Home | History | Annotate | Download | only in X86
      1 //===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 /// \file
     10 /// This file implements a TargetTransformInfo analysis pass specific to the
     11 /// X86 target machine. It uses the target's detailed information to provide
     12 /// more precise answers to certain TTI queries, while letting the target
     13 /// independent and default TTI implementations handle the rest.
     14 ///
     15 //===----------------------------------------------------------------------===//
     16 
     17 #include "X86.h"
     18 #include "X86TargetMachine.h"
     19 #include "llvm/Analysis/TargetTransformInfo.h"
     20 #include "llvm/IR/IntrinsicInst.h"
     21 #include "llvm/Support/Debug.h"
     22 #include "llvm/Target/CostTable.h"
     23 #include "llvm/Target/TargetLowering.h"
     24 using namespace llvm;
     25 
     26 #define DEBUG_TYPE "x86tti"
     27 
     28 // Declare the pass initialization routine locally as target-specific passes
     29 // don't have a target-wide initialization entry point, and so we rely on the
     30 // pass constructor initialization.
     31 namespace llvm {
     32 void initializeX86TTIPass(PassRegistry &);
     33 }
     34 
     35 namespace {
     36 
     37 class X86TTI final : public ImmutablePass, public TargetTransformInfo {
     38   const X86Subtarget *ST;
     39   const X86TargetLowering *TLI;
     40 
     41   /// Estimate the overhead of scalarizing an instruction. Insert and Extract
     42   /// are set if the result needs to be inserted and/or extracted from vectors.
     43   unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
     44 
     45 public:
     46   X86TTI() : ImmutablePass(ID), ST(nullptr), TLI(nullptr) {
     47     llvm_unreachable("This pass cannot be directly constructed");
     48   }
     49 
     50   X86TTI(const X86TargetMachine *TM)
     51     : ImmutablePass(ID), ST(TM->getSubtargetImpl()),
     52       TLI(TM->getTargetLowering()) {
     53     initializeX86TTIPass(*PassRegistry::getPassRegistry());
     54   }
     55 
     56   void initializePass() override {
     57     pushTTIStack(this);
     58   }
     59 
     60   void getAnalysisUsage(AnalysisUsage &AU) const override {
     61     TargetTransformInfo::getAnalysisUsage(AU);
     62   }
     63 
     64   /// Pass identification.
     65   static char ID;
     66 
     67   /// Provide necessary pointer adjustments for the two base classes.
     68   void *getAdjustedAnalysisPointer(const void *ID) override {
     69     if (ID == &TargetTransformInfo::ID)
     70       return (TargetTransformInfo*)this;
     71     return this;
     72   }
     73 
     74   /// \name Scalar TTI Implementations
     75   /// @{
     76   PopcntSupportKind getPopcntSupport(unsigned TyWidth) const override;
     77 
     78   /// @}
     79 
     80   /// \name Vector TTI Implementations
     81   /// @{
     82 
     83   unsigned getNumberOfRegisters(bool Vector) const override;
     84   unsigned getRegisterBitWidth(bool Vector) const override;
     85   unsigned getMaximumUnrollFactor() const override;
     86   unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind,
     87                                   OperandValueKind) const override;
     88   unsigned getShuffleCost(ShuffleKind Kind, Type *Tp,
     89                           int Index, Type *SubTp) const override;
     90   unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
     91                             Type *Src) const override;
     92   unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
     93                               Type *CondTy) const override;
     94   unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
     95                               unsigned Index) const override;
     96   unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
     97                            unsigned AddressSpace) const override;
     98 
     99   unsigned getAddressComputationCost(Type *PtrTy,
    100                                      bool IsComplex) const override;
    101 
    102   unsigned getReductionCost(unsigned Opcode, Type *Ty,
    103                             bool IsPairwiseForm) const override;
    104 
    105   unsigned getIntImmCost(int64_t) const;
    106 
    107   unsigned getIntImmCost(const APInt &Imm, Type *Ty) const override;
    108 
    109   unsigned getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
    110                          Type *Ty) const override;
    111   unsigned getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
    112                          Type *Ty) const override;
    113 
    114   /// @}
    115 };
    116 
    117 } // end anonymous namespace
    118 
    119 INITIALIZE_AG_PASS(X86TTI, TargetTransformInfo, "x86tti",
    120                    "X86 Target Transform Info", true, true, false)
    121 char X86TTI::ID = 0;
    122 
    123 ImmutablePass *
    124 llvm::createX86TargetTransformInfoPass(const X86TargetMachine *TM) {
    125   return new X86TTI(TM);
    126 }
    127 
    128 
    129 //===----------------------------------------------------------------------===//
    130 //
    131 // X86 cost model.
    132 //
    133 //===----------------------------------------------------------------------===//
    134 
    135 X86TTI::PopcntSupportKind X86TTI::getPopcntSupport(unsigned TyWidth) const {
    136   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
    137   // TODO: Currently the __builtin_popcount() implementation using SSE3
    138   //   instructions is inefficient. Once the problem is fixed, we should
    139   //   call ST->hasSSE3() instead of ST->hasPOPCNT().
    140   return ST->hasPOPCNT() ? PSK_FastHardware : PSK_Software;
    141 }
    142 
    143 unsigned X86TTI::getNumberOfRegisters(bool Vector) const {
    144   if (Vector && !ST->hasSSE1())
    145     return 0;
    146 
    147   if (ST->is64Bit()) {
    148     if (Vector && ST->hasAVX512())
    149       return 32;
    150     return 16;
    151   }
    152   return 8;
    153 }
    154 
    155 unsigned X86TTI::getRegisterBitWidth(bool Vector) const {
    156   if (Vector) {
    157     if (ST->hasAVX512()) return 512;
    158     if (ST->hasAVX()) return 256;
    159     if (ST->hasSSE1()) return 128;
    160     return 0;
    161   }
    162 
    163   if (ST->is64Bit())
    164     return 64;
    165   return 32;
    166 
    167 }
    168 
    169 unsigned X86TTI::getMaximumUnrollFactor() const {
    170   if (ST->isAtom())
    171     return 1;
    172 
    173   // Sandybridge and Haswell have multiple execution ports and pipelined
    174   // vector units.
    175   if (ST->hasAVX())
    176     return 4;
    177 
    178   return 2;
    179 }
    180 
    181 unsigned X86TTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
    182                                         OperandValueKind Op1Info,
    183                                         OperandValueKind Op2Info) const {
    184   // Legalize the type.
    185   std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
    186 
    187   int ISD = TLI->InstructionOpcodeToISD(Opcode);
    188   assert(ISD && "Invalid opcode");
    189 
    190   static const CostTblEntry<MVT::SimpleValueType>
    191   AVX2UniformConstCostTable[] = {
    192     { ISD::SDIV, MVT::v16i16,  6 }, // vpmulhw sequence
    193     { ISD::UDIV, MVT::v16i16,  6 }, // vpmulhuw sequence
    194     { ISD::SDIV, MVT::v8i32,  15 }, // vpmuldq sequence
    195     { ISD::UDIV, MVT::v8i32,  15 }, // vpmuludq sequence
    196   };
    197 
    198   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
    199       ST->hasAVX2()) {
    200     int Idx = CostTableLookup(AVX2UniformConstCostTable, ISD, LT.second);
    201     if (Idx != -1)
    202       return LT.first * AVX2UniformConstCostTable[Idx].Cost;
    203   }
    204 
    205   static const CostTblEntry<MVT::SimpleValueType> AVX2CostTable[] = {
    206     // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to
    207     // customize them to detect the cases where shift amount is a scalar one.
    208     { ISD::SHL,     MVT::v4i32,    1 },
    209     { ISD::SRL,     MVT::v4i32,    1 },
    210     { ISD::SRA,     MVT::v4i32,    1 },
    211     { ISD::SHL,     MVT::v8i32,    1 },
    212     { ISD::SRL,     MVT::v8i32,    1 },
    213     { ISD::SRA,     MVT::v8i32,    1 },
    214     { ISD::SHL,     MVT::v2i64,    1 },
    215     { ISD::SRL,     MVT::v2i64,    1 },
    216     { ISD::SHL,     MVT::v4i64,    1 },
    217     { ISD::SRL,     MVT::v4i64,    1 },
    218 
    219     { ISD::SHL,  MVT::v32i8,  42 }, // cmpeqb sequence.
    220     { ISD::SHL,  MVT::v16i16,  16*10 }, // Scalarized.
    221 
    222     { ISD::SRL,  MVT::v32i8,  32*10 }, // Scalarized.
    223     { ISD::SRL,  MVT::v16i16,  8*10 }, // Scalarized.
    224 
    225     { ISD::SRA,  MVT::v32i8,  32*10 }, // Scalarized.
    226     { ISD::SRA,  MVT::v16i16,  16*10 }, // Scalarized.
    227     { ISD::SRA,  MVT::v4i64,  4*10 }, // Scalarized.
    228 
    229     // Vectorizing division is a bad idea. See the SSE2 table for more comments.
    230     { ISD::SDIV,  MVT::v32i8,  32*20 },
    231     { ISD::SDIV,  MVT::v16i16, 16*20 },
    232     { ISD::SDIV,  MVT::v8i32,  8*20 },
    233     { ISD::SDIV,  MVT::v4i64,  4*20 },
    234     { ISD::UDIV,  MVT::v32i8,  32*20 },
    235     { ISD::UDIV,  MVT::v16i16, 16*20 },
    236     { ISD::UDIV,  MVT::v8i32,  8*20 },
    237     { ISD::UDIV,  MVT::v4i64,  4*20 },
    238   };
    239 
    240   // Look for AVX2 lowering tricks.
    241   if (ST->hasAVX2()) {
    242     if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
    243         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
    244          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
    245       // On AVX2, a packed v16i16 shift left by a constant build_vector
    246       // is lowered into a vector multiply (vpmullw).
    247       return LT.first;
    248 
    249     int Idx = CostTableLookup(AVX2CostTable, ISD, LT.second);
    250     if (Idx != -1)
    251       return LT.first * AVX2CostTable[Idx].Cost;
    252   }
    253 
    254   static const CostTblEntry<MVT::SimpleValueType>
    255   SSE2UniformConstCostTable[] = {
    256     // We don't correctly identify costs of casts because they are marked as
    257     // custom.
    258     // Constant splats are cheaper for the following instructions.
    259     { ISD::SHL,  MVT::v16i8,  1 }, // psllw.
    260     { ISD::SHL,  MVT::v8i16,  1 }, // psllw.
    261     { ISD::SHL,  MVT::v4i32,  1 }, // pslld
    262     { ISD::SHL,  MVT::v2i64,  1 }, // psllq.
    263 
    264     { ISD::SRL,  MVT::v16i8,  1 }, // psrlw.
    265     { ISD::SRL,  MVT::v8i16,  1 }, // psrlw.
    266     { ISD::SRL,  MVT::v4i32,  1 }, // psrld.
    267     { ISD::SRL,  MVT::v2i64,  1 }, // psrlq.
    268 
    269     { ISD::SRA,  MVT::v16i8,  4 }, // psrlw, pand, pxor, psubb.
    270     { ISD::SRA,  MVT::v8i16,  1 }, // psraw.
    271     { ISD::SRA,  MVT::v4i32,  1 }, // psrad.
    272 
    273     { ISD::SDIV, MVT::v8i16,  6 }, // pmulhw sequence
    274     { ISD::UDIV, MVT::v8i16,  6 }, // pmulhuw sequence
    275     { ISD::SDIV, MVT::v4i32, 19 }, // pmuludq sequence
    276     { ISD::UDIV, MVT::v4i32, 15 }, // pmuludq sequence
    277   };
    278 
    279   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
    280       ST->hasSSE2()) {
    281     // pmuldq sequence.
    282     if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41())
    283       return LT.first * 15;
    284 
    285     int Idx = CostTableLookup(SSE2UniformConstCostTable, ISD, LT.second);
    286     if (Idx != -1)
    287       return LT.first * SSE2UniformConstCostTable[Idx].Cost;
    288   }
    289 
    290   if (ISD == ISD::SHL &&
    291       Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) {
    292     EVT VT = LT.second;
    293     if ((VT == MVT::v8i16 && ST->hasSSE2()) ||
    294         (VT == MVT::v4i32 && ST->hasSSE41()))
    295       // Vector shift left by non uniform constant can be lowered
    296       // into vector multiply (pmullw/pmulld).
    297       return LT.first;
    298     if (VT == MVT::v4i32 && ST->hasSSE2())
    299       // A vector shift left by non uniform constant is converted
    300       // into a vector multiply; the new multiply is eventually
    301       // lowered into a sequence of shuffles and 2 x pmuludq.
    302       ISD = ISD::MUL;
    303   }
    304 
    305   static const CostTblEntry<MVT::SimpleValueType> SSE2CostTable[] = {
    306     // We don't correctly identify costs of casts because they are marked as
    307     // custom.
    308     // For some cases, where the shift amount is a scalar we would be able
    309     // to generate better code. Unfortunately, when this is the case the value
    310     // (the splat) will get hoisted out of the loop, thereby making it invisible
    311     // to ISel. The cost model must return worst case assumptions because it is
    312     // used for vectorization and we don't want to make vectorized code worse
    313     // than scalar code.
    314     { ISD::SHL,  MVT::v16i8,  30 }, // cmpeqb sequence.
    315     { ISD::SHL,  MVT::v8i16,  8*10 }, // Scalarized.
    316     { ISD::SHL,  MVT::v4i32,  2*5 }, // We optimized this using mul.
    317     { ISD::SHL,  MVT::v2i64,  2*10 }, // Scalarized.
    318     { ISD::SHL,  MVT::v4i64,  4*10 }, // Scalarized.
    319 
    320     { ISD::SRL,  MVT::v16i8,  16*10 }, // Scalarized.
    321     { ISD::SRL,  MVT::v8i16,  8*10 }, // Scalarized.
    322     { ISD::SRL,  MVT::v4i32,  4*10 }, // Scalarized.
    323     { ISD::SRL,  MVT::v2i64,  2*10 }, // Scalarized.
    324 
    325     { ISD::SRA,  MVT::v16i8,  16*10 }, // Scalarized.
    326     { ISD::SRA,  MVT::v8i16,  8*10 }, // Scalarized.
    327     { ISD::SRA,  MVT::v4i32,  4*10 }, // Scalarized.
    328     { ISD::SRA,  MVT::v2i64,  2*10 }, // Scalarized.
    329 
    330     // It is not a good idea to vectorize division. We have to scalarize it and
    331     // in the process we will often end up having to spilling regular
    332     // registers. The overhead of division is going to dominate most kernels
    333     // anyways so try hard to prevent vectorization of division - it is
    334     // generally a bad idea. Assume somewhat arbitrarily that we have to be able
    335     // to hide "20 cycles" for each lane.
    336     { ISD::SDIV,  MVT::v16i8,  16*20 },
    337     { ISD::SDIV,  MVT::v8i16,  8*20 },
    338     { ISD::SDIV,  MVT::v4i32,  4*20 },
    339     { ISD::SDIV,  MVT::v2i64,  2*20 },
    340     { ISD::UDIV,  MVT::v16i8,  16*20 },
    341     { ISD::UDIV,  MVT::v8i16,  8*20 },
    342     { ISD::UDIV,  MVT::v4i32,  4*20 },
    343     { ISD::UDIV,  MVT::v2i64,  2*20 },
    344   };
    345 
    346   if (ST->hasSSE2()) {
    347     int Idx = CostTableLookup(SSE2CostTable, ISD, LT.second);
    348     if (Idx != -1)
    349       return LT.first * SSE2CostTable[Idx].Cost;
    350   }
    351 
    352   static const CostTblEntry<MVT::SimpleValueType> AVX1CostTable[] = {
    353     // We don't have to scalarize unsupported ops. We can issue two half-sized
    354     // operations and we only need to extract the upper YMM half.
    355     // Two ops + 1 extract + 1 insert = 4.
    356     { ISD::MUL,     MVT::v16i16,   4 },
    357     { ISD::MUL,     MVT::v8i32,    4 },
    358     { ISD::SUB,     MVT::v8i32,    4 },
    359     { ISD::ADD,     MVT::v8i32,    4 },
    360     { ISD::SUB,     MVT::v4i64,    4 },
    361     { ISD::ADD,     MVT::v4i64,    4 },
    362     // A v4i64 multiply is custom lowered as two split v2i64 vectors that then
    363     // are lowered as a series of long multiplies(3), shifts(4) and adds(2)
    364     // Because we believe v4i64 to be a legal type, we must also include the
    365     // split factor of two in the cost table. Therefore, the cost here is 18
    366     // instead of 9.
    367     { ISD::MUL,     MVT::v4i64,    18 },
    368   };
    369 
    370   // Look for AVX1 lowering tricks.
    371   if (ST->hasAVX() && !ST->hasAVX2()) {
    372     EVT VT = LT.second;
    373 
    374     // v16i16 and v8i32 shifts by non-uniform constants are lowered into a
    375     // sequence of extract + two vector multiply + insert.
    376     if (ISD == ISD::SHL && (VT == MVT::v8i32 || VT == MVT::v16i16) &&
    377         Op2Info == TargetTransformInfo::OK_NonUniformConstantValue)
    378       ISD = ISD::MUL;
    379 
    380     int Idx = CostTableLookup(AVX1CostTable, ISD, VT);
    381     if (Idx != -1)
    382       return LT.first * AVX1CostTable[Idx].Cost;
    383   }
    384 
    385   // Custom lowering of vectors.
    386   static const CostTblEntry<MVT::SimpleValueType> CustomLowered[] = {
    387     // A v2i64/v4i64 and multiply is custom lowered as a series of long
    388     // multiplies(3), shifts(4) and adds(2).
    389     { ISD::MUL,     MVT::v2i64,    9 },
    390     { ISD::MUL,     MVT::v4i64,    9 },
    391   };
    392   int Idx = CostTableLookup(CustomLowered, ISD, LT.second);
    393   if (Idx != -1)
    394     return LT.first * CustomLowered[Idx].Cost;
    395 
    396   // Special lowering of v4i32 mul on sse2, sse3: Lower v4i32 mul as 2x shuffle,
    397   // 2x pmuludq, 2x shuffle.
    398   if (ISD == ISD::MUL && LT.second == MVT::v4i32 && ST->hasSSE2() &&
    399       !ST->hasSSE41())
    400     return LT.first * 6;
    401 
    402   // Fallback to the default implementation.
    403   return TargetTransformInfo::getArithmeticInstrCost(Opcode, Ty, Op1Info,
    404                                                      Op2Info);
    405 }
    406 
    407 unsigned X86TTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
    408                                 Type *SubTp) const {
    409   // We only estimate the cost of reverse and alternate shuffles.
    410   if (Kind != SK_Reverse && Kind != SK_Alternate)
    411     return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);
    412 
    413   if (Kind == SK_Reverse) {
    414     std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Tp);
    415     unsigned Cost = 1;
    416     if (LT.second.getSizeInBits() > 128)
    417       Cost = 3; // Extract + insert + copy.
    418 
    419     // Multiple by the number of parts.
    420     return Cost * LT.first;
    421   }
    422 
    423   if (Kind == SK_Alternate) {
    424     // 64-bit packed float vectors (v2f32) are widened to type v4f32.
    425     // 64-bit packed integer vectors (v2i32) are promoted to type v2i64.
    426     std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Tp);
    427 
    428     // The backend knows how to generate a single VEX.256 version of
    429     // instruction VPBLENDW if the target supports AVX2.
    430     if (ST->hasAVX2() && LT.second == MVT::v16i16)
    431       return LT.first;
    432 
    433     static const CostTblEntry<MVT::SimpleValueType> AVXAltShuffleTbl[] = {
    434       {ISD::VECTOR_SHUFFLE, MVT::v4i64, 1},  // vblendpd
    435       {ISD::VECTOR_SHUFFLE, MVT::v4f64, 1},  // vblendpd
    436 
    437       {ISD::VECTOR_SHUFFLE, MVT::v8i32, 1},  // vblendps
    438       {ISD::VECTOR_SHUFFLE, MVT::v8f32, 1},  // vblendps
    439 
    440       // This shuffle is custom lowered into a sequence of:
    441       //  2x  vextractf128 , 2x vpblendw , 1x vinsertf128
    442       {ISD::VECTOR_SHUFFLE, MVT::v16i16, 5},
    443 
    444       // This shuffle is custom lowered into a long sequence of:
    445       //  2x vextractf128 , 4x vpshufb , 2x vpor ,  1x vinsertf128
    446       {ISD::VECTOR_SHUFFLE, MVT::v32i8, 9}
    447     };
    448 
    449     if (ST->hasAVX()) {
    450       int Idx = CostTableLookup(AVXAltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second);
    451       if (Idx != -1)
    452         return LT.first * AVXAltShuffleTbl[Idx].Cost;
    453     }
    454 
    455     static const CostTblEntry<MVT::SimpleValueType> SSE41AltShuffleTbl[] = {
    456       // These are lowered into movsd.
    457       {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
    458       {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
    459 
    460       // packed float vectors with four elements are lowered into BLENDI dag
    461       // nodes. A v4i32/v4f32 BLENDI generates a single 'blendps'/'blendpd'.
    462       {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1},
    463       {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1},
    464 
    465       // This shuffle generates a single pshufw.
    466       {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1},
    467 
    468       // There is no instruction that matches a v16i8 alternate shuffle.
    469       // The backend will expand it into the sequence 'pshufb + pshufb + or'.
    470       {ISD::VECTOR_SHUFFLE, MVT::v16i8, 3}
    471     };
    472 
    473     if (ST->hasSSE41()) {
    474       int Idx = CostTableLookup(SSE41AltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second);
    475       if (Idx != -1)
    476         return LT.first * SSE41AltShuffleTbl[Idx].Cost;
    477     }
    478 
    479     static const CostTblEntry<MVT::SimpleValueType> SSSE3AltShuffleTbl[] = {
    480       {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},  // movsd
    481       {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},  // movsd
    482 
    483       // SSE3 doesn't have 'blendps'. The following shuffles are expanded into
    484       // the sequence 'shufps + pshufd'
    485       {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
    486       {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
    487 
    488       {ISD::VECTOR_SHUFFLE, MVT::v8i16, 3}, // pshufb + pshufb + or
    489       {ISD::VECTOR_SHUFFLE, MVT::v16i8, 3}  // pshufb + pshufb + or
    490     };
    491 
    492     if (ST->hasSSSE3()) {
    493       int Idx = CostTableLookup(SSSE3AltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second);
    494       if (Idx != -1)
    495         return LT.first * SSSE3AltShuffleTbl[Idx].Cost;
    496     }
    497 
    498     static const CostTblEntry<MVT::SimpleValueType> SSEAltShuffleTbl[] = {
    499       {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},  // movsd
    500       {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},  // movsd
    501 
    502       {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2}, // shufps + pshufd
    503       {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2}, // shufps + pshufd
    504 
    505       // This is expanded into a long sequence of four extract + four insert.
    506       {ISD::VECTOR_SHUFFLE, MVT::v8i16, 8}, // 4 x pextrw + 4 pinsrw.
    507 
    508       // 8 x (pinsrw + pextrw + and + movb + movzb + or)
    509       {ISD::VECTOR_SHUFFLE, MVT::v16i8, 48}
    510     };
    511 
    512     // Fall-back (SSE3 and SSE2).
    513     int Idx = CostTableLookup(SSEAltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second);
    514     if (Idx != -1)
    515       return LT.first * SSEAltShuffleTbl[Idx].Cost;
    516     return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);
    517   }
    518 
    519   return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);
    520 }
    521 
    522 unsigned X86TTI::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const {
    523   int ISD = TLI->InstructionOpcodeToISD(Opcode);
    524   assert(ISD && "Invalid opcode");
    525 
    526   std::pair<unsigned, MVT> LTSrc = TLI->getTypeLegalizationCost(Src);
    527   std::pair<unsigned, MVT> LTDest = TLI->getTypeLegalizationCost(Dst);
    528 
    529   static const TypeConversionCostTblEntry<MVT::SimpleValueType>
    530   SSE2ConvTbl[] = {
    531     // These are somewhat magic numbers justified by looking at the output of
    532     // Intel's IACA, running some kernels and making sure when we take
    533     // legalization into account the throughput will be overestimated.
    534     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
    535     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
    536     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
    537     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
    538     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
    539     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
    540     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
    541     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
    542     // There are faster sequences for float conversions.
    543     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
    544     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 15 },
    545     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
    546     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
    547     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
    548     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 15 },
    549     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
    550     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
    551   };
    552 
    553   if (ST->hasSSE2() && !ST->hasAVX()) {
    554     int Idx =
    555         ConvertCostTableLookup(SSE2ConvTbl, ISD, LTDest.second, LTSrc.second);
    556     if (Idx != -1)
    557       return LTSrc.first * SSE2ConvTbl[Idx].Cost;
    558   }
    559 
    560   EVT SrcTy = TLI->getValueType(Src);
    561   EVT DstTy = TLI->getValueType(Dst);
    562 
    563   // The function getSimpleVT only handles simple value types.
    564   if (!SrcTy.isSimple() || !DstTy.isSimple())
    565     return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
    566 
    567   static const TypeConversionCostTblEntry<MVT::SimpleValueType>
    568   AVX2ConversionTbl[] = {
    569     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
    570     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
    571     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
    572     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
    573     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   3 },
    574     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   3 },
    575     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
    576     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
    577     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
    578     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
    579     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,   3 },
    580     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,   3 },
    581     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16,  3 },
    582     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16,  3 },
    583     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
    584     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
    585 
    586     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i64,  2 },
    587     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i64,  2 },
    588     { ISD::TRUNCATE,    MVT::v4i32,  MVT::v4i64,  2 },
    589     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  2 },
    590     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  2 },
    591     { ISD::TRUNCATE,    MVT::v8i32,  MVT::v8i64,  4 },
    592   };
    593 
    594   static const TypeConversionCostTblEntry<MVT::SimpleValueType>
    595   AVXConversionTbl[] = {
    596     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
    597     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
    598     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,  7 },
    599     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,  4 },
    600     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,  7 },
    601     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,  4 },
    602     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16, 4 },
    603     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16, 4 },
    604     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,  6 },
    605     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,  4 },
    606     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,  6 },
    607     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,  4 },
    608     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16, 6 },
    609     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
    610     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32, 4 },
    611     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32, 4 },
    612 
    613     { ISD::TRUNCATE,    MVT::v4i8,  MVT::v4i64,  4 },
    614     { ISD::TRUNCATE,    MVT::v4i16, MVT::v4i64,  4 },
    615     { ISD::TRUNCATE,    MVT::v4i32, MVT::v4i64,  4 },
    616     { ISD::TRUNCATE,    MVT::v8i8,  MVT::v8i32,  4 },
    617     { ISD::TRUNCATE,    MVT::v8i16, MVT::v8i32,  5 },
    618     { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i16, 4 },
    619     { ISD::TRUNCATE,    MVT::v8i32, MVT::v8i64,  9 },
    620 
    621     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i1,  8 },
    622     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i8,  8 },
    623     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i16, 5 },
    624     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i32, 1 },
    625     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i1,  3 },
    626     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i8,  3 },
    627     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i16, 3 },
    628     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
    629     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i1,  3 },
    630     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i8,  3 },
    631     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i16, 3 },
    632     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i32, 1 },
    633 
    634     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i1,  6 },
    635     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i8,  5 },
    636     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i16, 5 },
    637     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i32, 9 },
    638     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i1,  7 },
    639     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i8,  2 },
    640     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
    641     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i32, 6 },
    642     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i1,  7 },
    643     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i8,  2 },
    644     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i16, 2 },
    645     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i32, 6 },
    646     // The generic code to compute the scalar overhead is currently broken.
    647     // Workaround this limitation by estimating the scalarization overhead
    648     // here. We have roughly 10 instructions per scalar element.
    649     // Multiply that by the vector width.
    650     // FIXME: remove that when PR19268 is fixed.
    651     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i64, 2*10 },
    652     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i64, 4*10 },
    653 
    654     { ISD::FP_TO_SINT,  MVT::v8i8,  MVT::v8f32, 7 },
    655     { ISD::FP_TO_SINT,  MVT::v4i8,  MVT::v4f32, 1 },
    656     // This node is expanded into scalarized operations but BasicTTI is overly
    657     // optimistic estimating its cost.  It computes 3 per element (one
    658     // vector-extract, one scalar conversion and one vector-insert).  The
    659     // problem is that the inserts form a read-modify-write chain so latency
    660     // should be factored in too.  Inflating the cost per element by 1.
    661     { ISD::FP_TO_UINT,  MVT::v8i32, MVT::v8f32, 8*4 },
    662     { ISD::FP_TO_UINT,  MVT::v4i32, MVT::v4f64, 4*4 },
    663   };
    664 
    665   if (ST->hasAVX2()) {
    666     int Idx = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
    667                                      DstTy.getSimpleVT(), SrcTy.getSimpleVT());
    668     if (Idx != -1)
    669       return AVX2ConversionTbl[Idx].Cost;
    670   }
    671 
    672   if (ST->hasAVX()) {
    673     int Idx = ConvertCostTableLookup(AVXConversionTbl, ISD, DstTy.getSimpleVT(),
    674                                      SrcTy.getSimpleVT());
    675     if (Idx != -1)
    676       return AVXConversionTbl[Idx].Cost;
    677   }
    678 
    679   return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
    680 }
    681 
    682 unsigned X86TTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
    683                                     Type *CondTy) const {
    684   // Legalize the type.
    685   std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy);
    686 
    687   MVT MTy = LT.second;
    688 
    689   int ISD = TLI->InstructionOpcodeToISD(Opcode);
    690   assert(ISD && "Invalid opcode");
    691 
    692   static const CostTblEntry<MVT::SimpleValueType> SSE42CostTbl[] = {
    693     { ISD::SETCC,   MVT::v2f64,   1 },
    694     { ISD::SETCC,   MVT::v4f32,   1 },
    695     { ISD::SETCC,   MVT::v2i64,   1 },
    696     { ISD::SETCC,   MVT::v4i32,   1 },
    697     { ISD::SETCC,   MVT::v8i16,   1 },
    698     { ISD::SETCC,   MVT::v16i8,   1 },
    699   };
    700 
    701   static const CostTblEntry<MVT::SimpleValueType> AVX1CostTbl[] = {
    702     { ISD::SETCC,   MVT::v4f64,   1 },
    703     { ISD::SETCC,   MVT::v8f32,   1 },
    704     // AVX1 does not support 8-wide integer compare.
    705     { ISD::SETCC,   MVT::v4i64,   4 },
    706     { ISD::SETCC,   MVT::v8i32,   4 },
    707     { ISD::SETCC,   MVT::v16i16,  4 },
    708     { ISD::SETCC,   MVT::v32i8,   4 },
    709   };
    710 
    711   static const CostTblEntry<MVT::SimpleValueType> AVX2CostTbl[] = {
    712     { ISD::SETCC,   MVT::v4i64,   1 },
    713     { ISD::SETCC,   MVT::v8i32,   1 },
    714     { ISD::SETCC,   MVT::v16i16,  1 },
    715     { ISD::SETCC,   MVT::v32i8,   1 },
    716   };
    717 
    718   if (ST->hasAVX2()) {
    719     int Idx = CostTableLookup(AVX2CostTbl, ISD, MTy);
    720     if (Idx != -1)
    721       return LT.first * AVX2CostTbl[Idx].Cost;
    722   }
    723 
    724   if (ST->hasAVX()) {
    725     int Idx = CostTableLookup(AVX1CostTbl, ISD, MTy);
    726     if (Idx != -1)
    727       return LT.first * AVX1CostTbl[Idx].Cost;
    728   }
    729 
    730   if (ST->hasSSE42()) {
    731     int Idx = CostTableLookup(SSE42CostTbl, ISD, MTy);
    732     if (Idx != -1)
    733       return LT.first * SSE42CostTbl[Idx].Cost;
    734   }
    735 
    736   return TargetTransformInfo::getCmpSelInstrCost(Opcode, ValTy, CondTy);
    737 }
    738 
    739 unsigned X86TTI::getVectorInstrCost(unsigned Opcode, Type *Val,
    740                                     unsigned Index) const {
    741   assert(Val->isVectorTy() && "This must be a vector type");
    742 
    743   if (Index != -1U) {
    744     // Legalize the type.
    745     std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Val);
    746 
    747     // This type is legalized to a scalar type.
    748     if (!LT.second.isVector())
    749       return 0;
    750 
    751     // The type may be split. Normalize the index to the new type.
    752     unsigned Width = LT.second.getVectorNumElements();
    753     Index = Index % Width;
    754 
    755     // Floating point scalars are already located in index #0.
    756     if (Val->getScalarType()->isFloatingPointTy() && Index == 0)
    757       return 0;
    758   }
    759 
    760   return TargetTransformInfo::getVectorInstrCost(Opcode, Val, Index);
    761 }
    762 
    763 unsigned X86TTI::getScalarizationOverhead(Type *Ty, bool Insert,
    764                                             bool Extract) const {
    765   assert (Ty->isVectorTy() && "Can only scalarize vectors");
    766   unsigned Cost = 0;
    767 
    768   for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
    769     if (Insert)
    770       Cost += TopTTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
    771     if (Extract)
    772       Cost += TopTTI->getVectorInstrCost(Instruction::ExtractElement, Ty, i);
    773   }
    774 
    775   return Cost;
    776 }
    777 
    778 unsigned X86TTI::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
    779                                  unsigned AddressSpace) const {
    780   // Handle non-power-of-two vectors such as <3 x float>
    781   if (VectorType *VTy = dyn_cast<VectorType>(Src)) {
    782     unsigned NumElem = VTy->getVectorNumElements();
    783 
    784     // Handle a few common cases:
    785     // <3 x float>
    786     if (NumElem == 3 && VTy->getScalarSizeInBits() == 32)
    787       // Cost = 64 bit store + extract + 32 bit store.
    788       return 3;
    789 
    790     // <3 x double>
    791     if (NumElem == 3 && VTy->getScalarSizeInBits() == 64)
    792       // Cost = 128 bit store + unpack + 64 bit store.
    793       return 3;
    794 
    795     // Assume that all other non-power-of-two numbers are scalarized.
    796     if (!isPowerOf2_32(NumElem)) {
    797       unsigned Cost = TargetTransformInfo::getMemoryOpCost(Opcode,
    798                                                            VTy->getScalarType(),
    799                                                            Alignment,
    800                                                            AddressSpace);
    801       unsigned SplitCost = getScalarizationOverhead(Src,
    802                                                     Opcode == Instruction::Load,
    803                                                     Opcode==Instruction::Store);
    804       return NumElem * Cost + SplitCost;
    805     }
    806   }
    807 
    808   // Legalize the type.
    809   std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src);
    810   assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
    811          "Invalid Opcode");
    812 
    813   // Each load/store unit costs 1.
    814   unsigned Cost = LT.first * 1;
    815 
    816   // On Sandybridge 256bit load/stores are double pumped
    817   // (but not on Haswell).
    818   if (LT.second.getSizeInBits() > 128 && !ST->hasAVX2())
    819     Cost*=2;
    820 
    821   return Cost;
    822 }
    823 
    824 unsigned X86TTI::getAddressComputationCost(Type *Ty, bool IsComplex) const {
    825   // Address computations in vectorized code with non-consecutive addresses will
    826   // likely result in more instructions compared to scalar code where the
    827   // computation can more often be merged into the index mode. The resulting
    828   // extra micro-ops can significantly decrease throughput.
    829   unsigned NumVectorInstToHideOverhead = 10;
    830 
    831   if (Ty->isVectorTy() && IsComplex)
    832     return NumVectorInstToHideOverhead;
    833 
    834   return TargetTransformInfo::getAddressComputationCost(Ty, IsComplex);
    835 }
    836 
    837 unsigned X86TTI::getReductionCost(unsigned Opcode, Type *ValTy,
    838                                   bool IsPairwise) const {
    839 
    840   std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy);
    841 
    842   MVT MTy = LT.second;
    843 
    844   int ISD = TLI->InstructionOpcodeToISD(Opcode);
    845   assert(ISD && "Invalid opcode");
    846 
    847   // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
    848   // and make it as the cost.
    849 
    850   static const CostTblEntry<MVT::SimpleValueType> SSE42CostTblPairWise[] = {
    851     { ISD::FADD,  MVT::v2f64,   2 },
    852     { ISD::FADD,  MVT::v4f32,   4 },
    853     { ISD::ADD,   MVT::v2i64,   2 },      // The data reported by the IACA tool is "1.6".
    854     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.5".
    855     { ISD::ADD,   MVT::v8i16,   5 },
    856   };
    857 
    858   static const CostTblEntry<MVT::SimpleValueType> AVX1CostTblPairWise[] = {
    859     { ISD::FADD,  MVT::v4f32,   4 },
    860     { ISD::FADD,  MVT::v4f64,   5 },
    861     { ISD::FADD,  MVT::v8f32,   7 },
    862     { ISD::ADD,   MVT::v2i64,   1 },      // The data reported by the IACA tool is "1.5".
    863     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.5".
    864     { ISD::ADD,   MVT::v4i64,   5 },      // The data reported by the IACA tool is "4.8".
    865     { ISD::ADD,   MVT::v8i16,   5 },
    866     { ISD::ADD,   MVT::v8i32,   5 },
    867   };
    868 
    869   static const CostTblEntry<MVT::SimpleValueType> SSE42CostTblNoPairWise[] = {
    870     { ISD::FADD,  MVT::v2f64,   2 },
    871     { ISD::FADD,  MVT::v4f32,   4 },
    872     { ISD::ADD,   MVT::v2i64,   2 },      // The data reported by the IACA tool is "1.6".
    873     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.3".
    874     { ISD::ADD,   MVT::v8i16,   4 },      // The data reported by the IACA tool is "4.3".
    875   };
    876 
    877   static const CostTblEntry<MVT::SimpleValueType> AVX1CostTblNoPairWise[] = {
    878     { ISD::FADD,  MVT::v4f32,   3 },
    879     { ISD::FADD,  MVT::v4f64,   3 },
    880     { ISD::FADD,  MVT::v8f32,   4 },
    881     { ISD::ADD,   MVT::v2i64,   1 },      // The data reported by the IACA tool is "1.5".
    882     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "2.8".
    883     { ISD::ADD,   MVT::v4i64,   3 },
    884     { ISD::ADD,   MVT::v8i16,   4 },
    885     { ISD::ADD,   MVT::v8i32,   5 },
    886   };
    887 
    888   if (IsPairwise) {
    889     if (ST->hasAVX()) {
    890       int Idx = CostTableLookup(AVX1CostTblPairWise, ISD, MTy);
    891       if (Idx != -1)
    892         return LT.first * AVX1CostTblPairWise[Idx].Cost;
    893     }
    894 
    895     if (ST->hasSSE42()) {
    896       int Idx = CostTableLookup(SSE42CostTblPairWise, ISD, MTy);
    897       if (Idx != -1)
    898         return LT.first * SSE42CostTblPairWise[Idx].Cost;
    899     }
    900   } else {
    901     if (ST->hasAVX()) {
    902       int Idx = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy);
    903       if (Idx != -1)
    904         return LT.first * AVX1CostTblNoPairWise[Idx].Cost;
    905     }
    906 
    907     if (ST->hasSSE42()) {
    908       int Idx = CostTableLookup(SSE42CostTblNoPairWise, ISD, MTy);
    909       if (Idx != -1)
    910         return LT.first * SSE42CostTblNoPairWise[Idx].Cost;
    911     }
    912   }
    913 
    914   return TargetTransformInfo::getReductionCost(Opcode, ValTy, IsPairwise);
    915 }
    916 
    917 /// \brief Calculate the cost of materializing a 64-bit value. This helper
    918 /// method might only calculate a fraction of a larger immediate. Therefore it
    919 /// is valid to return a cost of ZERO.
    920 unsigned X86TTI::getIntImmCost(int64_t Val) const {
    921   if (Val == 0)
    922     return TCC_Free;
    923 
    924   if (isInt<32>(Val))
    925     return TCC_Basic;
    926 
    927   return 2 * TCC_Basic;
    928 }
    929 
    930 unsigned X86TTI::getIntImmCost(const APInt &Imm, Type *Ty) const {
    931   assert(Ty->isIntegerTy());
    932 
    933   unsigned BitSize = Ty->getPrimitiveSizeInBits();
    934   if (BitSize == 0)
    935     return ~0U;
    936 
    937   // Never hoist constants larger than 128bit, because this might lead to
    938   // incorrect code generation or assertions in codegen.
    939   // Fixme: Create a cost model for types larger than i128 once the codegen
    940   // issues have been fixed.
    941   if (BitSize > 128)
    942     return TCC_Free;
    943 
    944   if (Imm == 0)
    945     return TCC_Free;
    946 
    947   // Sign-extend all constants to a multiple of 64-bit.
    948   APInt ImmVal = Imm;
    949   if (BitSize & 0x3f)
    950     ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
    951 
    952   // Split the constant into 64-bit chunks and calculate the cost for each
    953   // chunk.
    954   unsigned Cost = 0;
    955   for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
    956     APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
    957     int64_t Val = Tmp.getSExtValue();
    958     Cost += getIntImmCost(Val);
    959   }
    960   // We need at least one instruction to materialze the constant.
    961   return std::max(1U, Cost);
    962 }
    963 
    964 unsigned X86TTI::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
    965                                Type *Ty) const {
    966   assert(Ty->isIntegerTy());
    967 
    968   unsigned BitSize = Ty->getPrimitiveSizeInBits();
    969   // There is no cost model for constants with a bit size of 0. Return TCC_Free
    970   // here, so that constant hoisting will ignore this constant.
    971   if (BitSize == 0)
    972     return TCC_Free;
    973 
    974   unsigned ImmIdx = ~0U;
    975   switch (Opcode) {
    976   default: return TCC_Free;
    977   case Instruction::GetElementPtr:
    978     // Always hoist the base address of a GetElementPtr. This prevents the
    979     // creation of new constants for every base constant that gets constant
    980     // folded with the offset.
    981     if (Idx == 0)
    982       return 2 * TCC_Basic;
    983     return TCC_Free;
    984   case Instruction::Store:
    985     ImmIdx = 0;
    986     break;
    987   case Instruction::Add:
    988   case Instruction::Sub:
    989   case Instruction::Mul:
    990   case Instruction::UDiv:
    991   case Instruction::SDiv:
    992   case Instruction::URem:
    993   case Instruction::SRem:
    994   case Instruction::And:
    995   case Instruction::Or:
    996   case Instruction::Xor:
    997   case Instruction::ICmp:
    998     ImmIdx = 1;
    999     break;
   1000   // Always return TCC_Free for the shift value of a shift instruction.
   1001   case Instruction::Shl:
   1002   case Instruction::LShr:
   1003   case Instruction::AShr:
   1004     if (Idx == 1)
   1005       return TCC_Free;
   1006     break;
   1007   case Instruction::Trunc:
   1008   case Instruction::ZExt:
   1009   case Instruction::SExt:
   1010   case Instruction::IntToPtr:
   1011   case Instruction::PtrToInt:
   1012   case Instruction::BitCast:
   1013   case Instruction::PHI:
   1014   case Instruction::Call:
   1015   case Instruction::Select:
   1016   case Instruction::Ret:
   1017   case Instruction::Load:
   1018     break;
   1019   }
   1020 
   1021   if (Idx == ImmIdx) {
   1022     unsigned NumConstants = (BitSize + 63) / 64;
   1023     unsigned Cost = X86TTI::getIntImmCost(Imm, Ty);
   1024     return (Cost <= NumConstants * TCC_Basic)
   1025       ? static_cast<unsigned>(TCC_Free)
   1026       : Cost;
   1027   }
   1028 
   1029   return X86TTI::getIntImmCost(Imm, Ty);
   1030 }
   1031 
   1032 unsigned X86TTI::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
   1033                                const APInt &Imm, Type *Ty) const {
   1034   assert(Ty->isIntegerTy());
   1035 
   1036   unsigned BitSize = Ty->getPrimitiveSizeInBits();
   1037   // There is no cost model for constants with a bit size of 0. Return TCC_Free
   1038   // here, so that constant hoisting will ignore this constant.
   1039   if (BitSize == 0)
   1040     return TCC_Free;
   1041 
   1042   switch (IID) {
   1043   default: return TCC_Free;
   1044   case Intrinsic::sadd_with_overflow:
   1045   case Intrinsic::uadd_with_overflow:
   1046   case Intrinsic::ssub_with_overflow:
   1047   case Intrinsic::usub_with_overflow:
   1048   case Intrinsic::smul_with_overflow:
   1049   case Intrinsic::umul_with_overflow:
   1050     if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue()))
   1051       return TCC_Free;
   1052     break;
   1053   case Intrinsic::experimental_stackmap:
   1054     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
   1055       return TCC_Free;
   1056     break;
   1057   case Intrinsic::experimental_patchpoint_void:
   1058   case Intrinsic::experimental_patchpoint_i64:
   1059     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
   1060       return TCC_Free;
   1061     break;
   1062   }
   1063   return X86TTI::getIntImmCost(Imm, Ty);
   1064 }
   1065