Home | History | Annotate | Download | only in X86
      1 //===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the interfaces that X86 uses to lower LLVM code into a
     11 // selection DAG.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef X86ISELLOWERING_H
     16 #define X86ISELLOWERING_H
     17 
     18 #include "llvm/CodeGen/CallingConvLower.h"
     19 #include "llvm/CodeGen/SelectionDAG.h"
     20 #include "llvm/Target/TargetLowering.h"
     21 #include "llvm/Target/TargetOptions.h"
     22 
     23 namespace llvm {
     24   class X86Subtarget;
     25   class X86TargetMachine;
     26 
     27   namespace X86ISD {
     28     // X86 Specific DAG Nodes
     29     enum NodeType {
     30       // Start the numbering where the builtin ops leave off.
     31       FIRST_NUMBER = ISD::BUILTIN_OP_END,
     32 
     33       /// BSF - Bit scan forward.
     34       /// BSR - Bit scan reverse.
     35       BSF,
     36       BSR,
     37 
     38       /// SHLD, SHRD - Double shift instructions. These correspond to
     39       /// X86::SHLDxx and X86::SHRDxx instructions.
     40       SHLD,
     41       SHRD,
     42 
     43       /// FAND - Bitwise logical AND of floating point values. This corresponds
     44       /// to X86::ANDPS or X86::ANDPD.
     45       FAND,
     46 
     47       /// FOR - Bitwise logical OR of floating point values. This corresponds
     48       /// to X86::ORPS or X86::ORPD.
     49       FOR,
     50 
     51       /// FXOR - Bitwise logical XOR of floating point values. This corresponds
     52       /// to X86::XORPS or X86::XORPD.
     53       FXOR,
     54 
     55       /// FANDN - Bitwise logical ANDNOT of floating point values. This
     56       /// corresponds to X86::ANDNPS or X86::ANDNPD.
     57       FANDN,
     58 
     59       /// FSRL - Bitwise logical right shift of floating point values. These
     60       /// corresponds to X86::PSRLDQ.
     61       FSRL,
     62 
     63       /// CALL - These operations represent an abstract X86 call
     64       /// instruction, which includes a bunch of information.  In particular the
     65       /// operands of these node are:
     66       ///
     67       ///     #0 - The incoming token chain
     68       ///     #1 - The callee
     69       ///     #2 - The number of arg bytes the caller pushes on the stack.
     70       ///     #3 - The number of arg bytes the callee pops off the stack.
     71       ///     #4 - The value to pass in AL/AX/EAX (optional)
     72       ///     #5 - The value to pass in DL/DX/EDX (optional)
     73       ///
     74       /// The result values of these nodes are:
     75       ///
     76       ///     #0 - The outgoing token chain
     77       ///     #1 - The first register result value (optional)
     78       ///     #2 - The second register result value (optional)
     79       ///
     80       CALL,
     81 
     82       /// RDTSC_DAG - This operation implements the lowering for
     83       /// readcyclecounter
     84       RDTSC_DAG,
     85 
     86       /// X86 Read Time-Stamp Counter and Processor ID.
     87       RDTSCP_DAG,
     88 
     89       /// X86 Read Performance Monitoring Counters.
     90       RDPMC_DAG,
     91 
     92       /// X86 compare and logical compare instructions.
     93       CMP, COMI, UCOMI,
     94 
     95       /// X86 bit-test instructions.
     96       BT,
     97 
     98       /// X86 SetCC. Operand 0 is condition code, and operand 1 is the EFLAGS
     99       /// operand, usually produced by a CMP instruction.
    100       SETCC,
    101 
    102       /// X86 Select
    103       SELECT,
    104 
    105       // Same as SETCC except it's materialized with a sbb and the value is all
    106       // one's or all zero's.
    107       SETCC_CARRY,  // R = carry_bit ? ~0 : 0
    108 
    109       /// X86 FP SETCC, implemented with CMP{cc}SS/CMP{cc}SD.
    110       /// Operands are two FP values to compare; result is a mask of
    111       /// 0s or 1s.  Generally DTRT for C/C++ with NaNs.
    112       FSETCC,
    113 
    114       /// X86 MOVMSK{pd|ps}, extracts sign bits of two or four FP values,
    115       /// result in an integer GPR.  Needs masking for scalar result.
    116       FGETSIGNx86,
    117 
    118       /// X86 conditional moves. Operand 0 and operand 1 are the two values
    119       /// to select from. Operand 2 is the condition code, and operand 3 is the
    120       /// flag operand produced by a CMP or TEST instruction. It also writes a
    121       /// flag result.
    122       CMOV,
    123 
    124       /// X86 conditional branches. Operand 0 is the chain operand, operand 1
    125       /// is the block to branch if condition is true, operand 2 is the
    126       /// condition code, and operand 3 is the flag operand produced by a CMP
    127       /// or TEST instruction.
    128       BRCOND,
    129 
    130       /// Return with a flag operand. Operand 0 is the chain operand, operand
    131       /// 1 is the number of bytes of stack to pop.
    132       RET_FLAG,
    133 
    134       /// REP_STOS - Repeat fill, corresponds to X86::REP_STOSx.
    135       REP_STOS,
    136 
    137       /// REP_MOVS - Repeat move, corresponds to X86::REP_MOVSx.
    138       REP_MOVS,
    139 
    140       /// GlobalBaseReg - On Darwin, this node represents the result of the popl
    141       /// at function entry, used for PIC code.
    142       GlobalBaseReg,
    143 
    144       /// Wrapper - A wrapper node for TargetConstantPool,
    145       /// TargetExternalSymbol, and TargetGlobalAddress.
    146       Wrapper,
    147 
    148       /// WrapperRIP - Special wrapper used under X86-64 PIC mode for RIP
    149       /// relative displacements.
    150       WrapperRIP,
    151 
    152       /// MOVDQ2Q - Copies a 64-bit value from the low word of an XMM vector
    153       /// to an MMX vector.  If you think this is too close to the previous
    154       /// mnemonic, so do I; blame Intel.
    155       MOVDQ2Q,
    156 
    157       /// MMX_MOVD2W - Copies a 32-bit value from the low word of a MMX
    158       /// vector to a GPR.
    159       MMX_MOVD2W,
    160 
    161       /// PEXTRB - Extract an 8-bit value from a vector and zero extend it to
    162       /// i32, corresponds to X86::PEXTRB.
    163       PEXTRB,
    164 
    165       /// PEXTRW - Extract a 16-bit value from a vector and zero extend it to
    166       /// i32, corresponds to X86::PEXTRW.
    167       PEXTRW,
    168 
    169       /// INSERTPS - Insert any element of a 4 x float vector into any element
    170       /// of a destination 4 x floatvector.
    171       INSERTPS,
    172 
    173       /// PINSRB - Insert the lower 8-bits of a 32-bit value to a vector,
    174       /// corresponds to X86::PINSRB.
    175       PINSRB,
    176 
    177       /// PINSRW - Insert the lower 16-bits of a 32-bit value to a vector,
    178       /// corresponds to X86::PINSRW.
    179       PINSRW, MMX_PINSRW,
    180 
    181       /// PSHUFB - Shuffle 16 8-bit values within a vector.
    182       PSHUFB,
    183 
    184       /// ANDNP - Bitwise Logical AND NOT of Packed FP values.
    185       ANDNP,
    186 
    187       /// PSIGN - Copy integer sign.
    188       PSIGN,
    189 
    190       /// BLENDV - Blend where the selector is a register.
    191       BLENDV,
    192 
    193       /// BLENDI - Blend where the selector is an immediate.
    194       BLENDI,
    195 
    196       // SUBUS - Integer sub with unsigned saturation.
    197       SUBUS,
    198 
    199       /// HADD - Integer horizontal add.
    200       HADD,
    201 
    202       /// HSUB - Integer horizontal sub.
    203       HSUB,
    204 
    205       /// FHADD - Floating point horizontal add.
    206       FHADD,
    207 
    208       /// FHSUB - Floating point horizontal sub.
    209       FHSUB,
    210 
    211       /// UMAX, UMIN - Unsigned integer max and min.
    212       UMAX, UMIN,
    213 
    214       /// SMAX, SMIN - Signed integer max and min.
    215       SMAX, SMIN,
    216 
    217       /// FMAX, FMIN - Floating point max and min.
    218       ///
    219       FMAX, FMIN,
    220 
    221       /// FMAXC, FMINC - Commutative FMIN and FMAX.
    222       FMAXC, FMINC,
    223 
    224       /// FRSQRT, FRCP - Floating point reciprocal-sqrt and reciprocal
    225       /// approximation.  Note that these typically require refinement
    226       /// in order to obtain suitable precision.
    227       FRSQRT, FRCP,
    228 
    229       // TLSADDR - Thread Local Storage.
    230       TLSADDR,
    231 
    232       // TLSBASEADDR - Thread Local Storage. A call to get the start address
    233       // of the TLS block for the current module.
    234       TLSBASEADDR,
    235 
    236       // TLSCALL - Thread Local Storage.  When calling to an OS provided
    237       // thunk at the address from an earlier relocation.
    238       TLSCALL,
    239 
    240       // EH_RETURN - Exception Handling helpers.
    241       EH_RETURN,
    242 
    243       // EH_SJLJ_SETJMP - SjLj exception handling setjmp.
    244       EH_SJLJ_SETJMP,
    245 
    246       // EH_SJLJ_LONGJMP - SjLj exception handling longjmp.
    247       EH_SJLJ_LONGJMP,
    248 
    249       /// TC_RETURN - Tail call return. See X86TargetLowering::LowerCall for
    250       /// the list of operands.
    251       TC_RETURN,
    252 
    253       // VZEXT_MOVL - Vector move to low scalar and zero higher vector elements.
    254       VZEXT_MOVL,
    255 
    256       // VZEXT - Vector integer zero-extend.
    257       VZEXT,
    258 
    259       // VSEXT - Vector integer signed-extend.
    260       VSEXT,
    261 
    262       // VTRUNC - Vector integer truncate.
    263       VTRUNC,
    264 
    265       // VTRUNC - Vector integer truncate with mask.
    266       VTRUNCM,
    267 
    268       // VFPEXT - Vector FP extend.
    269       VFPEXT,
    270 
    271       // VFPROUND - Vector FP round.
    272       VFPROUND,
    273 
    274       // VSHL, VSRL - 128-bit vector logical left / right shift
    275       VSHLDQ, VSRLDQ,
    276 
    277       // VSHL, VSRL, VSRA - Vector shift elements
    278       VSHL, VSRL, VSRA,
    279 
    280       // VSHLI, VSRLI, VSRAI - Vector shift elements by immediate
    281       VSHLI, VSRLI, VSRAI,
    282 
    283       // CMPP - Vector packed double/float comparison.
    284       CMPP,
    285 
    286       // PCMP* - Vector integer comparisons.
    287       PCMPEQ, PCMPGT,
    288       // PCMP*M - Vector integer comparisons, the result is in a mask vector.
    289       PCMPEQM, PCMPGTM,
    290 
    291       /// CMPM, CMPMU - Vector comparison generating mask bits for fp and
    292       /// integer signed and unsigned data types.
    293       CMPM,
    294       CMPMU,
    295 
    296       // ADD, SUB, SMUL, etc. - Arithmetic operations with FLAGS results.
    297       ADD, SUB, ADC, SBB, SMUL,
    298       INC, DEC, OR, XOR, AND,
    299 
    300       BEXTR,  // BEXTR - Bit field extract
    301 
    302       UMUL, // LOW, HI, FLAGS = umul LHS, RHS
    303 
    304       // MUL_IMM - X86 specific multiply by immediate.
    305       MUL_IMM,
    306 
    307       // PTEST - Vector bitwise comparisons.
    308       PTEST,
    309 
    310       // TESTP - Vector packed fp sign bitwise comparisons.
    311       TESTP,
    312 
    313       // TESTM, TESTNM - Vector "test" in AVX-512, the result is in a mask vector.
    314       TESTM,
    315       TESTNM,
    316 
    317       // OR/AND test for masks
    318       KORTEST,
    319 
    320       // Several flavors of instructions with vector shuffle behaviors.
    321       PACKSS,
    322       PACKUS,
    323       PALIGNR,
    324       PSHUFD,
    325       PSHUFHW,
    326       PSHUFLW,
    327       SHUFP,
    328       MOVDDUP,
    329       MOVSHDUP,
    330       MOVSLDUP,
    331       MOVLHPS,
    332       MOVLHPD,
    333       MOVHLPS,
    334       MOVLPS,
    335       MOVLPD,
    336       MOVSD,
    337       MOVSS,
    338       UNPCKL,
    339       UNPCKH,
    340       VPERMILP,
    341       VPERMV,
    342       VPERMV3,
    343       VPERMIV3,
    344       VPERMI,
    345       VPERM2X128,
    346       VBROADCAST,
    347       // masked broadcast
    348       VBROADCASTM,
    349       // Insert/Extract vector element
    350       VINSERT,
    351       VEXTRACT,
    352 
    353       // PMULUDQ - Vector multiply packed unsigned doubleword integers
    354       PMULUDQ,
    355       // PMULUDQ - Vector multiply packed signed doubleword integers
    356       PMULDQ,
    357 
    358       // FMA nodes
    359       FMADD,
    360       FNMADD,
    361       FMSUB,
    362       FNMSUB,
    363       FMADDSUB,
    364       FMSUBADD,
    365 
    366       // VASTART_SAVE_XMM_REGS - Save xmm argument registers to the stack,
    367       // according to %al. An operator is needed so that this can be expanded
    368       // with control flow.
    369       VASTART_SAVE_XMM_REGS,
    370 
    371       // WIN_ALLOCA - Windows's _chkstk call to do stack probing.
    372       WIN_ALLOCA,
    373 
    374       // SEG_ALLOCA - For allocating variable amounts of stack space when using
    375       // segmented stacks. Check if the current stacklet has enough space, and
    376       // falls back to heap allocation if not.
    377       SEG_ALLOCA,
    378 
    379       // WIN_FTOL - Windows's _ftol2 runtime routine to do fptoui.
    380       WIN_FTOL,
    381 
    382       // Memory barrier
    383       MEMBARRIER,
    384       MFENCE,
    385       SFENCE,
    386       LFENCE,
    387 
    388       // FNSTSW16r - Store FP status word into i16 register.
    389       FNSTSW16r,
    390 
    391       // SAHF - Store contents of %ah into %eflags.
    392       SAHF,
    393 
    394       // RDRAND - Get a random integer and indicate whether it is valid in CF.
    395       RDRAND,
    396 
    397       // RDSEED - Get a NIST SP800-90B & C compliant random integer and
    398       // indicate whether it is valid in CF.
    399       RDSEED,
    400 
    401       // PCMP*STRI
    402       PCMPISTRI,
    403       PCMPESTRI,
    404 
    405       // XTEST - Test if in transactional execution.
    406       XTEST,
    407 
    408       // LCMPXCHG_DAG, LCMPXCHG8_DAG, LCMPXCHG16_DAG - Compare and swap.
    409       LCMPXCHG_DAG = ISD::FIRST_TARGET_MEMORY_OPCODE,
    410       LCMPXCHG8_DAG,
    411       LCMPXCHG16_DAG,
    412 
    413       // VZEXT_LOAD - Load, scalar_to_vector, and zero extend.
    414       VZEXT_LOAD,
    415 
    416       // FNSTCW16m - Store FP control world into i16 memory.
    417       FNSTCW16m,
    418 
    419       /// FP_TO_INT*_IN_MEM - This instruction implements FP_TO_SINT with the
    420       /// integer destination in memory and a FP reg source.  This corresponds
    421       /// to the X86::FIST*m instructions and the rounding mode change stuff. It
    422       /// has two inputs (token chain and address) and two outputs (int value
    423       /// and token chain).
    424       FP_TO_INT16_IN_MEM,
    425       FP_TO_INT32_IN_MEM,
    426       FP_TO_INT64_IN_MEM,
    427 
    428       /// FILD, FILD_FLAG - This instruction implements SINT_TO_FP with the
    429       /// integer source in memory and FP reg result.  This corresponds to the
    430       /// X86::FILD*m instructions. It has three inputs (token chain, address,
    431       /// and source type) and two outputs (FP value and token chain). FILD_FLAG
    432       /// also produces a flag).
    433       FILD,
    434       FILD_FLAG,
    435 
    436       /// FLD - This instruction implements an extending load to FP stack slots.
    437       /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
    438       /// operand, ptr to load from, and a ValueType node indicating the type
    439       /// to load to.
    440       FLD,
    441 
    442       /// FST - This instruction implements a truncating store to FP stack
    443       /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
    444       /// chain operand, value to store, address, and a ValueType to store it
    445       /// as.
    446       FST,
    447 
    448       /// VAARG_64 - This instruction grabs the address of the next argument
    449       /// from a va_list. (reads and modifies the va_list in memory)
    450       VAARG_64
    451 
    452       // WARNING: Do not add anything in the end unless you want the node to
    453       // have memop! In fact, starting from ATOMADD64_DAG all opcodes will be
    454       // thought as target memory ops!
    455     };
    456   }
    457 
    458   /// Define some predicates that are used for node matching.
    459   namespace X86 {
    460     /// isVEXTRACT128Index - Return true if the specified
    461     /// EXTRACT_SUBVECTOR operand specifies a vector extract that is
    462     /// suitable for input to VEXTRACTF128, VEXTRACTI128 instructions.
    463     bool isVEXTRACT128Index(SDNode *N);
    464 
    465     /// isVINSERT128Index - Return true if the specified
    466     /// INSERT_SUBVECTOR operand specifies a subvector insert that is
    467     /// suitable for input to VINSERTF128, VINSERTI128 instructions.
    468     bool isVINSERT128Index(SDNode *N);
    469 
    470     /// isVEXTRACT256Index - Return true if the specified
    471     /// EXTRACT_SUBVECTOR operand specifies a vector extract that is
    472     /// suitable for input to VEXTRACTF64X4, VEXTRACTI64X4 instructions.
    473     bool isVEXTRACT256Index(SDNode *N);
    474 
    475     /// isVINSERT256Index - Return true if the specified
    476     /// INSERT_SUBVECTOR operand specifies a subvector insert that is
    477     /// suitable for input to VINSERTF64X4, VINSERTI64X4 instructions.
    478     bool isVINSERT256Index(SDNode *N);
    479 
    480     /// getExtractVEXTRACT128Immediate - Return the appropriate
    481     /// immediate to extract the specified EXTRACT_SUBVECTOR index
    482     /// with VEXTRACTF128, VEXTRACTI128 instructions.
    483     unsigned getExtractVEXTRACT128Immediate(SDNode *N);
    484 
    485     /// getInsertVINSERT128Immediate - Return the appropriate
    486     /// immediate to insert at the specified INSERT_SUBVECTOR index
    487     /// with VINSERTF128, VINSERT128 instructions.
    488     unsigned getInsertVINSERT128Immediate(SDNode *N);
    489 
    490     /// getExtractVEXTRACT256Immediate - Return the appropriate
    491     /// immediate to extract the specified EXTRACT_SUBVECTOR index
    492     /// with VEXTRACTF64X4, VEXTRACTI64x4 instructions.
    493     unsigned getExtractVEXTRACT256Immediate(SDNode *N);
    494 
    495     /// getInsertVINSERT256Immediate - Return the appropriate
    496     /// immediate to insert at the specified INSERT_SUBVECTOR index
    497     /// with VINSERTF64x4, VINSERTI64x4 instructions.
    498     unsigned getInsertVINSERT256Immediate(SDNode *N);
    499 
    500     /// isZeroNode - Returns true if Elt is a constant zero or a floating point
    501     /// constant +0.0.
    502     bool isZeroNode(SDValue Elt);
    503 
    504     /// isOffsetSuitableForCodeModel - Returns true of the given offset can be
    505     /// fit into displacement field of the instruction.
    506     bool isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
    507                                       bool hasSymbolicDisplacement = true);
    508 
    509 
    510     /// isCalleePop - Determines whether the callee is required to pop its
    511     /// own arguments. Callee pop is necessary to support tail calls.
    512     bool isCalleePop(CallingConv::ID CallingConv,
    513                      bool is64Bit, bool IsVarArg, bool TailCallOpt);
    514   }
    515 
    516   //===--------------------------------------------------------------------===//
    517   //  X86TargetLowering - X86 Implementation of the TargetLowering interface
    518   class X86TargetLowering final : public TargetLowering {
    519   public:
    520     explicit X86TargetLowering(X86TargetMachine &TM);
    521 
    522     unsigned getJumpTableEncoding() const override;
    523 
    524     MVT getScalarShiftAmountTy(EVT LHSTy) const override { return MVT::i8; }
    525 
    526     const MCExpr *
    527     LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
    528                               const MachineBasicBlock *MBB, unsigned uid,
    529                               MCContext &Ctx) const override;
    530 
    531     /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
    532     /// jumptable.
    533     SDValue getPICJumpTableRelocBase(SDValue Table,
    534                                      SelectionDAG &DAG) const override;
    535     const MCExpr *
    536     getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
    537                                  unsigned JTI, MCContext &Ctx) const override;
    538 
    539     /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
    540     /// function arguments in the caller parameter area. For X86, aggregates
    541     /// that contains are placed at 16-byte boundaries while the rest are at
    542     /// 4-byte boundaries.
    543     unsigned getByValTypeAlignment(Type *Ty) const override;
    544 
    545     /// getOptimalMemOpType - Returns the target specific optimal type for load
    546     /// and store operations as a result of memset, memcpy, and memmove
    547     /// lowering. If DstAlign is zero that means it's safe to destination
    548     /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
    549     /// means there isn't a need to check it against alignment requirement,
    550     /// probably because the source does not need to be loaded. If 'IsMemset' is
    551     /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
    552     /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
    553     /// source is constant so it does not need to be loaded.
    554     /// It returns EVT::Other if the type should be determined using generic
    555     /// target-independent logic.
    556     EVT getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
    557                             bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
    558                             MachineFunction &MF) const override;
    559 
    560     /// isSafeMemOpType - Returns true if it's safe to use load / store of the
    561     /// specified type to expand memcpy / memset inline. This is mostly true
    562     /// for all types except for some special cases. For example, on X86
    563     /// targets without SSE2 f64 load / store are done with fldl / fstpl which
    564     /// also does type conversion. Note the specified type doesn't have to be
    565     /// legal as the hook is used before type legalization.
    566     bool isSafeMemOpType(MVT VT) const override;
    567 
    568     /// allowsUnalignedMemoryAccesses - Returns true if the target allows
    569     /// unaligned memory accesses. of the specified type. Returns whether it
    570     /// is "fast" by reference in the second argument.
    571     bool allowsUnalignedMemoryAccesses(EVT VT, unsigned AS,
    572                                        bool *Fast) const override;
    573 
    574     /// LowerOperation - Provide custom lowering hooks for some operations.
    575     ///
    576     SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
    577 
    578     /// ReplaceNodeResults - Replace the results of node with an illegal result
    579     /// type with new values built out of custom code.
    580     ///
    581     void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
    582                             SelectionDAG &DAG) const override;
    583 
    584 
    585     SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
    586 
    587     /// isTypeDesirableForOp - Return true if the target has native support for
    588     /// the specified value type and it is 'desirable' to use the type for the
    589     /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
    590     /// instruction encodings are longer and some i16 instructions are slow.
    591     bool isTypeDesirableForOp(unsigned Opc, EVT VT) const override;
    592 
    593     /// isTypeDesirable - Return true if the target has native support for the
    594     /// specified value type and it is 'desirable' to use the type. e.g. On x86
    595     /// i16 is legal, but undesirable since i16 instruction encodings are longer
    596     /// and some i16 instructions are slow.
    597     bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const override;
    598 
    599     MachineBasicBlock *
    600       EmitInstrWithCustomInserter(MachineInstr *MI,
    601                                   MachineBasicBlock *MBB) const override;
    602 
    603 
    604     /// getTargetNodeName - This method returns the name of a target specific
    605     /// DAG node.
    606     const char *getTargetNodeName(unsigned Opcode) const override;
    607 
    608     /// getSetCCResultType - Return the value type to use for ISD::SETCC.
    609     EVT getSetCCResultType(LLVMContext &Context, EVT VT) const override;
    610 
    611     /// computeKnownBitsForTargetNode - Determine which of the bits specified
    612     /// in Mask are known to be either zero or one and return them in the
    613     /// KnownZero/KnownOne bitsets.
    614     void computeKnownBitsForTargetNode(const SDValue Op,
    615                                        APInt &KnownZero,
    616                                        APInt &KnownOne,
    617                                        const SelectionDAG &DAG,
    618                                        unsigned Depth = 0) const override;
    619 
    620     // ComputeNumSignBitsForTargetNode - Determine the number of bits in the
    621     // operation that are sign bits.
    622     unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
    623                                              const SelectionDAG &DAG,
    624                                              unsigned Depth) const override;
    625 
    626     bool isGAPlusOffset(SDNode *N, const GlobalValue* &GA,
    627                         int64_t &Offset) const override;
    628 
    629     SDValue getReturnAddressFrameIndex(SelectionDAG &DAG) const;
    630 
    631     bool ExpandInlineAsm(CallInst *CI) const override;
    632 
    633     ConstraintType
    634       getConstraintType(const std::string &Constraint) const override;
    635 
    636     /// Examine constraint string and operand type and determine a weight value.
    637     /// The operand object must already have been set up with the operand type.
    638     ConstraintWeight
    639       getSingleConstraintMatchWeight(AsmOperandInfo &info,
    640                                      const char *constraint) const override;
    641 
    642     const char *LowerXConstraint(EVT ConstraintVT) const override;
    643 
    644     /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
    645     /// vector.  If it is invalid, don't add anything to Ops. If hasMemory is
    646     /// true it means one of the asm constraint of the inline asm instruction
    647     /// being processed is 'm'.
    648     void LowerAsmOperandForConstraint(SDValue Op,
    649                                       std::string &Constraint,
    650                                       std::vector<SDValue> &Ops,
    651                                       SelectionDAG &DAG) const override;
    652 
    653     /// getRegForInlineAsmConstraint - Given a physical register constraint
    654     /// (e.g. {edx}), return the register number and the register class for the
    655     /// register.  This should only be used for C_Register constraints.  On
    656     /// error, this returns a register number of 0.
    657     std::pair<unsigned, const TargetRegisterClass*>
    658       getRegForInlineAsmConstraint(const std::string &Constraint,
    659                                    MVT VT) const override;
    660 
    661     /// isLegalAddressingMode - Return true if the addressing mode represented
    662     /// by AM is legal for this target, for a load/store of the specified type.
    663     bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const override;
    664 
    665     /// isLegalICmpImmediate - Return true if the specified immediate is legal
    666     /// icmp immediate, that is the target has icmp instructions which can
    667     /// compare a register against the immediate without having to materialize
    668     /// the immediate into a register.
    669     bool isLegalICmpImmediate(int64_t Imm) const override;
    670 
    671     /// isLegalAddImmediate - Return true if the specified immediate is legal
    672     /// add immediate, that is the target has add instructions which can
    673     /// add a register and the immediate without having to materialize
    674     /// the immediate into a register.
    675     bool isLegalAddImmediate(int64_t Imm) const override;
    676 
    677     /// \brief Return the cost of the scaling factor used in the addressing
    678     /// mode represented by AM for this target, for a load/store
    679     /// of the specified type.
    680     /// If the AM is supported, the return value must be >= 0.
    681     /// If the AM is not supported, it returns a negative value.
    682     int getScalingFactorCost(const AddrMode &AM, Type *Ty) const override;
    683 
    684     bool isVectorShiftByScalarCheap(Type *Ty) const override;
    685 
    686     /// isTruncateFree - Return true if it's free to truncate a value of
    687     /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
    688     /// register EAX to i16 by referencing its sub-register AX.
    689     bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
    690     bool isTruncateFree(EVT VT1, EVT VT2) const override;
    691 
    692     bool allowTruncateForTailCall(Type *Ty1, Type *Ty2) const override;
    693 
    694     /// isZExtFree - Return true if any actual instruction that defines a
    695     /// value of type Ty1 implicit zero-extends the value to Ty2 in the result
    696     /// register. This does not necessarily include registers defined in
    697     /// unknown ways, such as incoming arguments, or copies from unknown
    698     /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
    699     /// does not necessarily apply to truncate instructions. e.g. on x86-64,
    700     /// all instructions that define 32-bit values implicit zero-extend the
    701     /// result out to 64 bits.
    702     bool isZExtFree(Type *Ty1, Type *Ty2) const override;
    703     bool isZExtFree(EVT VT1, EVT VT2) const override;
    704     bool isZExtFree(SDValue Val, EVT VT2) const override;
    705 
    706     /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster
    707     /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be
    708     /// expanded to FMAs when this method returns true, otherwise fmuladd is
    709     /// expanded to fmul + fadd.
    710     bool isFMAFasterThanFMulAndFAdd(EVT VT) const override;
    711 
    712     /// isNarrowingProfitable - Return true if it's profitable to narrow
    713     /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
    714     /// from i32 to i8 but not from i32 to i16.
    715     bool isNarrowingProfitable(EVT VT1, EVT VT2) const override;
    716 
    717     /// isFPImmLegal - Returns true if the target can instruction select the
    718     /// specified FP immediate natively. If false, the legalizer will
    719     /// materialize the FP immediate as a load from a constant pool.
    720     bool isFPImmLegal(const APFloat &Imm, EVT VT) const override;
    721 
    722     /// isShuffleMaskLegal - Targets can use this to indicate that they only
    723     /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
    724     /// By default, if a target supports the VECTOR_SHUFFLE node, all mask
    725     /// values are assumed to be legal.
    726     bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
    727                             EVT VT) const override;
    728 
    729     /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
    730     /// used by Targets can use this to indicate if there is a suitable
    731     /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
    732     /// pool entry.
    733     bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
    734                                 EVT VT) const override;
    735 
    736     /// ShouldShrinkFPConstant - If true, then instruction selection should
    737     /// seek to shrink the FP constant of the specified type to a smaller type
    738     /// in order to save space and / or reduce runtime.
    739     bool ShouldShrinkFPConstant(EVT VT) const override {
    740       // Don't shrink FP constpool if SSE2 is available since cvtss2sd is more
    741       // expensive than a straight movsd. On the other hand, it's important to
    742       // shrink long double fp constant since fldt is very slow.
    743       return !X86ScalarSSEf64 || VT == MVT::f80;
    744     }
    745 
    746     const X86Subtarget* getSubtarget() const {
    747       return Subtarget;
    748     }
    749 
    750     /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
    751     /// computed in an SSE register, not on the X87 floating point stack.
    752     bool isScalarFPTypeInSSEReg(EVT VT) const {
    753       return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
    754       (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
    755     }
    756 
    757     /// isTargetFTOL - Return true if the target uses the MSVC _ftol2 routine
    758     /// for fptoui.
    759     bool isTargetFTOL() const;
    760 
    761     /// isIntegerTypeFTOL - Return true if the MSVC _ftol2 routine should be
    762     /// used for fptoui to the given type.
    763     bool isIntegerTypeFTOL(EVT VT) const {
    764       return isTargetFTOL() && VT == MVT::i64;
    765     }
    766 
    767     /// \brief Returns true if it is beneficial to convert a load of a constant
    768     /// to just the constant itself.
    769     bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
    770                                            Type *Ty) const override;
    771 
    772     /// Intel processors have a unified instruction and data cache
    773     const char * getClearCacheBuiltinName() const override {
    774       return nullptr; // nothing to do, move along.
    775     }
    776 
    777     unsigned getRegisterByName(const char* RegName, EVT VT) const override;
    778 
    779     /// createFastISel - This method returns a target specific FastISel object,
    780     /// or null if the target does not support "fast" ISel.
    781     FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
    782                              const TargetLibraryInfo *libInfo) const override;
    783 
    784     /// getStackCookieLocation - Return true if the target stores stack
    785     /// protector cookies at a fixed offset in some non-standard address
    786     /// space, and populates the address space and offset as
    787     /// appropriate.
    788     bool getStackCookieLocation(unsigned &AddressSpace,
    789                                 unsigned &Offset) const override;
    790 
    791     SDValue BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain, SDValue StackSlot,
    792                       SelectionDAG &DAG) const;
    793 
    794     bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const override;
    795 
    796     /// \brief Reset the operation actions based on target options.
    797     void resetOperationActions() override;
    798 
    799     /// \brief Customize the preferred legalization strategy for certain types.
    800     LegalizeTypeAction getPreferredVectorAction(EVT VT) const override;
    801 
    802   protected:
    803     std::pair<const TargetRegisterClass*, uint8_t>
    804     findRepresentativeClass(MVT VT) const override;
    805 
    806   private:
    807     /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
    808     /// make the right decision when generating code for different targets.
    809     const X86Subtarget *Subtarget;
    810     const DataLayout *TD;
    811 
    812     /// Used to store the TargetOptions so that we don't waste time resetting
    813     /// the operation actions unless we have to.
    814     TargetOptions TO;
    815 
    816     /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
    817     /// floating point ops.
    818     /// When SSE is available, use it for f32 operations.
    819     /// When SSE2 is available, use it for f64 operations.
    820     bool X86ScalarSSEf32;
    821     bool X86ScalarSSEf64;
    822 
    823     /// LegalFPImmediates - A list of legal fp immediates.
    824     std::vector<APFloat> LegalFPImmediates;
    825 
    826     /// addLegalFPImmediate - Indicate that this x86 target can instruction
    827     /// select the specified FP immediate natively.
    828     void addLegalFPImmediate(const APFloat& Imm) {
    829       LegalFPImmediates.push_back(Imm);
    830     }
    831 
    832     SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
    833                             CallingConv::ID CallConv, bool isVarArg,
    834                             const SmallVectorImpl<ISD::InputArg> &Ins,
    835                             SDLoc dl, SelectionDAG &DAG,
    836                             SmallVectorImpl<SDValue> &InVals) const;
    837     SDValue LowerMemArgument(SDValue Chain,
    838                              CallingConv::ID CallConv,
    839                              const SmallVectorImpl<ISD::InputArg> &ArgInfo,
    840                              SDLoc dl, SelectionDAG &DAG,
    841                              const CCValAssign &VA,  MachineFrameInfo *MFI,
    842                               unsigned i) const;
    843     SDValue LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg,
    844                              SDLoc dl, SelectionDAG &DAG,
    845                              const CCValAssign &VA,
    846                              ISD::ArgFlagsTy Flags) const;
    847 
    848     // Call lowering helpers.
    849 
    850     /// IsEligibleForTailCallOptimization - Check whether the call is eligible
    851     /// for tail call optimization. Targets which want to do tail call
    852     /// optimization should implement this function.
    853     bool IsEligibleForTailCallOptimization(SDValue Callee,
    854                                            CallingConv::ID CalleeCC,
    855                                            bool isVarArg,
    856                                            bool isCalleeStructRet,
    857                                            bool isCallerStructRet,
    858                                            Type *RetTy,
    859                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
    860                                     const SmallVectorImpl<SDValue> &OutVals,
    861                                     const SmallVectorImpl<ISD::InputArg> &Ins,
    862                                            SelectionDAG& DAG) const;
    863     bool IsCalleePop(bool isVarArg, CallingConv::ID CallConv) const;
    864     SDValue EmitTailCallLoadRetAddr(SelectionDAG &DAG, SDValue &OutRetAddr,
    865                                 SDValue Chain, bool IsTailCall, bool Is64Bit,
    866                                 int FPDiff, SDLoc dl) const;
    867 
    868     unsigned GetAlignedArgumentStackSize(unsigned StackSize,
    869                                          SelectionDAG &DAG) const;
    870 
    871     std::pair<SDValue,SDValue> FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
    872                                                bool isSigned,
    873                                                bool isReplace) const;
    874 
    875     SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
    876     SDValue LowerBUILD_VECTORvXi1(SDValue Op, SelectionDAG &DAG) const;
    877     SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
    878     SDValue LowerVSELECT(SDValue Op, SelectionDAG &DAG) const;
    879     SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
    880     SDValue ExtractBitFromMaskVector(SDValue Op, SelectionDAG &DAG) const;
    881     SDValue InsertBitToMaskVector(SDValue Op, SelectionDAG &DAG) const;
    882 
    883     SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
    884     SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
    885     SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
    886     SDValue LowerGlobalAddress(const GlobalValue *GV, SDLoc dl,
    887                                int64_t Offset, SelectionDAG &DAG) const;
    888     SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
    889     SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
    890     SDValue LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const;
    891     SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
    892     SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
    893     SDValue LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) const;
    894     SDValue LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) const;
    895     SDValue lowerUINT_TO_FP_vec(SDValue Op, SelectionDAG &DAG) const;
    896     SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const;
    897     SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const;
    898     SDValue LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const;
    899     SDValue LowerToBT(SDValue And, ISD::CondCode CC,
    900                       SDLoc dl, SelectionDAG &DAG) const;
    901     SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
    902     SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const;
    903     SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG) const;
    904     SDValue LowerMEMSET(SDValue Op, SelectionDAG &DAG) const;
    905     SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
    906     SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
    907     SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
    908     SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
    909     SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
    910     SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
    911     SDValue LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const;
    912     SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const;
    913     SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
    914     SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
    915     SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
    916     SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
    917     SDValue LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const;
    918     SDValue LowerWin64_i128OP(SDValue Op, SelectionDAG &DAG) const;
    919 
    920     SDValue
    921       LowerFormalArguments(SDValue Chain,
    922                            CallingConv::ID CallConv, bool isVarArg,
    923                            const SmallVectorImpl<ISD::InputArg> &Ins,
    924                            SDLoc dl, SelectionDAG &DAG,
    925                            SmallVectorImpl<SDValue> &InVals) const override;
    926     SDValue LowerCall(CallLoweringInfo &CLI,
    927                       SmallVectorImpl<SDValue> &InVals) const override;
    928 
    929     SDValue LowerReturn(SDValue Chain,
    930                         CallingConv::ID CallConv, bool isVarArg,
    931                         const SmallVectorImpl<ISD::OutputArg> &Outs,
    932                         const SmallVectorImpl<SDValue> &OutVals,
    933                         SDLoc dl, SelectionDAG &DAG) const override;
    934 
    935     bool isUsedByReturnOnly(SDNode *N, SDValue &Chain) const override;
    936 
    937     bool mayBeEmittedAsTailCall(CallInst *CI) const override;
    938 
    939     MVT getTypeForExtArgOrReturn(MVT VT,
    940                                  ISD::NodeType ExtendKind) const override;
    941 
    942     bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
    943                         bool isVarArg,
    944                         const SmallVectorImpl<ISD::OutputArg> &Outs,
    945                         LLVMContext &Context) const override;
    946 
    947     const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;
    948 
    949     /// Utility function to emit atomic-load-arith operations (and, or, xor,
    950     /// nand, max, min, umax, umin). It takes the corresponding instruction to
    951     /// expand, the associated machine basic block, and the associated X86
    952     /// opcodes for reg/reg.
    953     MachineBasicBlock *EmitAtomicLoadArith(MachineInstr *MI,
    954                                            MachineBasicBlock *MBB) const;
    955 
    956     /// Utility function to emit atomic-load-arith operations (and, or, xor,
    957     /// nand, add, sub, swap) for 64-bit operands on 32-bit target.
    958     MachineBasicBlock *EmitAtomicLoadArith6432(MachineInstr *MI,
    959                                                MachineBasicBlock *MBB) const;
    960 
    961     // Utility function to emit the low-level va_arg code for X86-64.
    962     MachineBasicBlock *EmitVAARG64WithCustomInserter(
    963                        MachineInstr *MI,
    964                        MachineBasicBlock *MBB) const;
    965 
    966     /// Utility function to emit the xmm reg save portion of va_start.
    967     MachineBasicBlock *EmitVAStartSaveXMMRegsWithCustomInserter(
    968                                                    MachineInstr *BInstr,
    969                                                    MachineBasicBlock *BB) const;
    970 
    971     MachineBasicBlock *EmitLoweredSelect(MachineInstr *I,
    972                                          MachineBasicBlock *BB) const;
    973 
    974     MachineBasicBlock *EmitLoweredWinAlloca(MachineInstr *MI,
    975                                               MachineBasicBlock *BB) const;
    976 
    977     MachineBasicBlock *EmitLoweredSegAlloca(MachineInstr *MI,
    978                                             MachineBasicBlock *BB,
    979                                             bool Is64Bit) const;
    980 
    981     MachineBasicBlock *EmitLoweredTLSCall(MachineInstr *MI,
    982                                           MachineBasicBlock *BB) const;
    983 
    984     MachineBasicBlock *emitLoweredTLSAddr(MachineInstr *MI,
    985                                           MachineBasicBlock *BB) const;
    986 
    987     MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr *MI,
    988                                         MachineBasicBlock *MBB) const;
    989 
    990     MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr *MI,
    991                                          MachineBasicBlock *MBB) const;
    992 
    993     MachineBasicBlock *emitFMA3Instr(MachineInstr *MI,
    994                                      MachineBasicBlock *MBB) const;
    995 
    996     /// Emit nodes that will be selected as "test Op0,Op0", or something
    997     /// equivalent, for use with the given x86 condition code.
    998     SDValue EmitTest(SDValue Op0, unsigned X86CC, SDLoc dl,
    999                      SelectionDAG &DAG) const;
   1000 
   1001     /// Emit nodes that will be selected as "cmp Op0,Op1", or something
   1002     /// equivalent, for use with the given x86 condition code.
   1003     SDValue EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC, SDLoc dl,
   1004                     SelectionDAG &DAG) const;
   1005 
   1006     /// Convert a comparison if required by the subtarget.
   1007     SDValue ConvertCmpIfNecessary(SDValue Cmp, SelectionDAG &DAG) const;
   1008   };
   1009 
   1010   namespace X86 {
   1011     FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
   1012                              const TargetLibraryInfo *libInfo);
   1013   }
   1014 }
   1015 
   1016 #endif    // X86ISELLOWERING_H
   1017