Home | History | Annotate | Download | only in SelectionDAG
      1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements the TargetLowering class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Target/TargetLowering.h"
     15 #include "llvm/ADT/BitVector.h"
     16 #include "llvm/ADT/STLExtras.h"
     17 #include "llvm/CodeGen/Analysis.h"
     18 #include "llvm/CodeGen/MachineFrameInfo.h"
     19 #include "llvm/CodeGen/MachineFunction.h"
     20 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     21 #include "llvm/CodeGen/SelectionDAG.h"
     22 #include "llvm/IR/DataLayout.h"
     23 #include "llvm/IR/DerivedTypes.h"
     24 #include "llvm/IR/GlobalVariable.h"
     25 #include "llvm/IR/LLVMContext.h"
     26 #include "llvm/MC/MCAsmInfo.h"
     27 #include "llvm/MC/MCExpr.h"
     28 #include "llvm/Support/CommandLine.h"
     29 #include "llvm/Support/ErrorHandling.h"
     30 #include "llvm/Support/MathExtras.h"
     31 #include "llvm/Target/TargetLoweringObjectFile.h"
     32 #include "llvm/Target/TargetMachine.h"
     33 #include "llvm/Target/TargetRegisterInfo.h"
     34 #include <cctype>
     35 using namespace llvm;
     36 
     37 /// NOTE: The constructor takes ownership of TLOF.
     38 TargetLowering::TargetLowering(const TargetMachine &tm,
     39                                const TargetLoweringObjectFile *tlof)
     40   : TargetLoweringBase(tm, tlof) {}
     41 
     42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
     43   return nullptr;
     44 }
     45 
     46 /// Check whether a given call node is in tail position within its function. If
     47 /// so, it sets Chain to the input chain of the tail call.
     48 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
     49                                           SDValue &Chain) const {
     50   const Function *F = DAG.getMachineFunction().getFunction();
     51 
     52   // Conservatively require the attributes of the call to match those of
     53   // the return. Ignore noalias because it doesn't affect the call sequence.
     54   AttributeSet CallerAttrs = F->getAttributes();
     55   if (AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex)
     56       .removeAttribute(Attribute::NoAlias).hasAttributes())
     57     return false;
     58 
     59   // It's not safe to eliminate the sign / zero extension of the return value.
     60   if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) ||
     61       CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
     62     return false;
     63 
     64   // Check if the only use is a function return node.
     65   return isUsedByReturnOnly(Node, Chain);
     66 }
     67 
     68 /// \brief Set CallLoweringInfo attribute flags based on a call instruction
     69 /// and called function attributes.
     70 void TargetLowering::ArgListEntry::setAttributes(ImmutableCallSite *CS,
     71                                                  unsigned AttrIdx) {
     72   isSExt     = CS->paramHasAttr(AttrIdx, Attribute::SExt);
     73   isZExt     = CS->paramHasAttr(AttrIdx, Attribute::ZExt);
     74   isInReg    = CS->paramHasAttr(AttrIdx, Attribute::InReg);
     75   isSRet     = CS->paramHasAttr(AttrIdx, Attribute::StructRet);
     76   isNest     = CS->paramHasAttr(AttrIdx, Attribute::Nest);
     77   isByVal    = CS->paramHasAttr(AttrIdx, Attribute::ByVal);
     78   isInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca);
     79   isReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned);
     80   Alignment  = CS->getParamAlignment(AttrIdx);
     81 }
     82 
     83 /// Generate a libcall taking the given operands as arguments and returning a
     84 /// result of type RetVT.
     85 std::pair<SDValue, SDValue>
     86 TargetLowering::makeLibCall(SelectionDAG &DAG,
     87                             RTLIB::Libcall LC, EVT RetVT,
     88                             const SDValue *Ops, unsigned NumOps,
     89                             bool isSigned, SDLoc dl,
     90                             bool doesNotReturn,
     91                             bool isReturnValueUsed) const {
     92   TargetLowering::ArgListTy Args;
     93   Args.reserve(NumOps);
     94 
     95   TargetLowering::ArgListEntry Entry;
     96   for (unsigned i = 0; i != NumOps; ++i) {
     97     Entry.Node = Ops[i];
     98     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
     99     Entry.isSExt = isSigned;
    100     Entry.isZExt = !isSigned;
    101     Args.push_back(Entry);
    102   }
    103   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), getPointerTy());
    104 
    105   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
    106   TargetLowering::CallLoweringInfo CLI(DAG);
    107   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
    108     .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0)
    109     .setNoReturn(doesNotReturn).setDiscardResult(!isReturnValueUsed)
    110     .setSExtResult(isSigned).setZExtResult(!isSigned);
    111   return LowerCallTo(CLI);
    112 }
    113 
    114 
    115 /// SoftenSetCCOperands - Soften the operands of a comparison.  This code is
    116 /// shared among BR_CC, SELECT_CC, and SETCC handlers.
    117 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
    118                                          SDValue &NewLHS, SDValue &NewRHS,
    119                                          ISD::CondCode &CCCode,
    120                                          SDLoc dl) const {
    121   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
    122          && "Unsupported setcc type!");
    123 
    124   // Expand into one or more soft-fp libcall(s).
    125   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
    126   switch (CCCode) {
    127   case ISD::SETEQ:
    128   case ISD::SETOEQ:
    129     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
    130           (VT == MVT::f64) ? RTLIB::OEQ_F64 : RTLIB::OEQ_F128;
    131     break;
    132   case ISD::SETNE:
    133   case ISD::SETUNE:
    134     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
    135           (VT == MVT::f64) ? RTLIB::UNE_F64 : RTLIB::UNE_F128;
    136     break;
    137   case ISD::SETGE:
    138   case ISD::SETOGE:
    139     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
    140           (VT == MVT::f64) ? RTLIB::OGE_F64 : RTLIB::OGE_F128;
    141     break;
    142   case ISD::SETLT:
    143   case ISD::SETOLT:
    144     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
    145           (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128;
    146     break;
    147   case ISD::SETLE:
    148   case ISD::SETOLE:
    149     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
    150           (VT == MVT::f64) ? RTLIB::OLE_F64 : RTLIB::OLE_F128;
    151     break;
    152   case ISD::SETGT:
    153   case ISD::SETOGT:
    154     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
    155           (VT == MVT::f64) ? RTLIB::OGT_F64 : RTLIB::OGT_F128;
    156     break;
    157   case ISD::SETUO:
    158     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
    159           (VT == MVT::f64) ? RTLIB::UO_F64 : RTLIB::UO_F128;
    160     break;
    161   case ISD::SETO:
    162     LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
    163           (VT == MVT::f64) ? RTLIB::O_F64 : RTLIB::O_F128;
    164     break;
    165   default:
    166     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
    167           (VT == MVT::f64) ? RTLIB::UO_F64 : RTLIB::UO_F128;
    168     switch (CCCode) {
    169     case ISD::SETONE:
    170       // SETONE = SETOLT | SETOGT
    171       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
    172             (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128;
    173       // Fallthrough
    174     case ISD::SETUGT:
    175       LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
    176             (VT == MVT::f64) ? RTLIB::OGT_F64 : RTLIB::OGT_F128;
    177       break;
    178     case ISD::SETUGE:
    179       LC2 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
    180             (VT == MVT::f64) ? RTLIB::OGE_F64 : RTLIB::OGE_F128;
    181       break;
    182     case ISD::SETULT:
    183       LC2 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
    184             (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128;
    185       break;
    186     case ISD::SETULE:
    187       LC2 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
    188             (VT == MVT::f64) ? RTLIB::OLE_F64 : RTLIB::OLE_F128;
    189       break;
    190     case ISD::SETUEQ:
    191       LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
    192             (VT == MVT::f64) ? RTLIB::OEQ_F64 : RTLIB::OEQ_F128;
    193       break;
    194     default: llvm_unreachable("Do not know how to soften this setcc!");
    195     }
    196   }
    197 
    198   // Use the target specific return value for comparions lib calls.
    199   EVT RetVT = getCmpLibcallReturnType();
    200   SDValue Ops[2] = { NewLHS, NewRHS };
    201   NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, 2, false/*sign irrelevant*/,
    202                        dl).first;
    203   NewRHS = DAG.getConstant(0, RetVT);
    204   CCCode = getCmpLibcallCC(LC1);
    205   if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
    206     SDValue Tmp = DAG.getNode(ISD::SETCC, dl,
    207                               getSetCCResultType(*DAG.getContext(), RetVT),
    208                               NewLHS, NewRHS, DAG.getCondCode(CCCode));
    209     NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, 2, false/*sign irrelevant*/,
    210                          dl).first;
    211     NewLHS = DAG.getNode(ISD::SETCC, dl,
    212                          getSetCCResultType(*DAG.getContext(), RetVT), NewLHS,
    213                          NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
    214     NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS);
    215     NewRHS = SDValue();
    216   }
    217 }
    218 
    219 /// getJumpTableEncoding - Return the entry encoding for a jump table in the
    220 /// current function.  The returned value is a member of the
    221 /// MachineJumpTableInfo::JTEntryKind enum.
    222 unsigned TargetLowering::getJumpTableEncoding() const {
    223   // In non-pic modes, just use the address of a block.
    224   if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
    225     return MachineJumpTableInfo::EK_BlockAddress;
    226 
    227   // In PIC mode, if the target supports a GPRel32 directive, use it.
    228   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
    229     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
    230 
    231   // Otherwise, use a label difference.
    232   return MachineJumpTableInfo::EK_LabelDifference32;
    233 }
    234 
    235 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
    236                                                  SelectionDAG &DAG) const {
    237   // If our PIC model is GP relative, use the global offset table as the base.
    238   unsigned JTEncoding = getJumpTableEncoding();
    239 
    240   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
    241       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
    242     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(0));
    243 
    244   return Table;
    245 }
    246 
    247 /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
    248 /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
    249 /// MCExpr.
    250 const MCExpr *
    251 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
    252                                              unsigned JTI,MCContext &Ctx) const{
    253   // The normal PIC reloc base is the label at the start of the jump table.
    254   return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx);
    255 }
    256 
    257 bool
    258 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
    259   // Assume that everything is safe in static mode.
    260   if (getTargetMachine().getRelocationModel() == Reloc::Static)
    261     return true;
    262 
    263   // In dynamic-no-pic mode, assume that known defined values are safe.
    264   if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
    265       GA &&
    266       !GA->getGlobal()->isDeclaration() &&
    267       !GA->getGlobal()->isWeakForLinker())
    268     return true;
    269 
    270   // Otherwise assume nothing is safe.
    271   return false;
    272 }
    273 
    274 //===----------------------------------------------------------------------===//
    275 //  Optimization Methods
    276 //===----------------------------------------------------------------------===//
    277 
    278 /// ShrinkDemandedConstant - Check to see if the specified operand of the
    279 /// specified instruction is a constant integer.  If so, check to see if there
    280 /// are any bits set in the constant that are not demanded.  If so, shrink the
    281 /// constant and return true.
    282 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
    283                                                         const APInt &Demanded) {
    284   SDLoc dl(Op);
    285 
    286   // FIXME: ISD::SELECT, ISD::SELECT_CC
    287   switch (Op.getOpcode()) {
    288   default: break;
    289   case ISD::XOR:
    290   case ISD::AND:
    291   case ISD::OR: {
    292     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
    293     if (!C) return false;
    294 
    295     if (Op.getOpcode() == ISD::XOR &&
    296         (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
    297       return false;
    298 
    299     // if we can expand it to have all bits set, do it
    300     if (C->getAPIntValue().intersects(~Demanded)) {
    301       EVT VT = Op.getValueType();
    302       SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
    303                                 DAG.getConstant(Demanded &
    304                                                 C->getAPIntValue(),
    305                                                 VT));
    306       return CombineTo(Op, New);
    307     }
    308 
    309     break;
    310   }
    311   }
    312 
    313   return false;
    314 }
    315 
    316 /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
    317 /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
    318 /// cast, but it could be generalized for targets with other types of
    319 /// implicit widening casts.
    320 bool
    321 TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
    322                                                     unsigned BitWidth,
    323                                                     const APInt &Demanded,
    324                                                     SDLoc dl) {
    325   assert(Op.getNumOperands() == 2 &&
    326          "ShrinkDemandedOp only supports binary operators!");
    327   assert(Op.getNode()->getNumValues() == 1 &&
    328          "ShrinkDemandedOp only supports nodes with one result!");
    329 
    330   // Early return, as this function cannot handle vector types.
    331   if (Op.getValueType().isVector())
    332     return false;
    333 
    334   // Don't do this if the node has another user, which may require the
    335   // full value.
    336   if (!Op.getNode()->hasOneUse())
    337     return false;
    338 
    339   // Search for the smallest integer type with free casts to and from
    340   // Op's type. For expedience, just check power-of-2 integer types.
    341   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
    342   unsigned DemandedSize = BitWidth - Demanded.countLeadingZeros();
    343   unsigned SmallVTBits = DemandedSize;
    344   if (!isPowerOf2_32(SmallVTBits))
    345     SmallVTBits = NextPowerOf2(SmallVTBits);
    346   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
    347     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
    348     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
    349         TLI.isZExtFree(SmallVT, Op.getValueType())) {
    350       // We found a type with free casts.
    351       SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
    352                               DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
    353                                           Op.getNode()->getOperand(0)),
    354                               DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
    355                                           Op.getNode()->getOperand(1)));
    356       bool NeedZext = DemandedSize > SmallVTBits;
    357       SDValue Z = DAG.getNode(NeedZext ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND,
    358                               dl, Op.getValueType(), X);
    359       return CombineTo(Op, Z);
    360     }
    361   }
    362   return false;
    363 }
    364 
    365 /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
    366 /// DemandedMask bits of the result of Op are ever used downstream.  If we can
    367 /// use this information to simplify Op, create a new simplified DAG node and
    368 /// return true, returning the original and new nodes in Old and New. Otherwise,
    369 /// analyze the expression and return a mask of KnownOne and KnownZero bits for
    370 /// the expression (used to simplify the caller).  The KnownZero/One bits may
    371 /// only be accurate for those bits in the DemandedMask.
    372 bool TargetLowering::SimplifyDemandedBits(SDValue Op,
    373                                           const APInt &DemandedMask,
    374                                           APInt &KnownZero,
    375                                           APInt &KnownOne,
    376                                           TargetLoweringOpt &TLO,
    377                                           unsigned Depth) const {
    378   unsigned BitWidth = DemandedMask.getBitWidth();
    379   assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
    380          "Mask size mismatches value type size!");
    381   APInt NewMask = DemandedMask;
    382   SDLoc dl(Op);
    383 
    384   // Don't know anything.
    385   KnownZero = KnownOne = APInt(BitWidth, 0);
    386 
    387   // Other users may use these bits.
    388   if (!Op.getNode()->hasOneUse()) {
    389     if (Depth != 0) {
    390       // If not at the root, Just compute the KnownZero/KnownOne bits to
    391       // simplify things downstream.
    392       TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth);
    393       return false;
    394     }
    395     // If this is the root being simplified, allow it to have multiple uses,
    396     // just set the NewMask to all bits.
    397     NewMask = APInt::getAllOnesValue(BitWidth);
    398   } else if (DemandedMask == 0) {
    399     // Not demanding any bits from Op.
    400     if (Op.getOpcode() != ISD::UNDEF)
    401       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
    402     return false;
    403   } else if (Depth == 6) {        // Limit search depth.
    404     return false;
    405   }
    406 
    407   APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
    408   switch (Op.getOpcode()) {
    409   case ISD::Constant:
    410     // We know all of the bits for a constant!
    411     KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue();
    412     KnownZero = ~KnownOne;
    413     return false;   // Don't fall through, will infinitely loop.
    414   case ISD::AND:
    415     // If the RHS is a constant, check to see if the LHS would be zero without
    416     // using the bits from the RHS.  Below, we use knowledge about the RHS to
    417     // simplify the LHS, here we're using information from the LHS to simplify
    418     // the RHS.
    419     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
    420       APInt LHSZero, LHSOne;
    421       // Do not increment Depth here; that can cause an infinite loop.
    422       TLO.DAG.computeKnownBits(Op.getOperand(0), LHSZero, LHSOne, Depth);
    423       // If the LHS already has zeros where RHSC does, this and is dead.
    424       if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
    425         return TLO.CombineTo(Op, Op.getOperand(0));
    426       // If any of the set bits in the RHS are known zero on the LHS, shrink
    427       // the constant.
    428       if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
    429         return true;
    430     }
    431 
    432     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
    433                              KnownOne, TLO, Depth+1))
    434       return true;
    435     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    436     if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
    437                              KnownZero2, KnownOne2, TLO, Depth+1))
    438       return true;
    439     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
    440 
    441     // If all of the demanded bits are known one on one side, return the other.
    442     // These bits cannot contribute to the result of the 'and'.
    443     if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
    444       return TLO.CombineTo(Op, Op.getOperand(0));
    445     if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
    446       return TLO.CombineTo(Op, Op.getOperand(1));
    447     // If all of the demanded bits in the inputs are known zeros, return zero.
    448     if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
    449       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
    450     // If the RHS is a constant, see if we can simplify it.
    451     if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
    452       return true;
    453     // If the operation can be done in a smaller type, do so.
    454     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
    455       return true;
    456 
    457     // Output known-1 bits are only known if set in both the LHS & RHS.
    458     KnownOne &= KnownOne2;
    459     // Output known-0 are known to be clear if zero in either the LHS | RHS.
    460     KnownZero |= KnownZero2;
    461     break;
    462   case ISD::OR:
    463     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
    464                              KnownOne, TLO, Depth+1))
    465       return true;
    466     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    467     if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
    468                              KnownZero2, KnownOne2, TLO, Depth+1))
    469       return true;
    470     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
    471 
    472     // If all of the demanded bits are known zero on one side, return the other.
    473     // These bits cannot contribute to the result of the 'or'.
    474     if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
    475       return TLO.CombineTo(Op, Op.getOperand(0));
    476     if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
    477       return TLO.CombineTo(Op, Op.getOperand(1));
    478     // If all of the potentially set bits on one side are known to be set on
    479     // the other side, just use the 'other' side.
    480     if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
    481       return TLO.CombineTo(Op, Op.getOperand(0));
    482     if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
    483       return TLO.CombineTo(Op, Op.getOperand(1));
    484     // If the RHS is a constant, see if we can simplify it.
    485     if (TLO.ShrinkDemandedConstant(Op, NewMask))
    486       return true;
    487     // If the operation can be done in a smaller type, do so.
    488     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
    489       return true;
    490 
    491     // Output known-0 bits are only known if clear in both the LHS & RHS.
    492     KnownZero &= KnownZero2;
    493     // Output known-1 are known to be set if set in either the LHS | RHS.
    494     KnownOne |= KnownOne2;
    495     break;
    496   case ISD::XOR:
    497     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
    498                              KnownOne, TLO, Depth+1))
    499       return true;
    500     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    501     if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
    502                              KnownOne2, TLO, Depth+1))
    503       return true;
    504     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
    505 
    506     // If all of the demanded bits are known zero on one side, return the other.
    507     // These bits cannot contribute to the result of the 'xor'.
    508     if ((KnownZero & NewMask) == NewMask)
    509       return TLO.CombineTo(Op, Op.getOperand(0));
    510     if ((KnownZero2 & NewMask) == NewMask)
    511       return TLO.CombineTo(Op, Op.getOperand(1));
    512     // If the operation can be done in a smaller type, do so.
    513     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
    514       return true;
    515 
    516     // If all of the unknown bits are known to be zero on one side or the other
    517     // (but not both) turn this into an *inclusive* or.
    518     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
    519     if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
    520       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
    521                                                Op.getOperand(0),
    522                                                Op.getOperand(1)));
    523 
    524     // Output known-0 bits are known if clear or set in both the LHS & RHS.
    525     KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
    526     // Output known-1 are known to be set if set in only one of the LHS, RHS.
    527     KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
    528 
    529     // If all of the demanded bits on one side are known, and all of the set
    530     // bits on that side are also known to be set on the other side, turn this
    531     // into an AND, as we know the bits will be cleared.
    532     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
    533     // NB: it is okay if more bits are known than are requested
    534     if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known on one side
    535       if (KnownOne == KnownOne2) { // set bits are the same on both sides
    536         EVT VT = Op.getValueType();
    537         SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
    538         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
    539                                                  Op.getOperand(0), ANDC));
    540       }
    541     }
    542 
    543     // If the RHS is a constant, see if we can simplify it.
    544     // for XOR, we prefer to force bits to 1 if they will make a -1.
    545     // if we can't force bits, try to shrink constant
    546     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
    547       APInt Expanded = C->getAPIntValue() | (~NewMask);
    548       // if we can expand it to have all bits set, do it
    549       if (Expanded.isAllOnesValue()) {
    550         if (Expanded != C->getAPIntValue()) {
    551           EVT VT = Op.getValueType();
    552           SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
    553                                           TLO.DAG.getConstant(Expanded, VT));
    554           return TLO.CombineTo(Op, New);
    555         }
    556         // if it already has all the bits set, nothing to change
    557         // but don't shrink either!
    558       } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
    559         return true;
    560       }
    561     }
    562 
    563     KnownZero = KnownZeroOut;
    564     KnownOne  = KnownOneOut;
    565     break;
    566   case ISD::SELECT:
    567     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
    568                              KnownOne, TLO, Depth+1))
    569       return true;
    570     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
    571                              KnownOne2, TLO, Depth+1))
    572       return true;
    573     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    574     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
    575 
    576     // If the operands are constants, see if we can simplify them.
    577     if (TLO.ShrinkDemandedConstant(Op, NewMask))
    578       return true;
    579 
    580     // Only known if known in both the LHS and RHS.
    581     KnownOne &= KnownOne2;
    582     KnownZero &= KnownZero2;
    583     break;
    584   case ISD::SELECT_CC:
    585     if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
    586                              KnownOne, TLO, Depth+1))
    587       return true;
    588     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
    589                              KnownOne2, TLO, Depth+1))
    590       return true;
    591     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    592     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
    593 
    594     // If the operands are constants, see if we can simplify them.
    595     if (TLO.ShrinkDemandedConstant(Op, NewMask))
    596       return true;
    597 
    598     // Only known if known in both the LHS and RHS.
    599     KnownOne &= KnownOne2;
    600     KnownZero &= KnownZero2;
    601     break;
    602   case ISD::SHL:
    603     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
    604       unsigned ShAmt = SA->getZExtValue();
    605       SDValue InOp = Op.getOperand(0);
    606 
    607       // If the shift count is an invalid immediate, don't do anything.
    608       if (ShAmt >= BitWidth)
    609         break;
    610 
    611       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
    612       // single shift.  We can do this if the bottom bits (which are shifted
    613       // out) are never demanded.
    614       if (InOp.getOpcode() == ISD::SRL &&
    615           isa<ConstantSDNode>(InOp.getOperand(1))) {
    616         if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
    617           unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
    618           unsigned Opc = ISD::SHL;
    619           int Diff = ShAmt-C1;
    620           if (Diff < 0) {
    621             Diff = -Diff;
    622             Opc = ISD::SRL;
    623           }
    624 
    625           SDValue NewSA =
    626             TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
    627           EVT VT = Op.getValueType();
    628           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
    629                                                    InOp.getOperand(0), NewSA));
    630         }
    631       }
    632 
    633       if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt),
    634                                KnownZero, KnownOne, TLO, Depth+1))
    635         return true;
    636 
    637       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
    638       // are not demanded. This will likely allow the anyext to be folded away.
    639       if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) {
    640         SDValue InnerOp = InOp.getNode()->getOperand(0);
    641         EVT InnerVT = InnerOp.getValueType();
    642         unsigned InnerBits = InnerVT.getSizeInBits();
    643         if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 &&
    644             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
    645           EVT ShTy = getShiftAmountTy(InnerVT);
    646           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
    647             ShTy = InnerVT;
    648           SDValue NarrowShl =
    649             TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
    650                             TLO.DAG.getConstant(ShAmt, ShTy));
    651           return
    652             TLO.CombineTo(Op,
    653                           TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(),
    654                                           NarrowShl));
    655         }
    656         // Repeat the SHL optimization above in cases where an extension
    657         // intervenes: (shl (anyext (shr x, c1)), c2) to
    658         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
    659         // aren't demanded (as above) and that the shifted upper c1 bits of
    660         // x aren't demanded.
    661         if (InOp.hasOneUse() &&
    662             InnerOp.getOpcode() == ISD::SRL &&
    663             InnerOp.hasOneUse() &&
    664             isa<ConstantSDNode>(InnerOp.getOperand(1))) {
    665           uint64_t InnerShAmt = cast<ConstantSDNode>(InnerOp.getOperand(1))
    666             ->getZExtValue();
    667           if (InnerShAmt < ShAmt &&
    668               InnerShAmt < InnerBits &&
    669               NewMask.lshr(InnerBits - InnerShAmt + ShAmt) == 0 &&
    670               NewMask.trunc(ShAmt) == 0) {
    671             SDValue NewSA =
    672               TLO.DAG.getConstant(ShAmt - InnerShAmt,
    673                                   Op.getOperand(1).getValueType());
    674             EVT VT = Op.getValueType();
    675             SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
    676                                              InnerOp.getOperand(0));
    677             return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT,
    678                                                      NewExt, NewSA));
    679           }
    680         }
    681       }
    682 
    683       KnownZero <<= SA->getZExtValue();
    684       KnownOne  <<= SA->getZExtValue();
    685       // low bits known zero.
    686       KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
    687     }
    688     break;
    689   case ISD::SRL:
    690     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
    691       EVT VT = Op.getValueType();
    692       unsigned ShAmt = SA->getZExtValue();
    693       unsigned VTSize = VT.getSizeInBits();
    694       SDValue InOp = Op.getOperand(0);
    695 
    696       // If the shift count is an invalid immediate, don't do anything.
    697       if (ShAmt >= BitWidth)
    698         break;
    699 
    700       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
    701       // single shift.  We can do this if the top bits (which are shifted out)
    702       // are never demanded.
    703       if (InOp.getOpcode() == ISD::SHL &&
    704           isa<ConstantSDNode>(InOp.getOperand(1))) {
    705         if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
    706           unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
    707           unsigned Opc = ISD::SRL;
    708           int Diff = ShAmt-C1;
    709           if (Diff < 0) {
    710             Diff = -Diff;
    711             Opc = ISD::SHL;
    712           }
    713 
    714           SDValue NewSA =
    715             TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
    716           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
    717                                                    InOp.getOperand(0), NewSA));
    718         }
    719       }
    720 
    721       // Compute the new bits that are at the top now.
    722       if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
    723                                KnownZero, KnownOne, TLO, Depth+1))
    724         return true;
    725       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    726       KnownZero = KnownZero.lshr(ShAmt);
    727       KnownOne  = KnownOne.lshr(ShAmt);
    728 
    729       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
    730       KnownZero |= HighBits;  // High bits known zero.
    731     }
    732     break;
    733   case ISD::SRA:
    734     // If this is an arithmetic shift right and only the low-bit is set, we can
    735     // always convert this into a logical shr, even if the shift amount is
    736     // variable.  The low bit of the shift cannot be an input sign bit unless
    737     // the shift amount is >= the size of the datatype, which is undefined.
    738     if (NewMask == 1)
    739       return TLO.CombineTo(Op,
    740                            TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
    741                                            Op.getOperand(0), Op.getOperand(1)));
    742 
    743     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
    744       EVT VT = Op.getValueType();
    745       unsigned ShAmt = SA->getZExtValue();
    746 
    747       // If the shift count is an invalid immediate, don't do anything.
    748       if (ShAmt >= BitWidth)
    749         break;
    750 
    751       APInt InDemandedMask = (NewMask << ShAmt);
    752 
    753       // If any of the demanded bits are produced by the sign extension, we also
    754       // demand the input sign bit.
    755       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
    756       if (HighBits.intersects(NewMask))
    757         InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
    758 
    759       if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
    760                                KnownZero, KnownOne, TLO, Depth+1))
    761         return true;
    762       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    763       KnownZero = KnownZero.lshr(ShAmt);
    764       KnownOne  = KnownOne.lshr(ShAmt);
    765 
    766       // Handle the sign bit, adjusted to where it is now in the mask.
    767       APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
    768 
    769       // If the input sign bit is known to be zero, or if none of the top bits
    770       // are demanded, turn this into an unsigned shift right.
    771       if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits)
    772         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
    773                                                  Op.getOperand(0),
    774                                                  Op.getOperand(1)));
    775 
    776       int Log2 = NewMask.exactLogBase2();
    777       if (Log2 >= 0) {
    778         // The bit must come from the sign.
    779         SDValue NewSA =
    780           TLO.DAG.getConstant(BitWidth - 1 - Log2,
    781                               Op.getOperand(1).getValueType());
    782         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
    783                                                  Op.getOperand(0), NewSA));
    784       }
    785 
    786       if (KnownOne.intersects(SignBit))
    787         // New bits are known one.
    788         KnownOne |= HighBits;
    789     }
    790     break;
    791   case ISD::SIGN_EXTEND_INREG: {
    792     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
    793 
    794     APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1);
    795     // If we only care about the highest bit, don't bother shifting right.
    796     if (MsbMask == DemandedMask) {
    797       unsigned ShAmt = ExVT.getScalarType().getSizeInBits();
    798       SDValue InOp = Op.getOperand(0);
    799 
    800       // Compute the correct shift amount type, which must be getShiftAmountTy
    801       // for scalar types after legalization.
    802       EVT ShiftAmtTy = Op.getValueType();
    803       if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
    804         ShiftAmtTy = getShiftAmountTy(ShiftAmtTy);
    805 
    806       SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, ShiftAmtTy);
    807       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
    808                                             Op.getValueType(), InOp, ShiftAmt));
    809     }
    810 
    811     // Sign extension.  Compute the demanded bits in the result that are not
    812     // present in the input.
    813     APInt NewBits =
    814       APInt::getHighBitsSet(BitWidth,
    815                             BitWidth - ExVT.getScalarType().getSizeInBits());
    816 
    817     // If none of the extended bits are demanded, eliminate the sextinreg.
    818     if ((NewBits & NewMask) == 0)
    819       return TLO.CombineTo(Op, Op.getOperand(0));
    820 
    821     APInt InSignBit =
    822       APInt::getSignBit(ExVT.getScalarType().getSizeInBits()).zext(BitWidth);
    823     APInt InputDemandedBits =
    824       APInt::getLowBitsSet(BitWidth,
    825                            ExVT.getScalarType().getSizeInBits()) &
    826       NewMask;
    827 
    828     // Since the sign extended bits are demanded, we know that the sign
    829     // bit is demanded.
    830     InputDemandedBits |= InSignBit;
    831 
    832     if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
    833                              KnownZero, KnownOne, TLO, Depth+1))
    834       return true;
    835     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    836 
    837     // If the sign bit of the input is known set or clear, then we know the
    838     // top bits of the result.
    839 
    840     // If the input sign bit is known zero, convert this into a zero extension.
    841     if (KnownZero.intersects(InSignBit))
    842       return TLO.CombineTo(Op,
    843                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,ExVT));
    844 
    845     if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
    846       KnownOne |= NewBits;
    847       KnownZero &= ~NewBits;
    848     } else {                       // Input sign bit unknown
    849       KnownZero &= ~NewBits;
    850       KnownOne &= ~NewBits;
    851     }
    852     break;
    853   }
    854   case ISD::BUILD_PAIR: {
    855     EVT HalfVT = Op.getOperand(0).getValueType();
    856     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
    857 
    858     APInt MaskLo = NewMask.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
    859     APInt MaskHi = NewMask.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
    860 
    861     APInt KnownZeroLo, KnownOneLo;
    862     APInt KnownZeroHi, KnownOneHi;
    863 
    864     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownZeroLo,
    865                              KnownOneLo, TLO, Depth + 1))
    866       return true;
    867 
    868     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownZeroHi,
    869                              KnownOneHi, TLO, Depth + 1))
    870       return true;
    871 
    872     KnownZero = KnownZeroLo.zext(BitWidth) |
    873                 KnownZeroHi.zext(BitWidth).shl(HalfBitWidth);
    874 
    875     KnownOne = KnownOneLo.zext(BitWidth) |
    876                KnownOneHi.zext(BitWidth).shl(HalfBitWidth);
    877     break;
    878   }
    879   case ISD::ZERO_EXTEND: {
    880     unsigned OperandBitWidth =
    881       Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
    882     APInt InMask = NewMask.trunc(OperandBitWidth);
    883 
    884     // If none of the top bits are demanded, convert this into an any_extend.
    885     APInt NewBits =
    886       APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
    887     if (!NewBits.intersects(NewMask))
    888       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
    889                                                Op.getValueType(),
    890                                                Op.getOperand(0)));
    891 
    892     if (SimplifyDemandedBits(Op.getOperand(0), InMask,
    893                              KnownZero, KnownOne, TLO, Depth+1))
    894       return true;
    895     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    896     KnownZero = KnownZero.zext(BitWidth);
    897     KnownOne = KnownOne.zext(BitWidth);
    898     KnownZero |= NewBits;
    899     break;
    900   }
    901   case ISD::SIGN_EXTEND: {
    902     EVT InVT = Op.getOperand(0).getValueType();
    903     unsigned InBits = InVT.getScalarType().getSizeInBits();
    904     APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
    905     APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
    906     APInt NewBits   = ~InMask & NewMask;
    907 
    908     // If none of the top bits are demanded, convert this into an any_extend.
    909     if (NewBits == 0)
    910       return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
    911                                               Op.getValueType(),
    912                                               Op.getOperand(0)));
    913 
    914     // Since some of the sign extended bits are demanded, we know that the sign
    915     // bit is demanded.
    916     APInt InDemandedBits = InMask & NewMask;
    917     InDemandedBits |= InSignBit;
    918     InDemandedBits = InDemandedBits.trunc(InBits);
    919 
    920     if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
    921                              KnownOne, TLO, Depth+1))
    922       return true;
    923     KnownZero = KnownZero.zext(BitWidth);
    924     KnownOne = KnownOne.zext(BitWidth);
    925 
    926     // If the sign bit is known zero, convert this to a zero extend.
    927     if (KnownZero.intersects(InSignBit))
    928       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
    929                                                Op.getValueType(),
    930                                                Op.getOperand(0)));
    931 
    932     // If the sign bit is known one, the top bits match.
    933     if (KnownOne.intersects(InSignBit)) {
    934       KnownOne |= NewBits;
    935       assert((KnownZero & NewBits) == 0);
    936     } else {   // Otherwise, top bits aren't known.
    937       assert((KnownOne & NewBits) == 0);
    938       assert((KnownZero & NewBits) == 0);
    939     }
    940     break;
    941   }
    942   case ISD::ANY_EXTEND: {
    943     unsigned OperandBitWidth =
    944       Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
    945     APInt InMask = NewMask.trunc(OperandBitWidth);
    946     if (SimplifyDemandedBits(Op.getOperand(0), InMask,
    947                              KnownZero, KnownOne, TLO, Depth+1))
    948       return true;
    949     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
    950     KnownZero = KnownZero.zext(BitWidth);
    951     KnownOne = KnownOne.zext(BitWidth);
    952     break;
    953   }
    954   case ISD::TRUNCATE: {
    955     // Simplify the input, using demanded bit information, and compute the known
    956     // zero/one bits live out.
    957     unsigned OperandBitWidth =
    958       Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
    959     APInt TruncMask = NewMask.zext(OperandBitWidth);
    960     if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
    961                              KnownZero, KnownOne, TLO, Depth+1))
    962       return true;
    963     KnownZero = KnownZero.trunc(BitWidth);
    964     KnownOne = KnownOne.trunc(BitWidth);
    965 
    966     // If the input is only used by this truncate, see if we can shrink it based
    967     // on the known demanded bits.
    968     if (Op.getOperand(0).getNode()->hasOneUse()) {
    969       SDValue In = Op.getOperand(0);
    970       switch (In.getOpcode()) {
    971       default: break;
    972       case ISD::SRL:
    973         // Shrink SRL by a constant if none of the high bits shifted in are
    974         // demanded.
    975         if (TLO.LegalTypes() &&
    976             !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
    977           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
    978           // undesirable.
    979           break;
    980         ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
    981         if (!ShAmt)
    982           break;
    983         SDValue Shift = In.getOperand(1);
    984         if (TLO.LegalTypes()) {
    985           uint64_t ShVal = ShAmt->getZExtValue();
    986           Shift =
    987             TLO.DAG.getConstant(ShVal, getShiftAmountTy(Op.getValueType()));
    988         }
    989 
    990         APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
    991                                                OperandBitWidth - BitWidth);
    992         HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth);
    993 
    994         if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
    995           // None of the shifted in bits are needed.  Add a truncate of the
    996           // shift input, then shift it.
    997           SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
    998                                              Op.getValueType(),
    999                                              In.getOperand(0));
   1000           return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
   1001                                                    Op.getValueType(),
   1002                                                    NewTrunc,
   1003                                                    Shift));
   1004         }
   1005         break;
   1006       }
   1007     }
   1008 
   1009     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
   1010     break;
   1011   }
   1012   case ISD::AssertZext: {
   1013     // AssertZext demands all of the high bits, plus any of the low bits
   1014     // demanded by its users.
   1015     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
   1016     APInt InMask = APInt::getLowBitsSet(BitWidth,
   1017                                         VT.getSizeInBits());
   1018     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask,
   1019                              KnownZero, KnownOne, TLO, Depth+1))
   1020       return true;
   1021     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
   1022 
   1023     KnownZero |= ~InMask & NewMask;
   1024     break;
   1025   }
   1026   case ISD::BITCAST:
   1027     // If this is an FP->Int bitcast and if the sign bit is the only
   1028     // thing demanded, turn this into a FGETSIGN.
   1029     if (!TLO.LegalOperations() &&
   1030         !Op.getValueType().isVector() &&
   1031         !Op.getOperand(0).getValueType().isVector() &&
   1032         NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) &&
   1033         Op.getOperand(0).getValueType().isFloatingPoint()) {
   1034       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType());
   1035       bool i32Legal  = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
   1036       if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple()) {
   1037         EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32;
   1038         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
   1039         // place.  We expect the SHL to be eliminated by other optimizations.
   1040         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0));
   1041         unsigned OpVTSizeInBits = Op.getValueType().getSizeInBits();
   1042         if (!OpVTLegal && OpVTSizeInBits > 32)
   1043           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign);
   1044         unsigned ShVal = Op.getValueType().getSizeInBits()-1;
   1045         SDValue ShAmt = TLO.DAG.getConstant(ShVal, Op.getValueType());
   1046         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
   1047                                                  Op.getValueType(),
   1048                                                  Sign, ShAmt));
   1049       }
   1050     }
   1051     break;
   1052   case ISD::ADD:
   1053   case ISD::MUL:
   1054   case ISD::SUB: {
   1055     // Add, Sub, and Mul don't demand any bits in positions beyond that
   1056     // of the highest bit demanded of them.
   1057     APInt LoMask = APInt::getLowBitsSet(BitWidth,
   1058                                         BitWidth - NewMask.countLeadingZeros());
   1059     if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
   1060                              KnownOne2, TLO, Depth+1))
   1061       return true;
   1062     if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
   1063                              KnownOne2, TLO, Depth+1))
   1064       return true;
   1065     // See if the operation should be performed at a smaller bit width.
   1066     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
   1067       return true;
   1068   }
   1069   // FALL THROUGH
   1070   default:
   1071     // Just use computeKnownBits to compute output bits.
   1072     TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth);
   1073     break;
   1074   }
   1075 
   1076   // If we know the value of all of the demanded bits, return this as a
   1077   // constant.
   1078   if ((NewMask & (KnownZero|KnownOne)) == NewMask)
   1079     return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
   1080 
   1081   return false;
   1082 }
   1083 
   1084 /// computeKnownBitsForTargetNode - Determine which of the bits specified
   1085 /// in Mask are known to be either zero or one and return them in the
   1086 /// KnownZero/KnownOne bitsets.
   1087 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
   1088                                                    APInt &KnownZero,
   1089                                                    APInt &KnownOne,
   1090                                                    const SelectionDAG &DAG,
   1091                                                    unsigned Depth) const {
   1092   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
   1093           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
   1094           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
   1095           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
   1096          "Should use MaskedValueIsZero if you don't know whether Op"
   1097          " is a target node!");
   1098   KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0);
   1099 }
   1100 
   1101 /// ComputeNumSignBitsForTargetNode - This method can be implemented by
   1102 /// targets that want to expose additional information about sign bits to the
   1103 /// DAG Combiner.
   1104 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
   1105                                                          const SelectionDAG &,
   1106                                                          unsigned Depth) const {
   1107   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
   1108           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
   1109           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
   1110           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
   1111          "Should use ComputeNumSignBits if you don't know whether Op"
   1112          " is a target node!");
   1113   return 1;
   1114 }
   1115 
   1116 /// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
   1117 /// one bit set. This differs from computeKnownBits in that it doesn't need to
   1118 /// determine which bit is set.
   1119 ///
   1120 static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
   1121   // A left-shift of a constant one will have exactly one bit set, because
   1122   // shifting the bit off the end is undefined.
   1123   if (Val.getOpcode() == ISD::SHL)
   1124     if (ConstantSDNode *C =
   1125          dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
   1126       if (C->getAPIntValue() == 1)
   1127         return true;
   1128 
   1129   // Similarly, a right-shift of a constant sign-bit will have exactly
   1130   // one bit set.
   1131   if (Val.getOpcode() == ISD::SRL)
   1132     if (ConstantSDNode *C =
   1133          dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
   1134       if (C->getAPIntValue().isSignBit())
   1135         return true;
   1136 
   1137   // More could be done here, though the above checks are enough
   1138   // to handle some common cases.
   1139 
   1140   // Fall back to computeKnownBits to catch other known cases.
   1141   EVT OpVT = Val.getValueType();
   1142   unsigned BitWidth = OpVT.getScalarType().getSizeInBits();
   1143   APInt KnownZero, KnownOne;
   1144   DAG.computeKnownBits(Val, KnownZero, KnownOne);
   1145   return (KnownZero.countPopulation() == BitWidth - 1) &&
   1146          (KnownOne.countPopulation() == 1);
   1147 }
   1148 
   1149 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
   1150   if (!N)
   1151     return false;
   1152 
   1153   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
   1154   if (!CN) {
   1155     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
   1156     if (!BV)
   1157       return false;
   1158 
   1159     BitVector UndefElements;
   1160     CN = BV->getConstantSplatNode(&UndefElements);
   1161     // Only interested in constant splats, and we don't try to handle undef
   1162     // elements in identifying boolean constants.
   1163     if (!CN || UndefElements.none())
   1164       return false;
   1165   }
   1166 
   1167   switch (getBooleanContents(N->getValueType(0))) {
   1168   case UndefinedBooleanContent:
   1169     return CN->getAPIntValue()[0];
   1170   case ZeroOrOneBooleanContent:
   1171     return CN->isOne();
   1172   case ZeroOrNegativeOneBooleanContent:
   1173     return CN->isAllOnesValue();
   1174   }
   1175 
   1176   llvm_unreachable("Invalid boolean contents");
   1177 }
   1178 
   1179 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
   1180   if (!N)
   1181     return false;
   1182 
   1183   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
   1184   if (!CN) {
   1185     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
   1186     if (!BV)
   1187       return false;
   1188 
   1189     BitVector UndefElements;
   1190     CN = BV->getConstantSplatNode(&UndefElements);
   1191     // Only interested in constant splats, and we don't try to handle undef
   1192     // elements in identifying boolean constants.
   1193     if (!CN || UndefElements.none())
   1194       return false;
   1195   }
   1196 
   1197   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
   1198     return !CN->getAPIntValue()[0];
   1199 
   1200   return CN->isNullValue();
   1201 }
   1202 
   1203 /// SimplifySetCC - Try to simplify a setcc built with the specified operands
   1204 /// and cc. If it is unable to simplify it, return a null SDValue.
   1205 SDValue
   1206 TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
   1207                               ISD::CondCode Cond, bool foldBooleans,
   1208                               DAGCombinerInfo &DCI, SDLoc dl) const {
   1209   SelectionDAG &DAG = DCI.DAG;
   1210 
   1211   // These setcc operations always fold.
   1212   switch (Cond) {
   1213   default: break;
   1214   case ISD::SETFALSE:
   1215   case ISD::SETFALSE2: return DAG.getConstant(0, VT);
   1216   case ISD::SETTRUE:
   1217   case ISD::SETTRUE2: {
   1218     TargetLowering::BooleanContent Cnt =
   1219         getBooleanContents(N0->getValueType(0));
   1220     return DAG.getConstant(
   1221         Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, VT);
   1222   }
   1223   }
   1224 
   1225   // Ensure that the constant occurs on the RHS, and fold constant
   1226   // comparisons.
   1227   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
   1228   if (isa<ConstantSDNode>(N0.getNode()) &&
   1229       (DCI.isBeforeLegalizeOps() ||
   1230        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
   1231     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
   1232 
   1233   if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
   1234     const APInt &C1 = N1C->getAPIntValue();
   1235 
   1236     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
   1237     // equality comparison, then we're just comparing whether X itself is
   1238     // zero.
   1239     if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
   1240         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
   1241         N0.getOperand(1).getOpcode() == ISD::Constant) {
   1242       const APInt &ShAmt
   1243         = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
   1244       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
   1245           ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
   1246         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
   1247           // (srl (ctlz x), 5) == 0  -> X != 0
   1248           // (srl (ctlz x), 5) != 1  -> X != 0
   1249           Cond = ISD::SETNE;
   1250         } else {
   1251           // (srl (ctlz x), 5) != 0  -> X == 0
   1252           // (srl (ctlz x), 5) == 1  -> X == 0
   1253           Cond = ISD::SETEQ;
   1254         }
   1255         SDValue Zero = DAG.getConstant(0, N0.getValueType());
   1256         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
   1257                             Zero, Cond);
   1258       }
   1259     }
   1260 
   1261     SDValue CTPOP = N0;
   1262     // Look through truncs that don't change the value of a ctpop.
   1263     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
   1264       CTPOP = N0.getOperand(0);
   1265 
   1266     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
   1267         (N0 == CTPOP || N0.getValueType().getSizeInBits() >
   1268                         Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) {
   1269       EVT CTVT = CTPOP.getValueType();
   1270       SDValue CTOp = CTPOP.getOperand(0);
   1271 
   1272       // (ctpop x) u< 2 -> (x & x-1) == 0
   1273       // (ctpop x) u> 1 -> (x & x-1) != 0
   1274       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
   1275         SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
   1276                                   DAG.getConstant(1, CTVT));
   1277         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
   1278         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
   1279         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, CTVT), CC);
   1280       }
   1281 
   1282       // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
   1283     }
   1284 
   1285     // (zext x) == C --> x == (trunc C)
   1286     if (DCI.isBeforeLegalize() && N0->hasOneUse() &&
   1287         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
   1288       unsigned MinBits = N0.getValueSizeInBits();
   1289       SDValue PreZExt;
   1290       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
   1291         // ZExt
   1292         MinBits = N0->getOperand(0).getValueSizeInBits();
   1293         PreZExt = N0->getOperand(0);
   1294       } else if (N0->getOpcode() == ISD::AND) {
   1295         // DAGCombine turns costly ZExts into ANDs
   1296         if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
   1297           if ((C->getAPIntValue()+1).isPowerOf2()) {
   1298             MinBits = C->getAPIntValue().countTrailingOnes();
   1299             PreZExt = N0->getOperand(0);
   1300           }
   1301       } else if (LoadSDNode *LN0 = dyn_cast<LoadSDNode>(N0)) {
   1302         // ZEXTLOAD
   1303         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
   1304           MinBits = LN0->getMemoryVT().getSizeInBits();
   1305           PreZExt = N0;
   1306         }
   1307       }
   1308 
   1309       // Make sure we're not losing bits from the constant.
   1310       if (MinBits > 0 &&
   1311           MinBits < C1.getBitWidth() && MinBits >= C1.getActiveBits()) {
   1312         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
   1313         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
   1314           // Will get folded away.
   1315           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreZExt);
   1316           SDValue C = DAG.getConstant(C1.trunc(MinBits), MinVT);
   1317           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
   1318         }
   1319       }
   1320     }
   1321 
   1322     // If the LHS is '(and load, const)', the RHS is 0,
   1323     // the test is for equality or unsigned, and all 1 bits of the const are
   1324     // in the same partial word, see if we can shorten the load.
   1325     if (DCI.isBeforeLegalize() &&
   1326         !ISD::isSignedIntSetCC(Cond) &&
   1327         N0.getOpcode() == ISD::AND && C1 == 0 &&
   1328         N0.getNode()->hasOneUse() &&
   1329         isa<LoadSDNode>(N0.getOperand(0)) &&
   1330         N0.getOperand(0).getNode()->hasOneUse() &&
   1331         isa<ConstantSDNode>(N0.getOperand(1))) {
   1332       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
   1333       APInt bestMask;
   1334       unsigned bestWidth = 0, bestOffset = 0;
   1335       if (!Lod->isVolatile() && Lod->isUnindexed()) {
   1336         unsigned origWidth = N0.getValueType().getSizeInBits();
   1337         unsigned maskWidth = origWidth;
   1338         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
   1339         // 8 bits, but have to be careful...
   1340         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
   1341           origWidth = Lod->getMemoryVT().getSizeInBits();
   1342         const APInt &Mask =
   1343           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
   1344         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
   1345           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
   1346           for (unsigned offset=0; offset<origWidth/width; offset++) {
   1347             if ((newMask & Mask) == Mask) {
   1348               if (!getDataLayout()->isLittleEndian())
   1349                 bestOffset = (origWidth/width - offset - 1) * (width/8);
   1350               else
   1351                 bestOffset = (uint64_t)offset * (width/8);
   1352               bestMask = Mask.lshr(offset * (width/8) * 8);
   1353               bestWidth = width;
   1354               break;
   1355             }
   1356             newMask = newMask << width;
   1357           }
   1358         }
   1359       }
   1360       if (bestWidth) {
   1361         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
   1362         if (newVT.isRound()) {
   1363           EVT PtrType = Lod->getOperand(1).getValueType();
   1364           SDValue Ptr = Lod->getBasePtr();
   1365           if (bestOffset != 0)
   1366             Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
   1367                               DAG.getConstant(bestOffset, PtrType));
   1368           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
   1369           SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
   1370                                 Lod->getPointerInfo().getWithOffset(bestOffset),
   1371                                         false, false, false, NewAlign);
   1372           return DAG.getSetCC(dl, VT,
   1373                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
   1374                                       DAG.getConstant(bestMask.trunc(bestWidth),
   1375                                                       newVT)),
   1376                               DAG.getConstant(0LL, newVT), Cond);
   1377         }
   1378       }
   1379     }
   1380 
   1381     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
   1382     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
   1383       unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
   1384 
   1385       // If the comparison constant has bits in the upper part, the
   1386       // zero-extended value could never match.
   1387       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
   1388                                               C1.getBitWidth() - InSize))) {
   1389         switch (Cond) {
   1390         case ISD::SETUGT:
   1391         case ISD::SETUGE:
   1392         case ISD::SETEQ: return DAG.getConstant(0, VT);
   1393         case ISD::SETULT:
   1394         case ISD::SETULE:
   1395         case ISD::SETNE: return DAG.getConstant(1, VT);
   1396         case ISD::SETGT:
   1397         case ISD::SETGE:
   1398           // True if the sign bit of C1 is set.
   1399           return DAG.getConstant(C1.isNegative(), VT);
   1400         case ISD::SETLT:
   1401         case ISD::SETLE:
   1402           // True if the sign bit of C1 isn't set.
   1403           return DAG.getConstant(C1.isNonNegative(), VT);
   1404         default:
   1405           break;
   1406         }
   1407       }
   1408 
   1409       // Otherwise, we can perform the comparison with the low bits.
   1410       switch (Cond) {
   1411       case ISD::SETEQ:
   1412       case ISD::SETNE:
   1413       case ISD::SETUGT:
   1414       case ISD::SETUGE:
   1415       case ISD::SETULT:
   1416       case ISD::SETULE: {
   1417         EVT newVT = N0.getOperand(0).getValueType();
   1418         if (DCI.isBeforeLegalizeOps() ||
   1419             (isOperationLegal(ISD::SETCC, newVT) &&
   1420              getCondCodeAction(Cond, newVT.getSimpleVT()) == Legal)) {
   1421           EVT NewSetCCVT = getSetCCResultType(*DAG.getContext(), newVT);
   1422           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), newVT);
   1423 
   1424           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
   1425                                           NewConst, Cond);
   1426           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
   1427         }
   1428         break;
   1429       }
   1430       default:
   1431         break;   // todo, be more careful with signed comparisons
   1432       }
   1433     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
   1434                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
   1435       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
   1436       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
   1437       EVT ExtDstTy = N0.getValueType();
   1438       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
   1439 
   1440       // If the constant doesn't fit into the number of bits for the source of
   1441       // the sign extension, it is impossible for both sides to be equal.
   1442       if (C1.getMinSignedBits() > ExtSrcTyBits)
   1443         return DAG.getConstant(Cond == ISD::SETNE, VT);
   1444 
   1445       SDValue ZextOp;
   1446       EVT Op0Ty = N0.getOperand(0).getValueType();
   1447       if (Op0Ty == ExtSrcTy) {
   1448         ZextOp = N0.getOperand(0);
   1449       } else {
   1450         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
   1451         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
   1452                               DAG.getConstant(Imm, Op0Ty));
   1453       }
   1454       if (!DCI.isCalledByLegalizer())
   1455         DCI.AddToWorklist(ZextOp.getNode());
   1456       // Otherwise, make this a use of a zext.
   1457       return DAG.getSetCC(dl, VT, ZextOp,
   1458                           DAG.getConstant(C1 & APInt::getLowBitsSet(
   1459                                                               ExtDstTyBits,
   1460                                                               ExtSrcTyBits),
   1461                                           ExtDstTy),
   1462                           Cond);
   1463     } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
   1464                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
   1465       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
   1466       if (N0.getOpcode() == ISD::SETCC &&
   1467           isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
   1468         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
   1469         if (TrueWhenTrue)
   1470           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
   1471         // Invert the condition.
   1472         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
   1473         CC = ISD::getSetCCInverse(CC,
   1474                                   N0.getOperand(0).getValueType().isInteger());
   1475         if (DCI.isBeforeLegalizeOps() ||
   1476             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
   1477           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
   1478       }
   1479 
   1480       if ((N0.getOpcode() == ISD::XOR ||
   1481            (N0.getOpcode() == ISD::AND &&
   1482             N0.getOperand(0).getOpcode() == ISD::XOR &&
   1483             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
   1484           isa<ConstantSDNode>(N0.getOperand(1)) &&
   1485           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
   1486         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
   1487         // can only do this if the top bits are known zero.
   1488         unsigned BitWidth = N0.getValueSizeInBits();
   1489         if (DAG.MaskedValueIsZero(N0,
   1490                                   APInt::getHighBitsSet(BitWidth,
   1491                                                         BitWidth-1))) {
   1492           // Okay, get the un-inverted input value.
   1493           SDValue Val;
   1494           if (N0.getOpcode() == ISD::XOR)
   1495             Val = N0.getOperand(0);
   1496           else {
   1497             assert(N0.getOpcode() == ISD::AND &&
   1498                     N0.getOperand(0).getOpcode() == ISD::XOR);
   1499             // ((X^1)&1)^1 -> X & 1
   1500             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
   1501                               N0.getOperand(0).getOperand(0),
   1502                               N0.getOperand(1));
   1503           }
   1504 
   1505           return DAG.getSetCC(dl, VT, Val, N1,
   1506                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
   1507         }
   1508       } else if (N1C->getAPIntValue() == 1 &&
   1509                  (VT == MVT::i1 ||
   1510                   getBooleanContents(N0->getValueType(0)) ==
   1511                       ZeroOrOneBooleanContent)) {
   1512         SDValue Op0 = N0;
   1513         if (Op0.getOpcode() == ISD::TRUNCATE)
   1514           Op0 = Op0.getOperand(0);
   1515 
   1516         if ((Op0.getOpcode() == ISD::XOR) &&
   1517             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
   1518             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
   1519           // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
   1520           Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
   1521           return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
   1522                               Cond);
   1523         }
   1524         if (Op0.getOpcode() == ISD::AND &&
   1525             isa<ConstantSDNode>(Op0.getOperand(1)) &&
   1526             cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
   1527           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
   1528           if (Op0.getValueType().bitsGT(VT))
   1529             Op0 = DAG.getNode(ISD::AND, dl, VT,
   1530                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
   1531                           DAG.getConstant(1, VT));
   1532           else if (Op0.getValueType().bitsLT(VT))
   1533             Op0 = DAG.getNode(ISD::AND, dl, VT,
   1534                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
   1535                         DAG.getConstant(1, VT));
   1536 
   1537           return DAG.getSetCC(dl, VT, Op0,
   1538                               DAG.getConstant(0, Op0.getValueType()),
   1539                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
   1540         }
   1541         if (Op0.getOpcode() == ISD::AssertZext &&
   1542             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
   1543           return DAG.getSetCC(dl, VT, Op0,
   1544                               DAG.getConstant(0, Op0.getValueType()),
   1545                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
   1546       }
   1547     }
   1548 
   1549     APInt MinVal, MaxVal;
   1550     unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
   1551     if (ISD::isSignedIntSetCC(Cond)) {
   1552       MinVal = APInt::getSignedMinValue(OperandBitSize);
   1553       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
   1554     } else {
   1555       MinVal = APInt::getMinValue(OperandBitSize);
   1556       MaxVal = APInt::getMaxValue(OperandBitSize);
   1557     }
   1558 
   1559     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
   1560     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
   1561       if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
   1562       // X >= C0 --> X > (C0 - 1)
   1563       APInt C = C1 - 1;
   1564       ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
   1565       if ((DCI.isBeforeLegalizeOps() ||
   1566            isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
   1567           (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 &&
   1568                                 isLegalICmpImmediate(C.getSExtValue())))) {
   1569         return DAG.getSetCC(dl, VT, N0,
   1570                             DAG.getConstant(C, N1.getValueType()),
   1571                             NewCC);
   1572       }
   1573     }
   1574 
   1575     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
   1576       if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
   1577       // X <= C0 --> X < (C0 + 1)
   1578       APInt C = C1 + 1;
   1579       ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
   1580       if ((DCI.isBeforeLegalizeOps() ||
   1581            isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
   1582           (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 &&
   1583                                 isLegalICmpImmediate(C.getSExtValue())))) {
   1584         return DAG.getSetCC(dl, VT, N0,
   1585                             DAG.getConstant(C, N1.getValueType()),
   1586                             NewCC);
   1587       }
   1588     }
   1589 
   1590     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
   1591       return DAG.getConstant(0, VT);      // X < MIN --> false
   1592     if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
   1593       return DAG.getConstant(1, VT);      // X >= MIN --> true
   1594     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
   1595       return DAG.getConstant(0, VT);      // X > MAX --> false
   1596     if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
   1597       return DAG.getConstant(1, VT);      // X <= MAX --> true
   1598 
   1599     // Canonicalize setgt X, Min --> setne X, Min
   1600     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
   1601       return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
   1602     // Canonicalize setlt X, Max --> setne X, Max
   1603     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
   1604       return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
   1605 
   1606     // If we have setult X, 1, turn it into seteq X, 0
   1607     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
   1608       return DAG.getSetCC(dl, VT, N0,
   1609                           DAG.getConstant(MinVal, N0.getValueType()),
   1610                           ISD::SETEQ);
   1611     // If we have setugt X, Max-1, turn it into seteq X, Max
   1612     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
   1613       return DAG.getSetCC(dl, VT, N0,
   1614                           DAG.getConstant(MaxVal, N0.getValueType()),
   1615                           ISD::SETEQ);
   1616 
   1617     // If we have "setcc X, C0", check to see if we can shrink the immediate
   1618     // by changing cc.
   1619 
   1620     // SETUGT X, SINTMAX  -> SETLT X, 0
   1621     if (Cond == ISD::SETUGT &&
   1622         C1 == APInt::getSignedMaxValue(OperandBitSize))
   1623       return DAG.getSetCC(dl, VT, N0,
   1624                           DAG.getConstant(0, N1.getValueType()),
   1625                           ISD::SETLT);
   1626 
   1627     // SETULT X, SINTMIN  -> SETGT X, -1
   1628     if (Cond == ISD::SETULT &&
   1629         C1 == APInt::getSignedMinValue(OperandBitSize)) {
   1630       SDValue ConstMinusOne =
   1631           DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
   1632                           N1.getValueType());
   1633       return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
   1634     }
   1635 
   1636     // Fold bit comparisons when we can.
   1637     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
   1638         (VT == N0.getValueType() ||
   1639          (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
   1640         N0.getOpcode() == ISD::AND)
   1641       if (ConstantSDNode *AndRHS =
   1642                   dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
   1643         EVT ShiftTy = DCI.isBeforeLegalize() ?
   1644           getPointerTy() : getShiftAmountTy(N0.getValueType());
   1645         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
   1646           // Perform the xform if the AND RHS is a single bit.
   1647           if (AndRHS->getAPIntValue().isPowerOf2()) {
   1648             return DAG.getNode(ISD::TRUNCATE, dl, VT,
   1649                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
   1650                    DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy)));
   1651           }
   1652         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
   1653           // (X & 8) == 8  -->  (X & 8) >> 3
   1654           // Perform the xform if C1 is a single bit.
   1655           if (C1.isPowerOf2()) {
   1656             return DAG.getNode(ISD::TRUNCATE, dl, VT,
   1657                                DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
   1658                                       DAG.getConstant(C1.logBase2(), ShiftTy)));
   1659           }
   1660         }
   1661       }
   1662 
   1663     if (C1.getMinSignedBits() <= 64 &&
   1664         !isLegalICmpImmediate(C1.getSExtValue())) {
   1665       // (X & -256) == 256 -> (X >> 8) == 1
   1666       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
   1667           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
   1668         if (ConstantSDNode *AndRHS =
   1669             dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
   1670           const APInt &AndRHSC = AndRHS->getAPIntValue();
   1671           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
   1672             unsigned ShiftBits = AndRHSC.countTrailingZeros();
   1673             EVT ShiftTy = DCI.isBeforeLegalize() ?
   1674               getPointerTy() : getShiftAmountTy(N0.getValueType());
   1675             EVT CmpTy = N0.getValueType();
   1676             SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
   1677                                         DAG.getConstant(ShiftBits, ShiftTy));
   1678             SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), CmpTy);
   1679             return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
   1680           }
   1681         }
   1682       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
   1683                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
   1684         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
   1685         // X <  0x100000000 -> (X >> 32) <  1
   1686         // X >= 0x100000000 -> (X >> 32) >= 1
   1687         // X <= 0x0ffffffff -> (X >> 32) <  1
   1688         // X >  0x0ffffffff -> (X >> 32) >= 1
   1689         unsigned ShiftBits;
   1690         APInt NewC = C1;
   1691         ISD::CondCode NewCond = Cond;
   1692         if (AdjOne) {
   1693           ShiftBits = C1.countTrailingOnes();
   1694           NewC = NewC + 1;
   1695           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
   1696         } else {
   1697           ShiftBits = C1.countTrailingZeros();
   1698         }
   1699         NewC = NewC.lshr(ShiftBits);
   1700         if (ShiftBits && isLegalICmpImmediate(NewC.getSExtValue())) {
   1701           EVT ShiftTy = DCI.isBeforeLegalize() ?
   1702             getPointerTy() : getShiftAmountTy(N0.getValueType());
   1703           EVT CmpTy = N0.getValueType();
   1704           SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
   1705                                       DAG.getConstant(ShiftBits, ShiftTy));
   1706           SDValue CmpRHS = DAG.getConstant(NewC, CmpTy);
   1707           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
   1708         }
   1709       }
   1710     }
   1711   }
   1712 
   1713   if (isa<ConstantFPSDNode>(N0.getNode())) {
   1714     // Constant fold or commute setcc.
   1715     SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
   1716     if (O.getNode()) return O;
   1717   } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
   1718     // If the RHS of an FP comparison is a constant, simplify it away in
   1719     // some cases.
   1720     if (CFP->getValueAPF().isNaN()) {
   1721       // If an operand is known to be a nan, we can fold it.
   1722       switch (ISD::getUnorderedFlavor(Cond)) {
   1723       default: llvm_unreachable("Unknown flavor!");
   1724       case 0:  // Known false.
   1725         return DAG.getConstant(0, VT);
   1726       case 1:  // Known true.
   1727         return DAG.getConstant(1, VT);
   1728       case 2:  // Undefined.
   1729         return DAG.getUNDEF(VT);
   1730       }
   1731     }
   1732 
   1733     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
   1734     // constant if knowing that the operand is non-nan is enough.  We prefer to
   1735     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
   1736     // materialize 0.0.
   1737     if (Cond == ISD::SETO || Cond == ISD::SETUO)
   1738       return DAG.getSetCC(dl, VT, N0, N0, Cond);
   1739 
   1740     // If the condition is not legal, see if we can find an equivalent one
   1741     // which is legal.
   1742     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
   1743       // If the comparison was an awkward floating-point == or != and one of
   1744       // the comparison operands is infinity or negative infinity, convert the
   1745       // condition to a less-awkward <= or >=.
   1746       if (CFP->getValueAPF().isInfinity()) {
   1747         if (CFP->getValueAPF().isNegative()) {
   1748           if (Cond == ISD::SETOEQ &&
   1749               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
   1750             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
   1751           if (Cond == ISD::SETUEQ &&
   1752               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
   1753             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
   1754           if (Cond == ISD::SETUNE &&
   1755               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
   1756             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
   1757           if (Cond == ISD::SETONE &&
   1758               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
   1759             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
   1760         } else {
   1761           if (Cond == ISD::SETOEQ &&
   1762               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
   1763             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
   1764           if (Cond == ISD::SETUEQ &&
   1765               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
   1766             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
   1767           if (Cond == ISD::SETUNE &&
   1768               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
   1769             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
   1770           if (Cond == ISD::SETONE &&
   1771               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
   1772             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
   1773         }
   1774       }
   1775     }
   1776   }
   1777 
   1778   if (N0 == N1) {
   1779     // The sext(setcc()) => setcc() optimization relies on the appropriate
   1780     // constant being emitted.
   1781     uint64_t EqVal = 0;
   1782     switch (getBooleanContents(N0.getValueType())) {
   1783     case UndefinedBooleanContent:
   1784     case ZeroOrOneBooleanContent:
   1785       EqVal = ISD::isTrueWhenEqual(Cond);
   1786       break;
   1787     case ZeroOrNegativeOneBooleanContent:
   1788       EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0;
   1789       break;
   1790     }
   1791 
   1792     // We can always fold X == X for integer setcc's.
   1793     if (N0.getValueType().isInteger()) {
   1794       return DAG.getConstant(EqVal, VT);
   1795     }
   1796     unsigned UOF = ISD::getUnorderedFlavor(Cond);
   1797     if (UOF == 2)   // FP operators that are undefined on NaNs.
   1798       return DAG.getConstant(EqVal, VT);
   1799     if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
   1800       return DAG.getConstant(EqVal, VT);
   1801     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
   1802     // if it is not already.
   1803     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
   1804     if (NewCond != Cond && (DCI.isBeforeLegalizeOps() ||
   1805           getCondCodeAction(NewCond, N0.getSimpleValueType()) == Legal))
   1806       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
   1807   }
   1808 
   1809   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
   1810       N0.getValueType().isInteger()) {
   1811     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
   1812         N0.getOpcode() == ISD::XOR) {
   1813       // Simplify (X+Y) == (X+Z) -->  Y == Z
   1814       if (N0.getOpcode() == N1.getOpcode()) {
   1815         if (N0.getOperand(0) == N1.getOperand(0))
   1816           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
   1817         if (N0.getOperand(1) == N1.getOperand(1))
   1818           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
   1819         if (DAG.isCommutativeBinOp(N0.getOpcode())) {
   1820           // If X op Y == Y op X, try other combinations.
   1821           if (N0.getOperand(0) == N1.getOperand(1))
   1822             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
   1823                                 Cond);
   1824           if (N0.getOperand(1) == N1.getOperand(0))
   1825             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
   1826                                 Cond);
   1827         }
   1828       }
   1829 
   1830       // If RHS is a legal immediate value for a compare instruction, we need
   1831       // to be careful about increasing register pressure needlessly.
   1832       bool LegalRHSImm = false;
   1833 
   1834       if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
   1835         if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
   1836           // Turn (X+C1) == C2 --> X == C2-C1
   1837           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
   1838             return DAG.getSetCC(dl, VT, N0.getOperand(0),
   1839                                 DAG.getConstant(RHSC->getAPIntValue()-
   1840                                                 LHSR->getAPIntValue(),
   1841                                 N0.getValueType()), Cond);
   1842           }
   1843 
   1844           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
   1845           if (N0.getOpcode() == ISD::XOR)
   1846             // If we know that all of the inverted bits are zero, don't bother
   1847             // performing the inversion.
   1848             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
   1849               return
   1850                 DAG.getSetCC(dl, VT, N0.getOperand(0),
   1851                              DAG.getConstant(LHSR->getAPIntValue() ^
   1852                                                RHSC->getAPIntValue(),
   1853                                              N0.getValueType()),
   1854                              Cond);
   1855         }
   1856 
   1857         // Turn (C1-X) == C2 --> X == C1-C2
   1858         if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
   1859           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
   1860             return
   1861               DAG.getSetCC(dl, VT, N0.getOperand(1),
   1862                            DAG.getConstant(SUBC->getAPIntValue() -
   1863                                              RHSC->getAPIntValue(),
   1864                                            N0.getValueType()),
   1865                            Cond);
   1866           }
   1867         }
   1868 
   1869         // Could RHSC fold directly into a compare?
   1870         if (RHSC->getValueType(0).getSizeInBits() <= 64)
   1871           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
   1872       }
   1873 
   1874       // Simplify (X+Z) == X -->  Z == 0
   1875       // Don't do this if X is an immediate that can fold into a cmp
   1876       // instruction and X+Z has other uses. It could be an induction variable
   1877       // chain, and the transform would increase register pressure.
   1878       if (!LegalRHSImm || N0.getNode()->hasOneUse()) {
   1879         if (N0.getOperand(0) == N1)
   1880           return DAG.getSetCC(dl, VT, N0.getOperand(1),
   1881                               DAG.getConstant(0, N0.getValueType()), Cond);
   1882         if (N0.getOperand(1) == N1) {
   1883           if (DAG.isCommutativeBinOp(N0.getOpcode()))
   1884             return DAG.getSetCC(dl, VT, N0.getOperand(0),
   1885                                 DAG.getConstant(0, N0.getValueType()), Cond);
   1886           if (N0.getNode()->hasOneUse()) {
   1887             assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
   1888             // (Z-X) == X  --> Z == X<<1
   1889             SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N1,
   1890                        DAG.getConstant(1, getShiftAmountTy(N1.getValueType())));
   1891             if (!DCI.isCalledByLegalizer())
   1892               DCI.AddToWorklist(SH.getNode());
   1893             return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
   1894           }
   1895         }
   1896       }
   1897     }
   1898 
   1899     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
   1900         N1.getOpcode() == ISD::XOR) {
   1901       // Simplify  X == (X+Z) -->  Z == 0
   1902       if (N1.getOperand(0) == N0)
   1903         return DAG.getSetCC(dl, VT, N1.getOperand(1),
   1904                         DAG.getConstant(0, N1.getValueType()), Cond);
   1905       if (N1.getOperand(1) == N0) {
   1906         if (DAG.isCommutativeBinOp(N1.getOpcode()))
   1907           return DAG.getSetCC(dl, VT, N1.getOperand(0),
   1908                           DAG.getConstant(0, N1.getValueType()), Cond);
   1909         if (N1.getNode()->hasOneUse()) {
   1910           assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
   1911           // X == (Z-X)  --> X<<1 == Z
   1912           SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
   1913                        DAG.getConstant(1, getShiftAmountTy(N0.getValueType())));
   1914           if (!DCI.isCalledByLegalizer())
   1915             DCI.AddToWorklist(SH.getNode());
   1916           return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
   1917         }
   1918       }
   1919     }
   1920 
   1921     // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
   1922     // Note that where y is variable and is known to have at most
   1923     // one bit set (for example, if it is z&1) we cannot do this;
   1924     // the expressions are not equivalent when y==0.
   1925     if (N0.getOpcode() == ISD::AND)
   1926       if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
   1927         if (ValueHasExactlyOneBitSet(N1, DAG)) {
   1928           Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
   1929           if (DCI.isBeforeLegalizeOps() ||
   1930               isCondCodeLegal(Cond, N0.getSimpleValueType())) {
   1931             SDValue Zero = DAG.getConstant(0, N1.getValueType());
   1932             return DAG.getSetCC(dl, VT, N0, Zero, Cond);
   1933           }
   1934         }
   1935       }
   1936     if (N1.getOpcode() == ISD::AND)
   1937       if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
   1938         if (ValueHasExactlyOneBitSet(N0, DAG)) {
   1939           Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
   1940           if (DCI.isBeforeLegalizeOps() ||
   1941               isCondCodeLegal(Cond, N1.getSimpleValueType())) {
   1942             SDValue Zero = DAG.getConstant(0, N0.getValueType());
   1943             return DAG.getSetCC(dl, VT, N1, Zero, Cond);
   1944           }
   1945         }
   1946       }
   1947   }
   1948 
   1949   // Fold away ALL boolean setcc's.
   1950   SDValue Temp;
   1951   if (N0.getValueType() == MVT::i1 && foldBooleans) {
   1952     switch (Cond) {
   1953     default: llvm_unreachable("Unknown integer setcc!");
   1954     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
   1955       Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
   1956       N0 = DAG.getNOT(dl, Temp, MVT::i1);
   1957       if (!DCI.isCalledByLegalizer())
   1958         DCI.AddToWorklist(Temp.getNode());
   1959       break;
   1960     case ISD::SETNE:  // X != Y   -->  (X^Y)
   1961       N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
   1962       break;
   1963     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
   1964     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
   1965       Temp = DAG.getNOT(dl, N0, MVT::i1);
   1966       N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
   1967       if (!DCI.isCalledByLegalizer())
   1968         DCI.AddToWorklist(Temp.getNode());
   1969       break;
   1970     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
   1971     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
   1972       Temp = DAG.getNOT(dl, N1, MVT::i1);
   1973       N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
   1974       if (!DCI.isCalledByLegalizer())
   1975         DCI.AddToWorklist(Temp.getNode());
   1976       break;
   1977     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
   1978     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
   1979       Temp = DAG.getNOT(dl, N0, MVT::i1);
   1980       N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
   1981       if (!DCI.isCalledByLegalizer())
   1982         DCI.AddToWorklist(Temp.getNode());
   1983       break;
   1984     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
   1985     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
   1986       Temp = DAG.getNOT(dl, N1, MVT::i1);
   1987       N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
   1988       break;
   1989     }
   1990     if (VT != MVT::i1) {
   1991       if (!DCI.isCalledByLegalizer())
   1992         DCI.AddToWorklist(N0.getNode());
   1993       // FIXME: If running after legalize, we probably can't do this.
   1994       N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
   1995     }
   1996     return N0;
   1997   }
   1998 
   1999   // Could not fold it.
   2000   return SDValue();
   2001 }
   2002 
   2003 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
   2004 /// node is a GlobalAddress + offset.
   2005 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA,
   2006                                     int64_t &Offset) const {
   2007   if (isa<GlobalAddressSDNode>(N)) {
   2008     GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
   2009     GA = GASD->getGlobal();
   2010     Offset += GASD->getOffset();
   2011     return true;
   2012   }
   2013 
   2014   if (N->getOpcode() == ISD::ADD) {
   2015     SDValue N1 = N->getOperand(0);
   2016     SDValue N2 = N->getOperand(1);
   2017     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
   2018       ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
   2019       if (V) {
   2020         Offset += V->getSExtValue();
   2021         return true;
   2022       }
   2023     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
   2024       ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
   2025       if (V) {
   2026         Offset += V->getSExtValue();
   2027         return true;
   2028       }
   2029     }
   2030   }
   2031 
   2032   return false;
   2033 }
   2034 
   2035 
   2036 SDValue TargetLowering::
   2037 PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
   2038   // Default implementation: no optimization.
   2039   return SDValue();
   2040 }
   2041 
   2042 //===----------------------------------------------------------------------===//
   2043 //  Inline Assembler Implementation Methods
   2044 //===----------------------------------------------------------------------===//
   2045 
   2046 
   2047 TargetLowering::ConstraintType
   2048 TargetLowering::getConstraintType(const std::string &Constraint) const {
   2049   unsigned S = Constraint.size();
   2050 
   2051   if (S == 1) {
   2052     switch (Constraint[0]) {
   2053     default: break;
   2054     case 'r': return C_RegisterClass;
   2055     case 'm':    // memory
   2056     case 'o':    // offsetable
   2057     case 'V':    // not offsetable
   2058       return C_Memory;
   2059     case 'i':    // Simple Integer or Relocatable Constant
   2060     case 'n':    // Simple Integer
   2061     case 'E':    // Floating Point Constant
   2062     case 'F':    // Floating Point Constant
   2063     case 's':    // Relocatable Constant
   2064     case 'p':    // Address.
   2065     case 'X':    // Allow ANY value.
   2066     case 'I':    // Target registers.
   2067     case 'J':
   2068     case 'K':
   2069     case 'L':
   2070     case 'M':
   2071     case 'N':
   2072     case 'O':
   2073     case 'P':
   2074     case '<':
   2075     case '>':
   2076       return C_Other;
   2077     }
   2078   }
   2079 
   2080   if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') {
   2081     if (S == 8 && !Constraint.compare(1, 6, "memory", 6))  // "{memory}"
   2082       return C_Memory;
   2083     return C_Register;
   2084   }
   2085   return C_Unknown;
   2086 }
   2087 
   2088 /// LowerXConstraint - try to replace an X constraint, which matches anything,
   2089 /// with another that has more specific requirements based on the type of the
   2090 /// corresponding operand.
   2091 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
   2092   if (ConstraintVT.isInteger())
   2093     return "r";
   2094   if (ConstraintVT.isFloatingPoint())
   2095     return "f";      // works for many targets
   2096   return nullptr;
   2097 }
   2098 
   2099 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
   2100 /// vector.  If it is invalid, don't add anything to Ops.
   2101 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
   2102                                                   std::string &Constraint,
   2103                                                   std::vector<SDValue> &Ops,
   2104                                                   SelectionDAG &DAG) const {
   2105 
   2106   if (Constraint.length() > 1) return;
   2107 
   2108   char ConstraintLetter = Constraint[0];
   2109   switch (ConstraintLetter) {
   2110   default: break;
   2111   case 'X':     // Allows any operand; labels (basic block) use this.
   2112     if (Op.getOpcode() == ISD::BasicBlock) {
   2113       Ops.push_back(Op);
   2114       return;
   2115     }
   2116     // fall through
   2117   case 'i':    // Simple Integer or Relocatable Constant
   2118   case 'n':    // Simple Integer
   2119   case 's': {  // Relocatable Constant
   2120     // These operands are interested in values of the form (GV+C), where C may
   2121     // be folded in as an offset of GV, or it may be explicitly added.  Also, it
   2122     // is possible and fine if either GV or C are missing.
   2123     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
   2124     GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
   2125 
   2126     // If we have "(add GV, C)", pull out GV/C
   2127     if (Op.getOpcode() == ISD::ADD) {
   2128       C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
   2129       GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
   2130       if (!C || !GA) {
   2131         C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
   2132         GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
   2133       }
   2134       if (!C || !GA)
   2135         C = nullptr, GA = nullptr;
   2136     }
   2137 
   2138     // If we find a valid operand, map to the TargetXXX version so that the
   2139     // value itself doesn't get selected.
   2140     if (GA) {   // Either &GV   or   &GV+C
   2141       if (ConstraintLetter != 'n') {
   2142         int64_t Offs = GA->getOffset();
   2143         if (C) Offs += C->getZExtValue();
   2144         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
   2145                                                  C ? SDLoc(C) : SDLoc(),
   2146                                                  Op.getValueType(), Offs));
   2147         return;
   2148       }
   2149     }
   2150     if (C) {   // just C, no GV.
   2151       // Simple constants are not allowed for 's'.
   2152       if (ConstraintLetter != 's') {
   2153         // gcc prints these as sign extended.  Sign extend value to 64 bits
   2154         // now; without this it would get ZExt'd later in
   2155         // ScheduleDAGSDNodes::EmitNode, which is very generic.
   2156         Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
   2157                                             MVT::i64));
   2158         return;
   2159       }
   2160     }
   2161     break;
   2162   }
   2163   }
   2164 }
   2165 
   2166 std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
   2167 getRegForInlineAsmConstraint(const std::string &Constraint,
   2168                              MVT VT) const {
   2169   if (Constraint.empty() || Constraint[0] != '{')
   2170     return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr));
   2171   assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
   2172 
   2173   // Remove the braces from around the name.
   2174   StringRef RegName(Constraint.data()+1, Constraint.size()-2);
   2175 
   2176   std::pair<unsigned, const TargetRegisterClass*> R =
   2177     std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr));
   2178 
   2179   // Figure out which register class contains this reg.
   2180   const TargetRegisterInfo *RI = getTargetMachine().getRegisterInfo();
   2181   for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
   2182        E = RI->regclass_end(); RCI != E; ++RCI) {
   2183     const TargetRegisterClass *RC = *RCI;
   2184 
   2185     // If none of the value types for this register class are valid, we
   2186     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
   2187     if (!isLegalRC(RC))
   2188       continue;
   2189 
   2190     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
   2191          I != E; ++I) {
   2192       if (RegName.equals_lower(RI->getName(*I))) {
   2193         std::pair<unsigned, const TargetRegisterClass*> S =
   2194           std::make_pair(*I, RC);
   2195 
   2196         // If this register class has the requested value type, return it,
   2197         // otherwise keep searching and return the first class found
   2198         // if no other is found which explicitly has the requested type.
   2199         if (RC->hasType(VT))
   2200           return S;
   2201         else if (!R.second)
   2202           R = S;
   2203       }
   2204     }
   2205   }
   2206 
   2207   return R;
   2208 }
   2209 
   2210 //===----------------------------------------------------------------------===//
   2211 // Constraint Selection.
   2212 
   2213 /// isMatchingInputConstraint - Return true of this is an input operand that is
   2214 /// a matching constraint like "4".
   2215 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
   2216   assert(!ConstraintCode.empty() && "No known constraint!");
   2217   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
   2218 }
   2219 
   2220 /// getMatchedOperand - If this is an input matching constraint, this method
   2221 /// returns the output operand it matches.
   2222 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
   2223   assert(!ConstraintCode.empty() && "No known constraint!");
   2224   return atoi(ConstraintCode.c_str());
   2225 }
   2226 
   2227 
   2228 /// ParseConstraints - Split up the constraint string from the inline
   2229 /// assembly value into the specific constraints and their prefixes,
   2230 /// and also tie in the associated operand values.
   2231 /// If this returns an empty vector, and if the constraint string itself
   2232 /// isn't empty, there was an error parsing.
   2233 TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints(
   2234     ImmutableCallSite CS) const {
   2235   /// ConstraintOperands - Information about all of the constraints.
   2236   AsmOperandInfoVector ConstraintOperands;
   2237   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
   2238   unsigned maCount = 0; // Largest number of multiple alternative constraints.
   2239 
   2240   // Do a prepass over the constraints, canonicalizing them, and building up the
   2241   // ConstraintOperands list.
   2242   InlineAsm::ConstraintInfoVector
   2243     ConstraintInfos = IA->ParseConstraints();
   2244 
   2245   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
   2246   unsigned ResNo = 0;   // ResNo - The result number of the next output.
   2247 
   2248   for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
   2249     ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
   2250     AsmOperandInfo &OpInfo = ConstraintOperands.back();
   2251 
   2252     // Update multiple alternative constraint count.
   2253     if (OpInfo.multipleAlternatives.size() > maCount)
   2254       maCount = OpInfo.multipleAlternatives.size();
   2255 
   2256     OpInfo.ConstraintVT = MVT::Other;
   2257 
   2258     // Compute the value type for each operand.
   2259     switch (OpInfo.Type) {
   2260     case InlineAsm::isOutput:
   2261       // Indirect outputs just consume an argument.
   2262       if (OpInfo.isIndirect) {
   2263         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
   2264         break;
   2265       }
   2266 
   2267       // The return value of the call is this value.  As such, there is no
   2268       // corresponding argument.
   2269       assert(!CS.getType()->isVoidTy() &&
   2270              "Bad inline asm!");
   2271       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
   2272         OpInfo.ConstraintVT = getSimpleValueType(STy->getElementType(ResNo));
   2273       } else {
   2274         assert(ResNo == 0 && "Asm only has one result!");
   2275         OpInfo.ConstraintVT = getSimpleValueType(CS.getType());
   2276       }
   2277       ++ResNo;
   2278       break;
   2279     case InlineAsm::isInput:
   2280       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
   2281       break;
   2282     case InlineAsm::isClobber:
   2283       // Nothing to do.
   2284       break;
   2285     }
   2286 
   2287     if (OpInfo.CallOperandVal) {
   2288       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
   2289       if (OpInfo.isIndirect) {
   2290         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
   2291         if (!PtrTy)
   2292           report_fatal_error("Indirect operand for inline asm not a pointer!");
   2293         OpTy = PtrTy->getElementType();
   2294       }
   2295 
   2296       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
   2297       if (StructType *STy = dyn_cast<StructType>(OpTy))
   2298         if (STy->getNumElements() == 1)
   2299           OpTy = STy->getElementType(0);
   2300 
   2301       // If OpTy is not a single value, it may be a struct/union that we
   2302       // can tile with integers.
   2303       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
   2304         unsigned BitSize = getDataLayout()->getTypeSizeInBits(OpTy);
   2305         switch (BitSize) {
   2306         default: break;
   2307         case 1:
   2308         case 8:
   2309         case 16:
   2310         case 32:
   2311         case 64:
   2312         case 128:
   2313           OpInfo.ConstraintVT =
   2314             MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
   2315           break;
   2316         }
   2317       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
   2318         unsigned PtrSize
   2319           = getDataLayout()->getPointerSizeInBits(PT->getAddressSpace());
   2320         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
   2321       } else {
   2322         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
   2323       }
   2324     }
   2325   }
   2326 
   2327   // If we have multiple alternative constraints, select the best alternative.
   2328   if (ConstraintInfos.size()) {
   2329     if (maCount) {
   2330       unsigned bestMAIndex = 0;
   2331       int bestWeight = -1;
   2332       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
   2333       int weight = -1;
   2334       unsigned maIndex;
   2335       // Compute the sums of the weights for each alternative, keeping track
   2336       // of the best (highest weight) one so far.
   2337       for (maIndex = 0; maIndex < maCount; ++maIndex) {
   2338         int weightSum = 0;
   2339         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
   2340             cIndex != eIndex; ++cIndex) {
   2341           AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
   2342           if (OpInfo.Type == InlineAsm::isClobber)
   2343             continue;
   2344 
   2345           // If this is an output operand with a matching input operand,
   2346           // look up the matching input. If their types mismatch, e.g. one
   2347           // is an integer, the other is floating point, or their sizes are
   2348           // different, flag it as an maCantMatch.
   2349           if (OpInfo.hasMatchingInput()) {
   2350             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
   2351             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
   2352               if ((OpInfo.ConstraintVT.isInteger() !=
   2353                    Input.ConstraintVT.isInteger()) ||
   2354                   (OpInfo.ConstraintVT.getSizeInBits() !=
   2355                    Input.ConstraintVT.getSizeInBits())) {
   2356                 weightSum = -1;  // Can't match.
   2357                 break;
   2358               }
   2359             }
   2360           }
   2361           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
   2362           if (weight == -1) {
   2363             weightSum = -1;
   2364             break;
   2365           }
   2366           weightSum += weight;
   2367         }
   2368         // Update best.
   2369         if (weightSum > bestWeight) {
   2370           bestWeight = weightSum;
   2371           bestMAIndex = maIndex;
   2372         }
   2373       }
   2374 
   2375       // Now select chosen alternative in each constraint.
   2376       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
   2377           cIndex != eIndex; ++cIndex) {
   2378         AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
   2379         if (cInfo.Type == InlineAsm::isClobber)
   2380           continue;
   2381         cInfo.selectAlternative(bestMAIndex);
   2382       }
   2383     }
   2384   }
   2385 
   2386   // Check and hook up tied operands, choose constraint code to use.
   2387   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
   2388       cIndex != eIndex; ++cIndex) {
   2389     AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
   2390 
   2391     // If this is an output operand with a matching input operand, look up the
   2392     // matching input. If their types mismatch, e.g. one is an integer, the
   2393     // other is floating point, or their sizes are different, flag it as an
   2394     // error.
   2395     if (OpInfo.hasMatchingInput()) {
   2396       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
   2397 
   2398       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
   2399         std::pair<unsigned, const TargetRegisterClass*> MatchRC =
   2400           getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
   2401                                        OpInfo.ConstraintVT);
   2402         std::pair<unsigned, const TargetRegisterClass*> InputRC =
   2403           getRegForInlineAsmConstraint(Input.ConstraintCode,
   2404                                        Input.ConstraintVT);
   2405         if ((OpInfo.ConstraintVT.isInteger() !=
   2406              Input.ConstraintVT.isInteger()) ||
   2407             (MatchRC.second != InputRC.second)) {
   2408           report_fatal_error("Unsupported asm: input constraint"
   2409                              " with a matching output constraint of"
   2410                              " incompatible type!");
   2411         }
   2412       }
   2413 
   2414     }
   2415   }
   2416 
   2417   return ConstraintOperands;
   2418 }
   2419 
   2420 
   2421 /// getConstraintGenerality - Return an integer indicating how general CT
   2422 /// is.
   2423 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
   2424   switch (CT) {
   2425   case TargetLowering::C_Other:
   2426   case TargetLowering::C_Unknown:
   2427     return 0;
   2428   case TargetLowering::C_Register:
   2429     return 1;
   2430   case TargetLowering::C_RegisterClass:
   2431     return 2;
   2432   case TargetLowering::C_Memory:
   2433     return 3;
   2434   }
   2435   llvm_unreachable("Invalid constraint type");
   2436 }
   2437 
   2438 /// Examine constraint type and operand type and determine a weight value.
   2439 /// This object must already have been set up with the operand type
   2440 /// and the current alternative constraint selected.
   2441 TargetLowering::ConstraintWeight
   2442   TargetLowering::getMultipleConstraintMatchWeight(
   2443     AsmOperandInfo &info, int maIndex) const {
   2444   InlineAsm::ConstraintCodeVector *rCodes;
   2445   if (maIndex >= (int)info.multipleAlternatives.size())
   2446     rCodes = &info.Codes;
   2447   else
   2448     rCodes = &info.multipleAlternatives[maIndex].Codes;
   2449   ConstraintWeight BestWeight = CW_Invalid;
   2450 
   2451   // Loop over the options, keeping track of the most general one.
   2452   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
   2453     ConstraintWeight weight =
   2454       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
   2455     if (weight > BestWeight)
   2456       BestWeight = weight;
   2457   }
   2458 
   2459   return BestWeight;
   2460 }
   2461 
   2462 /// Examine constraint type and operand type and determine a weight value.
   2463 /// This object must already have been set up with the operand type
   2464 /// and the current alternative constraint selected.
   2465 TargetLowering::ConstraintWeight
   2466   TargetLowering::getSingleConstraintMatchWeight(
   2467     AsmOperandInfo &info, const char *constraint) const {
   2468   ConstraintWeight weight = CW_Invalid;
   2469   Value *CallOperandVal = info.CallOperandVal;
   2470     // If we don't have a value, we can't do a match,
   2471     // but allow it at the lowest weight.
   2472   if (!CallOperandVal)
   2473     return CW_Default;
   2474   // Look at the constraint type.
   2475   switch (*constraint) {
   2476     case 'i': // immediate integer.
   2477     case 'n': // immediate integer with a known value.
   2478       if (isa<ConstantInt>(CallOperandVal))
   2479         weight = CW_Constant;
   2480       break;
   2481     case 's': // non-explicit intregal immediate.
   2482       if (isa<GlobalValue>(CallOperandVal))
   2483         weight = CW_Constant;
   2484       break;
   2485     case 'E': // immediate float if host format.
   2486     case 'F': // immediate float.
   2487       if (isa<ConstantFP>(CallOperandVal))
   2488         weight = CW_Constant;
   2489       break;
   2490     case '<': // memory operand with autodecrement.
   2491     case '>': // memory operand with autoincrement.
   2492     case 'm': // memory operand.
   2493     case 'o': // offsettable memory operand
   2494     case 'V': // non-offsettable memory operand
   2495       weight = CW_Memory;
   2496       break;
   2497     case 'r': // general register.
   2498     case 'g': // general register, memory operand or immediate integer.
   2499               // note: Clang converts "g" to "imr".
   2500       if (CallOperandVal->getType()->isIntegerTy())
   2501         weight = CW_Register;
   2502       break;
   2503     case 'X': // any operand.
   2504     default:
   2505       weight = CW_Default;
   2506       break;
   2507   }
   2508   return weight;
   2509 }
   2510 
   2511 /// ChooseConstraint - If there are multiple different constraints that we
   2512 /// could pick for this operand (e.g. "imr") try to pick the 'best' one.
   2513 /// This is somewhat tricky: constraints fall into four classes:
   2514 ///    Other         -> immediates and magic values
   2515 ///    Register      -> one specific register
   2516 ///    RegisterClass -> a group of regs
   2517 ///    Memory        -> memory
   2518 /// Ideally, we would pick the most specific constraint possible: if we have
   2519 /// something that fits into a register, we would pick it.  The problem here
   2520 /// is that if we have something that could either be in a register or in
   2521 /// memory that use of the register could cause selection of *other*
   2522 /// operands to fail: they might only succeed if we pick memory.  Because of
   2523 /// this the heuristic we use is:
   2524 ///
   2525 ///  1) If there is an 'other' constraint, and if the operand is valid for
   2526 ///     that constraint, use it.  This makes us take advantage of 'i'
   2527 ///     constraints when available.
   2528 ///  2) Otherwise, pick the most general constraint present.  This prefers
   2529 ///     'm' over 'r', for example.
   2530 ///
   2531 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
   2532                              const TargetLowering &TLI,
   2533                              SDValue Op, SelectionDAG *DAG) {
   2534   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
   2535   unsigned BestIdx = 0;
   2536   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
   2537   int BestGenerality = -1;
   2538 
   2539   // Loop over the options, keeping track of the most general one.
   2540   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
   2541     TargetLowering::ConstraintType CType =
   2542       TLI.getConstraintType(OpInfo.Codes[i]);
   2543 
   2544     // If this is an 'other' constraint, see if the operand is valid for it.
   2545     // For example, on X86 we might have an 'rI' constraint.  If the operand
   2546     // is an integer in the range [0..31] we want to use I (saving a load
   2547     // of a register), otherwise we must use 'r'.
   2548     if (CType == TargetLowering::C_Other && Op.getNode()) {
   2549       assert(OpInfo.Codes[i].size() == 1 &&
   2550              "Unhandled multi-letter 'other' constraint");
   2551       std::vector<SDValue> ResultOps;
   2552       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
   2553                                        ResultOps, *DAG);
   2554       if (!ResultOps.empty()) {
   2555         BestType = CType;
   2556         BestIdx = i;
   2557         break;
   2558       }
   2559     }
   2560 
   2561     // Things with matching constraints can only be registers, per gcc
   2562     // documentation.  This mainly affects "g" constraints.
   2563     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
   2564       continue;
   2565 
   2566     // This constraint letter is more general than the previous one, use it.
   2567     int Generality = getConstraintGenerality(CType);
   2568     if (Generality > BestGenerality) {
   2569       BestType = CType;
   2570       BestIdx = i;
   2571       BestGenerality = Generality;
   2572     }
   2573   }
   2574 
   2575   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
   2576   OpInfo.ConstraintType = BestType;
   2577 }
   2578 
   2579 /// ComputeConstraintToUse - Determines the constraint code and constraint
   2580 /// type to use for the specific AsmOperandInfo, setting
   2581 /// OpInfo.ConstraintCode and OpInfo.ConstraintType.
   2582 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
   2583                                             SDValue Op,
   2584                                             SelectionDAG *DAG) const {
   2585   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
   2586 
   2587   // Single-letter constraints ('r') are very common.
   2588   if (OpInfo.Codes.size() == 1) {
   2589     OpInfo.ConstraintCode = OpInfo.Codes[0];
   2590     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
   2591   } else {
   2592     ChooseConstraint(OpInfo, *this, Op, DAG);
   2593   }
   2594 
   2595   // 'X' matches anything.
   2596   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
   2597     // Labels and constants are handled elsewhere ('X' is the only thing
   2598     // that matches labels).  For Functions, the type here is the type of
   2599     // the result, which is not what we want to look at; leave them alone.
   2600     Value *v = OpInfo.CallOperandVal;
   2601     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
   2602       OpInfo.CallOperandVal = v;
   2603       return;
   2604     }
   2605 
   2606     // Otherwise, try to resolve it to something we know about by looking at
   2607     // the actual operand type.
   2608     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
   2609       OpInfo.ConstraintCode = Repl;
   2610       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
   2611     }
   2612   }
   2613 }
   2614 
   2615 /// \brief Given an exact SDIV by a constant, create a multiplication
   2616 /// with the multiplicative inverse of the constant.
   2617 SDValue TargetLowering::BuildExactSDIV(SDValue Op1, SDValue Op2, SDLoc dl,
   2618                                        SelectionDAG &DAG) const {
   2619   ConstantSDNode *C = cast<ConstantSDNode>(Op2);
   2620   APInt d = C->getAPIntValue();
   2621   assert(d != 0 && "Division by zero!");
   2622 
   2623   // Shift the value upfront if it is even, so the LSB is one.
   2624   unsigned ShAmt = d.countTrailingZeros();
   2625   if (ShAmt) {
   2626     // TODO: For UDIV use SRL instead of SRA.
   2627     SDValue Amt = DAG.getConstant(ShAmt, getShiftAmountTy(Op1.getValueType()));
   2628     Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt, false, false,
   2629                       true);
   2630     d = d.ashr(ShAmt);
   2631   }
   2632 
   2633   // Calculate the multiplicative inverse, using Newton's method.
   2634   APInt t, xn = d;
   2635   while ((t = d*xn) != 1)
   2636     xn *= APInt(d.getBitWidth(), 2) - t;
   2637 
   2638   Op2 = DAG.getConstant(xn, Op1.getValueType());
   2639   return DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2);
   2640 }
   2641 
   2642 /// \brief Given an ISD::SDIV node expressing a divide by constant,
   2643 /// return a DAG expression to select that will generate the same value by
   2644 /// multiplying by a magic number.  See:
   2645 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
   2646 SDValue TargetLowering::BuildSDIV(SDNode *N, const APInt &Divisor,
   2647                                   SelectionDAG &DAG, bool IsAfterLegalization,
   2648                                   std::vector<SDNode *> *Created) const {
   2649   EVT VT = N->getValueType(0);
   2650   SDLoc dl(N);
   2651 
   2652   // Check to see if we can do this.
   2653   // FIXME: We should be more aggressive here.
   2654   if (!isTypeLegal(VT))
   2655     return SDValue();
   2656 
   2657   APInt::ms magics = Divisor.magic();
   2658 
   2659   // Multiply the numerator (operand 0) by the magic value
   2660   // FIXME: We should support doing a MUL in a wider type
   2661   SDValue Q;
   2662   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) :
   2663                             isOperationLegalOrCustom(ISD::MULHS, VT))
   2664     Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
   2665                     DAG.getConstant(magics.m, VT));
   2666   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) :
   2667                                  isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
   2668     Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
   2669                               N->getOperand(0),
   2670                               DAG.getConstant(magics.m, VT)).getNode(), 1);
   2671   else
   2672     return SDValue();       // No mulhs or equvialent
   2673   // If d > 0 and m < 0, add the numerator
   2674   if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
   2675     Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
   2676     if (Created)
   2677       Created->push_back(Q.getNode());
   2678   }
   2679   // If d < 0 and m > 0, subtract the numerator.
   2680   if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
   2681     Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
   2682     if (Created)
   2683       Created->push_back(Q.getNode());
   2684   }
   2685   // Shift right algebraic if shift value is nonzero
   2686   if (magics.s > 0) {
   2687     Q = DAG.getNode(ISD::SRA, dl, VT, Q,
   2688                  DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
   2689     if (Created)
   2690       Created->push_back(Q.getNode());
   2691   }
   2692   // Extract the sign bit and add it to the quotient
   2693   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q,
   2694                           DAG.getConstant(VT.getScalarSizeInBits() - 1,
   2695                                           getShiftAmountTy(Q.getValueType())));
   2696   if (Created)
   2697     Created->push_back(T.getNode());
   2698   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
   2699 }
   2700 
   2701 /// \brief Given an ISD::UDIV node expressing a divide by constant,
   2702 /// return a DAG expression to select that will generate the same value by
   2703 /// multiplying by a magic number.  See:
   2704 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
   2705 SDValue TargetLowering::BuildUDIV(SDNode *N, const APInt &Divisor,
   2706                                   SelectionDAG &DAG, bool IsAfterLegalization,
   2707                                   std::vector<SDNode *> *Created) const {
   2708   EVT VT = N->getValueType(0);
   2709   SDLoc dl(N);
   2710 
   2711   // Check to see if we can do this.
   2712   // FIXME: We should be more aggressive here.
   2713   if (!isTypeLegal(VT))
   2714     return SDValue();
   2715 
   2716   // FIXME: We should use a narrower constant when the upper
   2717   // bits are known to be zero.
   2718   APInt::mu magics = Divisor.magicu();
   2719 
   2720   SDValue Q = N->getOperand(0);
   2721 
   2722   // If the divisor is even, we can avoid using the expensive fixup by shifting
   2723   // the divided value upfront.
   2724   if (magics.a != 0 && !Divisor[0]) {
   2725     unsigned Shift = Divisor.countTrailingZeros();
   2726     Q = DAG.getNode(ISD::SRL, dl, VT, Q,
   2727                     DAG.getConstant(Shift, getShiftAmountTy(Q.getValueType())));
   2728     if (Created)
   2729       Created->push_back(Q.getNode());
   2730 
   2731     // Get magic number for the shifted divisor.
   2732     magics = Divisor.lshr(Shift).magicu(Shift);
   2733     assert(magics.a == 0 && "Should use cheap fixup now");
   2734   }
   2735 
   2736   // Multiply the numerator (operand 0) by the magic value
   2737   // FIXME: We should support doing a MUL in a wider type
   2738   if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) :
   2739                             isOperationLegalOrCustom(ISD::MULHU, VT))
   2740     Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, VT));
   2741   else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) :
   2742                                  isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
   2743     Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q,
   2744                             DAG.getConstant(magics.m, VT)).getNode(), 1);
   2745   else
   2746     return SDValue();       // No mulhu or equvialent
   2747   if (Created)
   2748     Created->push_back(Q.getNode());
   2749 
   2750   if (magics.a == 0) {
   2751     assert(magics.s < Divisor.getBitWidth() &&
   2752            "We shouldn't generate an undefined shift!");
   2753     return DAG.getNode(ISD::SRL, dl, VT, Q,
   2754                  DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
   2755   } else {
   2756     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
   2757     if (Created)
   2758       Created->push_back(NPQ.getNode());
   2759     NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
   2760                       DAG.getConstant(1, getShiftAmountTy(NPQ.getValueType())));
   2761     if (Created)
   2762       Created->push_back(NPQ.getNode());
   2763     NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
   2764     if (Created)
   2765       Created->push_back(NPQ.getNode());
   2766     return DAG.getNode(ISD::SRL, dl, VT, NPQ,
   2767              DAG.getConstant(magics.s-1, getShiftAmountTy(NPQ.getValueType())));
   2768   }
   2769 }
   2770 
   2771 bool TargetLowering::
   2772 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
   2773   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
   2774     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
   2775                                 "be a constant integer");
   2776     return true;
   2777   }
   2778 
   2779   return false;
   2780 }
   2781 
   2782 //===----------------------------------------------------------------------===//
   2783 // Legalization Utilities
   2784 //===----------------------------------------------------------------------===//
   2785 
   2786 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
   2787                                SelectionDAG &DAG, SDValue LL, SDValue LH,
   2788 			       SDValue RL, SDValue RH) const {
   2789   EVT VT = N->getValueType(0);
   2790   SDLoc dl(N);
   2791 
   2792   bool HasMULHS = isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
   2793   bool HasMULHU = isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
   2794   bool HasSMUL_LOHI = isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
   2795   bool HasUMUL_LOHI = isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
   2796   if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) {
   2797     unsigned OuterBitSize = VT.getSizeInBits();
   2798     unsigned InnerBitSize = HiLoVT.getSizeInBits();
   2799     unsigned LHSSB = DAG.ComputeNumSignBits(N->getOperand(0));
   2800     unsigned RHSSB = DAG.ComputeNumSignBits(N->getOperand(1));
   2801 
   2802     // LL, LH, RL, and RH must be either all NULL or all set to a value.
   2803     assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
   2804            (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
   2805 
   2806     if (!LL.getNode() && !RL.getNode() &&
   2807         isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
   2808       LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(0));
   2809       RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(1));
   2810     }
   2811 
   2812     if (!LL.getNode())
   2813       return false;
   2814 
   2815     APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
   2816     if (DAG.MaskedValueIsZero(N->getOperand(0), HighMask) &&
   2817         DAG.MaskedValueIsZero(N->getOperand(1), HighMask)) {
   2818       // The inputs are both zero-extended.
   2819       if (HasUMUL_LOHI) {
   2820         // We can emit a umul_lohi.
   2821         Lo = DAG.getNode(ISD::UMUL_LOHI, dl,
   2822 	                 DAG.getVTList(HiLoVT, HiLoVT), LL, RL);
   2823         Hi = SDValue(Lo.getNode(), 1);
   2824         return true;
   2825       }
   2826       if (HasMULHU) {
   2827         // We can emit a mulhu+mul.
   2828         Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL);
   2829         Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL);
   2830         return true;
   2831       }
   2832     }
   2833     if (LHSSB > InnerBitSize && RHSSB > InnerBitSize) {
   2834       // The input values are both sign-extended.
   2835       if (HasSMUL_LOHI) {
   2836         // We can emit a smul_lohi.
   2837         Lo = DAG.getNode(ISD::SMUL_LOHI, dl,
   2838 	                 DAG.getVTList(HiLoVT, HiLoVT), LL, RL);
   2839         Hi = SDValue(Lo.getNode(), 1);
   2840         return true;
   2841       }
   2842       if (HasMULHS) {
   2843         // We can emit a mulhs+mul.
   2844         Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL);
   2845         Hi = DAG.getNode(ISD::MULHS, dl, HiLoVT, LL, RL);
   2846         return true;
   2847       }
   2848     }
   2849 
   2850     if (!LH.getNode() && !RH.getNode() &&
   2851         isOperationLegalOrCustom(ISD::SRL, VT) &&
   2852         isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
   2853       unsigned ShiftAmt = VT.getSizeInBits() - HiLoVT.getSizeInBits();
   2854       SDValue Shift = DAG.getConstant(ShiftAmt, getShiftAmountTy(VT));
   2855       LH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(0), Shift);
   2856       LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
   2857       RH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(1), Shift);
   2858       RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
   2859     }
   2860 
   2861     if (!LH.getNode())
   2862       return false;
   2863 
   2864     if (HasUMUL_LOHI) {
   2865       // Lo,Hi = umul LHS, RHS.
   2866       SDValue UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, dl,
   2867                                      DAG.getVTList(HiLoVT, HiLoVT), LL, RL);
   2868       Lo = UMulLOHI;
   2869       Hi = UMulLOHI.getValue(1);
   2870       RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
   2871       LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
   2872       Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
   2873       Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
   2874       return true;
   2875     }
   2876     if (HasMULHU) {
   2877       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL);
   2878       Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL);
   2879       RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
   2880       LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
   2881       Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
   2882       Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
   2883       return true;
   2884     }
   2885   }
   2886   return false;
   2887 }
   2888