {
    557       assignVirtToPhysReg(*LRI, *I);
    558       return LRI;
    559     }
    560     if (Cost < BestCost)
    561       BestReg = *I, BestCost = Cost;
    562   }
    563 
    564   if (BestReg) {
    565     definePhysReg(MI, BestReg, regFree);
    566     // definePhysReg may kill virtual registers and modify LiveVirtRegs.
    567     // That invalidates LRI, so run a new lookup for VirtReg.
    568     return assignVirtToPhysReg(VirtReg, BestReg);
    569   }
    570 
    571   // Nothing we can do. Report an error and keep going with a bad allocation.
    572   MI->emitError("ran out of registers during register allocation");
    573   definePhysReg(MI, *AO.begin(), regFree);
    574   return assignVirtToPhysReg(VirtReg, *AO.begin());
    575 }
    576 
    577 /// defineVirtReg - Allocate a register for VirtReg and mark it as dirty.
    578 RAFast::LiveRegMap::iterator
    579 RAFast::defineVirtReg(MachineInstr *MI, unsigned OpNum,
    580                       unsigned VirtReg, unsigned Hint) {
    581   assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
    582          "Not a virtual register");
    583   LiveRegMap::iterator LRI;
    584   bool New;
    585   tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
    586   if (New) {
    587     // If there is no hint, peek at the only use of this register.
    588     if ((!Hint || !TargetRegisterInfo::isPhysicalRegister(Hint)) &&
    589         MRI->hasOneNonDBGUse(VirtReg)) {
    590       const MachineInstr &UseMI = *MRI->use_nodbg_begin(VirtReg);
    591       // It's a copy, use the destination register as a hint.
    592       if (UseMI.isCopyLike())
    593         Hint = UseMI.getOperand(0).getReg();
    594     }
    595     LRI = allocVirtReg(MI, LRI, Hint);
    596   } else if (LRI->LastUse) {
    597     // Redefining a live register - kill at the last use, unless it is this
    598     // instruction defining VirtReg multiple times.
    599     if (LRI->LastUse != MI || LRI->LastUse->getOperand(LRI->LastOpNum).isUse())
    600       addKillFlag(*LRI);
    601   }
    602   assert(LRI->PhysReg && "Register not assigned");
    603   LRI->LastUse = MI;
    604   LRI->LastOpNum = OpNum;
    605   LRI->Dirty = true;
    606   markRegUsedInInstr(LRI->PhysReg);
    607   return LRI;
    608 }
    609 
    610 /// reloadVirtReg - Make sure VirtReg is available in a physreg and return it.
    611 RAFast::LiveRegMap::iterator
    612 RAFast::reloadVirtReg(MachineInstr *MI, unsigned OpNum,
    613                       unsigned VirtReg, unsigned Hint) {
    614   assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
    615          "Not a virtual register");
    616   LiveRegMap::iterator LRI;
    617   bool New;
    618   tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
    619   MachineOperand &MO = MI->getOperand(OpNum);
    620   if (New) {
    621     LRI = allocVirtReg(MI, LRI, Hint);
    622     const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
    623     int FrameIndex = getStackSpaceFor(VirtReg, RC);
    624     DEBUG(dbgs() << "Reloading " << PrintReg(VirtReg, TRI) << " into "
    625                  << PrintReg(LRI->PhysReg, TRI) << "\n");
    626     TII->loadRegFromStackSlot(*MBB, MI, LRI->PhysReg, FrameIndex, RC, TRI);
    627     ++NumLoads;
    628   } else if (LRI->Dirty) {
    629     if (isLastUseOfLocalReg(MO)) {
    630       DEBUG(dbgs() << "Killing last use: " << MO << "\n");
    631       if (MO.isUse())
    632         MO.setIsKill();
    633       else
    634         MO.setIsDead();
    635     } else if (MO.isKill()) {
    636       DEBUG(dbgs() << "Clearing dubious kill: " << MO << "\n");
    637       MO.setIsKill(false);
    638     } else if (MO.isDead()) {
    639       DEBUG(dbgs() << "Clearing dubious dead: " << MO << "\n");
    640       MO.setIsDead(false);
    641     }
    642   } else if (MO.isKill()) {
    643     // We must remove kill flags from uses of reloaded registers because the
    644     // register would be killed immediately, and there might be a second use:
    645     //   %foo = OR %x<kill>, %x
    646     // This would cause a second reload of %x into a different register.
    647     DEBUG(dbgs() << "Clearing clean kill: " << MO << "\n");
    648     MO.setIsKill(false);
    649   } else if (MO.isDead()) {
    650     DEBUG(dbgs() << "Clearing clean dead: " << MO << "\n");
    651     MO.setIsDead(false);
    652   }
    653   assert(LRI->PhysReg && "Register not assigned");
    654   LRI->LastUse = MI;
    655   LRI->LastOpNum = OpNum;
    656   markRegUsedInInstr(LRI->PhysReg);
    657   return LRI;
    658 }
    659 
    660 // setPhysReg - Change operand OpNum in MI the refer the PhysReg, considering
    661 // subregs. This may invalidate any operand pointers.
    662 // Return true if the operand kills its register.
    663 bool RAFast::setPhysReg(MachineInstr *MI, unsigned OpNum, unsigned PhysReg) {
    664   MachineOperand &MO = MI->getOperand(OpNum);
    665   bool Dead = MO.isDead();
    666   if (!MO.getSubReg()) {
    667     MO.setReg(PhysReg);
    668     return MO.isKill() || Dead;
    669   }
    670 
    671   // Handle subregister index.
    672   MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : 0);
    673   MO.setSubReg(0);
    674 
    675   // A kill flag implies killing the full register. Add corresponding super
    676   // register kill.
    677   if (MO.isKill()) {
    678     MI->addRegisterKilled(PhysReg, TRI, true);
    679     return true;
    680   }
    681 
    682   // A <def,read-undef> of a sub-register requires an implicit def of the full
    683   // register.
    684   if (MO.isDef() && MO.isUndef())
    685     MI->addRegisterDefined(PhysReg, TRI);
    686 
    687   return Dead;
    688 }
    689 
    690 // Handle special instruction operand like early clobbers and tied ops when
    691 // there are additional physreg defines.
    692 void RAFast::handleThroughOperands(MachineInstr *MI,
    693                                    SmallVectorImpl<unsigned> &VirtDead) {
    694   DEBUG(dbgs() << "Scanning for through registers:");
    695   SmallSet<unsigned, 8> ThroughRegs;
    696   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    697     MachineOperand &MO = MI->getOperand(i);
    698     if (!MO.isReg()) continue;
    699     unsigned Reg = MO.getReg();
    700     if (!TargetRegisterInfo::isVirtualRegister(Reg))
    701       continue;
    702     if (MO.isEarlyClobber() || MI->isRegTiedToDefOperand(i) ||
    703         (MO.getSubReg() && MI->readsVirtualRegister(Reg))) {
    704       if (ThroughRegs.insert(Reg))
    705         DEBUG(dbgs() << ' ' << PrintReg(Reg));
    706     }
    707   }
    708 
    709   // If any physreg defines collide with preallocated through registers,
    710   // we must spill and reallocate.
    711   DEBUG(dbgs() << "\nChecking for physdef collisions.\n");
    712   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    713     MachineOperand &MO = MI->getOperand(i);
    714     if (!MO.isReg() || !MO.isDef()) continue;
    715     unsigned Reg = MO.getReg();
    716     if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
    717     markRegUsedInInstr(Reg);
    718     for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
    719       if (ThroughRegs.count(PhysRegState[*AI]))
    720         definePhysReg(MI, *AI, regFree);
    721     }
    722   }
    723 
    724   SmallVector<unsigned, 8> PartialDefs;
    725   DEBUG(dbgs() << "Allocating tied uses.\n");
    726   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    727     MachineOperand &MO = MI->getOperand(i);
    728     if (!MO.isReg()) continue;
    729     unsigned Reg = MO.getReg();
    730     if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
    731     if (MO.isUse()) {
    732       unsigned DefIdx = 0;
    733       if (!MI->isRegTiedToDefOperand(i, &DefIdx)) continue;
    734       DEBUG(dbgs() << "Operand " << i << "("<< MO << ") is tied to operand "
    735         << DefIdx << ".\n");
    736       LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, 0);
    737       unsigned PhysReg = LRI->PhysReg;
    738       setPhysReg(MI, i, PhysReg);
    739       // Note: we don't update the def operand yet. That would cause the normal
    740       // def-scan to attempt spilling.
    741     } else if (MO.getSubReg() && MI->readsVirtualRegister(Reg)) {
    742       DEBUG(dbgs() << "Partial redefine: " << MO << "\n");
    743       // Reload the register, but don't assign to the operand just yet.
    744       // That would confuse the later phys-def processing pass.
    745       LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, 0);
    746       PartialDefs.push_back(LRI->PhysReg);
    747     }
    748   }
    749 
    750   DEBUG(dbgs() << "Allocating early clobbers.\n");
    751   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    752     MachineOperand &MO = MI->getOperand(i);
    753     if (!MO.isReg()) continue;
    754     unsigned Reg = MO.getReg();
    755     if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
    756     if (!MO.isEarlyClobber())
    757       continue;
    758     // Note: defineVirtReg may invalidate MO.
    759     LiveRegMap::iterator LRI = defineVirtReg(MI, i, Reg, 0);
    760     unsigned PhysReg = LRI->PhysReg;
    761     if (setPhysReg(MI, i, PhysReg))
    762       VirtDead.push_back(Reg);
    763   }
    764 
    765   // Restore UsedInInstr to a state usable for allocating normal virtual uses.
    766   UsedInInstr.clear();
    767   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    768     MachineOperand &MO = MI->getOperand(i);
    769     if (!MO.isReg() || (MO.isDef() && !MO.isEarlyClobber())) continue;
    770     unsigned Reg = MO.getReg();
    771     if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
    772     DEBUG(dbgs() << "\tSetting " << PrintReg(Reg, TRI)
    773                  << " as used in instr\n");
    774     markRegUsedInInstr(Reg);
    775   }
    776 
    777   // Also mark PartialDefs as used to avoid reallocation.
    778   for (unsigned i = 0, e = PartialDefs.size(); i != e; ++i)
    779     markRegUsedInInstr(PartialDefs[i]);
    780 }
    781 
    782 void RAFast::AllocateBasicBlock() {
    783   DEBUG(dbgs() << "\nAllocating " << *MBB);
    784 
    785   PhysRegState.assign(TRI->getNumRegs(), regDisabled);
    786   assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?");
    787 
    788   MachineBasicBlock::iterator MII = MBB->begin();
    789 
    790   // Add live-in registers as live.
    791   for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
    792          E = MBB->livein_end(); I != E; ++I)
    793     if (MRI->isAllocatable(*I))
    794       definePhysReg(MII, *I, regReserved);
    795 
    796   SmallVector<unsigned, 8> VirtDead;
    797   SmallVector<MachineInstr*, 32> Coalesced;
    798 
    799   // Otherwise, sequentially allocate each instruction in the MBB.
    800   while (MII != MBB->end()) {
    801     MachineInstr *MI = MII++;
    802     const MCInstrDesc &MCID = MI->getDesc();
    803     DEBUG({
    804         dbgs() << "\n>> " << *MI << "Regs:";
    805         for (unsigned Reg = 1, E = TRI->getNumRegs(); Reg != E; ++Reg) {
    806           if (PhysRegState[Reg] == regDisabled) continue;
    807           dbgs() << " " << TRI->getName(Reg);
    808           switch(PhysRegState[Reg]) {
    809           case regFree:
    810             break;
    811           case regReserved:
    812             dbgs() << "*";
    813             break;
    814           default: {
    815             dbgs() << '=' << PrintReg(PhysRegState[Reg]);
    816             LiveRegMap::iterator I = findLiveVirtReg(PhysRegState[Reg]);
    817             assert(I != LiveVirtRegs.end() && "Missing VirtReg entry");
    818             if (I->Dirty)
    819               dbgs() << "*";
    820             assert(I->PhysReg == Reg && "Bad inverse map");
    821             break;
    822           }
    823           }
    824         }
    825         dbgs() << '\n';
    826         // Check that LiveVirtRegs is the inverse.
    827         for (LiveRegMap::iterator i = LiveVirtRegs.begin(),
    828              e = LiveVirtRegs.end(); i != e; ++i) {
    829            assert(TargetRegisterInfo::isVirtualRegister(i->VirtReg) &&
    830                   "Bad map key");
    831            assert(TargetRegisterInfo::isPhysicalRegister(i->PhysReg) &&
    832                   "Bad map value");
    833            assert(PhysRegState[i->PhysReg] == i->VirtReg && "Bad inverse map");
    834         }
    835       });
    836 
    837     // Debug values are not allowed to change codegen in any way.
    838     if (MI->isDebugValue()) {
    839       bool ScanDbgValue = true;
    840       while (ScanDbgValue) {
    841         ScanDbgValue = false;
    842         for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    843           MachineOperand &MO = MI->getOperand(i);
    844           if (!MO.isReg()) continue;
    845           unsigned Reg = MO.getReg();
    846           if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
    847           LiveRegMap::iterator LRI = findLiveVirtReg(Reg);
    848           if (LRI != LiveVirtRegs.end())
    849             setPhysReg(MI, i, LRI->PhysReg);
    850           else {
    851             int SS = StackSlotForVirtReg[Reg];
    852             if (SS == -1) {
    853               // We can't allocate a physreg for a DebugValue, sorry!
    854               DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE");
    855               MO.setReg(0);
    856             }
    857             else {
    858               // Modify DBG_VALUE now that the value is in a spill slot.
    859               bool IsIndirect = MI->getOperand(1).isImm();
    860               uint64_t Offset = IsIndirect ? MI->getOperand(1).getImm() : 0;
    861               const MDNode *MDPtr =
    862                 MI->getOperand(MI->getNumOperands()-1).getMetadata();
    863               DebugLoc DL = MI->getDebugLoc();
    864               MachineBasicBlock *MBB = MI->getParent();
    865               MachineInstr *NewDV = BuildMI(*MBB, MBB->erase(MI), DL,
    866                                             TII->get(TargetOpcode::DBG_VALUE))
    867                   .addFrameIndex(SS).addImm(Offset).addMetadata(MDPtr);
    868               DEBUG(dbgs() << "Modifying debug info due to spill:"
    869                            << "\t" << *NewDV);
    870               // Scan NewDV operands from the beginning.
    871               MI = NewDV;
    872               ScanDbgValue = true;
    873               break;
    874             }
    875           }
    876           LiveDbgValueMap[Reg].push_back(MI);
    877         }
    878       }
    879       // Next instruction.
    880       continue;
    881     }
    882 
    883     // If this is a copy, we may be able to coalesce.
    884     unsigned CopySrc = 0, CopyDst = 0, CopySrcSub = 0, CopyDstSub = 0;
    885     if (MI->isCopy()) {
    886       CopyDst = MI->getOperand(0).getReg();
    887       CopySrc = MI->getOperand(1).getReg();
    888       CopyDstSub = MI->getOperand(0).getSubReg();
    889       CopySrcSub = MI->getOperand(1).getSubReg();
    890     }
    891 
    892     // Track registers used by instruction.
    893     UsedInInstr.clear();
    894 
    895     // First scan.
    896     // Mark physreg uses and early clobbers as used.
    897     // Find the end of the virtreg operands
    898     unsigned VirtOpEnd = 0;
    899     bool hasTiedOps = false;
    900     bool hasEarlyClobbers = false;
    901     bool hasPartialRedefs = false;
    902     bool hasPhysDefs = false;
    903     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    904       MachineOperand &MO = MI->getOperand(i);
    905       // Make sure MRI knows about registers clobbered by regmasks.
    906       if (MO.isRegMask()) {
    907         MRI->addPhysRegsUsedFromRegMask(MO.getRegMask());
    908         continue;
    909       }
    910       if (!MO.isReg()) continue;
    911       unsigned Reg = MO.getReg();
    912       if (!Reg) continue;
    913       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
    914         VirtOpEnd = i+1;
    915         if (MO.isUse()) {
    916           hasTiedOps = hasTiedOps ||
    917                               MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1;
    918         } else {
    919           if (MO.isEarlyClobber())
    920             hasEarlyClobbers = true;
    921           if (MO.getSubReg() && MI->readsVirtualRegister(Reg))
    922             hasPartialRedefs = true;
    923         }
    924         continue;
    925       }
    926       if (!MRI->isAllocatable(Reg)) continue;
    927       if (MO.isUse()) {
    928         usePhysReg(MO);
    929       } else if (MO.isEarlyClobber()) {
    930         definePhysReg(MI, Reg, (MO.isImplicit() || MO.isDead()) ?
    931                                regFree : regReserved);
    932         hasEarlyClobbers = true;
    933       } else
    934         hasPhysDefs = true;
    935     }
    936 
    937     // The instruction may have virtual register operands that must be allocated
    938     // the same register at use-time and def-time: early clobbers and tied
    939     // operands. If there are also physical defs, these registers must avoid
    940     // both physical defs and uses, making them more constrained than normal
    941     // operands.
    942     // Similarly, if there are multiple defs and tied operands, we must make
    943     // sure the same register is allocated to uses and defs.
    944     // We didn't detect inline asm tied operands above, so just make this extra
    945     // pass for all inline asm.
    946     if (MI->isInlineAsm() || hasEarlyClobbers || hasPartialRedefs ||
    947         (hasTiedOps && (hasPhysDefs || MCID.getNumDefs() > 1))) {
    948       handleThroughOperands(MI, VirtDead);
    949       // Don't attempt coalescing when we have funny stuff going on.
    950       CopyDst = 0;
    951       // Pretend we have early clobbers so the use operands get marked below.
    952       // This is not necessary for the common case of a single tied use.
    953       hasEarlyClobbers = true;
    954     }
    955 
    956     // Second scan.
    957     // Allocate virtreg uses.
    958     for (unsigned i = 0; i != VirtOpEnd; ++i) {
    959       MachineOperand &MO = MI->getOperand(i);
    960       if (!MO.isReg()) continue;
    961       unsigned Reg = MO.getReg();
    962       if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
    963       if (MO.isUse()) {
    964         LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, CopyDst);
    965         unsigned PhysReg = LRI->PhysReg;
    966         CopySrc = (CopySrc == Reg || CopySrc == PhysReg) ? PhysReg : 0;
    967         if (setPhysReg(MI, i, PhysReg))
    968           killVirtReg(LRI);
    969       }
    970     }
    971 
    972     for (UsedInInstrSet::iterator
    973          I = UsedInInstr.begin(), E = UsedInInstr.end(); I != E; ++I)
    974       MRI->setRegUnitUsed(*I);
    975 
    976     // Track registers defined by instruction - early clobbers and tied uses at
    977     // this point.
    978     UsedInInstr.clear();
    979     if (hasEarlyClobbers) {
    980       for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    981         MachineOperand &MO = MI->getOperand(i);
    982         if (!MO.isReg()) continue;
    983         unsigned Reg = MO.getReg();
    984         if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
    985         // Look for physreg defs and tied uses.
    986         if (!MO.isDef() && !MI->isRegTiedToDefOperand(i)) continue;
    987         markRegUsedInInstr(Reg);
    988       }
    989     }
    990 
    991     unsigned DefOpEnd = MI->getNumOperands();
    992     if (MI->isCall()) {
    993       // Spill all virtregs before a call. This serves two purposes: 1. If an
    994       // exception is thrown, the landing pad is going to expect to find
    995       // registers in their spill slots, and 2. we don't have to wade through
    996       // all the <imp-def> operands on the call instruction.
    997       DefOpEnd = VirtOpEnd;
    998       DEBUG(dbgs() << "  Spilling remaining registers before call.\n");
    999       spillAll(MI);
   1000 
   1001       // The imp-defs are skipped below, but we still need to mark those
   1002       // registers as used by the function.
   1003       SkippedInstrs.insert(&MCID);
   1004     }
   1005 
   1006     // Third scan.
   1007     // Allocate defs and collect dead defs.
   1008     for (unsigned i = 0; i != DefOpEnd; ++i) {
   1009       MachineOperand &MO = MI->getOperand(i);
   1010       if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber())
   1011         continue;
   1012       unsigned Reg = MO.getReg();
   1013 
   1014       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
   1015         if (!MRI->isAllocatable(Reg)) continue;
   1016         definePhysReg(MI, Reg, (MO.isImplicit() || MO.isDead()) ?
   1017                                regFree : regReserved);
   1018         continue;
   1019       }
   1020       LiveRegMap::iterator LRI = defineVirtReg(MI, i, Reg, CopySrc);
   1021       unsigned PhysReg = LRI->PhysReg;
   1022       if (setPhysReg(MI, i, PhysReg)) {
   1023         VirtDead.push_back(Reg);
   1024         CopyDst = 0; // cancel coalescing;
   1025       } else
   1026         CopyDst = (CopyDst == Reg || CopyDst == PhysReg) ? PhysReg : 0;
   1027     }
   1028 
   1029     // Kill dead defs after the scan to ensure that multiple defs of the same
   1030     // register are allocated identically. We didn't need to do this for uses
   1031     // because we are crerating our own kill flags, and they are always at the
   1032     // last use.
   1033     for (unsigned i = 0, e = VirtDead.size(); i != e; ++i)
   1034       killVirtReg(VirtDead[i]);
   1035     VirtDead.clear();
   1036 
   1037     for (UsedInInstrSet::iterator
   1038          I = UsedInInstr.begin(), E = UsedInInstr.end(); I != E; ++I)
   1039       MRI->setRegUnitUsed(*I);
   1040 
   1041     if (CopyDst && CopyDst == CopySrc && CopyDstSub == CopySrcSub) {
   1042       DEBUG(dbgs() << "-- coalescing: " << *MI);
   1043       Coalesced.push_back(MI);
   1044     } else {
   1045       DEBUG(dbgs() << "<< " << *MI);
   1046     }
   1047   }
   1048 
   1049   // Spill all physical registers holding virtual registers now.
   1050   DEBUG(dbgs() << "Spilling live registers at end of block.\n");
   1051   spillAll(MBB->getFirstTerminator());
   1052 
   1053   // Erase all the coalesced copies. We are delaying it until now because
   1054   // LiveVirtRegs might refer to the instrs.
   1055   for (unsigned i = 0, e = Coalesced.size(); i != e; ++i)
   1056     MBB->erase(Coalesced[i]);
   1057   NumCopies += Coalesced.size();
   1058 
   1059   DEBUG(MBB->dump());
   1060 }
   1061 
   1062 /// runOnMachineFunction - Register allocate the whole function
   1063 ///
   1064 bool RAFast::runOnMachineFunction(MachineFunction &Fn) {
   1065   DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n"
   1066                << "********** Function: " << Fn.getName() << '\n');
   1067   MF = &Fn;
   1068   MRI = &MF->getRegInfo();
   1069   TM = &Fn.getTarget();
   1070   TRI = TM->getRegisterInfo();
   1071   TII = TM->getInstrInfo();
   1072   MRI->freezeReservedRegs(Fn);
   1073   RegClassInfo.runOnMachineFunction(Fn);
   1074   UsedInInstr.clear();
   1075   UsedInInstr.setUniverse(TRI->getNumRegUnits());
   1076 
   1077   assert(!MRI->isSSA() && "regalloc requires leaving SSA");
   1078 
   1079   // initialize the virtual->physical register map to have a 'null'
   1080   // mapping for all virtual registers
   1081   StackSlotForVirtReg.resize(MRI->getNumVirtRegs());
   1082   LiveVirtRegs.setUniverse(MRI->getNumVirtRegs());
   1083 
   1084   // Loop over all of the basic blocks, eliminating virtual register references
   1085   for (MachineFunction::iterator MBBi = Fn.begin(), MBBe = Fn.end();
   1086        MBBi != MBBe; ++MBBi) {
   1087     MBB = &*MBBi;
   1088     AllocateBasicBlock();
   1089   }
   1090 
   1091   // Add the clobber lists for all the instructions we skipped earlier.
   1092   for (SmallPtrSet<const MCInstrDesc*, 4>::const_iterator
   1093        I = SkippedInstrs.begin(), E = SkippedInstrs.end(); I != E; ++I)
   1094     if (const uint16_t *Defs = (*I)->getImplicitDefs())
   1095       while (*Defs)
   1096         MRI->setPhysRegUsed(*Defs++);
   1097 
   1098   // All machine operands and other references to virtual registers have been
   1099   // replaced. Remove the virtual registers.
   1100   MRI->clearVirtRegs();
   1101 
   1102   SkippedInstrs.clear();
   1103   StackSlotForVirtReg.clear();
   1104   LiveDbgValueMap.clear();
   1105   return true;
   1106 }
   1107 
   1108 FunctionPass *llvm::createFastRegisterAllocator() {
   1109   return new RAFast();
   1110 }
   1111