Home | History | Annotate | Download | only in CodeGen
      1 //===----- SchedulePostRAList.cpp - list scheduler ------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements a top-down list scheduler, using standard algorithms.
     11 // The basic approach uses a priority queue of available nodes to schedule.
     12 // One at a time, nodes are taken from the priority queue (thus in priority
     13 // order), checked for legality to schedule, and emitted if legal.
     14 //
     15 // Nodes may not be legal to schedule either due to structural hazards (e.g.
     16 // pipeline or resource constraints) or because an input to the instruction has
     17 // not completed execution.
     18 //
     19 //===----------------------------------------------------------------------===//
     20 
     21 #include "llvm/CodeGen/Passes.h"
     22 #include "AggressiveAntiDepBreaker.h"
     23 #include "AntiDepBreaker.h"
     24 #include "CriticalAntiDepBreaker.h"
     25 #include "llvm/ADT/BitVector.h"
     26 #include "llvm/ADT/Statistic.h"
     27 #include "llvm/Analysis/AliasAnalysis.h"
     28 #include "llvm/CodeGen/LatencyPriorityQueue.h"
     29 #include "llvm/CodeGen/MachineDominators.h"
     30 #include "llvm/CodeGen/MachineFrameInfo.h"
     31 #include "llvm/CodeGen/MachineFunctionPass.h"
     32 #include "llvm/CodeGen/MachineLoopInfo.h"
     33 #include "llvm/CodeGen/MachineRegisterInfo.h"
     34 #include "llvm/CodeGen/RegisterClassInfo.h"
     35 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
     36 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
     37 #include "llvm/CodeGen/SchedulerRegistry.h"
     38 #include "llvm/Support/CommandLine.h"
     39 #include "llvm/Support/Debug.h"
     40 #include "llvm/Support/ErrorHandling.h"
     41 #include "llvm/Support/raw_ostream.h"
     42 #include "llvm/Target/TargetInstrInfo.h"
     43 #include "llvm/Target/TargetLowering.h"
     44 #include "llvm/Target/TargetMachine.h"
     45 #include "llvm/Target/TargetRegisterInfo.h"
     46 #include "llvm/Target/TargetSubtargetInfo.h"
     47 using namespace llvm;
     48 
     49 #define DEBUG_TYPE "post-RA-sched"
     50 
     51 STATISTIC(NumNoops, "Number of noops inserted");
     52 STATISTIC(NumStalls, "Number of pipeline stalls");
     53 STATISTIC(NumFixedAnti, "Number of fixed anti-dependencies");
     54 
     55 // Post-RA scheduling is enabled with
     56 // TargetSubtargetInfo.enablePostRAScheduler(). This flag can be used to
     57 // override the target.
     58 static cl::opt<bool>
     59 EnablePostRAScheduler("post-RA-scheduler",
     60                        cl::desc("Enable scheduling after register allocation"),
     61                        cl::init(false), cl::Hidden);
     62 static cl::opt<std::string>
     63 EnableAntiDepBreaking("break-anti-dependencies",
     64                       cl::desc("Break post-RA scheduling anti-dependencies: "
     65                                "\"critical\", \"all\", or \"none\""),
     66                       cl::init("none"), cl::Hidden);
     67 
     68 // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
     69 static cl::opt<int>
     70 DebugDiv("postra-sched-debugdiv",
     71                       cl::desc("Debug control MBBs that are scheduled"),
     72                       cl::init(0), cl::Hidden);
     73 static cl::opt<int>
     74 DebugMod("postra-sched-debugmod",
     75                       cl::desc("Debug control MBBs that are scheduled"),
     76                       cl::init(0), cl::Hidden);
     77 
     78 AntiDepBreaker::~AntiDepBreaker() { }
     79 
     80 namespace {
     81   class PostRAScheduler : public MachineFunctionPass {
     82     const TargetInstrInfo *TII;
     83     RegisterClassInfo RegClassInfo;
     84 
     85   public:
     86     static char ID;
     87     PostRAScheduler() : MachineFunctionPass(ID) {}
     88 
     89     void getAnalysisUsage(AnalysisUsage &AU) const override {
     90       AU.setPreservesCFG();
     91       AU.addRequired<AliasAnalysis>();
     92       AU.addRequired<TargetPassConfig>();
     93       AU.addRequired<MachineDominatorTree>();
     94       AU.addPreserved<MachineDominatorTree>();
     95       AU.addRequired<MachineLoopInfo>();
     96       AU.addPreserved<MachineLoopInfo>();
     97       MachineFunctionPass::getAnalysisUsage(AU);
     98     }
     99 
    100     bool runOnMachineFunction(MachineFunction &Fn) override;
    101   };
    102   char PostRAScheduler::ID = 0;
    103 
    104   class SchedulePostRATDList : public ScheduleDAGInstrs {
    105     /// AvailableQueue - The priority queue to use for the available SUnits.
    106     ///
    107     LatencyPriorityQueue AvailableQueue;
    108 
    109     /// PendingQueue - This contains all of the instructions whose operands have
    110     /// been issued, but their results are not ready yet (due to the latency of
    111     /// the operation).  Once the operands becomes available, the instruction is
    112     /// added to the AvailableQueue.
    113     std::vector<SUnit*> PendingQueue;
    114 
    115     /// HazardRec - The hazard recognizer to use.
    116     ScheduleHazardRecognizer *HazardRec;
    117 
    118     /// AntiDepBreak - Anti-dependence breaking object, or NULL if none
    119     AntiDepBreaker *AntiDepBreak;
    120 
    121     /// AA - AliasAnalysis for making memory reference queries.
    122     AliasAnalysis *AA;
    123 
    124     /// The schedule. Null SUnit*'s represent noop instructions.
    125     std::vector<SUnit*> Sequence;
    126 
    127     /// The index in BB of RegionEnd.
    128     ///
    129     /// This is the instruction number from the top of the current block, not
    130     /// the SlotIndex. It is only used by the AntiDepBreaker.
    131     unsigned EndIndex;
    132 
    133   public:
    134     SchedulePostRATDList(
    135       MachineFunction &MF, MachineLoopInfo &MLI, MachineDominatorTree &MDT,
    136       AliasAnalysis *AA, const RegisterClassInfo&,
    137       TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
    138       SmallVectorImpl<const TargetRegisterClass*> &CriticalPathRCs);
    139 
    140     ~SchedulePostRATDList();
    141 
    142     /// startBlock - Initialize register live-range state for scheduling in
    143     /// this block.
    144     ///
    145     void startBlock(MachineBasicBlock *BB) override;
    146 
    147     // Set the index of RegionEnd within the current BB.
    148     void setEndIndex(unsigned EndIdx) { EndIndex = EndIdx; }
    149 
    150     /// Initialize the scheduler state for the next scheduling region.
    151     void enterRegion(MachineBasicBlock *bb,
    152                      MachineBasicBlock::iterator begin,
    153                      MachineBasicBlock::iterator end,
    154                      unsigned regioninstrs) override;
    155 
    156     /// Notify that the scheduler has finished scheduling the current region.
    157     void exitRegion() override;
    158 
    159     /// Schedule - Schedule the instruction range using list scheduling.
    160     ///
    161     void schedule() override;
    162 
    163     void EmitSchedule();
    164 
    165     /// Observe - Update liveness information to account for the current
    166     /// instruction, which will not be scheduled.
    167     ///
    168     void Observe(MachineInstr *MI, unsigned Count);
    169 
    170     /// finishBlock - Clean up register live-range state.
    171     ///
    172     void finishBlock() override;
    173 
    174   private:
    175     void ReleaseSucc(SUnit *SU, SDep *SuccEdge);
    176     void ReleaseSuccessors(SUnit *SU);
    177     void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
    178     void ListScheduleTopDown();
    179 
    180     void dumpSchedule() const;
    181     void emitNoop(unsigned CurCycle);
    182   };
    183 }
    184 
    185 char &llvm::PostRASchedulerID = PostRAScheduler::ID;
    186 
    187 INITIALIZE_PASS(PostRAScheduler, "post-RA-sched",
    188                 "Post RA top-down list latency scheduler", false, false)
    189 
    190 SchedulePostRATDList::SchedulePostRATDList(
    191   MachineFunction &MF, MachineLoopInfo &MLI, MachineDominatorTree &MDT,
    192   AliasAnalysis *AA, const RegisterClassInfo &RCI,
    193   TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
    194   SmallVectorImpl<const TargetRegisterClass*> &CriticalPathRCs)
    195   : ScheduleDAGInstrs(MF, MLI, MDT, /*IsPostRA=*/true), AA(AA), EndIndex(0) {
    196 
    197   const TargetMachine &TM = MF.getTarget();
    198   const InstrItineraryData *InstrItins = TM.getInstrItineraryData();
    199   HazardRec =
    200     TM.getInstrInfo()->CreateTargetPostRAHazardRecognizer(InstrItins, this);
    201 
    202   assert((AntiDepMode == TargetSubtargetInfo::ANTIDEP_NONE ||
    203           MRI.tracksLiveness()) &&
    204          "Live-ins must be accurate for anti-dependency breaking");
    205   AntiDepBreak =
    206     ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_ALL) ?
    207      (AntiDepBreaker *)new AggressiveAntiDepBreaker(MF, RCI, CriticalPathRCs) :
    208      ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_CRITICAL) ?
    209       (AntiDepBreaker *)new CriticalAntiDepBreaker(MF, RCI) : nullptr));
    210 }
    211 
    212 SchedulePostRATDList::~SchedulePostRATDList() {
    213   delete HazardRec;
    214   delete AntiDepBreak;
    215 }
    216 
    217 /// Initialize state associated with the next scheduling region.
    218 void SchedulePostRATDList::enterRegion(MachineBasicBlock *bb,
    219                  MachineBasicBlock::iterator begin,
    220                  MachineBasicBlock::iterator end,
    221                  unsigned regioninstrs) {
    222   ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
    223   Sequence.clear();
    224 }
    225 
    226 /// Print the schedule before exiting the region.
    227 void SchedulePostRATDList::exitRegion() {
    228   DEBUG({
    229       dbgs() << "*** Final schedule ***\n";
    230       dumpSchedule();
    231       dbgs() << '\n';
    232     });
    233   ScheduleDAGInstrs::exitRegion();
    234 }
    235 
    236 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    237 /// dumpSchedule - dump the scheduled Sequence.
    238 void SchedulePostRATDList::dumpSchedule() const {
    239   for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
    240     if (SUnit *SU = Sequence[i])
    241       SU->dump(this);
    242     else
    243       dbgs() << "**** NOOP ****\n";
    244   }
    245 }
    246 #endif
    247 
    248 bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
    249   if (skipOptnoneFunction(*Fn.getFunction()))
    250     return false;
    251 
    252   TII = Fn.getTarget().getInstrInfo();
    253   MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
    254   MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
    255   AliasAnalysis *AA = &getAnalysis<AliasAnalysis>();
    256   TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
    257 
    258   RegClassInfo.runOnMachineFunction(Fn);
    259 
    260   // Check for explicit enable/disable of post-ra scheduling.
    261   TargetSubtargetInfo::AntiDepBreakMode AntiDepMode =
    262     TargetSubtargetInfo::ANTIDEP_NONE;
    263   SmallVector<const TargetRegisterClass*, 4> CriticalPathRCs;
    264   if (EnablePostRAScheduler.getPosition() > 0) {
    265     if (!EnablePostRAScheduler)
    266       return false;
    267   } else {
    268     // Check that post-RA scheduling is enabled for this target.
    269     // This may upgrade the AntiDepMode.
    270     const TargetSubtargetInfo &ST = Fn.getTarget().getSubtarget<TargetSubtargetInfo>();
    271     if (!ST.enablePostRAScheduler(PassConfig->getOptLevel(), AntiDepMode,
    272                                   CriticalPathRCs))
    273       return false;
    274   }
    275 
    276   // Check for antidep breaking override...
    277   if (EnableAntiDepBreaking.getPosition() > 0) {
    278     AntiDepMode = (EnableAntiDepBreaking == "all")
    279       ? TargetSubtargetInfo::ANTIDEP_ALL
    280       : ((EnableAntiDepBreaking == "critical")
    281          ? TargetSubtargetInfo::ANTIDEP_CRITICAL
    282          : TargetSubtargetInfo::ANTIDEP_NONE);
    283   }
    284 
    285   DEBUG(dbgs() << "PostRAScheduler\n");
    286 
    287   SchedulePostRATDList Scheduler(Fn, MLI, MDT, AA, RegClassInfo, AntiDepMode,
    288                                  CriticalPathRCs);
    289 
    290   // Loop over all of the basic blocks
    291   for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
    292        MBB != MBBe; ++MBB) {
    293 #ifndef NDEBUG
    294     // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
    295     if (DebugDiv > 0) {
    296       static int bbcnt = 0;
    297       if (bbcnt++ % DebugDiv != DebugMod)
    298         continue;
    299       dbgs() << "*** DEBUG scheduling " << Fn.getName()
    300              << ":BB#" << MBB->getNumber() << " ***\n";
    301     }
    302 #endif
    303 
    304     // Initialize register live-range state for scheduling in this block.
    305     Scheduler.startBlock(MBB);
    306 
    307     // Schedule each sequence of instructions not interrupted by a label
    308     // or anything else that effectively needs to shut down scheduling.
    309     MachineBasicBlock::iterator Current = MBB->end();
    310     unsigned Count = MBB->size(), CurrentCount = Count;
    311     for (MachineBasicBlock::iterator I = Current; I != MBB->begin(); ) {
    312       MachineInstr *MI = std::prev(I);
    313       --Count;
    314       // Calls are not scheduling boundaries before register allocation, but
    315       // post-ra we don't gain anything by scheduling across calls since we
    316       // don't need to worry about register pressure.
    317       if (MI->isCall() || TII->isSchedulingBoundary(MI, MBB, Fn)) {
    318         Scheduler.enterRegion(MBB, I, Current, CurrentCount - Count);
    319         Scheduler.setEndIndex(CurrentCount);
    320         Scheduler.schedule();
    321         Scheduler.exitRegion();
    322         Scheduler.EmitSchedule();
    323         Current = MI;
    324         CurrentCount = Count;
    325         Scheduler.Observe(MI, CurrentCount);
    326       }
    327       I = MI;
    328       if (MI->isBundle())
    329         Count -= MI->getBundleSize();
    330     }
    331     assert(Count == 0 && "Instruction count mismatch!");
    332     assert((MBB->begin() == Current || CurrentCount != 0) &&
    333            "Instruction count mismatch!");
    334     Scheduler.enterRegion(MBB, MBB->begin(), Current, CurrentCount);
    335     Scheduler.setEndIndex(CurrentCount);
    336     Scheduler.schedule();
    337     Scheduler.exitRegion();
    338     Scheduler.EmitSchedule();
    339 
    340     // Clean up register live-range state.
    341     Scheduler.finishBlock();
    342 
    343     // Update register kills
    344     Scheduler.fixupKills(MBB);
    345   }
    346 
    347   return true;
    348 }
    349 
    350 /// StartBlock - Initialize register live-range state for scheduling in
    351 /// this block.
    352 ///
    353 void SchedulePostRATDList::startBlock(MachineBasicBlock *BB) {
    354   // Call the superclass.
    355   ScheduleDAGInstrs::startBlock(BB);
    356 
    357   // Reset the hazard recognizer and anti-dep breaker.
    358   HazardRec->Reset();
    359   if (AntiDepBreak)
    360     AntiDepBreak->StartBlock(BB);
    361 }
    362 
    363 /// Schedule - Schedule the instruction range using list scheduling.
    364 ///
    365 void SchedulePostRATDList::schedule() {
    366   // Build the scheduling graph.
    367   buildSchedGraph(AA);
    368 
    369   if (AntiDepBreak) {
    370     unsigned Broken =
    371       AntiDepBreak->BreakAntiDependencies(SUnits, RegionBegin, RegionEnd,
    372                                           EndIndex, DbgValues);
    373 
    374     if (Broken != 0) {
    375       // We made changes. Update the dependency graph.
    376       // Theoretically we could update the graph in place:
    377       // When a live range is changed to use a different register, remove
    378       // the def's anti-dependence *and* output-dependence edges due to
    379       // that register, and add new anti-dependence and output-dependence
    380       // edges based on the next live range of the register.
    381       ScheduleDAG::clearDAG();
    382       buildSchedGraph(AA);
    383 
    384       NumFixedAnti += Broken;
    385     }
    386   }
    387 
    388   DEBUG(dbgs() << "********** List Scheduling **********\n");
    389   DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
    390           SUnits[su].dumpAll(this));
    391 
    392   AvailableQueue.initNodes(SUnits);
    393   ListScheduleTopDown();
    394   AvailableQueue.releaseState();
    395 }
    396 
    397 /// Observe - Update liveness information to account for the current
    398 /// instruction, which will not be scheduled.
    399 ///
    400 void SchedulePostRATDList::Observe(MachineInstr *MI, unsigned Count) {
    401   if (AntiDepBreak)
    402     AntiDepBreak->Observe(MI, Count, EndIndex);
    403 }
    404 
    405 /// FinishBlock - Clean up register live-range state.
    406 ///
    407 void SchedulePostRATDList::finishBlock() {
    408   if (AntiDepBreak)
    409     AntiDepBreak->FinishBlock();
    410 
    411   // Call the superclass.
    412   ScheduleDAGInstrs::finishBlock();
    413 }
    414 
    415 //===----------------------------------------------------------------------===//
    416 //  Top-Down Scheduling
    417 //===----------------------------------------------------------------------===//
    418 
    419 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
    420 /// the PendingQueue if the count reaches zero.
    421 void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) {
    422   SUnit *SuccSU = SuccEdge->getSUnit();
    423 
    424   if (SuccEdge->isWeak()) {
    425     --SuccSU->WeakPredsLeft;
    426     return;
    427   }
    428 #ifndef NDEBUG
    429   if (SuccSU->NumPredsLeft == 0) {
    430     dbgs() << "*** Scheduling failed! ***\n";
    431     SuccSU->dump(this);
    432     dbgs() << " has been released too many times!\n";
    433     llvm_unreachable(nullptr);
    434   }
    435 #endif
    436   --SuccSU->NumPredsLeft;
    437 
    438   // Standard scheduler algorithms will recompute the depth of the successor
    439   // here as such:
    440   //   SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency());
    441   //
    442   // However, we lazily compute node depth instead. Note that
    443   // ScheduleNodeTopDown has already updated the depth of this node which causes
    444   // all descendents to be marked dirty. Setting the successor depth explicitly
    445   // here would cause depth to be recomputed for all its ancestors. If the
    446   // successor is not yet ready (because of a transitively redundant edge) then
    447   // this causes depth computation to be quadratic in the size of the DAG.
    448 
    449   // If all the node's predecessors are scheduled, this node is ready
    450   // to be scheduled. Ignore the special ExitSU node.
    451   if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
    452     PendingQueue.push_back(SuccSU);
    453 }
    454 
    455 /// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors.
    456 void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) {
    457   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
    458        I != E; ++I) {
    459     ReleaseSucc(SU, &*I);
    460   }
    461 }
    462 
    463 /// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
    464 /// count of its successors. If a successor pending count is zero, add it to
    465 /// the Available queue.
    466 void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
    467   DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
    468   DEBUG(SU->dump(this));
    469 
    470   Sequence.push_back(SU);
    471   assert(CurCycle >= SU->getDepth() &&
    472          "Node scheduled above its depth!");
    473   SU->setDepthToAtLeast(CurCycle);
    474 
    475   ReleaseSuccessors(SU);
    476   SU->isScheduled = true;
    477   AvailableQueue.scheduledNode(SU);
    478 }
    479 
    480 /// emitNoop - Add a noop to the current instruction sequence.
    481 void SchedulePostRATDList::emitNoop(unsigned CurCycle) {
    482   DEBUG(dbgs() << "*** Emitting noop in cycle " << CurCycle << '\n');
    483   HazardRec->EmitNoop();
    484   Sequence.push_back(nullptr);   // NULL here means noop
    485   ++NumNoops;
    486 }
    487 
    488 /// ListScheduleTopDown - The main loop of list scheduling for top-down
    489 /// schedulers.
    490 void SchedulePostRATDList::ListScheduleTopDown() {
    491   unsigned CurCycle = 0;
    492 
    493   // We're scheduling top-down but we're visiting the regions in
    494   // bottom-up order, so we don't know the hazards at the start of a
    495   // region. So assume no hazards (this should usually be ok as most
    496   // blocks are a single region).
    497   HazardRec->Reset();
    498 
    499   // Release any successors of the special Entry node.
    500   ReleaseSuccessors(&EntrySU);
    501 
    502   // Add all leaves to Available queue.
    503   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
    504     // It is available if it has no predecessors.
    505     if (!SUnits[i].NumPredsLeft && !SUnits[i].isAvailable) {
    506       AvailableQueue.push(&SUnits[i]);
    507       SUnits[i].isAvailable = true;
    508     }
    509   }
    510 
    511   // In any cycle where we can't schedule any instructions, we must
    512   // stall or emit a noop, depending on the target.
    513   bool CycleHasInsts = false;
    514 
    515   // While Available queue is not empty, grab the node with the highest
    516   // priority. If it is not ready put it back.  Schedule the node.
    517   std::vector<SUnit*> NotReady;
    518   Sequence.reserve(SUnits.size());
    519   while (!AvailableQueue.empty() || !PendingQueue.empty()) {
    520     // Check to see if any of the pending instructions are ready to issue.  If
    521     // so, add them to the available queue.
    522     unsigned MinDepth = ~0u;
    523     for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
    524       if (PendingQueue[i]->getDepth() <= CurCycle) {
    525         AvailableQueue.push(PendingQueue[i]);
    526         PendingQueue[i]->isAvailable = true;
    527         PendingQueue[i] = PendingQueue.back();
    528         PendingQueue.pop_back();
    529         --i; --e;
    530       } else if (PendingQueue[i]->getDepth() < MinDepth)
    531         MinDepth = PendingQueue[i]->getDepth();
    532     }
    533 
    534     DEBUG(dbgs() << "\n*** Examining Available\n"; AvailableQueue.dump(this));
    535 
    536     SUnit *FoundSUnit = nullptr, *NotPreferredSUnit = nullptr;
    537     bool HasNoopHazards = false;
    538     while (!AvailableQueue.empty()) {
    539       SUnit *CurSUnit = AvailableQueue.pop();
    540 
    541       ScheduleHazardRecognizer::HazardType HT =
    542         HazardRec->getHazardType(CurSUnit, 0/*no stalls*/);
    543       if (HT == ScheduleHazardRecognizer::NoHazard) {
    544         if (HazardRec->ShouldPreferAnother(CurSUnit)) {
    545           if (!NotPreferredSUnit) {
    546 	    // If this is the first non-preferred node for this cycle, then
    547 	    // record it and continue searching for a preferred node. If this
    548 	    // is not the first non-preferred node, then treat it as though
    549 	    // there had been a hazard.
    550             NotPreferredSUnit = CurSUnit;
    551             continue;
    552           }
    553         } else {
    554           FoundSUnit = CurSUnit;
    555           break;
    556         }
    557       }
    558 
    559       // Remember if this is a noop hazard.
    560       HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;
    561 
    562       NotReady.push_back(CurSUnit);
    563     }
    564 
    565     // If we have a non-preferred node, push it back onto the available list.
    566     // If we did not find a preferred node, then schedule this first
    567     // non-preferred node.
    568     if (NotPreferredSUnit) {
    569       if (!FoundSUnit) {
    570         DEBUG(dbgs() << "*** Will schedule a non-preferred instruction...\n");
    571         FoundSUnit = NotPreferredSUnit;
    572       } else {
    573         AvailableQueue.push(NotPreferredSUnit);
    574       }
    575 
    576       NotPreferredSUnit = nullptr;
    577     }
    578 
    579     // Add the nodes that aren't ready back onto the available list.
    580     if (!NotReady.empty()) {
    581       AvailableQueue.push_all(NotReady);
    582       NotReady.clear();
    583     }
    584 
    585     // If we found a node to schedule...
    586     if (FoundSUnit) {
    587       // If we need to emit noops prior to this instruction, then do so.
    588       unsigned NumPreNoops = HazardRec->PreEmitNoops(FoundSUnit);
    589       for (unsigned i = 0; i != NumPreNoops; ++i)
    590         emitNoop(CurCycle);
    591 
    592       // ... schedule the node...
    593       ScheduleNodeTopDown(FoundSUnit, CurCycle);
    594       HazardRec->EmitInstruction(FoundSUnit);
    595       CycleHasInsts = true;
    596       if (HazardRec->atIssueLimit()) {
    597         DEBUG(dbgs() << "*** Max instructions per cycle " << CurCycle << '\n');
    598         HazardRec->AdvanceCycle();
    599         ++CurCycle;
    600         CycleHasInsts = false;
    601       }
    602     } else {
    603       if (CycleHasInsts) {
    604         DEBUG(dbgs() << "*** Finished cycle " << CurCycle << '\n');
    605         HazardRec->AdvanceCycle();
    606       } else if (!HasNoopHazards) {
    607         // Otherwise, we have a pipeline stall, but no other problem,
    608         // just advance the current cycle and try again.
    609         DEBUG(dbgs() << "*** Stall in cycle " << CurCycle << '\n');
    610         HazardRec->AdvanceCycle();
    611         ++NumStalls;
    612       } else {
    613         // Otherwise, we have no instructions to issue and we have instructions
    614         // that will fault if we don't do this right.  This is the case for
    615         // processors without pipeline interlocks and other cases.
    616         emitNoop(CurCycle);
    617       }
    618 
    619       ++CurCycle;
    620       CycleHasInsts = false;
    621     }
    622   }
    623 
    624 #ifndef NDEBUG
    625   unsigned ScheduledNodes = VerifyScheduledDAG(/*isBottomUp=*/false);
    626   unsigned Noops = 0;
    627   for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
    628     if (!Sequence[i])
    629       ++Noops;
    630   assert(Sequence.size() - Noops == ScheduledNodes &&
    631          "The number of nodes scheduled doesn't match the expected number!");
    632 #endif // NDEBUG
    633 }
    634 
    635 // EmitSchedule - Emit the machine code in scheduled order.
    636 void SchedulePostRATDList::EmitSchedule() {
    637   RegionBegin = RegionEnd;
    638 
    639   // If first instruction was a DBG_VALUE then put it back.
    640   if (FirstDbgValue)
    641     BB->splice(RegionEnd, BB, FirstDbgValue);
    642 
    643   // Then re-insert them according to the given schedule.
    644   for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
    645     if (SUnit *SU = Sequence[i])
    646       BB->splice(RegionEnd, BB, SU->getInstr());
    647     else
    648       // Null SUnit* is a noop.
    649       TII->insertNoop(*BB, RegionEnd);
    650 
    651     // Update the Begin iterator, as the first instruction in the block
    652     // may have been scheduled later.
    653     if (i == 0)
    654       RegionBegin = std::prev(RegionEnd);
    655   }
    656 
    657   // Reinsert any remaining debug_values.
    658   for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
    659          DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
    660     std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
    661     MachineInstr *DbgValue = P.first;
    662     MachineBasicBlock::iterator OrigPrivMI = P.second;
    663     BB->splice(++OrigPrivMI, BB, DbgValue);
    664   }
    665   DbgValues.clear();
    666   FirstDbgValue = nullptr;
    667 }
    668