1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the TargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Target/TargetLowering.h" 15 #include "llvm/ADT/BitVector.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/CodeGen/Analysis.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineJumpTableInfo.h" 21 #include "llvm/CodeGen/SelectionDAG.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/GlobalVariable.h" 25 #include "llvm/IR/LLVMContext.h" 26 #include "llvm/MC/MCAsmInfo.h" 27 #include "llvm/MC/MCExpr.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Target/TargetLoweringObjectFile.h" 32 #include "llvm/Target/TargetMachine.h" 33 #include "llvm/Target/TargetRegisterInfo.h" 34 #include <cctype> 35 using namespace llvm; 36 37 /// NOTE: The constructor takes ownership of TLOF. 38 TargetLowering::TargetLowering(const TargetMachine &tm, 39 const TargetLoweringObjectFile *tlof) 40 : TargetLoweringBase(tm, tlof) {} 41 42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 43 return nullptr; 44 } 45 46 /// Check whether a given call node is in tail position within its function. If 47 /// so, it sets Chain to the input chain of the tail call. 48 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 49 SDValue &Chain) const { 50 const Function *F = DAG.getMachineFunction().getFunction(); 51 52 // Conservatively require the attributes of the call to match those of 53 // the return. Ignore noalias because it doesn't affect the call sequence. 54 AttributeSet CallerAttrs = F->getAttributes(); 55 if (AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex) 56 .removeAttribute(Attribute::NoAlias).hasAttributes()) 57 return false; 58 59 // It's not safe to eliminate the sign / zero extension of the return value. 60 if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) || 61 CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) 62 return false; 63 64 // Check if the only use is a function return node. 65 return isUsedByReturnOnly(Node, Chain); 66 } 67 68 /// \brief Set CallLoweringInfo attribute flags based on a call instruction 69 /// and called function attributes. 70 void TargetLowering::ArgListEntry::setAttributes(ImmutableCallSite *CS, 71 unsigned AttrIdx) { 72 isSExt = CS->paramHasAttr(AttrIdx, Attribute::SExt); 73 isZExt = CS->paramHasAttr(AttrIdx, Attribute::ZExt); 74 isInReg = CS->paramHasAttr(AttrIdx, Attribute::InReg); 75 isSRet = CS->paramHasAttr(AttrIdx, Attribute::StructRet); 76 isNest = CS->paramHasAttr(AttrIdx, Attribute::Nest); 77 isByVal = CS->paramHasAttr(AttrIdx, Attribute::ByVal); 78 isInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca); 79 isReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned); 80 Alignment = CS->getParamAlignment(AttrIdx); 81 } 82 83 /// Generate a libcall taking the given operands as arguments and returning a 84 /// result of type RetVT. 85 std::pair<SDValue, SDValue> 86 TargetLowering::makeLibCall(SelectionDAG &DAG, 87 RTLIB::Libcall LC, EVT RetVT, 88 const SDValue *Ops, unsigned NumOps, 89 bool isSigned, SDLoc dl, 90 bool doesNotReturn, 91 bool isReturnValueUsed) const { 92 TargetLowering::ArgListTy Args; 93 Args.reserve(NumOps); 94 95 TargetLowering::ArgListEntry Entry; 96 for (unsigned i = 0; i != NumOps; ++i) { 97 Entry.Node = Ops[i]; 98 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 99 Entry.isSExt = isSigned; 100 Entry.isZExt = !isSigned; 101 Args.push_back(Entry); 102 } 103 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), getPointerTy()); 104 105 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 106 TargetLowering::CallLoweringInfo CLI(DAG); 107 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()) 108 .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0) 109 .setNoReturn(doesNotReturn).setDiscardResult(!isReturnValueUsed) 110 .setSExtResult(isSigned).setZExtResult(!isSigned); 111 return LowerCallTo(CLI); 112 } 113 114 115 /// SoftenSetCCOperands - Soften the operands of a comparison. This code is 116 /// shared among BR_CC, SELECT_CC, and SETCC handlers. 117 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 118 SDValue &NewLHS, SDValue &NewRHS, 119 ISD::CondCode &CCCode, 120 SDLoc dl) const { 121 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 122 && "Unsupported setcc type!"); 123 124 // Expand into one or more soft-fp libcall(s). 125 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 126 switch (CCCode) { 127 case ISD::SETEQ: 128 case ISD::SETOEQ: 129 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 130 (VT == MVT::f64) ? RTLIB::OEQ_F64 : RTLIB::OEQ_F128; 131 break; 132 case ISD::SETNE: 133 case ISD::SETUNE: 134 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 135 (VT == MVT::f64) ? RTLIB::UNE_F64 : RTLIB::UNE_F128; 136 break; 137 case ISD::SETGE: 138 case ISD::SETOGE: 139 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 140 (VT == MVT::f64) ? RTLIB::OGE_F64 : RTLIB::OGE_F128; 141 break; 142 case ISD::SETLT: 143 case ISD::SETOLT: 144 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 145 (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128; 146 break; 147 case ISD::SETLE: 148 case ISD::SETOLE: 149 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 150 (VT == MVT::f64) ? RTLIB::OLE_F64 : RTLIB::OLE_F128; 151 break; 152 case ISD::SETGT: 153 case ISD::SETOGT: 154 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 155 (VT == MVT::f64) ? RTLIB::OGT_F64 : RTLIB::OGT_F128; 156 break; 157 case ISD::SETUO: 158 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 159 (VT == MVT::f64) ? RTLIB::UO_F64 : RTLIB::UO_F128; 160 break; 161 case ISD::SETO: 162 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : 163 (VT == MVT::f64) ? RTLIB::O_F64 : RTLIB::O_F128; 164 break; 165 default: 166 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 167 (VT == MVT::f64) ? RTLIB::UO_F64 : RTLIB::UO_F128; 168 switch (CCCode) { 169 case ISD::SETONE: 170 // SETONE = SETOLT | SETOGT 171 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 172 (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128; 173 // Fallthrough 174 case ISD::SETUGT: 175 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 176 (VT == MVT::f64) ? RTLIB::OGT_F64 : RTLIB::OGT_F128; 177 break; 178 case ISD::SETUGE: 179 LC2 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 180 (VT == MVT::f64) ? RTLIB::OGE_F64 : RTLIB::OGE_F128; 181 break; 182 case ISD::SETULT: 183 LC2 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 184 (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128; 185 break; 186 case ISD::SETULE: 187 LC2 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 188 (VT == MVT::f64) ? RTLIB::OLE_F64 : RTLIB::OLE_F128; 189 break; 190 case ISD::SETUEQ: 191 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 192 (VT == MVT::f64) ? RTLIB::OEQ_F64 : RTLIB::OEQ_F128; 193 break; 194 default: llvm_unreachable("Do not know how to soften this setcc!"); 195 } 196 } 197 198 // Use the target specific return value for comparions lib calls. 199 EVT RetVT = getCmpLibcallReturnType(); 200 SDValue Ops[2] = { NewLHS, NewRHS }; 201 NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, 2, false/*sign irrelevant*/, 202 dl).first; 203 NewRHS = DAG.getConstant(0, RetVT); 204 CCCode = getCmpLibcallCC(LC1); 205 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 206 SDValue Tmp = DAG.getNode(ISD::SETCC, dl, 207 getSetCCResultType(*DAG.getContext(), RetVT), 208 NewLHS, NewRHS, DAG.getCondCode(CCCode)); 209 NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, 2, false/*sign irrelevant*/, 210 dl).first; 211 NewLHS = DAG.getNode(ISD::SETCC, dl, 212 getSetCCResultType(*DAG.getContext(), RetVT), NewLHS, 213 NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2))); 214 NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); 215 NewRHS = SDValue(); 216 } 217 } 218 219 /// getJumpTableEncoding - Return the entry encoding for a jump table in the 220 /// current function. The returned value is a member of the 221 /// MachineJumpTableInfo::JTEntryKind enum. 222 unsigned TargetLowering::getJumpTableEncoding() const { 223 // In non-pic modes, just use the address of a block. 224 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 225 return MachineJumpTableInfo::EK_BlockAddress; 226 227 // In PIC mode, if the target supports a GPRel32 directive, use it. 228 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 229 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 230 231 // Otherwise, use a label difference. 232 return MachineJumpTableInfo::EK_LabelDifference32; 233 } 234 235 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 236 SelectionDAG &DAG) const { 237 // If our PIC model is GP relative, use the global offset table as the base. 238 unsigned JTEncoding = getJumpTableEncoding(); 239 240 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 241 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 242 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(0)); 243 244 return Table; 245 } 246 247 /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the 248 /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an 249 /// MCExpr. 250 const MCExpr * 251 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 252 unsigned JTI,MCContext &Ctx) const{ 253 // The normal PIC reloc base is the label at the start of the jump table. 254 return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx); 255 } 256 257 bool 258 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 259 // Assume that everything is safe in static mode. 260 if (getTargetMachine().getRelocationModel() == Reloc::Static) 261 return true; 262 263 // In dynamic-no-pic mode, assume that known defined values are safe. 264 if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC && 265 GA && 266 !GA->getGlobal()->isDeclaration() && 267 !GA->getGlobal()->isWeakForLinker()) 268 return true; 269 270 // Otherwise assume nothing is safe. 271 return false; 272 } 273 274 //===----------------------------------------------------------------------===// 275 // Optimization Methods 276 //===----------------------------------------------------------------------===// 277 278 /// ShrinkDemandedConstant - Check to see if the specified operand of the 279 /// specified instruction is a constant integer. If so, check to see if there 280 /// are any bits set in the constant that are not demanded. If so, shrink the 281 /// constant and return true. 282 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op, 283 const APInt &Demanded) { 284 SDLoc dl(Op); 285 286 // FIXME: ISD::SELECT, ISD::SELECT_CC 287 switch (Op.getOpcode()) { 288 default: break; 289 case ISD::XOR: 290 case ISD::AND: 291 case ISD::OR: { 292 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 293 if (!C) return false; 294 295 if (Op.getOpcode() == ISD::XOR && 296 (C->getAPIntValue() | (~Demanded)).isAllOnesValue()) 297 return false; 298 299 // if we can expand it to have all bits set, do it 300 if (C->getAPIntValue().intersects(~Demanded)) { 301 EVT VT = Op.getValueType(); 302 SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0), 303 DAG.getConstant(Demanded & 304 C->getAPIntValue(), 305 VT)); 306 return CombineTo(Op, New); 307 } 308 309 break; 310 } 311 } 312 313 return false; 314 } 315 316 /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the 317 /// casts are free. This uses isZExtFree and ZERO_EXTEND for the widening 318 /// cast, but it could be generalized for targets with other types of 319 /// implicit widening casts. 320 bool 321 TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op, 322 unsigned BitWidth, 323 const APInt &Demanded, 324 SDLoc dl) { 325 assert(Op.getNumOperands() == 2 && 326 "ShrinkDemandedOp only supports binary operators!"); 327 assert(Op.getNode()->getNumValues() == 1 && 328 "ShrinkDemandedOp only supports nodes with one result!"); 329 330 // Early return, as this function cannot handle vector types. 331 if (Op.getValueType().isVector()) 332 return false; 333 334 // Don't do this if the node has another user, which may require the 335 // full value. 336 if (!Op.getNode()->hasOneUse()) 337 return false; 338 339 // Search for the smallest integer type with free casts to and from 340 // Op's type. For expedience, just check power-of-2 integer types. 341 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 342 unsigned DemandedSize = BitWidth - Demanded.countLeadingZeros(); 343 unsigned SmallVTBits = DemandedSize; 344 if (!isPowerOf2_32(SmallVTBits)) 345 SmallVTBits = NextPowerOf2(SmallVTBits); 346 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 347 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 348 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 349 TLI.isZExtFree(SmallVT, Op.getValueType())) { 350 // We found a type with free casts. 351 SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT, 352 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, 353 Op.getNode()->getOperand(0)), 354 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, 355 Op.getNode()->getOperand(1))); 356 bool NeedZext = DemandedSize > SmallVTBits; 357 SDValue Z = DAG.getNode(NeedZext ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND, 358 dl, Op.getValueType(), X); 359 return CombineTo(Op, Z); 360 } 361 } 362 return false; 363 } 364 365 /// SimplifyDemandedBits - Look at Op. At this point, we know that only the 366 /// DemandedMask bits of the result of Op are ever used downstream. If we can 367 /// use this information to simplify Op, create a new simplified DAG node and 368 /// return true, returning the original and new nodes in Old and New. Otherwise, 369 /// analyze the expression and return a mask of KnownOne and KnownZero bits for 370 /// the expression (used to simplify the caller). The KnownZero/One bits may 371 /// only be accurate for those bits in the DemandedMask. 372 bool TargetLowering::SimplifyDemandedBits(SDValue Op, 373 const APInt &DemandedMask, 374 APInt &KnownZero, 375 APInt &KnownOne, 376 TargetLoweringOpt &TLO, 377 unsigned Depth) const { 378 unsigned BitWidth = DemandedMask.getBitWidth(); 379 assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth && 380 "Mask size mismatches value type size!"); 381 APInt NewMask = DemandedMask; 382 SDLoc dl(Op); 383 384 // Don't know anything. 385 KnownZero = KnownOne = APInt(BitWidth, 0); 386 387 // Other users may use these bits. 388 if (!Op.getNode()->hasOneUse()) { 389 if (Depth != 0) { 390 // If not at the root, Just compute the KnownZero/KnownOne bits to 391 // simplify things downstream. 392 TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth); 393 return false; 394 } 395 // If this is the root being simplified, allow it to have multiple uses, 396 // just set the NewMask to all bits. 397 NewMask = APInt::getAllOnesValue(BitWidth); 398 } else if (DemandedMask == 0) { 399 // Not demanding any bits from Op. 400 if (Op.getOpcode() != ISD::UNDEF) 401 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType())); 402 return false; 403 } else if (Depth == 6) { // Limit search depth. 404 return false; 405 } 406 407 APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut; 408 switch (Op.getOpcode()) { 409 case ISD::Constant: 410 // We know all of the bits for a constant! 411 KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue(); 412 KnownZero = ~KnownOne; 413 return false; // Don't fall through, will infinitely loop. 414 case ISD::AND: 415 // If the RHS is a constant, check to see if the LHS would be zero without 416 // using the bits from the RHS. Below, we use knowledge about the RHS to 417 // simplify the LHS, here we're using information from the LHS to simplify 418 // the RHS. 419 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 420 APInt LHSZero, LHSOne; 421 // Do not increment Depth here; that can cause an infinite loop. 422 TLO.DAG.computeKnownBits(Op.getOperand(0), LHSZero, LHSOne, Depth); 423 // If the LHS already has zeros where RHSC does, this and is dead. 424 if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask)) 425 return TLO.CombineTo(Op, Op.getOperand(0)); 426 // If any of the set bits in the RHS are known zero on the LHS, shrink 427 // the constant. 428 if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask)) 429 return true; 430 } 431 432 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 433 KnownOne, TLO, Depth+1)) 434 return true; 435 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 436 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask, 437 KnownZero2, KnownOne2, TLO, Depth+1)) 438 return true; 439 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 440 441 // If all of the demanded bits are known one on one side, return the other. 442 // These bits cannot contribute to the result of the 'and'. 443 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) 444 return TLO.CombineTo(Op, Op.getOperand(0)); 445 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) 446 return TLO.CombineTo(Op, Op.getOperand(1)); 447 // If all of the demanded bits in the inputs are known zeros, return zero. 448 if ((NewMask & (KnownZero|KnownZero2)) == NewMask) 449 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType())); 450 // If the RHS is a constant, see if we can simplify it. 451 if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask)) 452 return true; 453 // If the operation can be done in a smaller type, do so. 454 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 455 return true; 456 457 // Output known-1 bits are only known if set in both the LHS & RHS. 458 KnownOne &= KnownOne2; 459 // Output known-0 are known to be clear if zero in either the LHS | RHS. 460 KnownZero |= KnownZero2; 461 break; 462 case ISD::OR: 463 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 464 KnownOne, TLO, Depth+1)) 465 return true; 466 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 467 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask, 468 KnownZero2, KnownOne2, TLO, Depth+1)) 469 return true; 470 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 471 472 // If all of the demanded bits are known zero on one side, return the other. 473 // These bits cannot contribute to the result of the 'or'. 474 if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask)) 475 return TLO.CombineTo(Op, Op.getOperand(0)); 476 if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask)) 477 return TLO.CombineTo(Op, Op.getOperand(1)); 478 // If all of the potentially set bits on one side are known to be set on 479 // the other side, just use the 'other' side. 480 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) 481 return TLO.CombineTo(Op, Op.getOperand(0)); 482 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) 483 return TLO.CombineTo(Op, Op.getOperand(1)); 484 // If the RHS is a constant, see if we can simplify it. 485 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 486 return true; 487 // If the operation can be done in a smaller type, do so. 488 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 489 return true; 490 491 // Output known-0 bits are only known if clear in both the LHS & RHS. 492 KnownZero &= KnownZero2; 493 // Output known-1 are known to be set if set in either the LHS | RHS. 494 KnownOne |= KnownOne2; 495 break; 496 case ISD::XOR: 497 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 498 KnownOne, TLO, Depth+1)) 499 return true; 500 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 501 if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2, 502 KnownOne2, TLO, Depth+1)) 503 return true; 504 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 505 506 // If all of the demanded bits are known zero on one side, return the other. 507 // These bits cannot contribute to the result of the 'xor'. 508 if ((KnownZero & NewMask) == NewMask) 509 return TLO.CombineTo(Op, Op.getOperand(0)); 510 if ((KnownZero2 & NewMask) == NewMask) 511 return TLO.CombineTo(Op, Op.getOperand(1)); 512 // If the operation can be done in a smaller type, do so. 513 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 514 return true; 515 516 // If all of the unknown bits are known to be zero on one side or the other 517 // (but not both) turn this into an *inclusive* or. 518 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 519 if ((NewMask & ~KnownZero & ~KnownZero2) == 0) 520 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(), 521 Op.getOperand(0), 522 Op.getOperand(1))); 523 524 // Output known-0 bits are known if clear or set in both the LHS & RHS. 525 KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 526 // Output known-1 are known to be set if set in only one of the LHS, RHS. 527 KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 528 529 // If all of the demanded bits on one side are known, and all of the set 530 // bits on that side are also known to be set on the other side, turn this 531 // into an AND, as we know the bits will be cleared. 532 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 533 // NB: it is okay if more bits are known than are requested 534 if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known on one side 535 if (KnownOne == KnownOne2) { // set bits are the same on both sides 536 EVT VT = Op.getValueType(); 537 SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT); 538 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, 539 Op.getOperand(0), ANDC)); 540 } 541 } 542 543 // If the RHS is a constant, see if we can simplify it. 544 // for XOR, we prefer to force bits to 1 if they will make a -1. 545 // if we can't force bits, try to shrink constant 546 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 547 APInt Expanded = C->getAPIntValue() | (~NewMask); 548 // if we can expand it to have all bits set, do it 549 if (Expanded.isAllOnesValue()) { 550 if (Expanded != C->getAPIntValue()) { 551 EVT VT = Op.getValueType(); 552 SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0), 553 TLO.DAG.getConstant(Expanded, VT)); 554 return TLO.CombineTo(Op, New); 555 } 556 // if it already has all the bits set, nothing to change 557 // but don't shrink either! 558 } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) { 559 return true; 560 } 561 } 562 563 KnownZero = KnownZeroOut; 564 KnownOne = KnownOneOut; 565 break; 566 case ISD::SELECT: 567 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero, 568 KnownOne, TLO, Depth+1)) 569 return true; 570 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2, 571 KnownOne2, TLO, Depth+1)) 572 return true; 573 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 574 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 575 576 // If the operands are constants, see if we can simplify them. 577 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 578 return true; 579 580 // Only known if known in both the LHS and RHS. 581 KnownOne &= KnownOne2; 582 KnownZero &= KnownZero2; 583 break; 584 case ISD::SELECT_CC: 585 if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero, 586 KnownOne, TLO, Depth+1)) 587 return true; 588 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2, 589 KnownOne2, TLO, Depth+1)) 590 return true; 591 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 592 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 593 594 // If the operands are constants, see if we can simplify them. 595 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 596 return true; 597 598 // Only known if known in both the LHS and RHS. 599 KnownOne &= KnownOne2; 600 KnownZero &= KnownZero2; 601 break; 602 case ISD::SHL: 603 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 604 unsigned ShAmt = SA->getZExtValue(); 605 SDValue InOp = Op.getOperand(0); 606 607 // If the shift count is an invalid immediate, don't do anything. 608 if (ShAmt >= BitWidth) 609 break; 610 611 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 612 // single shift. We can do this if the bottom bits (which are shifted 613 // out) are never demanded. 614 if (InOp.getOpcode() == ISD::SRL && 615 isa<ConstantSDNode>(InOp.getOperand(1))) { 616 if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) { 617 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); 618 unsigned Opc = ISD::SHL; 619 int Diff = ShAmt-C1; 620 if (Diff < 0) { 621 Diff = -Diff; 622 Opc = ISD::SRL; 623 } 624 625 SDValue NewSA = 626 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType()); 627 EVT VT = Op.getValueType(); 628 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 629 InOp.getOperand(0), NewSA)); 630 } 631 } 632 633 if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt), 634 KnownZero, KnownOne, TLO, Depth+1)) 635 return true; 636 637 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 638 // are not demanded. This will likely allow the anyext to be folded away. 639 if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) { 640 SDValue InnerOp = InOp.getNode()->getOperand(0); 641 EVT InnerVT = InnerOp.getValueType(); 642 unsigned InnerBits = InnerVT.getSizeInBits(); 643 if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 && 644 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 645 EVT ShTy = getShiftAmountTy(InnerVT); 646 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 647 ShTy = InnerVT; 648 SDValue NarrowShl = 649 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 650 TLO.DAG.getConstant(ShAmt, ShTy)); 651 return 652 TLO.CombineTo(Op, 653 TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), 654 NarrowShl)); 655 } 656 // Repeat the SHL optimization above in cases where an extension 657 // intervenes: (shl (anyext (shr x, c1)), c2) to 658 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 659 // aren't demanded (as above) and that the shifted upper c1 bits of 660 // x aren't demanded. 661 if (InOp.hasOneUse() && 662 InnerOp.getOpcode() == ISD::SRL && 663 InnerOp.hasOneUse() && 664 isa<ConstantSDNode>(InnerOp.getOperand(1))) { 665 uint64_t InnerShAmt = cast<ConstantSDNode>(InnerOp.getOperand(1)) 666 ->getZExtValue(); 667 if (InnerShAmt < ShAmt && 668 InnerShAmt < InnerBits && 669 NewMask.lshr(InnerBits - InnerShAmt + ShAmt) == 0 && 670 NewMask.trunc(ShAmt) == 0) { 671 SDValue NewSA = 672 TLO.DAG.getConstant(ShAmt - InnerShAmt, 673 Op.getOperand(1).getValueType()); 674 EVT VT = Op.getValueType(); 675 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 676 InnerOp.getOperand(0)); 677 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, 678 NewExt, NewSA)); 679 } 680 } 681 } 682 683 KnownZero <<= SA->getZExtValue(); 684 KnownOne <<= SA->getZExtValue(); 685 // low bits known zero. 686 KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue()); 687 } 688 break; 689 case ISD::SRL: 690 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 691 EVT VT = Op.getValueType(); 692 unsigned ShAmt = SA->getZExtValue(); 693 unsigned VTSize = VT.getSizeInBits(); 694 SDValue InOp = Op.getOperand(0); 695 696 // If the shift count is an invalid immediate, don't do anything. 697 if (ShAmt >= BitWidth) 698 break; 699 700 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 701 // single shift. We can do this if the top bits (which are shifted out) 702 // are never demanded. 703 if (InOp.getOpcode() == ISD::SHL && 704 isa<ConstantSDNode>(InOp.getOperand(1))) { 705 if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) { 706 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); 707 unsigned Opc = ISD::SRL; 708 int Diff = ShAmt-C1; 709 if (Diff < 0) { 710 Diff = -Diff; 711 Opc = ISD::SHL; 712 } 713 714 SDValue NewSA = 715 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType()); 716 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 717 InOp.getOperand(0), NewSA)); 718 } 719 } 720 721 // Compute the new bits that are at the top now. 722 if (SimplifyDemandedBits(InOp, (NewMask << ShAmt), 723 KnownZero, KnownOne, TLO, Depth+1)) 724 return true; 725 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 726 KnownZero = KnownZero.lshr(ShAmt); 727 KnownOne = KnownOne.lshr(ShAmt); 728 729 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); 730 KnownZero |= HighBits; // High bits known zero. 731 } 732 break; 733 case ISD::SRA: 734 // If this is an arithmetic shift right and only the low-bit is set, we can 735 // always convert this into a logical shr, even if the shift amount is 736 // variable. The low bit of the shift cannot be an input sign bit unless 737 // the shift amount is >= the size of the datatype, which is undefined. 738 if (NewMask == 1) 739 return TLO.CombineTo(Op, 740 TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(), 741 Op.getOperand(0), Op.getOperand(1))); 742 743 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 744 EVT VT = Op.getValueType(); 745 unsigned ShAmt = SA->getZExtValue(); 746 747 // If the shift count is an invalid immediate, don't do anything. 748 if (ShAmt >= BitWidth) 749 break; 750 751 APInt InDemandedMask = (NewMask << ShAmt); 752 753 // If any of the demanded bits are produced by the sign extension, we also 754 // demand the input sign bit. 755 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); 756 if (HighBits.intersects(NewMask)) 757 InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits()); 758 759 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask, 760 KnownZero, KnownOne, TLO, Depth+1)) 761 return true; 762 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 763 KnownZero = KnownZero.lshr(ShAmt); 764 KnownOne = KnownOne.lshr(ShAmt); 765 766 // Handle the sign bit, adjusted to where it is now in the mask. 767 APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt); 768 769 // If the input sign bit is known to be zero, or if none of the top bits 770 // are demanded, turn this into an unsigned shift right. 771 if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) 772 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, 773 Op.getOperand(0), 774 Op.getOperand(1))); 775 776 int Log2 = NewMask.exactLogBase2(); 777 if (Log2 >= 0) { 778 // The bit must come from the sign. 779 SDValue NewSA = 780 TLO.DAG.getConstant(BitWidth - 1 - Log2, 781 Op.getOperand(1).getValueType()); 782 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, 783 Op.getOperand(0), NewSA)); 784 } 785 786 if (KnownOne.intersects(SignBit)) 787 // New bits are known one. 788 KnownOne |= HighBits; 789 } 790 break; 791 case ISD::SIGN_EXTEND_INREG: { 792 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 793 794 APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1); 795 // If we only care about the highest bit, don't bother shifting right. 796 if (MsbMask == DemandedMask) { 797 unsigned ShAmt = ExVT.getScalarType().getSizeInBits(); 798 SDValue InOp = Op.getOperand(0); 799 800 // Compute the correct shift amount type, which must be getShiftAmountTy 801 // for scalar types after legalization. 802 EVT ShiftAmtTy = Op.getValueType(); 803 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 804 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy); 805 806 SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, ShiftAmtTy); 807 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, 808 Op.getValueType(), InOp, ShiftAmt)); 809 } 810 811 // Sign extension. Compute the demanded bits in the result that are not 812 // present in the input. 813 APInt NewBits = 814 APInt::getHighBitsSet(BitWidth, 815 BitWidth - ExVT.getScalarType().getSizeInBits()); 816 817 // If none of the extended bits are demanded, eliminate the sextinreg. 818 if ((NewBits & NewMask) == 0) 819 return TLO.CombineTo(Op, Op.getOperand(0)); 820 821 APInt InSignBit = 822 APInt::getSignBit(ExVT.getScalarType().getSizeInBits()).zext(BitWidth); 823 APInt InputDemandedBits = 824 APInt::getLowBitsSet(BitWidth, 825 ExVT.getScalarType().getSizeInBits()) & 826 NewMask; 827 828 // Since the sign extended bits are demanded, we know that the sign 829 // bit is demanded. 830 InputDemandedBits |= InSignBit; 831 832 if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits, 833 KnownZero, KnownOne, TLO, Depth+1)) 834 return true; 835 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 836 837 // If the sign bit of the input is known set or clear, then we know the 838 // top bits of the result. 839 840 // If the input sign bit is known zero, convert this into a zero extension. 841 if (KnownZero.intersects(InSignBit)) 842 return TLO.CombineTo(Op, 843 TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,ExVT)); 844 845 if (KnownOne.intersects(InSignBit)) { // Input sign bit known set 846 KnownOne |= NewBits; 847 KnownZero &= ~NewBits; 848 } else { // Input sign bit unknown 849 KnownZero &= ~NewBits; 850 KnownOne &= ~NewBits; 851 } 852 break; 853 } 854 case ISD::BUILD_PAIR: { 855 EVT HalfVT = Op.getOperand(0).getValueType(); 856 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 857 858 APInt MaskLo = NewMask.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 859 APInt MaskHi = NewMask.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 860 861 APInt KnownZeroLo, KnownOneLo; 862 APInt KnownZeroHi, KnownOneHi; 863 864 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownZeroLo, 865 KnownOneLo, TLO, Depth + 1)) 866 return true; 867 868 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownZeroHi, 869 KnownOneHi, TLO, Depth + 1)) 870 return true; 871 872 KnownZero = KnownZeroLo.zext(BitWidth) | 873 KnownZeroHi.zext(BitWidth).shl(HalfBitWidth); 874 875 KnownOne = KnownOneLo.zext(BitWidth) | 876 KnownOneHi.zext(BitWidth).shl(HalfBitWidth); 877 break; 878 } 879 case ISD::ZERO_EXTEND: { 880 unsigned OperandBitWidth = 881 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 882 APInt InMask = NewMask.trunc(OperandBitWidth); 883 884 // If none of the top bits are demanded, convert this into an any_extend. 885 APInt NewBits = 886 APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask; 887 if (!NewBits.intersects(NewMask)) 888 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, 889 Op.getValueType(), 890 Op.getOperand(0))); 891 892 if (SimplifyDemandedBits(Op.getOperand(0), InMask, 893 KnownZero, KnownOne, TLO, Depth+1)) 894 return true; 895 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 896 KnownZero = KnownZero.zext(BitWidth); 897 KnownOne = KnownOne.zext(BitWidth); 898 KnownZero |= NewBits; 899 break; 900 } 901 case ISD::SIGN_EXTEND: { 902 EVT InVT = Op.getOperand(0).getValueType(); 903 unsigned InBits = InVT.getScalarType().getSizeInBits(); 904 APInt InMask = APInt::getLowBitsSet(BitWidth, InBits); 905 APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits); 906 APInt NewBits = ~InMask & NewMask; 907 908 // If none of the top bits are demanded, convert this into an any_extend. 909 if (NewBits == 0) 910 return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl, 911 Op.getValueType(), 912 Op.getOperand(0))); 913 914 // Since some of the sign extended bits are demanded, we know that the sign 915 // bit is demanded. 916 APInt InDemandedBits = InMask & NewMask; 917 InDemandedBits |= InSignBit; 918 InDemandedBits = InDemandedBits.trunc(InBits); 919 920 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero, 921 KnownOne, TLO, Depth+1)) 922 return true; 923 KnownZero = KnownZero.zext(BitWidth); 924 KnownOne = KnownOne.zext(BitWidth); 925 926 // If the sign bit is known zero, convert this to a zero extend. 927 if (KnownZero.intersects(InSignBit)) 928 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, 929 Op.getValueType(), 930 Op.getOperand(0))); 931 932 // If the sign bit is known one, the top bits match. 933 if (KnownOne.intersects(InSignBit)) { 934 KnownOne |= NewBits; 935 assert((KnownZero & NewBits) == 0); 936 } else { // Otherwise, top bits aren't known. 937 assert((KnownOne & NewBits) == 0); 938 assert((KnownZero & NewBits) == 0); 939 } 940 break; 941 } 942 case ISD::ANY_EXTEND: { 943 unsigned OperandBitWidth = 944 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 945 APInt InMask = NewMask.trunc(OperandBitWidth); 946 if (SimplifyDemandedBits(Op.getOperand(0), InMask, 947 KnownZero, KnownOne, TLO, Depth+1)) 948 return true; 949 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 950 KnownZero = KnownZero.zext(BitWidth); 951 KnownOne = KnownOne.zext(BitWidth); 952 break; 953 } 954 case ISD::TRUNCATE: { 955 // Simplify the input, using demanded bit information, and compute the known 956 // zero/one bits live out. 957 unsigned OperandBitWidth = 958 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 959 APInt TruncMask = NewMask.zext(OperandBitWidth); 960 if (SimplifyDemandedBits(Op.getOperand(0), TruncMask, 961 KnownZero, KnownOne, TLO, Depth+1)) 962 return true; 963 KnownZero = KnownZero.trunc(BitWidth); 964 KnownOne = KnownOne.trunc(BitWidth); 965 966 // If the input is only used by this truncate, see if we can shrink it based 967 // on the known demanded bits. 968 if (Op.getOperand(0).getNode()->hasOneUse()) { 969 SDValue In = Op.getOperand(0); 970 switch (In.getOpcode()) { 971 default: break; 972 case ISD::SRL: 973 // Shrink SRL by a constant if none of the high bits shifted in are 974 // demanded. 975 if (TLO.LegalTypes() && 976 !isTypeDesirableForOp(ISD::SRL, Op.getValueType())) 977 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 978 // undesirable. 979 break; 980 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1)); 981 if (!ShAmt) 982 break; 983 SDValue Shift = In.getOperand(1); 984 if (TLO.LegalTypes()) { 985 uint64_t ShVal = ShAmt->getZExtValue(); 986 Shift = 987 TLO.DAG.getConstant(ShVal, getShiftAmountTy(Op.getValueType())); 988 } 989 990 APInt HighBits = APInt::getHighBitsSet(OperandBitWidth, 991 OperandBitWidth - BitWidth); 992 HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth); 993 994 if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) { 995 // None of the shifted in bits are needed. Add a truncate of the 996 // shift input, then shift it. 997 SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl, 998 Op.getValueType(), 999 In.getOperand(0)); 1000 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, 1001 Op.getValueType(), 1002 NewTrunc, 1003 Shift)); 1004 } 1005 break; 1006 } 1007 } 1008 1009 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1010 break; 1011 } 1012 case ISD::AssertZext: { 1013 // AssertZext demands all of the high bits, plus any of the low bits 1014 // demanded by its users. 1015 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1016 APInt InMask = APInt::getLowBitsSet(BitWidth, 1017 VT.getSizeInBits()); 1018 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask, 1019 KnownZero, KnownOne, TLO, Depth+1)) 1020 return true; 1021 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1022 1023 KnownZero |= ~InMask & NewMask; 1024 break; 1025 } 1026 case ISD::BITCAST: 1027 // If this is an FP->Int bitcast and if the sign bit is the only 1028 // thing demanded, turn this into a FGETSIGN. 1029 if (!TLO.LegalOperations() && 1030 !Op.getValueType().isVector() && 1031 !Op.getOperand(0).getValueType().isVector() && 1032 NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) && 1033 Op.getOperand(0).getValueType().isFloatingPoint()) { 1034 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType()); 1035 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1036 if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple()) { 1037 EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32; 1038 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1039 // place. We expect the SHL to be eliminated by other optimizations. 1040 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0)); 1041 unsigned OpVTSizeInBits = Op.getValueType().getSizeInBits(); 1042 if (!OpVTLegal && OpVTSizeInBits > 32) 1043 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign); 1044 unsigned ShVal = Op.getValueType().getSizeInBits()-1; 1045 SDValue ShAmt = TLO.DAG.getConstant(ShVal, Op.getValueType()); 1046 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, 1047 Op.getValueType(), 1048 Sign, ShAmt)); 1049 } 1050 } 1051 break; 1052 case ISD::ADD: 1053 case ISD::MUL: 1054 case ISD::SUB: { 1055 // Add, Sub, and Mul don't demand any bits in positions beyond that 1056 // of the highest bit demanded of them. 1057 APInt LoMask = APInt::getLowBitsSet(BitWidth, 1058 BitWidth - NewMask.countLeadingZeros()); 1059 if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2, 1060 KnownOne2, TLO, Depth+1)) 1061 return true; 1062 if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2, 1063 KnownOne2, TLO, Depth+1)) 1064 return true; 1065 // See if the operation should be performed at a smaller bit width. 1066 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 1067 return true; 1068 } 1069 // FALL THROUGH 1070 default: 1071 // Just use computeKnownBits to compute output bits. 1072 TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth); 1073 break; 1074 } 1075 1076 // If we know the value of all of the demanded bits, return this as a 1077 // constant. 1078 if ((NewMask & (KnownZero|KnownOne)) == NewMask) 1079 return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType())); 1080 1081 return false; 1082 } 1083 1084 /// computeKnownBitsForTargetNode - Determine which of the bits specified 1085 /// in Mask are known to be either zero or one and return them in the 1086 /// KnownZero/KnownOne bitsets. 1087 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 1088 APInt &KnownZero, 1089 APInt &KnownOne, 1090 const SelectionDAG &DAG, 1091 unsigned Depth) const { 1092 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1093 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1094 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1095 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1096 "Should use MaskedValueIsZero if you don't know whether Op" 1097 " is a target node!"); 1098 KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); 1099 } 1100 1101 /// ComputeNumSignBitsForTargetNode - This method can be implemented by 1102 /// targets that want to expose additional information about sign bits to the 1103 /// DAG Combiner. 1104 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 1105 const SelectionDAG &, 1106 unsigned Depth) const { 1107 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1108 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1109 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1110 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1111 "Should use ComputeNumSignBits if you don't know whether Op" 1112 " is a target node!"); 1113 return 1; 1114 } 1115 1116 /// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly 1117 /// one bit set. This differs from computeKnownBits in that it doesn't need to 1118 /// determine which bit is set. 1119 /// 1120 static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) { 1121 // A left-shift of a constant one will have exactly one bit set, because 1122 // shifting the bit off the end is undefined. 1123 if (Val.getOpcode() == ISD::SHL) 1124 if (ConstantSDNode *C = 1125 dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0))) 1126 if (C->getAPIntValue() == 1) 1127 return true; 1128 1129 // Similarly, a right-shift of a constant sign-bit will have exactly 1130 // one bit set. 1131 if (Val.getOpcode() == ISD::SRL) 1132 if (ConstantSDNode *C = 1133 dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0))) 1134 if (C->getAPIntValue().isSignBit()) 1135 return true; 1136 1137 // More could be done here, though the above checks are enough 1138 // to handle some common cases. 1139 1140 // Fall back to computeKnownBits to catch other known cases. 1141 EVT OpVT = Val.getValueType(); 1142 unsigned BitWidth = OpVT.getScalarType().getSizeInBits(); 1143 APInt KnownZero, KnownOne; 1144 DAG.computeKnownBits(Val, KnownZero, KnownOne); 1145 return (KnownZero.countPopulation() == BitWidth - 1) && 1146 (KnownOne.countPopulation() == 1); 1147 } 1148 1149 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 1150 if (!N) 1151 return false; 1152 1153 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 1154 if (!CN) { 1155 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 1156 if (!BV) 1157 return false; 1158 1159 BitVector UndefElements; 1160 CN = BV->getConstantSplatNode(&UndefElements); 1161 // Only interested in constant splats, and we don't try to handle undef 1162 // elements in identifying boolean constants. 1163 if (!CN || UndefElements.none()) 1164 return false; 1165 } 1166 1167 switch (getBooleanContents(N->getValueType(0))) { 1168 case UndefinedBooleanContent: 1169 return CN->getAPIntValue()[0]; 1170 case ZeroOrOneBooleanContent: 1171 return CN->isOne(); 1172 case ZeroOrNegativeOneBooleanContent: 1173 return CN->isAllOnesValue(); 1174 } 1175 1176 llvm_unreachable("Invalid boolean contents"); 1177 } 1178 1179 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 1180 if (!N) 1181 return false; 1182 1183 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 1184 if (!CN) { 1185 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 1186 if (!BV) 1187 return false; 1188 1189 BitVector UndefElements; 1190 CN = BV->getConstantSplatNode(&UndefElements); 1191 // Only interested in constant splats, and we don't try to handle undef 1192 // elements in identifying boolean constants. 1193 if (!CN || UndefElements.none()) 1194 return false; 1195 } 1196 1197 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 1198 return !CN->getAPIntValue()[0]; 1199 1200 return CN->isNullValue(); 1201 } 1202 1203 /// SimplifySetCC - Try to simplify a setcc built with the specified operands 1204 /// and cc. If it is unable to simplify it, return a null SDValue. 1205 SDValue 1206 TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 1207 ISD::CondCode Cond, bool foldBooleans, 1208 DAGCombinerInfo &DCI, SDLoc dl) const { 1209 SelectionDAG &DAG = DCI.DAG; 1210 1211 // These setcc operations always fold. 1212 switch (Cond) { 1213 default: break; 1214 case ISD::SETFALSE: 1215 case ISD::SETFALSE2: return DAG.getConstant(0, VT); 1216 case ISD::SETTRUE: 1217 case ISD::SETTRUE2: { 1218 TargetLowering::BooleanContent Cnt = 1219 getBooleanContents(N0->getValueType(0)); 1220 return DAG.getConstant( 1221 Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, VT); 1222 } 1223 } 1224 1225 // Ensure that the constant occurs on the RHS, and fold constant 1226 // comparisons. 1227 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 1228 if (isa<ConstantSDNode>(N0.getNode()) && 1229 (DCI.isBeforeLegalizeOps() || 1230 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 1231 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 1232 1233 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 1234 const APInt &C1 = N1C->getAPIntValue(); 1235 1236 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 1237 // equality comparison, then we're just comparing whether X itself is 1238 // zero. 1239 if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) && 1240 N0.getOperand(0).getOpcode() == ISD::CTLZ && 1241 N0.getOperand(1).getOpcode() == ISD::Constant) { 1242 const APInt &ShAmt 1243 = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 1244 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1245 ShAmt == Log2_32(N0.getValueType().getSizeInBits())) { 1246 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 1247 // (srl (ctlz x), 5) == 0 -> X != 0 1248 // (srl (ctlz x), 5) != 1 -> X != 0 1249 Cond = ISD::SETNE; 1250 } else { 1251 // (srl (ctlz x), 5) != 0 -> X == 0 1252 // (srl (ctlz x), 5) == 1 -> X == 0 1253 Cond = ISD::SETEQ; 1254 } 1255 SDValue Zero = DAG.getConstant(0, N0.getValueType()); 1256 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 1257 Zero, Cond); 1258 } 1259 } 1260 1261 SDValue CTPOP = N0; 1262 // Look through truncs that don't change the value of a ctpop. 1263 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 1264 CTPOP = N0.getOperand(0); 1265 1266 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 1267 (N0 == CTPOP || N0.getValueType().getSizeInBits() > 1268 Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) { 1269 EVT CTVT = CTPOP.getValueType(); 1270 SDValue CTOp = CTPOP.getOperand(0); 1271 1272 // (ctpop x) u< 2 -> (x & x-1) == 0 1273 // (ctpop x) u> 1 -> (x & x-1) != 0 1274 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 1275 SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp, 1276 DAG.getConstant(1, CTVT)); 1277 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub); 1278 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 1279 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, CTVT), CC); 1280 } 1281 1282 // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal. 1283 } 1284 1285 // (zext x) == C --> x == (trunc C) 1286 if (DCI.isBeforeLegalize() && N0->hasOneUse() && 1287 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 1288 unsigned MinBits = N0.getValueSizeInBits(); 1289 SDValue PreZExt; 1290 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 1291 // ZExt 1292 MinBits = N0->getOperand(0).getValueSizeInBits(); 1293 PreZExt = N0->getOperand(0); 1294 } else if (N0->getOpcode() == ISD::AND) { 1295 // DAGCombine turns costly ZExts into ANDs 1296 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 1297 if ((C->getAPIntValue()+1).isPowerOf2()) { 1298 MinBits = C->getAPIntValue().countTrailingOnes(); 1299 PreZExt = N0->getOperand(0); 1300 } 1301 } else if (LoadSDNode *LN0 = dyn_cast<LoadSDNode>(N0)) { 1302 // ZEXTLOAD 1303 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 1304 MinBits = LN0->getMemoryVT().getSizeInBits(); 1305 PreZExt = N0; 1306 } 1307 } 1308 1309 // Make sure we're not losing bits from the constant. 1310 if (MinBits > 0 && 1311 MinBits < C1.getBitWidth() && MinBits >= C1.getActiveBits()) { 1312 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 1313 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 1314 // Will get folded away. 1315 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreZExt); 1316 SDValue C = DAG.getConstant(C1.trunc(MinBits), MinVT); 1317 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 1318 } 1319 } 1320 } 1321 1322 // If the LHS is '(and load, const)', the RHS is 0, 1323 // the test is for equality or unsigned, and all 1 bits of the const are 1324 // in the same partial word, see if we can shorten the load. 1325 if (DCI.isBeforeLegalize() && 1326 !ISD::isSignedIntSetCC(Cond) && 1327 N0.getOpcode() == ISD::AND && C1 == 0 && 1328 N0.getNode()->hasOneUse() && 1329 isa<LoadSDNode>(N0.getOperand(0)) && 1330 N0.getOperand(0).getNode()->hasOneUse() && 1331 isa<ConstantSDNode>(N0.getOperand(1))) { 1332 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 1333 APInt bestMask; 1334 unsigned bestWidth = 0, bestOffset = 0; 1335 if (!Lod->isVolatile() && Lod->isUnindexed()) { 1336 unsigned origWidth = N0.getValueType().getSizeInBits(); 1337 unsigned maskWidth = origWidth; 1338 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 1339 // 8 bits, but have to be careful... 1340 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 1341 origWidth = Lod->getMemoryVT().getSizeInBits(); 1342 const APInt &Mask = 1343 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 1344 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 1345 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 1346 for (unsigned offset=0; offset<origWidth/width; offset++) { 1347 if ((newMask & Mask) == Mask) { 1348 if (!getDataLayout()->isLittleEndian()) 1349 bestOffset = (origWidth/width - offset - 1) * (width/8); 1350 else 1351 bestOffset = (uint64_t)offset * (width/8); 1352 bestMask = Mask.lshr(offset * (width/8) * 8); 1353 bestWidth = width; 1354 break; 1355 } 1356 newMask = newMask << width; 1357 } 1358 } 1359 } 1360 if (bestWidth) { 1361 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 1362 if (newVT.isRound()) { 1363 EVT PtrType = Lod->getOperand(1).getValueType(); 1364 SDValue Ptr = Lod->getBasePtr(); 1365 if (bestOffset != 0) 1366 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(), 1367 DAG.getConstant(bestOffset, PtrType)); 1368 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 1369 SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 1370 Lod->getPointerInfo().getWithOffset(bestOffset), 1371 false, false, false, NewAlign); 1372 return DAG.getSetCC(dl, VT, 1373 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 1374 DAG.getConstant(bestMask.trunc(bestWidth), 1375 newVT)), 1376 DAG.getConstant(0LL, newVT), Cond); 1377 } 1378 } 1379 } 1380 1381 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 1382 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 1383 unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits(); 1384 1385 // If the comparison constant has bits in the upper part, the 1386 // zero-extended value could never match. 1387 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 1388 C1.getBitWidth() - InSize))) { 1389 switch (Cond) { 1390 case ISD::SETUGT: 1391 case ISD::SETUGE: 1392 case ISD::SETEQ: return DAG.getConstant(0, VT); 1393 case ISD::SETULT: 1394 case ISD::SETULE: 1395 case ISD::SETNE: return DAG.getConstant(1, VT); 1396 case ISD::SETGT: 1397 case ISD::SETGE: 1398 // True if the sign bit of C1 is set. 1399 return DAG.getConstant(C1.isNegative(), VT); 1400 case ISD::SETLT: 1401 case ISD::SETLE: 1402 // True if the sign bit of C1 isn't set. 1403 return DAG.getConstant(C1.isNonNegative(), VT); 1404 default: 1405 break; 1406 } 1407 } 1408 1409 // Otherwise, we can perform the comparison with the low bits. 1410 switch (Cond) { 1411 case ISD::SETEQ: 1412 case ISD::SETNE: 1413 case ISD::SETUGT: 1414 case ISD::SETUGE: 1415 case ISD::SETULT: 1416 case ISD::SETULE: { 1417 EVT newVT = N0.getOperand(0).getValueType(); 1418 if (DCI.isBeforeLegalizeOps() || 1419 (isOperationLegal(ISD::SETCC, newVT) && 1420 getCondCodeAction(Cond, newVT.getSimpleVT()) == Legal)) { 1421 EVT NewSetCCVT = getSetCCResultType(*DAG.getContext(), newVT); 1422 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), newVT); 1423 1424 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 1425 NewConst, Cond); 1426 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 1427 } 1428 break; 1429 } 1430 default: 1431 break; // todo, be more careful with signed comparisons 1432 } 1433 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 1434 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 1435 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 1436 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 1437 EVT ExtDstTy = N0.getValueType(); 1438 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 1439 1440 // If the constant doesn't fit into the number of bits for the source of 1441 // the sign extension, it is impossible for both sides to be equal. 1442 if (C1.getMinSignedBits() > ExtSrcTyBits) 1443 return DAG.getConstant(Cond == ISD::SETNE, VT); 1444 1445 SDValue ZextOp; 1446 EVT Op0Ty = N0.getOperand(0).getValueType(); 1447 if (Op0Ty == ExtSrcTy) { 1448 ZextOp = N0.getOperand(0); 1449 } else { 1450 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 1451 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 1452 DAG.getConstant(Imm, Op0Ty)); 1453 } 1454 if (!DCI.isCalledByLegalizer()) 1455 DCI.AddToWorklist(ZextOp.getNode()); 1456 // Otherwise, make this a use of a zext. 1457 return DAG.getSetCC(dl, VT, ZextOp, 1458 DAG.getConstant(C1 & APInt::getLowBitsSet( 1459 ExtDstTyBits, 1460 ExtSrcTyBits), 1461 ExtDstTy), 1462 Cond); 1463 } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) && 1464 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 1465 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 1466 if (N0.getOpcode() == ISD::SETCC && 1467 isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) { 1468 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1); 1469 if (TrueWhenTrue) 1470 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 1471 // Invert the condition. 1472 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 1473 CC = ISD::getSetCCInverse(CC, 1474 N0.getOperand(0).getValueType().isInteger()); 1475 if (DCI.isBeforeLegalizeOps() || 1476 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 1477 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 1478 } 1479 1480 if ((N0.getOpcode() == ISD::XOR || 1481 (N0.getOpcode() == ISD::AND && 1482 N0.getOperand(0).getOpcode() == ISD::XOR && 1483 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 1484 isa<ConstantSDNode>(N0.getOperand(1)) && 1485 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) { 1486 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 1487 // can only do this if the top bits are known zero. 1488 unsigned BitWidth = N0.getValueSizeInBits(); 1489 if (DAG.MaskedValueIsZero(N0, 1490 APInt::getHighBitsSet(BitWidth, 1491 BitWidth-1))) { 1492 // Okay, get the un-inverted input value. 1493 SDValue Val; 1494 if (N0.getOpcode() == ISD::XOR) 1495 Val = N0.getOperand(0); 1496 else { 1497 assert(N0.getOpcode() == ISD::AND && 1498 N0.getOperand(0).getOpcode() == ISD::XOR); 1499 // ((X^1)&1)^1 -> X & 1 1500 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 1501 N0.getOperand(0).getOperand(0), 1502 N0.getOperand(1)); 1503 } 1504 1505 return DAG.getSetCC(dl, VT, Val, N1, 1506 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1507 } 1508 } else if (N1C->getAPIntValue() == 1 && 1509 (VT == MVT::i1 || 1510 getBooleanContents(N0->getValueType(0)) == 1511 ZeroOrOneBooleanContent)) { 1512 SDValue Op0 = N0; 1513 if (Op0.getOpcode() == ISD::TRUNCATE) 1514 Op0 = Op0.getOperand(0); 1515 1516 if ((Op0.getOpcode() == ISD::XOR) && 1517 Op0.getOperand(0).getOpcode() == ISD::SETCC && 1518 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 1519 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 1520 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 1521 return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1), 1522 Cond); 1523 } 1524 if (Op0.getOpcode() == ISD::AND && 1525 isa<ConstantSDNode>(Op0.getOperand(1)) && 1526 cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) { 1527 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 1528 if (Op0.getValueType().bitsGT(VT)) 1529 Op0 = DAG.getNode(ISD::AND, dl, VT, 1530 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 1531 DAG.getConstant(1, VT)); 1532 else if (Op0.getValueType().bitsLT(VT)) 1533 Op0 = DAG.getNode(ISD::AND, dl, VT, 1534 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 1535 DAG.getConstant(1, VT)); 1536 1537 return DAG.getSetCC(dl, VT, Op0, 1538 DAG.getConstant(0, Op0.getValueType()), 1539 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1540 } 1541 if (Op0.getOpcode() == ISD::AssertZext && 1542 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 1543 return DAG.getSetCC(dl, VT, Op0, 1544 DAG.getConstant(0, Op0.getValueType()), 1545 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1546 } 1547 } 1548 1549 APInt MinVal, MaxVal; 1550 unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits(); 1551 if (ISD::isSignedIntSetCC(Cond)) { 1552 MinVal = APInt::getSignedMinValue(OperandBitSize); 1553 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 1554 } else { 1555 MinVal = APInt::getMinValue(OperandBitSize); 1556 MaxVal = APInt::getMaxValue(OperandBitSize); 1557 } 1558 1559 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 1560 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 1561 if (C1 == MinVal) return DAG.getConstant(1, VT); // X >= MIN --> true 1562 // X >= C0 --> X > (C0 - 1) 1563 APInt C = C1 - 1; 1564 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 1565 if ((DCI.isBeforeLegalizeOps() || 1566 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 1567 (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 && 1568 isLegalICmpImmediate(C.getSExtValue())))) { 1569 return DAG.getSetCC(dl, VT, N0, 1570 DAG.getConstant(C, N1.getValueType()), 1571 NewCC); 1572 } 1573 } 1574 1575 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 1576 if (C1 == MaxVal) return DAG.getConstant(1, VT); // X <= MAX --> true 1577 // X <= C0 --> X < (C0 + 1) 1578 APInt C = C1 + 1; 1579 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 1580 if ((DCI.isBeforeLegalizeOps() || 1581 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 1582 (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 && 1583 isLegalICmpImmediate(C.getSExtValue())))) { 1584 return DAG.getSetCC(dl, VT, N0, 1585 DAG.getConstant(C, N1.getValueType()), 1586 NewCC); 1587 } 1588 } 1589 1590 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal) 1591 return DAG.getConstant(0, VT); // X < MIN --> false 1592 if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal) 1593 return DAG.getConstant(1, VT); // X >= MIN --> true 1594 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal) 1595 return DAG.getConstant(0, VT); // X > MAX --> false 1596 if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal) 1597 return DAG.getConstant(1, VT); // X <= MAX --> true 1598 1599 // Canonicalize setgt X, Min --> setne X, Min 1600 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal) 1601 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 1602 // Canonicalize setlt X, Max --> setne X, Max 1603 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal) 1604 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 1605 1606 // If we have setult X, 1, turn it into seteq X, 0 1607 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1) 1608 return DAG.getSetCC(dl, VT, N0, 1609 DAG.getConstant(MinVal, N0.getValueType()), 1610 ISD::SETEQ); 1611 // If we have setugt X, Max-1, turn it into seteq X, Max 1612 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1) 1613 return DAG.getSetCC(dl, VT, N0, 1614 DAG.getConstant(MaxVal, N0.getValueType()), 1615 ISD::SETEQ); 1616 1617 // If we have "setcc X, C0", check to see if we can shrink the immediate 1618 // by changing cc. 1619 1620 // SETUGT X, SINTMAX -> SETLT X, 0 1621 if (Cond == ISD::SETUGT && 1622 C1 == APInt::getSignedMaxValue(OperandBitSize)) 1623 return DAG.getSetCC(dl, VT, N0, 1624 DAG.getConstant(0, N1.getValueType()), 1625 ISD::SETLT); 1626 1627 // SETULT X, SINTMIN -> SETGT X, -1 1628 if (Cond == ISD::SETULT && 1629 C1 == APInt::getSignedMinValue(OperandBitSize)) { 1630 SDValue ConstMinusOne = 1631 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), 1632 N1.getValueType()); 1633 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 1634 } 1635 1636 // Fold bit comparisons when we can. 1637 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1638 (VT == N0.getValueType() || 1639 (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) && 1640 N0.getOpcode() == ISD::AND) 1641 if (ConstantSDNode *AndRHS = 1642 dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 1643 EVT ShiftTy = DCI.isBeforeLegalize() ? 1644 getPointerTy() : getShiftAmountTy(N0.getValueType()); 1645 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 1646 // Perform the xform if the AND RHS is a single bit. 1647 if (AndRHS->getAPIntValue().isPowerOf2()) { 1648 return DAG.getNode(ISD::TRUNCATE, dl, VT, 1649 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 1650 DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy))); 1651 } 1652 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 1653 // (X & 8) == 8 --> (X & 8) >> 3 1654 // Perform the xform if C1 is a single bit. 1655 if (C1.isPowerOf2()) { 1656 return DAG.getNode(ISD::TRUNCATE, dl, VT, 1657 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 1658 DAG.getConstant(C1.logBase2(), ShiftTy))); 1659 } 1660 } 1661 } 1662 1663 if (C1.getMinSignedBits() <= 64 && 1664 !isLegalICmpImmediate(C1.getSExtValue())) { 1665 // (X & -256) == 256 -> (X >> 8) == 1 1666 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1667 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 1668 if (ConstantSDNode *AndRHS = 1669 dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 1670 const APInt &AndRHSC = AndRHS->getAPIntValue(); 1671 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 1672 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 1673 EVT ShiftTy = DCI.isBeforeLegalize() ? 1674 getPointerTy() : getShiftAmountTy(N0.getValueType()); 1675 EVT CmpTy = N0.getValueType(); 1676 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0), 1677 DAG.getConstant(ShiftBits, ShiftTy)); 1678 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), CmpTy); 1679 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 1680 } 1681 } 1682 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 1683 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 1684 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 1685 // X < 0x100000000 -> (X >> 32) < 1 1686 // X >= 0x100000000 -> (X >> 32) >= 1 1687 // X <= 0x0ffffffff -> (X >> 32) < 1 1688 // X > 0x0ffffffff -> (X >> 32) >= 1 1689 unsigned ShiftBits; 1690 APInt NewC = C1; 1691 ISD::CondCode NewCond = Cond; 1692 if (AdjOne) { 1693 ShiftBits = C1.countTrailingOnes(); 1694 NewC = NewC + 1; 1695 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 1696 } else { 1697 ShiftBits = C1.countTrailingZeros(); 1698 } 1699 NewC = NewC.lshr(ShiftBits); 1700 if (ShiftBits && isLegalICmpImmediate(NewC.getSExtValue())) { 1701 EVT ShiftTy = DCI.isBeforeLegalize() ? 1702 getPointerTy() : getShiftAmountTy(N0.getValueType()); 1703 EVT CmpTy = N0.getValueType(); 1704 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0, 1705 DAG.getConstant(ShiftBits, ShiftTy)); 1706 SDValue CmpRHS = DAG.getConstant(NewC, CmpTy); 1707 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 1708 } 1709 } 1710 } 1711 } 1712 1713 if (isa<ConstantFPSDNode>(N0.getNode())) { 1714 // Constant fold or commute setcc. 1715 SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl); 1716 if (O.getNode()) return O; 1717 } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) { 1718 // If the RHS of an FP comparison is a constant, simplify it away in 1719 // some cases. 1720 if (CFP->getValueAPF().isNaN()) { 1721 // If an operand is known to be a nan, we can fold it. 1722 switch (ISD::getUnorderedFlavor(Cond)) { 1723 default: llvm_unreachable("Unknown flavor!"); 1724 case 0: // Known false. 1725 return DAG.getConstant(0, VT); 1726 case 1: // Known true. 1727 return DAG.getConstant(1, VT); 1728 case 2: // Undefined. 1729 return DAG.getUNDEF(VT); 1730 } 1731 } 1732 1733 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 1734 // constant if knowing that the operand is non-nan is enough. We prefer to 1735 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 1736 // materialize 0.0. 1737 if (Cond == ISD::SETO || Cond == ISD::SETUO) 1738 return DAG.getSetCC(dl, VT, N0, N0, Cond); 1739 1740 // If the condition is not legal, see if we can find an equivalent one 1741 // which is legal. 1742 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 1743 // If the comparison was an awkward floating-point == or != and one of 1744 // the comparison operands is infinity or negative infinity, convert the 1745 // condition to a less-awkward <= or >=. 1746 if (CFP->getValueAPF().isInfinity()) { 1747 if (CFP->getValueAPF().isNegative()) { 1748 if (Cond == ISD::SETOEQ && 1749 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 1750 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); 1751 if (Cond == ISD::SETUEQ && 1752 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 1753 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); 1754 if (Cond == ISD::SETUNE && 1755 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 1756 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); 1757 if (Cond == ISD::SETONE && 1758 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 1759 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); 1760 } else { 1761 if (Cond == ISD::SETOEQ && 1762 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 1763 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); 1764 if (Cond == ISD::SETUEQ && 1765 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 1766 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); 1767 if (Cond == ISD::SETUNE && 1768 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 1769 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); 1770 if (Cond == ISD::SETONE && 1771 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 1772 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); 1773 } 1774 } 1775 } 1776 } 1777 1778 if (N0 == N1) { 1779 // The sext(setcc()) => setcc() optimization relies on the appropriate 1780 // constant being emitted. 1781 uint64_t EqVal = 0; 1782 switch (getBooleanContents(N0.getValueType())) { 1783 case UndefinedBooleanContent: 1784 case ZeroOrOneBooleanContent: 1785 EqVal = ISD::isTrueWhenEqual(Cond); 1786 break; 1787 case ZeroOrNegativeOneBooleanContent: 1788 EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0; 1789 break; 1790 } 1791 1792 // We can always fold X == X for integer setcc's. 1793 if (N0.getValueType().isInteger()) { 1794 return DAG.getConstant(EqVal, VT); 1795 } 1796 unsigned UOF = ISD::getUnorderedFlavor(Cond); 1797 if (UOF == 2) // FP operators that are undefined on NaNs. 1798 return DAG.getConstant(EqVal, VT); 1799 if (UOF == unsigned(ISD::isTrueWhenEqual(Cond))) 1800 return DAG.getConstant(EqVal, VT); 1801 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 1802 // if it is not already. 1803 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 1804 if (NewCond != Cond && (DCI.isBeforeLegalizeOps() || 1805 getCondCodeAction(NewCond, N0.getSimpleValueType()) == Legal)) 1806 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 1807 } 1808 1809 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1810 N0.getValueType().isInteger()) { 1811 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 1812 N0.getOpcode() == ISD::XOR) { 1813 // Simplify (X+Y) == (X+Z) --> Y == Z 1814 if (N0.getOpcode() == N1.getOpcode()) { 1815 if (N0.getOperand(0) == N1.getOperand(0)) 1816 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 1817 if (N0.getOperand(1) == N1.getOperand(1)) 1818 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 1819 if (DAG.isCommutativeBinOp(N0.getOpcode())) { 1820 // If X op Y == Y op X, try other combinations. 1821 if (N0.getOperand(0) == N1.getOperand(1)) 1822 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 1823 Cond); 1824 if (N0.getOperand(1) == N1.getOperand(0)) 1825 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 1826 Cond); 1827 } 1828 } 1829 1830 // If RHS is a legal immediate value for a compare instruction, we need 1831 // to be careful about increasing register pressure needlessly. 1832 bool LegalRHSImm = false; 1833 1834 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) { 1835 if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 1836 // Turn (X+C1) == C2 --> X == C2-C1 1837 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 1838 return DAG.getSetCC(dl, VT, N0.getOperand(0), 1839 DAG.getConstant(RHSC->getAPIntValue()- 1840 LHSR->getAPIntValue(), 1841 N0.getValueType()), Cond); 1842 } 1843 1844 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 1845 if (N0.getOpcode() == ISD::XOR) 1846 // If we know that all of the inverted bits are zero, don't bother 1847 // performing the inversion. 1848 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 1849 return 1850 DAG.getSetCC(dl, VT, N0.getOperand(0), 1851 DAG.getConstant(LHSR->getAPIntValue() ^ 1852 RHSC->getAPIntValue(), 1853 N0.getValueType()), 1854 Cond); 1855 } 1856 1857 // Turn (C1-X) == C2 --> X == C1-C2 1858 if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 1859 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 1860 return 1861 DAG.getSetCC(dl, VT, N0.getOperand(1), 1862 DAG.getConstant(SUBC->getAPIntValue() - 1863 RHSC->getAPIntValue(), 1864 N0.getValueType()), 1865 Cond); 1866 } 1867 } 1868 1869 // Could RHSC fold directly into a compare? 1870 if (RHSC->getValueType(0).getSizeInBits() <= 64) 1871 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 1872 } 1873 1874 // Simplify (X+Z) == X --> Z == 0 1875 // Don't do this if X is an immediate that can fold into a cmp 1876 // instruction and X+Z has other uses. It could be an induction variable 1877 // chain, and the transform would increase register pressure. 1878 if (!LegalRHSImm || N0.getNode()->hasOneUse()) { 1879 if (N0.getOperand(0) == N1) 1880 return DAG.getSetCC(dl, VT, N0.getOperand(1), 1881 DAG.getConstant(0, N0.getValueType()), Cond); 1882 if (N0.getOperand(1) == N1) { 1883 if (DAG.isCommutativeBinOp(N0.getOpcode())) 1884 return DAG.getSetCC(dl, VT, N0.getOperand(0), 1885 DAG.getConstant(0, N0.getValueType()), Cond); 1886 if (N0.getNode()->hasOneUse()) { 1887 assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!"); 1888 // (Z-X) == X --> Z == X<<1 1889 SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N1, 1890 DAG.getConstant(1, getShiftAmountTy(N1.getValueType()))); 1891 if (!DCI.isCalledByLegalizer()) 1892 DCI.AddToWorklist(SH.getNode()); 1893 return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond); 1894 } 1895 } 1896 } 1897 } 1898 1899 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 1900 N1.getOpcode() == ISD::XOR) { 1901 // Simplify X == (X+Z) --> Z == 0 1902 if (N1.getOperand(0) == N0) 1903 return DAG.getSetCC(dl, VT, N1.getOperand(1), 1904 DAG.getConstant(0, N1.getValueType()), Cond); 1905 if (N1.getOperand(1) == N0) { 1906 if (DAG.isCommutativeBinOp(N1.getOpcode())) 1907 return DAG.getSetCC(dl, VT, N1.getOperand(0), 1908 DAG.getConstant(0, N1.getValueType()), Cond); 1909 if (N1.getNode()->hasOneUse()) { 1910 assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!"); 1911 // X == (Z-X) --> X<<1 == Z 1912 SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0, 1913 DAG.getConstant(1, getShiftAmountTy(N0.getValueType()))); 1914 if (!DCI.isCalledByLegalizer()) 1915 DCI.AddToWorklist(SH.getNode()); 1916 return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond); 1917 } 1918 } 1919 } 1920 1921 // Simplify x&y == y to x&y != 0 if y has exactly one bit set. 1922 // Note that where y is variable and is known to have at most 1923 // one bit set (for example, if it is z&1) we cannot do this; 1924 // the expressions are not equivalent when y==0. 1925 if (N0.getOpcode() == ISD::AND) 1926 if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) { 1927 if (ValueHasExactlyOneBitSet(N1, DAG)) { 1928 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 1929 if (DCI.isBeforeLegalizeOps() || 1930 isCondCodeLegal(Cond, N0.getSimpleValueType())) { 1931 SDValue Zero = DAG.getConstant(0, N1.getValueType()); 1932 return DAG.getSetCC(dl, VT, N0, Zero, Cond); 1933 } 1934 } 1935 } 1936 if (N1.getOpcode() == ISD::AND) 1937 if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) { 1938 if (ValueHasExactlyOneBitSet(N0, DAG)) { 1939 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 1940 if (DCI.isBeforeLegalizeOps() || 1941 isCondCodeLegal(Cond, N1.getSimpleValueType())) { 1942 SDValue Zero = DAG.getConstant(0, N0.getValueType()); 1943 return DAG.getSetCC(dl, VT, N1, Zero, Cond); 1944 } 1945 } 1946 } 1947 } 1948 1949 // Fold away ALL boolean setcc's. 1950 SDValue Temp; 1951 if (N0.getValueType() == MVT::i1 && foldBooleans) { 1952 switch (Cond) { 1953 default: llvm_unreachable("Unknown integer setcc!"); 1954 case ISD::SETEQ: // X == Y -> ~(X^Y) 1955 Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); 1956 N0 = DAG.getNOT(dl, Temp, MVT::i1); 1957 if (!DCI.isCalledByLegalizer()) 1958 DCI.AddToWorklist(Temp.getNode()); 1959 break; 1960 case ISD::SETNE: // X != Y --> (X^Y) 1961 N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); 1962 break; 1963 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 1964 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 1965 Temp = DAG.getNOT(dl, N0, MVT::i1); 1966 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp); 1967 if (!DCI.isCalledByLegalizer()) 1968 DCI.AddToWorklist(Temp.getNode()); 1969 break; 1970 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 1971 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 1972 Temp = DAG.getNOT(dl, N1, MVT::i1); 1973 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp); 1974 if (!DCI.isCalledByLegalizer()) 1975 DCI.AddToWorklist(Temp.getNode()); 1976 break; 1977 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 1978 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 1979 Temp = DAG.getNOT(dl, N0, MVT::i1); 1980 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp); 1981 if (!DCI.isCalledByLegalizer()) 1982 DCI.AddToWorklist(Temp.getNode()); 1983 break; 1984 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 1985 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 1986 Temp = DAG.getNOT(dl, N1, MVT::i1); 1987 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp); 1988 break; 1989 } 1990 if (VT != MVT::i1) { 1991 if (!DCI.isCalledByLegalizer()) 1992 DCI.AddToWorklist(N0.getNode()); 1993 // FIXME: If running after legalize, we probably can't do this. 1994 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0); 1995 } 1996 return N0; 1997 } 1998 1999 // Could not fold it. 2000 return SDValue(); 2001 } 2002 2003 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the 2004 /// node is a GlobalAddress + offset. 2005 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA, 2006 int64_t &Offset) const { 2007 if (isa<GlobalAddressSDNode>(N)) { 2008 GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N); 2009 GA = GASD->getGlobal(); 2010 Offset += GASD->getOffset(); 2011 return true; 2012 } 2013 2014 if (N->getOpcode() == ISD::ADD) { 2015 SDValue N1 = N->getOperand(0); 2016 SDValue N2 = N->getOperand(1); 2017 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 2018 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2); 2019 if (V) { 2020 Offset += V->getSExtValue(); 2021 return true; 2022 } 2023 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 2024 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1); 2025 if (V) { 2026 Offset += V->getSExtValue(); 2027 return true; 2028 } 2029 } 2030 } 2031 2032 return false; 2033 } 2034 2035 2036 SDValue TargetLowering:: 2037 PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { 2038 // Default implementation: no optimization. 2039 return SDValue(); 2040 } 2041 2042 //===----------------------------------------------------------------------===// 2043 // Inline Assembler Implementation Methods 2044 //===----------------------------------------------------------------------===// 2045 2046 2047 TargetLowering::ConstraintType 2048 TargetLowering::getConstraintType(const std::string &Constraint) const { 2049 unsigned S = Constraint.size(); 2050 2051 if (S == 1) { 2052 switch (Constraint[0]) { 2053 default: break; 2054 case 'r': return C_RegisterClass; 2055 case 'm': // memory 2056 case 'o': // offsetable 2057 case 'V': // not offsetable 2058 return C_Memory; 2059 case 'i': // Simple Integer or Relocatable Constant 2060 case 'n': // Simple Integer 2061 case 'E': // Floating Point Constant 2062 case 'F': // Floating Point Constant 2063 case 's': // Relocatable Constant 2064 case 'p': // Address. 2065 case 'X': // Allow ANY value. 2066 case 'I': // Target registers. 2067 case 'J': 2068 case 'K': 2069 case 'L': 2070 case 'M': 2071 case 'N': 2072 case 'O': 2073 case 'P': 2074 case '<': 2075 case '>': 2076 return C_Other; 2077 } 2078 } 2079 2080 if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') { 2081 if (S == 8 && !Constraint.compare(1, 6, "memory", 6)) // "{memory}" 2082 return C_Memory; 2083 return C_Register; 2084 } 2085 return C_Unknown; 2086 } 2087 2088 /// LowerXConstraint - try to replace an X constraint, which matches anything, 2089 /// with another that has more specific requirements based on the type of the 2090 /// corresponding operand. 2091 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{ 2092 if (ConstraintVT.isInteger()) 2093 return "r"; 2094 if (ConstraintVT.isFloatingPoint()) 2095 return "f"; // works for many targets 2096 return nullptr; 2097 } 2098 2099 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 2100 /// vector. If it is invalid, don't add anything to Ops. 2101 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 2102 std::string &Constraint, 2103 std::vector<SDValue> &Ops, 2104 SelectionDAG &DAG) const { 2105 2106 if (Constraint.length() > 1) return; 2107 2108 char ConstraintLetter = Constraint[0]; 2109 switch (ConstraintLetter) { 2110 default: break; 2111 case 'X': // Allows any operand; labels (basic block) use this. 2112 if (Op.getOpcode() == ISD::BasicBlock) { 2113 Ops.push_back(Op); 2114 return; 2115 } 2116 // fall through 2117 case 'i': // Simple Integer or Relocatable Constant 2118 case 'n': // Simple Integer 2119 case 's': { // Relocatable Constant 2120 // These operands are interested in values of the form (GV+C), where C may 2121 // be folded in as an offset of GV, or it may be explicitly added. Also, it 2122 // is possible and fine if either GV or C are missing. 2123 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 2124 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); 2125 2126 // If we have "(add GV, C)", pull out GV/C 2127 if (Op.getOpcode() == ISD::ADD) { 2128 C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2129 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0)); 2130 if (!C || !GA) { 2131 C = dyn_cast<ConstantSDNode>(Op.getOperand(0)); 2132 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1)); 2133 } 2134 if (!C || !GA) 2135 C = nullptr, GA = nullptr; 2136 } 2137 2138 // If we find a valid operand, map to the TargetXXX version so that the 2139 // value itself doesn't get selected. 2140 if (GA) { // Either &GV or &GV+C 2141 if (ConstraintLetter != 'n') { 2142 int64_t Offs = GA->getOffset(); 2143 if (C) Offs += C->getZExtValue(); 2144 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), 2145 C ? SDLoc(C) : SDLoc(), 2146 Op.getValueType(), Offs)); 2147 return; 2148 } 2149 } 2150 if (C) { // just C, no GV. 2151 // Simple constants are not allowed for 's'. 2152 if (ConstraintLetter != 's') { 2153 // gcc prints these as sign extended. Sign extend value to 64 bits 2154 // now; without this it would get ZExt'd later in 2155 // ScheduleDAGSDNodes::EmitNode, which is very generic. 2156 Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(), 2157 MVT::i64)); 2158 return; 2159 } 2160 } 2161 break; 2162 } 2163 } 2164 } 2165 2166 std::pair<unsigned, const TargetRegisterClass*> TargetLowering:: 2167 getRegForInlineAsmConstraint(const std::string &Constraint, 2168 MVT VT) const { 2169 if (Constraint.empty() || Constraint[0] != '{') 2170 return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr)); 2171 assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?"); 2172 2173 // Remove the braces from around the name. 2174 StringRef RegName(Constraint.data()+1, Constraint.size()-2); 2175 2176 std::pair<unsigned, const TargetRegisterClass*> R = 2177 std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr)); 2178 2179 // Figure out which register class contains this reg. 2180 const TargetRegisterInfo *RI = getTargetMachine().getRegisterInfo(); 2181 for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(), 2182 E = RI->regclass_end(); RCI != E; ++RCI) { 2183 const TargetRegisterClass *RC = *RCI; 2184 2185 // If none of the value types for this register class are valid, we 2186 // can't use it. For example, 64-bit reg classes on 32-bit targets. 2187 if (!isLegalRC(RC)) 2188 continue; 2189 2190 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 2191 I != E; ++I) { 2192 if (RegName.equals_lower(RI->getName(*I))) { 2193 std::pair<unsigned, const TargetRegisterClass*> S = 2194 std::make_pair(*I, RC); 2195 2196 // If this register class has the requested value type, return it, 2197 // otherwise keep searching and return the first class found 2198 // if no other is found which explicitly has the requested type. 2199 if (RC->hasType(VT)) 2200 return S; 2201 else if (!R.second) 2202 R = S; 2203 } 2204 } 2205 } 2206 2207 return R; 2208 } 2209 2210 //===----------------------------------------------------------------------===// 2211 // Constraint Selection. 2212 2213 /// isMatchingInputConstraint - Return true of this is an input operand that is 2214 /// a matching constraint like "4". 2215 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 2216 assert(!ConstraintCode.empty() && "No known constraint!"); 2217 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 2218 } 2219 2220 /// getMatchedOperand - If this is an input matching constraint, this method 2221 /// returns the output operand it matches. 2222 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 2223 assert(!ConstraintCode.empty() && "No known constraint!"); 2224 return atoi(ConstraintCode.c_str()); 2225 } 2226 2227 2228 /// ParseConstraints - Split up the constraint string from the inline 2229 /// assembly value into the specific constraints and their prefixes, 2230 /// and also tie in the associated operand values. 2231 /// If this returns an empty vector, and if the constraint string itself 2232 /// isn't empty, there was an error parsing. 2233 TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints( 2234 ImmutableCallSite CS) const { 2235 /// ConstraintOperands - Information about all of the constraints. 2236 AsmOperandInfoVector ConstraintOperands; 2237 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 2238 unsigned maCount = 0; // Largest number of multiple alternative constraints. 2239 2240 // Do a prepass over the constraints, canonicalizing them, and building up the 2241 // ConstraintOperands list. 2242 InlineAsm::ConstraintInfoVector 2243 ConstraintInfos = IA->ParseConstraints(); 2244 2245 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 2246 unsigned ResNo = 0; // ResNo - The result number of the next output. 2247 2248 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { 2249 ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i])); 2250 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 2251 2252 // Update multiple alternative constraint count. 2253 if (OpInfo.multipleAlternatives.size() > maCount) 2254 maCount = OpInfo.multipleAlternatives.size(); 2255 2256 OpInfo.ConstraintVT = MVT::Other; 2257 2258 // Compute the value type for each operand. 2259 switch (OpInfo.Type) { 2260 case InlineAsm::isOutput: 2261 // Indirect outputs just consume an argument. 2262 if (OpInfo.isIndirect) { 2263 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 2264 break; 2265 } 2266 2267 // The return value of the call is this value. As such, there is no 2268 // corresponding argument. 2269 assert(!CS.getType()->isVoidTy() && 2270 "Bad inline asm!"); 2271 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 2272 OpInfo.ConstraintVT = getSimpleValueType(STy->getElementType(ResNo)); 2273 } else { 2274 assert(ResNo == 0 && "Asm only has one result!"); 2275 OpInfo.ConstraintVT = getSimpleValueType(CS.getType()); 2276 } 2277 ++ResNo; 2278 break; 2279 case InlineAsm::isInput: 2280 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 2281 break; 2282 case InlineAsm::isClobber: 2283 // Nothing to do. 2284 break; 2285 } 2286 2287 if (OpInfo.CallOperandVal) { 2288 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 2289 if (OpInfo.isIndirect) { 2290 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 2291 if (!PtrTy) 2292 report_fatal_error("Indirect operand for inline asm not a pointer!"); 2293 OpTy = PtrTy->getElementType(); 2294 } 2295 2296 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 2297 if (StructType *STy = dyn_cast<StructType>(OpTy)) 2298 if (STy->getNumElements() == 1) 2299 OpTy = STy->getElementType(0); 2300 2301 // If OpTy is not a single value, it may be a struct/union that we 2302 // can tile with integers. 2303 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 2304 unsigned BitSize = getDataLayout()->getTypeSizeInBits(OpTy); 2305 switch (BitSize) { 2306 default: break; 2307 case 1: 2308 case 8: 2309 case 16: 2310 case 32: 2311 case 64: 2312 case 128: 2313 OpInfo.ConstraintVT = 2314 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 2315 break; 2316 } 2317 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 2318 unsigned PtrSize 2319 = getDataLayout()->getPointerSizeInBits(PT->getAddressSpace()); 2320 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 2321 } else { 2322 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 2323 } 2324 } 2325 } 2326 2327 // If we have multiple alternative constraints, select the best alternative. 2328 if (ConstraintInfos.size()) { 2329 if (maCount) { 2330 unsigned bestMAIndex = 0; 2331 int bestWeight = -1; 2332 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 2333 int weight = -1; 2334 unsigned maIndex; 2335 // Compute the sums of the weights for each alternative, keeping track 2336 // of the best (highest weight) one so far. 2337 for (maIndex = 0; maIndex < maCount; ++maIndex) { 2338 int weightSum = 0; 2339 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2340 cIndex != eIndex; ++cIndex) { 2341 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 2342 if (OpInfo.Type == InlineAsm::isClobber) 2343 continue; 2344 2345 // If this is an output operand with a matching input operand, 2346 // look up the matching input. If their types mismatch, e.g. one 2347 // is an integer, the other is floating point, or their sizes are 2348 // different, flag it as an maCantMatch. 2349 if (OpInfo.hasMatchingInput()) { 2350 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 2351 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 2352 if ((OpInfo.ConstraintVT.isInteger() != 2353 Input.ConstraintVT.isInteger()) || 2354 (OpInfo.ConstraintVT.getSizeInBits() != 2355 Input.ConstraintVT.getSizeInBits())) { 2356 weightSum = -1; // Can't match. 2357 break; 2358 } 2359 } 2360 } 2361 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 2362 if (weight == -1) { 2363 weightSum = -1; 2364 break; 2365 } 2366 weightSum += weight; 2367 } 2368 // Update best. 2369 if (weightSum > bestWeight) { 2370 bestWeight = weightSum; 2371 bestMAIndex = maIndex; 2372 } 2373 } 2374 2375 // Now select chosen alternative in each constraint. 2376 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2377 cIndex != eIndex; ++cIndex) { 2378 AsmOperandInfo& cInfo = ConstraintOperands[cIndex]; 2379 if (cInfo.Type == InlineAsm::isClobber) 2380 continue; 2381 cInfo.selectAlternative(bestMAIndex); 2382 } 2383 } 2384 } 2385 2386 // Check and hook up tied operands, choose constraint code to use. 2387 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2388 cIndex != eIndex; ++cIndex) { 2389 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 2390 2391 // If this is an output operand with a matching input operand, look up the 2392 // matching input. If their types mismatch, e.g. one is an integer, the 2393 // other is floating point, or their sizes are different, flag it as an 2394 // error. 2395 if (OpInfo.hasMatchingInput()) { 2396 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 2397 2398 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 2399 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 2400 getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 2401 OpInfo.ConstraintVT); 2402 std::pair<unsigned, const TargetRegisterClass*> InputRC = 2403 getRegForInlineAsmConstraint(Input.ConstraintCode, 2404 Input.ConstraintVT); 2405 if ((OpInfo.ConstraintVT.isInteger() != 2406 Input.ConstraintVT.isInteger()) || 2407 (MatchRC.second != InputRC.second)) { 2408 report_fatal_error("Unsupported asm: input constraint" 2409 " with a matching output constraint of" 2410 " incompatible type!"); 2411 } 2412 } 2413 2414 } 2415 } 2416 2417 return ConstraintOperands; 2418 } 2419 2420 2421 /// getConstraintGenerality - Return an integer indicating how general CT 2422 /// is. 2423 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 2424 switch (CT) { 2425 case TargetLowering::C_Other: 2426 case TargetLowering::C_Unknown: 2427 return 0; 2428 case TargetLowering::C_Register: 2429 return 1; 2430 case TargetLowering::C_RegisterClass: 2431 return 2; 2432 case TargetLowering::C_Memory: 2433 return 3; 2434 } 2435 llvm_unreachable("Invalid constraint type"); 2436 } 2437 2438 /// Examine constraint type and operand type and determine a weight value. 2439 /// This object must already have been set up with the operand type 2440 /// and the current alternative constraint selected. 2441 TargetLowering::ConstraintWeight 2442 TargetLowering::getMultipleConstraintMatchWeight( 2443 AsmOperandInfo &info, int maIndex) const { 2444 InlineAsm::ConstraintCodeVector *rCodes; 2445 if (maIndex >= (int)info.multipleAlternatives.size()) 2446 rCodes = &info.Codes; 2447 else 2448 rCodes = &info.multipleAlternatives[maIndex].Codes; 2449 ConstraintWeight BestWeight = CW_Invalid; 2450 2451 // Loop over the options, keeping track of the most general one. 2452 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 2453 ConstraintWeight weight = 2454 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 2455 if (weight > BestWeight) 2456 BestWeight = weight; 2457 } 2458 2459 return BestWeight; 2460 } 2461 2462 /// Examine constraint type and operand type and determine a weight value. 2463 /// This object must already have been set up with the operand type 2464 /// and the current alternative constraint selected. 2465 TargetLowering::ConstraintWeight 2466 TargetLowering::getSingleConstraintMatchWeight( 2467 AsmOperandInfo &info, const char *constraint) const { 2468 ConstraintWeight weight = CW_Invalid; 2469 Value *CallOperandVal = info.CallOperandVal; 2470 // If we don't have a value, we can't do a match, 2471 // but allow it at the lowest weight. 2472 if (!CallOperandVal) 2473 return CW_Default; 2474 // Look at the constraint type. 2475 switch (*constraint) { 2476 case 'i': // immediate integer. 2477 case 'n': // immediate integer with a known value. 2478 if (isa<ConstantInt>(CallOperandVal)) 2479 weight = CW_Constant; 2480 break; 2481 case 's': // non-explicit intregal immediate. 2482 if (isa<GlobalValue>(CallOperandVal)) 2483 weight = CW_Constant; 2484 break; 2485 case 'E': // immediate float if host format. 2486 case 'F': // immediate float. 2487 if (isa<ConstantFP>(CallOperandVal)) 2488 weight = CW_Constant; 2489 break; 2490 case '<': // memory operand with autodecrement. 2491 case '>': // memory operand with autoincrement. 2492 case 'm': // memory operand. 2493 case 'o': // offsettable memory operand 2494 case 'V': // non-offsettable memory operand 2495 weight = CW_Memory; 2496 break; 2497 case 'r': // general register. 2498 case 'g': // general register, memory operand or immediate integer. 2499 // note: Clang converts "g" to "imr". 2500 if (CallOperandVal->getType()->isIntegerTy()) 2501 weight = CW_Register; 2502 break; 2503 case 'X': // any operand. 2504 default: 2505 weight = CW_Default; 2506 break; 2507 } 2508 return weight; 2509 } 2510 2511 /// ChooseConstraint - If there are multiple different constraints that we 2512 /// could pick for this operand (e.g. "imr") try to pick the 'best' one. 2513 /// This is somewhat tricky: constraints fall into four classes: 2514 /// Other -> immediates and magic values 2515 /// Register -> one specific register 2516 /// RegisterClass -> a group of regs 2517 /// Memory -> memory 2518 /// Ideally, we would pick the most specific constraint possible: if we have 2519 /// something that fits into a register, we would pick it. The problem here 2520 /// is that if we have something that could either be in a register or in 2521 /// memory that use of the register could cause selection of *other* 2522 /// operands to fail: they might only succeed if we pick memory. Because of 2523 /// this the heuristic we use is: 2524 /// 2525 /// 1) If there is an 'other' constraint, and if the operand is valid for 2526 /// that constraint, use it. This makes us take advantage of 'i' 2527 /// constraints when available. 2528 /// 2) Otherwise, pick the most general constraint present. This prefers 2529 /// 'm' over 'r', for example. 2530 /// 2531 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 2532 const TargetLowering &TLI, 2533 SDValue Op, SelectionDAG *DAG) { 2534 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 2535 unsigned BestIdx = 0; 2536 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 2537 int BestGenerality = -1; 2538 2539 // Loop over the options, keeping track of the most general one. 2540 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 2541 TargetLowering::ConstraintType CType = 2542 TLI.getConstraintType(OpInfo.Codes[i]); 2543 2544 // If this is an 'other' constraint, see if the operand is valid for it. 2545 // For example, on X86 we might have an 'rI' constraint. If the operand 2546 // is an integer in the range [0..31] we want to use I (saving a load 2547 // of a register), otherwise we must use 'r'. 2548 if (CType == TargetLowering::C_Other && Op.getNode()) { 2549 assert(OpInfo.Codes[i].size() == 1 && 2550 "Unhandled multi-letter 'other' constraint"); 2551 std::vector<SDValue> ResultOps; 2552 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 2553 ResultOps, *DAG); 2554 if (!ResultOps.empty()) { 2555 BestType = CType; 2556 BestIdx = i; 2557 break; 2558 } 2559 } 2560 2561 // Things with matching constraints can only be registers, per gcc 2562 // documentation. This mainly affects "g" constraints. 2563 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 2564 continue; 2565 2566 // This constraint letter is more general than the previous one, use it. 2567 int Generality = getConstraintGenerality(CType); 2568 if (Generality > BestGenerality) { 2569 BestType = CType; 2570 BestIdx = i; 2571 BestGenerality = Generality; 2572 } 2573 } 2574 2575 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 2576 OpInfo.ConstraintType = BestType; 2577 } 2578 2579 /// ComputeConstraintToUse - Determines the constraint code and constraint 2580 /// type to use for the specific AsmOperandInfo, setting 2581 /// OpInfo.ConstraintCode and OpInfo.ConstraintType. 2582 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 2583 SDValue Op, 2584 SelectionDAG *DAG) const { 2585 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 2586 2587 // Single-letter constraints ('r') are very common. 2588 if (OpInfo.Codes.size() == 1) { 2589 OpInfo.ConstraintCode = OpInfo.Codes[0]; 2590 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 2591 } else { 2592 ChooseConstraint(OpInfo, *this, Op, DAG); 2593 } 2594 2595 // 'X' matches anything. 2596 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 2597 // Labels and constants are handled elsewhere ('X' is the only thing 2598 // that matches labels). For Functions, the type here is the type of 2599 // the result, which is not what we want to look at; leave them alone. 2600 Value *v = OpInfo.CallOperandVal; 2601 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 2602 OpInfo.CallOperandVal = v; 2603 return; 2604 } 2605 2606 // Otherwise, try to resolve it to something we know about by looking at 2607 // the actual operand type. 2608 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 2609 OpInfo.ConstraintCode = Repl; 2610 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 2611 } 2612 } 2613 } 2614 2615 /// \brief Given an exact SDIV by a constant, create a multiplication 2616 /// with the multiplicative inverse of the constant. 2617 SDValue TargetLowering::BuildExactSDIV(SDValue Op1, SDValue Op2, SDLoc dl, 2618 SelectionDAG &DAG) const { 2619 ConstantSDNode *C = cast<ConstantSDNode>(Op2); 2620 APInt d = C->getAPIntValue(); 2621 assert(d != 0 && "Division by zero!"); 2622 2623 // Shift the value upfront if it is even, so the LSB is one. 2624 unsigned ShAmt = d.countTrailingZeros(); 2625 if (ShAmt) { 2626 // TODO: For UDIV use SRL instead of SRA. 2627 SDValue Amt = DAG.getConstant(ShAmt, getShiftAmountTy(Op1.getValueType())); 2628 Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt, false, false, 2629 true); 2630 d = d.ashr(ShAmt); 2631 } 2632 2633 // Calculate the multiplicative inverse, using Newton's method. 2634 APInt t, xn = d; 2635 while ((t = d*xn) != 1) 2636 xn *= APInt(d.getBitWidth(), 2) - t; 2637 2638 Op2 = DAG.getConstant(xn, Op1.getValueType()); 2639 return DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2); 2640 } 2641 2642 /// \brief Given an ISD::SDIV node expressing a divide by constant, 2643 /// return a DAG expression to select that will generate the same value by 2644 /// multiplying by a magic number. See: 2645 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html> 2646 SDValue TargetLowering::BuildSDIV(SDNode *N, const APInt &Divisor, 2647 SelectionDAG &DAG, bool IsAfterLegalization, 2648 std::vector<SDNode *> *Created) const { 2649 EVT VT = N->getValueType(0); 2650 SDLoc dl(N); 2651 2652 // Check to see if we can do this. 2653 // FIXME: We should be more aggressive here. 2654 if (!isTypeLegal(VT)) 2655 return SDValue(); 2656 2657 APInt::ms magics = Divisor.magic(); 2658 2659 // Multiply the numerator (operand 0) by the magic value 2660 // FIXME: We should support doing a MUL in a wider type 2661 SDValue Q; 2662 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) : 2663 isOperationLegalOrCustom(ISD::MULHS, VT)) 2664 Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0), 2665 DAG.getConstant(magics.m, VT)); 2666 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) : 2667 isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) 2668 Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), 2669 N->getOperand(0), 2670 DAG.getConstant(magics.m, VT)).getNode(), 1); 2671 else 2672 return SDValue(); // No mulhs or equvialent 2673 // If d > 0 and m < 0, add the numerator 2674 if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 2675 Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0)); 2676 if (Created) 2677 Created->push_back(Q.getNode()); 2678 } 2679 // If d < 0 and m > 0, subtract the numerator. 2680 if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 2681 Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0)); 2682 if (Created) 2683 Created->push_back(Q.getNode()); 2684 } 2685 // Shift right algebraic if shift value is nonzero 2686 if (magics.s > 0) { 2687 Q = DAG.getNode(ISD::SRA, dl, VT, Q, 2688 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType()))); 2689 if (Created) 2690 Created->push_back(Q.getNode()); 2691 } 2692 // Extract the sign bit and add it to the quotient 2693 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, 2694 DAG.getConstant(VT.getScalarSizeInBits() - 1, 2695 getShiftAmountTy(Q.getValueType()))); 2696 if (Created) 2697 Created->push_back(T.getNode()); 2698 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 2699 } 2700 2701 /// \brief Given an ISD::UDIV node expressing a divide by constant, 2702 /// return a DAG expression to select that will generate the same value by 2703 /// multiplying by a magic number. See: 2704 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html> 2705 SDValue TargetLowering::BuildUDIV(SDNode *N, const APInt &Divisor, 2706 SelectionDAG &DAG, bool IsAfterLegalization, 2707 std::vector<SDNode *> *Created) const { 2708 EVT VT = N->getValueType(0); 2709 SDLoc dl(N); 2710 2711 // Check to see if we can do this. 2712 // FIXME: We should be more aggressive here. 2713 if (!isTypeLegal(VT)) 2714 return SDValue(); 2715 2716 // FIXME: We should use a narrower constant when the upper 2717 // bits are known to be zero. 2718 APInt::mu magics = Divisor.magicu(); 2719 2720 SDValue Q = N->getOperand(0); 2721 2722 // If the divisor is even, we can avoid using the expensive fixup by shifting 2723 // the divided value upfront. 2724 if (magics.a != 0 && !Divisor[0]) { 2725 unsigned Shift = Divisor.countTrailingZeros(); 2726 Q = DAG.getNode(ISD::SRL, dl, VT, Q, 2727 DAG.getConstant(Shift, getShiftAmountTy(Q.getValueType()))); 2728 if (Created) 2729 Created->push_back(Q.getNode()); 2730 2731 // Get magic number for the shifted divisor. 2732 magics = Divisor.lshr(Shift).magicu(Shift); 2733 assert(magics.a == 0 && "Should use cheap fixup now"); 2734 } 2735 2736 // Multiply the numerator (operand 0) by the magic value 2737 // FIXME: We should support doing a MUL in a wider type 2738 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) : 2739 isOperationLegalOrCustom(ISD::MULHU, VT)) 2740 Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, VT)); 2741 else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) : 2742 isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) 2743 Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q, 2744 DAG.getConstant(magics.m, VT)).getNode(), 1); 2745 else 2746 return SDValue(); // No mulhu or equvialent 2747 if (Created) 2748 Created->push_back(Q.getNode()); 2749 2750 if (magics.a == 0) { 2751 assert(magics.s < Divisor.getBitWidth() && 2752 "We shouldn't generate an undefined shift!"); 2753 return DAG.getNode(ISD::SRL, dl, VT, Q, 2754 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType()))); 2755 } else { 2756 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q); 2757 if (Created) 2758 Created->push_back(NPQ.getNode()); 2759 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, 2760 DAG.getConstant(1, getShiftAmountTy(NPQ.getValueType()))); 2761 if (Created) 2762 Created->push_back(NPQ.getNode()); 2763 NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 2764 if (Created) 2765 Created->push_back(NPQ.getNode()); 2766 return DAG.getNode(ISD::SRL, dl, VT, NPQ, 2767 DAG.getConstant(magics.s-1, getShiftAmountTy(NPQ.getValueType()))); 2768 } 2769 } 2770 2771 bool TargetLowering:: 2772 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 2773 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 2774 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 2775 "be a constant integer"); 2776 return true; 2777 } 2778 2779 return false; 2780 } 2781 2782 //===----------------------------------------------------------------------===// 2783 // Legalization Utilities 2784 //===----------------------------------------------------------------------===// 2785 2786 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 2787 SelectionDAG &DAG, SDValue LL, SDValue LH, 2788 SDValue RL, SDValue RH) const { 2789 EVT VT = N->getValueType(0); 2790 SDLoc dl(N); 2791 2792 bool HasMULHS = isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 2793 bool HasMULHU = isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 2794 bool HasSMUL_LOHI = isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 2795 bool HasUMUL_LOHI = isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 2796 if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) { 2797 unsigned OuterBitSize = VT.getSizeInBits(); 2798 unsigned InnerBitSize = HiLoVT.getSizeInBits(); 2799 unsigned LHSSB = DAG.ComputeNumSignBits(N->getOperand(0)); 2800 unsigned RHSSB = DAG.ComputeNumSignBits(N->getOperand(1)); 2801 2802 // LL, LH, RL, and RH must be either all NULL or all set to a value. 2803 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 2804 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 2805 2806 if (!LL.getNode() && !RL.getNode() && 2807 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 2808 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(0)); 2809 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(1)); 2810 } 2811 2812 if (!LL.getNode()) 2813 return false; 2814 2815 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 2816 if (DAG.MaskedValueIsZero(N->getOperand(0), HighMask) && 2817 DAG.MaskedValueIsZero(N->getOperand(1), HighMask)) { 2818 // The inputs are both zero-extended. 2819 if (HasUMUL_LOHI) { 2820 // We can emit a umul_lohi. 2821 Lo = DAG.getNode(ISD::UMUL_LOHI, dl, 2822 DAG.getVTList(HiLoVT, HiLoVT), LL, RL); 2823 Hi = SDValue(Lo.getNode(), 1); 2824 return true; 2825 } 2826 if (HasMULHU) { 2827 // We can emit a mulhu+mul. 2828 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL); 2829 Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL); 2830 return true; 2831 } 2832 } 2833 if (LHSSB > InnerBitSize && RHSSB > InnerBitSize) { 2834 // The input values are both sign-extended. 2835 if (HasSMUL_LOHI) { 2836 // We can emit a smul_lohi. 2837 Lo = DAG.getNode(ISD::SMUL_LOHI, dl, 2838 DAG.getVTList(HiLoVT, HiLoVT), LL, RL); 2839 Hi = SDValue(Lo.getNode(), 1); 2840 return true; 2841 } 2842 if (HasMULHS) { 2843 // We can emit a mulhs+mul. 2844 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL); 2845 Hi = DAG.getNode(ISD::MULHS, dl, HiLoVT, LL, RL); 2846 return true; 2847 } 2848 } 2849 2850 if (!LH.getNode() && !RH.getNode() && 2851 isOperationLegalOrCustom(ISD::SRL, VT) && 2852 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 2853 unsigned ShiftAmt = VT.getSizeInBits() - HiLoVT.getSizeInBits(); 2854 SDValue Shift = DAG.getConstant(ShiftAmt, getShiftAmountTy(VT)); 2855 LH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(0), Shift); 2856 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 2857 RH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(1), Shift); 2858 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 2859 } 2860 2861 if (!LH.getNode()) 2862 return false; 2863 2864 if (HasUMUL_LOHI) { 2865 // Lo,Hi = umul LHS, RHS. 2866 SDValue UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, dl, 2867 DAG.getVTList(HiLoVT, HiLoVT), LL, RL); 2868 Lo = UMulLOHI; 2869 Hi = UMulLOHI.getValue(1); 2870 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 2871 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 2872 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 2873 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 2874 return true; 2875 } 2876 if (HasMULHU) { 2877 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL); 2878 Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL); 2879 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 2880 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 2881 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 2882 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 2883 return true; 2884 } 2885 } 2886 return false; 2887 } 2888