Home | History | Annotate | Download | only in X86
      1 //===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the X86-specific support for the FastISel class. Much
     11 // of the target-specific code is generated by tablegen in the file
     12 // X86GenFastISel.inc, which is #included here.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "X86.h"
     17 #include "X86ISelLowering.h"
     18 #include "X86InstrBuilder.h"
     19 #include "X86RegisterInfo.h"
     20 #include "X86Subtarget.h"
     21 #include "X86TargetMachine.h"
     22 #include "llvm/CodeGen/Analysis.h"
     23 #include "llvm/CodeGen/FastISel.h"
     24 #include "llvm/CodeGen/FunctionLoweringInfo.h"
     25 #include "llvm/CodeGen/MachineConstantPool.h"
     26 #include "llvm/CodeGen/MachineFrameInfo.h"
     27 #include "llvm/CodeGen/MachineRegisterInfo.h"
     28 #include "llvm/IR/CallingConv.h"
     29 #include "llvm/IR/DerivedTypes.h"
     30 #include "llvm/IR/GlobalAlias.h"
     31 #include "llvm/IR/GlobalVariable.h"
     32 #include "llvm/IR/Instructions.h"
     33 #include "llvm/IR/IntrinsicInst.h"
     34 #include "llvm/IR/Operator.h"
     35 #include "llvm/Support/CallSite.h"
     36 #include "llvm/Support/ErrorHandling.h"
     37 #include "llvm/Support/GetElementPtrTypeIterator.h"
     38 #include "llvm/Target/TargetOptions.h"
     39 using namespace llvm;
     40 
     41 namespace {
     42 
     43 class X86FastISel : public FastISel {
     44   /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
     45   /// make the right decision when generating code for different targets.
     46   const X86Subtarget *Subtarget;
     47 
     48   /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
     49   /// floating point ops.
     50   /// When SSE is available, use it for f32 operations.
     51   /// When SSE2 is available, use it for f64 operations.
     52   bool X86ScalarSSEf64;
     53   bool X86ScalarSSEf32;
     54 
     55 public:
     56   explicit X86FastISel(FunctionLoweringInfo &funcInfo,
     57                        const TargetLibraryInfo *libInfo)
     58     : FastISel(funcInfo, libInfo) {
     59     Subtarget = &TM.getSubtarget<X86Subtarget>();
     60     X86ScalarSSEf64 = Subtarget->hasSSE2();
     61     X86ScalarSSEf32 = Subtarget->hasSSE1();
     62   }
     63 
     64   virtual bool TargetSelectInstruction(const Instruction *I);
     65 
     66   /// \brief The specified machine instr operand is a vreg, and that
     67   /// vreg is being provided by the specified load instruction.  If possible,
     68   /// try to fold the load as an operand to the instruction, returning true if
     69   /// possible.
     70   virtual bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
     71                                    const LoadInst *LI);
     72 
     73   virtual bool FastLowerArguments();
     74 
     75 #include "X86GenFastISel.inc"
     76 
     77 private:
     78   bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT);
     79 
     80   bool X86FastEmitLoad(EVT VT, const X86AddressMode &AM, unsigned &RR);
     81 
     82   bool X86FastEmitStore(EVT VT, const Value *Val, const X86AddressMode &AM,
     83                         bool Aligned = false);
     84   bool X86FastEmitStore(EVT VT, unsigned ValReg, const X86AddressMode &AM,
     85                         bool Aligned = false);
     86 
     87   bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
     88                          unsigned &ResultReg);
     89 
     90   bool X86SelectAddress(const Value *V, X86AddressMode &AM);
     91   bool X86SelectCallAddress(const Value *V, X86AddressMode &AM);
     92 
     93   bool X86SelectLoad(const Instruction *I);
     94 
     95   bool X86SelectStore(const Instruction *I);
     96 
     97   bool X86SelectRet(const Instruction *I);
     98 
     99   bool X86SelectCmp(const Instruction *I);
    100 
    101   bool X86SelectZExt(const Instruction *I);
    102 
    103   bool X86SelectBranch(const Instruction *I);
    104 
    105   bool X86SelectShift(const Instruction *I);
    106 
    107   bool X86SelectDivRem(const Instruction *I);
    108 
    109   bool X86SelectSelect(const Instruction *I);
    110 
    111   bool X86SelectTrunc(const Instruction *I);
    112 
    113   bool X86SelectFPExt(const Instruction *I);
    114   bool X86SelectFPTrunc(const Instruction *I);
    115 
    116   bool X86VisitIntrinsicCall(const IntrinsicInst &I);
    117   bool X86SelectCall(const Instruction *I);
    118 
    119   bool DoSelectCall(const Instruction *I, const char *MemIntName);
    120 
    121   const X86InstrInfo *getInstrInfo() const {
    122     return getTargetMachine()->getInstrInfo();
    123   }
    124   const X86TargetMachine *getTargetMachine() const {
    125     return static_cast<const X86TargetMachine *>(&TM);
    126   }
    127 
    128   unsigned TargetMaterializeConstant(const Constant *C);
    129 
    130   unsigned TargetMaterializeAlloca(const AllocaInst *C);
    131 
    132   unsigned TargetMaterializeFloatZero(const ConstantFP *CF);
    133 
    134   /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
    135   /// computed in an SSE register, not on the X87 floating point stack.
    136   bool isScalarFPTypeInSSEReg(EVT VT) const {
    137     return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
    138       (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
    139   }
    140 
    141   bool isTypeLegal(Type *Ty, MVT &VT, bool AllowI1 = false);
    142 
    143   bool IsMemcpySmall(uint64_t Len);
    144 
    145   bool TryEmitSmallMemcpy(X86AddressMode DestAM,
    146                           X86AddressMode SrcAM, uint64_t Len);
    147 };
    148 
    149 } // end anonymous namespace.
    150 
    151 bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) {
    152   EVT evt = TLI.getValueType(Ty, /*HandleUnknown=*/true);
    153   if (evt == MVT::Other || !evt.isSimple())
    154     // Unhandled type. Halt "fast" selection and bail.
    155     return false;
    156 
    157   VT = evt.getSimpleVT();
    158   // For now, require SSE/SSE2 for performing floating-point operations,
    159   // since x87 requires additional work.
    160   if (VT == MVT::f64 && !X86ScalarSSEf64)
    161     return false;
    162   if (VT == MVT::f32 && !X86ScalarSSEf32)
    163     return false;
    164   // Similarly, no f80 support yet.
    165   if (VT == MVT::f80)
    166     return false;
    167   // We only handle legal types. For example, on x86-32 the instruction
    168   // selector contains all of the 64-bit instructions from x86-64,
    169   // under the assumption that i64 won't be used if the target doesn't
    170   // support it.
    171   return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT);
    172 }
    173 
    174 #include "X86GenCallingConv.inc"
    175 
    176 /// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
    177 /// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
    178 /// Return true and the result register by reference if it is possible.
    179 bool X86FastISel::X86FastEmitLoad(EVT VT, const X86AddressMode &AM,
    180                                   unsigned &ResultReg) {
    181   // Get opcode and regclass of the output for the given load instruction.
    182   unsigned Opc = 0;
    183   const TargetRegisterClass *RC = NULL;
    184   switch (VT.getSimpleVT().SimpleTy) {
    185   default: return false;
    186   case MVT::i1:
    187   case MVT::i8:
    188     Opc = X86::MOV8rm;
    189     RC  = &X86::GR8RegClass;
    190     break;
    191   case MVT::i16:
    192     Opc = X86::MOV16rm;
    193     RC  = &X86::GR16RegClass;
    194     break;
    195   case MVT::i32:
    196     Opc = X86::MOV32rm;
    197     RC  = &X86::GR32RegClass;
    198     break;
    199   case MVT::i64:
    200     // Must be in x86-64 mode.
    201     Opc = X86::MOV64rm;
    202     RC  = &X86::GR64RegClass;
    203     break;
    204   case MVT::f32:
    205     if (X86ScalarSSEf32) {
    206       Opc = Subtarget->hasAVX() ? X86::VMOVSSrm : X86::MOVSSrm;
    207       RC  = &X86::FR32RegClass;
    208     } else {
    209       Opc = X86::LD_Fp32m;
    210       RC  = &X86::RFP32RegClass;
    211     }
    212     break;
    213   case MVT::f64:
    214     if (X86ScalarSSEf64) {
    215       Opc = Subtarget->hasAVX() ? X86::VMOVSDrm : X86::MOVSDrm;
    216       RC  = &X86::FR64RegClass;
    217     } else {
    218       Opc = X86::LD_Fp64m;
    219       RC  = &X86::RFP64RegClass;
    220     }
    221     break;
    222   case MVT::f80:
    223     // No f80 support yet.
    224     return false;
    225   }
    226 
    227   ResultReg = createResultReg(RC);
    228   addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
    229                          DL, TII.get(Opc), ResultReg), AM);
    230   return true;
    231 }
    232 
    233 /// X86FastEmitStore - Emit a machine instruction to store a value Val of
    234 /// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
    235 /// and a displacement offset, or a GlobalAddress,
    236 /// i.e. V. Return true if it is possible.
    237 bool
    238 X86FastISel::X86FastEmitStore(EVT VT, unsigned ValReg,
    239                               const X86AddressMode &AM, bool Aligned) {
    240   // Get opcode and regclass of the output for the given store instruction.
    241   unsigned Opc = 0;
    242   switch (VT.getSimpleVT().SimpleTy) {
    243   case MVT::f80: // No f80 support yet.
    244   default: return false;
    245   case MVT::i1: {
    246     // Mask out all but lowest bit.
    247     unsigned AndResult = createResultReg(&X86::GR8RegClass);
    248     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    249             TII.get(X86::AND8ri), AndResult).addReg(ValReg).addImm(1);
    250     ValReg = AndResult;
    251   }
    252   // FALLTHROUGH, handling i1 as i8.
    253   case MVT::i8:  Opc = X86::MOV8mr;  break;
    254   case MVT::i16: Opc = X86::MOV16mr; break;
    255   case MVT::i32: Opc = X86::MOV32mr; break;
    256   case MVT::i64: Opc = X86::MOV64mr; break; // Must be in x86-64 mode.
    257   case MVT::f32:
    258     Opc = X86ScalarSSEf32 ?
    259           (Subtarget->hasAVX() ? X86::VMOVSSmr : X86::MOVSSmr) : X86::ST_Fp32m;
    260     break;
    261   case MVT::f64:
    262     Opc = X86ScalarSSEf64 ?
    263           (Subtarget->hasAVX() ? X86::VMOVSDmr : X86::MOVSDmr) : X86::ST_Fp64m;
    264     break;
    265   case MVT::v4f32:
    266     if (Aligned)
    267       Opc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
    268     else
    269       Opc = Subtarget->hasAVX() ? X86::VMOVUPSmr : X86::MOVUPSmr;
    270     break;
    271   case MVT::v2f64:
    272     if (Aligned)
    273       Opc = Subtarget->hasAVX() ? X86::VMOVAPDmr : X86::MOVAPDmr;
    274     else
    275       Opc = Subtarget->hasAVX() ? X86::VMOVUPDmr : X86::MOVUPDmr;
    276     break;
    277   case MVT::v4i32:
    278   case MVT::v2i64:
    279   case MVT::v8i16:
    280   case MVT::v16i8:
    281     if (Aligned)
    282       Opc = Subtarget->hasAVX() ? X86::VMOVDQAmr : X86::MOVDQAmr;
    283     else
    284       Opc = Subtarget->hasAVX() ? X86::VMOVDQUmr : X86::MOVDQUmr;
    285     break;
    286   }
    287 
    288   addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
    289                          DL, TII.get(Opc)), AM).addReg(ValReg);
    290   return true;
    291 }
    292 
    293 bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val,
    294                                    const X86AddressMode &AM, bool Aligned) {
    295   // Handle 'null' like i32/i64 0.
    296   if (isa<ConstantPointerNull>(Val))
    297     Val = Constant::getNullValue(TD.getIntPtrType(Val->getContext()));
    298 
    299   // If this is a store of a simple constant, fold the constant into the store.
    300   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
    301     unsigned Opc = 0;
    302     bool Signed = true;
    303     switch (VT.getSimpleVT().SimpleTy) {
    304     default: break;
    305     case MVT::i1:  Signed = false;     // FALLTHROUGH to handle as i8.
    306     case MVT::i8:  Opc = X86::MOV8mi;  break;
    307     case MVT::i16: Opc = X86::MOV16mi; break;
    308     case MVT::i32: Opc = X86::MOV32mi; break;
    309     case MVT::i64:
    310       // Must be a 32-bit sign extended value.
    311       if (isInt<32>(CI->getSExtValue()))
    312         Opc = X86::MOV64mi32;
    313       break;
    314     }
    315 
    316     if (Opc) {
    317       addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
    318                              DL, TII.get(Opc)), AM)
    319                              .addImm(Signed ? (uint64_t) CI->getSExtValue() :
    320                                               CI->getZExtValue());
    321       return true;
    322     }
    323   }
    324 
    325   unsigned ValReg = getRegForValue(Val);
    326   if (ValReg == 0)
    327     return false;
    328 
    329   return X86FastEmitStore(VT, ValReg, AM, Aligned);
    330 }
    331 
    332 /// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
    333 /// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
    334 /// ISD::SIGN_EXTEND).
    335 bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT,
    336                                     unsigned Src, EVT SrcVT,
    337                                     unsigned &ResultReg) {
    338   unsigned RR = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc,
    339                            Src, /*TODO: Kill=*/false);
    340   if (RR == 0)
    341     return false;
    342 
    343   ResultReg = RR;
    344   return true;
    345 }
    346 
    347 /// X86SelectAddress - Attempt to fill in an address from the given value.
    348 ///
    349 bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) {
    350   const User *U = NULL;
    351   unsigned Opcode = Instruction::UserOp1;
    352   if (const Instruction *I = dyn_cast<Instruction>(V)) {
    353     // Don't walk into other basic blocks; it's possible we haven't
    354     // visited them yet, so the instructions may not yet be assigned
    355     // virtual registers.
    356     if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(V)) ||
    357         FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
    358       Opcode = I->getOpcode();
    359       U = I;
    360     }
    361   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
    362     Opcode = C->getOpcode();
    363     U = C;
    364   }
    365 
    366   if (PointerType *Ty = dyn_cast<PointerType>(V->getType()))
    367     if (Ty->getAddressSpace() > 255)
    368       // Fast instruction selection doesn't support the special
    369       // address spaces.
    370       return false;
    371 
    372   switch (Opcode) {
    373   default: break;
    374   case Instruction::BitCast:
    375     // Look past bitcasts.
    376     return X86SelectAddress(U->getOperand(0), AM);
    377 
    378   case Instruction::IntToPtr:
    379     // Look past no-op inttoptrs.
    380     if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
    381       return X86SelectAddress(U->getOperand(0), AM);
    382     break;
    383 
    384   case Instruction::PtrToInt:
    385     // Look past no-op ptrtoints.
    386     if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
    387       return X86SelectAddress(U->getOperand(0), AM);
    388     break;
    389 
    390   case Instruction::Alloca: {
    391     // Do static allocas.
    392     const AllocaInst *A = cast<AllocaInst>(V);
    393     DenseMap<const AllocaInst*, int>::iterator SI =
    394       FuncInfo.StaticAllocaMap.find(A);
    395     if (SI != FuncInfo.StaticAllocaMap.end()) {
    396       AM.BaseType = X86AddressMode::FrameIndexBase;
    397       AM.Base.FrameIndex = SI->second;
    398       return true;
    399     }
    400     break;
    401   }
    402 
    403   case Instruction::Add: {
    404     // Adds of constants are common and easy enough.
    405     if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
    406       uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();
    407       // They have to fit in the 32-bit signed displacement field though.
    408       if (isInt<32>(Disp)) {
    409         AM.Disp = (uint32_t)Disp;
    410         return X86SelectAddress(U->getOperand(0), AM);
    411       }
    412     }
    413     break;
    414   }
    415 
    416   case Instruction::GetElementPtr: {
    417     X86AddressMode SavedAM = AM;
    418 
    419     // Pattern-match simple GEPs.
    420     uint64_t Disp = (int32_t)AM.Disp;
    421     unsigned IndexReg = AM.IndexReg;
    422     unsigned Scale = AM.Scale;
    423     gep_type_iterator GTI = gep_type_begin(U);
    424     // Iterate through the indices, folding what we can. Constants can be
    425     // folded, and one dynamic index can be handled, if the scale is supported.
    426     for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
    427          i != e; ++i, ++GTI) {
    428       const Value *Op = *i;
    429       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
    430         const StructLayout *SL = TD.getStructLayout(STy);
    431         Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue());
    432         continue;
    433       }
    434 
    435       // A array/variable index is always of the form i*S where S is the
    436       // constant scale size.  See if we can push the scale into immediates.
    437       uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType());
    438       for (;;) {
    439         if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
    440           // Constant-offset addressing.
    441           Disp += CI->getSExtValue() * S;
    442           break;
    443         }
    444         if (isa<AddOperator>(Op) &&
    445             (!isa<Instruction>(Op) ||
    446              FuncInfo.MBBMap[cast<Instruction>(Op)->getParent()]
    447                == FuncInfo.MBB) &&
    448             isa<ConstantInt>(cast<AddOperator>(Op)->getOperand(1))) {
    449           // An add (in the same block) with a constant operand. Fold the
    450           // constant.
    451           ConstantInt *CI =
    452             cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
    453           Disp += CI->getSExtValue() * S;
    454           // Iterate on the other operand.
    455           Op = cast<AddOperator>(Op)->getOperand(0);
    456           continue;
    457         }
    458         if (IndexReg == 0 &&
    459             (!AM.GV || !Subtarget->isPICStyleRIPRel()) &&
    460             (S == 1 || S == 2 || S == 4 || S == 8)) {
    461           // Scaled-index addressing.
    462           Scale = S;
    463           IndexReg = getRegForGEPIndex(Op).first;
    464           if (IndexReg == 0)
    465             return false;
    466           break;
    467         }
    468         // Unsupported.
    469         goto unsupported_gep;
    470       }
    471     }
    472     // Check for displacement overflow.
    473     if (!isInt<32>(Disp))
    474       break;
    475     // Ok, the GEP indices were covered by constant-offset and scaled-index
    476     // addressing. Update the address state and move on to examining the base.
    477     AM.IndexReg = IndexReg;
    478     AM.Scale = Scale;
    479     AM.Disp = (uint32_t)Disp;
    480     if (X86SelectAddress(U->getOperand(0), AM))
    481       return true;
    482 
    483     // If we couldn't merge the gep value into this addr mode, revert back to
    484     // our address and just match the value instead of completely failing.
    485     AM = SavedAM;
    486     break;
    487   unsupported_gep:
    488     // Ok, the GEP indices weren't all covered.
    489     break;
    490   }
    491   }
    492 
    493   // Handle constant address.
    494   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
    495     // Can't handle alternate code models yet.
    496     if (TM.getCodeModel() != CodeModel::Small)
    497       return false;
    498 
    499     // Can't handle TLS yet.
    500     if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
    501       if (GVar->isThreadLocal())
    502         return false;
    503 
    504     // Can't handle TLS yet, part 2 (this is slightly crazy, but this is how
    505     // it works...).
    506     if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
    507       if (const GlobalVariable *GVar =
    508             dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false)))
    509         if (GVar->isThreadLocal())
    510           return false;
    511 
    512     // RIP-relative addresses can't have additional register operands, so if
    513     // we've already folded stuff into the addressing mode, just force the
    514     // global value into its own register, which we can use as the basereg.
    515     if (!Subtarget->isPICStyleRIPRel() ||
    516         (AM.Base.Reg == 0 && AM.IndexReg == 0)) {
    517       // Okay, we've committed to selecting this global. Set up the address.
    518       AM.GV = GV;
    519 
    520       // Allow the subtarget to classify the global.
    521       unsigned char GVFlags = Subtarget->ClassifyGlobalReference(GV, TM);
    522 
    523       // If this reference is relative to the pic base, set it now.
    524       if (isGlobalRelativeToPICBase(GVFlags)) {
    525         // FIXME: How do we know Base.Reg is free??
    526         AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
    527       }
    528 
    529       // Unless the ABI requires an extra load, return a direct reference to
    530       // the global.
    531       if (!isGlobalStubReference(GVFlags)) {
    532         if (Subtarget->isPICStyleRIPRel()) {
    533           // Use rip-relative addressing if we can.  Above we verified that the
    534           // base and index registers are unused.
    535           assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
    536           AM.Base.Reg = X86::RIP;
    537         }
    538         AM.GVOpFlags = GVFlags;
    539         return true;
    540       }
    541 
    542       // Ok, we need to do a load from a stub.  If we've already loaded from
    543       // this stub, reuse the loaded pointer, otherwise emit the load now.
    544       DenseMap<const Value*, unsigned>::iterator I = LocalValueMap.find(V);
    545       unsigned LoadReg;
    546       if (I != LocalValueMap.end() && I->second != 0) {
    547         LoadReg = I->second;
    548       } else {
    549         // Issue load from stub.
    550         unsigned Opc = 0;
    551         const TargetRegisterClass *RC = NULL;
    552         X86AddressMode StubAM;
    553         StubAM.Base.Reg = AM.Base.Reg;
    554         StubAM.GV = GV;
    555         StubAM.GVOpFlags = GVFlags;
    556 
    557         // Prepare for inserting code in the local-value area.
    558         SavePoint SaveInsertPt = enterLocalValueArea();
    559 
    560         if (TLI.getPointerTy() == MVT::i64) {
    561           Opc = X86::MOV64rm;
    562           RC  = &X86::GR64RegClass;
    563 
    564           if (Subtarget->isPICStyleRIPRel())
    565             StubAM.Base.Reg = X86::RIP;
    566         } else {
    567           Opc = X86::MOV32rm;
    568           RC  = &X86::GR32RegClass;
    569         }
    570 
    571         LoadReg = createResultReg(RC);
    572         MachineInstrBuilder LoadMI =
    573           BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), LoadReg);
    574         addFullAddress(LoadMI, StubAM);
    575 
    576         // Ok, back to normal mode.
    577         leaveLocalValueArea(SaveInsertPt);
    578 
    579         // Prevent loading GV stub multiple times in same MBB.
    580         LocalValueMap[V] = LoadReg;
    581       }
    582 
    583       // Now construct the final address. Note that the Disp, Scale,
    584       // and Index values may already be set here.
    585       AM.Base.Reg = LoadReg;
    586       AM.GV = 0;
    587       return true;
    588     }
    589   }
    590 
    591   // If all else fails, try to materialize the value in a register.
    592   if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
    593     if (AM.Base.Reg == 0) {
    594       AM.Base.Reg = getRegForValue(V);
    595       return AM.Base.Reg != 0;
    596     }
    597     if (AM.IndexReg == 0) {
    598       assert(AM.Scale == 1 && "Scale with no index!");
    599       AM.IndexReg = getRegForValue(V);
    600       return AM.IndexReg != 0;
    601     }
    602   }
    603 
    604   return false;
    605 }
    606 
    607 /// X86SelectCallAddress - Attempt to fill in an address from the given value.
    608 ///
    609 bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) {
    610   const User *U = NULL;
    611   unsigned Opcode = Instruction::UserOp1;
    612   if (const Instruction *I = dyn_cast<Instruction>(V)) {
    613     Opcode = I->getOpcode();
    614     U = I;
    615   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
    616     Opcode = C->getOpcode();
    617     U = C;
    618   }
    619 
    620   switch (Opcode) {
    621   default: break;
    622   case Instruction::BitCast:
    623     // Look past bitcasts.
    624     return X86SelectCallAddress(U->getOperand(0), AM);
    625 
    626   case Instruction::IntToPtr:
    627     // Look past no-op inttoptrs.
    628     if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
    629       return X86SelectCallAddress(U->getOperand(0), AM);
    630     break;
    631 
    632   case Instruction::PtrToInt:
    633     // Look past no-op ptrtoints.
    634     if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
    635       return X86SelectCallAddress(U->getOperand(0), AM);
    636     break;
    637   }
    638 
    639   // Handle constant address.
    640   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
    641     // Can't handle alternate code models yet.
    642     if (TM.getCodeModel() != CodeModel::Small)
    643       return false;
    644 
    645     // RIP-relative addresses can't have additional register operands.
    646     if (Subtarget->isPICStyleRIPRel() &&
    647         (AM.Base.Reg != 0 || AM.IndexReg != 0))
    648       return false;
    649 
    650     // Can't handle DLLImport.
    651     if (GV->hasDLLImportLinkage())
    652       return false;
    653 
    654     // Can't handle TLS.
    655     if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
    656       if (GVar->isThreadLocal())
    657         return false;
    658 
    659     // Okay, we've committed to selecting this global. Set up the basic address.
    660     AM.GV = GV;
    661 
    662     // No ABI requires an extra load for anything other than DLLImport, which
    663     // we rejected above. Return a direct reference to the global.
    664     if (Subtarget->isPICStyleRIPRel()) {
    665       // Use rip-relative addressing if we can.  Above we verified that the
    666       // base and index registers are unused.
    667       assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
    668       AM.Base.Reg = X86::RIP;
    669     } else if (Subtarget->isPICStyleStubPIC()) {
    670       AM.GVOpFlags = X86II::MO_PIC_BASE_OFFSET;
    671     } else if (Subtarget->isPICStyleGOT()) {
    672       AM.GVOpFlags = X86II::MO_GOTOFF;
    673     }
    674 
    675     return true;
    676   }
    677 
    678   // If all else fails, try to materialize the value in a register.
    679   if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
    680     if (AM.Base.Reg == 0) {
    681       AM.Base.Reg = getRegForValue(V);
    682       return AM.Base.Reg != 0;
    683     }
    684     if (AM.IndexReg == 0) {
    685       assert(AM.Scale == 1 && "Scale with no index!");
    686       AM.IndexReg = getRegForValue(V);
    687       return AM.IndexReg != 0;
    688     }
    689   }
    690 
    691   return false;
    692 }
    693 
    694 
    695 /// X86SelectStore - Select and emit code to implement store instructions.
    696 bool X86FastISel::X86SelectStore(const Instruction *I) {
    697   // Atomic stores need special handling.
    698   const StoreInst *S = cast<StoreInst>(I);
    699 
    700   if (S->isAtomic())
    701     return false;
    702 
    703   unsigned SABIAlignment =
    704     TD.getABITypeAlignment(S->getValueOperand()->getType());
    705   bool Aligned = S->getAlignment() == 0 || S->getAlignment() >= SABIAlignment;
    706 
    707   MVT VT;
    708   if (!isTypeLegal(I->getOperand(0)->getType(), VT, /*AllowI1=*/true))
    709     return false;
    710 
    711   X86AddressMode AM;
    712   if (!X86SelectAddress(I->getOperand(1), AM))
    713     return false;
    714 
    715   return X86FastEmitStore(VT, I->getOperand(0), AM, Aligned);
    716 }
    717 
    718 /// X86SelectRet - Select and emit code to implement ret instructions.
    719 bool X86FastISel::X86SelectRet(const Instruction *I) {
    720   const ReturnInst *Ret = cast<ReturnInst>(I);
    721   const Function &F = *I->getParent()->getParent();
    722   const X86MachineFunctionInfo *X86MFInfo =
    723       FuncInfo.MF->getInfo<X86MachineFunctionInfo>();
    724 
    725   if (!FuncInfo.CanLowerReturn)
    726     return false;
    727 
    728   CallingConv::ID CC = F.getCallingConv();
    729   if (CC != CallingConv::C &&
    730       CC != CallingConv::Fast &&
    731       CC != CallingConv::X86_FastCall &&
    732       CC != CallingConv::X86_64_SysV)
    733     return false;
    734 
    735   if (Subtarget->isCallingConvWin64(CC))
    736     return false;
    737 
    738   // Don't handle popping bytes on return for now.
    739   if (X86MFInfo->getBytesToPopOnReturn() != 0)
    740     return false;
    741 
    742   // fastcc with -tailcallopt is intended to provide a guaranteed
    743   // tail call optimization. Fastisel doesn't know how to do that.
    744   if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt)
    745     return false;
    746 
    747   // Let SDISel handle vararg functions.
    748   if (F.isVarArg())
    749     return false;
    750 
    751   // Build a list of return value registers.
    752   SmallVector<unsigned, 4> RetRegs;
    753 
    754   if (Ret->getNumOperands() > 0) {
    755     SmallVector<ISD::OutputArg, 4> Outs;
    756     GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI);
    757 
    758     // Analyze operands of the call, assigning locations to each operand.
    759     SmallVector<CCValAssign, 16> ValLocs;
    760     CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs,
    761                    I->getContext());
    762     CCInfo.AnalyzeReturn(Outs, RetCC_X86);
    763 
    764     const Value *RV = Ret->getOperand(0);
    765     unsigned Reg = getRegForValue(RV);
    766     if (Reg == 0)
    767       return false;
    768 
    769     // Only handle a single return value for now.
    770     if (ValLocs.size() != 1)
    771       return false;
    772 
    773     CCValAssign &VA = ValLocs[0];
    774 
    775     // Don't bother handling odd stuff for now.
    776     if (VA.getLocInfo() != CCValAssign::Full)
    777       return false;
    778     // Only handle register returns for now.
    779     if (!VA.isRegLoc())
    780       return false;
    781 
    782     // The calling-convention tables for x87 returns don't tell
    783     // the whole story.
    784     if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
    785       return false;
    786 
    787     unsigned SrcReg = Reg + VA.getValNo();
    788     EVT SrcVT = TLI.getValueType(RV->getType());
    789     EVT DstVT = VA.getValVT();
    790     // Special handling for extended integers.
    791     if (SrcVT != DstVT) {
    792       if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16)
    793         return false;
    794 
    795       if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
    796         return false;
    797 
    798       assert(DstVT == MVT::i32 && "X86 should always ext to i32");
    799 
    800       if (SrcVT == MVT::i1) {
    801         if (Outs[0].Flags.isSExt())
    802           return false;
    803         SrcReg = FastEmitZExtFromI1(MVT::i8, SrcReg, /*TODO: Kill=*/false);
    804         SrcVT = MVT::i8;
    805       }
    806       unsigned Op = Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND :
    807                                              ISD::SIGN_EXTEND;
    808       SrcReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op,
    809                           SrcReg, /*TODO: Kill=*/false);
    810     }
    811 
    812     // Make the copy.
    813     unsigned DstReg = VA.getLocReg();
    814     const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
    815     // Avoid a cross-class copy. This is very unlikely.
    816     if (!SrcRC->contains(DstReg))
    817       return false;
    818     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
    819             DstReg).addReg(SrcReg);
    820 
    821     // Add register to return instruction.
    822     RetRegs.push_back(VA.getLocReg());
    823   }
    824 
    825   // The x86-64 ABI for returning structs by value requires that we copy
    826   // the sret argument into %rax for the return. We saved the argument into
    827   // a virtual register in the entry block, so now we copy the value out
    828   // and into %rax. We also do the same with %eax for Win32.
    829   if (F.hasStructRetAttr() &&
    830       (Subtarget->is64Bit() || Subtarget->isTargetWindows())) {
    831     unsigned Reg = X86MFInfo->getSRetReturnReg();
    832     assert(Reg &&
    833            "SRetReturnReg should have been set in LowerFormalArguments()!");
    834     unsigned RetReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
    835     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
    836             RetReg).addReg(Reg);
    837     RetRegs.push_back(RetReg);
    838   }
    839 
    840   // Now emit the RET.
    841   MachineInstrBuilder MIB =
    842     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::RET));
    843   for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
    844     MIB.addReg(RetRegs[i], RegState::Implicit);
    845   return true;
    846 }
    847 
    848 /// X86SelectLoad - Select and emit code to implement load instructions.
    849 ///
    850 bool X86FastISel::X86SelectLoad(const Instruction *I)  {
    851   // Atomic loads need special handling.
    852   if (cast<LoadInst>(I)->isAtomic())
    853     return false;
    854 
    855   MVT VT;
    856   if (!isTypeLegal(I->getType(), VT, /*AllowI1=*/true))
    857     return false;
    858 
    859   X86AddressMode AM;
    860   if (!X86SelectAddress(I->getOperand(0), AM))
    861     return false;
    862 
    863   unsigned ResultReg = 0;
    864   if (X86FastEmitLoad(VT, AM, ResultReg)) {
    865     UpdateValueMap(I, ResultReg);
    866     return true;
    867   }
    868   return false;
    869 }
    870 
    871 static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) {
    872   bool HasAVX = Subtarget->hasAVX();
    873   bool X86ScalarSSEf32 = Subtarget->hasSSE1();
    874   bool X86ScalarSSEf64 = Subtarget->hasSSE2();
    875 
    876   switch (VT.getSimpleVT().SimpleTy) {
    877   default:       return 0;
    878   case MVT::i8:  return X86::CMP8rr;
    879   case MVT::i16: return X86::CMP16rr;
    880   case MVT::i32: return X86::CMP32rr;
    881   case MVT::i64: return X86::CMP64rr;
    882   case MVT::f32:
    883     return X86ScalarSSEf32 ? (HasAVX ? X86::VUCOMISSrr : X86::UCOMISSrr) : 0;
    884   case MVT::f64:
    885     return X86ScalarSSEf64 ? (HasAVX ? X86::VUCOMISDrr : X86::UCOMISDrr) : 0;
    886   }
    887 }
    888 
    889 /// X86ChooseCmpImmediateOpcode - If we have a comparison with RHS as the RHS
    890 /// of the comparison, return an opcode that works for the compare (e.g.
    891 /// CMP32ri) otherwise return 0.
    892 static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) {
    893   switch (VT.getSimpleVT().SimpleTy) {
    894   // Otherwise, we can't fold the immediate into this comparison.
    895   default: return 0;
    896   case MVT::i8: return X86::CMP8ri;
    897   case MVT::i16: return X86::CMP16ri;
    898   case MVT::i32: return X86::CMP32ri;
    899   case MVT::i64:
    900     // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext
    901     // field.
    902     if ((int)RHSC->getSExtValue() == RHSC->getSExtValue())
    903       return X86::CMP64ri32;
    904     return 0;
    905   }
    906 }
    907 
    908 bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1,
    909                                      EVT VT) {
    910   unsigned Op0Reg = getRegForValue(Op0);
    911   if (Op0Reg == 0) return false;
    912 
    913   // Handle 'null' like i32/i64 0.
    914   if (isa<ConstantPointerNull>(Op1))
    915     Op1 = Constant::getNullValue(TD.getIntPtrType(Op0->getContext()));
    916 
    917   // We have two options: compare with register or immediate.  If the RHS of
    918   // the compare is an immediate that we can fold into this compare, use
    919   // CMPri, otherwise use CMPrr.
    920   if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
    921     if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) {
    922       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CompareImmOpc))
    923         .addReg(Op0Reg)
    924         .addImm(Op1C->getSExtValue());
    925       return true;
    926     }
    927   }
    928 
    929   unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget);
    930   if (CompareOpc == 0) return false;
    931 
    932   unsigned Op1Reg = getRegForValue(Op1);
    933   if (Op1Reg == 0) return false;
    934   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CompareOpc))
    935     .addReg(Op0Reg)
    936     .addReg(Op1Reg);
    937 
    938   return true;
    939 }
    940 
    941 bool X86FastISel::X86SelectCmp(const Instruction *I) {
    942   const CmpInst *CI = cast<CmpInst>(I);
    943 
    944   MVT VT;
    945   if (!isTypeLegal(I->getOperand(0)->getType(), VT))
    946     return false;
    947 
    948   unsigned ResultReg = createResultReg(&X86::GR8RegClass);
    949   unsigned SetCCOpc;
    950   bool SwapArgs;  // false -> compare Op0, Op1.  true -> compare Op1, Op0.
    951   switch (CI->getPredicate()) {
    952   case CmpInst::FCMP_OEQ: {
    953     if (!X86FastEmitCompare(CI->getOperand(0), CI->getOperand(1), VT))
    954       return false;
    955 
    956     unsigned EReg = createResultReg(&X86::GR8RegClass);
    957     unsigned NPReg = createResultReg(&X86::GR8RegClass);
    958     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::SETEr), EReg);
    959     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    960             TII.get(X86::SETNPr), NPReg);
    961     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    962             TII.get(X86::AND8rr), ResultReg).addReg(NPReg).addReg(EReg);
    963     UpdateValueMap(I, ResultReg);
    964     return true;
    965   }
    966   case CmpInst::FCMP_UNE: {
    967     if (!X86FastEmitCompare(CI->getOperand(0), CI->getOperand(1), VT))
    968       return false;
    969 
    970     unsigned NEReg = createResultReg(&X86::GR8RegClass);
    971     unsigned PReg = createResultReg(&X86::GR8RegClass);
    972     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::SETNEr), NEReg);
    973     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::SETPr), PReg);
    974     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::OR8rr),ResultReg)
    975       .addReg(PReg).addReg(NEReg);
    976     UpdateValueMap(I, ResultReg);
    977     return true;
    978   }
    979   case CmpInst::FCMP_OGT: SwapArgs = false; SetCCOpc = X86::SETAr;  break;
    980   case CmpInst::FCMP_OGE: SwapArgs = false; SetCCOpc = X86::SETAEr; break;
    981   case CmpInst::FCMP_OLT: SwapArgs = true;  SetCCOpc = X86::SETAr;  break;
    982   case CmpInst::FCMP_OLE: SwapArgs = true;  SetCCOpc = X86::SETAEr; break;
    983   case CmpInst::FCMP_ONE: SwapArgs = false; SetCCOpc = X86::SETNEr; break;
    984   case CmpInst::FCMP_ORD: SwapArgs = false; SetCCOpc = X86::SETNPr; break;
    985   case CmpInst::FCMP_UNO: SwapArgs = false; SetCCOpc = X86::SETPr;  break;
    986   case CmpInst::FCMP_UEQ: SwapArgs = false; SetCCOpc = X86::SETEr;  break;
    987   case CmpInst::FCMP_UGT: SwapArgs = true;  SetCCOpc = X86::SETBr;  break;
    988   case CmpInst::FCMP_UGE: SwapArgs = true;  SetCCOpc = X86::SETBEr; break;
    989   case CmpInst::FCMP_ULT: SwapArgs = false; SetCCOpc = X86::SETBr;  break;
    990   case CmpInst::FCMP_ULE: SwapArgs = false; SetCCOpc = X86::SETBEr; break;
    991 
    992   case CmpInst::ICMP_EQ:  SwapArgs = false; SetCCOpc = X86::SETEr;  break;
    993   case CmpInst::ICMP_NE:  SwapArgs = false; SetCCOpc = X86::SETNEr; break;
    994   case CmpInst::ICMP_UGT: SwapArgs = false; SetCCOpc = X86::SETAr;  break;
    995   case CmpInst::ICMP_UGE: SwapArgs = false; SetCCOpc = X86::SETAEr; break;
    996   case CmpInst::ICMP_ULT: SwapArgs = false; SetCCOpc = X86::SETBr;  break;
    997   case CmpInst::ICMP_ULE: SwapArgs = false; SetCCOpc = X86::SETBEr; break;
    998   case CmpInst::ICMP_SGT: SwapArgs = false; SetCCOpc = X86::SETGr;  break;
    999   case CmpInst::ICMP_SGE: SwapArgs = false; SetCCOpc = X86::SETGEr; break;
   1000   case CmpInst::ICMP_SLT: SwapArgs = false; SetCCOpc = X86::SETLr;  break;
   1001   case CmpInst::ICMP_SLE: SwapArgs = false; SetCCOpc = X86::SETLEr; break;
   1002   default:
   1003     return false;
   1004   }
   1005 
   1006   const Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
   1007   if (SwapArgs)
   1008     std::swap(Op0, Op1);
   1009 
   1010   // Emit a compare of Op0/Op1.
   1011   if (!X86FastEmitCompare(Op0, Op1, VT))
   1012     return false;
   1013 
   1014   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(SetCCOpc), ResultReg);
   1015   UpdateValueMap(I, ResultReg);
   1016   return true;
   1017 }
   1018 
   1019 bool X86FastISel::X86SelectZExt(const Instruction *I) {
   1020   EVT DstVT = TLI.getValueType(I->getType());
   1021   if (!TLI.isTypeLegal(DstVT))
   1022     return false;
   1023 
   1024   unsigned ResultReg = getRegForValue(I->getOperand(0));
   1025   if (ResultReg == 0)
   1026     return false;
   1027 
   1028   // Handle zero-extension from i1 to i8, which is common.
   1029   MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()).getSimpleVT();
   1030   if (SrcVT.SimpleTy == MVT::i1) {
   1031     // Set the high bits to zero.
   1032     ResultReg = FastEmitZExtFromI1(MVT::i8, ResultReg, /*TODO: Kill=*/false);
   1033     SrcVT = MVT::i8;
   1034 
   1035     if (ResultReg == 0)
   1036       return false;
   1037   }
   1038 
   1039   if (DstVT == MVT::i64) {
   1040     // Handle extension to 64-bits via sub-register shenanigans.
   1041     unsigned MovInst;
   1042 
   1043     switch (SrcVT.SimpleTy) {
   1044     case MVT::i8:  MovInst = X86::MOVZX32rr8;  break;
   1045     case MVT::i16: MovInst = X86::MOVZX32rr16; break;
   1046     case MVT::i32: MovInst = X86::MOV32rr;     break;
   1047     default: llvm_unreachable("Unexpected zext to i64 source type");
   1048     }
   1049 
   1050     unsigned Result32 = createResultReg(&X86::GR32RegClass);
   1051     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovInst), Result32)
   1052       .addReg(ResultReg);
   1053 
   1054     ResultReg = createResultReg(&X86::GR64RegClass);
   1055     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::SUBREG_TO_REG),
   1056             ResultReg)
   1057       .addImm(0).addReg(Result32).addImm(X86::sub_32bit);
   1058   } else if (DstVT != MVT::i8) {
   1059     ResultReg = FastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND,
   1060                            ResultReg, /*Kill=*/true);
   1061     if (ResultReg == 0)
   1062       return false;
   1063   }
   1064 
   1065   UpdateValueMap(I, ResultReg);
   1066   return true;
   1067 }
   1068 
   1069 
   1070 bool X86FastISel::X86SelectBranch(const Instruction *I) {
   1071   // Unconditional branches are selected by tablegen-generated code.
   1072   // Handle a conditional branch.
   1073   const BranchInst *BI = cast<BranchInst>(I);
   1074   MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
   1075   MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
   1076 
   1077   // Fold the common case of a conditional branch with a comparison
   1078   // in the same block (values defined on other blocks may not have
   1079   // initialized registers).
   1080   if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
   1081     if (CI->hasOneUse() && CI->getParent() == I->getParent()) {
   1082       EVT VT = TLI.getValueType(CI->getOperand(0)->getType());
   1083 
   1084       // Try to take advantage of fallthrough opportunities.
   1085       CmpInst::Predicate Predicate = CI->getPredicate();
   1086       if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
   1087         std::swap(TrueMBB, FalseMBB);
   1088         Predicate = CmpInst::getInversePredicate(Predicate);
   1089       }
   1090 
   1091       bool SwapArgs;  // false -> compare Op0, Op1.  true -> compare Op1, Op0.
   1092       unsigned BranchOpc; // Opcode to jump on, e.g. "X86::JA"
   1093 
   1094       switch (Predicate) {
   1095       case CmpInst::FCMP_OEQ:
   1096         std::swap(TrueMBB, FalseMBB);
   1097         Predicate = CmpInst::FCMP_UNE;
   1098         // FALL THROUGH
   1099       case CmpInst::FCMP_UNE: SwapArgs = false; BranchOpc = X86::JNE_4; break;
   1100       case CmpInst::FCMP_OGT: SwapArgs = false; BranchOpc = X86::JA_4;  break;
   1101       case CmpInst::FCMP_OGE: SwapArgs = false; BranchOpc = X86::JAE_4; break;
   1102       case CmpInst::FCMP_OLT: SwapArgs = true;  BranchOpc = X86::JA_4;  break;
   1103       case CmpInst::FCMP_OLE: SwapArgs = true;  BranchOpc = X86::JAE_4; break;
   1104       case CmpInst::FCMP_ONE: SwapArgs = false; BranchOpc = X86::JNE_4; break;
   1105       case CmpInst::FCMP_ORD: SwapArgs = false; BranchOpc = X86::JNP_4; break;
   1106       case CmpInst::FCMP_UNO: SwapArgs = false; BranchOpc = X86::JP_4;  break;
   1107       case CmpInst::FCMP_UEQ: SwapArgs = false; BranchOpc = X86::JE_4;  break;
   1108       case CmpInst::FCMP_UGT: SwapArgs = true;  BranchOpc = X86::JB_4;  break;
   1109       case CmpInst::FCMP_UGE: SwapArgs = true;  BranchOpc = X86::JBE_4; break;
   1110       case CmpInst::FCMP_ULT: SwapArgs = false; BranchOpc = X86::JB_4;  break;
   1111       case CmpInst::FCMP_ULE: SwapArgs = false; BranchOpc = X86::JBE_4; break;
   1112 
   1113       case CmpInst::ICMP_EQ:  SwapArgs = false; BranchOpc = X86::JE_4;  break;
   1114       case CmpInst::ICMP_NE:  SwapArgs = false; BranchOpc = X86::JNE_4; break;
   1115       case CmpInst::ICMP_UGT: SwapArgs = false; BranchOpc = X86::JA_4;  break;
   1116       case CmpInst::ICMP_UGE: SwapArgs = false; BranchOpc = X86::JAE_4; break;
   1117       case CmpInst::ICMP_ULT: SwapArgs = false; BranchOpc = X86::JB_4;  break;
   1118       case CmpInst::ICMP_ULE: SwapArgs = false; BranchOpc = X86::JBE_4; break;
   1119       case CmpInst::ICMP_SGT: SwapArgs = false; BranchOpc = X86::JG_4;  break;
   1120       case CmpInst::ICMP_SGE: SwapArgs = false; BranchOpc = X86::JGE_4; break;
   1121       case CmpInst::ICMP_SLT: SwapArgs = false; BranchOpc = X86::JL_4;  break;
   1122       case CmpInst::ICMP_SLE: SwapArgs = false; BranchOpc = X86::JLE_4; break;
   1123       default:
   1124         return false;
   1125       }
   1126 
   1127       const Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
   1128       if (SwapArgs)
   1129         std::swap(Op0, Op1);
   1130 
   1131       // Emit a compare of the LHS and RHS, setting the flags.
   1132       if (!X86FastEmitCompare(Op0, Op1, VT))
   1133         return false;
   1134 
   1135       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BranchOpc))
   1136         .addMBB(TrueMBB);
   1137 
   1138       if (Predicate == CmpInst::FCMP_UNE) {
   1139         // X86 requires a second branch to handle UNE (and OEQ,
   1140         // which is mapped to UNE above).
   1141         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::JP_4))
   1142           .addMBB(TrueMBB);
   1143       }
   1144 
   1145       FastEmitBranch(FalseMBB, DL);
   1146       FuncInfo.MBB->addSuccessor(TrueMBB);
   1147       return true;
   1148     }
   1149   } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
   1150     // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which
   1151     // typically happen for _Bool and C++ bools.
   1152     MVT SourceVT;
   1153     if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
   1154         isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) {
   1155       unsigned TestOpc = 0;
   1156       switch (SourceVT.SimpleTy) {
   1157       default: break;
   1158       case MVT::i8:  TestOpc = X86::TEST8ri; break;
   1159       case MVT::i16: TestOpc = X86::TEST16ri; break;
   1160       case MVT::i32: TestOpc = X86::TEST32ri; break;
   1161       case MVT::i64: TestOpc = X86::TEST64ri32; break;
   1162       }
   1163       if (TestOpc) {
   1164         unsigned OpReg = getRegForValue(TI->getOperand(0));
   1165         if (OpReg == 0) return false;
   1166         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TestOpc))
   1167           .addReg(OpReg).addImm(1);
   1168 
   1169         unsigned JmpOpc = X86::JNE_4;
   1170         if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
   1171           std::swap(TrueMBB, FalseMBB);
   1172           JmpOpc = X86::JE_4;
   1173         }
   1174 
   1175         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(JmpOpc))
   1176           .addMBB(TrueMBB);
   1177         FastEmitBranch(FalseMBB, DL);
   1178         FuncInfo.MBB->addSuccessor(TrueMBB);
   1179         return true;
   1180       }
   1181     }
   1182   }
   1183 
   1184   // Otherwise do a clumsy setcc and re-test it.
   1185   // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used
   1186   // in an explicit cast, so make sure to handle that correctly.
   1187   unsigned OpReg = getRegForValue(BI->getCondition());
   1188   if (OpReg == 0) return false;
   1189 
   1190   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::TEST8ri))
   1191     .addReg(OpReg).addImm(1);
   1192   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::JNE_4))
   1193     .addMBB(TrueMBB);
   1194   FastEmitBranch(FalseMBB, DL);
   1195   FuncInfo.MBB->addSuccessor(TrueMBB);
   1196   return true;
   1197 }
   1198 
   1199 bool X86FastISel::X86SelectShift(const Instruction *I) {
   1200   unsigned CReg = 0, OpReg = 0;
   1201   const TargetRegisterClass *RC = NULL;
   1202   if (I->getType()->isIntegerTy(8)) {
   1203     CReg = X86::CL;
   1204     RC = &X86::GR8RegClass;
   1205     switch (I->getOpcode()) {
   1206     case Instruction::LShr: OpReg = X86::SHR8rCL; break;
   1207     case Instruction::AShr: OpReg = X86::SAR8rCL; break;
   1208     case Instruction::Shl:  OpReg = X86::SHL8rCL; break;
   1209     default: return false;
   1210     }
   1211   } else if (I->getType()->isIntegerTy(16)) {
   1212     CReg = X86::CX;
   1213     RC = &X86::GR16RegClass;
   1214     switch (I->getOpcode()) {
   1215     case Instruction::LShr: OpReg = X86::SHR16rCL; break;
   1216     case Instruction::AShr: OpReg = X86::SAR16rCL; break;
   1217     case Instruction::Shl:  OpReg = X86::SHL16rCL; break;
   1218     default: return false;
   1219     }
   1220   } else if (I->getType()->isIntegerTy(32)) {
   1221     CReg = X86::ECX;
   1222     RC = &X86::GR32RegClass;
   1223     switch (I->getOpcode()) {
   1224     case Instruction::LShr: OpReg = X86::SHR32rCL; break;
   1225     case Instruction::AShr: OpReg = X86::SAR32rCL; break;
   1226     case Instruction::Shl:  OpReg = X86::SHL32rCL; break;
   1227     default: return false;
   1228     }
   1229   } else if (I->getType()->isIntegerTy(64)) {
   1230     CReg = X86::RCX;
   1231     RC = &X86::GR64RegClass;
   1232     switch (I->getOpcode()) {
   1233     case Instruction::LShr: OpReg = X86::SHR64rCL; break;
   1234     case Instruction::AShr: OpReg = X86::SAR64rCL; break;
   1235     case Instruction::Shl:  OpReg = X86::SHL64rCL; break;
   1236     default: return false;
   1237     }
   1238   } else {
   1239     return false;
   1240   }
   1241 
   1242   MVT VT;
   1243   if (!isTypeLegal(I->getType(), VT))
   1244     return false;
   1245 
   1246   unsigned Op0Reg = getRegForValue(I->getOperand(0));
   1247   if (Op0Reg == 0) return false;
   1248 
   1249   unsigned Op1Reg = getRegForValue(I->getOperand(1));
   1250   if (Op1Reg == 0) return false;
   1251   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
   1252           CReg).addReg(Op1Reg);
   1253 
   1254   // The shift instruction uses X86::CL. If we defined a super-register
   1255   // of X86::CL, emit a subreg KILL to precisely describe what we're doing here.
   1256   if (CReg != X86::CL)
   1257     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   1258             TII.get(TargetOpcode::KILL), X86::CL)
   1259       .addReg(CReg, RegState::Kill);
   1260 
   1261   unsigned ResultReg = createResultReg(RC);
   1262   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(OpReg), ResultReg)
   1263     .addReg(Op0Reg);
   1264   UpdateValueMap(I, ResultReg);
   1265   return true;
   1266 }
   1267 
   1268 bool X86FastISel::X86SelectDivRem(const Instruction *I) {
   1269   const static unsigned NumTypes = 4; // i8, i16, i32, i64
   1270   const static unsigned NumOps   = 4; // SDiv, SRem, UDiv, URem
   1271   const static bool S = true;  // IsSigned
   1272   const static bool U = false; // !IsSigned
   1273   const static unsigned Copy = TargetOpcode::COPY;
   1274   // For the X86 DIV/IDIV instruction, in most cases the dividend
   1275   // (numerator) must be in a specific register pair highreg:lowreg,
   1276   // producing the quotient in lowreg and the remainder in highreg.
   1277   // For most data types, to set up the instruction, the dividend is
   1278   // copied into lowreg, and lowreg is sign-extended or zero-extended
   1279   // into highreg.  The exception is i8, where the dividend is defined
   1280   // as a single register rather than a register pair, and we
   1281   // therefore directly sign-extend or zero-extend the dividend into
   1282   // lowreg, instead of copying, and ignore the highreg.
   1283   const static struct DivRemEntry {
   1284     // The following portion depends only on the data type.
   1285     const TargetRegisterClass *RC;
   1286     unsigned LowInReg;  // low part of the register pair
   1287     unsigned HighInReg; // high part of the register pair
   1288     // The following portion depends on both the data type and the operation.
   1289     struct DivRemResult {
   1290     unsigned OpDivRem;        // The specific DIV/IDIV opcode to use.
   1291     unsigned OpSignExtend;    // Opcode for sign-extending lowreg into
   1292                               // highreg, or copying a zero into highreg.
   1293     unsigned OpCopy;          // Opcode for copying dividend into lowreg, or
   1294                               // zero/sign-extending into lowreg for i8.
   1295     unsigned DivRemResultReg; // Register containing the desired result.
   1296     bool IsOpSigned;          // Whether to use signed or unsigned form.
   1297     } ResultTable[NumOps];
   1298   } OpTable[NumTypes] = {
   1299     { &X86::GR8RegClass,  X86::AX,  0, {
   1300         { X86::IDIV8r,  0,            X86::MOVSX16rr8, X86::AL,  S }, // SDiv
   1301         { X86::IDIV8r,  0,            X86::MOVSX16rr8, X86::AH,  S }, // SRem
   1302         { X86::DIV8r,   0,            X86::MOVZX16rr8, X86::AL,  U }, // UDiv
   1303         { X86::DIV8r,   0,            X86::MOVZX16rr8, X86::AH,  U }, // URem
   1304       }
   1305     }, // i8
   1306     { &X86::GR16RegClass, X86::AX,  X86::DX, {
   1307         { X86::IDIV16r, X86::CWD,     Copy,            X86::AX,  S }, // SDiv
   1308         { X86::IDIV16r, X86::CWD,     Copy,            X86::DX,  S }, // SRem
   1309         { X86::DIV16r,  X86::MOV32r0, Copy,            X86::AX,  U }, // UDiv
   1310         { X86::DIV16r,  X86::MOV32r0, Copy,            X86::DX,  U }, // URem
   1311       }
   1312     }, // i16
   1313     { &X86::GR32RegClass, X86::EAX, X86::EDX, {
   1314         { X86::IDIV32r, X86::CDQ,     Copy,            X86::EAX, S }, // SDiv
   1315         { X86::IDIV32r, X86::CDQ,     Copy,            X86::EDX, S }, // SRem
   1316         { X86::DIV32r,  X86::MOV32r0, Copy,            X86::EAX, U }, // UDiv
   1317         { X86::DIV32r,  X86::MOV32r0, Copy,            X86::EDX, U }, // URem
   1318       }
   1319     }, // i32
   1320     { &X86::GR64RegClass, X86::RAX, X86::RDX, {
   1321         { X86::IDIV64r, X86::CQO,     Copy,            X86::RAX, S }, // SDiv
   1322         { X86::IDIV64r, X86::CQO,     Copy,            X86::RDX, S }, // SRem
   1323         { X86::DIV64r,  X86::MOV32r0, Copy,            X86::RAX, U }, // UDiv
   1324         { X86::DIV64r,  X86::MOV32r0, Copy,            X86::RDX, U }, // URem
   1325       }
   1326     }, // i64
   1327   };
   1328 
   1329   MVT VT;
   1330   if (!isTypeLegal(I->getType(), VT))
   1331     return false;
   1332 
   1333   unsigned TypeIndex, OpIndex;
   1334   switch (VT.SimpleTy) {
   1335   default: return false;
   1336   case MVT::i8:  TypeIndex = 0; break;
   1337   case MVT::i16: TypeIndex = 1; break;
   1338   case MVT::i32: TypeIndex = 2; break;
   1339   case MVT::i64: TypeIndex = 3;
   1340     if (!Subtarget->is64Bit())
   1341       return false;
   1342     break;
   1343   }
   1344 
   1345   switch (I->getOpcode()) {
   1346   default: llvm_unreachable("Unexpected div/rem opcode");
   1347   case Instruction::SDiv: OpIndex = 0; break;
   1348   case Instruction::SRem: OpIndex = 1; break;
   1349   case Instruction::UDiv: OpIndex = 2; break;
   1350   case Instruction::URem: OpIndex = 3; break;
   1351   }
   1352 
   1353   const DivRemEntry &TypeEntry = OpTable[TypeIndex];
   1354   const DivRemEntry::DivRemResult &OpEntry = TypeEntry.ResultTable[OpIndex];
   1355   unsigned Op0Reg = getRegForValue(I->getOperand(0));
   1356   if (Op0Reg == 0)
   1357     return false;
   1358   unsigned Op1Reg = getRegForValue(I->getOperand(1));
   1359   if (Op1Reg == 0)
   1360     return false;
   1361 
   1362   // Move op0 into low-order input register.
   1363   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   1364           TII.get(OpEntry.OpCopy), TypeEntry.LowInReg).addReg(Op0Reg);
   1365   // Zero-extend or sign-extend into high-order input register.
   1366   if (OpEntry.OpSignExtend) {
   1367     if (OpEntry.IsOpSigned)
   1368       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   1369               TII.get(OpEntry.OpSignExtend));
   1370     else {
   1371       unsigned Zero32 = createResultReg(&X86::GR32RegClass);
   1372       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   1373               TII.get(X86::MOV32r0), Zero32);
   1374 
   1375       // Copy the zero into the appropriate sub/super/identical physical
   1376       // register. Unfortunately the operations needed are not uniform enough to
   1377       // fit neatly into the table above.
   1378       if (VT.SimpleTy == MVT::i16) {
   1379         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   1380                 TII.get(Copy), TypeEntry.HighInReg)
   1381           .addReg(Zero32, 0, X86::sub_16bit);
   1382       } else if (VT.SimpleTy == MVT::i32) {
   1383         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   1384                 TII.get(Copy), TypeEntry.HighInReg)
   1385             .addReg(Zero32);
   1386       } else if (VT.SimpleTy == MVT::i64) {
   1387         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   1388                 TII.get(TargetOpcode::SUBREG_TO_REG), TypeEntry.HighInReg)
   1389             .addImm(0).addReg(Zero32).addImm(X86::sub_32bit);
   1390       }
   1391     }
   1392   }
   1393   // Generate the DIV/IDIV instruction.
   1394   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   1395           TII.get(OpEntry.OpDivRem)).addReg(Op1Reg);
   1396   // For i8 remainder, we can't reference AH directly, as we'll end
   1397   // up with bogus copies like %R9B = COPY %AH. Reference AX
   1398   // instead to prevent AH references in a REX instruction.
   1399   //
   1400   // The current assumption of the fast register allocator is that isel
   1401   // won't generate explicit references to the GPR8_NOREX registers. If
   1402   // the allocator and/or the backend get enhanced to be more robust in
   1403   // that regard, this can be, and should be, removed.
   1404   unsigned ResultReg = 0;
   1405   if ((I->getOpcode() == Instruction::SRem ||
   1406        I->getOpcode() == Instruction::URem) &&
   1407       OpEntry.DivRemResultReg == X86::AH && Subtarget->is64Bit()) {
   1408     unsigned SourceSuperReg = createResultReg(&X86::GR16RegClass);
   1409     unsigned ResultSuperReg = createResultReg(&X86::GR16RegClass);
   1410     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   1411             TII.get(Copy), SourceSuperReg).addReg(X86::AX);
   1412 
   1413     // Shift AX right by 8 bits instead of using AH.
   1414     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::SHR16ri),
   1415             ResultSuperReg).addReg(SourceSuperReg).addImm(8);
   1416 
   1417     // Now reference the 8-bit subreg of the result.
   1418     ResultReg = FastEmitInst_extractsubreg(MVT::i8, ResultSuperReg,
   1419                                            /*Kill=*/true, X86::sub_8bit);
   1420   }
   1421   // Copy the result out of the physreg if we haven't already.
   1422   if (!ResultReg) {
   1423     ResultReg = createResultReg(TypeEntry.RC);
   1424     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Copy), ResultReg)
   1425         .addReg(OpEntry.DivRemResultReg);
   1426   }
   1427   UpdateValueMap(I, ResultReg);
   1428 
   1429   return true;
   1430 }
   1431 
   1432 bool X86FastISel::X86SelectSelect(const Instruction *I) {
   1433   MVT VT;
   1434   if (!isTypeLegal(I->getType(), VT))
   1435     return false;
   1436 
   1437   // We only use cmov here, if we don't have a cmov instruction bail.
   1438   if (!Subtarget->hasCMov()) return false;
   1439 
   1440   unsigned Opc = 0;
   1441   const TargetRegisterClass *RC = NULL;
   1442   if (VT == MVT::i16) {
   1443     Opc = X86::CMOVE16rr;
   1444     RC = &X86::GR16RegClass;
   1445   } else if (VT == MVT::i32) {
   1446     Opc = X86::CMOVE32rr;
   1447     RC = &X86::GR32RegClass;
   1448   } else if (VT == MVT::i64) {
   1449     Opc = X86::CMOVE64rr;
   1450     RC = &X86::GR64RegClass;
   1451   } else {
   1452     return false;
   1453   }
   1454 
   1455   unsigned Op0Reg = getRegForValue(I->getOperand(0));
   1456   if (Op0Reg == 0) return false;
   1457   unsigned Op1Reg = getRegForValue(I->getOperand(1));
   1458   if (Op1Reg == 0) return false;
   1459   unsigned Op2Reg = getRegForValue(I->getOperand(2));
   1460   if (Op2Reg == 0) return false;
   1461 
   1462   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::TEST8rr))
   1463     .addReg(Op0Reg).addReg(Op0Reg);
   1464   unsigned ResultReg = createResultReg(RC);
   1465   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg)
   1466     .addReg(Op1Reg).addReg(Op2Reg);
   1467   UpdateValueMap(I, ResultReg);
   1468   return true;
   1469 }
   1470 
   1471 bool X86FastISel::X86SelectFPExt(const Instruction *I) {
   1472   // fpext from float to double.
   1473   if (X86ScalarSSEf64 &&
   1474       I->getType()->isDoubleTy()) {
   1475     const Value *V = I->getOperand(0);
   1476     if (V->getType()->isFloatTy()) {
   1477       unsigned OpReg = getRegForValue(V);
   1478       if (OpReg == 0) return false;
   1479       unsigned ResultReg = createResultReg(&X86::FR64RegClass);
   1480       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   1481               TII.get(X86::CVTSS2SDrr), ResultReg)
   1482         .addReg(OpReg);
   1483       UpdateValueMap(I, ResultReg);
   1484       return true;
   1485     }
   1486   }
   1487 
   1488   return false;
   1489 }
   1490 
   1491 bool X86FastISel::X86SelectFPTrunc(const Instruction *I) {
   1492   if (X86ScalarSSEf64) {
   1493     if (I->getType()->isFloatTy()) {
   1494       const Value *V = I->getOperand(0);
   1495       if (V->getType()->isDoubleTy()) {
   1496         unsigned OpReg = getRegForValue(V);
   1497         if (OpReg == 0) return false;
   1498         unsigned ResultReg = createResultReg(&X86::FR32RegClass);
   1499         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   1500                 TII.get(X86::CVTSD2SSrr), ResultReg)
   1501           .addReg(OpReg);
   1502         UpdateValueMap(I, ResultReg);
   1503         return true;
   1504       }
   1505     }
   1506   }
   1507 
   1508   return false;
   1509 }
   1510 
   1511 bool X86FastISel::X86SelectTrunc(const Instruction *I) {
   1512   EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
   1513   EVT DstVT = TLI.getValueType(I->getType());
   1514 
   1515   // This code only handles truncation to byte.
   1516   if (DstVT != MVT::i8 && DstVT != MVT::i1)
   1517     return false;
   1518   if (!TLI.isTypeLegal(SrcVT))
   1519     return false;
   1520 
   1521   unsigned InputReg = getRegForValue(I->getOperand(0));
   1522   if (!InputReg)
   1523     // Unhandled operand.  Halt "fast" selection and bail.
   1524     return false;
   1525 
   1526   if (SrcVT == MVT::i8) {
   1527     // Truncate from i8 to i1; no code needed.
   1528     UpdateValueMap(I, InputReg);
   1529     return true;
   1530   }
   1531 
   1532   if (!Subtarget->is64Bit()) {
   1533     // If we're on x86-32; we can't extract an i8 from a general register.
   1534     // First issue a copy to GR16_ABCD or GR32_ABCD.
   1535     const TargetRegisterClass *CopyRC = (SrcVT == MVT::i16) ?
   1536       (const TargetRegisterClass*)&X86::GR16_ABCDRegClass :
   1537       (const TargetRegisterClass*)&X86::GR32_ABCDRegClass;
   1538     unsigned CopyReg = createResultReg(CopyRC);
   1539     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
   1540             CopyReg).addReg(InputReg);
   1541     InputReg = CopyReg;
   1542   }
   1543 
   1544   // Issue an extract_subreg.
   1545   unsigned ResultReg = FastEmitInst_extractsubreg(MVT::i8,
   1546                                                   InputReg, /*Kill=*/true,
   1547                                                   X86::sub_8bit);
   1548   if (!ResultReg)
   1549     return false;
   1550 
   1551   UpdateValueMap(I, ResultReg);
   1552   return true;
   1553 }
   1554 
   1555 bool X86FastISel::IsMemcpySmall(uint64_t Len) {
   1556   return Len <= (Subtarget->is64Bit() ? 32 : 16);
   1557 }
   1558 
   1559 bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM,
   1560                                      X86AddressMode SrcAM, uint64_t Len) {
   1561 
   1562   // Make sure we don't bloat code by inlining very large memcpy's.
   1563   if (!IsMemcpySmall(Len))
   1564     return false;
   1565 
   1566   bool i64Legal = Subtarget->is64Bit();
   1567 
   1568   // We don't care about alignment here since we just emit integer accesses.
   1569   while (Len) {
   1570     MVT VT;
   1571     if (Len >= 8 && i64Legal)
   1572       VT = MVT::i64;
   1573     else if (Len >= 4)
   1574       VT = MVT::i32;
   1575     else if (Len >= 2)
   1576       VT = MVT::i16;
   1577     else {
   1578       VT = MVT::i8;
   1579     }
   1580 
   1581     unsigned Reg;
   1582     bool RV = X86FastEmitLoad(VT, SrcAM, Reg);
   1583     RV &= X86FastEmitStore(VT, Reg, DestAM);
   1584     assert(RV && "Failed to emit load or store??");
   1585 
   1586     unsigned Size = VT.getSizeInBits()/8;
   1587     Len -= Size;
   1588     DestAM.Disp += Size;
   1589     SrcAM.Disp += Size;
   1590   }
   1591 
   1592   return true;
   1593 }
   1594 
   1595 bool X86FastISel::X86VisitIntrinsicCall(const IntrinsicInst &I) {
   1596   // FIXME: Handle more intrinsics.
   1597   switch (I.getIntrinsicID()) {
   1598   default: return false;
   1599   case Intrinsic::memcpy: {
   1600     const MemCpyInst &MCI = cast<MemCpyInst>(I);
   1601     // Don't handle volatile or variable length memcpys.
   1602     if (MCI.isVolatile())
   1603       return false;
   1604 
   1605     if (isa<ConstantInt>(MCI.getLength())) {
   1606       // Small memcpy's are common enough that we want to do them
   1607       // without a call if possible.
   1608       uint64_t Len = cast<ConstantInt>(MCI.getLength())->getZExtValue();
   1609       if (IsMemcpySmall(Len)) {
   1610         X86AddressMode DestAM, SrcAM;
   1611         if (!X86SelectAddress(MCI.getRawDest(), DestAM) ||
   1612             !X86SelectAddress(MCI.getRawSource(), SrcAM))
   1613           return false;
   1614         TryEmitSmallMemcpy(DestAM, SrcAM, Len);
   1615         return true;
   1616       }
   1617     }
   1618 
   1619     unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
   1620     if (!MCI.getLength()->getType()->isIntegerTy(SizeWidth))
   1621       return false;
   1622 
   1623     if (MCI.getSourceAddressSpace() > 255 || MCI.getDestAddressSpace() > 255)
   1624       return false;
   1625 
   1626     return DoSelectCall(&I, "memcpy");
   1627   }
   1628   case Intrinsic::memset: {
   1629     const MemSetInst &MSI = cast<MemSetInst>(I);
   1630 
   1631     if (MSI.isVolatile())
   1632       return false;
   1633 
   1634     unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
   1635     if (!MSI.getLength()->getType()->isIntegerTy(SizeWidth))
   1636       return false;
   1637 
   1638     if (MSI.getDestAddressSpace() > 255)
   1639       return false;
   1640 
   1641     return DoSelectCall(&I, "memset");
   1642   }
   1643   case Intrinsic::stackprotector: {
   1644     // Emit code to store the stack guard onto the stack.
   1645     EVT PtrTy = TLI.getPointerTy();
   1646 
   1647     const Value *Op1 = I.getArgOperand(0); // The guard's value.
   1648     const AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
   1649 
   1650     // Grab the frame index.
   1651     X86AddressMode AM;
   1652     if (!X86SelectAddress(Slot, AM)) return false;
   1653     if (!X86FastEmitStore(PtrTy, Op1, AM)) return false;
   1654     return true;
   1655   }
   1656   case Intrinsic::dbg_declare: {
   1657     const DbgDeclareInst *DI = cast<DbgDeclareInst>(&I);
   1658     X86AddressMode AM;
   1659     assert(DI->getAddress() && "Null address should be checked earlier!");
   1660     if (!X86SelectAddress(DI->getAddress(), AM))
   1661       return false;
   1662     const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
   1663     // FIXME may need to add RegState::Debug to any registers produced,
   1664     // although ESP/EBP should be the only ones at the moment.
   1665     addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II), AM).
   1666       addImm(0).addMetadata(DI->getVariable());
   1667     return true;
   1668   }
   1669   case Intrinsic::trap: {
   1670     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::TRAP));
   1671     return true;
   1672   }
   1673   case Intrinsic::sadd_with_overflow:
   1674   case Intrinsic::uadd_with_overflow: {
   1675     // FIXME: Should fold immediates.
   1676 
   1677     // Replace "add with overflow" intrinsics with an "add" instruction followed
   1678     // by a seto/setc instruction.
   1679     const Function *Callee = I.getCalledFunction();
   1680     Type *RetTy =
   1681       cast<StructType>(Callee->getReturnType())->getTypeAtIndex(unsigned(0));
   1682 
   1683     MVT VT;
   1684     if (!isTypeLegal(RetTy, VT))
   1685       return false;
   1686 
   1687     const Value *Op1 = I.getArgOperand(0);
   1688     const Value *Op2 = I.getArgOperand(1);
   1689     unsigned Reg1 = getRegForValue(Op1);
   1690     unsigned Reg2 = getRegForValue(Op2);
   1691 
   1692     if (Reg1 == 0 || Reg2 == 0)
   1693       // FIXME: Handle values *not* in registers.
   1694       return false;
   1695 
   1696     unsigned OpC = 0;
   1697     if (VT == MVT::i32)
   1698       OpC = X86::ADD32rr;
   1699     else if (VT == MVT::i64)
   1700       OpC = X86::ADD64rr;
   1701     else
   1702       return false;
   1703 
   1704     // The call to CreateRegs builds two sequential registers, to store the
   1705     // both the returned values.
   1706     unsigned ResultReg = FuncInfo.CreateRegs(I.getType());
   1707     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(OpC), ResultReg)
   1708       .addReg(Reg1).addReg(Reg2);
   1709 
   1710     unsigned Opc = X86::SETBr;
   1711     if (I.getIntrinsicID() == Intrinsic::sadd_with_overflow)
   1712       Opc = X86::SETOr;
   1713     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg+1);
   1714 
   1715     UpdateValueMap(&I, ResultReg, 2);
   1716     return true;
   1717   }
   1718   }
   1719 }
   1720 
   1721 bool X86FastISel::FastLowerArguments() {
   1722   if (!FuncInfo.CanLowerReturn)
   1723     return false;
   1724 
   1725   const Function *F = FuncInfo.Fn;
   1726   if (F->isVarArg())
   1727     return false;
   1728 
   1729   CallingConv::ID CC = F->getCallingConv();
   1730   if (CC != CallingConv::C)
   1731     return false;
   1732 
   1733   if (Subtarget->isCallingConvWin64(CC))
   1734     return false;
   1735 
   1736   if (!Subtarget->is64Bit())
   1737     return false;
   1738 
   1739   // Only handle simple cases. i.e. Up to 6 i32/i64 scalar arguments.
   1740   unsigned Idx = 1;
   1741   for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
   1742        I != E; ++I, ++Idx) {
   1743     if (Idx > 6)
   1744       return false;
   1745 
   1746     if (F->getAttributes().hasAttribute(Idx, Attribute::ByVal) ||
   1747         F->getAttributes().hasAttribute(Idx, Attribute::InReg) ||
   1748         F->getAttributes().hasAttribute(Idx, Attribute::StructRet) ||
   1749         F->getAttributes().hasAttribute(Idx, Attribute::Nest))
   1750       return false;
   1751 
   1752     Type *ArgTy = I->getType();
   1753     if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
   1754       return false;
   1755 
   1756     EVT ArgVT = TLI.getValueType(ArgTy);
   1757     if (!ArgVT.isSimple()) return false;
   1758     switch (ArgVT.getSimpleVT().SimpleTy) {
   1759     case MVT::i32:
   1760     case MVT::i64:
   1761       break;
   1762     default:
   1763       return false;
   1764     }
   1765   }
   1766 
   1767   static const uint16_t GPR32ArgRegs[] = {
   1768     X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D
   1769   };
   1770   static const uint16_t GPR64ArgRegs[] = {
   1771     X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8 , X86::R9
   1772   };
   1773 
   1774   Idx = 0;
   1775   const TargetRegisterClass *RC32 = TLI.getRegClassFor(MVT::i32);
   1776   const TargetRegisterClass *RC64 = TLI.getRegClassFor(MVT::i64);
   1777   for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
   1778        I != E; ++I, ++Idx) {
   1779     bool is32Bit = TLI.getValueType(I->getType()) == MVT::i32;
   1780     const TargetRegisterClass *RC = is32Bit ? RC32 : RC64;
   1781     unsigned SrcReg = is32Bit ? GPR32ArgRegs[Idx] : GPR64ArgRegs[Idx];
   1782     unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
   1783     // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
   1784     // Without this, EmitLiveInCopies may eliminate the livein if its only
   1785     // use is a bitcast (which isn't turned into an instruction).
   1786     unsigned ResultReg = createResultReg(RC);
   1787     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
   1788             ResultReg).addReg(DstReg, getKillRegState(true));
   1789     UpdateValueMap(I, ResultReg);
   1790   }
   1791   return true;
   1792 }
   1793 
   1794 bool X86FastISel::X86SelectCall(const Instruction *I) {
   1795   const CallInst *CI = cast<CallInst>(I);
   1796   const Value *Callee = CI->getCalledValue();
   1797 
   1798   // Can't handle inline asm yet.
   1799   if (isa<InlineAsm>(Callee))
   1800     return false;
   1801 
   1802   // Handle intrinsic calls.
   1803   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI))
   1804     return X86VisitIntrinsicCall(*II);
   1805 
   1806   // Allow SelectionDAG isel to handle tail calls.
   1807   if (cast<CallInst>(I)->isTailCall())
   1808     return false;
   1809 
   1810   return DoSelectCall(I, 0);
   1811 }
   1812 
   1813 static unsigned computeBytesPoppedByCallee(const X86Subtarget &Subtarget,
   1814                                            const ImmutableCallSite &CS) {
   1815   if (Subtarget.is64Bit())
   1816     return 0;
   1817   if (Subtarget.isTargetWindows())
   1818     return 0;
   1819   CallingConv::ID CC = CS.getCallingConv();
   1820   if (CC == CallingConv::Fast || CC == CallingConv::GHC)
   1821     return 0;
   1822   if (!CS.paramHasAttr(1, Attribute::StructRet))
   1823     return 0;
   1824   if (CS.paramHasAttr(1, Attribute::InReg))
   1825     return 0;
   1826   return 4;
   1827 }
   1828 
   1829 // Select either a call, or an llvm.memcpy/memmove/memset intrinsic
   1830 bool X86FastISel::DoSelectCall(const Instruction *I, const char *MemIntName) {
   1831   const CallInst *CI = cast<CallInst>(I);
   1832   const Value *Callee = CI->getCalledValue();
   1833 
   1834   // Handle only C and fastcc calling conventions for now.
   1835   ImmutableCallSite CS(CI);
   1836   CallingConv::ID CC = CS.getCallingConv();
   1837   bool isWin64 = Subtarget->isCallingConvWin64(CC);
   1838   if (CC != CallingConv::C && CC != CallingConv::Fast &&
   1839       CC != CallingConv::X86_FastCall && CC != CallingConv::X86_64_Win64 &&
   1840       CC != CallingConv::X86_64_SysV)
   1841     return false;
   1842 
   1843   // fastcc with -tailcallopt is intended to provide a guaranteed
   1844   // tail call optimization. Fastisel doesn't know how to do that.
   1845   if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt)
   1846     return false;
   1847 
   1848   PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
   1849   FunctionType *FTy = cast<FunctionType>(PT->getElementType());
   1850   bool isVarArg = FTy->isVarArg();
   1851 
   1852   // Don't know how to handle Win64 varargs yet.  Nothing special needed for
   1853   // x86-32.  Special handling for x86-64 is implemented.
   1854   if (isVarArg && isWin64)
   1855     return false;
   1856 
   1857   // Fast-isel doesn't know about callee-pop yet.
   1858   if (X86::isCalleePop(CC, Subtarget->is64Bit(), isVarArg,
   1859                        TM.Options.GuaranteedTailCallOpt))
   1860     return false;
   1861 
   1862   // Check whether the function can return without sret-demotion.
   1863   SmallVector<ISD::OutputArg, 4> Outs;
   1864   GetReturnInfo(I->getType(), CS.getAttributes(), Outs, TLI);
   1865   bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
   1866                                            *FuncInfo.MF, FTy->isVarArg(),
   1867                                            Outs, FTy->getContext());
   1868   if (!CanLowerReturn)
   1869     return false;
   1870 
   1871   // Materialize callee address in a register. FIXME: GV address can be
   1872   // handled with a CALLpcrel32 instead.
   1873   X86AddressMode CalleeAM;
   1874   if (!X86SelectCallAddress(Callee, CalleeAM))
   1875     return false;
   1876   unsigned CalleeOp = 0;
   1877   const GlobalValue *GV = 0;
   1878   if (CalleeAM.GV != 0) {
   1879     GV = CalleeAM.GV;
   1880   } else if (CalleeAM.Base.Reg != 0) {
   1881     CalleeOp = CalleeAM.Base.Reg;
   1882   } else
   1883     return false;
   1884 
   1885   // Deal with call operands first.
   1886   SmallVector<const Value *, 8> ArgVals;
   1887   SmallVector<unsigned, 8> Args;
   1888   SmallVector<MVT, 8> ArgVTs;
   1889   SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
   1890   unsigned arg_size = CS.arg_size();
   1891   Args.reserve(arg_size);
   1892   ArgVals.reserve(arg_size);
   1893   ArgVTs.reserve(arg_size);
   1894   ArgFlags.reserve(arg_size);
   1895   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
   1896        i != e; ++i) {
   1897     // If we're lowering a mem intrinsic instead of a regular call, skip the
   1898     // last two arguments, which should not passed to the underlying functions.
   1899     if (MemIntName && e-i <= 2)
   1900       break;
   1901     Value *ArgVal = *i;
   1902     ISD::ArgFlagsTy Flags;
   1903     unsigned AttrInd = i - CS.arg_begin() + 1;
   1904     if (CS.paramHasAttr(AttrInd, Attribute::SExt))
   1905       Flags.setSExt();
   1906     if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
   1907       Flags.setZExt();
   1908 
   1909     if (CS.paramHasAttr(AttrInd, Attribute::ByVal)) {
   1910       PointerType *Ty = cast<PointerType>(ArgVal->getType());
   1911       Type *ElementTy = Ty->getElementType();
   1912       unsigned FrameSize = TD.getTypeAllocSize(ElementTy);
   1913       unsigned FrameAlign = CS.getParamAlignment(AttrInd);
   1914       if (!FrameAlign)
   1915         FrameAlign = TLI.getByValTypeAlignment(ElementTy);
   1916       Flags.setByVal();
   1917       Flags.setByValSize(FrameSize);
   1918       Flags.setByValAlign(FrameAlign);
   1919       if (!IsMemcpySmall(FrameSize))
   1920         return false;
   1921     }
   1922 
   1923     if (CS.paramHasAttr(AttrInd, Attribute::InReg))
   1924       Flags.setInReg();
   1925     if (CS.paramHasAttr(AttrInd, Attribute::Nest))
   1926       Flags.setNest();
   1927 
   1928     // If this is an i1/i8/i16 argument, promote to i32 to avoid an extra
   1929     // instruction.  This is safe because it is common to all fastisel supported
   1930     // calling conventions on x86.
   1931     if (ConstantInt *CI = dyn_cast<ConstantInt>(ArgVal)) {
   1932       if (CI->getBitWidth() == 1 || CI->getBitWidth() == 8 ||
   1933           CI->getBitWidth() == 16) {
   1934         if (Flags.isSExt())
   1935           ArgVal = ConstantExpr::getSExt(CI,Type::getInt32Ty(CI->getContext()));
   1936         else
   1937           ArgVal = ConstantExpr::getZExt(CI,Type::getInt32Ty(CI->getContext()));
   1938       }
   1939     }
   1940 
   1941     unsigned ArgReg;
   1942 
   1943     // Passing bools around ends up doing a trunc to i1 and passing it.
   1944     // Codegen this as an argument + "and 1".
   1945     if (ArgVal->getType()->isIntegerTy(1) && isa<TruncInst>(ArgVal) &&
   1946         cast<TruncInst>(ArgVal)->getParent() == I->getParent() &&
   1947         ArgVal->hasOneUse()) {
   1948       ArgVal = cast<TruncInst>(ArgVal)->getOperand(0);
   1949       ArgReg = getRegForValue(ArgVal);
   1950       if (ArgReg == 0) return false;
   1951 
   1952       MVT ArgVT;
   1953       if (!isTypeLegal(ArgVal->getType(), ArgVT)) return false;
   1954 
   1955       ArgReg = FastEmit_ri(ArgVT, ArgVT, ISD::AND, ArgReg,
   1956                            ArgVal->hasOneUse(), 1);
   1957     } else {
   1958       ArgReg = getRegForValue(ArgVal);
   1959     }
   1960 
   1961     if (ArgReg == 0) return false;
   1962 
   1963     Type *ArgTy = ArgVal->getType();
   1964     MVT ArgVT;
   1965     if (!isTypeLegal(ArgTy, ArgVT))
   1966       return false;
   1967     if (ArgVT == MVT::x86mmx)
   1968       return false;
   1969     unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
   1970     Flags.setOrigAlign(OriginalAlignment);
   1971 
   1972     Args.push_back(ArgReg);
   1973     ArgVals.push_back(ArgVal);
   1974     ArgVTs.push_back(ArgVT);
   1975     ArgFlags.push_back(Flags);
   1976   }
   1977 
   1978   // Analyze operands of the call, assigning locations to each operand.
   1979   SmallVector<CCValAssign, 16> ArgLocs;
   1980   CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, ArgLocs,
   1981                  I->getParent()->getContext());
   1982 
   1983   // Allocate shadow area for Win64
   1984   if (isWin64)
   1985     CCInfo.AllocateStack(32, 8);
   1986 
   1987   CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_X86);
   1988 
   1989   // Get a count of how many bytes are to be pushed on the stack.
   1990   unsigned NumBytes = CCInfo.getNextStackOffset();
   1991 
   1992   // Issue CALLSEQ_START
   1993   unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
   1994   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(AdjStackDown))
   1995     .addImm(NumBytes);
   1996 
   1997   // Process argument: walk the register/memloc assignments, inserting
   1998   // copies / loads.
   1999   SmallVector<unsigned, 4> RegArgs;
   2000   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   2001     CCValAssign &VA = ArgLocs[i];
   2002     unsigned Arg = Args[VA.getValNo()];
   2003     EVT ArgVT = ArgVTs[VA.getValNo()];
   2004 
   2005     // Promote the value if needed.
   2006     switch (VA.getLocInfo()) {
   2007     case CCValAssign::Full: break;
   2008     case CCValAssign::SExt: {
   2009       assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
   2010              "Unexpected extend");
   2011       bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
   2012                                        Arg, ArgVT, Arg);
   2013       assert(Emitted && "Failed to emit a sext!"); (void)Emitted;
   2014       ArgVT = VA.getLocVT();
   2015       break;
   2016     }
   2017     case CCValAssign::ZExt: {
   2018       assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
   2019              "Unexpected extend");
   2020       bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
   2021                                        Arg, ArgVT, Arg);
   2022       assert(Emitted && "Failed to emit a zext!"); (void)Emitted;
   2023       ArgVT = VA.getLocVT();
   2024       break;
   2025     }
   2026     case CCValAssign::AExt: {
   2027       assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
   2028              "Unexpected extend");
   2029       bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(),
   2030                                        Arg, ArgVT, Arg);
   2031       if (!Emitted)
   2032         Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
   2033                                     Arg, ArgVT, Arg);
   2034       if (!Emitted)
   2035         Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
   2036                                     Arg, ArgVT, Arg);
   2037 
   2038       assert(Emitted && "Failed to emit a aext!"); (void)Emitted;
   2039       ArgVT = VA.getLocVT();
   2040       break;
   2041     }
   2042     case CCValAssign::BCvt: {
   2043       unsigned BC = FastEmit_r(ArgVT.getSimpleVT(), VA.getLocVT(),
   2044                                ISD::BITCAST, Arg, /*TODO: Kill=*/false);
   2045       assert(BC != 0 && "Failed to emit a bitcast!");
   2046       Arg = BC;
   2047       ArgVT = VA.getLocVT();
   2048       break;
   2049     }
   2050     case CCValAssign::VExt:
   2051       // VExt has not been implemented, so this should be impossible to reach
   2052       // for now.  However, fallback to Selection DAG isel once implemented.
   2053       return false;
   2054     case CCValAssign::Indirect:
   2055       // FIXME: Indirect doesn't need extending, but fast-isel doesn't fully
   2056       // support this.
   2057       return false;
   2058     }
   2059 
   2060     if (VA.isRegLoc()) {
   2061       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
   2062               VA.getLocReg()).addReg(Arg);
   2063       RegArgs.push_back(VA.getLocReg());
   2064     } else {
   2065       unsigned LocMemOffset = VA.getLocMemOffset();
   2066       X86AddressMode AM;
   2067       const X86RegisterInfo *RegInfo = static_cast<const X86RegisterInfo*>(
   2068           getTargetMachine()->getRegisterInfo());
   2069       AM.Base.Reg = RegInfo->getStackRegister();
   2070       AM.Disp = LocMemOffset;
   2071       const Value *ArgVal = ArgVals[VA.getValNo()];
   2072       ISD::ArgFlagsTy Flags = ArgFlags[VA.getValNo()];
   2073 
   2074       if (Flags.isByVal()) {
   2075         X86AddressMode SrcAM;
   2076         SrcAM.Base.Reg = Arg;
   2077         bool Res = TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize());
   2078         assert(Res && "memcpy length already checked!"); (void)Res;
   2079       } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) {
   2080         // If this is a really simple value, emit this with the Value* version
   2081         // of X86FastEmitStore.  If it isn't simple, we don't want to do this,
   2082         // as it can cause us to reevaluate the argument.
   2083         if (!X86FastEmitStore(ArgVT, ArgVal, AM))
   2084           return false;
   2085       } else {
   2086         if (!X86FastEmitStore(ArgVT, Arg, AM))
   2087           return false;
   2088       }
   2089     }
   2090   }
   2091 
   2092   // ELF / PIC requires GOT in the EBX register before function calls via PLT
   2093   // GOT pointer.
   2094   if (Subtarget->isPICStyleGOT()) {
   2095     unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
   2096     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
   2097             X86::EBX).addReg(Base);
   2098   }
   2099 
   2100   if (Subtarget->is64Bit() && isVarArg && !isWin64) {
   2101     // Count the number of XMM registers allocated.
   2102     static const uint16_t XMMArgRegs[] = {
   2103       X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
   2104       X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
   2105     };
   2106     unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
   2107     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::MOV8ri),
   2108             X86::AL).addImm(NumXMMRegs);
   2109   }
   2110 
   2111   // Issue the call.
   2112   MachineInstrBuilder MIB;
   2113   if (CalleeOp) {
   2114     // Register-indirect call.
   2115     unsigned CallOpc;
   2116     if (Subtarget->is64Bit())
   2117       CallOpc = X86::CALL64r;
   2118     else
   2119       CallOpc = X86::CALL32r;
   2120     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CallOpc))
   2121       .addReg(CalleeOp);
   2122 
   2123   } else {
   2124     // Direct call.
   2125     assert(GV && "Not a direct call");
   2126     unsigned CallOpc;
   2127     if (Subtarget->is64Bit())
   2128       CallOpc = X86::CALL64pcrel32;
   2129     else
   2130       CallOpc = X86::CALLpcrel32;
   2131 
   2132     // See if we need any target-specific flags on the GV operand.
   2133     unsigned char OpFlags = 0;
   2134 
   2135     // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
   2136     // external symbols most go through the PLT in PIC mode.  If the symbol
   2137     // has hidden or protected visibility, or if it is static or local, then
   2138     // we don't need to use the PLT - we can directly call it.
   2139     if (Subtarget->isTargetELF() &&
   2140         TM.getRelocationModel() == Reloc::PIC_ &&
   2141         GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
   2142       OpFlags = X86II::MO_PLT;
   2143     } else if (Subtarget->isPICStyleStubAny() &&
   2144                (GV->isDeclaration() || GV->isWeakForLinker()) &&
   2145                (!Subtarget->getTargetTriple().isMacOSX() ||
   2146                 Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
   2147       // PC-relative references to external symbols should go through $stub,
   2148       // unless we're building with the leopard linker or later, which
   2149       // automatically synthesizes these stubs.
   2150       OpFlags = X86II::MO_DARWIN_STUB;
   2151     }
   2152 
   2153 
   2154     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CallOpc));
   2155     if (MemIntName)
   2156       MIB.addExternalSymbol(MemIntName, OpFlags);
   2157     else
   2158       MIB.addGlobalAddress(GV, 0, OpFlags);
   2159   }
   2160 
   2161   // Add a register mask with the call-preserved registers.
   2162   // Proper defs for return values will be added by setPhysRegsDeadExcept().
   2163   MIB.addRegMask(TRI.getCallPreservedMask(CS.getCallingConv()));
   2164 
   2165   // Add an implicit use GOT pointer in EBX.
   2166   if (Subtarget->isPICStyleGOT())
   2167     MIB.addReg(X86::EBX, RegState::Implicit);
   2168 
   2169   if (Subtarget->is64Bit() && isVarArg && !isWin64)
   2170     MIB.addReg(X86::AL, RegState::Implicit);
   2171 
   2172   // Add implicit physical register uses to the call.
   2173   for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
   2174     MIB.addReg(RegArgs[i], RegState::Implicit);
   2175 
   2176   // Issue CALLSEQ_END
   2177   unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
   2178   const unsigned NumBytesCallee = computeBytesPoppedByCallee(*Subtarget, CS);
   2179   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(AdjStackUp))
   2180     .addImm(NumBytes).addImm(NumBytesCallee);
   2181 
   2182   // Build info for return calling conv lowering code.
   2183   // FIXME: This is practically a copy-paste from TargetLowering::LowerCallTo.
   2184   SmallVector<ISD::InputArg, 32> Ins;
   2185   SmallVector<EVT, 4> RetTys;
   2186   ComputeValueVTs(TLI, I->getType(), RetTys);
   2187   for (unsigned i = 0, e = RetTys.size(); i != e; ++i) {
   2188     EVT VT = RetTys[i];
   2189     MVT RegisterVT = TLI.getRegisterType(I->getParent()->getContext(), VT);
   2190     unsigned NumRegs = TLI.getNumRegisters(I->getParent()->getContext(), VT);
   2191     for (unsigned j = 0; j != NumRegs; ++j) {
   2192       ISD::InputArg MyFlags;
   2193       MyFlags.VT = RegisterVT;
   2194       MyFlags.Used = !CS.getInstruction()->use_empty();
   2195       if (CS.paramHasAttr(0, Attribute::SExt))
   2196         MyFlags.Flags.setSExt();
   2197       if (CS.paramHasAttr(0, Attribute::ZExt))
   2198         MyFlags.Flags.setZExt();
   2199       if (CS.paramHasAttr(0, Attribute::InReg))
   2200         MyFlags.Flags.setInReg();
   2201       Ins.push_back(MyFlags);
   2202     }
   2203   }
   2204 
   2205   // Now handle call return values.
   2206   SmallVector<unsigned, 4> UsedRegs;
   2207   SmallVector<CCValAssign, 16> RVLocs;
   2208   CCState CCRetInfo(CC, false, *FuncInfo.MF, TM, RVLocs,
   2209                     I->getParent()->getContext());
   2210   unsigned ResultReg = FuncInfo.CreateRegs(I->getType());
   2211   CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86);
   2212   for (unsigned i = 0; i != RVLocs.size(); ++i) {
   2213     EVT CopyVT = RVLocs[i].getValVT();
   2214     unsigned CopyReg = ResultReg + i;
   2215 
   2216     // If this is a call to a function that returns an fp value on the x87 fp
   2217     // stack, but where we prefer to use the value in xmm registers, copy it
   2218     // out as F80 and use a truncate to move it from fp stack reg to xmm reg.
   2219     if ((RVLocs[i].getLocReg() == X86::ST0 ||
   2220          RVLocs[i].getLocReg() == X86::ST1)) {
   2221       if (isScalarFPTypeInSSEReg(RVLocs[i].getValVT())) {
   2222         CopyVT = MVT::f80;
   2223         CopyReg = createResultReg(&X86::RFP80RegClass);
   2224       }
   2225       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::FpPOP_RETVAL),
   2226               CopyReg);
   2227     } else {
   2228       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
   2229               CopyReg).addReg(RVLocs[i].getLocReg());
   2230       UsedRegs.push_back(RVLocs[i].getLocReg());
   2231     }
   2232 
   2233     if (CopyVT != RVLocs[i].getValVT()) {
   2234       // Round the F80 the right size, which also moves to the appropriate xmm
   2235       // register. This is accomplished by storing the F80 value in memory and
   2236       // then loading it back. Ewww...
   2237       EVT ResVT = RVLocs[i].getValVT();
   2238       unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
   2239       unsigned MemSize = ResVT.getSizeInBits()/8;
   2240       int FI = MFI.CreateStackObject(MemSize, MemSize, false);
   2241       addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   2242                                 TII.get(Opc)), FI)
   2243         .addReg(CopyReg);
   2244       Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm;
   2245       addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   2246                                 TII.get(Opc), ResultReg + i), FI);
   2247     }
   2248   }
   2249 
   2250   if (RVLocs.size())
   2251     UpdateValueMap(I, ResultReg, RVLocs.size());
   2252 
   2253   // Set all unused physreg defs as dead.
   2254   static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
   2255 
   2256   return true;
   2257 }
   2258 
   2259 
   2260 bool
   2261 X86FastISel::TargetSelectInstruction(const Instruction *I)  {
   2262   switch (I->getOpcode()) {
   2263   default: break;
   2264   case Instruction::Load:
   2265     return X86SelectLoad(I);
   2266   case Instruction::Store:
   2267     return X86SelectStore(I);
   2268   case Instruction::Ret:
   2269     return X86SelectRet(I);
   2270   case Instruction::ICmp:
   2271   case Instruction::FCmp:
   2272     return X86SelectCmp(I);
   2273   case Instruction::ZExt:
   2274     return X86SelectZExt(I);
   2275   case Instruction::Br:
   2276     return X86SelectBranch(I);
   2277   case Instruction::Call:
   2278     return X86SelectCall(I);
   2279   case Instruction::LShr:
   2280   case Instruction::AShr:
   2281   case Instruction::Shl:
   2282     return X86SelectShift(I);
   2283   case Instruction::SDiv:
   2284   case Instruction::UDiv:
   2285   case Instruction::SRem:
   2286   case Instruction::URem:
   2287     return X86SelectDivRem(I);
   2288   case Instruction::Select:
   2289     return X86SelectSelect(I);
   2290   case Instruction::Trunc:
   2291     return X86SelectTrunc(I);
   2292   case Instruction::FPExt:
   2293     return X86SelectFPExt(I);
   2294   case Instruction::FPTrunc:
   2295     return X86SelectFPTrunc(I);
   2296   case Instruction::IntToPtr: // Deliberate fall-through.
   2297   case Instruction::PtrToInt: {
   2298     EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
   2299     EVT DstVT = TLI.getValueType(I->getType());
   2300     if (DstVT.bitsGT(SrcVT))
   2301       return X86SelectZExt(I);
   2302     if (DstVT.bitsLT(SrcVT))
   2303       return X86SelectTrunc(I);
   2304     unsigned Reg = getRegForValue(I->getOperand(0));
   2305     if (Reg == 0) return false;
   2306     UpdateValueMap(I, Reg);
   2307     return true;
   2308   }
   2309   }
   2310 
   2311   return false;
   2312 }
   2313 
   2314 unsigned X86FastISel::TargetMaterializeConstant(const Constant *C) {
   2315   MVT VT;
   2316   if (!isTypeLegal(C->getType(), VT))
   2317     return 0;
   2318 
   2319   // Can't handle alternate code models yet.
   2320   if (TM.getCodeModel() != CodeModel::Small)
   2321     return 0;
   2322 
   2323   // Get opcode and regclass of the output for the given load instruction.
   2324   unsigned Opc = 0;
   2325   const TargetRegisterClass *RC = NULL;
   2326   switch (VT.SimpleTy) {
   2327   default: return 0;
   2328   case MVT::i8:
   2329     Opc = X86::MOV8rm;
   2330     RC  = &X86::GR8RegClass;
   2331     break;
   2332   case MVT::i16:
   2333     Opc = X86::MOV16rm;
   2334     RC  = &X86::GR16RegClass;
   2335     break;
   2336   case MVT::i32:
   2337     Opc = X86::MOV32rm;
   2338     RC  = &X86::GR32RegClass;
   2339     break;
   2340   case MVT::i64:
   2341     // Must be in x86-64 mode.
   2342     Opc = X86::MOV64rm;
   2343     RC  = &X86::GR64RegClass;
   2344     break;
   2345   case MVT::f32:
   2346     if (X86ScalarSSEf32) {
   2347       Opc = Subtarget->hasAVX() ? X86::VMOVSSrm : X86::MOVSSrm;
   2348       RC  = &X86::FR32RegClass;
   2349     } else {
   2350       Opc = X86::LD_Fp32m;
   2351       RC  = &X86::RFP32RegClass;
   2352     }
   2353     break;
   2354   case MVT::f64:
   2355     if (X86ScalarSSEf64) {
   2356       Opc = Subtarget->hasAVX() ? X86::VMOVSDrm : X86::MOVSDrm;
   2357       RC  = &X86::FR64RegClass;
   2358     } else {
   2359       Opc = X86::LD_Fp64m;
   2360       RC  = &X86::RFP64RegClass;
   2361     }
   2362     break;
   2363   case MVT::f80:
   2364     // No f80 support yet.
   2365     return 0;
   2366   }
   2367 
   2368   // Materialize addresses with LEA instructions.
   2369   if (isa<GlobalValue>(C)) {
   2370     X86AddressMode AM;
   2371     if (X86SelectAddress(C, AM)) {
   2372       // If the expression is just a basereg, then we're done, otherwise we need
   2373       // to emit an LEA.
   2374       if (AM.BaseType == X86AddressMode::RegBase &&
   2375           AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == 0)
   2376         return AM.Base.Reg;
   2377 
   2378       Opc = TLI.getPointerTy() == MVT::i32 ? X86::LEA32r : X86::LEA64r;
   2379       unsigned ResultReg = createResultReg(RC);
   2380       addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   2381                              TII.get(Opc), ResultReg), AM);
   2382       return ResultReg;
   2383     }
   2384     return 0;
   2385   }
   2386 
   2387   // MachineConstantPool wants an explicit alignment.
   2388   unsigned Align = TD.getPrefTypeAlignment(C->getType());
   2389   if (Align == 0) {
   2390     // Alignment of vector types.  FIXME!
   2391     Align = TD.getTypeAllocSize(C->getType());
   2392   }
   2393 
   2394   // x86-32 PIC requires a PIC base register for constant pools.
   2395   unsigned PICBase = 0;
   2396   unsigned char OpFlag = 0;
   2397   if (Subtarget->isPICStyleStubPIC()) { // Not dynamic-no-pic
   2398     OpFlag = X86II::MO_PIC_BASE_OFFSET;
   2399     PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
   2400   } else if (Subtarget->isPICStyleGOT()) {
   2401     OpFlag = X86II::MO_GOTOFF;
   2402     PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
   2403   } else if (Subtarget->isPICStyleRIPRel() &&
   2404              TM.getCodeModel() == CodeModel::Small) {
   2405     PICBase = X86::RIP;
   2406   }
   2407 
   2408   // Create the load from the constant pool.
   2409   unsigned MCPOffset = MCP.getConstantPoolIndex(C, Align);
   2410   unsigned ResultReg = createResultReg(RC);
   2411   addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   2412                                    TII.get(Opc), ResultReg),
   2413                            MCPOffset, PICBase, OpFlag);
   2414 
   2415   return ResultReg;
   2416 }
   2417 
   2418 unsigned X86FastISel::TargetMaterializeAlloca(const AllocaInst *C) {
   2419   // Fail on dynamic allocas. At this point, getRegForValue has already
   2420   // checked its CSE maps, so if we're here trying to handle a dynamic
   2421   // alloca, we're not going to succeed. X86SelectAddress has a
   2422   // check for dynamic allocas, because it's called directly from
   2423   // various places, but TargetMaterializeAlloca also needs a check
   2424   // in order to avoid recursion between getRegForValue,
   2425   // X86SelectAddrss, and TargetMaterializeAlloca.
   2426   if (!FuncInfo.StaticAllocaMap.count(C))
   2427     return 0;
   2428 
   2429   X86AddressMode AM;
   2430   if (!X86SelectAddress(C, AM))
   2431     return 0;
   2432   unsigned Opc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
   2433   const TargetRegisterClass* RC = TLI.getRegClassFor(TLI.getPointerTy());
   2434   unsigned ResultReg = createResultReg(RC);
   2435   addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   2436                          TII.get(Opc), ResultReg), AM);
   2437   return ResultReg;
   2438 }
   2439 
   2440 unsigned X86FastISel::TargetMaterializeFloatZero(const ConstantFP *CF) {
   2441   MVT VT;
   2442   if (!isTypeLegal(CF->getType(), VT))
   2443     return 0;
   2444 
   2445   // Get opcode and regclass for the given zero.
   2446   unsigned Opc = 0;
   2447   const TargetRegisterClass *RC = NULL;
   2448   switch (VT.SimpleTy) {
   2449   default: return 0;
   2450   case MVT::f32:
   2451     if (X86ScalarSSEf32) {
   2452       Opc = X86::FsFLD0SS;
   2453       RC  = &X86::FR32RegClass;
   2454     } else {
   2455       Opc = X86::LD_Fp032;
   2456       RC  = &X86::RFP32RegClass;
   2457     }
   2458     break;
   2459   case MVT::f64:
   2460     if (X86ScalarSSEf64) {
   2461       Opc = X86::FsFLD0SD;
   2462       RC  = &X86::FR64RegClass;
   2463     } else {
   2464       Opc = X86::LD_Fp064;
   2465       RC  = &X86::RFP64RegClass;
   2466     }
   2467     break;
   2468   case MVT::f80:
   2469     // No f80 support yet.
   2470     return 0;
   2471   }
   2472 
   2473   unsigned ResultReg = createResultReg(RC);
   2474   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg);
   2475   return ResultReg;
   2476 }
   2477 
   2478 
   2479 bool X86FastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
   2480                                       const LoadInst *LI) {
   2481   X86AddressMode AM;
   2482   if (!X86SelectAddress(LI->getOperand(0), AM))
   2483     return false;
   2484 
   2485   const X86InstrInfo &XII = (const X86InstrInfo&)TII;
   2486 
   2487   unsigned Size = TD.getTypeAllocSize(LI->getType());
   2488   unsigned Alignment = LI->getAlignment();
   2489 
   2490   SmallVector<MachineOperand, 8> AddrOps;
   2491   AM.getFullAddress(AddrOps);
   2492 
   2493   MachineInstr *Result =
   2494     XII.foldMemoryOperandImpl(*FuncInfo.MF, MI, OpNo, AddrOps, Size, Alignment);
   2495   if (Result == 0) return false;
   2496 
   2497   FuncInfo.MBB->insert(FuncInfo.InsertPt, Result);
   2498   MI->eraseFromParent();
   2499   return true;
   2500 }
   2501 
   2502 
   2503 namespace llvm {
   2504   FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo,
   2505                                 const TargetLibraryInfo *libInfo) {
   2506     return new X86FastISel(funcInfo, libInfo);
   2507   }
   2508 }
   2509