Home | History | Annotate | Download | only in ARM
      1 //===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the Base ARM implementation of the TargetInstrInfo class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "ARM.h"
     15 #include "ARMBaseInstrInfo.h"
     16 #include "ARMBaseRegisterInfo.h"
     17 #include "ARMConstantPoolValue.h"
     18 #include "ARMFeatures.h"
     19 #include "ARMHazardRecognizer.h"
     20 #include "ARMMachineFunctionInfo.h"
     21 #include "MCTargetDesc/ARMAddressingModes.h"
     22 #include "llvm/ADT/STLExtras.h"
     23 #include "llvm/CodeGen/LiveVariables.h"
     24 #include "llvm/CodeGen/MachineConstantPool.h"
     25 #include "llvm/CodeGen/MachineFrameInfo.h"
     26 #include "llvm/CodeGen/MachineInstrBuilder.h"
     27 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     28 #include "llvm/CodeGen/MachineMemOperand.h"
     29 #include "llvm/CodeGen/MachineRegisterInfo.h"
     30 #include "llvm/CodeGen/SelectionDAGNodes.h"
     31 #include "llvm/IR/Constants.h"
     32 #include "llvm/IR/Function.h"
     33 #include "llvm/IR/GlobalValue.h"
     34 #include "llvm/MC/MCAsmInfo.h"
     35 #include "llvm/MC/MCExpr.h"
     36 #include "llvm/Support/BranchProbability.h"
     37 #include "llvm/Support/CommandLine.h"
     38 #include "llvm/Support/Debug.h"
     39 #include "llvm/Support/ErrorHandling.h"
     40 
     41 using namespace llvm;
     42 
     43 #define DEBUG_TYPE "arm-instrinfo"
     44 
     45 #define GET_INSTRINFO_CTOR_DTOR
     46 #include "ARMGenInstrInfo.inc"
     47 
     48 static cl::opt<bool>
     49 EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden,
     50                cl::desc("Enable ARM 2-addr to 3-addr conv"));
     51 
     52 static cl::opt<bool>
     53 WidenVMOVS("widen-vmovs", cl::Hidden, cl::init(true),
     54            cl::desc("Widen ARM vmovs to vmovd when possible"));
     55 
     56 static cl::opt<unsigned>
     57 SwiftPartialUpdateClearance("swift-partial-update-clearance",
     58      cl::Hidden, cl::init(12),
     59      cl::desc("Clearance before partial register updates"));
     60 
     61 /// ARM_MLxEntry - Record information about MLA / MLS instructions.
     62 struct ARM_MLxEntry {
     63   uint16_t MLxOpc;     // MLA / MLS opcode
     64   uint16_t MulOpc;     // Expanded multiplication opcode
     65   uint16_t AddSubOpc;  // Expanded add / sub opcode
     66   bool NegAcc;         // True if the acc is negated before the add / sub.
     67   bool HasLane;        // True if instruction has an extra "lane" operand.
     68 };
     69 
     70 static const ARM_MLxEntry ARM_MLxTable[] = {
     71   // MLxOpc,          MulOpc,           AddSubOpc,       NegAcc, HasLane
     72   // fp scalar ops
     73   { ARM::VMLAS,       ARM::VMULS,       ARM::VADDS,      false,  false },
     74   { ARM::VMLSS,       ARM::VMULS,       ARM::VSUBS,      false,  false },
     75   { ARM::VMLAD,       ARM::VMULD,       ARM::VADDD,      false,  false },
     76   { ARM::VMLSD,       ARM::VMULD,       ARM::VSUBD,      false,  false },
     77   { ARM::VNMLAS,      ARM::VNMULS,      ARM::VSUBS,      true,   false },
     78   { ARM::VNMLSS,      ARM::VMULS,       ARM::VSUBS,      true,   false },
     79   { ARM::VNMLAD,      ARM::VNMULD,      ARM::VSUBD,      true,   false },
     80   { ARM::VNMLSD,      ARM::VMULD,       ARM::VSUBD,      true,   false },
     81 
     82   // fp SIMD ops
     83   { ARM::VMLAfd,      ARM::VMULfd,      ARM::VADDfd,     false,  false },
     84   { ARM::VMLSfd,      ARM::VMULfd,      ARM::VSUBfd,     false,  false },
     85   { ARM::VMLAfq,      ARM::VMULfq,      ARM::VADDfq,     false,  false },
     86   { ARM::VMLSfq,      ARM::VMULfq,      ARM::VSUBfq,     false,  false },
     87   { ARM::VMLAslfd,    ARM::VMULslfd,    ARM::VADDfd,     false,  true  },
     88   { ARM::VMLSslfd,    ARM::VMULslfd,    ARM::VSUBfd,     false,  true  },
     89   { ARM::VMLAslfq,    ARM::VMULslfq,    ARM::VADDfq,     false,  true  },
     90   { ARM::VMLSslfq,    ARM::VMULslfq,    ARM::VSUBfq,     false,  true  },
     91 };
     92 
     93 ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI)
     94   : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP),
     95     Subtarget(STI) {
     96   for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) {
     97     if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second)
     98       assert(false && "Duplicated entries?");
     99     MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc);
    100     MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc);
    101   }
    102 }
    103 
    104 // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl
    105 // currently defaults to no prepass hazard recognizer.
    106 ScheduleHazardRecognizer *
    107 ARMBaseInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
    108                                                const ScheduleDAG *DAG) const {
    109   if (usePreRAHazardRecognizer()) {
    110     const InstrItineraryData *II =
    111         &static_cast<const ARMSubtarget *>(STI)->getInstrItineraryData();
    112     return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched");
    113   }
    114   return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
    115 }
    116 
    117 ScheduleHazardRecognizer *ARMBaseInstrInfo::
    118 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
    119                                    const ScheduleDAG *DAG) const {
    120   if (Subtarget.isThumb2() || Subtarget.hasVFP2())
    121     return (ScheduleHazardRecognizer *)new ARMHazardRecognizer(II, DAG);
    122   return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG);
    123 }
    124 
    125 MachineInstr *
    126 ARMBaseInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
    127                                         MachineBasicBlock::iterator &MBBI,
    128                                         LiveVariables *LV) const {
    129   // FIXME: Thumb2 support.
    130 
    131   if (!EnableARM3Addr)
    132     return nullptr;
    133 
    134   MachineInstr *MI = MBBI;
    135   MachineFunction &MF = *MI->getParent()->getParent();
    136   uint64_t TSFlags = MI->getDesc().TSFlags;
    137   bool isPre = false;
    138   switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) {
    139   default: return nullptr;
    140   case ARMII::IndexModePre:
    141     isPre = true;
    142     break;
    143   case ARMII::IndexModePost:
    144     break;
    145   }
    146 
    147   // Try splitting an indexed load/store to an un-indexed one plus an add/sub
    148   // operation.
    149   unsigned MemOpc = getUnindexedOpcode(MI->getOpcode());
    150   if (MemOpc == 0)
    151     return nullptr;
    152 
    153   MachineInstr *UpdateMI = nullptr;
    154   MachineInstr *MemMI = nullptr;
    155   unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
    156   const MCInstrDesc &MCID = MI->getDesc();
    157   unsigned NumOps = MCID.getNumOperands();
    158   bool isLoad = !MI->mayStore();
    159   const MachineOperand &WB = isLoad ? MI->getOperand(1) : MI->getOperand(0);
    160   const MachineOperand &Base = MI->getOperand(2);
    161   const MachineOperand &Offset = MI->getOperand(NumOps-3);
    162   unsigned WBReg = WB.getReg();
    163   unsigned BaseReg = Base.getReg();
    164   unsigned OffReg = Offset.getReg();
    165   unsigned OffImm = MI->getOperand(NumOps-2).getImm();
    166   ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI->getOperand(NumOps-1).getImm();
    167   switch (AddrMode) {
    168   default: llvm_unreachable("Unknown indexed op!");
    169   case ARMII::AddrMode2: {
    170     bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
    171     unsigned Amt = ARM_AM::getAM2Offset(OffImm);
    172     if (OffReg == 0) {
    173       if (ARM_AM::getSOImmVal(Amt) == -1)
    174         // Can't encode it in a so_imm operand. This transformation will
    175         // add more than 1 instruction. Abandon!
    176         return nullptr;
    177       UpdateMI = BuildMI(MF, MI->getDebugLoc(),
    178                          get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
    179         .addReg(BaseReg).addImm(Amt)
    180         .addImm(Pred).addReg(0).addReg(0);
    181     } else if (Amt != 0) {
    182       ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm);
    183       unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt);
    184       UpdateMI = BuildMI(MF, MI->getDebugLoc(),
    185                          get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg)
    186         .addReg(BaseReg).addReg(OffReg).addReg(0).addImm(SOOpc)
    187         .addImm(Pred).addReg(0).addReg(0);
    188     } else
    189       UpdateMI = BuildMI(MF, MI->getDebugLoc(),
    190                          get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
    191         .addReg(BaseReg).addReg(OffReg)
    192         .addImm(Pred).addReg(0).addReg(0);
    193     break;
    194   }
    195   case ARMII::AddrMode3 : {
    196     bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub;
    197     unsigned Amt = ARM_AM::getAM3Offset(OffImm);
    198     if (OffReg == 0)
    199       // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
    200       UpdateMI = BuildMI(MF, MI->getDebugLoc(),
    201                          get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
    202         .addReg(BaseReg).addImm(Amt)
    203         .addImm(Pred).addReg(0).addReg(0);
    204     else
    205       UpdateMI = BuildMI(MF, MI->getDebugLoc(),
    206                          get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
    207         .addReg(BaseReg).addReg(OffReg)
    208         .addImm(Pred).addReg(0).addReg(0);
    209     break;
    210   }
    211   }
    212 
    213   std::vector<MachineInstr*> NewMIs;
    214   if (isPre) {
    215     if (isLoad)
    216       MemMI = BuildMI(MF, MI->getDebugLoc(),
    217                       get(MemOpc), MI->getOperand(0).getReg())
    218         .addReg(WBReg).addImm(0).addImm(Pred);
    219     else
    220       MemMI = BuildMI(MF, MI->getDebugLoc(),
    221                       get(MemOpc)).addReg(MI->getOperand(1).getReg())
    222         .addReg(WBReg).addReg(0).addImm(0).addImm(Pred);
    223     NewMIs.push_back(MemMI);
    224     NewMIs.push_back(UpdateMI);
    225   } else {
    226     if (isLoad)
    227       MemMI = BuildMI(MF, MI->getDebugLoc(),
    228                       get(MemOpc), MI->getOperand(0).getReg())
    229         .addReg(BaseReg).addImm(0).addImm(Pred);
    230     else
    231       MemMI = BuildMI(MF, MI->getDebugLoc(),
    232                       get(MemOpc)).addReg(MI->getOperand(1).getReg())
    233         .addReg(BaseReg).addReg(0).addImm(0).addImm(Pred);
    234     if (WB.isDead())
    235       UpdateMI->getOperand(0).setIsDead();
    236     NewMIs.push_back(UpdateMI);
    237     NewMIs.push_back(MemMI);
    238   }
    239 
    240   // Transfer LiveVariables states, kill / dead info.
    241   if (LV) {
    242     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    243       MachineOperand &MO = MI->getOperand(i);
    244       if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
    245         unsigned Reg = MO.getReg();
    246 
    247         LiveVariables::VarInfo &VI = LV->getVarInfo(Reg);
    248         if (MO.isDef()) {
    249           MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI;
    250           if (MO.isDead())
    251             LV->addVirtualRegisterDead(Reg, NewMI);
    252         }
    253         if (MO.isUse() && MO.isKill()) {
    254           for (unsigned j = 0; j < 2; ++j) {
    255             // Look at the two new MI's in reverse order.
    256             MachineInstr *NewMI = NewMIs[j];
    257             if (!NewMI->readsRegister(Reg))
    258               continue;
    259             LV->addVirtualRegisterKilled(Reg, NewMI);
    260             if (VI.removeKill(MI))
    261               VI.Kills.push_back(NewMI);
    262             break;
    263           }
    264         }
    265       }
    266     }
    267   }
    268 
    269   MFI->insert(MBBI, NewMIs[1]);
    270   MFI->insert(MBBI, NewMIs[0]);
    271   return NewMIs[0];
    272 }
    273 
    274 // Branch analysis.
    275 bool
    276 ARMBaseInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB,
    277                                 MachineBasicBlock *&FBB,
    278                                 SmallVectorImpl<MachineOperand> &Cond,
    279                                 bool AllowModify) const {
    280   TBB = nullptr;
    281   FBB = nullptr;
    282 
    283   MachineBasicBlock::iterator I = MBB.end();
    284   if (I == MBB.begin())
    285     return false; // Empty blocks are easy.
    286   --I;
    287 
    288   // Walk backwards from the end of the basic block until the branch is
    289   // analyzed or we give up.
    290   while (isPredicated(I) || I->isTerminator() || I->isDebugValue()) {
    291 
    292     // Flag to be raised on unanalyzeable instructions. This is useful in cases
    293     // where we want to clean up on the end of the basic block before we bail
    294     // out.
    295     bool CantAnalyze = false;
    296 
    297     // Skip over DEBUG values and predicated nonterminators.
    298     while (I->isDebugValue() || !I->isTerminator()) {
    299       if (I == MBB.begin())
    300         return false;
    301       --I;
    302     }
    303 
    304     if (isIndirectBranchOpcode(I->getOpcode()) ||
    305         isJumpTableBranchOpcode(I->getOpcode())) {
    306       // Indirect branches and jump tables can't be analyzed, but we still want
    307       // to clean up any instructions at the tail of the basic block.
    308       CantAnalyze = true;
    309     } else if (isUncondBranchOpcode(I->getOpcode())) {
    310       TBB = I->getOperand(0).getMBB();
    311     } else if (isCondBranchOpcode(I->getOpcode())) {
    312       // Bail out if we encounter multiple conditional branches.
    313       if (!Cond.empty())
    314         return true;
    315 
    316       assert(!FBB && "FBB should have been null.");
    317       FBB = TBB;
    318       TBB = I->getOperand(0).getMBB();
    319       Cond.push_back(I->getOperand(1));
    320       Cond.push_back(I->getOperand(2));
    321     } else if (I->isReturn()) {
    322       // Returns can't be analyzed, but we should run cleanup.
    323       CantAnalyze = !isPredicated(I);
    324     } else {
    325       // We encountered other unrecognized terminator. Bail out immediately.
    326       return true;
    327     }
    328 
    329     // Cleanup code - to be run for unpredicated unconditional branches and
    330     //                returns.
    331     if (!isPredicated(I) &&
    332           (isUncondBranchOpcode(I->getOpcode()) ||
    333            isIndirectBranchOpcode(I->getOpcode()) ||
    334            isJumpTableBranchOpcode(I->getOpcode()) ||
    335            I->isReturn())) {
    336       // Forget any previous condition branch information - it no longer applies.
    337       Cond.clear();
    338       FBB = nullptr;
    339 
    340       // If we can modify the function, delete everything below this
    341       // unconditional branch.
    342       if (AllowModify) {
    343         MachineBasicBlock::iterator DI = std::next(I);
    344         while (DI != MBB.end()) {
    345           MachineInstr *InstToDelete = DI;
    346           ++DI;
    347           InstToDelete->eraseFromParent();
    348         }
    349       }
    350     }
    351 
    352     if (CantAnalyze)
    353       return true;
    354 
    355     if (I == MBB.begin())
    356       return false;
    357 
    358     --I;
    359   }
    360 
    361   // We made it past the terminators without bailing out - we must have
    362   // analyzed this branch successfully.
    363   return false;
    364 }
    365 
    366 
    367 unsigned ARMBaseInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
    368   MachineBasicBlock::iterator I = MBB.end();
    369   if (I == MBB.begin()) return 0;
    370   --I;
    371   while (I->isDebugValue()) {
    372     if (I == MBB.begin())
    373       return 0;
    374     --I;
    375   }
    376   if (!isUncondBranchOpcode(I->getOpcode()) &&
    377       !isCondBranchOpcode(I->getOpcode()))
    378     return 0;
    379 
    380   // Remove the branch.
    381   I->eraseFromParent();
    382 
    383   I = MBB.end();
    384 
    385   if (I == MBB.begin()) return 1;
    386   --I;
    387   if (!isCondBranchOpcode(I->getOpcode()))
    388     return 1;
    389 
    390   // Remove the branch.
    391   I->eraseFromParent();
    392   return 2;
    393 }
    394 
    395 unsigned
    396 ARMBaseInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
    397                                MachineBasicBlock *FBB,
    398                                const SmallVectorImpl<MachineOperand> &Cond,
    399                                DebugLoc DL) const {
    400   ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>();
    401   int BOpc   = !AFI->isThumbFunction()
    402     ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB);
    403   int BccOpc = !AFI->isThumbFunction()
    404     ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc);
    405   bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function();
    406 
    407   // Shouldn't be a fall through.
    408   assert(TBB && "InsertBranch must not be told to insert a fallthrough");
    409   assert((Cond.size() == 2 || Cond.size() == 0) &&
    410          "ARM branch conditions have two components!");
    411 
    412   if (!FBB) {
    413     if (Cond.empty()) { // Unconditional branch?
    414       if (isThumb)
    415         BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).addImm(ARMCC::AL).addReg(0);
    416       else
    417         BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
    418     } else
    419       BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB)
    420         .addImm(Cond[0].getImm()).addReg(Cond[1].getReg());
    421     return 1;
    422   }
    423 
    424   // Two-way conditional branch.
    425   BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB)
    426     .addImm(Cond[0].getImm()).addReg(Cond[1].getReg());
    427   if (isThumb)
    428     BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).addImm(ARMCC::AL).addReg(0);
    429   else
    430     BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
    431   return 2;
    432 }
    433 
    434 bool ARMBaseInstrInfo::
    435 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
    436   ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm();
    437   Cond[0].setImm(ARMCC::getOppositeCondition(CC));
    438   return false;
    439 }
    440 
    441 bool ARMBaseInstrInfo::isPredicated(const MachineInstr *MI) const {
    442   if (MI->isBundle()) {
    443     MachineBasicBlock::const_instr_iterator I = MI;
    444     MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
    445     while (++I != E && I->isInsideBundle()) {
    446       int PIdx = I->findFirstPredOperandIdx();
    447       if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL)
    448         return true;
    449     }
    450     return false;
    451   }
    452 
    453   int PIdx = MI->findFirstPredOperandIdx();
    454   return PIdx != -1 && MI->getOperand(PIdx).getImm() != ARMCC::AL;
    455 }
    456 
    457 bool ARMBaseInstrInfo::
    458 PredicateInstruction(MachineInstr *MI,
    459                      const SmallVectorImpl<MachineOperand> &Pred) const {
    460   unsigned Opc = MI->getOpcode();
    461   if (isUncondBranchOpcode(Opc)) {
    462     MI->setDesc(get(getMatchingCondBranchOpcode(Opc)));
    463     MachineInstrBuilder(*MI->getParent()->getParent(), MI)
    464       .addImm(Pred[0].getImm())
    465       .addReg(Pred[1].getReg());
    466     return true;
    467   }
    468 
    469   int PIdx = MI->findFirstPredOperandIdx();
    470   if (PIdx != -1) {
    471     MachineOperand &PMO = MI->getOperand(PIdx);
    472     PMO.setImm(Pred[0].getImm());
    473     MI->getOperand(PIdx+1).setReg(Pred[1].getReg());
    474     return true;
    475   }
    476   return false;
    477 }
    478 
    479 bool ARMBaseInstrInfo::
    480 SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
    481                   const SmallVectorImpl<MachineOperand> &Pred2) const {
    482   if (Pred1.size() > 2 || Pred2.size() > 2)
    483     return false;
    484 
    485   ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm();
    486   ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm();
    487   if (CC1 == CC2)
    488     return true;
    489 
    490   switch (CC1) {
    491   default:
    492     return false;
    493   case ARMCC::AL:
    494     return true;
    495   case ARMCC::HS:
    496     return CC2 == ARMCC::HI;
    497   case ARMCC::LS:
    498     return CC2 == ARMCC::LO || CC2 == ARMCC::EQ;
    499   case ARMCC::GE:
    500     return CC2 == ARMCC::GT;
    501   case ARMCC::LE:
    502     return CC2 == ARMCC::LT;
    503   }
    504 }
    505 
    506 bool ARMBaseInstrInfo::DefinesPredicate(MachineInstr *MI,
    507                                     std::vector<MachineOperand> &Pred) const {
    508   bool Found = false;
    509   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    510     const MachineOperand &MO = MI->getOperand(i);
    511     if ((MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) ||
    512         (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)) {
    513       Pred.push_back(MO);
    514       Found = true;
    515     }
    516   }
    517 
    518   return Found;
    519 }
    520 
    521 /// isPredicable - Return true if the specified instruction can be predicated.
    522 /// By default, this returns true for every instruction with a
    523 /// PredicateOperand.
    524 bool ARMBaseInstrInfo::isPredicable(MachineInstr *MI) const {
    525   if (!MI->isPredicable())
    526     return false;
    527 
    528   ARMFunctionInfo *AFI =
    529     MI->getParent()->getParent()->getInfo<ARMFunctionInfo>();
    530 
    531   if (AFI->isThumb2Function()) {
    532     if (getSubtarget().restrictIT())
    533       return isV8EligibleForIT(MI);
    534   } else { // non-Thumb
    535     if ((MI->getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON)
    536       return false;
    537   }
    538 
    539   return true;
    540 }
    541 
    542 namespace llvm {
    543 template <> bool IsCPSRDead<MachineInstr>(MachineInstr *MI) {
    544   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    545     const MachineOperand &MO = MI->getOperand(i);
    546     if (!MO.isReg() || MO.isUndef() || MO.isUse())
    547       continue;
    548     if (MO.getReg() != ARM::CPSR)
    549       continue;
    550     if (!MO.isDead())
    551       return false;
    552   }
    553   // all definitions of CPSR are dead
    554   return true;
    555 }
    556 }
    557 
    558 /// FIXME: Works around a gcc miscompilation with -fstrict-aliasing.
    559 LLVM_ATTRIBUTE_NOINLINE
    560 static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
    561                                 unsigned JTI);
    562 static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
    563                                 unsigned JTI) {
    564   assert(JTI < JT.size());
    565   return JT[JTI].MBBs.size();
    566 }
    567 
    568 /// GetInstSize - Return the size of the specified MachineInstr.
    569 ///
    570 unsigned ARMBaseInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
    571   const MachineBasicBlock &MBB = *MI->getParent();
    572   const MachineFunction *MF = MBB.getParent();
    573   const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
    574 
    575   const MCInstrDesc &MCID = MI->getDesc();
    576   if (MCID.getSize())
    577     return MCID.getSize();
    578 
    579   // If this machine instr is an inline asm, measure it.
    580   if (MI->getOpcode() == ARM::INLINEASM)
    581     return getInlineAsmLength(MI->getOperand(0).getSymbolName(), *MAI);
    582   unsigned Opc = MI->getOpcode();
    583   switch (Opc) {
    584   default:
    585     // pseudo-instruction sizes are zero.
    586     return 0;
    587   case TargetOpcode::BUNDLE:
    588     return getInstBundleLength(MI);
    589   case ARM::MOVi16_ga_pcrel:
    590   case ARM::MOVTi16_ga_pcrel:
    591   case ARM::t2MOVi16_ga_pcrel:
    592   case ARM::t2MOVTi16_ga_pcrel:
    593     return 4;
    594   case ARM::MOVi32imm:
    595   case ARM::t2MOVi32imm:
    596     return 8;
    597   case ARM::CONSTPOOL_ENTRY:
    598     // If this machine instr is a constant pool entry, its size is recorded as
    599     // operand #2.
    600     return MI->getOperand(2).getImm();
    601   case ARM::Int_eh_sjlj_longjmp:
    602     return 16;
    603   case ARM::tInt_eh_sjlj_longjmp:
    604     return 10;
    605   case ARM::Int_eh_sjlj_setjmp:
    606   case ARM::Int_eh_sjlj_setjmp_nofp:
    607     return 20;
    608   case ARM::tInt_eh_sjlj_setjmp:
    609   case ARM::t2Int_eh_sjlj_setjmp:
    610   case ARM::t2Int_eh_sjlj_setjmp_nofp:
    611     return 12;
    612   case ARM::BR_JTr:
    613   case ARM::BR_JTm:
    614   case ARM::BR_JTadd:
    615   case ARM::tBR_JTr:
    616   case ARM::t2BR_JT:
    617   case ARM::t2TBB_JT:
    618   case ARM::t2TBH_JT: {
    619     // These are jumptable branches, i.e. a branch followed by an inlined
    620     // jumptable. The size is 4 + 4 * number of entries. For TBB, each
    621     // entry is one byte; TBH two byte each.
    622     unsigned EntrySize = (Opc == ARM::t2TBB_JT)
    623       ? 1 : ((Opc == ARM::t2TBH_JT) ? 2 : 4);
    624     unsigned NumOps = MCID.getNumOperands();
    625     MachineOperand JTOP =
    626       MI->getOperand(NumOps - (MI->isPredicable() ? 3 : 2));
    627     unsigned JTI = JTOP.getIndex();
    628     const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
    629     assert(MJTI != nullptr);
    630     const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
    631     assert(JTI < JT.size());
    632     // Thumb instructions are 2 byte aligned, but JT entries are 4 byte
    633     // 4 aligned. The assembler / linker may add 2 byte padding just before
    634     // the JT entries.  The size does not include this padding; the
    635     // constant islands pass does separate bookkeeping for it.
    636     // FIXME: If we know the size of the function is less than (1 << 16) *2
    637     // bytes, we can use 16-bit entries instead. Then there won't be an
    638     // alignment issue.
    639     unsigned InstSize = (Opc == ARM::tBR_JTr || Opc == ARM::t2BR_JT) ? 2 : 4;
    640     unsigned NumEntries = getNumJTEntries(JT, JTI);
    641     if (Opc == ARM::t2TBB_JT && (NumEntries & 1))
    642       // Make sure the instruction that follows TBB is 2-byte aligned.
    643       // FIXME: Constant island pass should insert an "ALIGN" instruction
    644       // instead.
    645       ++NumEntries;
    646     return NumEntries * EntrySize + InstSize;
    647   }
    648   }
    649 }
    650 
    651 unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr *MI) const {
    652   unsigned Size = 0;
    653   MachineBasicBlock::const_instr_iterator I = MI;
    654   MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
    655   while (++I != E && I->isInsideBundle()) {
    656     assert(!I->isBundle() && "No nested bundle!");
    657     Size += GetInstSizeInBytes(&*I);
    658   }
    659   return Size;
    660 }
    661 
    662 void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
    663                                    MachineBasicBlock::iterator I, DebugLoc DL,
    664                                    unsigned DestReg, unsigned SrcReg,
    665                                    bool KillSrc) const {
    666   bool GPRDest = ARM::GPRRegClass.contains(DestReg);
    667   bool GPRSrc = ARM::GPRRegClass.contains(SrcReg);
    668 
    669   if (GPRDest && GPRSrc) {
    670     AddDefaultCC(AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg)
    671                                     .addReg(SrcReg, getKillRegState(KillSrc))));
    672     return;
    673   }
    674 
    675   bool SPRDest = ARM::SPRRegClass.contains(DestReg);
    676   bool SPRSrc = ARM::SPRRegClass.contains(SrcReg);
    677 
    678   unsigned Opc = 0;
    679   if (SPRDest && SPRSrc)
    680     Opc = ARM::VMOVS;
    681   else if (GPRDest && SPRSrc)
    682     Opc = ARM::VMOVRS;
    683   else if (SPRDest && GPRSrc)
    684     Opc = ARM::VMOVSR;
    685   else if (ARM::DPRRegClass.contains(DestReg, SrcReg))
    686     Opc = ARM::VMOVD;
    687   else if (ARM::QPRRegClass.contains(DestReg, SrcReg))
    688     Opc = ARM::VORRq;
    689 
    690   if (Opc) {
    691     MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg);
    692     MIB.addReg(SrcReg, getKillRegState(KillSrc));
    693     if (Opc == ARM::VORRq)
    694       MIB.addReg(SrcReg, getKillRegState(KillSrc));
    695     AddDefaultPred(MIB);
    696     return;
    697   }
    698 
    699   // Handle register classes that require multiple instructions.
    700   unsigned BeginIdx = 0;
    701   unsigned SubRegs = 0;
    702   int Spacing = 1;
    703 
    704   // Use VORRq when possible.
    705   if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) {
    706     Opc = ARM::VORRq;
    707     BeginIdx = ARM::qsub_0;
    708     SubRegs = 2;
    709   } else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) {
    710     Opc = ARM::VORRq;
    711     BeginIdx = ARM::qsub_0;
    712     SubRegs = 4;
    713   // Fall back to VMOVD.
    714   } else if (ARM::DPairRegClass.contains(DestReg, SrcReg)) {
    715     Opc = ARM::VMOVD;
    716     BeginIdx = ARM::dsub_0;
    717     SubRegs = 2;
    718   } else if (ARM::DTripleRegClass.contains(DestReg, SrcReg)) {
    719     Opc = ARM::VMOVD;
    720     BeginIdx = ARM::dsub_0;
    721     SubRegs = 3;
    722   } else if (ARM::DQuadRegClass.contains(DestReg, SrcReg)) {
    723     Opc = ARM::VMOVD;
    724     BeginIdx = ARM::dsub_0;
    725     SubRegs = 4;
    726   } else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg)) {
    727     Opc = Subtarget.isThumb2() ? ARM::tMOVr : ARM::MOVr;
    728     BeginIdx = ARM::gsub_0;
    729     SubRegs = 2;
    730   } else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg)) {
    731     Opc = ARM::VMOVD;
    732     BeginIdx = ARM::dsub_0;
    733     SubRegs = 2;
    734     Spacing = 2;
    735   } else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg)) {
    736     Opc = ARM::VMOVD;
    737     BeginIdx = ARM::dsub_0;
    738     SubRegs = 3;
    739     Spacing = 2;
    740   } else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg)) {
    741     Opc = ARM::VMOVD;
    742     BeginIdx = ARM::dsub_0;
    743     SubRegs = 4;
    744     Spacing = 2;
    745   }
    746 
    747   assert(Opc && "Impossible reg-to-reg copy");
    748 
    749   const TargetRegisterInfo *TRI = &getRegisterInfo();
    750   MachineInstrBuilder Mov;
    751 
    752   // Copy register tuples backward when the first Dest reg overlaps with SrcReg.
    753   if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) {
    754     BeginIdx = BeginIdx + ((SubRegs - 1) * Spacing);
    755     Spacing = -Spacing;
    756   }
    757 #ifndef NDEBUG
    758   SmallSet<unsigned, 4> DstRegs;
    759 #endif
    760   for (unsigned i = 0; i != SubRegs; ++i) {
    761     unsigned Dst = TRI->getSubReg(DestReg, BeginIdx + i * Spacing);
    762     unsigned Src = TRI->getSubReg(SrcReg, BeginIdx + i * Spacing);
    763     assert(Dst && Src && "Bad sub-register");
    764 #ifndef NDEBUG
    765     assert(!DstRegs.count(Src) && "destructive vector copy");
    766     DstRegs.insert(Dst);
    767 #endif
    768     Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst).addReg(Src);
    769     // VORR takes two source operands.
    770     if (Opc == ARM::VORRq)
    771       Mov.addReg(Src);
    772     Mov = AddDefaultPred(Mov);
    773     // MOVr can set CC.
    774     if (Opc == ARM::MOVr)
    775       Mov = AddDefaultCC(Mov);
    776   }
    777   // Add implicit super-register defs and kills to the last instruction.
    778   Mov->addRegisterDefined(DestReg, TRI);
    779   if (KillSrc)
    780     Mov->addRegisterKilled(SrcReg, TRI);
    781 }
    782 
    783 const MachineInstrBuilder &
    784 ARMBaseInstrInfo::AddDReg(MachineInstrBuilder &MIB, unsigned Reg,
    785                           unsigned SubIdx, unsigned State,
    786                           const TargetRegisterInfo *TRI) const {
    787   if (!SubIdx)
    788     return MIB.addReg(Reg, State);
    789 
    790   if (TargetRegisterInfo::isPhysicalRegister(Reg))
    791     return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
    792   return MIB.addReg(Reg, State, SubIdx);
    793 }
    794 
    795 void ARMBaseInstrInfo::
    796 storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
    797                     unsigned SrcReg, bool isKill, int FI,
    798                     const TargetRegisterClass *RC,
    799                     const TargetRegisterInfo *TRI) const {
    800   DebugLoc DL;
    801   if (I != MBB.end()) DL = I->getDebugLoc();
    802   MachineFunction &MF = *MBB.getParent();
    803   MachineFrameInfo &MFI = *MF.getFrameInfo();
    804   unsigned Align = MFI.getObjectAlignment(FI);
    805 
    806   MachineMemOperand *MMO =
    807     MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
    808                             MachineMemOperand::MOStore,
    809                             MFI.getObjectSize(FI),
    810                             Align);
    811 
    812   switch (RC->getSize()) {
    813     case 4:
    814       if (ARM::GPRRegClass.hasSubClassEq(RC)) {
    815         AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::STRi12))
    816                    .addReg(SrcReg, getKillRegState(isKill))
    817                    .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
    818       } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
    819         AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRS))
    820                    .addReg(SrcReg, getKillRegState(isKill))
    821                    .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
    822       } else
    823         llvm_unreachable("Unknown reg class!");
    824       break;
    825     case 8:
    826       if (ARM::DPRRegClass.hasSubClassEq(RC)) {
    827         AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRD))
    828                    .addReg(SrcReg, getKillRegState(isKill))
    829                    .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
    830       } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
    831         if (Subtarget.hasV5TEOps()) {
    832           MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::STRD));
    833           AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
    834           AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
    835           MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO);
    836 
    837           AddDefaultPred(MIB);
    838         } else {
    839           // Fallback to STM instruction, which has existed since the dawn of
    840           // time.
    841           MachineInstrBuilder MIB =
    842             AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::STMIA))
    843                              .addFrameIndex(FI).addMemOperand(MMO));
    844           AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
    845           AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
    846         }
    847       } else
    848         llvm_unreachable("Unknown reg class!");
    849       break;
    850     case 16:
    851       if (ARM::DPairRegClass.hasSubClassEq(RC)) {
    852         // Use aligned spills if the stack can be realigned.
    853         if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
    854           AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1q64))
    855                      .addFrameIndex(FI).addImm(16)
    856                      .addReg(SrcReg, getKillRegState(isKill))
    857                      .addMemOperand(MMO));
    858         } else {
    859           AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMQIA))
    860                      .addReg(SrcReg, getKillRegState(isKill))
    861                      .addFrameIndex(FI)
    862                      .addMemOperand(MMO));
    863         }
    864       } else
    865         llvm_unreachable("Unknown reg class!");
    866       break;
    867     case 24:
    868       if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
    869         // Use aligned spills if the stack can be realigned.
    870         if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
    871           AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1d64TPseudo))
    872                      .addFrameIndex(FI).addImm(16)
    873                      .addReg(SrcReg, getKillRegState(isKill))
    874                      .addMemOperand(MMO));
    875         } else {
    876           MachineInstrBuilder MIB =
    877           AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
    878                        .addFrameIndex(FI))
    879                        .addMemOperand(MMO);
    880           MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
    881           MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
    882           AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
    883         }
    884       } else
    885         llvm_unreachable("Unknown reg class!");
    886       break;
    887     case 32:
    888       if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
    889         if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
    890           // FIXME: It's possible to only store part of the QQ register if the
    891           // spilled def has a sub-register index.
    892           AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1d64QPseudo))
    893                      .addFrameIndex(FI).addImm(16)
    894                      .addReg(SrcReg, getKillRegState(isKill))
    895                      .addMemOperand(MMO));
    896         } else {
    897           MachineInstrBuilder MIB =
    898           AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
    899                        .addFrameIndex(FI))
    900                        .addMemOperand(MMO);
    901           MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
    902           MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
    903           MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
    904                 AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
    905         }
    906       } else
    907         llvm_unreachable("Unknown reg class!");
    908       break;
    909     case 64:
    910       if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
    911         MachineInstrBuilder MIB =
    912           AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
    913                          .addFrameIndex(FI))
    914                          .addMemOperand(MMO);
    915         MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
    916         MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
    917         MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
    918         MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
    919         MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI);
    920         MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI);
    921         MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI);
    922               AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI);
    923       } else
    924         llvm_unreachable("Unknown reg class!");
    925       break;
    926     default:
    927       llvm_unreachable("Unknown reg class!");
    928   }
    929 }
    930 
    931 unsigned
    932 ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
    933                                      int &FrameIndex) const {
    934   switch (MI->getOpcode()) {
    935   default: break;
    936   case ARM::STRrs:
    937   case ARM::t2STRs: // FIXME: don't use t2STRs to access frame.
    938     if (MI->getOperand(1).isFI() &&
    939         MI->getOperand(2).isReg() &&
    940         MI->getOperand(3).isImm() &&
    941         MI->getOperand(2).getReg() == 0 &&
    942         MI->getOperand(3).getImm() == 0) {
    943       FrameIndex = MI->getOperand(1).getIndex();
    944       return MI->getOperand(0).getReg();
    945     }
    946     break;
    947   case ARM::STRi12:
    948   case ARM::t2STRi12:
    949   case ARM::tSTRspi:
    950   case ARM::VSTRD:
    951   case ARM::VSTRS:
    952     if (MI->getOperand(1).isFI() &&
    953         MI->getOperand(2).isImm() &&
    954         MI->getOperand(2).getImm() == 0) {
    955       FrameIndex = MI->getOperand(1).getIndex();
    956       return MI->getOperand(0).getReg();
    957     }
    958     break;
    959   case ARM::VST1q64:
    960   case ARM::VST1d64TPseudo:
    961   case ARM::VST1d64QPseudo:
    962     if (MI->getOperand(0).isFI() &&
    963         MI->getOperand(2).getSubReg() == 0) {
    964       FrameIndex = MI->getOperand(0).getIndex();
    965       return MI->getOperand(2).getReg();
    966     }
    967     break;
    968   case ARM::VSTMQIA:
    969     if (MI->getOperand(1).isFI() &&
    970         MI->getOperand(0).getSubReg() == 0) {
    971       FrameIndex = MI->getOperand(1).getIndex();
    972       return MI->getOperand(0).getReg();
    973     }
    974     break;
    975   }
    976 
    977   return 0;
    978 }
    979 
    980 unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
    981                                                     int &FrameIndex) const {
    982   const MachineMemOperand *Dummy;
    983   return MI->mayStore() && hasStoreToStackSlot(MI, Dummy, FrameIndex);
    984 }
    985 
    986 void ARMBaseInstrInfo::
    987 loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
    988                      unsigned DestReg, int FI,
    989                      const TargetRegisterClass *RC,
    990                      const TargetRegisterInfo *TRI) const {
    991   DebugLoc DL;
    992   if (I != MBB.end()) DL = I->getDebugLoc();
    993   MachineFunction &MF = *MBB.getParent();
    994   MachineFrameInfo &MFI = *MF.getFrameInfo();
    995   unsigned Align = MFI.getObjectAlignment(FI);
    996   MachineMemOperand *MMO =
    997     MF.getMachineMemOperand(
    998                     MachinePointerInfo::getFixedStack(FI),
    999                             MachineMemOperand::MOLoad,
   1000                             MFI.getObjectSize(FI),
   1001                             Align);
   1002 
   1003   switch (RC->getSize()) {
   1004   case 4:
   1005     if (ARM::GPRRegClass.hasSubClassEq(RC)) {
   1006       AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg)
   1007                    .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
   1008 
   1009     } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
   1010       AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg)
   1011                    .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
   1012     } else
   1013       llvm_unreachable("Unknown reg class!");
   1014     break;
   1015   case 8:
   1016     if (ARM::DPRRegClass.hasSubClassEq(RC)) {
   1017       AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg)
   1018                    .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
   1019     } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
   1020       MachineInstrBuilder MIB;
   1021 
   1022       if (Subtarget.hasV5TEOps()) {
   1023         MIB = BuildMI(MBB, I, DL, get(ARM::LDRD));
   1024         AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
   1025         AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
   1026         MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO);
   1027 
   1028         AddDefaultPred(MIB);
   1029       } else {
   1030         // Fallback to LDM instruction, which has existed since the dawn of
   1031         // time.
   1032         MIB = AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::LDMIA))
   1033                                  .addFrameIndex(FI).addMemOperand(MMO));
   1034         MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
   1035         MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
   1036       }
   1037 
   1038       if (TargetRegisterInfo::isPhysicalRegister(DestReg))
   1039         MIB.addReg(DestReg, RegState::ImplicitDefine);
   1040     } else
   1041       llvm_unreachable("Unknown reg class!");
   1042     break;
   1043   case 16:
   1044     if (ARM::DPairRegClass.hasSubClassEq(RC)) {
   1045       if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
   1046         AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg)
   1047                      .addFrameIndex(FI).addImm(16)
   1048                      .addMemOperand(MMO));
   1049       } else {
   1050         AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg)
   1051                        .addFrameIndex(FI)
   1052                        .addMemOperand(MMO));
   1053       }
   1054     } else
   1055       llvm_unreachable("Unknown reg class!");
   1056     break;
   1057   case 24:
   1058     if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
   1059       if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
   1060         AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg)
   1061                      .addFrameIndex(FI).addImm(16)
   1062                      .addMemOperand(MMO));
   1063       } else {
   1064         MachineInstrBuilder MIB =
   1065           AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
   1066                          .addFrameIndex(FI)
   1067                          .addMemOperand(MMO));
   1068         MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
   1069         MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
   1070         MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
   1071         if (TargetRegisterInfo::isPhysicalRegister(DestReg))
   1072           MIB.addReg(DestReg, RegState::ImplicitDefine);
   1073       }
   1074     } else
   1075       llvm_unreachable("Unknown reg class!");
   1076     break;
   1077    case 32:
   1078     if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
   1079       if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
   1080         AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg)
   1081                      .addFrameIndex(FI).addImm(16)
   1082                      .addMemOperand(MMO));
   1083       } else {
   1084         MachineInstrBuilder MIB =
   1085         AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
   1086                        .addFrameIndex(FI))
   1087                        .addMemOperand(MMO);
   1088         MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
   1089         MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
   1090         MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
   1091         MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
   1092         if (TargetRegisterInfo::isPhysicalRegister(DestReg))
   1093           MIB.addReg(DestReg, RegState::ImplicitDefine);
   1094       }
   1095     } else
   1096       llvm_unreachable("Unknown reg class!");
   1097     break;
   1098   case 64:
   1099     if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
   1100       MachineInstrBuilder MIB =
   1101       AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
   1102                      .addFrameIndex(FI))
   1103                      .addMemOperand(MMO);
   1104       MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
   1105       MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
   1106       MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
   1107       MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
   1108       MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI);
   1109       MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI);
   1110       MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI);
   1111       MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI);
   1112       if (TargetRegisterInfo::isPhysicalRegister(DestReg))
   1113         MIB.addReg(DestReg, RegState::ImplicitDefine);
   1114     } else
   1115       llvm_unreachable("Unknown reg class!");
   1116     break;
   1117   default:
   1118     llvm_unreachable("Unknown regclass!");
   1119   }
   1120 }
   1121 
   1122 unsigned
   1123 ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
   1124                                       int &FrameIndex) const {
   1125   switch (MI->getOpcode()) {
   1126   default: break;
   1127   case ARM::LDRrs:
   1128   case ARM::t2LDRs:  // FIXME: don't use t2LDRs to access frame.
   1129     if (MI->getOperand(1).isFI() &&
   1130         MI->getOperand(2).isReg() &&
   1131         MI->getOperand(3).isImm() &&
   1132         MI->getOperand(2).getReg() == 0 &&
   1133         MI->getOperand(3).getImm() == 0) {
   1134       FrameIndex = MI->getOperand(1).getIndex();
   1135       return MI->getOperand(0).getReg();
   1136     }
   1137     break;
   1138   case ARM::LDRi12:
   1139   case ARM::t2LDRi12:
   1140   case ARM::tLDRspi:
   1141   case ARM::VLDRD:
   1142   case ARM::VLDRS:
   1143     if (MI->getOperand(1).isFI() &&
   1144         MI->getOperand(2).isImm() &&
   1145         MI->getOperand(2).getImm() == 0) {
   1146       FrameIndex = MI->getOperand(1).getIndex();
   1147       return MI->getOperand(0).getReg();
   1148     }
   1149     break;
   1150   case ARM::VLD1q64:
   1151   case ARM::VLD1d64TPseudo:
   1152   case ARM::VLD1d64QPseudo:
   1153     if (MI->getOperand(1).isFI() &&
   1154         MI->getOperand(0).getSubReg() == 0) {
   1155       FrameIndex = MI->getOperand(1).getIndex();
   1156       return MI->getOperand(0).getReg();
   1157     }
   1158     break;
   1159   case ARM::VLDMQIA:
   1160     if (MI->getOperand(1).isFI() &&
   1161         MI->getOperand(0).getSubReg() == 0) {
   1162       FrameIndex = MI->getOperand(1).getIndex();
   1163       return MI->getOperand(0).getReg();
   1164     }
   1165     break;
   1166   }
   1167 
   1168   return 0;
   1169 }
   1170 
   1171 unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
   1172                                              int &FrameIndex) const {
   1173   const MachineMemOperand *Dummy;
   1174   return MI->mayLoad() && hasLoadFromStackSlot(MI, Dummy, FrameIndex);
   1175 }
   1176 
   1177 bool ARMBaseInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const{
   1178   // This hook gets to expand COPY instructions before they become
   1179   // copyPhysReg() calls.  Look for VMOVS instructions that can legally be
   1180   // widened to VMOVD.  We prefer the VMOVD when possible because it may be
   1181   // changed into a VORR that can go down the NEON pipeline.
   1182   if (!WidenVMOVS || !MI->isCopy() || Subtarget.isCortexA15())
   1183     return false;
   1184 
   1185   // Look for a copy between even S-registers.  That is where we keep floats
   1186   // when using NEON v2f32 instructions for f32 arithmetic.
   1187   unsigned DstRegS = MI->getOperand(0).getReg();
   1188   unsigned SrcRegS = MI->getOperand(1).getReg();
   1189   if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS))
   1190     return false;
   1191 
   1192   const TargetRegisterInfo *TRI = &getRegisterInfo();
   1193   unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0,
   1194                                               &ARM::DPRRegClass);
   1195   unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0,
   1196                                               &ARM::DPRRegClass);
   1197   if (!DstRegD || !SrcRegD)
   1198     return false;
   1199 
   1200   // We want to widen this into a DstRegD = VMOVD SrcRegD copy.  This is only
   1201   // legal if the COPY already defines the full DstRegD, and it isn't a
   1202   // sub-register insertion.
   1203   if (!MI->definesRegister(DstRegD, TRI) || MI->readsRegister(DstRegD, TRI))
   1204     return false;
   1205 
   1206   // A dead copy shouldn't show up here, but reject it just in case.
   1207   if (MI->getOperand(0).isDead())
   1208     return false;
   1209 
   1210   // All clear, widen the COPY.
   1211   DEBUG(dbgs() << "widening:    " << *MI);
   1212   MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI);
   1213 
   1214   // Get rid of the old <imp-def> of DstRegD.  Leave it if it defines a Q-reg
   1215   // or some other super-register.
   1216   int ImpDefIdx = MI->findRegisterDefOperandIdx(DstRegD);
   1217   if (ImpDefIdx != -1)
   1218     MI->RemoveOperand(ImpDefIdx);
   1219 
   1220   // Change the opcode and operands.
   1221   MI->setDesc(get(ARM::VMOVD));
   1222   MI->getOperand(0).setReg(DstRegD);
   1223   MI->getOperand(1).setReg(SrcRegD);
   1224   AddDefaultPred(MIB);
   1225 
   1226   // We are now reading SrcRegD instead of SrcRegS.  This may upset the
   1227   // register scavenger and machine verifier, so we need to indicate that we
   1228   // are reading an undefined value from SrcRegD, but a proper value from
   1229   // SrcRegS.
   1230   MI->getOperand(1).setIsUndef();
   1231   MIB.addReg(SrcRegS, RegState::Implicit);
   1232 
   1233   // SrcRegD may actually contain an unrelated value in the ssub_1
   1234   // sub-register.  Don't kill it.  Only kill the ssub_0 sub-register.
   1235   if (MI->getOperand(1).isKill()) {
   1236     MI->getOperand(1).setIsKill(false);
   1237     MI->addRegisterKilled(SrcRegS, TRI, true);
   1238   }
   1239 
   1240   DEBUG(dbgs() << "replaced by: " << *MI);
   1241   return true;
   1242 }
   1243 
   1244 /// Create a copy of a const pool value. Update CPI to the new index and return
   1245 /// the label UID.
   1246 static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) {
   1247   MachineConstantPool *MCP = MF.getConstantPool();
   1248   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   1249 
   1250   const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI];
   1251   assert(MCPE.isMachineConstantPoolEntry() &&
   1252          "Expecting a machine constantpool entry!");
   1253   ARMConstantPoolValue *ACPV =
   1254     static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
   1255 
   1256   unsigned PCLabelId = AFI->createPICLabelUId();
   1257   ARMConstantPoolValue *NewCPV = nullptr;
   1258 
   1259   // FIXME: The below assumes PIC relocation model and that the function
   1260   // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and
   1261   // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR
   1262   // instructions, so that's probably OK, but is PIC always correct when
   1263   // we get here?
   1264   if (ACPV->isGlobalValue())
   1265     NewCPV = ARMConstantPoolConstant::
   1266       Create(cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId,
   1267              ARMCP::CPValue, 4);
   1268   else if (ACPV->isExtSymbol())
   1269     NewCPV = ARMConstantPoolSymbol::
   1270       Create(MF.getFunction()->getContext(),
   1271              cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4);
   1272   else if (ACPV->isBlockAddress())
   1273     NewCPV = ARMConstantPoolConstant::
   1274       Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId,
   1275              ARMCP::CPBlockAddress, 4);
   1276   else if (ACPV->isLSDA())
   1277     NewCPV = ARMConstantPoolConstant::Create(MF.getFunction(), PCLabelId,
   1278                                              ARMCP::CPLSDA, 4);
   1279   else if (ACPV->isMachineBasicBlock())
   1280     NewCPV = ARMConstantPoolMBB::
   1281       Create(MF.getFunction()->getContext(),
   1282              cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4);
   1283   else
   1284     llvm_unreachable("Unexpected ARM constantpool value type!!");
   1285   CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlignment());
   1286   return PCLabelId;
   1287 }
   1288 
   1289 void ARMBaseInstrInfo::
   1290 reMaterialize(MachineBasicBlock &MBB,
   1291               MachineBasicBlock::iterator I,
   1292               unsigned DestReg, unsigned SubIdx,
   1293               const MachineInstr *Orig,
   1294               const TargetRegisterInfo &TRI) const {
   1295   unsigned Opcode = Orig->getOpcode();
   1296   switch (Opcode) {
   1297   default: {
   1298     MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
   1299     MI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
   1300     MBB.insert(I, MI);
   1301     break;
   1302   }
   1303   case ARM::tLDRpci_pic:
   1304   case ARM::t2LDRpci_pic: {
   1305     MachineFunction &MF = *MBB.getParent();
   1306     unsigned CPI = Orig->getOperand(1).getIndex();
   1307     unsigned PCLabelId = duplicateCPV(MF, CPI);
   1308     MachineInstrBuilder MIB = BuildMI(MBB, I, Orig->getDebugLoc(), get(Opcode),
   1309                                       DestReg)
   1310       .addConstantPoolIndex(CPI).addImm(PCLabelId);
   1311     MIB->setMemRefs(Orig->memoperands_begin(), Orig->memoperands_end());
   1312     break;
   1313   }
   1314   }
   1315 }
   1316 
   1317 MachineInstr *
   1318 ARMBaseInstrInfo::duplicate(MachineInstr *Orig, MachineFunction &MF) const {
   1319   MachineInstr *MI = TargetInstrInfo::duplicate(Orig, MF);
   1320   switch(Orig->getOpcode()) {
   1321   case ARM::tLDRpci_pic:
   1322   case ARM::t2LDRpci_pic: {
   1323     unsigned CPI = Orig->getOperand(1).getIndex();
   1324     unsigned PCLabelId = duplicateCPV(MF, CPI);
   1325     Orig->getOperand(1).setIndex(CPI);
   1326     Orig->getOperand(2).setImm(PCLabelId);
   1327     break;
   1328   }
   1329   }
   1330   return MI;
   1331 }
   1332 
   1333 bool ARMBaseInstrInfo::produceSameValue(const MachineInstr *MI0,
   1334                                         const MachineInstr *MI1,
   1335                                         const MachineRegisterInfo *MRI) const {
   1336   int Opcode = MI0->getOpcode();
   1337   if (Opcode == ARM::t2LDRpci ||
   1338       Opcode == ARM::t2LDRpci_pic ||
   1339       Opcode == ARM::tLDRpci ||
   1340       Opcode == ARM::tLDRpci_pic ||
   1341       Opcode == ARM::LDRLIT_ga_pcrel ||
   1342       Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
   1343       Opcode == ARM::tLDRLIT_ga_pcrel ||
   1344       Opcode == ARM::MOV_ga_pcrel ||
   1345       Opcode == ARM::MOV_ga_pcrel_ldr ||
   1346       Opcode == ARM::t2MOV_ga_pcrel) {
   1347     if (MI1->getOpcode() != Opcode)
   1348       return false;
   1349     if (MI0->getNumOperands() != MI1->getNumOperands())
   1350       return false;
   1351 
   1352     const MachineOperand &MO0 = MI0->getOperand(1);
   1353     const MachineOperand &MO1 = MI1->getOperand(1);
   1354     if (MO0.getOffset() != MO1.getOffset())
   1355       return false;
   1356 
   1357     if (Opcode == ARM::LDRLIT_ga_pcrel ||
   1358         Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
   1359         Opcode == ARM::tLDRLIT_ga_pcrel ||
   1360         Opcode == ARM::MOV_ga_pcrel ||
   1361         Opcode == ARM::MOV_ga_pcrel_ldr ||
   1362         Opcode == ARM::t2MOV_ga_pcrel)
   1363       // Ignore the PC labels.
   1364       return MO0.getGlobal() == MO1.getGlobal();
   1365 
   1366     const MachineFunction *MF = MI0->getParent()->getParent();
   1367     const MachineConstantPool *MCP = MF->getConstantPool();
   1368     int CPI0 = MO0.getIndex();
   1369     int CPI1 = MO1.getIndex();
   1370     const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0];
   1371     const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1];
   1372     bool isARMCP0 = MCPE0.isMachineConstantPoolEntry();
   1373     bool isARMCP1 = MCPE1.isMachineConstantPoolEntry();
   1374     if (isARMCP0 && isARMCP1) {
   1375       ARMConstantPoolValue *ACPV0 =
   1376         static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal);
   1377       ARMConstantPoolValue *ACPV1 =
   1378         static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal);
   1379       return ACPV0->hasSameValue(ACPV1);
   1380     } else if (!isARMCP0 && !isARMCP1) {
   1381       return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal;
   1382     }
   1383     return false;
   1384   } else if (Opcode == ARM::PICLDR) {
   1385     if (MI1->getOpcode() != Opcode)
   1386       return false;
   1387     if (MI0->getNumOperands() != MI1->getNumOperands())
   1388       return false;
   1389 
   1390     unsigned Addr0 = MI0->getOperand(1).getReg();
   1391     unsigned Addr1 = MI1->getOperand(1).getReg();
   1392     if (Addr0 != Addr1) {
   1393       if (!MRI ||
   1394           !TargetRegisterInfo::isVirtualRegister(Addr0) ||
   1395           !TargetRegisterInfo::isVirtualRegister(Addr1))
   1396         return false;
   1397 
   1398       // This assumes SSA form.
   1399       MachineInstr *Def0 = MRI->getVRegDef(Addr0);
   1400       MachineInstr *Def1 = MRI->getVRegDef(Addr1);
   1401       // Check if the loaded value, e.g. a constantpool of a global address, are
   1402       // the same.
   1403       if (!produceSameValue(Def0, Def1, MRI))
   1404         return false;
   1405     }
   1406 
   1407     for (unsigned i = 3, e = MI0->getNumOperands(); i != e; ++i) {
   1408       // %vreg12<def> = PICLDR %vreg11, 0, pred:14, pred:%noreg
   1409       const MachineOperand &MO0 = MI0->getOperand(i);
   1410       const MachineOperand &MO1 = MI1->getOperand(i);
   1411       if (!MO0.isIdenticalTo(MO1))
   1412         return false;
   1413     }
   1414     return true;
   1415   }
   1416 
   1417   return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
   1418 }
   1419 
   1420 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to
   1421 /// determine if two loads are loading from the same base address. It should
   1422 /// only return true if the base pointers are the same and the only differences
   1423 /// between the two addresses is the offset. It also returns the offsets by
   1424 /// reference.
   1425 ///
   1426 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
   1427 /// is permanently disabled.
   1428 bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
   1429                                                int64_t &Offset1,
   1430                                                int64_t &Offset2) const {
   1431   // Don't worry about Thumb: just ARM and Thumb2.
   1432   if (Subtarget.isThumb1Only()) return false;
   1433 
   1434   if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
   1435     return false;
   1436 
   1437   switch (Load1->getMachineOpcode()) {
   1438   default:
   1439     return false;
   1440   case ARM::LDRi12:
   1441   case ARM::LDRBi12:
   1442   case ARM::LDRD:
   1443   case ARM::LDRH:
   1444   case ARM::LDRSB:
   1445   case ARM::LDRSH:
   1446   case ARM::VLDRD:
   1447   case ARM::VLDRS:
   1448   case ARM::t2LDRi8:
   1449   case ARM::t2LDRBi8:
   1450   case ARM::t2LDRDi8:
   1451   case ARM::t2LDRSHi8:
   1452   case ARM::t2LDRi12:
   1453   case ARM::t2LDRBi12:
   1454   case ARM::t2LDRSHi12:
   1455     break;
   1456   }
   1457 
   1458   switch (Load2->getMachineOpcode()) {
   1459   default:
   1460     return false;
   1461   case ARM::LDRi12:
   1462   case ARM::LDRBi12:
   1463   case ARM::LDRD:
   1464   case ARM::LDRH:
   1465   case ARM::LDRSB:
   1466   case ARM::LDRSH:
   1467   case ARM::VLDRD:
   1468   case ARM::VLDRS:
   1469   case ARM::t2LDRi8:
   1470   case ARM::t2LDRBi8:
   1471   case ARM::t2LDRSHi8:
   1472   case ARM::t2LDRi12:
   1473   case ARM::t2LDRBi12:
   1474   case ARM::t2LDRSHi12:
   1475     break;
   1476   }
   1477 
   1478   // Check if base addresses and chain operands match.
   1479   if (Load1->getOperand(0) != Load2->getOperand(0) ||
   1480       Load1->getOperand(4) != Load2->getOperand(4))
   1481     return false;
   1482 
   1483   // Index should be Reg0.
   1484   if (Load1->getOperand(3) != Load2->getOperand(3))
   1485     return false;
   1486 
   1487   // Determine the offsets.
   1488   if (isa<ConstantSDNode>(Load1->getOperand(1)) &&
   1489       isa<ConstantSDNode>(Load2->getOperand(1))) {
   1490     Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue();
   1491     Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue();
   1492     return true;
   1493   }
   1494 
   1495   return false;
   1496 }
   1497 
   1498 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
   1499 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
   1500 /// be scheduled togther. On some targets if two loads are loading from
   1501 /// addresses in the same cache line, it's better if they are scheduled
   1502 /// together. This function takes two integers that represent the load offsets
   1503 /// from the common base address. It returns true if it decides it's desirable
   1504 /// to schedule the two loads together. "NumLoads" is the number of loads that
   1505 /// have already been scheduled after Load1.
   1506 ///
   1507 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
   1508 /// is permanently disabled.
   1509 bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
   1510                                                int64_t Offset1, int64_t Offset2,
   1511                                                unsigned NumLoads) const {
   1512   // Don't worry about Thumb: just ARM and Thumb2.
   1513   if (Subtarget.isThumb1Only()) return false;
   1514 
   1515   assert(Offset2 > Offset1);
   1516 
   1517   if ((Offset2 - Offset1) / 8 > 64)
   1518     return false;
   1519 
   1520   // Check if the machine opcodes are different. If they are different
   1521   // then we consider them to not be of the same base address,
   1522   // EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12.
   1523   // In this case, they are considered to be the same because they are different
   1524   // encoding forms of the same basic instruction.
   1525   if ((Load1->getMachineOpcode() != Load2->getMachineOpcode()) &&
   1526       !((Load1->getMachineOpcode() == ARM::t2LDRBi8 &&
   1527          Load2->getMachineOpcode() == ARM::t2LDRBi12) ||
   1528         (Load1->getMachineOpcode() == ARM::t2LDRBi12 &&
   1529          Load2->getMachineOpcode() == ARM::t2LDRBi8)))
   1530     return false;  // FIXME: overly conservative?
   1531 
   1532   // Four loads in a row should be sufficient.
   1533   if (NumLoads >= 3)
   1534     return false;
   1535 
   1536   return true;
   1537 }
   1538 
   1539 bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
   1540                                             const MachineBasicBlock *MBB,
   1541                                             const MachineFunction &MF) const {
   1542   // Debug info is never a scheduling boundary. It's necessary to be explicit
   1543   // due to the special treatment of IT instructions below, otherwise a
   1544   // dbg_value followed by an IT will result in the IT instruction being
   1545   // considered a scheduling hazard, which is wrong. It should be the actual
   1546   // instruction preceding the dbg_value instruction(s), just like it is
   1547   // when debug info is not present.
   1548   if (MI->isDebugValue())
   1549     return false;
   1550 
   1551   // Terminators and labels can't be scheduled around.
   1552   if (MI->isTerminator() || MI->isPosition())
   1553     return true;
   1554 
   1555   // Treat the start of the IT block as a scheduling boundary, but schedule
   1556   // t2IT along with all instructions following it.
   1557   // FIXME: This is a big hammer. But the alternative is to add all potential
   1558   // true and anti dependencies to IT block instructions as implicit operands
   1559   // to the t2IT instruction. The added compile time and complexity does not
   1560   // seem worth it.
   1561   MachineBasicBlock::const_iterator I = MI;
   1562   // Make sure to skip any dbg_value instructions
   1563   while (++I != MBB->end() && I->isDebugValue())
   1564     ;
   1565   if (I != MBB->end() && I->getOpcode() == ARM::t2IT)
   1566     return true;
   1567 
   1568   // Don't attempt to schedule around any instruction that defines
   1569   // a stack-oriented pointer, as it's unlikely to be profitable. This
   1570   // saves compile time, because it doesn't require every single
   1571   // stack slot reference to depend on the instruction that does the
   1572   // modification.
   1573   // Calls don't actually change the stack pointer, even if they have imp-defs.
   1574   // No ARM calling conventions change the stack pointer. (X86 calling
   1575   // conventions sometimes do).
   1576   if (!MI->isCall() && MI->definesRegister(ARM::SP))
   1577     return true;
   1578 
   1579   return false;
   1580 }
   1581 
   1582 bool ARMBaseInstrInfo::
   1583 isProfitableToIfCvt(MachineBasicBlock &MBB,
   1584                     unsigned NumCycles, unsigned ExtraPredCycles,
   1585                     const BranchProbability &Probability) const {
   1586   if (!NumCycles)
   1587     return false;
   1588 
   1589   // Attempt to estimate the relative costs of predication versus branching.
   1590   unsigned UnpredCost = Probability.getNumerator() * NumCycles;
   1591   UnpredCost /= Probability.getDenominator();
   1592   UnpredCost += 1; // The branch itself
   1593   UnpredCost += Subtarget.getMispredictionPenalty() / 10;
   1594 
   1595   return (NumCycles + ExtraPredCycles) <= UnpredCost;
   1596 }
   1597 
   1598 bool ARMBaseInstrInfo::
   1599 isProfitableToIfCvt(MachineBasicBlock &TMBB,
   1600                     unsigned TCycles, unsigned TExtra,
   1601                     MachineBasicBlock &FMBB,
   1602                     unsigned FCycles, unsigned FExtra,
   1603                     const BranchProbability &Probability) const {
   1604   if (!TCycles || !FCycles)
   1605     return false;
   1606 
   1607   // Attempt to estimate the relative costs of predication versus branching.
   1608   unsigned TUnpredCost = Probability.getNumerator() * TCycles;
   1609   TUnpredCost /= Probability.getDenominator();
   1610 
   1611   uint32_t Comp = Probability.getDenominator() - Probability.getNumerator();
   1612   unsigned FUnpredCost = Comp * FCycles;
   1613   FUnpredCost /= Probability.getDenominator();
   1614 
   1615   unsigned UnpredCost = TUnpredCost + FUnpredCost;
   1616   UnpredCost += 1; // The branch itself
   1617   UnpredCost += Subtarget.getMispredictionPenalty() / 10;
   1618 
   1619   return (TCycles + FCycles + TExtra + FExtra) <= UnpredCost;
   1620 }
   1621 
   1622 bool
   1623 ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB,
   1624                                             MachineBasicBlock &FMBB) const {
   1625   // Reduce false anti-dependencies to let Swift's out-of-order execution
   1626   // engine do its thing.
   1627   return Subtarget.isSwift();
   1628 }
   1629 
   1630 /// getInstrPredicate - If instruction is predicated, returns its predicate
   1631 /// condition, otherwise returns AL. It also returns the condition code
   1632 /// register by reference.
   1633 ARMCC::CondCodes
   1634 llvm::getInstrPredicate(const MachineInstr *MI, unsigned &PredReg) {
   1635   int PIdx = MI->findFirstPredOperandIdx();
   1636   if (PIdx == -1) {
   1637     PredReg = 0;
   1638     return ARMCC::AL;
   1639   }
   1640 
   1641   PredReg = MI->getOperand(PIdx+1).getReg();
   1642   return (ARMCC::CondCodes)MI->getOperand(PIdx).getImm();
   1643 }
   1644 
   1645 
   1646 int llvm::getMatchingCondBranchOpcode(int Opc) {
   1647   if (Opc == ARM::B)
   1648     return ARM::Bcc;
   1649   if (Opc == ARM::tB)
   1650     return ARM::tBcc;
   1651   if (Opc == ARM::t2B)
   1652     return ARM::t2Bcc;
   1653 
   1654   llvm_unreachable("Unknown unconditional branch opcode!");
   1655 }
   1656 
   1657 /// commuteInstruction - Handle commutable instructions.
   1658 MachineInstr *
   1659 ARMBaseInstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
   1660   switch (MI->getOpcode()) {
   1661   case ARM::MOVCCr:
   1662   case ARM::t2MOVCCr: {
   1663     // MOVCC can be commuted by inverting the condition.
   1664     unsigned PredReg = 0;
   1665     ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg);
   1666     // MOVCC AL can't be inverted. Shouldn't happen.
   1667     if (CC == ARMCC::AL || PredReg != ARM::CPSR)
   1668       return nullptr;
   1669     MI = TargetInstrInfo::commuteInstruction(MI, NewMI);
   1670     if (!MI)
   1671       return nullptr;
   1672     // After swapping the MOVCC operands, also invert the condition.
   1673     MI->getOperand(MI->findFirstPredOperandIdx())
   1674       .setImm(ARMCC::getOppositeCondition(CC));
   1675     return MI;
   1676   }
   1677   }
   1678   return TargetInstrInfo::commuteInstruction(MI, NewMI);
   1679 }
   1680 
   1681 /// Identify instructions that can be folded into a MOVCC instruction, and
   1682 /// return the defining instruction.
   1683 static MachineInstr *canFoldIntoMOVCC(unsigned Reg,
   1684                                       const MachineRegisterInfo &MRI,
   1685                                       const TargetInstrInfo *TII) {
   1686   if (!TargetRegisterInfo::isVirtualRegister(Reg))
   1687     return nullptr;
   1688   if (!MRI.hasOneNonDBGUse(Reg))
   1689     return nullptr;
   1690   MachineInstr *MI = MRI.getVRegDef(Reg);
   1691   if (!MI)
   1692     return nullptr;
   1693   // MI is folded into the MOVCC by predicating it.
   1694   if (!MI->isPredicable())
   1695     return nullptr;
   1696   // Check if MI has any non-dead defs or physreg uses. This also detects
   1697   // predicated instructions which will be reading CPSR.
   1698   for (unsigned i = 1, e = MI->getNumOperands(); i != e; ++i) {
   1699     const MachineOperand &MO = MI->getOperand(i);
   1700     // Reject frame index operands, PEI can't handle the predicated pseudos.
   1701     if (MO.isFI() || MO.isCPI() || MO.isJTI())
   1702       return nullptr;
   1703     if (!MO.isReg())
   1704       continue;
   1705     // MI can't have any tied operands, that would conflict with predication.
   1706     if (MO.isTied())
   1707       return nullptr;
   1708     if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
   1709       return nullptr;
   1710     if (MO.isDef() && !MO.isDead())
   1711       return nullptr;
   1712   }
   1713   bool DontMoveAcrossStores = true;
   1714   if (!MI->isSafeToMove(TII, /* AliasAnalysis = */ nullptr,
   1715                         DontMoveAcrossStores))
   1716     return nullptr;
   1717   return MI;
   1718 }
   1719 
   1720 bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr *MI,
   1721                                      SmallVectorImpl<MachineOperand> &Cond,
   1722                                      unsigned &TrueOp, unsigned &FalseOp,
   1723                                      bool &Optimizable) const {
   1724   assert((MI->getOpcode() == ARM::MOVCCr || MI->getOpcode() == ARM::t2MOVCCr) &&
   1725          "Unknown select instruction");
   1726   // MOVCC operands:
   1727   // 0: Def.
   1728   // 1: True use.
   1729   // 2: False use.
   1730   // 3: Condition code.
   1731   // 4: CPSR use.
   1732   TrueOp = 1;
   1733   FalseOp = 2;
   1734   Cond.push_back(MI->getOperand(3));
   1735   Cond.push_back(MI->getOperand(4));
   1736   // We can always fold a def.
   1737   Optimizable = true;
   1738   return false;
   1739 }
   1740 
   1741 MachineInstr *ARMBaseInstrInfo::optimizeSelect(MachineInstr *MI,
   1742                                                bool PreferFalse) const {
   1743   assert((MI->getOpcode() == ARM::MOVCCr || MI->getOpcode() == ARM::t2MOVCCr) &&
   1744          "Unknown select instruction");
   1745   MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
   1746   MachineInstr *DefMI = canFoldIntoMOVCC(MI->getOperand(2).getReg(), MRI, this);
   1747   bool Invert = !DefMI;
   1748   if (!DefMI)
   1749     DefMI = canFoldIntoMOVCC(MI->getOperand(1).getReg(), MRI, this);
   1750   if (!DefMI)
   1751     return nullptr;
   1752 
   1753   // Find new register class to use.
   1754   MachineOperand FalseReg = MI->getOperand(Invert ? 2 : 1);
   1755   unsigned       DestReg  = MI->getOperand(0).getReg();
   1756   const TargetRegisterClass *PreviousClass = MRI.getRegClass(FalseReg.getReg());
   1757   if (!MRI.constrainRegClass(DestReg, PreviousClass))
   1758     return nullptr;
   1759 
   1760   // Create a new predicated version of DefMI.
   1761   // Rfalse is the first use.
   1762   MachineInstrBuilder NewMI = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
   1763                                       DefMI->getDesc(), DestReg);
   1764 
   1765   // Copy all the DefMI operands, excluding its (null) predicate.
   1766   const MCInstrDesc &DefDesc = DefMI->getDesc();
   1767   for (unsigned i = 1, e = DefDesc.getNumOperands();
   1768        i != e && !DefDesc.OpInfo[i].isPredicate(); ++i)
   1769     NewMI.addOperand(DefMI->getOperand(i));
   1770 
   1771   unsigned CondCode = MI->getOperand(3).getImm();
   1772   if (Invert)
   1773     NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode)));
   1774   else
   1775     NewMI.addImm(CondCode);
   1776   NewMI.addOperand(MI->getOperand(4));
   1777 
   1778   // DefMI is not the -S version that sets CPSR, so add an optional %noreg.
   1779   if (NewMI->hasOptionalDef())
   1780     AddDefaultCC(NewMI);
   1781 
   1782   // The output register value when the predicate is false is an implicit
   1783   // register operand tied to the first def.
   1784   // The tie makes the register allocator ensure the FalseReg is allocated the
   1785   // same register as operand 0.
   1786   FalseReg.setImplicit();
   1787   NewMI.addOperand(FalseReg);
   1788   NewMI->tieOperands(0, NewMI->getNumOperands() - 1);
   1789 
   1790   // The caller will erase MI, but not DefMI.
   1791   DefMI->eraseFromParent();
   1792   return NewMI;
   1793 }
   1794 
   1795 /// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the
   1796 /// instruction is encoded with an 'S' bit is determined by the optional CPSR
   1797 /// def operand.
   1798 ///
   1799 /// This will go away once we can teach tblgen how to set the optional CPSR def
   1800 /// operand itself.
   1801 struct AddSubFlagsOpcodePair {
   1802   uint16_t PseudoOpc;
   1803   uint16_t MachineOpc;
   1804 };
   1805 
   1806 static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = {
   1807   {ARM::ADDSri, ARM::ADDri},
   1808   {ARM::ADDSrr, ARM::ADDrr},
   1809   {ARM::ADDSrsi, ARM::ADDrsi},
   1810   {ARM::ADDSrsr, ARM::ADDrsr},
   1811 
   1812   {ARM::SUBSri, ARM::SUBri},
   1813   {ARM::SUBSrr, ARM::SUBrr},
   1814   {ARM::SUBSrsi, ARM::SUBrsi},
   1815   {ARM::SUBSrsr, ARM::SUBrsr},
   1816 
   1817   {ARM::RSBSri, ARM::RSBri},
   1818   {ARM::RSBSrsi, ARM::RSBrsi},
   1819   {ARM::RSBSrsr, ARM::RSBrsr},
   1820 
   1821   {ARM::t2ADDSri, ARM::t2ADDri},
   1822   {ARM::t2ADDSrr, ARM::t2ADDrr},
   1823   {ARM::t2ADDSrs, ARM::t2ADDrs},
   1824 
   1825   {ARM::t2SUBSri, ARM::t2SUBri},
   1826   {ARM::t2SUBSrr, ARM::t2SUBrr},
   1827   {ARM::t2SUBSrs, ARM::t2SUBrs},
   1828 
   1829   {ARM::t2RSBSri, ARM::t2RSBri},
   1830   {ARM::t2RSBSrs, ARM::t2RSBrs},
   1831 };
   1832 
   1833 unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) {
   1834   for (unsigned i = 0, e = array_lengthof(AddSubFlagsOpcodeMap); i != e; ++i)
   1835     if (OldOpc == AddSubFlagsOpcodeMap[i].PseudoOpc)
   1836       return AddSubFlagsOpcodeMap[i].MachineOpc;
   1837   return 0;
   1838 }
   1839 
   1840 void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB,
   1841                                MachineBasicBlock::iterator &MBBI, DebugLoc dl,
   1842                                unsigned DestReg, unsigned BaseReg, int NumBytes,
   1843                                ARMCC::CondCodes Pred, unsigned PredReg,
   1844                                const ARMBaseInstrInfo &TII, unsigned MIFlags) {
   1845   if (NumBytes == 0 && DestReg != BaseReg) {
   1846     BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), DestReg)
   1847       .addReg(BaseReg, RegState::Kill)
   1848       .addImm((unsigned)Pred).addReg(PredReg).addReg(0)
   1849       .setMIFlags(MIFlags);
   1850     return;
   1851   }
   1852 
   1853   bool isSub = NumBytes < 0;
   1854   if (isSub) NumBytes = -NumBytes;
   1855 
   1856   while (NumBytes) {
   1857     unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes);
   1858     unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt);
   1859     assert(ThisVal && "Didn't extract field correctly");
   1860 
   1861     // We will handle these bits from offset, clear them.
   1862     NumBytes &= ~ThisVal;
   1863 
   1864     assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?");
   1865 
   1866     // Build the new ADD / SUB.
   1867     unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri;
   1868     BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
   1869       .addReg(BaseReg, RegState::Kill).addImm(ThisVal)
   1870       .addImm((unsigned)Pred).addReg(PredReg).addReg(0)
   1871       .setMIFlags(MIFlags);
   1872     BaseReg = DestReg;
   1873   }
   1874 }
   1875 
   1876 static bool isAnySubRegLive(unsigned Reg, const TargetRegisterInfo *TRI,
   1877                       MachineInstr *MI) {
   1878   for (MCSubRegIterator Subreg(Reg, TRI, /* IncludeSelf */ true);
   1879        Subreg.isValid(); ++Subreg)
   1880     if (MI->getParent()->computeRegisterLiveness(TRI, *Subreg, MI) !=
   1881         MachineBasicBlock::LQR_Dead)
   1882       return true;
   1883   return false;
   1884 }
   1885 bool llvm::tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget,
   1886                                       MachineFunction &MF, MachineInstr *MI,
   1887                                       unsigned NumBytes) {
   1888   // This optimisation potentially adds lots of load and store
   1889   // micro-operations, it's only really a great benefit to code-size.
   1890   if (!MF.getFunction()->getAttributes().hasAttribute(
   1891           AttributeSet::FunctionIndex, Attribute::MinSize))
   1892     return false;
   1893 
   1894   // If only one register is pushed/popped, LLVM can use an LDR/STR
   1895   // instead. We can't modify those so make sure we're dealing with an
   1896   // instruction we understand.
   1897   bool IsPop = isPopOpcode(MI->getOpcode());
   1898   bool IsPush = isPushOpcode(MI->getOpcode());
   1899   if (!IsPush && !IsPop)
   1900     return false;
   1901 
   1902   bool IsVFPPushPop = MI->getOpcode() == ARM::VSTMDDB_UPD ||
   1903                       MI->getOpcode() == ARM::VLDMDIA_UPD;
   1904   bool IsT1PushPop = MI->getOpcode() == ARM::tPUSH ||
   1905                      MI->getOpcode() == ARM::tPOP ||
   1906                      MI->getOpcode() == ARM::tPOP_RET;
   1907 
   1908   assert((IsT1PushPop || (MI->getOperand(0).getReg() == ARM::SP &&
   1909                           MI->getOperand(1).getReg() == ARM::SP)) &&
   1910          "trying to fold sp update into non-sp-updating push/pop");
   1911 
   1912   // The VFP push & pop act on D-registers, so we can only fold an adjustment
   1913   // by a multiple of 8 bytes in correctly. Similarly rN is 4-bytes. Don't try
   1914   // if this is violated.
   1915   if (NumBytes % (IsVFPPushPop ? 8 : 4) != 0)
   1916     return false;
   1917 
   1918   // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
   1919   // pred) so the list starts at 4. Thumb1 starts after the predicate.
   1920   int RegListIdx = IsT1PushPop ? 2 : 4;
   1921 
   1922   // Calculate the space we'll need in terms of registers.
   1923   unsigned FirstReg = MI->getOperand(RegListIdx).getReg();
   1924   unsigned RD0Reg, RegsNeeded;
   1925   if (IsVFPPushPop) {
   1926     RD0Reg = ARM::D0;
   1927     RegsNeeded = NumBytes / 8;
   1928   } else {
   1929     RD0Reg = ARM::R0;
   1930     RegsNeeded = NumBytes / 4;
   1931   }
   1932 
   1933   // We're going to have to strip all list operands off before
   1934   // re-adding them since the order matters, so save the existing ones
   1935   // for later.
   1936   SmallVector<MachineOperand, 4> RegList;
   1937   for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i)
   1938     RegList.push_back(MI->getOperand(i));
   1939 
   1940   const TargetRegisterInfo *TRI = MF.getRegInfo().getTargetRegisterInfo();
   1941   const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(&MF);
   1942 
   1943   // Now try to find enough space in the reglist to allocate NumBytes.
   1944   for (unsigned CurReg = FirstReg - 1; CurReg >= RD0Reg && RegsNeeded;
   1945        --CurReg) {
   1946     if (!IsPop) {
   1947       // Pushing any register is completely harmless, mark the
   1948       // register involved as undef since we don't care about it in
   1949       // the slightest.
   1950       RegList.push_back(MachineOperand::CreateReg(CurReg, false, false,
   1951                                                   false, false, true));
   1952       --RegsNeeded;
   1953       continue;
   1954     }
   1955 
   1956     // However, we can only pop an extra register if it's not live. For
   1957     // registers live within the function we might clobber a return value
   1958     // register; the other way a register can be live here is if it's
   1959     // callee-saved.
   1960     // TODO: Currently, computeRegisterLiveness() does not report "live" if a
   1961     // sub reg is live. When computeRegisterLiveness() works for sub reg, it
   1962     // can replace isAnySubRegLive().
   1963     if (isCalleeSavedRegister(CurReg, CSRegs) ||
   1964         isAnySubRegLive(CurReg, TRI, MI)) {
   1965       // VFP pops don't allow holes in the register list, so any skip is fatal
   1966       // for our transformation. GPR pops do, so we should just keep looking.
   1967       if (IsVFPPushPop)
   1968         return false;
   1969       else
   1970         continue;
   1971     }
   1972 
   1973     // Mark the unimportant registers as <def,dead> in the POP.
   1974     RegList.push_back(MachineOperand::CreateReg(CurReg, true, false, false,
   1975                                                 true));
   1976     --RegsNeeded;
   1977   }
   1978 
   1979   if (RegsNeeded > 0)
   1980     return false;
   1981 
   1982   // Finally we know we can profitably perform the optimisation so go
   1983   // ahead: strip all existing registers off and add them back again
   1984   // in the right order.
   1985   for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i)
   1986     MI->RemoveOperand(i);
   1987 
   1988   // Add the complete list back in.
   1989   MachineInstrBuilder MIB(MF, &*MI);
   1990   for (int i = RegList.size() - 1; i >= 0; --i)
   1991     MIB.addOperand(RegList[i]);
   1992 
   1993   return true;
   1994 }
   1995 
   1996 bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
   1997                                 unsigned FrameReg, int &Offset,
   1998                                 const ARMBaseInstrInfo &TII) {
   1999   unsigned Opcode = MI.getOpcode();
   2000   const MCInstrDesc &Desc = MI.getDesc();
   2001   unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
   2002   bool isSub = false;
   2003 
   2004   // Memory operands in inline assembly always use AddrMode2.
   2005   if (Opcode == ARM::INLINEASM)
   2006     AddrMode = ARMII::AddrMode2;
   2007 
   2008   if (Opcode == ARM::ADDri) {
   2009     Offset += MI.getOperand(FrameRegIdx+1).getImm();
   2010     if (Offset == 0) {
   2011       // Turn it into a move.
   2012       MI.setDesc(TII.get(ARM::MOVr));
   2013       MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
   2014       MI.RemoveOperand(FrameRegIdx+1);
   2015       Offset = 0;
   2016       return true;
   2017     } else if (Offset < 0) {
   2018       Offset = -Offset;
   2019       isSub = true;
   2020       MI.setDesc(TII.get(ARM::SUBri));
   2021     }
   2022 
   2023     // Common case: small offset, fits into instruction.
   2024     if (ARM_AM::getSOImmVal(Offset) != -1) {
   2025       // Replace the FrameIndex with sp / fp
   2026       MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
   2027       MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset);
   2028       Offset = 0;
   2029       return true;
   2030     }
   2031 
   2032     // Otherwise, pull as much of the immedidate into this ADDri/SUBri
   2033     // as possible.
   2034     unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset);
   2035     unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt);
   2036 
   2037     // We will handle these bits from offset, clear them.
   2038     Offset &= ~ThisImmVal;
   2039 
   2040     // Get the properly encoded SOImmVal field.
   2041     assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 &&
   2042            "Bit extraction didn't work?");
   2043     MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal);
   2044  } else {
   2045     unsigned ImmIdx = 0;
   2046     int InstrOffs = 0;
   2047     unsigned NumBits = 0;
   2048     unsigned Scale = 1;
   2049     switch (AddrMode) {
   2050     case ARMII::AddrMode_i12: {
   2051       ImmIdx = FrameRegIdx + 1;
   2052       InstrOffs = MI.getOperand(ImmIdx).getImm();
   2053       NumBits = 12;
   2054       break;
   2055     }
   2056     case ARMII::AddrMode2: {
   2057       ImmIdx = FrameRegIdx+2;
   2058       InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm());
   2059       if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
   2060         InstrOffs *= -1;
   2061       NumBits = 12;
   2062       break;
   2063     }
   2064     case ARMII::AddrMode3: {
   2065       ImmIdx = FrameRegIdx+2;
   2066       InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm());
   2067       if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
   2068         InstrOffs *= -1;
   2069       NumBits = 8;
   2070       break;
   2071     }
   2072     case ARMII::AddrMode4:
   2073     case ARMII::AddrMode6:
   2074       // Can't fold any offset even if it's zero.
   2075       return false;
   2076     case ARMII::AddrMode5: {
   2077       ImmIdx = FrameRegIdx+1;
   2078       InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
   2079       if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
   2080         InstrOffs *= -1;
   2081       NumBits = 8;
   2082       Scale = 4;
   2083       break;
   2084     }
   2085     default:
   2086       llvm_unreachable("Unsupported addressing mode!");
   2087     }
   2088 
   2089     Offset += InstrOffs * Scale;
   2090     assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
   2091     if (Offset < 0) {
   2092       Offset = -Offset;
   2093       isSub = true;
   2094     }
   2095 
   2096     // Attempt to fold address comp. if opcode has offset bits
   2097     if (NumBits > 0) {
   2098       // Common case: small offset, fits into instruction.
   2099       MachineOperand &ImmOp = MI.getOperand(ImmIdx);
   2100       int ImmedOffset = Offset / Scale;
   2101       unsigned Mask = (1 << NumBits) - 1;
   2102       if ((unsigned)Offset <= Mask * Scale) {
   2103         // Replace the FrameIndex with sp
   2104         MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
   2105         // FIXME: When addrmode2 goes away, this will simplify (like the
   2106         // T2 version), as the LDR.i12 versions don't need the encoding
   2107         // tricks for the offset value.
   2108         if (isSub) {
   2109           if (AddrMode == ARMII::AddrMode_i12)
   2110             ImmedOffset = -ImmedOffset;
   2111           else
   2112             ImmedOffset |= 1 << NumBits;
   2113         }
   2114         ImmOp.ChangeToImmediate(ImmedOffset);
   2115         Offset = 0;
   2116         return true;
   2117       }
   2118 
   2119       // Otherwise, it didn't fit. Pull in what we can to simplify the immed.
   2120       ImmedOffset = ImmedOffset & Mask;
   2121       if (isSub) {
   2122         if (AddrMode == ARMII::AddrMode_i12)
   2123           ImmedOffset = -ImmedOffset;
   2124         else
   2125           ImmedOffset |= 1 << NumBits;
   2126       }
   2127       ImmOp.ChangeToImmediate(ImmedOffset);
   2128       Offset &= ~(Mask*Scale);
   2129     }
   2130   }
   2131 
   2132   Offset = (isSub) ? -Offset : Offset;
   2133   return Offset == 0;
   2134 }
   2135 
   2136 /// analyzeCompare - For a comparison instruction, return the source registers
   2137 /// in SrcReg and SrcReg2 if having two register operands, and the value it
   2138 /// compares against in CmpValue. Return true if the comparison instruction
   2139 /// can be analyzed.
   2140 bool ARMBaseInstrInfo::
   2141 analyzeCompare(const MachineInstr *MI, unsigned &SrcReg, unsigned &SrcReg2,
   2142                int &CmpMask, int &CmpValue) const {
   2143   switch (MI->getOpcode()) {
   2144   default: break;
   2145   case ARM::CMPri:
   2146   case ARM::t2CMPri:
   2147     SrcReg = MI->getOperand(0).getReg();
   2148     SrcReg2 = 0;
   2149     CmpMask = ~0;
   2150     CmpValue = MI->getOperand(1).getImm();
   2151     return true;
   2152   case ARM::CMPrr:
   2153   case ARM::t2CMPrr:
   2154     SrcReg = MI->getOperand(0).getReg();
   2155     SrcReg2 = MI->getOperand(1).getReg();
   2156     CmpMask = ~0;
   2157     CmpValue = 0;
   2158     return true;
   2159   case ARM::TSTri:
   2160   case ARM::t2TSTri:
   2161     SrcReg = MI->getOperand(0).getReg();
   2162     SrcReg2 = 0;
   2163     CmpMask = MI->getOperand(1).getImm();
   2164     CmpValue = 0;
   2165     return true;
   2166   }
   2167 
   2168   return false;
   2169 }
   2170 
   2171 /// isSuitableForMask - Identify a suitable 'and' instruction that
   2172 /// operates on the given source register and applies the same mask
   2173 /// as a 'tst' instruction. Provide a limited look-through for copies.
   2174 /// When successful, MI will hold the found instruction.
   2175 static bool isSuitableForMask(MachineInstr *&MI, unsigned SrcReg,
   2176                               int CmpMask, bool CommonUse) {
   2177   switch (MI->getOpcode()) {
   2178     case ARM::ANDri:
   2179     case ARM::t2ANDri:
   2180       if (CmpMask != MI->getOperand(2).getImm())
   2181         return false;
   2182       if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg())
   2183         return true;
   2184       break;
   2185     case ARM::COPY: {
   2186       // Walk down one instruction which is potentially an 'and'.
   2187       const MachineInstr &Copy = *MI;
   2188       MachineBasicBlock::iterator AND(
   2189         std::next(MachineBasicBlock::iterator(MI)));
   2190       if (AND == MI->getParent()->end()) return false;
   2191       MI = AND;
   2192       return isSuitableForMask(MI, Copy.getOperand(0).getReg(),
   2193                                CmpMask, true);
   2194     }
   2195   }
   2196 
   2197   return false;
   2198 }
   2199 
   2200 /// getSwappedCondition - assume the flags are set by MI(a,b), return
   2201 /// the condition code if we modify the instructions such that flags are
   2202 /// set by MI(b,a).
   2203 inline static ARMCC::CondCodes getSwappedCondition(ARMCC::CondCodes CC) {
   2204   switch (CC) {
   2205   default: return ARMCC::AL;
   2206   case ARMCC::EQ: return ARMCC::EQ;
   2207   case ARMCC::NE: return ARMCC::NE;
   2208   case ARMCC::HS: return ARMCC::LS;
   2209   case ARMCC::LO: return ARMCC::HI;
   2210   case ARMCC::HI: return ARMCC::LO;
   2211   case ARMCC::LS: return ARMCC::HS;
   2212   case ARMCC::GE: return ARMCC::LE;
   2213   case ARMCC::LT: return ARMCC::GT;
   2214   case ARMCC::GT: return ARMCC::LT;
   2215   case ARMCC::LE: return ARMCC::GE;
   2216   }
   2217 }
   2218 
   2219 /// isRedundantFlagInstr - check whether the first instruction, whose only
   2220 /// purpose is to update flags, can be made redundant.
   2221 /// CMPrr can be made redundant by SUBrr if the operands are the same.
   2222 /// CMPri can be made redundant by SUBri if the operands are the same.
   2223 /// This function can be extended later on.
   2224 inline static bool isRedundantFlagInstr(MachineInstr *CmpI, unsigned SrcReg,
   2225                                         unsigned SrcReg2, int ImmValue,
   2226                                         MachineInstr *OI) {
   2227   if ((CmpI->getOpcode() == ARM::CMPrr ||
   2228        CmpI->getOpcode() == ARM::t2CMPrr) &&
   2229       (OI->getOpcode() == ARM::SUBrr ||
   2230        OI->getOpcode() == ARM::t2SUBrr) &&
   2231       ((OI->getOperand(1).getReg() == SrcReg &&
   2232         OI->getOperand(2).getReg() == SrcReg2) ||
   2233        (OI->getOperand(1).getReg() == SrcReg2 &&
   2234         OI->getOperand(2).getReg() == SrcReg)))
   2235     return true;
   2236 
   2237   if ((CmpI->getOpcode() == ARM::CMPri ||
   2238        CmpI->getOpcode() == ARM::t2CMPri) &&
   2239       (OI->getOpcode() == ARM::SUBri ||
   2240        OI->getOpcode() == ARM::t2SUBri) &&
   2241       OI->getOperand(1).getReg() == SrcReg &&
   2242       OI->getOperand(2).getImm() == ImmValue)
   2243     return true;
   2244   return false;
   2245 }
   2246 
   2247 /// optimizeCompareInstr - Convert the instruction supplying the argument to the
   2248 /// comparison into one that sets the zero bit in the flags register;
   2249 /// Remove a redundant Compare instruction if an earlier instruction can set the
   2250 /// flags in the same way as Compare.
   2251 /// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two
   2252 /// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the
   2253 /// condition code of instructions which use the flags.
   2254 bool ARMBaseInstrInfo::
   2255 optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2,
   2256                      int CmpMask, int CmpValue,
   2257                      const MachineRegisterInfo *MRI) const {
   2258   // Get the unique definition of SrcReg.
   2259   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
   2260   if (!MI) return false;
   2261 
   2262   // Masked compares sometimes use the same register as the corresponding 'and'.
   2263   if (CmpMask != ~0) {
   2264     if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(MI)) {
   2265       MI = nullptr;
   2266       for (MachineRegisterInfo::use_instr_iterator
   2267            UI = MRI->use_instr_begin(SrcReg), UE = MRI->use_instr_end();
   2268            UI != UE; ++UI) {
   2269         if (UI->getParent() != CmpInstr->getParent()) continue;
   2270         MachineInstr *PotentialAND = &*UI;
   2271         if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) ||
   2272             isPredicated(PotentialAND))
   2273           continue;
   2274         MI = PotentialAND;
   2275         break;
   2276       }
   2277       if (!MI) return false;
   2278     }
   2279   }
   2280 
   2281   // Get ready to iterate backward from CmpInstr.
   2282   MachineBasicBlock::iterator I = CmpInstr, E = MI,
   2283                               B = CmpInstr->getParent()->begin();
   2284 
   2285   // Early exit if CmpInstr is at the beginning of the BB.
   2286   if (I == B) return false;
   2287 
   2288   // There are two possible candidates which can be changed to set CPSR:
   2289   // One is MI, the other is a SUB instruction.
   2290   // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
   2291   // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue).
   2292   MachineInstr *Sub = nullptr;
   2293   if (SrcReg2 != 0)
   2294     // MI is not a candidate for CMPrr.
   2295     MI = nullptr;
   2296   else if (MI->getParent() != CmpInstr->getParent() || CmpValue != 0) {
   2297     // Conservatively refuse to convert an instruction which isn't in the same
   2298     // BB as the comparison.
   2299     // For CMPri, we need to check Sub, thus we can't return here.
   2300     if (CmpInstr->getOpcode() == ARM::CMPri ||
   2301        CmpInstr->getOpcode() == ARM::t2CMPri)
   2302       MI = nullptr;
   2303     else
   2304       return false;
   2305   }
   2306 
   2307   // Check that CPSR isn't set between the comparison instruction and the one we
   2308   // want to change. At the same time, search for Sub.
   2309   const TargetRegisterInfo *TRI = &getRegisterInfo();
   2310   --I;
   2311   for (; I != E; --I) {
   2312     const MachineInstr &Instr = *I;
   2313 
   2314     if (Instr.modifiesRegister(ARM::CPSR, TRI) ||
   2315         Instr.readsRegister(ARM::CPSR, TRI))
   2316       // This instruction modifies or uses CPSR after the one we want to
   2317       // change. We can't do this transformation.
   2318       return false;
   2319 
   2320     // Check whether CmpInstr can be made redundant by the current instruction.
   2321     if (isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpValue, &*I)) {
   2322       Sub = &*I;
   2323       break;
   2324     }
   2325 
   2326     if (I == B)
   2327       // The 'and' is below the comparison instruction.
   2328       return false;
   2329   }
   2330 
   2331   // Return false if no candidates exist.
   2332   if (!MI && !Sub)
   2333     return false;
   2334 
   2335   // The single candidate is called MI.
   2336   if (!MI) MI = Sub;
   2337 
   2338   // We can't use a predicated instruction - it doesn't always write the flags.
   2339   if (isPredicated(MI))
   2340     return false;
   2341 
   2342   switch (MI->getOpcode()) {
   2343   default: break;
   2344   case ARM::RSBrr:
   2345   case ARM::RSBri:
   2346   case ARM::RSCrr:
   2347   case ARM::RSCri:
   2348   case ARM::ADDrr:
   2349   case ARM::ADDri:
   2350   case ARM::ADCrr:
   2351   case ARM::ADCri:
   2352   case ARM::SUBrr:
   2353   case ARM::SUBri:
   2354   case ARM::SBCrr:
   2355   case ARM::SBCri:
   2356   case ARM::t2RSBri:
   2357   case ARM::t2ADDrr:
   2358   case ARM::t2ADDri:
   2359   case ARM::t2ADCrr:
   2360   case ARM::t2ADCri:
   2361   case ARM::t2SUBrr:
   2362   case ARM::t2SUBri:
   2363   case ARM::t2SBCrr:
   2364   case ARM::t2SBCri:
   2365   case ARM::ANDrr:
   2366   case ARM::ANDri:
   2367   case ARM::t2ANDrr:
   2368   case ARM::t2ANDri:
   2369   case ARM::ORRrr:
   2370   case ARM::ORRri:
   2371   case ARM::t2ORRrr:
   2372   case ARM::t2ORRri:
   2373   case ARM::EORrr:
   2374   case ARM::EORri:
   2375   case ARM::t2EORrr:
   2376   case ARM::t2EORri: {
   2377     // Scan forward for the use of CPSR
   2378     // When checking against MI: if it's a conditional code requires
   2379     // checking of V bit, then this is not safe to do.
   2380     // It is safe to remove CmpInstr if CPSR is redefined or killed.
   2381     // If we are done with the basic block, we need to check whether CPSR is
   2382     // live-out.
   2383     SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4>
   2384         OperandsToUpdate;
   2385     bool isSafe = false;
   2386     I = CmpInstr;
   2387     E = CmpInstr->getParent()->end();
   2388     while (!isSafe && ++I != E) {
   2389       const MachineInstr &Instr = *I;
   2390       for (unsigned IO = 0, EO = Instr.getNumOperands();
   2391            !isSafe && IO != EO; ++IO) {
   2392         const MachineOperand &MO = Instr.getOperand(IO);
   2393         if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) {
   2394           isSafe = true;
   2395           break;
   2396         }
   2397         if (!MO.isReg() || MO.getReg() != ARM::CPSR)
   2398           continue;
   2399         if (MO.isDef()) {
   2400           isSafe = true;
   2401           break;
   2402         }
   2403         // Condition code is after the operand before CPSR except for VSELs.
   2404         ARMCC::CondCodes CC;
   2405         bool IsInstrVSel = true;
   2406         switch (Instr.getOpcode()) {
   2407         default:
   2408           IsInstrVSel = false;
   2409           CC = (ARMCC::CondCodes)Instr.getOperand(IO - 1).getImm();
   2410           break;
   2411         case ARM::VSELEQD:
   2412         case ARM::VSELEQS:
   2413           CC = ARMCC::EQ;
   2414           break;
   2415         case ARM::VSELGTD:
   2416         case ARM::VSELGTS:
   2417           CC = ARMCC::GT;
   2418           break;
   2419         case ARM::VSELGED:
   2420         case ARM::VSELGES:
   2421           CC = ARMCC::GE;
   2422           break;
   2423         case ARM::VSELVSS:
   2424         case ARM::VSELVSD:
   2425           CC = ARMCC::VS;
   2426           break;
   2427         }
   2428 
   2429         if (Sub) {
   2430           ARMCC::CondCodes NewCC = getSwappedCondition(CC);
   2431           if (NewCC == ARMCC::AL)
   2432             return false;
   2433           // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based
   2434           // on CMP needs to be updated to be based on SUB.
   2435           // Push the condition code operands to OperandsToUpdate.
   2436           // If it is safe to remove CmpInstr, the condition code of these
   2437           // operands will be modified.
   2438           if (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
   2439               Sub->getOperand(2).getReg() == SrcReg) {
   2440             // VSel doesn't support condition code update.
   2441             if (IsInstrVSel)
   2442               return false;
   2443             OperandsToUpdate.push_back(
   2444                 std::make_pair(&((*I).getOperand(IO - 1)), NewCC));
   2445           }
   2446         } else
   2447           switch (CC) {
   2448           default:
   2449             // CPSR can be used multiple times, we should continue.
   2450             break;
   2451           case ARMCC::VS:
   2452           case ARMCC::VC:
   2453           case ARMCC::GE:
   2454           case ARMCC::LT:
   2455           case ARMCC::GT:
   2456           case ARMCC::LE:
   2457             return false;
   2458           }
   2459       }
   2460     }
   2461 
   2462     // If CPSR is not killed nor re-defined, we should check whether it is
   2463     // live-out. If it is live-out, do not optimize.
   2464     if (!isSafe) {
   2465       MachineBasicBlock *MBB = CmpInstr->getParent();
   2466       for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
   2467                SE = MBB->succ_end(); SI != SE; ++SI)
   2468         if ((*SI)->isLiveIn(ARM::CPSR))
   2469           return false;
   2470     }
   2471 
   2472     // Toggle the optional operand to CPSR.
   2473     MI->getOperand(5).setReg(ARM::CPSR);
   2474     MI->getOperand(5).setIsDef(true);
   2475     assert(!isPredicated(MI) && "Can't use flags from predicated instruction");
   2476     CmpInstr->eraseFromParent();
   2477 
   2478     // Modify the condition code of operands in OperandsToUpdate.
   2479     // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
   2480     // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
   2481     for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++)
   2482       OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second);
   2483     return true;
   2484   }
   2485   }
   2486 
   2487   return false;
   2488 }
   2489 
   2490 bool ARMBaseInstrInfo::FoldImmediate(MachineInstr *UseMI,
   2491                                      MachineInstr *DefMI, unsigned Reg,
   2492                                      MachineRegisterInfo *MRI) const {
   2493   // Fold large immediates into add, sub, or, xor.
   2494   unsigned DefOpc = DefMI->getOpcode();
   2495   if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm)
   2496     return false;
   2497   if (!DefMI->getOperand(1).isImm())
   2498     // Could be t2MOVi32imm <ga:xx>
   2499     return false;
   2500 
   2501   if (!MRI->hasOneNonDBGUse(Reg))
   2502     return false;
   2503 
   2504   const MCInstrDesc &DefMCID = DefMI->getDesc();
   2505   if (DefMCID.hasOptionalDef()) {
   2506     unsigned NumOps = DefMCID.getNumOperands();
   2507     const MachineOperand &MO = DefMI->getOperand(NumOps-1);
   2508     if (MO.getReg() == ARM::CPSR && !MO.isDead())
   2509       // If DefMI defines CPSR and it is not dead, it's obviously not safe
   2510       // to delete DefMI.
   2511       return false;
   2512   }
   2513 
   2514   const MCInstrDesc &UseMCID = UseMI->getDesc();
   2515   if (UseMCID.hasOptionalDef()) {
   2516     unsigned NumOps = UseMCID.getNumOperands();
   2517     if (UseMI->getOperand(NumOps-1).getReg() == ARM::CPSR)
   2518       // If the instruction sets the flag, do not attempt this optimization
   2519       // since it may change the semantics of the code.
   2520       return false;
   2521   }
   2522 
   2523   unsigned UseOpc = UseMI->getOpcode();
   2524   unsigned NewUseOpc = 0;
   2525   uint32_t ImmVal = (uint32_t)DefMI->getOperand(1).getImm();
   2526   uint32_t SOImmValV1 = 0, SOImmValV2 = 0;
   2527   bool Commute = false;
   2528   switch (UseOpc) {
   2529   default: return false;
   2530   case ARM::SUBrr:
   2531   case ARM::ADDrr:
   2532   case ARM::ORRrr:
   2533   case ARM::EORrr:
   2534   case ARM::t2SUBrr:
   2535   case ARM::t2ADDrr:
   2536   case ARM::t2ORRrr:
   2537   case ARM::t2EORrr: {
   2538     Commute = UseMI->getOperand(2).getReg() != Reg;
   2539     switch (UseOpc) {
   2540     default: break;
   2541     case ARM::SUBrr: {
   2542       if (Commute)
   2543         return false;
   2544       ImmVal = -ImmVal;
   2545       NewUseOpc = ARM::SUBri;
   2546       // Fallthrough
   2547     }
   2548     case ARM::ADDrr:
   2549     case ARM::ORRrr:
   2550     case ARM::EORrr: {
   2551       if (!ARM_AM::isSOImmTwoPartVal(ImmVal))
   2552         return false;
   2553       SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
   2554       SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
   2555       switch (UseOpc) {
   2556       default: break;
   2557       case ARM::ADDrr: NewUseOpc = ARM::ADDri; break;
   2558       case ARM::ORRrr: NewUseOpc = ARM::ORRri; break;
   2559       case ARM::EORrr: NewUseOpc = ARM::EORri; break;
   2560       }
   2561       break;
   2562     }
   2563     case ARM::t2SUBrr: {
   2564       if (Commute)
   2565         return false;
   2566       ImmVal = -ImmVal;
   2567       NewUseOpc = ARM::t2SUBri;
   2568       // Fallthrough
   2569     }
   2570     case ARM::t2ADDrr:
   2571     case ARM::t2ORRrr:
   2572     case ARM::t2EORrr: {
   2573       if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal))
   2574         return false;
   2575       SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
   2576       SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
   2577       switch (UseOpc) {
   2578       default: break;
   2579       case ARM::t2ADDrr: NewUseOpc = ARM::t2ADDri; break;
   2580       case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break;
   2581       case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break;
   2582       }
   2583       break;
   2584     }
   2585     }
   2586   }
   2587   }
   2588 
   2589   unsigned OpIdx = Commute ? 2 : 1;
   2590   unsigned Reg1 = UseMI->getOperand(OpIdx).getReg();
   2591   bool isKill = UseMI->getOperand(OpIdx).isKill();
   2592   unsigned NewReg = MRI->createVirtualRegister(MRI->getRegClass(Reg));
   2593   AddDefaultCC(AddDefaultPred(BuildMI(*UseMI->getParent(),
   2594                                       UseMI, UseMI->getDebugLoc(),
   2595                                       get(NewUseOpc), NewReg)
   2596                               .addReg(Reg1, getKillRegState(isKill))
   2597                               .addImm(SOImmValV1)));
   2598   UseMI->setDesc(get(NewUseOpc));
   2599   UseMI->getOperand(1).setReg(NewReg);
   2600   UseMI->getOperand(1).setIsKill();
   2601   UseMI->getOperand(2).ChangeToImmediate(SOImmValV2);
   2602   DefMI->eraseFromParent();
   2603   return true;
   2604 }
   2605 
   2606 static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData *ItinData,
   2607                                         const MachineInstr *MI) {
   2608   switch (MI->getOpcode()) {
   2609   default: {
   2610     const MCInstrDesc &Desc = MI->getDesc();
   2611     int UOps = ItinData->getNumMicroOps(Desc.getSchedClass());
   2612     assert(UOps >= 0 && "bad # UOps");
   2613     return UOps;
   2614   }
   2615 
   2616   case ARM::LDRrs:
   2617   case ARM::LDRBrs:
   2618   case ARM::STRrs:
   2619   case ARM::STRBrs: {
   2620     unsigned ShOpVal = MI->getOperand(3).getImm();
   2621     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
   2622     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
   2623     if (!isSub &&
   2624         (ShImm == 0 ||
   2625          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
   2626           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
   2627       return 1;
   2628     return 2;
   2629   }
   2630 
   2631   case ARM::LDRH:
   2632   case ARM::STRH: {
   2633     if (!MI->getOperand(2).getReg())
   2634       return 1;
   2635 
   2636     unsigned ShOpVal = MI->getOperand(3).getImm();
   2637     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
   2638     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
   2639     if (!isSub &&
   2640         (ShImm == 0 ||
   2641          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
   2642           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
   2643       return 1;
   2644     return 2;
   2645   }
   2646 
   2647   case ARM::LDRSB:
   2648   case ARM::LDRSH:
   2649     return (ARM_AM::getAM3Op(MI->getOperand(3).getImm()) == ARM_AM::sub) ? 3:2;
   2650 
   2651   case ARM::LDRSB_POST:
   2652   case ARM::LDRSH_POST: {
   2653     unsigned Rt = MI->getOperand(0).getReg();
   2654     unsigned Rm = MI->getOperand(3).getReg();
   2655     return (Rt == Rm) ? 4 : 3;
   2656   }
   2657 
   2658   case ARM::LDR_PRE_REG:
   2659   case ARM::LDRB_PRE_REG: {
   2660     unsigned Rt = MI->getOperand(0).getReg();
   2661     unsigned Rm = MI->getOperand(3).getReg();
   2662     if (Rt == Rm)
   2663       return 3;
   2664     unsigned ShOpVal = MI->getOperand(4).getImm();
   2665     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
   2666     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
   2667     if (!isSub &&
   2668         (ShImm == 0 ||
   2669          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
   2670           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
   2671       return 2;
   2672     return 3;
   2673   }
   2674 
   2675   case ARM::STR_PRE_REG:
   2676   case ARM::STRB_PRE_REG: {
   2677     unsigned ShOpVal = MI->getOperand(4).getImm();
   2678     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
   2679     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
   2680     if (!isSub &&
   2681         (ShImm == 0 ||
   2682          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
   2683           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
   2684       return 2;
   2685     return 3;
   2686   }
   2687 
   2688   case ARM::LDRH_PRE:
   2689   case ARM::STRH_PRE: {
   2690     unsigned Rt = MI->getOperand(0).getReg();
   2691     unsigned Rm = MI->getOperand(3).getReg();
   2692     if (!Rm)
   2693       return 2;
   2694     if (Rt == Rm)
   2695       return 3;
   2696     return (ARM_AM::getAM3Op(MI->getOperand(4).getImm()) == ARM_AM::sub)
   2697       ? 3 : 2;
   2698   }
   2699 
   2700   case ARM::LDR_POST_REG:
   2701   case ARM::LDRB_POST_REG:
   2702   case ARM::LDRH_POST: {
   2703     unsigned Rt = MI->getOperand(0).getReg();
   2704     unsigned Rm = MI->getOperand(3).getReg();
   2705     return (Rt == Rm) ? 3 : 2;
   2706   }
   2707 
   2708   case ARM::LDR_PRE_IMM:
   2709   case ARM::LDRB_PRE_IMM:
   2710   case ARM::LDR_POST_IMM:
   2711   case ARM::LDRB_POST_IMM:
   2712   case ARM::STRB_POST_IMM:
   2713   case ARM::STRB_POST_REG:
   2714   case ARM::STRB_PRE_IMM:
   2715   case ARM::STRH_POST:
   2716   case ARM::STR_POST_IMM:
   2717   case ARM::STR_POST_REG:
   2718   case ARM::STR_PRE_IMM:
   2719     return 2;
   2720 
   2721   case ARM::LDRSB_PRE:
   2722   case ARM::LDRSH_PRE: {
   2723     unsigned Rm = MI->getOperand(3).getReg();
   2724     if (Rm == 0)
   2725       return 3;
   2726     unsigned Rt = MI->getOperand(0).getReg();
   2727     if (Rt == Rm)
   2728       return 4;
   2729     unsigned ShOpVal = MI->getOperand(4).getImm();
   2730     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
   2731     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
   2732     if (!isSub &&
   2733         (ShImm == 0 ||
   2734          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
   2735           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
   2736       return 3;
   2737     return 4;
   2738   }
   2739 
   2740   case ARM::LDRD: {
   2741     unsigned Rt = MI->getOperand(0).getReg();
   2742     unsigned Rn = MI->getOperand(2).getReg();
   2743     unsigned Rm = MI->getOperand(3).getReg();
   2744     if (Rm)
   2745       return (ARM_AM::getAM3Op(MI->getOperand(4).getImm()) == ARM_AM::sub) ?4:3;
   2746     return (Rt == Rn) ? 3 : 2;
   2747   }
   2748 
   2749   case ARM::STRD: {
   2750     unsigned Rm = MI->getOperand(3).getReg();
   2751     if (Rm)
   2752       return (ARM_AM::getAM3Op(MI->getOperand(4).getImm()) == ARM_AM::sub) ?4:3;
   2753     return 2;
   2754   }
   2755 
   2756   case ARM::LDRD_POST:
   2757   case ARM::t2LDRD_POST:
   2758     return 3;
   2759 
   2760   case ARM::STRD_POST:
   2761   case ARM::t2STRD_POST:
   2762     return 4;
   2763 
   2764   case ARM::LDRD_PRE: {
   2765     unsigned Rt = MI->getOperand(0).getReg();
   2766     unsigned Rn = MI->getOperand(3).getReg();
   2767     unsigned Rm = MI->getOperand(4).getReg();
   2768     if (Rm)
   2769       return (ARM_AM::getAM3Op(MI->getOperand(5).getImm()) == ARM_AM::sub) ?5:4;
   2770     return (Rt == Rn) ? 4 : 3;
   2771   }
   2772 
   2773   case ARM::t2LDRD_PRE: {
   2774     unsigned Rt = MI->getOperand(0).getReg();
   2775     unsigned Rn = MI->getOperand(3).getReg();
   2776     return (Rt == Rn) ? 4 : 3;
   2777   }
   2778 
   2779   case ARM::STRD_PRE: {
   2780     unsigned Rm = MI->getOperand(4).getReg();
   2781     if (Rm)
   2782       return (ARM_AM::getAM3Op(MI->getOperand(5).getImm()) == ARM_AM::sub) ?5:4;
   2783     return 3;
   2784   }
   2785 
   2786   case ARM::t2STRD_PRE:
   2787     return 3;
   2788 
   2789   case ARM::t2LDR_POST:
   2790   case ARM::t2LDRB_POST:
   2791   case ARM::t2LDRB_PRE:
   2792   case ARM::t2LDRSBi12:
   2793   case ARM::t2LDRSBi8:
   2794   case ARM::t2LDRSBpci:
   2795   case ARM::t2LDRSBs:
   2796   case ARM::t2LDRH_POST:
   2797   case ARM::t2LDRH_PRE:
   2798   case ARM::t2LDRSBT:
   2799   case ARM::t2LDRSB_POST:
   2800   case ARM::t2LDRSB_PRE:
   2801   case ARM::t2LDRSH_POST:
   2802   case ARM::t2LDRSH_PRE:
   2803   case ARM::t2LDRSHi12:
   2804   case ARM::t2LDRSHi8:
   2805   case ARM::t2LDRSHpci:
   2806   case ARM::t2LDRSHs:
   2807     return 2;
   2808 
   2809   case ARM::t2LDRDi8: {
   2810     unsigned Rt = MI->getOperand(0).getReg();
   2811     unsigned Rn = MI->getOperand(2).getReg();
   2812     return (Rt == Rn) ? 3 : 2;
   2813   }
   2814 
   2815   case ARM::t2STRB_POST:
   2816   case ARM::t2STRB_PRE:
   2817   case ARM::t2STRBs:
   2818   case ARM::t2STRDi8:
   2819   case ARM::t2STRH_POST:
   2820   case ARM::t2STRH_PRE:
   2821   case ARM::t2STRHs:
   2822   case ARM::t2STR_POST:
   2823   case ARM::t2STR_PRE:
   2824   case ARM::t2STRs:
   2825     return 2;
   2826   }
   2827 }
   2828 
   2829 // Return the number of 32-bit words loaded by LDM or stored by STM. If this
   2830 // can't be easily determined return 0 (missing MachineMemOperand).
   2831 //
   2832 // FIXME: The current MachineInstr design does not support relying on machine
   2833 // mem operands to determine the width of a memory access. Instead, we expect
   2834 // the target to provide this information based on the instruction opcode and
   2835 // operands. However, using MachineMemOperand is a the best solution now for
   2836 // two reasons:
   2837 //
   2838 // 1) getNumMicroOps tries to infer LDM memory width from the total number of MI
   2839 // operands. This is much more dangerous than using the MachineMemOperand
   2840 // sizes because CodeGen passes can insert/remove optional machine operands. In
   2841 // fact, it's totally incorrect for preRA passes and appears to be wrong for
   2842 // postRA passes as well.
   2843 //
   2844 // 2) getNumLDMAddresses is only used by the scheduling machine model and any
   2845 // machine model that calls this should handle the unknown (zero size) case.
   2846 //
   2847 // Long term, we should require a target hook that verifies MachineMemOperand
   2848 // sizes during MC lowering. That target hook should be local to MC lowering
   2849 // because we can't ensure that it is aware of other MI forms. Doing this will
   2850 // ensure that MachineMemOperands are correctly propagated through all passes.
   2851 unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr *MI) const {
   2852   unsigned Size = 0;
   2853   for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
   2854          E = MI->memoperands_end(); I != E; ++I) {
   2855     Size += (*I)->getSize();
   2856   }
   2857   return Size / 4;
   2858 }
   2859 
   2860 unsigned
   2861 ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
   2862                                  const MachineInstr *MI) const {
   2863   if (!ItinData || ItinData->isEmpty())
   2864     return 1;
   2865 
   2866   const MCInstrDesc &Desc = MI->getDesc();
   2867   unsigned Class = Desc.getSchedClass();
   2868   int ItinUOps = ItinData->getNumMicroOps(Class);
   2869   if (ItinUOps >= 0) {
   2870     if (Subtarget.isSwift() && (Desc.mayLoad() || Desc.mayStore()))
   2871       return getNumMicroOpsSwiftLdSt(ItinData, MI);
   2872 
   2873     return ItinUOps;
   2874   }
   2875 
   2876   unsigned Opc = MI->getOpcode();
   2877   switch (Opc) {
   2878   default:
   2879     llvm_unreachable("Unexpected multi-uops instruction!");
   2880   case ARM::VLDMQIA:
   2881   case ARM::VSTMQIA:
   2882     return 2;
   2883 
   2884   // The number of uOps for load / store multiple are determined by the number
   2885   // registers.
   2886   //
   2887   // On Cortex-A8, each pair of register loads / stores can be scheduled on the
   2888   // same cycle. The scheduling for the first load / store must be done
   2889   // separately by assuming the address is not 64-bit aligned.
   2890   //
   2891   // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address
   2892   // is not 64-bit aligned, then AGU would take an extra cycle.  For VFP / NEON
   2893   // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1.
   2894   case ARM::VLDMDIA:
   2895   case ARM::VLDMDIA_UPD:
   2896   case ARM::VLDMDDB_UPD:
   2897   case ARM::VLDMSIA:
   2898   case ARM::VLDMSIA_UPD:
   2899   case ARM::VLDMSDB_UPD:
   2900   case ARM::VSTMDIA:
   2901   case ARM::VSTMDIA_UPD:
   2902   case ARM::VSTMDDB_UPD:
   2903   case ARM::VSTMSIA:
   2904   case ARM::VSTMSIA_UPD:
   2905   case ARM::VSTMSDB_UPD: {
   2906     unsigned NumRegs = MI->getNumOperands() - Desc.getNumOperands();
   2907     return (NumRegs / 2) + (NumRegs % 2) + 1;
   2908   }
   2909 
   2910   case ARM::LDMIA_RET:
   2911   case ARM::LDMIA:
   2912   case ARM::LDMDA:
   2913   case ARM::LDMDB:
   2914   case ARM::LDMIB:
   2915   case ARM::LDMIA_UPD:
   2916   case ARM::LDMDA_UPD:
   2917   case ARM::LDMDB_UPD:
   2918   case ARM::LDMIB_UPD:
   2919   case ARM::STMIA:
   2920   case ARM::STMDA:
   2921   case ARM::STMDB:
   2922   case ARM::STMIB:
   2923   case ARM::STMIA_UPD:
   2924   case ARM::STMDA_UPD:
   2925   case ARM::STMDB_UPD:
   2926   case ARM::STMIB_UPD:
   2927   case ARM::tLDMIA:
   2928   case ARM::tLDMIA_UPD:
   2929   case ARM::tSTMIA_UPD:
   2930   case ARM::tPOP_RET:
   2931   case ARM::tPOP:
   2932   case ARM::tPUSH:
   2933   case ARM::t2LDMIA_RET:
   2934   case ARM::t2LDMIA:
   2935   case ARM::t2LDMDB:
   2936   case ARM::t2LDMIA_UPD:
   2937   case ARM::t2LDMDB_UPD:
   2938   case ARM::t2STMIA:
   2939   case ARM::t2STMDB:
   2940   case ARM::t2STMIA_UPD:
   2941   case ARM::t2STMDB_UPD: {
   2942     unsigned NumRegs = MI->getNumOperands() - Desc.getNumOperands() + 1;
   2943     if (Subtarget.isSwift()) {
   2944       int UOps = 1 + NumRegs;  // One for address computation, one for each ld / st.
   2945       switch (Opc) {
   2946       default: break;
   2947       case ARM::VLDMDIA_UPD:
   2948       case ARM::VLDMDDB_UPD:
   2949       case ARM::VLDMSIA_UPD:
   2950       case ARM::VLDMSDB_UPD:
   2951       case ARM::VSTMDIA_UPD:
   2952       case ARM::VSTMDDB_UPD:
   2953       case ARM::VSTMSIA_UPD:
   2954       case ARM::VSTMSDB_UPD:
   2955       case ARM::LDMIA_UPD:
   2956       case ARM::LDMDA_UPD:
   2957       case ARM::LDMDB_UPD:
   2958       case ARM::LDMIB_UPD:
   2959       case ARM::STMIA_UPD:
   2960       case ARM::STMDA_UPD:
   2961       case ARM::STMDB_UPD:
   2962       case ARM::STMIB_UPD:
   2963       case ARM::tLDMIA_UPD:
   2964       case ARM::tSTMIA_UPD:
   2965       case ARM::t2LDMIA_UPD:
   2966       case ARM::t2LDMDB_UPD:
   2967       case ARM::t2STMIA_UPD:
   2968       case ARM::t2STMDB_UPD:
   2969         ++UOps; // One for base register writeback.
   2970         break;
   2971       case ARM::LDMIA_RET:
   2972       case ARM::tPOP_RET:
   2973       case ARM::t2LDMIA_RET:
   2974         UOps += 2; // One for base reg wb, one for write to pc.
   2975         break;
   2976       }
   2977       return UOps;
   2978     } else if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
   2979       if (NumRegs < 4)
   2980         return 2;
   2981       // 4 registers would be issued: 2, 2.
   2982       // 5 registers would be issued: 2, 2, 1.
   2983       int A8UOps = (NumRegs / 2);
   2984       if (NumRegs % 2)
   2985         ++A8UOps;
   2986       return A8UOps;
   2987     } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
   2988       int A9UOps = (NumRegs / 2);
   2989       // If there are odd number of registers or if it's not 64-bit aligned,
   2990       // then it takes an extra AGU (Address Generation Unit) cycle.
   2991       if ((NumRegs % 2) ||
   2992           !MI->hasOneMemOperand() ||
   2993           (*MI->memoperands_begin())->getAlignment() < 8)
   2994         ++A9UOps;
   2995       return A9UOps;
   2996     } else {
   2997       // Assume the worst.
   2998       return NumRegs;
   2999     }
   3000   }
   3001   }
   3002 }
   3003 
   3004 int
   3005 ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData,
   3006                                   const MCInstrDesc &DefMCID,
   3007                                   unsigned DefClass,
   3008                                   unsigned DefIdx, unsigned DefAlign) const {
   3009   int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
   3010   if (RegNo <= 0)
   3011     // Def is the address writeback.
   3012     return ItinData->getOperandCycle(DefClass, DefIdx);
   3013 
   3014   int DefCycle;
   3015   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
   3016     // (regno / 2) + (regno % 2) + 1
   3017     DefCycle = RegNo / 2 + 1;
   3018     if (RegNo % 2)
   3019       ++DefCycle;
   3020   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
   3021     DefCycle = RegNo;
   3022     bool isSLoad = false;
   3023 
   3024     switch (DefMCID.getOpcode()) {
   3025     default: break;
   3026     case ARM::VLDMSIA:
   3027     case ARM::VLDMSIA_UPD:
   3028     case ARM::VLDMSDB_UPD:
   3029       isSLoad = true;
   3030       break;
   3031     }
   3032 
   3033     // If there are odd number of 'S' registers or if it's not 64-bit aligned,
   3034     // then it takes an extra cycle.
   3035     if ((isSLoad && (RegNo % 2)) || DefAlign < 8)
   3036       ++DefCycle;
   3037   } else {
   3038     // Assume the worst.
   3039     DefCycle = RegNo + 2;
   3040   }
   3041 
   3042   return DefCycle;
   3043 }
   3044 
   3045 int
   3046 ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData,
   3047                                  const MCInstrDesc &DefMCID,
   3048                                  unsigned DefClass,
   3049                                  unsigned DefIdx, unsigned DefAlign) const {
   3050   int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
   3051   if (RegNo <= 0)
   3052     // Def is the address writeback.
   3053     return ItinData->getOperandCycle(DefClass, DefIdx);
   3054 
   3055   int DefCycle;
   3056   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
   3057     // 4 registers would be issued: 1, 2, 1.
   3058     // 5 registers would be issued: 1, 2, 2.
   3059     DefCycle = RegNo / 2;
   3060     if (DefCycle < 1)
   3061       DefCycle = 1;
   3062     // Result latency is issue cycle + 2: E2.
   3063     DefCycle += 2;
   3064   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
   3065     DefCycle = (RegNo / 2);
   3066     // If there are odd number of registers or if it's not 64-bit aligned,
   3067     // then it takes an extra AGU (Address Generation Unit) cycle.
   3068     if ((RegNo % 2) || DefAlign < 8)
   3069       ++DefCycle;
   3070     // Result latency is AGU cycles + 2.
   3071     DefCycle += 2;
   3072   } else {
   3073     // Assume the worst.
   3074     DefCycle = RegNo + 2;
   3075   }
   3076 
   3077   return DefCycle;
   3078 }
   3079 
   3080 int
   3081 ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData,
   3082                                   const MCInstrDesc &UseMCID,
   3083                                   unsigned UseClass,
   3084                                   unsigned UseIdx, unsigned UseAlign) const {
   3085   int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
   3086   if (RegNo <= 0)
   3087     return ItinData->getOperandCycle(UseClass, UseIdx);
   3088 
   3089   int UseCycle;
   3090   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
   3091     // (regno / 2) + (regno % 2) + 1
   3092     UseCycle = RegNo / 2 + 1;
   3093     if (RegNo % 2)
   3094       ++UseCycle;
   3095   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
   3096     UseCycle = RegNo;
   3097     bool isSStore = false;
   3098 
   3099     switch (UseMCID.getOpcode()) {
   3100     default: break;
   3101     case ARM::VSTMSIA:
   3102     case ARM::VSTMSIA_UPD:
   3103     case ARM::VSTMSDB_UPD:
   3104       isSStore = true;
   3105       break;
   3106     }
   3107 
   3108     // If there are odd number of 'S' registers or if it's not 64-bit aligned,
   3109     // then it takes an extra cycle.
   3110     if ((isSStore && (RegNo % 2)) || UseAlign < 8)
   3111       ++UseCycle;
   3112   } else {
   3113     // Assume the worst.
   3114     UseCycle = RegNo + 2;
   3115   }
   3116 
   3117   return UseCycle;
   3118 }
   3119 
   3120 int
   3121 ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData,
   3122                                  const MCInstrDesc &UseMCID,
   3123                                  unsigned UseClass,
   3124                                  unsigned UseIdx, unsigned UseAlign) const {
   3125   int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
   3126   if (RegNo <= 0)
   3127     return ItinData->getOperandCycle(UseClass, UseIdx);
   3128 
   3129   int UseCycle;
   3130   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
   3131     UseCycle = RegNo / 2;
   3132     if (UseCycle < 2)
   3133       UseCycle = 2;
   3134     // Read in E3.
   3135     UseCycle += 2;
   3136   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
   3137     UseCycle = (RegNo / 2);
   3138     // If there are odd number of registers or if it's not 64-bit aligned,
   3139     // then it takes an extra AGU (Address Generation Unit) cycle.
   3140     if ((RegNo % 2) || UseAlign < 8)
   3141       ++UseCycle;
   3142   } else {
   3143     // Assume the worst.
   3144     UseCycle = 1;
   3145   }
   3146   return UseCycle;
   3147 }
   3148 
   3149 int
   3150 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
   3151                                     const MCInstrDesc &DefMCID,
   3152                                     unsigned DefIdx, unsigned DefAlign,
   3153                                     const MCInstrDesc &UseMCID,
   3154                                     unsigned UseIdx, unsigned UseAlign) const {
   3155   unsigned DefClass = DefMCID.getSchedClass();
   3156   unsigned UseClass = UseMCID.getSchedClass();
   3157 
   3158   if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands())
   3159     return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
   3160 
   3161   // This may be a def / use of a variable_ops instruction, the operand
   3162   // latency might be determinable dynamically. Let the target try to
   3163   // figure it out.
   3164   int DefCycle = -1;
   3165   bool LdmBypass = false;
   3166   switch (DefMCID.getOpcode()) {
   3167   default:
   3168     DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
   3169     break;
   3170 
   3171   case ARM::VLDMDIA:
   3172   case ARM::VLDMDIA_UPD:
   3173   case ARM::VLDMDDB_UPD:
   3174   case ARM::VLDMSIA:
   3175   case ARM::VLDMSIA_UPD:
   3176   case ARM::VLDMSDB_UPD:
   3177     DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
   3178     break;
   3179 
   3180   case ARM::LDMIA_RET:
   3181   case ARM::LDMIA:
   3182   case ARM::LDMDA:
   3183   case ARM::LDMDB:
   3184   case ARM::LDMIB:
   3185   case ARM::LDMIA_UPD:
   3186   case ARM::LDMDA_UPD:
   3187   case ARM::LDMDB_UPD:
   3188   case ARM::LDMIB_UPD:
   3189   case ARM::tLDMIA:
   3190   case ARM::tLDMIA_UPD:
   3191   case ARM::tPUSH:
   3192   case ARM::t2LDMIA_RET:
   3193   case ARM::t2LDMIA:
   3194   case ARM::t2LDMDB:
   3195   case ARM::t2LDMIA_UPD:
   3196   case ARM::t2LDMDB_UPD:
   3197     LdmBypass = 1;
   3198     DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
   3199     break;
   3200   }
   3201 
   3202   if (DefCycle == -1)
   3203     // We can't seem to determine the result latency of the def, assume it's 2.
   3204     DefCycle = 2;
   3205 
   3206   int UseCycle = -1;
   3207   switch (UseMCID.getOpcode()) {
   3208   default:
   3209     UseCycle = ItinData->getOperandCycle(UseClass, UseIdx);
   3210     break;
   3211 
   3212   case ARM::VSTMDIA:
   3213   case ARM::VSTMDIA_UPD:
   3214   case ARM::VSTMDDB_UPD:
   3215   case ARM::VSTMSIA:
   3216   case ARM::VSTMSIA_UPD:
   3217   case ARM::VSTMSDB_UPD:
   3218     UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
   3219     break;
   3220 
   3221   case ARM::STMIA:
   3222   case ARM::STMDA:
   3223   case ARM::STMDB:
   3224   case ARM::STMIB:
   3225   case ARM::STMIA_UPD:
   3226   case ARM::STMDA_UPD:
   3227   case ARM::STMDB_UPD:
   3228   case ARM::STMIB_UPD:
   3229   case ARM::tSTMIA_UPD:
   3230   case ARM::tPOP_RET:
   3231   case ARM::tPOP:
   3232   case ARM::t2STMIA:
   3233   case ARM::t2STMDB:
   3234   case ARM::t2STMIA_UPD:
   3235   case ARM::t2STMDB_UPD:
   3236     UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
   3237     break;
   3238   }
   3239 
   3240   if (UseCycle == -1)
   3241     // Assume it's read in the first stage.
   3242     UseCycle = 1;
   3243 
   3244   UseCycle = DefCycle - UseCycle + 1;
   3245   if (UseCycle > 0) {
   3246     if (LdmBypass) {
   3247       // It's a variable_ops instruction so we can't use DefIdx here. Just use
   3248       // first def operand.
   3249       if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1,
   3250                                           UseClass, UseIdx))
   3251         --UseCycle;
   3252     } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx,
   3253                                                UseClass, UseIdx)) {
   3254       --UseCycle;
   3255     }
   3256   }
   3257 
   3258   return UseCycle;
   3259 }
   3260 
   3261 static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI,
   3262                                            const MachineInstr *MI, unsigned Reg,
   3263                                            unsigned &DefIdx, unsigned &Dist) {
   3264   Dist = 0;
   3265 
   3266   MachineBasicBlock::const_iterator I = MI; ++I;
   3267   MachineBasicBlock::const_instr_iterator II = std::prev(I.getInstrIterator());
   3268   assert(II->isInsideBundle() && "Empty bundle?");
   3269 
   3270   int Idx = -1;
   3271   while (II->isInsideBundle()) {
   3272     Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI);
   3273     if (Idx != -1)
   3274       break;
   3275     --II;
   3276     ++Dist;
   3277   }
   3278 
   3279   assert(Idx != -1 && "Cannot find bundled definition!");
   3280   DefIdx = Idx;
   3281   return II;
   3282 }
   3283 
   3284 static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI,
   3285                                            const MachineInstr *MI, unsigned Reg,
   3286                                            unsigned &UseIdx, unsigned &Dist) {
   3287   Dist = 0;
   3288 
   3289   MachineBasicBlock::const_instr_iterator II = MI; ++II;
   3290   assert(II->isInsideBundle() && "Empty bundle?");
   3291   MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
   3292 
   3293   // FIXME: This doesn't properly handle multiple uses.
   3294   int Idx = -1;
   3295   while (II != E && II->isInsideBundle()) {
   3296     Idx = II->findRegisterUseOperandIdx(Reg, false, TRI);
   3297     if (Idx != -1)
   3298       break;
   3299     if (II->getOpcode() != ARM::t2IT)
   3300       ++Dist;
   3301     ++II;
   3302   }
   3303 
   3304   if (Idx == -1) {
   3305     Dist = 0;
   3306     return nullptr;
   3307   }
   3308 
   3309   UseIdx = Idx;
   3310   return II;
   3311 }
   3312 
   3313 /// Return the number of cycles to add to (or subtract from) the static
   3314 /// itinerary based on the def opcode and alignment. The caller will ensure that
   3315 /// adjusted latency is at least one cycle.
   3316 static int adjustDefLatency(const ARMSubtarget &Subtarget,
   3317                             const MachineInstr *DefMI,
   3318                             const MCInstrDesc *DefMCID, unsigned DefAlign) {
   3319   int Adjust = 0;
   3320   if (Subtarget.isCortexA8() || Subtarget.isLikeA9() || Subtarget.isCortexA7()) {
   3321     // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
   3322     // variants are one cycle cheaper.
   3323     switch (DefMCID->getOpcode()) {
   3324     default: break;
   3325     case ARM::LDRrs:
   3326     case ARM::LDRBrs: {
   3327       unsigned ShOpVal = DefMI->getOperand(3).getImm();
   3328       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
   3329       if (ShImm == 0 ||
   3330           (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
   3331         --Adjust;
   3332       break;
   3333     }
   3334     case ARM::t2LDRs:
   3335     case ARM::t2LDRBs:
   3336     case ARM::t2LDRHs:
   3337     case ARM::t2LDRSHs: {
   3338       // Thumb2 mode: lsl only.
   3339       unsigned ShAmt = DefMI->getOperand(3).getImm();
   3340       if (ShAmt == 0 || ShAmt == 2)
   3341         --Adjust;
   3342       break;
   3343     }
   3344     }
   3345   } else if (Subtarget.isSwift()) {
   3346     // FIXME: Properly handle all of the latency adjustments for address
   3347     // writeback.
   3348     switch (DefMCID->getOpcode()) {
   3349     default: break;
   3350     case ARM::LDRrs:
   3351     case ARM::LDRBrs: {
   3352       unsigned ShOpVal = DefMI->getOperand(3).getImm();
   3353       bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
   3354       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
   3355       if (!isSub &&
   3356           (ShImm == 0 ||
   3357            ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
   3358             ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
   3359         Adjust -= 2;
   3360       else if (!isSub &&
   3361                ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
   3362         --Adjust;
   3363       break;
   3364     }
   3365     case ARM::t2LDRs:
   3366     case ARM::t2LDRBs:
   3367     case ARM::t2LDRHs:
   3368     case ARM::t2LDRSHs: {
   3369       // Thumb2 mode: lsl only.
   3370       unsigned ShAmt = DefMI->getOperand(3).getImm();
   3371       if (ShAmt == 0 || ShAmt == 1 || ShAmt == 2 || ShAmt == 3)
   3372         Adjust -= 2;
   3373       break;
   3374     }
   3375     }
   3376   }
   3377 
   3378   if (DefAlign < 8 && Subtarget.isLikeA9()) {
   3379     switch (DefMCID->getOpcode()) {
   3380     default: break;
   3381     case ARM::VLD1q8:
   3382     case ARM::VLD1q16:
   3383     case ARM::VLD1q32:
   3384     case ARM::VLD1q64:
   3385     case ARM::VLD1q8wb_fixed:
   3386     case ARM::VLD1q16wb_fixed:
   3387     case ARM::VLD1q32wb_fixed:
   3388     case ARM::VLD1q64wb_fixed:
   3389     case ARM::VLD1q8wb_register:
   3390     case ARM::VLD1q16wb_register:
   3391     case ARM::VLD1q32wb_register:
   3392     case ARM::VLD1q64wb_register:
   3393     case ARM::VLD2d8:
   3394     case ARM::VLD2d16:
   3395     case ARM::VLD2d32:
   3396     case ARM::VLD2q8:
   3397     case ARM::VLD2q16:
   3398     case ARM::VLD2q32:
   3399     case ARM::VLD2d8wb_fixed:
   3400     case ARM::VLD2d16wb_fixed:
   3401     case ARM::VLD2d32wb_fixed:
   3402     case ARM::VLD2q8wb_fixed:
   3403     case ARM::VLD2q16wb_fixed:
   3404     case ARM::VLD2q32wb_fixed:
   3405     case ARM::VLD2d8wb_register:
   3406     case ARM::VLD2d16wb_register:
   3407     case ARM::VLD2d32wb_register:
   3408     case ARM::VLD2q8wb_register:
   3409     case ARM::VLD2q16wb_register:
   3410     case ARM::VLD2q32wb_register:
   3411     case ARM::VLD3d8:
   3412     case ARM::VLD3d16:
   3413     case ARM::VLD3d32:
   3414     case ARM::VLD1d64T:
   3415     case ARM::VLD3d8_UPD:
   3416     case ARM::VLD3d16_UPD:
   3417     case ARM::VLD3d32_UPD:
   3418     case ARM::VLD1d64Twb_fixed:
   3419     case ARM::VLD1d64Twb_register:
   3420     case ARM::VLD3q8_UPD:
   3421     case ARM::VLD3q16_UPD:
   3422     case ARM::VLD3q32_UPD:
   3423     case ARM::VLD4d8:
   3424     case ARM::VLD4d16:
   3425     case ARM::VLD4d32:
   3426     case ARM::VLD1d64Q:
   3427     case ARM::VLD4d8_UPD:
   3428     case ARM::VLD4d16_UPD:
   3429     case ARM::VLD4d32_UPD:
   3430     case ARM::VLD1d64Qwb_fixed:
   3431     case ARM::VLD1d64Qwb_register:
   3432     case ARM::VLD4q8_UPD:
   3433     case ARM::VLD4q16_UPD:
   3434     case ARM::VLD4q32_UPD:
   3435     case ARM::VLD1DUPq8:
   3436     case ARM::VLD1DUPq16:
   3437     case ARM::VLD1DUPq32:
   3438     case ARM::VLD1DUPq8wb_fixed:
   3439     case ARM::VLD1DUPq16wb_fixed:
   3440     case ARM::VLD1DUPq32wb_fixed:
   3441     case ARM::VLD1DUPq8wb_register:
   3442     case ARM::VLD1DUPq16wb_register:
   3443     case ARM::VLD1DUPq32wb_register:
   3444     case ARM::VLD2DUPd8:
   3445     case ARM::VLD2DUPd16:
   3446     case ARM::VLD2DUPd32:
   3447     case ARM::VLD2DUPd8wb_fixed:
   3448     case ARM::VLD2DUPd16wb_fixed:
   3449     case ARM::VLD2DUPd32wb_fixed:
   3450     case ARM::VLD2DUPd8wb_register:
   3451     case ARM::VLD2DUPd16wb_register:
   3452     case ARM::VLD2DUPd32wb_register:
   3453     case ARM::VLD4DUPd8:
   3454     case ARM::VLD4DUPd16:
   3455     case ARM::VLD4DUPd32:
   3456     case ARM::VLD4DUPd8_UPD:
   3457     case ARM::VLD4DUPd16_UPD:
   3458     case ARM::VLD4DUPd32_UPD:
   3459     case ARM::VLD1LNd8:
   3460     case ARM::VLD1LNd16:
   3461     case ARM::VLD1LNd32:
   3462     case ARM::VLD1LNd8_UPD:
   3463     case ARM::VLD1LNd16_UPD:
   3464     case ARM::VLD1LNd32_UPD:
   3465     case ARM::VLD2LNd8:
   3466     case ARM::VLD2LNd16:
   3467     case ARM::VLD2LNd32:
   3468     case ARM::VLD2LNq16:
   3469     case ARM::VLD2LNq32:
   3470     case ARM::VLD2LNd8_UPD:
   3471     case ARM::VLD2LNd16_UPD:
   3472     case ARM::VLD2LNd32_UPD:
   3473     case ARM::VLD2LNq16_UPD:
   3474     case ARM::VLD2LNq32_UPD:
   3475     case ARM::VLD4LNd8:
   3476     case ARM::VLD4LNd16:
   3477     case ARM::VLD4LNd32:
   3478     case ARM::VLD4LNq16:
   3479     case ARM::VLD4LNq32:
   3480     case ARM::VLD4LNd8_UPD:
   3481     case ARM::VLD4LNd16_UPD:
   3482     case ARM::VLD4LNd32_UPD:
   3483     case ARM::VLD4LNq16_UPD:
   3484     case ARM::VLD4LNq32_UPD:
   3485       // If the address is not 64-bit aligned, the latencies of these
   3486       // instructions increases by one.
   3487       ++Adjust;
   3488       break;
   3489     }
   3490   }
   3491   return Adjust;
   3492 }
   3493 
   3494 
   3495 
   3496 int
   3497 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
   3498                                     const MachineInstr *DefMI, unsigned DefIdx,
   3499                                     const MachineInstr *UseMI,
   3500                                     unsigned UseIdx) const {
   3501   // No operand latency. The caller may fall back to getInstrLatency.
   3502   if (!ItinData || ItinData->isEmpty())
   3503     return -1;
   3504 
   3505   const MachineOperand &DefMO = DefMI->getOperand(DefIdx);
   3506   unsigned Reg = DefMO.getReg();
   3507   const MCInstrDesc *DefMCID = &DefMI->getDesc();
   3508   const MCInstrDesc *UseMCID = &UseMI->getDesc();
   3509 
   3510   unsigned DefAdj = 0;
   3511   if (DefMI->isBundle()) {
   3512     DefMI = getBundledDefMI(&getRegisterInfo(), DefMI, Reg, DefIdx, DefAdj);
   3513     DefMCID = &DefMI->getDesc();
   3514   }
   3515   if (DefMI->isCopyLike() || DefMI->isInsertSubreg() ||
   3516       DefMI->isRegSequence() || DefMI->isImplicitDef()) {
   3517     return 1;
   3518   }
   3519 
   3520   unsigned UseAdj = 0;
   3521   if (UseMI->isBundle()) {
   3522     unsigned NewUseIdx;
   3523     const MachineInstr *NewUseMI = getBundledUseMI(&getRegisterInfo(), UseMI,
   3524                                                    Reg, NewUseIdx, UseAdj);
   3525     if (!NewUseMI)
   3526       return -1;
   3527 
   3528     UseMI = NewUseMI;
   3529     UseIdx = NewUseIdx;
   3530     UseMCID = &UseMI->getDesc();
   3531   }
   3532 
   3533   if (Reg == ARM::CPSR) {
   3534     if (DefMI->getOpcode() == ARM::FMSTAT) {
   3535       // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?)
   3536       return Subtarget.isLikeA9() ? 1 : 20;
   3537     }
   3538 
   3539     // CPSR set and branch can be paired in the same cycle.
   3540     if (UseMI->isBranch())
   3541       return 0;
   3542 
   3543     // Otherwise it takes the instruction latency (generally one).
   3544     unsigned Latency = getInstrLatency(ItinData, DefMI);
   3545 
   3546     // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to
   3547     // its uses. Instructions which are otherwise scheduled between them may
   3548     // incur a code size penalty (not able to use the CPSR setting 16-bit
   3549     // instructions).
   3550     if (Latency > 0 && Subtarget.isThumb2()) {
   3551       const MachineFunction *MF = DefMI->getParent()->getParent();
   3552       if (MF->getFunction()->getAttributes().
   3553             hasAttribute(AttributeSet::FunctionIndex,
   3554                          Attribute::OptimizeForSize))
   3555         --Latency;
   3556     }
   3557     return Latency;
   3558   }
   3559 
   3560   if (DefMO.isImplicit() || UseMI->getOperand(UseIdx).isImplicit())
   3561     return -1;
   3562 
   3563   unsigned DefAlign = DefMI->hasOneMemOperand()
   3564     ? (*DefMI->memoperands_begin())->getAlignment() : 0;
   3565   unsigned UseAlign = UseMI->hasOneMemOperand()
   3566     ? (*UseMI->memoperands_begin())->getAlignment() : 0;
   3567 
   3568   // Get the itinerary's latency if possible, and handle variable_ops.
   3569   int Latency = getOperandLatency(ItinData, *DefMCID, DefIdx, DefAlign,
   3570                                   *UseMCID, UseIdx, UseAlign);
   3571   // Unable to find operand latency. The caller may resort to getInstrLatency.
   3572   if (Latency < 0)
   3573     return Latency;
   3574 
   3575   // Adjust for IT block position.
   3576   int Adj = DefAdj + UseAdj;
   3577 
   3578   // Adjust for dynamic def-side opcode variants not captured by the itinerary.
   3579   Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign);
   3580   if (Adj >= 0 || (int)Latency > -Adj) {
   3581     return Latency + Adj;
   3582   }
   3583   // Return the itinerary latency, which may be zero but not less than zero.
   3584   return Latency;
   3585 }
   3586 
   3587 int
   3588 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
   3589                                     SDNode *DefNode, unsigned DefIdx,
   3590                                     SDNode *UseNode, unsigned UseIdx) const {
   3591   if (!DefNode->isMachineOpcode())
   3592     return 1;
   3593 
   3594   const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode());
   3595 
   3596   if (isZeroCost(DefMCID.Opcode))
   3597     return 0;
   3598 
   3599   if (!ItinData || ItinData->isEmpty())
   3600     return DefMCID.mayLoad() ? 3 : 1;
   3601 
   3602   if (!UseNode->isMachineOpcode()) {
   3603     int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx);
   3604     if (Subtarget.isLikeA9() || Subtarget.isSwift())
   3605       return Latency <= 2 ? 1 : Latency - 1;
   3606     else
   3607       return Latency <= 3 ? 1 : Latency - 2;
   3608   }
   3609 
   3610   const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode());
   3611   const MachineSDNode *DefMN = dyn_cast<MachineSDNode>(DefNode);
   3612   unsigned DefAlign = !DefMN->memoperands_empty()
   3613     ? (*DefMN->memoperands_begin())->getAlignment() : 0;
   3614   const MachineSDNode *UseMN = dyn_cast<MachineSDNode>(UseNode);
   3615   unsigned UseAlign = !UseMN->memoperands_empty()
   3616     ? (*UseMN->memoperands_begin())->getAlignment() : 0;
   3617   int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign,
   3618                                   UseMCID, UseIdx, UseAlign);
   3619 
   3620   if (Latency > 1 &&
   3621       (Subtarget.isCortexA8() || Subtarget.isLikeA9() ||
   3622        Subtarget.isCortexA7())) {
   3623     // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
   3624     // variants are one cycle cheaper.
   3625     switch (DefMCID.getOpcode()) {
   3626     default: break;
   3627     case ARM::LDRrs:
   3628     case ARM::LDRBrs: {
   3629       unsigned ShOpVal =
   3630         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
   3631       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
   3632       if (ShImm == 0 ||
   3633           (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
   3634         --Latency;
   3635       break;
   3636     }
   3637     case ARM::t2LDRs:
   3638     case ARM::t2LDRBs:
   3639     case ARM::t2LDRHs:
   3640     case ARM::t2LDRSHs: {
   3641       // Thumb2 mode: lsl only.
   3642       unsigned ShAmt =
   3643         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
   3644       if (ShAmt == 0 || ShAmt == 2)
   3645         --Latency;
   3646       break;
   3647     }
   3648     }
   3649   } else if (DefIdx == 0 && Latency > 2 && Subtarget.isSwift()) {
   3650     // FIXME: Properly handle all of the latency adjustments for address
   3651     // writeback.
   3652     switch (DefMCID.getOpcode()) {
   3653     default: break;
   3654     case ARM::LDRrs:
   3655     case ARM::LDRBrs: {
   3656       unsigned ShOpVal =
   3657         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
   3658       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
   3659       if (ShImm == 0 ||
   3660           ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
   3661            ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
   3662         Latency -= 2;
   3663       else if (ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
   3664         --Latency;
   3665       break;
   3666     }
   3667     case ARM::t2LDRs:
   3668     case ARM::t2LDRBs:
   3669     case ARM::t2LDRHs:
   3670     case ARM::t2LDRSHs: {
   3671       // Thumb2 mode: lsl 0-3 only.
   3672       Latency -= 2;
   3673       break;
   3674     }
   3675     }
   3676   }
   3677 
   3678   if (DefAlign < 8 && Subtarget.isLikeA9())
   3679     switch (DefMCID.getOpcode()) {
   3680     default: break;
   3681     case ARM::VLD1q8:
   3682     case ARM::VLD1q16:
   3683     case ARM::VLD1q32:
   3684     case ARM::VLD1q64:
   3685     case ARM::VLD1q8wb_register:
   3686     case ARM::VLD1q16wb_register:
   3687     case ARM::VLD1q32wb_register:
   3688     case ARM::VLD1q64wb_register:
   3689     case ARM::VLD1q8wb_fixed:
   3690     case ARM::VLD1q16wb_fixed:
   3691     case ARM::VLD1q32wb_fixed:
   3692     case ARM::VLD1q64wb_fixed:
   3693     case ARM::VLD2d8:
   3694     case ARM::VLD2d16:
   3695     case ARM::VLD2d32:
   3696     case ARM::VLD2q8Pseudo:
   3697     case ARM::VLD2q16Pseudo:
   3698     case ARM::VLD2q32Pseudo:
   3699     case ARM::VLD2d8wb_fixed:
   3700     case ARM::VLD2d16wb_fixed:
   3701     case ARM::VLD2d32wb_fixed:
   3702     case ARM::VLD2q8PseudoWB_fixed:
   3703     case ARM::VLD2q16PseudoWB_fixed:
   3704     case ARM::VLD2q32PseudoWB_fixed:
   3705     case ARM::VLD2d8wb_register:
   3706     case ARM::VLD2d16wb_register:
   3707     case ARM::VLD2d32wb_register:
   3708     case ARM::VLD2q8PseudoWB_register:
   3709     case ARM::VLD2q16PseudoWB_register:
   3710     case ARM::VLD2q32PseudoWB_register:
   3711     case ARM::VLD3d8Pseudo:
   3712     case ARM::VLD3d16Pseudo:
   3713     case ARM::VLD3d32Pseudo:
   3714     case ARM::VLD1d64TPseudo:
   3715     case ARM::VLD1d64TPseudoWB_fixed:
   3716     case ARM::VLD3d8Pseudo_UPD:
   3717     case ARM::VLD3d16Pseudo_UPD:
   3718     case ARM::VLD3d32Pseudo_UPD:
   3719     case ARM::VLD3q8Pseudo_UPD:
   3720     case ARM::VLD3q16Pseudo_UPD:
   3721     case ARM::VLD3q32Pseudo_UPD:
   3722     case ARM::VLD3q8oddPseudo:
   3723     case ARM::VLD3q16oddPseudo:
   3724     case ARM::VLD3q32oddPseudo:
   3725     case ARM::VLD3q8oddPseudo_UPD:
   3726     case ARM::VLD3q16oddPseudo_UPD:
   3727     case ARM::VLD3q32oddPseudo_UPD:
   3728     case ARM::VLD4d8Pseudo:
   3729     case ARM::VLD4d16Pseudo:
   3730     case ARM::VLD4d32Pseudo:
   3731     case ARM::VLD1d64QPseudo:
   3732     case ARM::VLD1d64QPseudoWB_fixed:
   3733     case ARM::VLD4d8Pseudo_UPD:
   3734     case ARM::VLD4d16Pseudo_UPD:
   3735     case ARM::VLD4d32Pseudo_UPD:
   3736     case ARM::VLD4q8Pseudo_UPD:
   3737     case ARM::VLD4q16Pseudo_UPD:
   3738     case ARM::VLD4q32Pseudo_UPD:
   3739     case ARM::VLD4q8oddPseudo:
   3740     case ARM::VLD4q16oddPseudo:
   3741     case ARM::VLD4q32oddPseudo:
   3742     case ARM::VLD4q8oddPseudo_UPD:
   3743     case ARM::VLD4q16oddPseudo_UPD:
   3744     case ARM::VLD4q32oddPseudo_UPD:
   3745     case ARM::VLD1DUPq8:
   3746     case ARM::VLD1DUPq16:
   3747     case ARM::VLD1DUPq32:
   3748     case ARM::VLD1DUPq8wb_fixed:
   3749     case ARM::VLD1DUPq16wb_fixed:
   3750     case ARM::VLD1DUPq32wb_fixed:
   3751     case ARM::VLD1DUPq8wb_register:
   3752     case ARM::VLD1DUPq16wb_register:
   3753     case ARM::VLD1DUPq32wb_register:
   3754     case ARM::VLD2DUPd8:
   3755     case ARM::VLD2DUPd16:
   3756     case ARM::VLD2DUPd32:
   3757     case ARM::VLD2DUPd8wb_fixed:
   3758     case ARM::VLD2DUPd16wb_fixed:
   3759     case ARM::VLD2DUPd32wb_fixed:
   3760     case ARM::VLD2DUPd8wb_register:
   3761     case ARM::VLD2DUPd16wb_register:
   3762     case ARM::VLD2DUPd32wb_register:
   3763     case ARM::VLD4DUPd8Pseudo:
   3764     case ARM::VLD4DUPd16Pseudo:
   3765     case ARM::VLD4DUPd32Pseudo:
   3766     case ARM::VLD4DUPd8Pseudo_UPD:
   3767     case ARM::VLD4DUPd16Pseudo_UPD:
   3768     case ARM::VLD4DUPd32Pseudo_UPD:
   3769     case ARM::VLD1LNq8Pseudo:
   3770     case ARM::VLD1LNq16Pseudo:
   3771     case ARM::VLD1LNq32Pseudo:
   3772     case ARM::VLD1LNq8Pseudo_UPD:
   3773     case ARM::VLD1LNq16Pseudo_UPD:
   3774     case ARM::VLD1LNq32Pseudo_UPD:
   3775     case ARM::VLD2LNd8Pseudo:
   3776     case ARM::VLD2LNd16Pseudo:
   3777     case ARM::VLD2LNd32Pseudo:
   3778     case ARM::VLD2LNq16Pseudo:
   3779     case ARM::VLD2LNq32Pseudo:
   3780     case ARM::VLD2LNd8Pseudo_UPD:
   3781     case ARM::VLD2LNd16Pseudo_UPD:
   3782     case ARM::VLD2LNd32Pseudo_UPD:
   3783     case ARM::VLD2LNq16Pseudo_UPD:
   3784     case ARM::VLD2LNq32Pseudo_UPD:
   3785     case ARM::VLD4LNd8Pseudo:
   3786     case ARM::VLD4LNd16Pseudo:
   3787     case ARM::VLD4LNd32Pseudo:
   3788     case ARM::VLD4LNq16Pseudo:
   3789     case ARM::VLD4LNq32Pseudo:
   3790     case ARM::VLD4LNd8Pseudo_UPD:
   3791     case ARM::VLD4LNd16Pseudo_UPD:
   3792     case ARM::VLD4LNd32Pseudo_UPD:
   3793     case ARM::VLD4LNq16Pseudo_UPD:
   3794     case ARM::VLD4LNq32Pseudo_UPD:
   3795       // If the address is not 64-bit aligned, the latencies of these
   3796       // instructions increases by one.
   3797       ++Latency;
   3798       break;
   3799     }
   3800 
   3801   return Latency;
   3802 }
   3803 
   3804 unsigned ARMBaseInstrInfo::getPredicationCost(const MachineInstr *MI) const {
   3805    if (MI->isCopyLike() || MI->isInsertSubreg() ||
   3806       MI->isRegSequence() || MI->isImplicitDef())
   3807     return 0;
   3808 
   3809   if (MI->isBundle())
   3810     return 0;
   3811 
   3812   const MCInstrDesc &MCID = MI->getDesc();
   3813 
   3814   if (MCID.isCall() || MCID.hasImplicitDefOfPhysReg(ARM::CPSR)) {
   3815     // When predicated, CPSR is an additional source operand for CPSR updating
   3816     // instructions, this apparently increases their latencies.
   3817     return 1;
   3818   }
   3819   return 0;
   3820 }
   3821 
   3822 unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
   3823                                            const MachineInstr *MI,
   3824                                            unsigned *PredCost) const {
   3825   if (MI->isCopyLike() || MI->isInsertSubreg() ||
   3826       MI->isRegSequence() || MI->isImplicitDef())
   3827     return 1;
   3828 
   3829   // An instruction scheduler typically runs on unbundled instructions, however
   3830   // other passes may query the latency of a bundled instruction.
   3831   if (MI->isBundle()) {
   3832     unsigned Latency = 0;
   3833     MachineBasicBlock::const_instr_iterator I = MI;
   3834     MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
   3835     while (++I != E && I->isInsideBundle()) {
   3836       if (I->getOpcode() != ARM::t2IT)
   3837         Latency += getInstrLatency(ItinData, I, PredCost);
   3838     }
   3839     return Latency;
   3840   }
   3841 
   3842   const MCInstrDesc &MCID = MI->getDesc();
   3843   if (PredCost && (MCID.isCall() || MCID.hasImplicitDefOfPhysReg(ARM::CPSR))) {
   3844     // When predicated, CPSR is an additional source operand for CPSR updating
   3845     // instructions, this apparently increases their latencies.
   3846     *PredCost = 1;
   3847   }
   3848   // Be sure to call getStageLatency for an empty itinerary in case it has a
   3849   // valid MinLatency property.
   3850   if (!ItinData)
   3851     return MI->mayLoad() ? 3 : 1;
   3852 
   3853   unsigned Class = MCID.getSchedClass();
   3854 
   3855   // For instructions with variable uops, use uops as latency.
   3856   if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0)
   3857     return getNumMicroOps(ItinData, MI);
   3858 
   3859   // For the common case, fall back on the itinerary's latency.
   3860   unsigned Latency = ItinData->getStageLatency(Class);
   3861 
   3862   // Adjust for dynamic def-side opcode variants not captured by the itinerary.
   3863   unsigned DefAlign = MI->hasOneMemOperand()
   3864     ? (*MI->memoperands_begin())->getAlignment() : 0;
   3865   int Adj = adjustDefLatency(Subtarget, MI, &MCID, DefAlign);
   3866   if (Adj >= 0 || (int)Latency > -Adj) {
   3867     return Latency + Adj;
   3868   }
   3869   return Latency;
   3870 }
   3871 
   3872 int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
   3873                                       SDNode *Node) const {
   3874   if (!Node->isMachineOpcode())
   3875     return 1;
   3876 
   3877   if (!ItinData || ItinData->isEmpty())
   3878     return 1;
   3879 
   3880   unsigned Opcode = Node->getMachineOpcode();
   3881   switch (Opcode) {
   3882   default:
   3883     return ItinData->getStageLatency(get(Opcode).getSchedClass());
   3884   case ARM::VLDMQIA:
   3885   case ARM::VSTMQIA:
   3886     return 2;
   3887   }
   3888 }
   3889 
   3890 bool ARMBaseInstrInfo::
   3891 hasHighOperandLatency(const InstrItineraryData *ItinData,
   3892                       const MachineRegisterInfo *MRI,
   3893                       const MachineInstr *DefMI, unsigned DefIdx,
   3894                       const MachineInstr *UseMI, unsigned UseIdx) const {
   3895   unsigned DDomain = DefMI->getDesc().TSFlags & ARMII::DomainMask;
   3896   unsigned UDomain = UseMI->getDesc().TSFlags & ARMII::DomainMask;
   3897   if (Subtarget.isCortexA8() &&
   3898       (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP))
   3899     // CortexA8 VFP instructions are not pipelined.
   3900     return true;
   3901 
   3902   // Hoist VFP / NEON instructions with 4 or higher latency.
   3903   int Latency = computeOperandLatency(ItinData, DefMI, DefIdx, UseMI, UseIdx);
   3904   if (Latency < 0)
   3905     Latency = getInstrLatency(ItinData, DefMI);
   3906   if (Latency <= 3)
   3907     return false;
   3908   return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON ||
   3909          UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON;
   3910 }
   3911 
   3912 bool ARMBaseInstrInfo::
   3913 hasLowDefLatency(const InstrItineraryData *ItinData,
   3914                  const MachineInstr *DefMI, unsigned DefIdx) const {
   3915   if (!ItinData || ItinData->isEmpty())
   3916     return false;
   3917 
   3918   unsigned DDomain = DefMI->getDesc().TSFlags & ARMII::DomainMask;
   3919   if (DDomain == ARMII::DomainGeneral) {
   3920     unsigned DefClass = DefMI->getDesc().getSchedClass();
   3921     int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
   3922     return (DefCycle != -1 && DefCycle <= 2);
   3923   }
   3924   return false;
   3925 }
   3926 
   3927 bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr *MI,
   3928                                          StringRef &ErrInfo) const {
   3929   if (convertAddSubFlagsOpcode(MI->getOpcode())) {
   3930     ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG";
   3931     return false;
   3932   }
   3933   return true;
   3934 }
   3935 
   3936 bool
   3937 ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc,
   3938                                      unsigned &AddSubOpc,
   3939                                      bool &NegAcc, bool &HasLane) const {
   3940   DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode);
   3941   if (I == MLxEntryMap.end())
   3942     return false;
   3943 
   3944   const ARM_MLxEntry &Entry = ARM_MLxTable[I->second];
   3945   MulOpc = Entry.MulOpc;
   3946   AddSubOpc = Entry.AddSubOpc;
   3947   NegAcc = Entry.NegAcc;
   3948   HasLane = Entry.HasLane;
   3949   return true;
   3950 }
   3951 
   3952 //===----------------------------------------------------------------------===//
   3953 // Execution domains.
   3954 //===----------------------------------------------------------------------===//
   3955 //
   3956 // Some instructions go down the NEON pipeline, some go down the VFP pipeline,
   3957 // and some can go down both.  The vmov instructions go down the VFP pipeline,
   3958 // but they can be changed to vorr equivalents that are executed by the NEON
   3959 // pipeline.
   3960 //
   3961 // We use the following execution domain numbering:
   3962 //
   3963 enum ARMExeDomain {
   3964   ExeGeneric = 0,
   3965   ExeVFP = 1,
   3966   ExeNEON = 2
   3967 };
   3968 //
   3969 // Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h
   3970 //
   3971 std::pair<uint16_t, uint16_t>
   3972 ARMBaseInstrInfo::getExecutionDomain(const MachineInstr *MI) const {
   3973   // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON
   3974   // if they are not predicated.
   3975   if (MI->getOpcode() == ARM::VMOVD && !isPredicated(MI))
   3976     return std::make_pair(ExeVFP, (1<<ExeVFP) | (1<<ExeNEON));
   3977 
   3978   // CortexA9 is particularly picky about mixing the two and wants these
   3979   // converted.
   3980   if (Subtarget.isCortexA9() && !isPredicated(MI) &&
   3981       (MI->getOpcode() == ARM::VMOVRS ||
   3982        MI->getOpcode() == ARM::VMOVSR ||
   3983        MI->getOpcode() == ARM::VMOVS))
   3984     return std::make_pair(ExeVFP, (1<<ExeVFP) | (1<<ExeNEON));
   3985 
   3986   // No other instructions can be swizzled, so just determine their domain.
   3987   unsigned Domain = MI->getDesc().TSFlags & ARMII::DomainMask;
   3988 
   3989   if (Domain & ARMII::DomainNEON)
   3990     return std::make_pair(ExeNEON, 0);
   3991 
   3992   // Certain instructions can go either way on Cortex-A8.
   3993   // Treat them as NEON instructions.
   3994   if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8())
   3995     return std::make_pair(ExeNEON, 0);
   3996 
   3997   if (Domain & ARMII::DomainVFP)
   3998     return std::make_pair(ExeVFP, 0);
   3999 
   4000   return std::make_pair(ExeGeneric, 0);
   4001 }
   4002 
   4003 static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI,
   4004                                             unsigned SReg, unsigned &Lane) {
   4005   unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass);
   4006   Lane = 0;
   4007 
   4008   if (DReg != ARM::NoRegister)
   4009    return DReg;
   4010 
   4011   Lane = 1;
   4012   DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass);
   4013 
   4014   assert(DReg && "S-register with no D super-register?");
   4015   return DReg;
   4016 }
   4017 
   4018 /// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane,
   4019 /// set ImplicitSReg to a register number that must be marked as implicit-use or
   4020 /// zero if no register needs to be defined as implicit-use.
   4021 ///
   4022 /// If the function cannot determine if an SPR should be marked implicit use or
   4023 /// not, it returns false.
   4024 ///
   4025 /// This function handles cases where an instruction is being modified from taking
   4026 /// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict
   4027 /// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other
   4028 /// lane of the DPR).
   4029 ///
   4030 /// If the other SPR is defined, an implicit-use of it should be added. Else,
   4031 /// (including the case where the DPR itself is defined), it should not.
   4032 ///
   4033 static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo *TRI,
   4034                                        MachineInstr *MI,
   4035                                        unsigned DReg, unsigned Lane,
   4036                                        unsigned &ImplicitSReg) {
   4037   // If the DPR is defined or used already, the other SPR lane will be chained
   4038   // correctly, so there is nothing to be done.
   4039   if (MI->definesRegister(DReg, TRI) || MI->readsRegister(DReg, TRI)) {
   4040     ImplicitSReg = 0;
   4041     return true;
   4042   }
   4043 
   4044   // Otherwise we need to go searching to see if the SPR is set explicitly.
   4045   ImplicitSReg = TRI->getSubReg(DReg,
   4046                                 (Lane & 1) ? ARM::ssub_0 : ARM::ssub_1);
   4047   MachineBasicBlock::LivenessQueryResult LQR =
   4048     MI->getParent()->computeRegisterLiveness(TRI, ImplicitSReg, MI);
   4049 
   4050   if (LQR == MachineBasicBlock::LQR_Live)
   4051     return true;
   4052   else if (LQR == MachineBasicBlock::LQR_Unknown)
   4053     return false;
   4054 
   4055   // If the register is known not to be live, there is no need to add an
   4056   // implicit-use.
   4057   ImplicitSReg = 0;
   4058   return true;
   4059 }
   4060 
   4061 void
   4062 ARMBaseInstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const {
   4063   unsigned DstReg, SrcReg, DReg;
   4064   unsigned Lane;
   4065   MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI);
   4066   const TargetRegisterInfo *TRI = &getRegisterInfo();
   4067   switch (MI->getOpcode()) {
   4068     default:
   4069       llvm_unreachable("cannot handle opcode!");
   4070       break;
   4071     case ARM::VMOVD:
   4072       if (Domain != ExeNEON)
   4073         break;
   4074 
   4075       // Zap the predicate operands.
   4076       assert(!isPredicated(MI) && "Cannot predicate a VORRd");
   4077 
   4078       // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits)
   4079       DstReg = MI->getOperand(0).getReg();
   4080       SrcReg = MI->getOperand(1).getReg();
   4081 
   4082       for (unsigned i = MI->getDesc().getNumOperands(); i; --i)
   4083         MI->RemoveOperand(i-1);
   4084 
   4085       // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits)
   4086       MI->setDesc(get(ARM::VORRd));
   4087       AddDefaultPred(MIB.addReg(DstReg, RegState::Define)
   4088                         .addReg(SrcReg)
   4089                         .addReg(SrcReg));
   4090       break;
   4091     case ARM::VMOVRS:
   4092       if (Domain != ExeNEON)
   4093         break;
   4094       assert(!isPredicated(MI) && "Cannot predicate a VGETLN");
   4095 
   4096       // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits)
   4097       DstReg = MI->getOperand(0).getReg();
   4098       SrcReg = MI->getOperand(1).getReg();
   4099 
   4100       for (unsigned i = MI->getDesc().getNumOperands(); i; --i)
   4101         MI->RemoveOperand(i-1);
   4102 
   4103       DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane);
   4104 
   4105       // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps)
   4106       // Note that DSrc has been widened and the other lane may be undef, which
   4107       // contaminates the entire register.
   4108       MI->setDesc(get(ARM::VGETLNi32));
   4109       AddDefaultPred(MIB.addReg(DstReg, RegState::Define)
   4110                         .addReg(DReg, RegState::Undef)
   4111                         .addImm(Lane));
   4112 
   4113       // The old source should be an implicit use, otherwise we might think it
   4114       // was dead before here.
   4115       MIB.addReg(SrcReg, RegState::Implicit);
   4116       break;
   4117     case ARM::VMOVSR: {
   4118       if (Domain != ExeNEON)
   4119         break;
   4120       assert(!isPredicated(MI) && "Cannot predicate a VSETLN");
   4121 
   4122       // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits)
   4123       DstReg = MI->getOperand(0).getReg();
   4124       SrcReg = MI->getOperand(1).getReg();
   4125 
   4126       DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane);
   4127 
   4128       unsigned ImplicitSReg;
   4129       if (!getImplicitSPRUseForDPRUse(TRI, MI, DReg, Lane, ImplicitSReg))
   4130         break;
   4131 
   4132       for (unsigned i = MI->getDesc().getNumOperands(); i; --i)
   4133         MI->RemoveOperand(i-1);
   4134 
   4135       // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps)
   4136       // Again DDst may be undefined at the beginning of this instruction.
   4137       MI->setDesc(get(ARM::VSETLNi32));
   4138       MIB.addReg(DReg, RegState::Define)
   4139          .addReg(DReg, getUndefRegState(!MI->readsRegister(DReg, TRI)))
   4140          .addReg(SrcReg)
   4141          .addImm(Lane);
   4142       AddDefaultPred(MIB);
   4143 
   4144       // The narrower destination must be marked as set to keep previous chains
   4145       // in place.
   4146       MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
   4147       if (ImplicitSReg != 0)
   4148         MIB.addReg(ImplicitSReg, RegState::Implicit);
   4149       break;
   4150     }
   4151     case ARM::VMOVS: {
   4152       if (Domain != ExeNEON)
   4153         break;
   4154 
   4155       // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits)
   4156       DstReg = MI->getOperand(0).getReg();
   4157       SrcReg = MI->getOperand(1).getReg();
   4158 
   4159       unsigned DstLane = 0, SrcLane = 0, DDst, DSrc;
   4160       DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane);
   4161       DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane);
   4162 
   4163       unsigned ImplicitSReg;
   4164       if (!getImplicitSPRUseForDPRUse(TRI, MI, DSrc, SrcLane, ImplicitSReg))
   4165         break;
   4166 
   4167       for (unsigned i = MI->getDesc().getNumOperands(); i; --i)
   4168         MI->RemoveOperand(i-1);
   4169 
   4170       if (DSrc == DDst) {
   4171         // Destination can be:
   4172         //     %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits)
   4173         MI->setDesc(get(ARM::VDUPLN32d));
   4174         MIB.addReg(DDst, RegState::Define)
   4175            .addReg(DDst, getUndefRegState(!MI->readsRegister(DDst, TRI)))
   4176            .addImm(SrcLane);
   4177         AddDefaultPred(MIB);
   4178 
   4179         // Neither the source or the destination are naturally represented any
   4180         // more, so add them in manually.
   4181         MIB.addReg(DstReg, RegState::Implicit | RegState::Define);
   4182         MIB.addReg(SrcReg, RegState::Implicit);
   4183         if (ImplicitSReg != 0)
   4184           MIB.addReg(ImplicitSReg, RegState::Implicit);
   4185         break;
   4186       }
   4187 
   4188       // In general there's no single instruction that can perform an S <-> S
   4189       // move in NEON space, but a pair of VEXT instructions *can* do the
   4190       // job. It turns out that the VEXTs needed will only use DSrc once, with
   4191       // the position based purely on the combination of lane-0 and lane-1
   4192       // involved. For example
   4193       //     vmov s0, s2 -> vext.32 d0, d0, d1, #1  vext.32 d0, d0, d0, #1
   4194       //     vmov s1, s3 -> vext.32 d0, d1, d0, #1  vext.32 d0, d0, d0, #1
   4195       //     vmov s0, s3 -> vext.32 d0, d0, d0, #1  vext.32 d0, d1, d0, #1
   4196       //     vmov s1, s2 -> vext.32 d0, d0, d0, #1  vext.32 d0, d0, d1, #1
   4197       //
   4198       // Pattern of the MachineInstrs is:
   4199       //     %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits)
   4200       MachineInstrBuilder NewMIB;
   4201       NewMIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
   4202                        get(ARM::VEXTd32), DDst);
   4203 
   4204       // On the first instruction, both DSrc and DDst may be <undef> if present.
   4205       // Specifically when the original instruction didn't have them as an
   4206       // <imp-use>.
   4207       unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst;
   4208       bool CurUndef = !MI->readsRegister(CurReg, TRI);
   4209       NewMIB.addReg(CurReg, getUndefRegState(CurUndef));
   4210 
   4211       CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst;
   4212       CurUndef = !MI->readsRegister(CurReg, TRI);
   4213       NewMIB.addReg(CurReg, getUndefRegState(CurUndef));
   4214 
   4215       NewMIB.addImm(1);
   4216       AddDefaultPred(NewMIB);
   4217 
   4218       if (SrcLane == DstLane)
   4219         NewMIB.addReg(SrcReg, RegState::Implicit);
   4220 
   4221       MI->setDesc(get(ARM::VEXTd32));
   4222       MIB.addReg(DDst, RegState::Define);
   4223 
   4224       // On the second instruction, DDst has definitely been defined above, so
   4225       // it is not <undef>. DSrc, if present, can be <undef> as above.
   4226       CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst;
   4227       CurUndef = CurReg == DSrc && !MI->readsRegister(CurReg, TRI);
   4228       MIB.addReg(CurReg, getUndefRegState(CurUndef));
   4229 
   4230       CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst;
   4231       CurUndef = CurReg == DSrc && !MI->readsRegister(CurReg, TRI);
   4232       MIB.addReg(CurReg, getUndefRegState(CurUndef));
   4233 
   4234       MIB.addImm(1);
   4235       AddDefaultPred(MIB);
   4236 
   4237       if (SrcLane != DstLane)
   4238         MIB.addReg(SrcReg, RegState::Implicit);
   4239 
   4240       // As before, the original destination is no longer represented, add it
   4241       // implicitly.
   4242       MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
   4243       if (ImplicitSReg != 0)
   4244         MIB.addReg(ImplicitSReg, RegState::Implicit);
   4245       break;
   4246     }
   4247   }
   4248 
   4249 }
   4250 
   4251 //===----------------------------------------------------------------------===//
   4252 // Partial register updates
   4253 //===----------------------------------------------------------------------===//
   4254 //
   4255 // Swift renames NEON registers with 64-bit granularity.  That means any
   4256 // instruction writing an S-reg implicitly reads the containing D-reg.  The
   4257 // problem is mostly avoided by translating f32 operations to v2f32 operations
   4258 // on D-registers, but f32 loads are still a problem.
   4259 //
   4260 // These instructions can load an f32 into a NEON register:
   4261 //
   4262 // VLDRS - Only writes S, partial D update.
   4263 // VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops.
   4264 // VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops.
   4265 //
   4266 // FCONSTD can be used as a dependency-breaking instruction.
   4267 unsigned ARMBaseInstrInfo::
   4268 getPartialRegUpdateClearance(const MachineInstr *MI,
   4269                              unsigned OpNum,
   4270                              const TargetRegisterInfo *TRI) const {
   4271   if (!SwiftPartialUpdateClearance ||
   4272       !(Subtarget.isSwift() || Subtarget.isCortexA15()))
   4273     return 0;
   4274 
   4275   assert(TRI && "Need TRI instance");
   4276 
   4277   const MachineOperand &MO = MI->getOperand(OpNum);
   4278   if (MO.readsReg())
   4279     return 0;
   4280   unsigned Reg = MO.getReg();
   4281   int UseOp = -1;
   4282 
   4283   switch(MI->getOpcode()) {
   4284     // Normal instructions writing only an S-register.
   4285   case ARM::VLDRS:
   4286   case ARM::FCONSTS:
   4287   case ARM::VMOVSR:
   4288   case ARM::VMOVv8i8:
   4289   case ARM::VMOVv4i16:
   4290   case ARM::VMOVv2i32:
   4291   case ARM::VMOVv2f32:
   4292   case ARM::VMOVv1i64:
   4293     UseOp = MI->findRegisterUseOperandIdx(Reg, false, TRI);
   4294     break;
   4295 
   4296     // Explicitly reads the dependency.
   4297   case ARM::VLD1LNd32:
   4298     UseOp = 3;
   4299     break;
   4300   default:
   4301     return 0;
   4302   }
   4303 
   4304   // If this instruction actually reads a value from Reg, there is no unwanted
   4305   // dependency.
   4306   if (UseOp != -1 && MI->getOperand(UseOp).readsReg())
   4307     return 0;
   4308 
   4309   // We must be able to clobber the whole D-reg.
   4310   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
   4311     // Virtual register must be a foo:ssub_0<def,undef> operand.
   4312     if (!MO.getSubReg() || MI->readsVirtualRegister(Reg))
   4313       return 0;
   4314   } else if (ARM::SPRRegClass.contains(Reg)) {
   4315     // Physical register: MI must define the full D-reg.
   4316     unsigned DReg = TRI->getMatchingSuperReg(Reg, ARM::ssub_0,
   4317                                              &ARM::DPRRegClass);
   4318     if (!DReg || !MI->definesRegister(DReg, TRI))
   4319       return 0;
   4320   }
   4321 
   4322   // MI has an unwanted D-register dependency.
   4323   // Avoid defs in the previous N instructrions.
   4324   return SwiftPartialUpdateClearance;
   4325 }
   4326 
   4327 // Break a partial register dependency after getPartialRegUpdateClearance
   4328 // returned non-zero.
   4329 void ARMBaseInstrInfo::
   4330 breakPartialRegDependency(MachineBasicBlock::iterator MI,
   4331                           unsigned OpNum,
   4332                           const TargetRegisterInfo *TRI) const {
   4333   assert(MI && OpNum < MI->getDesc().getNumDefs() && "OpNum is not a def");
   4334   assert(TRI && "Need TRI instance");
   4335 
   4336   const MachineOperand &MO = MI->getOperand(OpNum);
   4337   unsigned Reg = MO.getReg();
   4338   assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
   4339          "Can't break virtual register dependencies.");
   4340   unsigned DReg = Reg;
   4341 
   4342   // If MI defines an S-reg, find the corresponding D super-register.
   4343   if (ARM::SPRRegClass.contains(Reg)) {
   4344     DReg = ARM::D0 + (Reg - ARM::S0) / 2;
   4345     assert(TRI->isSuperRegister(Reg, DReg) && "Register enums broken");
   4346   }
   4347 
   4348   assert(ARM::DPRRegClass.contains(DReg) && "Can only break D-reg deps");
   4349   assert(MI->definesRegister(DReg, TRI) && "MI doesn't clobber full D-reg");
   4350 
   4351   // FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines
   4352   // the full D-register by loading the same value to both lanes.  The
   4353   // instruction is micro-coded with 2 uops, so don't do this until we can
   4354   // properly schedule micro-coded instructions.  The dispatcher stalls cause
   4355   // too big regressions.
   4356 
   4357   // Insert the dependency-breaking FCONSTD before MI.
   4358   // 96 is the encoding of 0.5, but the actual value doesn't matter here.
   4359   AddDefaultPred(BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
   4360                          get(ARM::FCONSTD), DReg).addImm(96));
   4361   MI->addRegisterKilled(DReg, TRI, true);
   4362 }
   4363 
   4364 void ARMBaseInstrInfo::getUnconditionalBranch(
   4365     MCInst &Branch, const MCSymbolRefExpr *BranchTarget) const {
   4366   if (Subtarget.isThumb())
   4367     Branch.setOpcode(ARM::tB);
   4368   else if (Subtarget.isThumb2())
   4369     Branch.setOpcode(ARM::t2B);
   4370   else
   4371     Branch.setOpcode(ARM::Bcc);
   4372 
   4373   Branch.addOperand(MCOperand::CreateExpr(BranchTarget));
   4374   Branch.addOperand(MCOperand::CreateImm(ARMCC::AL));
   4375   Branch.addOperand(MCOperand::CreateReg(0));
   4376 }
   4377 
   4378 void ARMBaseInstrInfo::getTrap(MCInst &MI) const {
   4379   if (Subtarget.isThumb())
   4380     MI.setOpcode(ARM::tTRAP);
   4381   else if (Subtarget.useNaClTrap())
   4382     MI.setOpcode(ARM::TRAPNaCl);
   4383   else
   4384     MI.setOpcode(ARM::TRAP);
   4385 }
   4386 
   4387 bool ARMBaseInstrInfo::hasNOP() const {
   4388   return (Subtarget.getFeatureBits() & ARM::HasV6T2Ops) != 0;
   4389 }
   4390 
   4391 bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr *MI) const {
   4392   if (MI->getNumOperands() < 4)
   4393     return true;
   4394   unsigned ShOpVal = MI->getOperand(3).getImm();
   4395   unsigned ShImm = ARM_AM::getSORegOffset(ShOpVal);
   4396   // Swift supports faster shifts for: lsl 2, lsl 1, and lsr 1.
   4397   if ((ShImm == 1 && ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsr) ||
   4398       ((ShImm == 1 || ShImm == 2) &&
   4399        ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsl))
   4400     return true;
   4401 
   4402   return false;
   4403 }
   4404