Home | History | Annotate | Download | only in ARM
      1 //===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the ARM-specific support for the FastISel class. Some
     11 // of the target-specific code is generated by tablegen in the file
     12 // ARMGenFastISel.inc, which is #included here.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "ARM.h"
     17 #include "ARMBaseInstrInfo.h"
     18 #include "ARMCallingConv.h"
     19 #include "ARMConstantPoolValue.h"
     20 #include "ARMSubtarget.h"
     21 #include "ARMTargetMachine.h"
     22 #include "MCTargetDesc/ARMAddressingModes.h"
     23 #include "llvm/ADT/STLExtras.h"
     24 #include "llvm/CodeGen/Analysis.h"
     25 #include "llvm/CodeGen/FastISel.h"
     26 #include "llvm/CodeGen/FunctionLoweringInfo.h"
     27 #include "llvm/CodeGen/MachineConstantPool.h"
     28 #include "llvm/CodeGen/MachineFrameInfo.h"
     29 #include "llvm/CodeGen/MachineInstrBuilder.h"
     30 #include "llvm/CodeGen/MachineMemOperand.h"
     31 #include "llvm/CodeGen/MachineModuleInfo.h"
     32 #include "llvm/CodeGen/MachineRegisterInfo.h"
     33 #include "llvm/IR/CallingConv.h"
     34 #include "llvm/IR/DataLayout.h"
     35 #include "llvm/IR/DerivedTypes.h"
     36 #include "llvm/IR/GlobalVariable.h"
     37 #include "llvm/IR/Instructions.h"
     38 #include "llvm/IR/IntrinsicInst.h"
     39 #include "llvm/IR/Module.h"
     40 #include "llvm/IR/Operator.h"
     41 #include "llvm/Support/CallSite.h"
     42 #include "llvm/Support/CommandLine.h"
     43 #include "llvm/Support/ErrorHandling.h"
     44 #include "llvm/Support/GetElementPtrTypeIterator.h"
     45 #include "llvm/Target/TargetInstrInfo.h"
     46 #include "llvm/Target/TargetLowering.h"
     47 #include "llvm/Target/TargetMachine.h"
     48 #include "llvm/Target/TargetOptions.h"
     49 using namespace llvm;
     50 
     51 extern cl::opt<bool> EnableARMLongCalls;
     52 
     53 namespace {
     54 
     55   // All possible address modes, plus some.
     56   typedef struct Address {
     57     enum {
     58       RegBase,
     59       FrameIndexBase
     60     } BaseType;
     61 
     62     union {
     63       unsigned Reg;
     64       int FI;
     65     } Base;
     66 
     67     int Offset;
     68 
     69     // Innocuous defaults for our address.
     70     Address()
     71      : BaseType(RegBase), Offset(0) {
     72        Base.Reg = 0;
     73      }
     74   } Address;
     75 
     76 class ARMFastISel : public FastISel {
     77 
     78   /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
     79   /// make the right decision when generating code for different targets.
     80   const ARMSubtarget *Subtarget;
     81   const TargetMachine &TM;
     82   const TargetInstrInfo &TII;
     83   const TargetLowering &TLI;
     84   ARMFunctionInfo *AFI;
     85 
     86   // Convenience variables to avoid some queries.
     87   bool isThumb2;
     88   LLVMContext *Context;
     89 
     90   public:
     91     explicit ARMFastISel(FunctionLoweringInfo &funcInfo,
     92                          const TargetLibraryInfo *libInfo)
     93     : FastISel(funcInfo, libInfo),
     94       TM(funcInfo.MF->getTarget()),
     95       TII(*TM.getInstrInfo()),
     96       TLI(*TM.getTargetLowering()) {
     97       Subtarget = &TM.getSubtarget<ARMSubtarget>();
     98       AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
     99       isThumb2 = AFI->isThumbFunction();
    100       Context = &funcInfo.Fn->getContext();
    101     }
    102 
    103     // Code from FastISel.cpp.
    104   private:
    105     unsigned FastEmitInst_(unsigned MachineInstOpcode,
    106                            const TargetRegisterClass *RC);
    107     unsigned FastEmitInst_r(unsigned MachineInstOpcode,
    108                             const TargetRegisterClass *RC,
    109                             unsigned Op0, bool Op0IsKill);
    110     unsigned FastEmitInst_rr(unsigned MachineInstOpcode,
    111                              const TargetRegisterClass *RC,
    112                              unsigned Op0, bool Op0IsKill,
    113                              unsigned Op1, bool Op1IsKill);
    114     unsigned FastEmitInst_rrr(unsigned MachineInstOpcode,
    115                               const TargetRegisterClass *RC,
    116                               unsigned Op0, bool Op0IsKill,
    117                               unsigned Op1, bool Op1IsKill,
    118                               unsigned Op2, bool Op2IsKill);
    119     unsigned FastEmitInst_ri(unsigned MachineInstOpcode,
    120                              const TargetRegisterClass *RC,
    121                              unsigned Op0, bool Op0IsKill,
    122                              uint64_t Imm);
    123     unsigned FastEmitInst_rf(unsigned MachineInstOpcode,
    124                              const TargetRegisterClass *RC,
    125                              unsigned Op0, bool Op0IsKill,
    126                              const ConstantFP *FPImm);
    127     unsigned FastEmitInst_rri(unsigned MachineInstOpcode,
    128                               const TargetRegisterClass *RC,
    129                               unsigned Op0, bool Op0IsKill,
    130                               unsigned Op1, bool Op1IsKill,
    131                               uint64_t Imm);
    132     unsigned FastEmitInst_i(unsigned MachineInstOpcode,
    133                             const TargetRegisterClass *RC,
    134                             uint64_t Imm);
    135     unsigned FastEmitInst_ii(unsigned MachineInstOpcode,
    136                              const TargetRegisterClass *RC,
    137                              uint64_t Imm1, uint64_t Imm2);
    138 
    139     unsigned FastEmitInst_extractsubreg(MVT RetVT,
    140                                         unsigned Op0, bool Op0IsKill,
    141                                         uint32_t Idx);
    142 
    143     // Backend specific FastISel code.
    144   private:
    145     virtual bool TargetSelectInstruction(const Instruction *I);
    146     virtual unsigned TargetMaterializeConstant(const Constant *C);
    147     virtual unsigned TargetMaterializeAlloca(const AllocaInst *AI);
    148     virtual bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
    149                                      const LoadInst *LI);
    150     virtual bool FastLowerArguments();
    151   private:
    152   #include "ARMGenFastISel.inc"
    153 
    154     // Instruction selection routines.
    155   private:
    156     bool SelectLoad(const Instruction *I);
    157     bool SelectStore(const Instruction *I);
    158     bool SelectBranch(const Instruction *I);
    159     bool SelectIndirectBr(const Instruction *I);
    160     bool SelectCmp(const Instruction *I);
    161     bool SelectFPExt(const Instruction *I);
    162     bool SelectFPTrunc(const Instruction *I);
    163     bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
    164     bool SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode);
    165     bool SelectIToFP(const Instruction *I, bool isSigned);
    166     bool SelectFPToI(const Instruction *I, bool isSigned);
    167     bool SelectDiv(const Instruction *I, bool isSigned);
    168     bool SelectRem(const Instruction *I, bool isSigned);
    169     bool SelectCall(const Instruction *I, const char *IntrMemName);
    170     bool SelectIntrinsicCall(const IntrinsicInst &I);
    171     bool SelectSelect(const Instruction *I);
    172     bool SelectRet(const Instruction *I);
    173     bool SelectTrunc(const Instruction *I);
    174     bool SelectIntExt(const Instruction *I);
    175     bool SelectShift(const Instruction *I, ARM_AM::ShiftOpc ShiftTy);
    176 
    177     // Utility routines.
    178   private:
    179     bool isTypeLegal(Type *Ty, MVT &VT);
    180     bool isLoadTypeLegal(Type *Ty, MVT &VT);
    181     bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
    182                     bool isZExt);
    183     bool ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
    184                      unsigned Alignment = 0, bool isZExt = true,
    185                      bool allocReg = true);
    186     bool ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr,
    187                       unsigned Alignment = 0);
    188     bool ARMComputeAddress(const Value *Obj, Address &Addr);
    189     void ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3);
    190     bool ARMIsMemCpySmall(uint64_t Len);
    191     bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len,
    192                                unsigned Alignment);
    193     unsigned ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
    194     unsigned ARMMaterializeFP(const ConstantFP *CFP, MVT VT);
    195     unsigned ARMMaterializeInt(const Constant *C, MVT VT);
    196     unsigned ARMMaterializeGV(const GlobalValue *GV, MVT VT);
    197     unsigned ARMMoveToFPReg(MVT VT, unsigned SrcReg);
    198     unsigned ARMMoveToIntReg(MVT VT, unsigned SrcReg);
    199     unsigned ARMSelectCallOp(bool UseReg);
    200     unsigned ARMLowerPICELF(const GlobalValue *GV, unsigned Align, MVT VT);
    201 
    202     // Call handling routines.
    203   private:
    204     CCAssignFn *CCAssignFnForCall(CallingConv::ID CC,
    205                                   bool Return,
    206                                   bool isVarArg);
    207     bool ProcessCallArgs(SmallVectorImpl<Value*> &Args,
    208                          SmallVectorImpl<unsigned> &ArgRegs,
    209                          SmallVectorImpl<MVT> &ArgVTs,
    210                          SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
    211                          SmallVectorImpl<unsigned> &RegArgs,
    212                          CallingConv::ID CC,
    213                          unsigned &NumBytes,
    214                          bool isVarArg);
    215     unsigned getLibcallReg(const Twine &Name);
    216     bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
    217                     const Instruction *I, CallingConv::ID CC,
    218                     unsigned &NumBytes, bool isVarArg);
    219     bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call);
    220 
    221     // OptionalDef handling routines.
    222   private:
    223     bool isARMNEONPred(const MachineInstr *MI);
    224     bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR);
    225     const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB);
    226     void AddLoadStoreOperands(MVT VT, Address &Addr,
    227                               const MachineInstrBuilder &MIB,
    228                               unsigned Flags, bool useAM3);
    229 };
    230 
    231 } // end anonymous namespace
    232 
    233 #include "ARMGenCallingConv.inc"
    234 
    235 // DefinesOptionalPredicate - This is different from DefinesPredicate in that
    236 // we don't care about implicit defs here, just places we'll need to add a
    237 // default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
    238 bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) {
    239   if (!MI->hasOptionalDef())
    240     return false;
    241 
    242   // Look to see if our OptionalDef is defining CPSR or CCR.
    243   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    244     const MachineOperand &MO = MI->getOperand(i);
    245     if (!MO.isReg() || !MO.isDef()) continue;
    246     if (MO.getReg() == ARM::CPSR)
    247       *CPSR = true;
    248   }
    249   return true;
    250 }
    251 
    252 bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) {
    253   const MCInstrDesc &MCID = MI->getDesc();
    254 
    255   // If we're a thumb2 or not NEON function we were handled via isPredicable.
    256   if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON ||
    257        AFI->isThumb2Function())
    258     return false;
    259 
    260   for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i)
    261     if (MCID.OpInfo[i].isPredicate())
    262       return true;
    263 
    264   return false;
    265 }
    266 
    267 // If the machine is predicable go ahead and add the predicate operands, if
    268 // it needs default CC operands add those.
    269 // TODO: If we want to support thumb1 then we'll need to deal with optional
    270 // CPSR defs that need to be added before the remaining operands. See s_cc_out
    271 // for descriptions why.
    272 const MachineInstrBuilder &
    273 ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
    274   MachineInstr *MI = &*MIB;
    275 
    276   // Do we use a predicate? or...
    277   // Are we NEON in ARM mode and have a predicate operand? If so, I know
    278   // we're not predicable but add it anyways.
    279   if (TII.isPredicable(MI) || isARMNEONPred(MI))
    280     AddDefaultPred(MIB);
    281 
    282   // Do we optionally set a predicate?  Preds is size > 0 iff the predicate
    283   // defines CPSR. All other OptionalDefines in ARM are the CCR register.
    284   bool CPSR = false;
    285   if (DefinesOptionalPredicate(MI, &CPSR)) {
    286     if (CPSR)
    287       AddDefaultT1CC(MIB);
    288     else
    289       AddDefaultCC(MIB);
    290   }
    291   return MIB;
    292 }
    293 
    294 unsigned ARMFastISel::FastEmitInst_(unsigned MachineInstOpcode,
    295                                     const TargetRegisterClass* RC) {
    296   unsigned ResultReg = createResultReg(RC);
    297   const MCInstrDesc &II = TII.get(MachineInstOpcode);
    298 
    299   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg));
    300   return ResultReg;
    301 }
    302 
    303 unsigned ARMFastISel::FastEmitInst_r(unsigned MachineInstOpcode,
    304                                      const TargetRegisterClass *RC,
    305                                      unsigned Op0, bool Op0IsKill) {
    306   unsigned ResultReg = createResultReg(RC);
    307   const MCInstrDesc &II = TII.get(MachineInstOpcode);
    308 
    309   if (II.getNumDefs() >= 1) {
    310     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
    311                    .addReg(Op0, Op0IsKill * RegState::Kill));
    312   } else {
    313     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
    314                    .addReg(Op0, Op0IsKill * RegState::Kill));
    315     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    316                    TII.get(TargetOpcode::COPY), ResultReg)
    317                    .addReg(II.ImplicitDefs[0]));
    318   }
    319   return ResultReg;
    320 }
    321 
    322 unsigned ARMFastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
    323                                       const TargetRegisterClass *RC,
    324                                       unsigned Op0, bool Op0IsKill,
    325                                       unsigned Op1, bool Op1IsKill) {
    326   unsigned ResultReg = createResultReg(RC);
    327   const MCInstrDesc &II = TII.get(MachineInstOpcode);
    328 
    329   if (II.getNumDefs() >= 1) {
    330     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
    331                    .addReg(Op0, Op0IsKill * RegState::Kill)
    332                    .addReg(Op1, Op1IsKill * RegState::Kill));
    333   } else {
    334     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
    335                    .addReg(Op0, Op0IsKill * RegState::Kill)
    336                    .addReg(Op1, Op1IsKill * RegState::Kill));
    337     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    338                            TII.get(TargetOpcode::COPY), ResultReg)
    339                    .addReg(II.ImplicitDefs[0]));
    340   }
    341   return ResultReg;
    342 }
    343 
    344 unsigned ARMFastISel::FastEmitInst_rrr(unsigned MachineInstOpcode,
    345                                        const TargetRegisterClass *RC,
    346                                        unsigned Op0, bool Op0IsKill,
    347                                        unsigned Op1, bool Op1IsKill,
    348                                        unsigned Op2, bool Op2IsKill) {
    349   unsigned ResultReg = createResultReg(RC);
    350   const MCInstrDesc &II = TII.get(MachineInstOpcode);
    351 
    352   if (II.getNumDefs() >= 1) {
    353     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
    354                    .addReg(Op0, Op0IsKill * RegState::Kill)
    355                    .addReg(Op1, Op1IsKill * RegState::Kill)
    356                    .addReg(Op2, Op2IsKill * RegState::Kill));
    357   } else {
    358     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
    359                    .addReg(Op0, Op0IsKill * RegState::Kill)
    360                    .addReg(Op1, Op1IsKill * RegState::Kill)
    361                    .addReg(Op2, Op2IsKill * RegState::Kill));
    362     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    363                            TII.get(TargetOpcode::COPY), ResultReg)
    364                    .addReg(II.ImplicitDefs[0]));
    365   }
    366   return ResultReg;
    367 }
    368 
    369 unsigned ARMFastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
    370                                       const TargetRegisterClass *RC,
    371                                       unsigned Op0, bool Op0IsKill,
    372                                       uint64_t Imm) {
    373   unsigned ResultReg = createResultReg(RC);
    374   const MCInstrDesc &II = TII.get(MachineInstOpcode);
    375 
    376   if (II.getNumDefs() >= 1) {
    377     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
    378                    .addReg(Op0, Op0IsKill * RegState::Kill)
    379                    .addImm(Imm));
    380   } else {
    381     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
    382                    .addReg(Op0, Op0IsKill * RegState::Kill)
    383                    .addImm(Imm));
    384     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    385                            TII.get(TargetOpcode::COPY), ResultReg)
    386                    .addReg(II.ImplicitDefs[0]));
    387   }
    388   return ResultReg;
    389 }
    390 
    391 unsigned ARMFastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
    392                                       const TargetRegisterClass *RC,
    393                                       unsigned Op0, bool Op0IsKill,
    394                                       const ConstantFP *FPImm) {
    395   unsigned ResultReg = createResultReg(RC);
    396   const MCInstrDesc &II = TII.get(MachineInstOpcode);
    397 
    398   if (II.getNumDefs() >= 1) {
    399     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
    400                    .addReg(Op0, Op0IsKill * RegState::Kill)
    401                    .addFPImm(FPImm));
    402   } else {
    403     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
    404                    .addReg(Op0, Op0IsKill * RegState::Kill)
    405                    .addFPImm(FPImm));
    406     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    407                            TII.get(TargetOpcode::COPY), ResultReg)
    408                    .addReg(II.ImplicitDefs[0]));
    409   }
    410   return ResultReg;
    411 }
    412 
    413 unsigned ARMFastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
    414                                        const TargetRegisterClass *RC,
    415                                        unsigned Op0, bool Op0IsKill,
    416                                        unsigned Op1, bool Op1IsKill,
    417                                        uint64_t Imm) {
    418   unsigned ResultReg = createResultReg(RC);
    419   const MCInstrDesc &II = TII.get(MachineInstOpcode);
    420 
    421   if (II.getNumDefs() >= 1) {
    422     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
    423                    .addReg(Op0, Op0IsKill * RegState::Kill)
    424                    .addReg(Op1, Op1IsKill * RegState::Kill)
    425                    .addImm(Imm));
    426   } else {
    427     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
    428                    .addReg(Op0, Op0IsKill * RegState::Kill)
    429                    .addReg(Op1, Op1IsKill * RegState::Kill)
    430                    .addImm(Imm));
    431     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    432                            TII.get(TargetOpcode::COPY), ResultReg)
    433                    .addReg(II.ImplicitDefs[0]));
    434   }
    435   return ResultReg;
    436 }
    437 
    438 unsigned ARMFastISel::FastEmitInst_i(unsigned MachineInstOpcode,
    439                                      const TargetRegisterClass *RC,
    440                                      uint64_t Imm) {
    441   unsigned ResultReg = createResultReg(RC);
    442   const MCInstrDesc &II = TII.get(MachineInstOpcode);
    443 
    444   if (II.getNumDefs() >= 1) {
    445     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
    446                    .addImm(Imm));
    447   } else {
    448     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
    449                    .addImm(Imm));
    450     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    451                            TII.get(TargetOpcode::COPY), ResultReg)
    452                    .addReg(II.ImplicitDefs[0]));
    453   }
    454   return ResultReg;
    455 }
    456 
    457 unsigned ARMFastISel::FastEmitInst_ii(unsigned MachineInstOpcode,
    458                                       const TargetRegisterClass *RC,
    459                                       uint64_t Imm1, uint64_t Imm2) {
    460   unsigned ResultReg = createResultReg(RC);
    461   const MCInstrDesc &II = TII.get(MachineInstOpcode);
    462 
    463   if (II.getNumDefs() >= 1) {
    464     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
    465                     .addImm(Imm1).addImm(Imm2));
    466   } else {
    467     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
    468                     .addImm(Imm1).addImm(Imm2));
    469     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    470                             TII.get(TargetOpcode::COPY),
    471                             ResultReg)
    472                     .addReg(II.ImplicitDefs[0]));
    473   }
    474   return ResultReg;
    475 }
    476 
    477 unsigned ARMFastISel::FastEmitInst_extractsubreg(MVT RetVT,
    478                                                  unsigned Op0, bool Op0IsKill,
    479                                                  uint32_t Idx) {
    480   unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
    481   assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
    482          "Cannot yet extract from physregs");
    483 
    484   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
    485                           DL, TII.get(TargetOpcode::COPY), ResultReg)
    486                   .addReg(Op0, getKillRegState(Op0IsKill), Idx));
    487   return ResultReg;
    488 }
    489 
    490 // TODO: Don't worry about 64-bit now, but when this is fixed remove the
    491 // checks from the various callers.
    492 unsigned ARMFastISel::ARMMoveToFPReg(MVT VT, unsigned SrcReg) {
    493   if (VT == MVT::f64) return 0;
    494 
    495   unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
    496   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    497                           TII.get(ARM::VMOVSR), MoveReg)
    498                   .addReg(SrcReg));
    499   return MoveReg;
    500 }
    501 
    502 unsigned ARMFastISel::ARMMoveToIntReg(MVT VT, unsigned SrcReg) {
    503   if (VT == MVT::i64) return 0;
    504 
    505   unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
    506   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    507                           TII.get(ARM::VMOVRS), MoveReg)
    508                   .addReg(SrcReg));
    509   return MoveReg;
    510 }
    511 
    512 // For double width floating point we need to materialize two constants
    513 // (the high and the low) into integer registers then use a move to get
    514 // the combined constant into an FP reg.
    515 unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, MVT VT) {
    516   const APFloat Val = CFP->getValueAPF();
    517   bool is64bit = VT == MVT::f64;
    518 
    519   // This checks to see if we can use VFP3 instructions to materialize
    520   // a constant, otherwise we have to go through the constant pool.
    521   if (TLI.isFPImmLegal(Val, VT)) {
    522     int Imm;
    523     unsigned Opc;
    524     if (is64bit) {
    525       Imm = ARM_AM::getFP64Imm(Val);
    526       Opc = ARM::FCONSTD;
    527     } else {
    528       Imm = ARM_AM::getFP32Imm(Val);
    529       Opc = ARM::FCONSTS;
    530     }
    531     unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
    532     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
    533                             DestReg)
    534                     .addImm(Imm));
    535     return DestReg;
    536   }
    537 
    538   // Require VFP2 for loading fp constants.
    539   if (!Subtarget->hasVFP2()) return false;
    540 
    541   // MachineConstantPool wants an explicit alignment.
    542   unsigned Align = TD.getPrefTypeAlignment(CFP->getType());
    543   if (Align == 0) {
    544     // TODO: Figure out if this is correct.
    545     Align = TD.getTypeAllocSize(CFP->getType());
    546   }
    547   unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
    548   unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
    549   unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS;
    550 
    551   // The extra reg is for addrmode5.
    552   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
    553                           DestReg)
    554                   .addConstantPoolIndex(Idx)
    555                   .addReg(0));
    556   return DestReg;
    557 }
    558 
    559 unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, MVT VT) {
    560 
    561   if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
    562     return false;
    563 
    564   // If we can do this in a single instruction without a constant pool entry
    565   // do so now.
    566   const ConstantInt *CI = cast<ConstantInt>(C);
    567   if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) {
    568     unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16;
    569     const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass :
    570       &ARM::GPRRegClass;
    571     unsigned ImmReg = createResultReg(RC);
    572     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    573                             TII.get(Opc), ImmReg)
    574                     .addImm(CI->getZExtValue()));
    575     return ImmReg;
    576   }
    577 
    578   // Use MVN to emit negative constants.
    579   if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) {
    580     unsigned Imm = (unsigned)~(CI->getSExtValue());
    581     bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
    582       (ARM_AM::getSOImmVal(Imm) != -1);
    583     if (UseImm) {
    584       unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi;
    585       unsigned ImmReg = createResultReg(TLI.getRegClassFor(MVT::i32));
    586       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    587                               TII.get(Opc), ImmReg)
    588                       .addImm(Imm));
    589       return ImmReg;
    590     }
    591   }
    592 
    593   // Load from constant pool.  For now 32-bit only.
    594   if (VT != MVT::i32)
    595     return false;
    596 
    597   unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
    598 
    599   // MachineConstantPool wants an explicit alignment.
    600   unsigned Align = TD.getPrefTypeAlignment(C->getType());
    601   if (Align == 0) {
    602     // TODO: Figure out if this is correct.
    603     Align = TD.getTypeAllocSize(C->getType());
    604   }
    605   unsigned Idx = MCP.getConstantPoolIndex(C, Align);
    606 
    607   if (isThumb2)
    608     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    609                             TII.get(ARM::t2LDRpci), DestReg)
    610                     .addConstantPoolIndex(Idx));
    611   else
    612     // The extra immediate is for addrmode2.
    613     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    614                             TII.get(ARM::LDRcp), DestReg)
    615                     .addConstantPoolIndex(Idx)
    616                     .addImm(0));
    617 
    618   return DestReg;
    619 }
    620 
    621 unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, MVT VT) {
    622   // For now 32-bit only.
    623   if (VT != MVT::i32) return 0;
    624 
    625   Reloc::Model RelocM = TM.getRelocationModel();
    626   bool IsIndirect = Subtarget->GVIsIndirectSymbol(GV, RelocM);
    627   const TargetRegisterClass *RC = isThumb2 ?
    628     (const TargetRegisterClass*)&ARM::rGPRRegClass :
    629     (const TargetRegisterClass*)&ARM::GPRRegClass;
    630   unsigned DestReg = createResultReg(RC);
    631 
    632   // FastISel TLS support on non-Darwin is broken, punt to SelectionDAG.
    633   const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
    634   bool IsThreadLocal = GVar && GVar->isThreadLocal();
    635   if (!Subtarget->isTargetDarwin() && IsThreadLocal) return 0;
    636 
    637   // Use movw+movt when possible, it avoids constant pool entries.
    638   // Darwin targets don't support movt with Reloc::Static, see
    639   // ARMTargetLowering::LowerGlobalAddressDarwin.  Other targets only support
    640   // static movt relocations.
    641   if (Subtarget->useMovt() &&
    642       Subtarget->isTargetDarwin() == (RelocM != Reloc::Static)) {
    643     unsigned Opc;
    644     switch (RelocM) {
    645     case Reloc::PIC_:
    646       Opc = isThumb2 ? ARM::t2MOV_ga_pcrel : ARM::MOV_ga_pcrel;
    647       break;
    648     case Reloc::DynamicNoPIC:
    649       Opc = isThumb2 ? ARM::t2MOV_ga_dyn : ARM::MOV_ga_dyn;
    650       break;
    651     default:
    652       Opc = isThumb2 ? ARM::t2MOVi32imm : ARM::MOVi32imm;
    653       break;
    654     }
    655     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
    656                             DestReg).addGlobalAddress(GV));
    657   } else {
    658     // MachineConstantPool wants an explicit alignment.
    659     unsigned Align = TD.getPrefTypeAlignment(GV->getType());
    660     if (Align == 0) {
    661       // TODO: Figure out if this is correct.
    662       Align = TD.getTypeAllocSize(GV->getType());
    663     }
    664 
    665     if (Subtarget->isTargetELF() && RelocM == Reloc::PIC_)
    666       return ARMLowerPICELF(GV, Align, VT);
    667 
    668     // Grab index.
    669     unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 :
    670       (Subtarget->isThumb() ? 4 : 8);
    671     unsigned Id = AFI->createPICLabelUId();
    672     ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id,
    673                                                                 ARMCP::CPValue,
    674                                                                 PCAdj);
    675     unsigned Idx = MCP.getConstantPoolIndex(CPV, Align);
    676 
    677     // Load value.
    678     MachineInstrBuilder MIB;
    679     if (isThumb2) {
    680       unsigned Opc = (RelocM!=Reloc::PIC_) ? ARM::t2LDRpci : ARM::t2LDRpci_pic;
    681       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
    682         .addConstantPoolIndex(Idx);
    683       if (RelocM == Reloc::PIC_)
    684         MIB.addImm(Id);
    685       AddOptionalDefs(MIB);
    686     } else {
    687       // The extra immediate is for addrmode2.
    688       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRcp),
    689                     DestReg)
    690         .addConstantPoolIndex(Idx)
    691         .addImm(0);
    692       AddOptionalDefs(MIB);
    693 
    694       if (RelocM == Reloc::PIC_) {
    695         unsigned Opc = IsIndirect ? ARM::PICLDR : ARM::PICADD;
    696         unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
    697 
    698         MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
    699                                           DL, TII.get(Opc), NewDestReg)
    700                                   .addReg(DestReg)
    701                                   .addImm(Id);
    702         AddOptionalDefs(MIB);
    703         return NewDestReg;
    704       }
    705     }
    706   }
    707 
    708   if (IsIndirect) {
    709     MachineInstrBuilder MIB;
    710     unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
    711     if (isThumb2)
    712       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    713                     TII.get(ARM::t2LDRi12), NewDestReg)
    714             .addReg(DestReg)
    715             .addImm(0);
    716     else
    717       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRi12),
    718                     NewDestReg)
    719             .addReg(DestReg)
    720             .addImm(0);
    721     DestReg = NewDestReg;
    722     AddOptionalDefs(MIB);
    723   }
    724 
    725   return DestReg;
    726 }
    727 
    728 unsigned ARMFastISel::TargetMaterializeConstant(const Constant *C) {
    729   EVT CEVT = TLI.getValueType(C->getType(), true);
    730 
    731   // Only handle simple types.
    732   if (!CEVT.isSimple()) return 0;
    733   MVT VT = CEVT.getSimpleVT();
    734 
    735   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
    736     return ARMMaterializeFP(CFP, VT);
    737   else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
    738     return ARMMaterializeGV(GV, VT);
    739   else if (isa<ConstantInt>(C))
    740     return ARMMaterializeInt(C, VT);
    741 
    742   return 0;
    743 }
    744 
    745 // TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF);
    746 
    747 unsigned ARMFastISel::TargetMaterializeAlloca(const AllocaInst *AI) {
    748   // Don't handle dynamic allocas.
    749   if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
    750 
    751   MVT VT;
    752   if (!isLoadTypeLegal(AI->getType(), VT)) return 0;
    753 
    754   DenseMap<const AllocaInst*, int>::iterator SI =
    755     FuncInfo.StaticAllocaMap.find(AI);
    756 
    757   // This will get lowered later into the correct offsets and registers
    758   // via rewriteXFrameIndex.
    759   if (SI != FuncInfo.StaticAllocaMap.end()) {
    760     const TargetRegisterClass* RC = TLI.getRegClassFor(VT);
    761     unsigned ResultReg = createResultReg(RC);
    762     unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
    763     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    764                             TII.get(Opc), ResultReg)
    765                             .addFrameIndex(SI->second)
    766                             .addImm(0));
    767     return ResultReg;
    768   }
    769 
    770   return 0;
    771 }
    772 
    773 bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) {
    774   EVT evt = TLI.getValueType(Ty, true);
    775 
    776   // Only handle simple types.
    777   if (evt == MVT::Other || !evt.isSimple()) return false;
    778   VT = evt.getSimpleVT();
    779 
    780   // Handle all legal types, i.e. a register that will directly hold this
    781   // value.
    782   return TLI.isTypeLegal(VT);
    783 }
    784 
    785 bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
    786   if (isTypeLegal(Ty, VT)) return true;
    787 
    788   // If this is a type than can be sign or zero-extended to a basic operation
    789   // go ahead and accept it now.
    790   if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
    791     return true;
    792 
    793   return false;
    794 }
    795 
    796 // Computes the address to get to an object.
    797 bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) {
    798   // Some boilerplate from the X86 FastISel.
    799   const User *U = NULL;
    800   unsigned Opcode = Instruction::UserOp1;
    801   if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
    802     // Don't walk into other basic blocks unless the object is an alloca from
    803     // another block, otherwise it may not have a virtual register assigned.
    804     if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
    805         FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
    806       Opcode = I->getOpcode();
    807       U = I;
    808     }
    809   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
    810     Opcode = C->getOpcode();
    811     U = C;
    812   }
    813 
    814   if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
    815     if (Ty->getAddressSpace() > 255)
    816       // Fast instruction selection doesn't support the special
    817       // address spaces.
    818       return false;
    819 
    820   switch (Opcode) {
    821     default:
    822     break;
    823     case Instruction::BitCast:
    824       // Look through bitcasts.
    825       return ARMComputeAddress(U->getOperand(0), Addr);
    826     case Instruction::IntToPtr:
    827       // Look past no-op inttoptrs.
    828       if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
    829         return ARMComputeAddress(U->getOperand(0), Addr);
    830       break;
    831     case Instruction::PtrToInt:
    832       // Look past no-op ptrtoints.
    833       if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
    834         return ARMComputeAddress(U->getOperand(0), Addr);
    835       break;
    836     case Instruction::GetElementPtr: {
    837       Address SavedAddr = Addr;
    838       int TmpOffset = Addr.Offset;
    839 
    840       // Iterate through the GEP folding the constants into offsets where
    841       // we can.
    842       gep_type_iterator GTI = gep_type_begin(U);
    843       for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
    844            i != e; ++i, ++GTI) {
    845         const Value *Op = *i;
    846         if (StructType *STy = dyn_cast<StructType>(*GTI)) {
    847           const StructLayout *SL = TD.getStructLayout(STy);
    848           unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
    849           TmpOffset += SL->getElementOffset(Idx);
    850         } else {
    851           uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType());
    852           for (;;) {
    853             if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
    854               // Constant-offset addressing.
    855               TmpOffset += CI->getSExtValue() * S;
    856               break;
    857             }
    858             if (isa<AddOperator>(Op) &&
    859                 (!isa<Instruction>(Op) ||
    860                  FuncInfo.MBBMap[cast<Instruction>(Op)->getParent()]
    861                  == FuncInfo.MBB) &&
    862                 isa<ConstantInt>(cast<AddOperator>(Op)->getOperand(1))) {
    863               // An add (in the same block) with a constant operand. Fold the
    864               // constant.
    865               ConstantInt *CI =
    866               cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
    867               TmpOffset += CI->getSExtValue() * S;
    868               // Iterate on the other operand.
    869               Op = cast<AddOperator>(Op)->getOperand(0);
    870               continue;
    871             }
    872             // Unsupported
    873             goto unsupported_gep;
    874           }
    875         }
    876       }
    877 
    878       // Try to grab the base operand now.
    879       Addr.Offset = TmpOffset;
    880       if (ARMComputeAddress(U->getOperand(0), Addr)) return true;
    881 
    882       // We failed, restore everything and try the other options.
    883       Addr = SavedAddr;
    884 
    885       unsupported_gep:
    886       break;
    887     }
    888     case Instruction::Alloca: {
    889       const AllocaInst *AI = cast<AllocaInst>(Obj);
    890       DenseMap<const AllocaInst*, int>::iterator SI =
    891         FuncInfo.StaticAllocaMap.find(AI);
    892       if (SI != FuncInfo.StaticAllocaMap.end()) {
    893         Addr.BaseType = Address::FrameIndexBase;
    894         Addr.Base.FI = SI->second;
    895         return true;
    896       }
    897       break;
    898     }
    899   }
    900 
    901   // Try to get this in a register if nothing else has worked.
    902   if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj);
    903   return Addr.Base.Reg != 0;
    904 }
    905 
    906 void ARMFastISel::ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3) {
    907   bool needsLowering = false;
    908   switch (VT.SimpleTy) {
    909     default: llvm_unreachable("Unhandled load/store type!");
    910     case MVT::i1:
    911     case MVT::i8:
    912     case MVT::i16:
    913     case MVT::i32:
    914       if (!useAM3) {
    915         // Integer loads/stores handle 12-bit offsets.
    916         needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset);
    917         // Handle negative offsets.
    918         if (needsLowering && isThumb2)
    919           needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 &&
    920                             Addr.Offset > -256);
    921       } else {
    922         // ARM halfword load/stores and signed byte loads use +/-imm8 offsets.
    923         needsLowering = (Addr.Offset > 255 || Addr.Offset < -255);
    924       }
    925       break;
    926     case MVT::f32:
    927     case MVT::f64:
    928       // Floating point operands handle 8-bit offsets.
    929       needsLowering = ((Addr.Offset & 0xff) != Addr.Offset);
    930       break;
    931   }
    932 
    933   // If this is a stack pointer and the offset needs to be simplified then
    934   // put the alloca address into a register, set the base type back to
    935   // register and continue. This should almost never happen.
    936   if (needsLowering && Addr.BaseType == Address::FrameIndexBase) {
    937     const TargetRegisterClass *RC = isThumb2 ?
    938       (const TargetRegisterClass*)&ARM::tGPRRegClass :
    939       (const TargetRegisterClass*)&ARM::GPRRegClass;
    940     unsigned ResultReg = createResultReg(RC);
    941     unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
    942     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    943                             TII.get(Opc), ResultReg)
    944                             .addFrameIndex(Addr.Base.FI)
    945                             .addImm(0));
    946     Addr.Base.Reg = ResultReg;
    947     Addr.BaseType = Address::RegBase;
    948   }
    949 
    950   // Since the offset is too large for the load/store instruction
    951   // get the reg+offset into a register.
    952   if (needsLowering) {
    953     Addr.Base.Reg = FastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg,
    954                                  /*Op0IsKill*/false, Addr.Offset, MVT::i32);
    955     Addr.Offset = 0;
    956   }
    957 }
    958 
    959 void ARMFastISel::AddLoadStoreOperands(MVT VT, Address &Addr,
    960                                        const MachineInstrBuilder &MIB,
    961                                        unsigned Flags, bool useAM3) {
    962   // addrmode5 output depends on the selection dag addressing dividing the
    963   // offset by 4 that it then later multiplies. Do this here as well.
    964   if (VT.SimpleTy == MVT::f32 || VT.SimpleTy == MVT::f64)
    965     Addr.Offset /= 4;
    966 
    967   // Frame base works a bit differently. Handle it separately.
    968   if (Addr.BaseType == Address::FrameIndexBase) {
    969     int FI = Addr.Base.FI;
    970     int Offset = Addr.Offset;
    971     MachineMemOperand *MMO =
    972           FuncInfo.MF->getMachineMemOperand(
    973                                   MachinePointerInfo::getFixedStack(FI, Offset),
    974                                   Flags,
    975                                   MFI.getObjectSize(FI),
    976                                   MFI.getObjectAlignment(FI));
    977     // Now add the rest of the operands.
    978     MIB.addFrameIndex(FI);
    979 
    980     // ARM halfword load/stores and signed byte loads need an additional
    981     // operand.
    982     if (useAM3) {
    983       signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
    984       MIB.addReg(0);
    985       MIB.addImm(Imm);
    986     } else {
    987       MIB.addImm(Addr.Offset);
    988     }
    989     MIB.addMemOperand(MMO);
    990   } else {
    991     // Now add the rest of the operands.
    992     MIB.addReg(Addr.Base.Reg);
    993 
    994     // ARM halfword load/stores and signed byte loads need an additional
    995     // operand.
    996     if (useAM3) {
    997       signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
    998       MIB.addReg(0);
    999       MIB.addImm(Imm);
   1000     } else {
   1001       MIB.addImm(Addr.Offset);
   1002     }
   1003   }
   1004   AddOptionalDefs(MIB);
   1005 }
   1006 
   1007 bool ARMFastISel::ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
   1008                               unsigned Alignment, bool isZExt, bool allocReg) {
   1009   unsigned Opc;
   1010   bool useAM3 = false;
   1011   bool needVMOV = false;
   1012   const TargetRegisterClass *RC;
   1013   switch (VT.SimpleTy) {
   1014     // This is mostly going to be Neon/vector support.
   1015     default: return false;
   1016     case MVT::i1:
   1017     case MVT::i8:
   1018       if (isThumb2) {
   1019         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
   1020           Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8;
   1021         else
   1022           Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12;
   1023       } else {
   1024         if (isZExt) {
   1025           Opc = ARM::LDRBi12;
   1026         } else {
   1027           Opc = ARM::LDRSB;
   1028           useAM3 = true;
   1029         }
   1030       }
   1031       RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
   1032       break;
   1033     case MVT::i16:
   1034       if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem())
   1035         return false;
   1036 
   1037       if (isThumb2) {
   1038         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
   1039           Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8;
   1040         else
   1041           Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12;
   1042       } else {
   1043         Opc = isZExt ? ARM::LDRH : ARM::LDRSH;
   1044         useAM3 = true;
   1045       }
   1046       RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
   1047       break;
   1048     case MVT::i32:
   1049       if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem())
   1050         return false;
   1051 
   1052       if (isThumb2) {
   1053         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
   1054           Opc = ARM::t2LDRi8;
   1055         else
   1056           Opc = ARM::t2LDRi12;
   1057       } else {
   1058         Opc = ARM::LDRi12;
   1059       }
   1060       RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
   1061       break;
   1062     case MVT::f32:
   1063       if (!Subtarget->hasVFP2()) return false;
   1064       // Unaligned loads need special handling. Floats require word-alignment.
   1065       if (Alignment && Alignment < 4) {
   1066         needVMOV = true;
   1067         VT = MVT::i32;
   1068         Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12;
   1069         RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
   1070       } else {
   1071         Opc = ARM::VLDRS;
   1072         RC = TLI.getRegClassFor(VT);
   1073       }
   1074       break;
   1075     case MVT::f64:
   1076       if (!Subtarget->hasVFP2()) return false;
   1077       // FIXME: Unaligned loads need special handling.  Doublewords require
   1078       // word-alignment.
   1079       if (Alignment && Alignment < 4)
   1080         return false;
   1081 
   1082       Opc = ARM::VLDRD;
   1083       RC = TLI.getRegClassFor(VT);
   1084       break;
   1085   }
   1086   // Simplify this down to something we can handle.
   1087   ARMSimplifyAddress(Addr, VT, useAM3);
   1088 
   1089   // Create the base instruction, then add the operands.
   1090   if (allocReg)
   1091     ResultReg = createResultReg(RC);
   1092   assert (ResultReg > 255 && "Expected an allocated virtual register.");
   1093   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   1094                                     TII.get(Opc), ResultReg);
   1095   AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3);
   1096 
   1097   // If we had an unaligned load of a float we've converted it to an regular
   1098   // load.  Now we must move from the GRP to the FP register.
   1099   if (needVMOV) {
   1100     unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::f32));
   1101     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   1102                             TII.get(ARM::VMOVSR), MoveReg)
   1103                     .addReg(ResultReg));
   1104     ResultReg = MoveReg;
   1105   }
   1106   return true;
   1107 }
   1108 
   1109 bool ARMFastISel::SelectLoad(const Instruction *I) {
   1110   // Atomic loads need special handling.
   1111   if (cast<LoadInst>(I)->isAtomic())
   1112     return false;
   1113 
   1114   // Verify we have a legal type before going any further.
   1115   MVT VT;
   1116   if (!isLoadTypeLegal(I->getType(), VT))
   1117     return false;
   1118 
   1119   // See if we can handle this address.
   1120   Address Addr;
   1121   if (!ARMComputeAddress(I->getOperand(0), Addr)) return false;
   1122 
   1123   unsigned ResultReg;
   1124   if (!ARMEmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment()))
   1125     return false;
   1126   UpdateValueMap(I, ResultReg);
   1127   return true;
   1128 }
   1129 
   1130 bool ARMFastISel::ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr,
   1131                                unsigned Alignment) {
   1132   unsigned StrOpc;
   1133   bool useAM3 = false;
   1134   switch (VT.SimpleTy) {
   1135     // This is mostly going to be Neon/vector support.
   1136     default: return false;
   1137     case MVT::i1: {
   1138       unsigned Res = createResultReg(isThumb2 ?
   1139         (const TargetRegisterClass*)&ARM::tGPRRegClass :
   1140         (const TargetRegisterClass*)&ARM::GPRRegClass);
   1141       unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri;
   1142       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   1143                               TII.get(Opc), Res)
   1144                       .addReg(SrcReg).addImm(1));
   1145       SrcReg = Res;
   1146     } // Fallthrough here.
   1147     case MVT::i8:
   1148       if (isThumb2) {
   1149         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
   1150           StrOpc = ARM::t2STRBi8;
   1151         else
   1152           StrOpc = ARM::t2STRBi12;
   1153       } else {
   1154         StrOpc = ARM::STRBi12;
   1155       }
   1156       break;
   1157     case MVT::i16:
   1158       if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem())
   1159         return false;
   1160 
   1161       if (isThumb2) {
   1162         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
   1163           StrOpc = ARM::t2STRHi8;
   1164         else
   1165           StrOpc = ARM::t2STRHi12;
   1166       } else {
   1167         StrOpc = ARM::STRH;
   1168         useAM3 = true;
   1169       }
   1170       break;
   1171     case MVT::i32:
   1172       if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem())
   1173         return false;
   1174 
   1175       if (isThumb2) {
   1176         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
   1177           StrOpc = ARM::t2STRi8;
   1178         else
   1179           StrOpc = ARM::t2STRi12;
   1180       } else {
   1181         StrOpc = ARM::STRi12;
   1182       }
   1183       break;
   1184     case MVT::f32:
   1185       if (!Subtarget->hasVFP2()) return false;
   1186       // Unaligned stores need special handling. Floats require word-alignment.
   1187       if (Alignment && Alignment < 4) {
   1188         unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::i32));
   1189         AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   1190                                 TII.get(ARM::VMOVRS), MoveReg)
   1191                         .addReg(SrcReg));
   1192         SrcReg = MoveReg;
   1193         VT = MVT::i32;
   1194         StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12;
   1195       } else {
   1196         StrOpc = ARM::VSTRS;
   1197       }
   1198       break;
   1199     case MVT::f64:
   1200       if (!Subtarget->hasVFP2()) return false;
   1201       // FIXME: Unaligned stores need special handling.  Doublewords require
   1202       // word-alignment.
   1203       if (Alignment && Alignment < 4)
   1204           return false;
   1205 
   1206       StrOpc = ARM::VSTRD;
   1207       break;
   1208   }
   1209   // Simplify this down to something we can handle.
   1210   ARMSimplifyAddress(Addr, VT, useAM3);
   1211 
   1212   // Create the base instruction, then add the operands.
   1213   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   1214                                     TII.get(StrOpc))
   1215                             .addReg(SrcReg);
   1216   AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3);
   1217   return true;
   1218 }
   1219 
   1220 bool ARMFastISel::SelectStore(const Instruction *I) {
   1221   Value *Op0 = I->getOperand(0);
   1222   unsigned SrcReg = 0;
   1223 
   1224   // Atomic stores need special handling.
   1225   if (cast<StoreInst>(I)->isAtomic())
   1226     return false;
   1227 
   1228   // Verify we have a legal type before going any further.
   1229   MVT VT;
   1230   if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
   1231     return false;
   1232 
   1233   // Get the value to be stored into a register.
   1234   SrcReg = getRegForValue(Op0);
   1235   if (SrcReg == 0) return false;
   1236 
   1237   // See if we can handle this address.
   1238   Address Addr;
   1239   if (!ARMComputeAddress(I->getOperand(1), Addr))
   1240     return false;
   1241 
   1242   if (!ARMEmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment()))
   1243     return false;
   1244   return true;
   1245 }
   1246 
   1247 static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) {
   1248   switch (Pred) {
   1249     // Needs two compares...
   1250     case CmpInst::FCMP_ONE:
   1251     case CmpInst::FCMP_UEQ:
   1252     default:
   1253       // AL is our "false" for now. The other two need more compares.
   1254       return ARMCC::AL;
   1255     case CmpInst::ICMP_EQ:
   1256     case CmpInst::FCMP_OEQ:
   1257       return ARMCC::EQ;
   1258     case CmpInst::ICMP_SGT:
   1259     case CmpInst::FCMP_OGT:
   1260       return ARMCC::GT;
   1261     case CmpInst::ICMP_SGE:
   1262     case CmpInst::FCMP_OGE:
   1263       return ARMCC::GE;
   1264     case CmpInst::ICMP_UGT:
   1265     case CmpInst::FCMP_UGT:
   1266       return ARMCC::HI;
   1267     case CmpInst::FCMP_OLT:
   1268       return ARMCC::MI;
   1269     case CmpInst::ICMP_ULE:
   1270     case CmpInst::FCMP_OLE:
   1271       return ARMCC::LS;
   1272     case CmpInst::FCMP_ORD:
   1273       return ARMCC::VC;
   1274     case CmpInst::FCMP_UNO:
   1275       return ARMCC::VS;
   1276     case CmpInst::FCMP_UGE:
   1277       return ARMCC::PL;
   1278     case CmpInst::ICMP_SLT:
   1279     case CmpInst::FCMP_ULT:
   1280       return ARMCC::LT;
   1281     case CmpInst::ICMP_SLE:
   1282     case CmpInst::FCMP_ULE:
   1283       return ARMCC::LE;
   1284     case CmpInst::FCMP_UNE:
   1285     case CmpInst::ICMP_NE:
   1286       return ARMCC::NE;
   1287     case CmpInst::ICMP_UGE:
   1288       return ARMCC::HS;
   1289     case CmpInst::ICMP_ULT:
   1290       return ARMCC::LO;
   1291   }
   1292 }
   1293 
   1294 bool ARMFastISel::SelectBranch(const Instruction *I) {
   1295   const BranchInst *BI = cast<BranchInst>(I);
   1296   MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
   1297   MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
   1298 
   1299   // Simple branch support.
   1300 
   1301   // If we can, avoid recomputing the compare - redoing it could lead to wonky
   1302   // behavior.
   1303   if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
   1304     if (CI->hasOneUse() && (CI->getParent() == I->getParent())) {
   1305 
   1306       // Get the compare predicate.
   1307       // Try to take advantage of fallthrough opportunities.
   1308       CmpInst::Predicate Predicate = CI->getPredicate();
   1309       if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
   1310         std::swap(TBB, FBB);
   1311         Predicate = CmpInst::getInversePredicate(Predicate);
   1312       }
   1313 
   1314       ARMCC::CondCodes ARMPred = getComparePred(Predicate);
   1315 
   1316       // We may not handle every CC for now.
   1317       if (ARMPred == ARMCC::AL) return false;
   1318 
   1319       // Emit the compare.
   1320       if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
   1321         return false;
   1322 
   1323       unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
   1324       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
   1325       .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR);
   1326       FastEmitBranch(FBB, DL);
   1327       FuncInfo.MBB->addSuccessor(TBB);
   1328       return true;
   1329     }
   1330   } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
   1331     MVT SourceVT;
   1332     if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
   1333         (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) {
   1334       unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
   1335       unsigned OpReg = getRegForValue(TI->getOperand(0));
   1336       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   1337                               TII.get(TstOpc))
   1338                       .addReg(OpReg).addImm(1));
   1339 
   1340       unsigned CCMode = ARMCC::NE;
   1341       if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
   1342         std::swap(TBB, FBB);
   1343         CCMode = ARMCC::EQ;
   1344       }
   1345 
   1346       unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
   1347       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
   1348       .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
   1349 
   1350       FastEmitBranch(FBB, DL);
   1351       FuncInfo.MBB->addSuccessor(TBB);
   1352       return true;
   1353     }
   1354   } else if (const ConstantInt *CI =
   1355              dyn_cast<ConstantInt>(BI->getCondition())) {
   1356     uint64_t Imm = CI->getZExtValue();
   1357     MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
   1358     FastEmitBranch(Target, DL);
   1359     return true;
   1360   }
   1361 
   1362   unsigned CmpReg = getRegForValue(BI->getCondition());
   1363   if (CmpReg == 0) return false;
   1364 
   1365   // We've been divorced from our compare!  Our block was split, and
   1366   // now our compare lives in a predecessor block.  We musn't
   1367   // re-compare here, as the children of the compare aren't guaranteed
   1368   // live across the block boundary (we *could* check for this).
   1369   // Regardless, the compare has been done in the predecessor block,
   1370   // and it left a value for us in a virtual register.  Ergo, we test
   1371   // the one-bit value left in the virtual register.
   1372   unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
   1373   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TstOpc))
   1374                   .addReg(CmpReg).addImm(1));
   1375 
   1376   unsigned CCMode = ARMCC::NE;
   1377   if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
   1378     std::swap(TBB, FBB);
   1379     CCMode = ARMCC::EQ;
   1380   }
   1381 
   1382   unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
   1383   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
   1384                   .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
   1385   FastEmitBranch(FBB, DL);
   1386   FuncInfo.MBB->addSuccessor(TBB);
   1387   return true;
   1388 }
   1389 
   1390 bool ARMFastISel::SelectIndirectBr(const Instruction *I) {
   1391   unsigned AddrReg = getRegForValue(I->getOperand(0));
   1392   if (AddrReg == 0) return false;
   1393 
   1394   unsigned Opc = isThumb2 ? ARM::tBRIND : ARM::BX;
   1395   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc))
   1396                   .addReg(AddrReg));
   1397 
   1398   const IndirectBrInst *IB = cast<IndirectBrInst>(I);
   1399   for (unsigned i = 0, e = IB->getNumSuccessors(); i != e; ++i)
   1400     FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[IB->getSuccessor(i)]);
   1401 
   1402   return true;
   1403 }
   1404 
   1405 bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
   1406                              bool isZExt) {
   1407   Type *Ty = Src1Value->getType();
   1408   EVT SrcEVT = TLI.getValueType(Ty, true);
   1409   if (!SrcEVT.isSimple()) return false;
   1410   MVT SrcVT = SrcEVT.getSimpleVT();
   1411 
   1412   bool isFloat = (Ty->isFloatTy() || Ty->isDoubleTy());
   1413   if (isFloat && !Subtarget->hasVFP2())
   1414     return false;
   1415 
   1416   // Check to see if the 2nd operand is a constant that we can encode directly
   1417   // in the compare.
   1418   int Imm = 0;
   1419   bool UseImm = false;
   1420   bool isNegativeImm = false;
   1421   // FIXME: At -O0 we don't have anything that canonicalizes operand order.
   1422   // Thus, Src1Value may be a ConstantInt, but we're missing it.
   1423   if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) {
   1424     if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 ||
   1425         SrcVT == MVT::i1) {
   1426       const APInt &CIVal = ConstInt->getValue();
   1427       Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue();
   1428       // For INT_MIN/LONG_MIN (i.e., 0x80000000) we need to use a cmp, rather
   1429       // then a cmn, because there is no way to represent 2147483648 as a
   1430       // signed 32-bit int.
   1431       if (Imm < 0 && Imm != (int)0x80000000) {
   1432         isNegativeImm = true;
   1433         Imm = -Imm;
   1434       }
   1435       UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
   1436         (ARM_AM::getSOImmVal(Imm) != -1);
   1437     }
   1438   } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) {
   1439     if (SrcVT == MVT::f32 || SrcVT == MVT::f64)
   1440       if (ConstFP->isZero() && !ConstFP->isNegative())
   1441         UseImm = true;
   1442   }
   1443 
   1444   unsigned CmpOpc;
   1445   bool isICmp = true;
   1446   bool needsExt = false;
   1447   switch (SrcVT.SimpleTy) {
   1448     default: return false;
   1449     // TODO: Verify compares.
   1450     case MVT::f32:
   1451       isICmp = false;
   1452       CmpOpc = UseImm ? ARM::VCMPEZS : ARM::VCMPES;
   1453       break;
   1454     case MVT::f64:
   1455       isICmp = false;
   1456       CmpOpc = UseImm ? ARM::VCMPEZD : ARM::VCMPED;
   1457       break;
   1458     case MVT::i1:
   1459     case MVT::i8:
   1460     case MVT::i16:
   1461       needsExt = true;
   1462     // Intentional fall-through.
   1463     case MVT::i32:
   1464       if (isThumb2) {
   1465         if (!UseImm)
   1466           CmpOpc = ARM::t2CMPrr;
   1467         else
   1468           CmpOpc = isNegativeImm ? ARM::t2CMNri : ARM::t2CMPri;
   1469       } else {
   1470         if (!UseImm)
   1471           CmpOpc = ARM::CMPrr;
   1472         else
   1473           CmpOpc = isNegativeImm ? ARM::CMNri : ARM::CMPri;
   1474       }
   1475       break;
   1476   }
   1477 
   1478   unsigned SrcReg1 = getRegForValue(Src1Value);
   1479   if (SrcReg1 == 0) return false;
   1480 
   1481   unsigned SrcReg2 = 0;
   1482   if (!UseImm) {
   1483     SrcReg2 = getRegForValue(Src2Value);
   1484     if (SrcReg2 == 0) return false;
   1485   }
   1486 
   1487   // We have i1, i8, or i16, we need to either zero extend or sign extend.
   1488   if (needsExt) {
   1489     SrcReg1 = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt);
   1490     if (SrcReg1 == 0) return false;
   1491     if (!UseImm) {
   1492       SrcReg2 = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt);
   1493       if (SrcReg2 == 0) return false;
   1494     }
   1495   }
   1496 
   1497   if (!UseImm) {
   1498     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   1499                             TII.get(CmpOpc))
   1500                     .addReg(SrcReg1).addReg(SrcReg2));
   1501   } else {
   1502     MachineInstrBuilder MIB;
   1503     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
   1504       .addReg(SrcReg1);
   1505 
   1506     // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0.
   1507     if (isICmp)
   1508       MIB.addImm(Imm);
   1509     AddOptionalDefs(MIB);
   1510   }
   1511 
   1512   // For floating point we need to move the result to a comparison register
   1513   // that we can then use for branches.
   1514   if (Ty->isFloatTy() || Ty->isDoubleTy())
   1515     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   1516                             TII.get(ARM::FMSTAT)));
   1517   return true;
   1518 }
   1519 
   1520 bool ARMFastISel::SelectCmp(const Instruction *I) {
   1521   const CmpInst *CI = cast<CmpInst>(I);
   1522 
   1523   // Get the compare predicate.
   1524   ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
   1525 
   1526   // We may not handle every CC for now.
   1527   if (ARMPred == ARMCC::AL) return false;
   1528 
   1529   // Emit the compare.
   1530   if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
   1531     return false;
   1532 
   1533   // Now set a register based on the comparison. Explicitly set the predicates
   1534   // here.
   1535   unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
   1536   const TargetRegisterClass *RC = isThumb2 ?
   1537     (const TargetRegisterClass*)&ARM::rGPRRegClass :
   1538     (const TargetRegisterClass*)&ARM::GPRRegClass;
   1539   unsigned DestReg = createResultReg(RC);
   1540   Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0);
   1541   unsigned ZeroReg = TargetMaterializeConstant(Zero);
   1542   // ARMEmitCmp emits a FMSTAT when necessary, so it's always safe to use CPSR.
   1543   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), DestReg)
   1544           .addReg(ZeroReg).addImm(1)
   1545           .addImm(ARMPred).addReg(ARM::CPSR);
   1546 
   1547   UpdateValueMap(I, DestReg);
   1548   return true;
   1549 }
   1550 
   1551 bool ARMFastISel::SelectFPExt(const Instruction *I) {
   1552   // Make sure we have VFP and that we're extending float to double.
   1553   if (!Subtarget->hasVFP2()) return false;
   1554 
   1555   Value *V = I->getOperand(0);
   1556   if (!I->getType()->isDoubleTy() ||
   1557       !V->getType()->isFloatTy()) return false;
   1558 
   1559   unsigned Op = getRegForValue(V);
   1560   if (Op == 0) return false;
   1561 
   1562   unsigned Result = createResultReg(&ARM::DPRRegClass);
   1563   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   1564                           TII.get(ARM::VCVTDS), Result)
   1565                   .addReg(Op));
   1566   UpdateValueMap(I, Result);
   1567   return true;
   1568 }
   1569 
   1570 bool ARMFastISel::SelectFPTrunc(const Instruction *I) {
   1571   // Make sure we have VFP and that we're truncating double to float.
   1572   if (!Subtarget->hasVFP2()) return false;
   1573 
   1574   Value *V = I->getOperand(0);
   1575   if (!(I->getType()->isFloatTy() &&
   1576         V->getType()->isDoubleTy())) return false;
   1577 
   1578   unsigned Op = getRegForValue(V);
   1579   if (Op == 0) return false;
   1580 
   1581   unsigned Result = createResultReg(&ARM::SPRRegClass);
   1582   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   1583                           TII.get(ARM::VCVTSD), Result)
   1584                   .addReg(Op));
   1585   UpdateValueMap(I, Result);
   1586   return true;
   1587 }
   1588 
   1589 bool ARMFastISel::SelectIToFP(const Instruction *I, bool isSigned) {
   1590   // Make sure we have VFP.
   1591   if (!Subtarget->hasVFP2()) return false;
   1592 
   1593   MVT DstVT;
   1594   Type *Ty = I->getType();
   1595   if (!isTypeLegal(Ty, DstVT))
   1596     return false;
   1597 
   1598   Value *Src = I->getOperand(0);
   1599   EVT SrcEVT = TLI.getValueType(Src->getType(), true);
   1600   if (!SrcEVT.isSimple())
   1601     return false;
   1602   MVT SrcVT = SrcEVT.getSimpleVT();
   1603   if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
   1604     return false;
   1605 
   1606   unsigned SrcReg = getRegForValue(Src);
   1607   if (SrcReg == 0) return false;
   1608 
   1609   // Handle sign-extension.
   1610   if (SrcVT == MVT::i16 || SrcVT == MVT::i8) {
   1611     SrcReg = ARMEmitIntExt(SrcVT, SrcReg, MVT::i32,
   1612                                        /*isZExt*/!isSigned);
   1613     if (SrcReg == 0) return false;
   1614   }
   1615 
   1616   // The conversion routine works on fp-reg to fp-reg and the operand above
   1617   // was an integer, move it to the fp registers if possible.
   1618   unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg);
   1619   if (FP == 0) return false;
   1620 
   1621   unsigned Opc;
   1622   if (Ty->isFloatTy()) Opc = isSigned ? ARM::VSITOS : ARM::VUITOS;
   1623   else if (Ty->isDoubleTy()) Opc = isSigned ? ARM::VSITOD : ARM::VUITOD;
   1624   else return false;
   1625 
   1626   unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
   1627   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
   1628                           ResultReg)
   1629                   .addReg(FP));
   1630   UpdateValueMap(I, ResultReg);
   1631   return true;
   1632 }
   1633 
   1634 bool ARMFastISel::SelectFPToI(const Instruction *I, bool isSigned) {
   1635   // Make sure we have VFP.
   1636   if (!Subtarget->hasVFP2()) return false;
   1637 
   1638   MVT DstVT;
   1639   Type *RetTy = I->getType();
   1640   if (!isTypeLegal(RetTy, DstVT))
   1641     return false;
   1642 
   1643   unsigned Op = getRegForValue(I->getOperand(0));
   1644   if (Op == 0) return false;
   1645 
   1646   unsigned Opc;
   1647   Type *OpTy = I->getOperand(0)->getType();
   1648   if (OpTy->isFloatTy()) Opc = isSigned ? ARM::VTOSIZS : ARM::VTOUIZS;
   1649   else if (OpTy->isDoubleTy()) Opc = isSigned ? ARM::VTOSIZD : ARM::VTOUIZD;
   1650   else return false;
   1651 
   1652   // f64->s32/u32 or f32->s32/u32 both need an intermediate f32 reg.
   1653   unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
   1654   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
   1655                           ResultReg)
   1656                   .addReg(Op));
   1657 
   1658   // This result needs to be in an integer register, but the conversion only
   1659   // takes place in fp-regs.
   1660   unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
   1661   if (IntReg == 0) return false;
   1662 
   1663   UpdateValueMap(I, IntReg);
   1664   return true;
   1665 }
   1666 
   1667 bool ARMFastISel::SelectSelect(const Instruction *I) {
   1668   MVT VT;
   1669   if (!isTypeLegal(I->getType(), VT))
   1670     return false;
   1671 
   1672   // Things need to be register sized for register moves.
   1673   if (VT != MVT::i32) return false;
   1674 
   1675   unsigned CondReg = getRegForValue(I->getOperand(0));
   1676   if (CondReg == 0) return false;
   1677   unsigned Op1Reg = getRegForValue(I->getOperand(1));
   1678   if (Op1Reg == 0) return false;
   1679 
   1680   // Check to see if we can use an immediate in the conditional move.
   1681   int Imm = 0;
   1682   bool UseImm = false;
   1683   bool isNegativeImm = false;
   1684   if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) {
   1685     assert (VT == MVT::i32 && "Expecting an i32.");
   1686     Imm = (int)ConstInt->getValue().getZExtValue();
   1687     if (Imm < 0) {
   1688       isNegativeImm = true;
   1689       Imm = ~Imm;
   1690     }
   1691     UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
   1692       (ARM_AM::getSOImmVal(Imm) != -1);
   1693   }
   1694 
   1695   unsigned Op2Reg = 0;
   1696   if (!UseImm) {
   1697     Op2Reg = getRegForValue(I->getOperand(2));
   1698     if (Op2Reg == 0) return false;
   1699   }
   1700 
   1701   unsigned CmpOpc = isThumb2 ? ARM::t2CMPri : ARM::CMPri;
   1702   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
   1703                   .addReg(CondReg).addImm(0));
   1704 
   1705   unsigned MovCCOpc;
   1706   const TargetRegisterClass *RC;
   1707   if (!UseImm) {
   1708     RC = isThumb2 ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
   1709     MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr;
   1710   } else {
   1711     RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass;
   1712     if (!isNegativeImm)
   1713       MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
   1714     else
   1715       MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi;
   1716   }
   1717   unsigned ResultReg = createResultReg(RC);
   1718   if (!UseImm)
   1719     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), ResultReg)
   1720     .addReg(Op2Reg).addReg(Op1Reg).addImm(ARMCC::NE).addReg(ARM::CPSR);
   1721   else
   1722     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), ResultReg)
   1723     .addReg(Op1Reg).addImm(Imm).addImm(ARMCC::EQ).addReg(ARM::CPSR);
   1724   UpdateValueMap(I, ResultReg);
   1725   return true;
   1726 }
   1727 
   1728 bool ARMFastISel::SelectDiv(const Instruction *I, bool isSigned) {
   1729   MVT VT;
   1730   Type *Ty = I->getType();
   1731   if (!isTypeLegal(Ty, VT))
   1732     return false;
   1733 
   1734   // If we have integer div support we should have selected this automagically.
   1735   // In case we have a real miss go ahead and return false and we'll pick
   1736   // it up later.
   1737   if (Subtarget->hasDivide()) return false;
   1738 
   1739   // Otherwise emit a libcall.
   1740   RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
   1741   if (VT == MVT::i8)
   1742     LC = isSigned ? RTLIB::SDIV_I8 : RTLIB::UDIV_I8;
   1743   else if (VT == MVT::i16)
   1744     LC = isSigned ? RTLIB::SDIV_I16 : RTLIB::UDIV_I16;
   1745   else if (VT == MVT::i32)
   1746     LC = isSigned ? RTLIB::SDIV_I32 : RTLIB::UDIV_I32;
   1747   else if (VT == MVT::i64)
   1748     LC = isSigned ? RTLIB::SDIV_I64 : RTLIB::UDIV_I64;
   1749   else if (VT == MVT::i128)
   1750     LC = isSigned ? RTLIB::SDIV_I128 : RTLIB::UDIV_I128;
   1751   assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
   1752 
   1753   return ARMEmitLibcall(I, LC);
   1754 }
   1755 
   1756 bool ARMFastISel::SelectRem(const Instruction *I, bool isSigned) {
   1757   MVT VT;
   1758   Type *Ty = I->getType();
   1759   if (!isTypeLegal(Ty, VT))
   1760     return false;
   1761 
   1762   RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
   1763   if (VT == MVT::i8)
   1764     LC = isSigned ? RTLIB::SREM_I8 : RTLIB::UREM_I8;
   1765   else if (VT == MVT::i16)
   1766     LC = isSigned ? RTLIB::SREM_I16 : RTLIB::UREM_I16;
   1767   else if (VT == MVT::i32)
   1768     LC = isSigned ? RTLIB::SREM_I32 : RTLIB::UREM_I32;
   1769   else if (VT == MVT::i64)
   1770     LC = isSigned ? RTLIB::SREM_I64 : RTLIB::UREM_I64;
   1771   else if (VT == MVT::i128)
   1772     LC = isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128;
   1773   assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
   1774 
   1775   return ARMEmitLibcall(I, LC);
   1776 }
   1777 
   1778 bool ARMFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
   1779   EVT DestVT  = TLI.getValueType(I->getType(), true);
   1780 
   1781   // We can get here in the case when we have a binary operation on a non-legal
   1782   // type and the target independent selector doesn't know how to handle it.
   1783   if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
   1784     return false;
   1785 
   1786   unsigned Opc;
   1787   switch (ISDOpcode) {
   1788     default: return false;
   1789     case ISD::ADD:
   1790       Opc = isThumb2 ? ARM::t2ADDrr : ARM::ADDrr;
   1791       break;
   1792     case ISD::OR:
   1793       Opc = isThumb2 ? ARM::t2ORRrr : ARM::ORRrr;
   1794       break;
   1795     case ISD::SUB:
   1796       Opc = isThumb2 ? ARM::t2SUBrr : ARM::SUBrr;
   1797       break;
   1798   }
   1799 
   1800   unsigned SrcReg1 = getRegForValue(I->getOperand(0));
   1801   if (SrcReg1 == 0) return false;
   1802 
   1803   // TODO: Often the 2nd operand is an immediate, which can be encoded directly
   1804   // in the instruction, rather then materializing the value in a register.
   1805   unsigned SrcReg2 = getRegForValue(I->getOperand(1));
   1806   if (SrcReg2 == 0) return false;
   1807 
   1808   unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass);
   1809   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   1810                           TII.get(Opc), ResultReg)
   1811                   .addReg(SrcReg1).addReg(SrcReg2));
   1812   UpdateValueMap(I, ResultReg);
   1813   return true;
   1814 }
   1815 
   1816 bool ARMFastISel::SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode) {
   1817   EVT FPVT = TLI.getValueType(I->getType(), true);
   1818   if (!FPVT.isSimple()) return false;
   1819   MVT VT = FPVT.getSimpleVT();
   1820 
   1821   // We can get here in the case when we want to use NEON for our fp
   1822   // operations, but can't figure out how to. Just use the vfp instructions
   1823   // if we have them.
   1824   // FIXME: It'd be nice to use NEON instructions.
   1825   Type *Ty = I->getType();
   1826   bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
   1827   if (isFloat && !Subtarget->hasVFP2())
   1828     return false;
   1829 
   1830   unsigned Opc;
   1831   bool is64bit = VT == MVT::f64 || VT == MVT::i64;
   1832   switch (ISDOpcode) {
   1833     default: return false;
   1834     case ISD::FADD:
   1835       Opc = is64bit ? ARM::VADDD : ARM::VADDS;
   1836       break;
   1837     case ISD::FSUB:
   1838       Opc = is64bit ? ARM::VSUBD : ARM::VSUBS;
   1839       break;
   1840     case ISD::FMUL:
   1841       Opc = is64bit ? ARM::VMULD : ARM::VMULS;
   1842       break;
   1843   }
   1844   unsigned Op1 = getRegForValue(I->getOperand(0));
   1845   if (Op1 == 0) return false;
   1846 
   1847   unsigned Op2 = getRegForValue(I->getOperand(1));
   1848   if (Op2 == 0) return false;
   1849 
   1850   unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy));
   1851   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   1852                           TII.get(Opc), ResultReg)
   1853                   .addReg(Op1).addReg(Op2));
   1854   UpdateValueMap(I, ResultReg);
   1855   return true;
   1856 }
   1857 
   1858 // Call Handling Code
   1859 
   1860 // This is largely taken directly from CCAssignFnForNode
   1861 // TODO: We may not support all of this.
   1862 CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC,
   1863                                            bool Return,
   1864                                            bool isVarArg) {
   1865   switch (CC) {
   1866   default:
   1867     llvm_unreachable("Unsupported calling convention");
   1868   case CallingConv::Fast:
   1869     if (Subtarget->hasVFP2() && !isVarArg) {
   1870       if (!Subtarget->isAAPCS_ABI())
   1871         return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
   1872       // For AAPCS ABI targets, just use VFP variant of the calling convention.
   1873       return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
   1874     }
   1875     // Fallthrough
   1876   case CallingConv::C:
   1877     // Use target triple & subtarget features to do actual dispatch.
   1878     if (Subtarget->isAAPCS_ABI()) {
   1879       if (Subtarget->hasVFP2() &&
   1880           TM.Options.FloatABIType == FloatABI::Hard && !isVarArg)
   1881         return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
   1882       else
   1883         return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
   1884     } else
   1885         return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
   1886   case CallingConv::ARM_AAPCS_VFP:
   1887     if (!isVarArg)
   1888       return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
   1889     // Fall through to soft float variant, variadic functions don't
   1890     // use hard floating point ABI.
   1891   case CallingConv::ARM_AAPCS:
   1892     return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
   1893   case CallingConv::ARM_APCS:
   1894     return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
   1895   case CallingConv::GHC:
   1896     if (Return)
   1897       llvm_unreachable("Can't return in GHC call convention");
   1898     else
   1899       return CC_ARM_APCS_GHC;
   1900   }
   1901 }
   1902 
   1903 bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
   1904                                   SmallVectorImpl<unsigned> &ArgRegs,
   1905                                   SmallVectorImpl<MVT> &ArgVTs,
   1906                                   SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
   1907                                   SmallVectorImpl<unsigned> &RegArgs,
   1908                                   CallingConv::ID CC,
   1909                                   unsigned &NumBytes,
   1910                                   bool isVarArg) {
   1911   SmallVector<CCValAssign, 16> ArgLocs;
   1912   CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, ArgLocs, *Context);
   1913   CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags,
   1914                              CCAssignFnForCall(CC, false, isVarArg));
   1915 
   1916   // Check that we can handle all of the arguments. If we can't, then bail out
   1917   // now before we add code to the MBB.
   1918   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   1919     CCValAssign &VA = ArgLocs[i];
   1920     MVT ArgVT = ArgVTs[VA.getValNo()];
   1921 
   1922     // We don't handle NEON/vector parameters yet.
   1923     if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64)
   1924       return false;
   1925 
   1926     // Now copy/store arg to correct locations.
   1927     if (VA.isRegLoc() && !VA.needsCustom()) {
   1928       continue;
   1929     } else if (VA.needsCustom()) {
   1930       // TODO: We need custom lowering for vector (v2f64) args.
   1931       if (VA.getLocVT() != MVT::f64 ||
   1932           // TODO: Only handle register args for now.
   1933           !VA.isRegLoc() || !ArgLocs[++i].isRegLoc())
   1934         return false;
   1935     } else {
   1936       switch (static_cast<EVT>(ArgVT).getSimpleVT().SimpleTy) {
   1937       default:
   1938         return false;
   1939       case MVT::i1:
   1940       case MVT::i8:
   1941       case MVT::i16:
   1942       case MVT::i32:
   1943         break;
   1944       case MVT::f32:
   1945         if (!Subtarget->hasVFP2())
   1946           return false;
   1947         break;
   1948       case MVT::f64:
   1949         if (!Subtarget->hasVFP2())
   1950           return false;
   1951         break;
   1952       }
   1953     }
   1954   }
   1955 
   1956   // At the point, we are able to handle the call's arguments in fast isel.
   1957 
   1958   // Get a count of how many bytes are to be pushed on the stack.
   1959   NumBytes = CCInfo.getNextStackOffset();
   1960 
   1961   // Issue CALLSEQ_START
   1962   unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
   1963   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   1964                           TII.get(AdjStackDown))
   1965                   .addImm(NumBytes));
   1966 
   1967   // Process the args.
   1968   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   1969     CCValAssign &VA = ArgLocs[i];
   1970     unsigned Arg = ArgRegs[VA.getValNo()];
   1971     MVT ArgVT = ArgVTs[VA.getValNo()];
   1972 
   1973     assert((!ArgVT.isVector() && ArgVT.getSizeInBits() <= 64) &&
   1974            "We don't handle NEON/vector parameters yet.");
   1975 
   1976     // Handle arg promotion, etc.
   1977     switch (VA.getLocInfo()) {
   1978       case CCValAssign::Full: break;
   1979       case CCValAssign::SExt: {
   1980         MVT DestVT = VA.getLocVT();
   1981         Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/false);
   1982         assert (Arg != 0 && "Failed to emit a sext");
   1983         ArgVT = DestVT;
   1984         break;
   1985       }
   1986       case CCValAssign::AExt:
   1987         // Intentional fall-through.  Handle AExt and ZExt.
   1988       case CCValAssign::ZExt: {
   1989         MVT DestVT = VA.getLocVT();
   1990         Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/true);
   1991         assert (Arg != 0 && "Failed to emit a zext");
   1992         ArgVT = DestVT;
   1993         break;
   1994       }
   1995       case CCValAssign::BCvt: {
   1996         unsigned BC = FastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg,
   1997                                  /*TODO: Kill=*/false);
   1998         assert(BC != 0 && "Failed to emit a bitcast!");
   1999         Arg = BC;
   2000         ArgVT = VA.getLocVT();
   2001         break;
   2002       }
   2003       default: llvm_unreachable("Unknown arg promotion!");
   2004     }
   2005 
   2006     // Now copy/store arg to correct locations.
   2007     if (VA.isRegLoc() && !VA.needsCustom()) {
   2008       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
   2009               VA.getLocReg())
   2010         .addReg(Arg);
   2011       RegArgs.push_back(VA.getLocReg());
   2012     } else if (VA.needsCustom()) {
   2013       // TODO: We need custom lowering for vector (v2f64) args.
   2014       assert(VA.getLocVT() == MVT::f64 &&
   2015              "Custom lowering for v2f64 args not available");
   2016 
   2017       CCValAssign &NextVA = ArgLocs[++i];
   2018 
   2019       assert(VA.isRegLoc() && NextVA.isRegLoc() &&
   2020              "We only handle register args!");
   2021 
   2022       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   2023                               TII.get(ARM::VMOVRRD), VA.getLocReg())
   2024                       .addReg(NextVA.getLocReg(), RegState::Define)
   2025                       .addReg(Arg));
   2026       RegArgs.push_back(VA.getLocReg());
   2027       RegArgs.push_back(NextVA.getLocReg());
   2028     } else {
   2029       assert(VA.isMemLoc());
   2030       // Need to store on the stack.
   2031       Address Addr;
   2032       Addr.BaseType = Address::RegBase;
   2033       Addr.Base.Reg = ARM::SP;
   2034       Addr.Offset = VA.getLocMemOffset();
   2035 
   2036       bool EmitRet = ARMEmitStore(ArgVT, Arg, Addr); (void)EmitRet;
   2037       assert(EmitRet && "Could not emit a store for argument!");
   2038     }
   2039   }
   2040 
   2041   return true;
   2042 }
   2043 
   2044 bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
   2045                              const Instruction *I, CallingConv::ID CC,
   2046                              unsigned &NumBytes, bool isVarArg) {
   2047   // Issue CALLSEQ_END
   2048   unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
   2049   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   2050                           TII.get(AdjStackUp))
   2051                   .addImm(NumBytes).addImm(0));
   2052 
   2053   // Now the return value.
   2054   if (RetVT != MVT::isVoid) {
   2055     SmallVector<CCValAssign, 16> RVLocs;
   2056     CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, RVLocs, *Context);
   2057     CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
   2058 
   2059     // Copy all of the result registers out of their specified physreg.
   2060     if (RVLocs.size() == 2 && RetVT == MVT::f64) {
   2061       // For this move we copy into two registers and then move into the
   2062       // double fp reg we want.
   2063       MVT DestVT = RVLocs[0].getValVT();
   2064       const TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT);
   2065       unsigned ResultReg = createResultReg(DstRC);
   2066       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   2067                               TII.get(ARM::VMOVDRR), ResultReg)
   2068                       .addReg(RVLocs[0].getLocReg())
   2069                       .addReg(RVLocs[1].getLocReg()));
   2070 
   2071       UsedRegs.push_back(RVLocs[0].getLocReg());
   2072       UsedRegs.push_back(RVLocs[1].getLocReg());
   2073 
   2074       // Finally update the result.
   2075       UpdateValueMap(I, ResultReg);
   2076     } else {
   2077       assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!");
   2078       MVT CopyVT = RVLocs[0].getValVT();
   2079 
   2080       // Special handling for extended integers.
   2081       if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16)
   2082         CopyVT = MVT::i32;
   2083 
   2084       const TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
   2085 
   2086       unsigned ResultReg = createResultReg(DstRC);
   2087       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
   2088               ResultReg).addReg(RVLocs[0].getLocReg());
   2089       UsedRegs.push_back(RVLocs[0].getLocReg());
   2090 
   2091       // Finally update the result.
   2092       UpdateValueMap(I, ResultReg);
   2093     }
   2094   }
   2095 
   2096   return true;
   2097 }
   2098 
   2099 bool ARMFastISel::SelectRet(const Instruction *I) {
   2100   const ReturnInst *Ret = cast<ReturnInst>(I);
   2101   const Function &F = *I->getParent()->getParent();
   2102 
   2103   if (!FuncInfo.CanLowerReturn)
   2104     return false;
   2105 
   2106   // Build a list of return value registers.
   2107   SmallVector<unsigned, 4> RetRegs;
   2108 
   2109   CallingConv::ID CC = F.getCallingConv();
   2110   if (Ret->getNumOperands() > 0) {
   2111     SmallVector<ISD::OutputArg, 4> Outs;
   2112     GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI);
   2113 
   2114     // Analyze operands of the call, assigning locations to each operand.
   2115     SmallVector<CCValAssign, 16> ValLocs;
   2116     CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs,I->getContext());
   2117     CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */,
   2118                                                  F.isVarArg()));
   2119 
   2120     const Value *RV = Ret->getOperand(0);
   2121     unsigned Reg = getRegForValue(RV);
   2122     if (Reg == 0)
   2123       return false;
   2124 
   2125     // Only handle a single return value for now.
   2126     if (ValLocs.size() != 1)
   2127       return false;
   2128 
   2129     CCValAssign &VA = ValLocs[0];
   2130 
   2131     // Don't bother handling odd stuff for now.
   2132     if (VA.getLocInfo() != CCValAssign::Full)
   2133       return false;
   2134     // Only handle register returns for now.
   2135     if (!VA.isRegLoc())
   2136       return false;
   2137 
   2138     unsigned SrcReg = Reg + VA.getValNo();
   2139     EVT RVEVT = TLI.getValueType(RV->getType());
   2140     if (!RVEVT.isSimple()) return false;
   2141     MVT RVVT = RVEVT.getSimpleVT();
   2142     MVT DestVT = VA.getValVT();
   2143     // Special handling for extended integers.
   2144     if (RVVT != DestVT) {
   2145       if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
   2146         return false;
   2147 
   2148       assert(DestVT == MVT::i32 && "ARM should always ext to i32");
   2149 
   2150       // Perform extension if flagged as either zext or sext.  Otherwise, do
   2151       // nothing.
   2152       if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) {
   2153         SrcReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, Outs[0].Flags.isZExt());
   2154         if (SrcReg == 0) return false;
   2155       }
   2156     }
   2157 
   2158     // Make the copy.
   2159     unsigned DstReg = VA.getLocReg();
   2160     const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
   2161     // Avoid a cross-class copy. This is very unlikely.
   2162     if (!SrcRC->contains(DstReg))
   2163       return false;
   2164     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
   2165             DstReg).addReg(SrcReg);
   2166 
   2167     // Add register to return instruction.
   2168     RetRegs.push_back(VA.getLocReg());
   2169   }
   2170 
   2171   unsigned RetOpc = isThumb2 ? ARM::tBX_RET : ARM::BX_RET;
   2172   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   2173                                     TII.get(RetOpc));
   2174   AddOptionalDefs(MIB);
   2175   for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
   2176     MIB.addReg(RetRegs[i], RegState::Implicit);
   2177   return true;
   2178 }
   2179 
   2180 unsigned ARMFastISel::ARMSelectCallOp(bool UseReg) {
   2181   if (UseReg)
   2182     return isThumb2 ? ARM::tBLXr : ARM::BLX;
   2183   else
   2184     return isThumb2 ? ARM::tBL : ARM::BL;
   2185 }
   2186 
   2187 unsigned ARMFastISel::getLibcallReg(const Twine &Name) {
   2188   // Manually compute the global's type to avoid building it when unnecessary.
   2189   Type *GVTy = Type::getInt32PtrTy(*Context, /*AS=*/0);
   2190   EVT LCREVT = TLI.getValueType(GVTy);
   2191   if (!LCREVT.isSimple()) return 0;
   2192 
   2193   GlobalValue *GV = new GlobalVariable(Type::getInt32Ty(*Context), false,
   2194                                        GlobalValue::ExternalLinkage, 0, Name);
   2195   assert(GV->getType() == GVTy && "We miscomputed the type for the global!");
   2196   return ARMMaterializeGV(GV, LCREVT.getSimpleVT());
   2197 }
   2198 
   2199 // A quick function that will emit a call for a named libcall in F with the
   2200 // vector of passed arguments for the Instruction in I. We can assume that we
   2201 // can emit a call for any libcall we can produce. This is an abridged version
   2202 // of the full call infrastructure since we won't need to worry about things
   2203 // like computed function pointers or strange arguments at call sites.
   2204 // TODO: Try to unify this and the normal call bits for ARM, then try to unify
   2205 // with X86.
   2206 bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) {
   2207   CallingConv::ID CC = TLI.getLibcallCallingConv(Call);
   2208 
   2209   // Handle *simple* calls for now.
   2210   Type *RetTy = I->getType();
   2211   MVT RetVT;
   2212   if (RetTy->isVoidTy())
   2213     RetVT = MVT::isVoid;
   2214   else if (!isTypeLegal(RetTy, RetVT))
   2215     return false;
   2216 
   2217   // Can't handle non-double multi-reg retvals.
   2218   if (RetVT != MVT::isVoid && RetVT != MVT::i32) {
   2219     SmallVector<CCValAssign, 16> RVLocs;
   2220     CCState CCInfo(CC, false, *FuncInfo.MF, TM, RVLocs, *Context);
   2221     CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, false));
   2222     if (RVLocs.size() >= 2 && RetVT != MVT::f64)
   2223       return false;
   2224   }
   2225 
   2226   // Set up the argument vectors.
   2227   SmallVector<Value*, 8> Args;
   2228   SmallVector<unsigned, 8> ArgRegs;
   2229   SmallVector<MVT, 8> ArgVTs;
   2230   SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
   2231   Args.reserve(I->getNumOperands());
   2232   ArgRegs.reserve(I->getNumOperands());
   2233   ArgVTs.reserve(I->getNumOperands());
   2234   ArgFlags.reserve(I->getNumOperands());
   2235   for (unsigned i = 0; i < I->getNumOperands(); ++i) {
   2236     Value *Op = I->getOperand(i);
   2237     unsigned Arg = getRegForValue(Op);
   2238     if (Arg == 0) return false;
   2239 
   2240     Type *ArgTy = Op->getType();
   2241     MVT ArgVT;
   2242     if (!isTypeLegal(ArgTy, ArgVT)) return false;
   2243 
   2244     ISD::ArgFlagsTy Flags;
   2245     unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
   2246     Flags.setOrigAlign(OriginalAlignment);
   2247 
   2248     Args.push_back(Op);
   2249     ArgRegs.push_back(Arg);
   2250     ArgVTs.push_back(ArgVT);
   2251     ArgFlags.push_back(Flags);
   2252   }
   2253 
   2254   // Handle the arguments now that we've gotten them.
   2255   SmallVector<unsigned, 4> RegArgs;
   2256   unsigned NumBytes;
   2257   if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
   2258                        RegArgs, CC, NumBytes, false))
   2259     return false;
   2260 
   2261   unsigned CalleeReg = 0;
   2262   if (EnableARMLongCalls) {
   2263     CalleeReg = getLibcallReg(TLI.getLibcallName(Call));
   2264     if (CalleeReg == 0) return false;
   2265   }
   2266 
   2267   // Issue the call.
   2268   unsigned CallOpc = ARMSelectCallOp(EnableARMLongCalls);
   2269   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
   2270                                     DL, TII.get(CallOpc));
   2271   // BL / BLX don't take a predicate, but tBL / tBLX do.
   2272   if (isThumb2)
   2273     AddDefaultPred(MIB);
   2274   if (EnableARMLongCalls)
   2275     MIB.addReg(CalleeReg);
   2276   else
   2277     MIB.addExternalSymbol(TLI.getLibcallName(Call));
   2278 
   2279   // Add implicit physical register uses to the call.
   2280   for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
   2281     MIB.addReg(RegArgs[i], RegState::Implicit);
   2282 
   2283   // Add a register mask with the call-preserved registers.
   2284   // Proper defs for return values will be added by setPhysRegsDeadExcept().
   2285   MIB.addRegMask(TRI.getCallPreservedMask(CC));
   2286 
   2287   // Finish off the call including any return values.
   2288   SmallVector<unsigned, 4> UsedRegs;
   2289   if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, false)) return false;
   2290 
   2291   // Set all unused physreg defs as dead.
   2292   static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
   2293 
   2294   return true;
   2295 }
   2296 
   2297 bool ARMFastISel::SelectCall(const Instruction *I,
   2298                              const char *IntrMemName = 0) {
   2299   const CallInst *CI = cast<CallInst>(I);
   2300   const Value *Callee = CI->getCalledValue();
   2301 
   2302   // Can't handle inline asm.
   2303   if (isa<InlineAsm>(Callee)) return false;
   2304 
   2305   // Allow SelectionDAG isel to handle tail calls.
   2306   if (CI->isTailCall()) return false;
   2307 
   2308   // Check the calling convention.
   2309   ImmutableCallSite CS(CI);
   2310   CallingConv::ID CC = CS.getCallingConv();
   2311 
   2312   // TODO: Avoid some calling conventions?
   2313 
   2314   PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
   2315   FunctionType *FTy = cast<FunctionType>(PT->getElementType());
   2316   bool isVarArg = FTy->isVarArg();
   2317 
   2318   // Handle *simple* calls for now.
   2319   Type *RetTy = I->getType();
   2320   MVT RetVT;
   2321   if (RetTy->isVoidTy())
   2322     RetVT = MVT::isVoid;
   2323   else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
   2324            RetVT != MVT::i8  && RetVT != MVT::i1)
   2325     return false;
   2326 
   2327   // Can't handle non-double multi-reg retvals.
   2328   if (RetVT != MVT::isVoid && RetVT != MVT::i1 && RetVT != MVT::i8 &&
   2329       RetVT != MVT::i16 && RetVT != MVT::i32) {
   2330     SmallVector<CCValAssign, 16> RVLocs;
   2331     CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, RVLocs, *Context);
   2332     CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
   2333     if (RVLocs.size() >= 2 && RetVT != MVT::f64)
   2334       return false;
   2335   }
   2336 
   2337   // Set up the argument vectors.
   2338   SmallVector<Value*, 8> Args;
   2339   SmallVector<unsigned, 8> ArgRegs;
   2340   SmallVector<MVT, 8> ArgVTs;
   2341   SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
   2342   unsigned arg_size = CS.arg_size();
   2343   Args.reserve(arg_size);
   2344   ArgRegs.reserve(arg_size);
   2345   ArgVTs.reserve(arg_size);
   2346   ArgFlags.reserve(arg_size);
   2347   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
   2348        i != e; ++i) {
   2349     // If we're lowering a memory intrinsic instead of a regular call, skip the
   2350     // last two arguments, which shouldn't be passed to the underlying function.
   2351     if (IntrMemName && e-i <= 2)
   2352       break;
   2353 
   2354     ISD::ArgFlagsTy Flags;
   2355     unsigned AttrInd = i - CS.arg_begin() + 1;
   2356     if (CS.paramHasAttr(AttrInd, Attribute::SExt))
   2357       Flags.setSExt();
   2358     if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
   2359       Flags.setZExt();
   2360 
   2361     // FIXME: Only handle *easy* calls for now.
   2362     if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
   2363         CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
   2364         CS.paramHasAttr(AttrInd, Attribute::Nest) ||
   2365         CS.paramHasAttr(AttrInd, Attribute::ByVal))
   2366       return false;
   2367 
   2368     Type *ArgTy = (*i)->getType();
   2369     MVT ArgVT;
   2370     if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 &&
   2371         ArgVT != MVT::i1)
   2372       return false;
   2373 
   2374     unsigned Arg = getRegForValue(*i);
   2375     if (Arg == 0)
   2376       return false;
   2377 
   2378     unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
   2379     Flags.setOrigAlign(OriginalAlignment);
   2380 
   2381     Args.push_back(*i);
   2382     ArgRegs.push_back(Arg);
   2383     ArgVTs.push_back(ArgVT);
   2384     ArgFlags.push_back(Flags);
   2385   }
   2386 
   2387   // Handle the arguments now that we've gotten them.
   2388   SmallVector<unsigned, 4> RegArgs;
   2389   unsigned NumBytes;
   2390   if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
   2391                        RegArgs, CC, NumBytes, isVarArg))
   2392     return false;
   2393 
   2394   bool UseReg = false;
   2395   const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
   2396   if (!GV || EnableARMLongCalls) UseReg = true;
   2397 
   2398   unsigned CalleeReg = 0;
   2399   if (UseReg) {
   2400     if (IntrMemName)
   2401       CalleeReg = getLibcallReg(IntrMemName);
   2402     else
   2403       CalleeReg = getRegForValue(Callee);
   2404 
   2405     if (CalleeReg == 0) return false;
   2406   }
   2407 
   2408   // Issue the call.
   2409   unsigned CallOpc = ARMSelectCallOp(UseReg);
   2410   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
   2411                                     DL, TII.get(CallOpc));
   2412 
   2413   // ARM calls don't take a predicate, but tBL / tBLX do.
   2414   if(isThumb2)
   2415     AddDefaultPred(MIB);
   2416   if (UseReg)
   2417     MIB.addReg(CalleeReg);
   2418   else if (!IntrMemName)
   2419     MIB.addGlobalAddress(GV, 0, 0);
   2420   else
   2421     MIB.addExternalSymbol(IntrMemName, 0);
   2422 
   2423   // Add implicit physical register uses to the call.
   2424   for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
   2425     MIB.addReg(RegArgs[i], RegState::Implicit);
   2426 
   2427   // Add a register mask with the call-preserved registers.
   2428   // Proper defs for return values will be added by setPhysRegsDeadExcept().
   2429   MIB.addRegMask(TRI.getCallPreservedMask(CC));
   2430 
   2431   // Finish off the call including any return values.
   2432   SmallVector<unsigned, 4> UsedRegs;
   2433   if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, isVarArg))
   2434     return false;
   2435 
   2436   // Set all unused physreg defs as dead.
   2437   static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
   2438 
   2439   return true;
   2440 }
   2441 
   2442 bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) {
   2443   return Len <= 16;
   2444 }
   2445 
   2446 bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src,
   2447                                         uint64_t Len, unsigned Alignment) {
   2448   // Make sure we don't bloat code by inlining very large memcpy's.
   2449   if (!ARMIsMemCpySmall(Len))
   2450     return false;
   2451 
   2452   while (Len) {
   2453     MVT VT;
   2454     if (!Alignment || Alignment >= 4) {
   2455       if (Len >= 4)
   2456         VT = MVT::i32;
   2457       else if (Len >= 2)
   2458         VT = MVT::i16;
   2459       else {
   2460         assert (Len == 1 && "Expected a length of 1!");
   2461         VT = MVT::i8;
   2462       }
   2463     } else {
   2464       // Bound based on alignment.
   2465       if (Len >= 2 && Alignment == 2)
   2466         VT = MVT::i16;
   2467       else {
   2468         VT = MVT::i8;
   2469       }
   2470     }
   2471 
   2472     bool RV;
   2473     unsigned ResultReg;
   2474     RV = ARMEmitLoad(VT, ResultReg, Src);
   2475     assert (RV == true && "Should be able to handle this load.");
   2476     RV = ARMEmitStore(VT, ResultReg, Dest);
   2477     assert (RV == true && "Should be able to handle this store.");
   2478     (void)RV;
   2479 
   2480     unsigned Size = VT.getSizeInBits()/8;
   2481     Len -= Size;
   2482     Dest.Offset += Size;
   2483     Src.Offset += Size;
   2484   }
   2485 
   2486   return true;
   2487 }
   2488 
   2489 bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) {
   2490   // FIXME: Handle more intrinsics.
   2491   switch (I.getIntrinsicID()) {
   2492   default: return false;
   2493   case Intrinsic::frameaddress: {
   2494     MachineFrameInfo *MFI = FuncInfo.MF->getFrameInfo();
   2495     MFI->setFrameAddressIsTaken(true);
   2496 
   2497     unsigned LdrOpc;
   2498     const TargetRegisterClass *RC;
   2499     if (isThumb2) {
   2500       LdrOpc =  ARM::t2LDRi12;
   2501       RC = (const TargetRegisterClass*)&ARM::tGPRRegClass;
   2502     } else {
   2503       LdrOpc =  ARM::LDRi12;
   2504       RC = (const TargetRegisterClass*)&ARM::GPRRegClass;
   2505     }
   2506 
   2507     const ARMBaseRegisterInfo *RegInfo =
   2508           static_cast<const ARMBaseRegisterInfo*>(TM.getRegisterInfo());
   2509     unsigned FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF));
   2510     unsigned SrcReg = FramePtr;
   2511 
   2512     // Recursively load frame address
   2513     // ldr r0 [fp]
   2514     // ldr r0 [r0]
   2515     // ldr r0 [r0]
   2516     // ...
   2517     unsigned DestReg;
   2518     unsigned Depth = cast<ConstantInt>(I.getOperand(0))->getZExtValue();
   2519     while (Depth--) {
   2520       DestReg = createResultReg(RC);
   2521       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   2522                               TII.get(LdrOpc), DestReg)
   2523                       .addReg(SrcReg).addImm(0));
   2524       SrcReg = DestReg;
   2525     }
   2526     UpdateValueMap(&I, SrcReg);
   2527     return true;
   2528   }
   2529   case Intrinsic::memcpy:
   2530   case Intrinsic::memmove: {
   2531     const MemTransferInst &MTI = cast<MemTransferInst>(I);
   2532     // Don't handle volatile.
   2533     if (MTI.isVolatile())
   2534       return false;
   2535 
   2536     // Disable inlining for memmove before calls to ComputeAddress.  Otherwise,
   2537     // we would emit dead code because we don't currently handle memmoves.
   2538     bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy);
   2539     if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) {
   2540       // Small memcpy's are common enough that we want to do them without a call
   2541       // if possible.
   2542       uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue();
   2543       if (ARMIsMemCpySmall(Len)) {
   2544         Address Dest, Src;
   2545         if (!ARMComputeAddress(MTI.getRawDest(), Dest) ||
   2546             !ARMComputeAddress(MTI.getRawSource(), Src))
   2547           return false;
   2548         unsigned Alignment = MTI.getAlignment();
   2549         if (ARMTryEmitSmallMemCpy(Dest, Src, Len, Alignment))
   2550           return true;
   2551       }
   2552     }
   2553 
   2554     if (!MTI.getLength()->getType()->isIntegerTy(32))
   2555       return false;
   2556 
   2557     if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255)
   2558       return false;
   2559 
   2560     const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove";
   2561     return SelectCall(&I, IntrMemName);
   2562   }
   2563   case Intrinsic::memset: {
   2564     const MemSetInst &MSI = cast<MemSetInst>(I);
   2565     // Don't handle volatile.
   2566     if (MSI.isVolatile())
   2567       return false;
   2568 
   2569     if (!MSI.getLength()->getType()->isIntegerTy(32))
   2570       return false;
   2571 
   2572     if (MSI.getDestAddressSpace() > 255)
   2573       return false;
   2574 
   2575     return SelectCall(&I, "memset");
   2576   }
   2577   case Intrinsic::trap: {
   2578     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(
   2579       Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP));
   2580     return true;
   2581   }
   2582   }
   2583 }
   2584 
   2585 bool ARMFastISel::SelectTrunc(const Instruction *I) {
   2586   // The high bits for a type smaller than the register size are assumed to be
   2587   // undefined.
   2588   Value *Op = I->getOperand(0);
   2589 
   2590   EVT SrcVT, DestVT;
   2591   SrcVT = TLI.getValueType(Op->getType(), true);
   2592   DestVT = TLI.getValueType(I->getType(), true);
   2593 
   2594   if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
   2595     return false;
   2596   if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
   2597     return false;
   2598 
   2599   unsigned SrcReg = getRegForValue(Op);
   2600   if (!SrcReg) return false;
   2601 
   2602   // Because the high bits are undefined, a truncate doesn't generate
   2603   // any code.
   2604   UpdateValueMap(I, SrcReg);
   2605   return true;
   2606 }
   2607 
   2608 unsigned ARMFastISel::ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
   2609                                     bool isZExt) {
   2610   if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
   2611     return 0;
   2612   if (SrcVT != MVT::i16 && SrcVT != MVT::i8 && SrcVT != MVT::i1)
   2613     return 0;
   2614 
   2615   // Table of which combinations can be emitted as a single instruction,
   2616   // and which will require two.
   2617   static const uint8_t isSingleInstrTbl[3][2][2][2] = {
   2618     //            ARM                     Thumb
   2619     //           !hasV6Ops  hasV6Ops     !hasV6Ops  hasV6Ops
   2620     //    ext:     s  z      s  z          s  z      s  z
   2621     /*  1 */ { { { 0, 1 }, { 0, 1 } }, { { 0, 0 }, { 0, 1 } } },
   2622     /*  8 */ { { { 0, 1 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } },
   2623     /* 16 */ { { { 0, 0 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } }
   2624   };
   2625 
   2626   // Target registers for:
   2627   //  - For ARM can never be PC.
   2628   //  - For 16-bit Thumb are restricted to lower 8 registers.
   2629   //  - For 32-bit Thumb are restricted to non-SP and non-PC.
   2630   static const TargetRegisterClass *RCTbl[2][2] = {
   2631     // Instructions: Two                     Single
   2632     /* ARM      */ { &ARM::GPRnopcRegClass, &ARM::GPRnopcRegClass },
   2633     /* Thumb    */ { &ARM::tGPRRegClass,    &ARM::rGPRRegClass    }
   2634   };
   2635 
   2636   // Table governing the instruction(s) to be emitted.
   2637   static const struct InstructionTable {
   2638     uint32_t Opc   : 16;
   2639     uint32_t hasS  :  1; // Some instructions have an S bit, always set it to 0.
   2640     uint32_t Shift :  7; // For shift operand addressing mode, used by MOVsi.
   2641     uint32_t Imm   :  8; // All instructions have either a shift or a mask.
   2642   } IT[2][2][3][2] = {
   2643     { // Two instructions (first is left shift, second is in this table).
   2644       { // ARM                Opc           S  Shift             Imm
   2645         /*  1 bit sext */ { { ARM::MOVsi  , 1, ARM_AM::asr     ,  31 },
   2646         /*  1 bit zext */   { ARM::MOVsi  , 1, ARM_AM::lsr     ,  31 } },
   2647         /*  8 bit sext */ { { ARM::MOVsi  , 1, ARM_AM::asr     ,  24 },
   2648         /*  8 bit zext */   { ARM::MOVsi  , 1, ARM_AM::lsr     ,  24 } },
   2649         /* 16 bit sext */ { { ARM::MOVsi  , 1, ARM_AM::asr     ,  16 },
   2650         /* 16 bit zext */   { ARM::MOVsi  , 1, ARM_AM::lsr     ,  16 } }
   2651       },
   2652       { // Thumb              Opc           S  Shift             Imm
   2653         /*  1 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift,  31 },
   2654         /*  1 bit zext */   { ARM::tLSRri , 0, ARM_AM::no_shift,  31 } },
   2655         /*  8 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift,  24 },
   2656         /*  8 bit zext */   { ARM::tLSRri , 0, ARM_AM::no_shift,  24 } },
   2657         /* 16 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift,  16 },
   2658         /* 16 bit zext */   { ARM::tLSRri , 0, ARM_AM::no_shift,  16 } }
   2659       }
   2660     },
   2661     { // Single instruction.
   2662       { // ARM                Opc           S  Shift             Imm
   2663         /*  1 bit sext */ { { ARM::KILL   , 0, ARM_AM::no_shift,   0 },
   2664         /*  1 bit zext */   { ARM::ANDri  , 1, ARM_AM::no_shift,   1 } },
   2665         /*  8 bit sext */ { { ARM::SXTB   , 0, ARM_AM::no_shift,   0 },
   2666         /*  8 bit zext */   { ARM::ANDri  , 1, ARM_AM::no_shift, 255 } },
   2667         /* 16 bit sext */ { { ARM::SXTH   , 0, ARM_AM::no_shift,   0 },
   2668         /* 16 bit zext */   { ARM::UXTH   , 0, ARM_AM::no_shift,   0 } }
   2669       },
   2670       { // Thumb              Opc           S  Shift             Imm
   2671         /*  1 bit sext */ { { ARM::KILL   , 0, ARM_AM::no_shift,   0 },
   2672         /*  1 bit zext */   { ARM::t2ANDri, 1, ARM_AM::no_shift,   1 } },
   2673         /*  8 bit sext */ { { ARM::t2SXTB , 0, ARM_AM::no_shift,   0 },
   2674         /*  8 bit zext */   { ARM::t2ANDri, 1, ARM_AM::no_shift, 255 } },
   2675         /* 16 bit sext */ { { ARM::t2SXTH , 0, ARM_AM::no_shift,   0 },
   2676         /* 16 bit zext */   { ARM::t2UXTH , 0, ARM_AM::no_shift,   0 } }
   2677       }
   2678     }
   2679   };
   2680 
   2681   unsigned SrcBits = SrcVT.getSizeInBits();
   2682   unsigned DestBits = DestVT.getSizeInBits();
   2683   (void) DestBits;
   2684   assert((SrcBits < DestBits) && "can only extend to larger types");
   2685   assert((DestBits == 32 || DestBits == 16 || DestBits == 8) &&
   2686          "other sizes unimplemented");
   2687   assert((SrcBits == 16 || SrcBits == 8 || SrcBits == 1) &&
   2688          "other sizes unimplemented");
   2689 
   2690   bool hasV6Ops = Subtarget->hasV6Ops();
   2691   unsigned Bitness = SrcBits / 8;  // {1,8,16}=>{0,1,2}
   2692   assert((Bitness < 3) && "sanity-check table bounds");
   2693 
   2694   bool isSingleInstr = isSingleInstrTbl[Bitness][isThumb2][hasV6Ops][isZExt];
   2695   const TargetRegisterClass *RC = RCTbl[isThumb2][isSingleInstr];
   2696   const InstructionTable *ITP = &IT[isSingleInstr][isThumb2][Bitness][isZExt];
   2697   unsigned Opc = ITP->Opc;
   2698   assert(ARM::KILL != Opc && "Invalid table entry");
   2699   unsigned hasS = ITP->hasS;
   2700   ARM_AM::ShiftOpc Shift = (ARM_AM::ShiftOpc) ITP->Shift;
   2701   assert(((Shift == ARM_AM::no_shift) == (Opc != ARM::MOVsi)) &&
   2702          "only MOVsi has shift operand addressing mode");
   2703   unsigned Imm = ITP->Imm;
   2704 
   2705   // 16-bit Thumb instructions always set CPSR (unless they're in an IT block).
   2706   bool setsCPSR = &ARM::tGPRRegClass == RC;
   2707   unsigned LSLOpc = isThumb2 ? ARM::tLSLri : ARM::MOVsi;
   2708   unsigned ResultReg;
   2709   // MOVsi encodes shift and immediate in shift operand addressing mode.
   2710   // The following condition has the same value when emitting two
   2711   // instruction sequences: both are shifts.
   2712   bool ImmIsSO = (Shift != ARM_AM::no_shift);
   2713 
   2714   // Either one or two instructions are emitted.
   2715   // They're always of the form:
   2716   //   dst = in OP imm
   2717   // CPSR is set only by 16-bit Thumb instructions.
   2718   // Predicate, if any, is AL.
   2719   // S bit, if available, is always 0.
   2720   // When two are emitted the first's result will feed as the second's input,
   2721   // that value is then dead.
   2722   unsigned NumInstrsEmitted = isSingleInstr ? 1 : 2;
   2723   for (unsigned Instr = 0; Instr != NumInstrsEmitted; ++Instr) {
   2724     ResultReg = createResultReg(RC);
   2725     bool isLsl = (0 == Instr) && !isSingleInstr;
   2726     unsigned Opcode = isLsl ? LSLOpc : Opc;
   2727     ARM_AM::ShiftOpc ShiftAM = isLsl ? ARM_AM::lsl : Shift;
   2728     unsigned ImmEnc = ImmIsSO ? ARM_AM::getSORegOpc(ShiftAM, Imm) : Imm;
   2729     bool isKill = 1 == Instr;
   2730     MachineInstrBuilder MIB = BuildMI(
   2731         *FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opcode), ResultReg);
   2732     if (setsCPSR)
   2733       MIB.addReg(ARM::CPSR, RegState::Define);
   2734     AddDefaultPred(MIB.addReg(SrcReg, isKill * RegState::Kill).addImm(ImmEnc));
   2735     if (hasS)
   2736       AddDefaultCC(MIB);
   2737     // Second instruction consumes the first's result.
   2738     SrcReg = ResultReg;
   2739   }
   2740 
   2741   return ResultReg;
   2742 }
   2743 
   2744 bool ARMFastISel::SelectIntExt(const Instruction *I) {
   2745   // On ARM, in general, integer casts don't involve legal types; this code
   2746   // handles promotable integers.
   2747   Type *DestTy = I->getType();
   2748   Value *Src = I->getOperand(0);
   2749   Type *SrcTy = Src->getType();
   2750 
   2751   bool isZExt = isa<ZExtInst>(I);
   2752   unsigned SrcReg = getRegForValue(Src);
   2753   if (!SrcReg) return false;
   2754 
   2755   EVT SrcEVT, DestEVT;
   2756   SrcEVT = TLI.getValueType(SrcTy, true);
   2757   DestEVT = TLI.getValueType(DestTy, true);
   2758   if (!SrcEVT.isSimple()) return false;
   2759   if (!DestEVT.isSimple()) return false;
   2760 
   2761   MVT SrcVT = SrcEVT.getSimpleVT();
   2762   MVT DestVT = DestEVT.getSimpleVT();
   2763   unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt);
   2764   if (ResultReg == 0) return false;
   2765   UpdateValueMap(I, ResultReg);
   2766   return true;
   2767 }
   2768 
   2769 bool ARMFastISel::SelectShift(const Instruction *I,
   2770                               ARM_AM::ShiftOpc ShiftTy) {
   2771   // We handle thumb2 mode by target independent selector
   2772   // or SelectionDAG ISel.
   2773   if (isThumb2)
   2774     return false;
   2775 
   2776   // Only handle i32 now.
   2777   EVT DestVT = TLI.getValueType(I->getType(), true);
   2778   if (DestVT != MVT::i32)
   2779     return false;
   2780 
   2781   unsigned Opc = ARM::MOVsr;
   2782   unsigned ShiftImm;
   2783   Value *Src2Value = I->getOperand(1);
   2784   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Src2Value)) {
   2785     ShiftImm = CI->getZExtValue();
   2786 
   2787     // Fall back to selection DAG isel if the shift amount
   2788     // is zero or greater than the width of the value type.
   2789     if (ShiftImm == 0 || ShiftImm >=32)
   2790       return false;
   2791 
   2792     Opc = ARM::MOVsi;
   2793   }
   2794 
   2795   Value *Src1Value = I->getOperand(0);
   2796   unsigned Reg1 = getRegForValue(Src1Value);
   2797   if (Reg1 == 0) return false;
   2798 
   2799   unsigned Reg2 = 0;
   2800   if (Opc == ARM::MOVsr) {
   2801     Reg2 = getRegForValue(Src2Value);
   2802     if (Reg2 == 0) return false;
   2803   }
   2804 
   2805   unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass);
   2806   if(ResultReg == 0) return false;
   2807 
   2808   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   2809                                     TII.get(Opc), ResultReg)
   2810                             .addReg(Reg1);
   2811 
   2812   if (Opc == ARM::MOVsi)
   2813     MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, ShiftImm));
   2814   else if (Opc == ARM::MOVsr) {
   2815     MIB.addReg(Reg2);
   2816     MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, 0));
   2817   }
   2818 
   2819   AddOptionalDefs(MIB);
   2820   UpdateValueMap(I, ResultReg);
   2821   return true;
   2822 }
   2823 
   2824 // TODO: SoftFP support.
   2825 bool ARMFastISel::TargetSelectInstruction(const Instruction *I) {
   2826 
   2827   switch (I->getOpcode()) {
   2828     case Instruction::Load:
   2829       return SelectLoad(I);
   2830     case Instruction::Store:
   2831       return SelectStore(I);
   2832     case Instruction::Br:
   2833       return SelectBranch(I);
   2834     case Instruction::IndirectBr:
   2835       return SelectIndirectBr(I);
   2836     case Instruction::ICmp:
   2837     case Instruction::FCmp:
   2838       return SelectCmp(I);
   2839     case Instruction::FPExt:
   2840       return SelectFPExt(I);
   2841     case Instruction::FPTrunc:
   2842       return SelectFPTrunc(I);
   2843     case Instruction::SIToFP:
   2844       return SelectIToFP(I, /*isSigned*/ true);
   2845     case Instruction::UIToFP:
   2846       return SelectIToFP(I, /*isSigned*/ false);
   2847     case Instruction::FPToSI:
   2848       return SelectFPToI(I, /*isSigned*/ true);
   2849     case Instruction::FPToUI:
   2850       return SelectFPToI(I, /*isSigned*/ false);
   2851     case Instruction::Add:
   2852       return SelectBinaryIntOp(I, ISD::ADD);
   2853     case Instruction::Or:
   2854       return SelectBinaryIntOp(I, ISD::OR);
   2855     case Instruction::Sub:
   2856       return SelectBinaryIntOp(I, ISD::SUB);
   2857     case Instruction::FAdd:
   2858       return SelectBinaryFPOp(I, ISD::FADD);
   2859     case Instruction::FSub:
   2860       return SelectBinaryFPOp(I, ISD::FSUB);
   2861     case Instruction::FMul:
   2862       return SelectBinaryFPOp(I, ISD::FMUL);
   2863     case Instruction::SDiv:
   2864       return SelectDiv(I, /*isSigned*/ true);
   2865     case Instruction::UDiv:
   2866       return SelectDiv(I, /*isSigned*/ false);
   2867     case Instruction::SRem:
   2868       return SelectRem(I, /*isSigned*/ true);
   2869     case Instruction::URem:
   2870       return SelectRem(I, /*isSigned*/ false);
   2871     case Instruction::Call:
   2872       if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
   2873         return SelectIntrinsicCall(*II);
   2874       return SelectCall(I);
   2875     case Instruction::Select:
   2876       return SelectSelect(I);
   2877     case Instruction::Ret:
   2878       return SelectRet(I);
   2879     case Instruction::Trunc:
   2880       return SelectTrunc(I);
   2881     case Instruction::ZExt:
   2882     case Instruction::SExt:
   2883       return SelectIntExt(I);
   2884     case Instruction::Shl:
   2885       return SelectShift(I, ARM_AM::lsl);
   2886     case Instruction::LShr:
   2887       return SelectShift(I, ARM_AM::lsr);
   2888     case Instruction::AShr:
   2889       return SelectShift(I, ARM_AM::asr);
   2890     default: break;
   2891   }
   2892   return false;
   2893 }
   2894 
   2895 namespace {
   2896 // This table describes sign- and zero-extend instructions which can be
   2897 // folded into a preceding load. All of these extends have an immediate
   2898 // (sometimes a mask and sometimes a shift) that's applied after
   2899 // extension.
   2900 const struct FoldableLoadExtendsStruct {
   2901   uint16_t Opc[2];  // ARM, Thumb.
   2902   uint8_t ExpectedImm;
   2903   uint8_t isZExt     : 1;
   2904   uint8_t ExpectedVT : 7;
   2905 } FoldableLoadExtends[] = {
   2906   { { ARM::SXTH,  ARM::t2SXTH  },   0, 0, MVT::i16 },
   2907   { { ARM::UXTH,  ARM::t2UXTH  },   0, 1, MVT::i16 },
   2908   { { ARM::ANDri, ARM::t2ANDri }, 255, 1, MVT::i8  },
   2909   { { ARM::SXTB,  ARM::t2SXTB  },   0, 0, MVT::i8  },
   2910   { { ARM::UXTB,  ARM::t2UXTB  },   0, 1, MVT::i8  }
   2911 };
   2912 }
   2913 
   2914 /// \brief The specified machine instr operand is a vreg, and that
   2915 /// vreg is being provided by the specified load instruction.  If possible,
   2916 /// try to fold the load as an operand to the instruction, returning true if
   2917 /// successful.
   2918 bool ARMFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
   2919                                       const LoadInst *LI) {
   2920   // Verify we have a legal type before going any further.
   2921   MVT VT;
   2922   if (!isLoadTypeLegal(LI->getType(), VT))
   2923     return false;
   2924 
   2925   // Combine load followed by zero- or sign-extend.
   2926   // ldrb r1, [r0]       ldrb r1, [r0]
   2927   // uxtb r2, r1     =>
   2928   // mov  r3, r2         mov  r3, r1
   2929   if (MI->getNumOperands() < 3 || !MI->getOperand(2).isImm())
   2930     return false;
   2931   const uint64_t Imm = MI->getOperand(2).getImm();
   2932 
   2933   bool Found = false;
   2934   bool isZExt;
   2935   for (unsigned i = 0, e = array_lengthof(FoldableLoadExtends);
   2936        i != e; ++i) {
   2937     if (FoldableLoadExtends[i].Opc[isThumb2] == MI->getOpcode() &&
   2938         (uint64_t)FoldableLoadExtends[i].ExpectedImm == Imm &&
   2939         MVT((MVT::SimpleValueType)FoldableLoadExtends[i].ExpectedVT) == VT) {
   2940       Found = true;
   2941       isZExt = FoldableLoadExtends[i].isZExt;
   2942     }
   2943   }
   2944   if (!Found) return false;
   2945 
   2946   // See if we can handle this address.
   2947   Address Addr;
   2948   if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false;
   2949 
   2950   unsigned ResultReg = MI->getOperand(0).getReg();
   2951   if (!ARMEmitLoad(VT, ResultReg, Addr, LI->getAlignment(), isZExt, false))
   2952     return false;
   2953   MI->eraseFromParent();
   2954   return true;
   2955 }
   2956 
   2957 unsigned ARMFastISel::ARMLowerPICELF(const GlobalValue *GV,
   2958                                      unsigned Align, MVT VT) {
   2959   bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
   2960   ARMConstantPoolConstant *CPV =
   2961     ARMConstantPoolConstant::Create(GV, UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT);
   2962   unsigned Idx = MCP.getConstantPoolIndex(CPV, Align);
   2963 
   2964   unsigned Opc;
   2965   unsigned DestReg1 = createResultReg(TLI.getRegClassFor(VT));
   2966   // Load value.
   2967   if (isThumb2) {
   2968     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   2969                             TII.get(ARM::t2LDRpci), DestReg1)
   2970                     .addConstantPoolIndex(Idx));
   2971     Opc = UseGOTOFF ? ARM::t2ADDrr : ARM::t2LDRs;
   2972   } else {
   2973     // The extra immediate is for addrmode2.
   2974     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
   2975                             DL, TII.get(ARM::LDRcp), DestReg1)
   2976                     .addConstantPoolIndex(Idx).addImm(0));
   2977     Opc = UseGOTOFF ? ARM::ADDrr : ARM::LDRrs;
   2978   }
   2979 
   2980   unsigned GlobalBaseReg = AFI->getGlobalBaseReg();
   2981   if (GlobalBaseReg == 0) {
   2982     GlobalBaseReg = MRI.createVirtualRegister(TLI.getRegClassFor(VT));
   2983     AFI->setGlobalBaseReg(GlobalBaseReg);
   2984   }
   2985 
   2986   unsigned DestReg2 = createResultReg(TLI.getRegClassFor(VT));
   2987   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
   2988                                     DL, TII.get(Opc), DestReg2)
   2989                             .addReg(DestReg1)
   2990                             .addReg(GlobalBaseReg);
   2991   if (!UseGOTOFF)
   2992     MIB.addImm(0);
   2993   AddOptionalDefs(MIB);
   2994 
   2995   return DestReg2;
   2996 }
   2997 
   2998 bool ARMFastISel::FastLowerArguments() {
   2999   if (!FuncInfo.CanLowerReturn)
   3000     return false;
   3001 
   3002   const Function *F = FuncInfo.Fn;
   3003   if (F->isVarArg())
   3004     return false;
   3005 
   3006   CallingConv::ID CC = F->getCallingConv();
   3007   switch (CC) {
   3008   default:
   3009     return false;
   3010   case CallingConv::Fast:
   3011   case CallingConv::C:
   3012   case CallingConv::ARM_AAPCS_VFP:
   3013   case CallingConv::ARM_AAPCS:
   3014   case CallingConv::ARM_APCS:
   3015     break;
   3016   }
   3017 
   3018   // Only handle simple cases. i.e. Up to 4 i8/i16/i32 scalar arguments
   3019   // which are passed in r0 - r3.
   3020   unsigned Idx = 1;
   3021   for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
   3022        I != E; ++I, ++Idx) {
   3023     if (Idx > 4)
   3024       return false;
   3025 
   3026     if (F->getAttributes().hasAttribute(Idx, Attribute::InReg) ||
   3027         F->getAttributes().hasAttribute(Idx, Attribute::StructRet) ||
   3028         F->getAttributes().hasAttribute(Idx, Attribute::ByVal))
   3029       return false;
   3030 
   3031     Type *ArgTy = I->getType();
   3032     if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
   3033       return false;
   3034 
   3035     EVT ArgVT = TLI.getValueType(ArgTy);
   3036     if (!ArgVT.isSimple()) return false;
   3037     switch (ArgVT.getSimpleVT().SimpleTy) {
   3038     case MVT::i8:
   3039     case MVT::i16:
   3040     case MVT::i32:
   3041       break;
   3042     default:
   3043       return false;
   3044     }
   3045   }
   3046 
   3047 
   3048   static const uint16_t GPRArgRegs[] = {
   3049     ARM::R0, ARM::R1, ARM::R2, ARM::R3
   3050   };
   3051 
   3052   const TargetRegisterClass *RC = TLI.getRegClassFor(MVT::i32);
   3053   Idx = 0;
   3054   for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
   3055        I != E; ++I, ++Idx) {
   3056     unsigned SrcReg = GPRArgRegs[Idx];
   3057     unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
   3058     // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
   3059     // Without this, EmitLiveInCopies may eliminate the livein if its only
   3060     // use is a bitcast (which isn't turned into an instruction).
   3061     unsigned ResultReg = createResultReg(RC);
   3062     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
   3063             ResultReg).addReg(DstReg, getKillRegState(true));
   3064     UpdateValueMap(I, ResultReg);
   3065   }
   3066 
   3067   return true;
   3068 }
   3069 
   3070 namespace llvm {
   3071   FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo,
   3072                                 const TargetLibraryInfo *libInfo) {
   3073     const TargetMachine &TM = funcInfo.MF->getTarget();
   3074 
   3075     const ARMSubtarget *Subtarget = &TM.getSubtarget<ARMSubtarget>();
   3076     // Thumb2 support on iOS; ARM support on iOS, Linux and NaCl.
   3077     bool UseFastISel = false;
   3078     UseFastISel |= Subtarget->isTargetIOS() && !Subtarget->isThumb1Only();
   3079     UseFastISel |= Subtarget->isTargetLinux() && !Subtarget->isThumb();
   3080     UseFastISel |= Subtarget->isTargetNaCl() && !Subtarget->isThumb();
   3081 
   3082     if (UseFastISel) {
   3083       // iOS always has a FP for backtracking, force other targets
   3084       // to keep their FP when doing FastISel. The emitted code is
   3085       // currently superior, and in cases like test-suite's lencod
   3086       // FastISel isn't quite correct when FP is eliminated.
   3087       TM.Options.NoFramePointerElim = true;
   3088       return new ARMFastISel(funcInfo, libInfo);
   3089     }
   3090     return 0;
   3091   }
   3092 }
   3093