Home | History | Annotate | Download | only in Analysis
      1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis --*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the implementation of the scalar evolution expander,
     11 // which is used to generate the code corresponding to a given scalar evolution
     12 // expression.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "llvm/Analysis/ScalarEvolutionExpander.h"
     17 #include "llvm/ADT/STLExtras.h"
     18 #include "llvm/ADT/SmallSet.h"
     19 #include "llvm/Analysis/InstructionSimplify.h"
     20 #include "llvm/Analysis/LoopInfo.h"
     21 #include "llvm/Analysis/TargetTransformInfo.h"
     22 #include "llvm/IR/DataLayout.h"
     23 #include "llvm/IR/Dominators.h"
     24 #include "llvm/IR/IntrinsicInst.h"
     25 #include "llvm/IR/LLVMContext.h"
     26 #include "llvm/Support/Debug.h"
     27 
     28 using namespace llvm;
     29 
     30 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
     31 /// reusing an existing cast if a suitable one exists, moving an existing
     32 /// cast if a suitable one exists but isn't in the right place, or
     33 /// creating a new one.
     34 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
     35                                        Instruction::CastOps Op,
     36                                        BasicBlock::iterator IP) {
     37   // This function must be called with the builder having a valid insertion
     38   // point. It doesn't need to be the actual IP where the uses of the returned
     39   // cast will be added, but it must dominate such IP.
     40   // We use this precondition to produce a cast that will dominate all its
     41   // uses. In particular, this is crucial for the case where the builder's
     42   // insertion point *is* the point where we were asked to put the cast.
     43   // Since we don't know the builder's insertion point is actually
     44   // where the uses will be added (only that it dominates it), we are
     45   // not allowed to move it.
     46   BasicBlock::iterator BIP = Builder.GetInsertPoint();
     47 
     48   Instruction *Ret = nullptr;
     49 
     50   // Check to see if there is already a cast!
     51   for (User *U : V->users())
     52     if (U->getType() == Ty)
     53       if (CastInst *CI = dyn_cast<CastInst>(U))
     54         if (CI->getOpcode() == Op) {
     55           // If the cast isn't where we want it, create a new cast at IP.
     56           // Likewise, do not reuse a cast at BIP because it must dominate
     57           // instructions that might be inserted before BIP.
     58           if (BasicBlock::iterator(CI) != IP || BIP == IP) {
     59             // Create a new cast, and leave the old cast in place in case
     60             // it is being used as an insert point. Clear its operand
     61             // so that it doesn't hold anything live.
     62             Ret = CastInst::Create(Op, V, Ty, "", IP);
     63             Ret->takeName(CI);
     64             CI->replaceAllUsesWith(Ret);
     65             CI->setOperand(0, UndefValue::get(V->getType()));
     66             break;
     67           }
     68           Ret = CI;
     69           break;
     70         }
     71 
     72   // Create a new cast.
     73   if (!Ret)
     74     Ret = CastInst::Create(Op, V, Ty, V->getName(), IP);
     75 
     76   // We assert at the end of the function since IP might point to an
     77   // instruction with different dominance properties than a cast
     78   // (an invoke for example) and not dominate BIP (but the cast does).
     79   assert(SE.DT->dominates(Ret, BIP));
     80 
     81   rememberInstruction(Ret);
     82   return Ret;
     83 }
     84 
     85 /// InsertNoopCastOfTo - Insert a cast of V to the specified type,
     86 /// which must be possible with a noop cast, doing what we can to share
     87 /// the casts.
     88 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) {
     89   Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
     90   assert((Op == Instruction::BitCast ||
     91           Op == Instruction::PtrToInt ||
     92           Op == Instruction::IntToPtr) &&
     93          "InsertNoopCastOfTo cannot perform non-noop casts!");
     94   assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
     95          "InsertNoopCastOfTo cannot change sizes!");
     96 
     97   // Short-circuit unnecessary bitcasts.
     98   if (Op == Instruction::BitCast) {
     99     if (V->getType() == Ty)
    100       return V;
    101     if (CastInst *CI = dyn_cast<CastInst>(V)) {
    102       if (CI->getOperand(0)->getType() == Ty)
    103         return CI->getOperand(0);
    104     }
    105   }
    106   // Short-circuit unnecessary inttoptr<->ptrtoint casts.
    107   if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
    108       SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
    109     if (CastInst *CI = dyn_cast<CastInst>(V))
    110       if ((CI->getOpcode() == Instruction::PtrToInt ||
    111            CI->getOpcode() == Instruction::IntToPtr) &&
    112           SE.getTypeSizeInBits(CI->getType()) ==
    113           SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
    114         return CI->getOperand(0);
    115     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
    116       if ((CE->getOpcode() == Instruction::PtrToInt ||
    117            CE->getOpcode() == Instruction::IntToPtr) &&
    118           SE.getTypeSizeInBits(CE->getType()) ==
    119           SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
    120         return CE->getOperand(0);
    121   }
    122 
    123   // Fold a cast of a constant.
    124   if (Constant *C = dyn_cast<Constant>(V))
    125     return ConstantExpr::getCast(Op, C, Ty);
    126 
    127   // Cast the argument at the beginning of the entry block, after
    128   // any bitcasts of other arguments.
    129   if (Argument *A = dyn_cast<Argument>(V)) {
    130     BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin();
    131     while ((isa<BitCastInst>(IP) &&
    132             isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) &&
    133             cast<BitCastInst>(IP)->getOperand(0) != A) ||
    134            isa<DbgInfoIntrinsic>(IP) ||
    135            isa<LandingPadInst>(IP))
    136       ++IP;
    137     return ReuseOrCreateCast(A, Ty, Op, IP);
    138   }
    139 
    140   // Cast the instruction immediately after the instruction.
    141   Instruction *I = cast<Instruction>(V);
    142   BasicBlock::iterator IP = I; ++IP;
    143   if (InvokeInst *II = dyn_cast<InvokeInst>(I))
    144     IP = II->getNormalDest()->begin();
    145   while (isa<PHINode>(IP) || isa<LandingPadInst>(IP))
    146     ++IP;
    147   return ReuseOrCreateCast(I, Ty, Op, IP);
    148 }
    149 
    150 /// InsertBinop - Insert the specified binary operator, doing a small amount
    151 /// of work to avoid inserting an obviously redundant operation.
    152 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
    153                                  Value *LHS, Value *RHS) {
    154   // Fold a binop with constant operands.
    155   if (Constant *CLHS = dyn_cast<Constant>(LHS))
    156     if (Constant *CRHS = dyn_cast<Constant>(RHS))
    157       return ConstantExpr::get(Opcode, CLHS, CRHS);
    158 
    159   // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
    160   unsigned ScanLimit = 6;
    161   BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
    162   // Scanning starts from the last instruction before the insertion point.
    163   BasicBlock::iterator IP = Builder.GetInsertPoint();
    164   if (IP != BlockBegin) {
    165     --IP;
    166     for (; ScanLimit; --IP, --ScanLimit) {
    167       // Don't count dbg.value against the ScanLimit, to avoid perturbing the
    168       // generated code.
    169       if (isa<DbgInfoIntrinsic>(IP))
    170         ScanLimit++;
    171       if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
    172           IP->getOperand(1) == RHS)
    173         return IP;
    174       if (IP == BlockBegin) break;
    175     }
    176   }
    177 
    178   // Save the original insertion point so we can restore it when we're done.
    179   DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc();
    180   BuilderType::InsertPointGuard Guard(Builder);
    181 
    182   // Move the insertion point out of as many loops as we can.
    183   while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
    184     if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
    185     BasicBlock *Preheader = L->getLoopPreheader();
    186     if (!Preheader) break;
    187 
    188     // Ok, move up a level.
    189     Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
    190   }
    191 
    192   // If we haven't found this binop, insert it.
    193   Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS));
    194   BO->setDebugLoc(Loc);
    195   rememberInstruction(BO);
    196 
    197   return BO;
    198 }
    199 
    200 /// FactorOutConstant - Test if S is divisible by Factor, using signed
    201 /// division. If so, update S with Factor divided out and return true.
    202 /// S need not be evenly divisible if a reasonable remainder can be
    203 /// computed.
    204 /// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made
    205 /// unnecessary; in its place, just signed-divide Ops[i] by the scale and
    206 /// check to see if the divide was folded.
    207 static bool FactorOutConstant(const SCEV *&S,
    208                               const SCEV *&Remainder,
    209                               const SCEV *Factor,
    210                               ScalarEvolution &SE,
    211                               const DataLayout *DL) {
    212   // Everything is divisible by one.
    213   if (Factor->isOne())
    214     return true;
    215 
    216   // x/x == 1.
    217   if (S == Factor) {
    218     S = SE.getConstant(S->getType(), 1);
    219     return true;
    220   }
    221 
    222   // For a Constant, check for a multiple of the given factor.
    223   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
    224     // 0/x == 0.
    225     if (C->isZero())
    226       return true;
    227     // Check for divisibility.
    228     if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
    229       ConstantInt *CI =
    230         ConstantInt::get(SE.getContext(),
    231                          C->getValue()->getValue().sdiv(
    232                                                    FC->getValue()->getValue()));
    233       // If the quotient is zero and the remainder is non-zero, reject
    234       // the value at this scale. It will be considered for subsequent
    235       // smaller scales.
    236       if (!CI->isZero()) {
    237         const SCEV *Div = SE.getConstant(CI);
    238         S = Div;
    239         Remainder =
    240           SE.getAddExpr(Remainder,
    241                         SE.getConstant(C->getValue()->getValue().srem(
    242                                                   FC->getValue()->getValue())));
    243         return true;
    244       }
    245     }
    246   }
    247 
    248   // In a Mul, check if there is a constant operand which is a multiple
    249   // of the given factor.
    250   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
    251     if (DL) {
    252       // With DataLayout, the size is known. Check if there is a constant
    253       // operand which is a multiple of the given factor. If so, we can
    254       // factor it.
    255       const SCEVConstant *FC = cast<SCEVConstant>(Factor);
    256       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
    257         if (!C->getValue()->getValue().srem(FC->getValue()->getValue())) {
    258           SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
    259           NewMulOps[0] =
    260             SE.getConstant(C->getValue()->getValue().sdiv(
    261                                                    FC->getValue()->getValue()));
    262           S = SE.getMulExpr(NewMulOps);
    263           return true;
    264         }
    265     } else {
    266       // Without DataLayout, check if Factor can be factored out of any of the
    267       // Mul's operands. If so, we can just remove it.
    268       for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
    269         const SCEV *SOp = M->getOperand(i);
    270         const SCEV *Remainder = SE.getConstant(SOp->getType(), 0);
    271         if (FactorOutConstant(SOp, Remainder, Factor, SE, DL) &&
    272             Remainder->isZero()) {
    273           SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
    274           NewMulOps[i] = SOp;
    275           S = SE.getMulExpr(NewMulOps);
    276           return true;
    277         }
    278       }
    279     }
    280   }
    281 
    282   // In an AddRec, check if both start and step are divisible.
    283   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
    284     const SCEV *Step = A->getStepRecurrence(SE);
    285     const SCEV *StepRem = SE.getConstant(Step->getType(), 0);
    286     if (!FactorOutConstant(Step, StepRem, Factor, SE, DL))
    287       return false;
    288     if (!StepRem->isZero())
    289       return false;
    290     const SCEV *Start = A->getStart();
    291     if (!FactorOutConstant(Start, Remainder, Factor, SE, DL))
    292       return false;
    293     S = SE.getAddRecExpr(Start, Step, A->getLoop(),
    294                          A->getNoWrapFlags(SCEV::FlagNW));
    295     return true;
    296   }
    297 
    298   return false;
    299 }
    300 
    301 /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
    302 /// is the number of SCEVAddRecExprs present, which are kept at the end of
    303 /// the list.
    304 ///
    305 static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
    306                                 Type *Ty,
    307                                 ScalarEvolution &SE) {
    308   unsigned NumAddRecs = 0;
    309   for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
    310     ++NumAddRecs;
    311   // Group Ops into non-addrecs and addrecs.
    312   SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
    313   SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
    314   // Let ScalarEvolution sort and simplify the non-addrecs list.
    315   const SCEV *Sum = NoAddRecs.empty() ?
    316                     SE.getConstant(Ty, 0) :
    317                     SE.getAddExpr(NoAddRecs);
    318   // If it returned an add, use the operands. Otherwise it simplified
    319   // the sum into a single value, so just use that.
    320   Ops.clear();
    321   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
    322     Ops.append(Add->op_begin(), Add->op_end());
    323   else if (!Sum->isZero())
    324     Ops.push_back(Sum);
    325   // Then append the addrecs.
    326   Ops.append(AddRecs.begin(), AddRecs.end());
    327 }
    328 
    329 /// SplitAddRecs - Flatten a list of add operands, moving addrec start values
    330 /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
    331 /// This helps expose more opportunities for folding parts of the expressions
    332 /// into GEP indices.
    333 ///
    334 static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
    335                          Type *Ty,
    336                          ScalarEvolution &SE) {
    337   // Find the addrecs.
    338   SmallVector<const SCEV *, 8> AddRecs;
    339   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
    340     while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
    341       const SCEV *Start = A->getStart();
    342       if (Start->isZero()) break;
    343       const SCEV *Zero = SE.getConstant(Ty, 0);
    344       AddRecs.push_back(SE.getAddRecExpr(Zero,
    345                                          A->getStepRecurrence(SE),
    346                                          A->getLoop(),
    347                                          A->getNoWrapFlags(SCEV::FlagNW)));
    348       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
    349         Ops[i] = Zero;
    350         Ops.append(Add->op_begin(), Add->op_end());
    351         e += Add->getNumOperands();
    352       } else {
    353         Ops[i] = Start;
    354       }
    355     }
    356   if (!AddRecs.empty()) {
    357     // Add the addrecs onto the end of the list.
    358     Ops.append(AddRecs.begin(), AddRecs.end());
    359     // Resort the operand list, moving any constants to the front.
    360     SimplifyAddOperands(Ops, Ty, SE);
    361   }
    362 }
    363 
    364 /// expandAddToGEP - Expand an addition expression with a pointer type into
    365 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
    366 /// BasicAliasAnalysis and other passes analyze the result. See the rules
    367 /// for getelementptr vs. inttoptr in
    368 /// http://llvm.org/docs/LangRef.html#pointeraliasing
    369 /// for details.
    370 ///
    371 /// Design note: The correctness of using getelementptr here depends on
    372 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
    373 /// they may introduce pointer arithmetic which may not be safely converted
    374 /// into getelementptr.
    375 ///
    376 /// Design note: It might seem desirable for this function to be more
    377 /// loop-aware. If some of the indices are loop-invariant while others
    378 /// aren't, it might seem desirable to emit multiple GEPs, keeping the
    379 /// loop-invariant portions of the overall computation outside the loop.
    380 /// However, there are a few reasons this is not done here. Hoisting simple
    381 /// arithmetic is a low-level optimization that often isn't very
    382 /// important until late in the optimization process. In fact, passes
    383 /// like InstructionCombining will combine GEPs, even if it means
    384 /// pushing loop-invariant computation down into loops, so even if the
    385 /// GEPs were split here, the work would quickly be undone. The
    386 /// LoopStrengthReduction pass, which is usually run quite late (and
    387 /// after the last InstructionCombining pass), takes care of hoisting
    388 /// loop-invariant portions of expressions, after considering what
    389 /// can be folded using target addressing modes.
    390 ///
    391 Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
    392                                     const SCEV *const *op_end,
    393                                     PointerType *PTy,
    394                                     Type *Ty,
    395                                     Value *V) {
    396   Type *ElTy = PTy->getElementType();
    397   SmallVector<Value *, 4> GepIndices;
    398   SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
    399   bool AnyNonZeroIndices = false;
    400 
    401   // Split AddRecs up into parts as either of the parts may be usable
    402   // without the other.
    403   SplitAddRecs(Ops, Ty, SE);
    404 
    405   Type *IntPtrTy = SE.DL
    406                  ? SE.DL->getIntPtrType(PTy)
    407                  : Type::getInt64Ty(PTy->getContext());
    408 
    409   // Descend down the pointer's type and attempt to convert the other
    410   // operands into GEP indices, at each level. The first index in a GEP
    411   // indexes into the array implied by the pointer operand; the rest of
    412   // the indices index into the element or field type selected by the
    413   // preceding index.
    414   for (;;) {
    415     // If the scale size is not 0, attempt to factor out a scale for
    416     // array indexing.
    417     SmallVector<const SCEV *, 8> ScaledOps;
    418     if (ElTy->isSized()) {
    419       const SCEV *ElSize = SE.getSizeOfExpr(IntPtrTy, ElTy);
    420       if (!ElSize->isZero()) {
    421         SmallVector<const SCEV *, 8> NewOps;
    422         for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
    423           const SCEV *Op = Ops[i];
    424           const SCEV *Remainder = SE.getConstant(Ty, 0);
    425           if (FactorOutConstant(Op, Remainder, ElSize, SE, SE.DL)) {
    426             // Op now has ElSize factored out.
    427             ScaledOps.push_back(Op);
    428             if (!Remainder->isZero())
    429               NewOps.push_back(Remainder);
    430             AnyNonZeroIndices = true;
    431           } else {
    432             // The operand was not divisible, so add it to the list of operands
    433             // we'll scan next iteration.
    434             NewOps.push_back(Ops[i]);
    435           }
    436         }
    437         // If we made any changes, update Ops.
    438         if (!ScaledOps.empty()) {
    439           Ops = NewOps;
    440           SimplifyAddOperands(Ops, Ty, SE);
    441         }
    442       }
    443     }
    444 
    445     // Record the scaled array index for this level of the type. If
    446     // we didn't find any operands that could be factored, tentatively
    447     // assume that element zero was selected (since the zero offset
    448     // would obviously be folded away).
    449     Value *Scaled = ScaledOps.empty() ?
    450                     Constant::getNullValue(Ty) :
    451                     expandCodeFor(SE.getAddExpr(ScaledOps), Ty);
    452     GepIndices.push_back(Scaled);
    453 
    454     // Collect struct field index operands.
    455     while (StructType *STy = dyn_cast<StructType>(ElTy)) {
    456       bool FoundFieldNo = false;
    457       // An empty struct has no fields.
    458       if (STy->getNumElements() == 0) break;
    459       if (SE.DL) {
    460         // With DataLayout, field offsets are known. See if a constant offset
    461         // falls within any of the struct fields.
    462         if (Ops.empty()) break;
    463         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
    464           if (SE.getTypeSizeInBits(C->getType()) <= 64) {
    465             const StructLayout &SL = *SE.DL->getStructLayout(STy);
    466             uint64_t FullOffset = C->getValue()->getZExtValue();
    467             if (FullOffset < SL.getSizeInBytes()) {
    468               unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
    469               GepIndices.push_back(
    470                   ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
    471               ElTy = STy->getTypeAtIndex(ElIdx);
    472               Ops[0] =
    473                 SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
    474               AnyNonZeroIndices = true;
    475               FoundFieldNo = true;
    476             }
    477           }
    478       } else {
    479         // Without DataLayout, just check for an offsetof expression of the
    480         // appropriate struct type.
    481         for (unsigned i = 0, e = Ops.size(); i != e; ++i)
    482           if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Ops[i])) {
    483             Type *CTy;
    484             Constant *FieldNo;
    485             if (U->isOffsetOf(CTy, FieldNo) && CTy == STy) {
    486               GepIndices.push_back(FieldNo);
    487               ElTy =
    488                 STy->getTypeAtIndex(cast<ConstantInt>(FieldNo)->getZExtValue());
    489               Ops[i] = SE.getConstant(Ty, 0);
    490               AnyNonZeroIndices = true;
    491               FoundFieldNo = true;
    492               break;
    493             }
    494           }
    495       }
    496       // If no struct field offsets were found, tentatively assume that
    497       // field zero was selected (since the zero offset would obviously
    498       // be folded away).
    499       if (!FoundFieldNo) {
    500         ElTy = STy->getTypeAtIndex(0u);
    501         GepIndices.push_back(
    502           Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
    503       }
    504     }
    505 
    506     if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
    507       ElTy = ATy->getElementType();
    508     else
    509       break;
    510   }
    511 
    512   // If none of the operands were convertible to proper GEP indices, cast
    513   // the base to i8* and do an ugly getelementptr with that. It's still
    514   // better than ptrtoint+arithmetic+inttoptr at least.
    515   if (!AnyNonZeroIndices) {
    516     // Cast the base to i8*.
    517     V = InsertNoopCastOfTo(V,
    518        Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace()));
    519 
    520     assert(!isa<Instruction>(V) ||
    521            SE.DT->dominates(cast<Instruction>(V), Builder.GetInsertPoint()));
    522 
    523     // Expand the operands for a plain byte offset.
    524     Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty);
    525 
    526     // Fold a GEP with constant operands.
    527     if (Constant *CLHS = dyn_cast<Constant>(V))
    528       if (Constant *CRHS = dyn_cast<Constant>(Idx))
    529         return ConstantExpr::getGetElementPtr(CLHS, CRHS);
    530 
    531     // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
    532     unsigned ScanLimit = 6;
    533     BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
    534     // Scanning starts from the last instruction before the insertion point.
    535     BasicBlock::iterator IP = Builder.GetInsertPoint();
    536     if (IP != BlockBegin) {
    537       --IP;
    538       for (; ScanLimit; --IP, --ScanLimit) {
    539         // Don't count dbg.value against the ScanLimit, to avoid perturbing the
    540         // generated code.
    541         if (isa<DbgInfoIntrinsic>(IP))
    542           ScanLimit++;
    543         if (IP->getOpcode() == Instruction::GetElementPtr &&
    544             IP->getOperand(0) == V && IP->getOperand(1) == Idx)
    545           return IP;
    546         if (IP == BlockBegin) break;
    547       }
    548     }
    549 
    550     // Save the original insertion point so we can restore it when we're done.
    551     BuilderType::InsertPointGuard Guard(Builder);
    552 
    553     // Move the insertion point out of as many loops as we can.
    554     while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
    555       if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
    556       BasicBlock *Preheader = L->getLoopPreheader();
    557       if (!Preheader) break;
    558 
    559       // Ok, move up a level.
    560       Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
    561     }
    562 
    563     // Emit a GEP.
    564     Value *GEP = Builder.CreateGEP(V, Idx, "uglygep");
    565     rememberInstruction(GEP);
    566 
    567     return GEP;
    568   }
    569 
    570   // Save the original insertion point so we can restore it when we're done.
    571   BuilderType::InsertPoint SaveInsertPt = Builder.saveIP();
    572 
    573   // Move the insertion point out of as many loops as we can.
    574   while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
    575     if (!L->isLoopInvariant(V)) break;
    576 
    577     bool AnyIndexNotLoopInvariant = false;
    578     for (SmallVectorImpl<Value *>::const_iterator I = GepIndices.begin(),
    579          E = GepIndices.end(); I != E; ++I)
    580       if (!L->isLoopInvariant(*I)) {
    581         AnyIndexNotLoopInvariant = true;
    582         break;
    583       }
    584     if (AnyIndexNotLoopInvariant)
    585       break;
    586 
    587     BasicBlock *Preheader = L->getLoopPreheader();
    588     if (!Preheader) break;
    589 
    590     // Ok, move up a level.
    591     Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
    592   }
    593 
    594   // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
    595   // because ScalarEvolution may have changed the address arithmetic to
    596   // compute a value which is beyond the end of the allocated object.
    597   Value *Casted = V;
    598   if (V->getType() != PTy)
    599     Casted = InsertNoopCastOfTo(Casted, PTy);
    600   Value *GEP = Builder.CreateGEP(Casted,
    601                                  GepIndices,
    602                                  "scevgep");
    603   Ops.push_back(SE.getUnknown(GEP));
    604   rememberInstruction(GEP);
    605 
    606   // Restore the original insert point.
    607   Builder.restoreIP(SaveInsertPt);
    608 
    609   return expand(SE.getAddExpr(Ops));
    610 }
    611 
    612 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
    613 /// SCEV expansion. If they are nested, this is the most nested. If they are
    614 /// neighboring, pick the later.
    615 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
    616                                         DominatorTree &DT) {
    617   if (!A) return B;
    618   if (!B) return A;
    619   if (A->contains(B)) return B;
    620   if (B->contains(A)) return A;
    621   if (DT.dominates(A->getHeader(), B->getHeader())) return B;
    622   if (DT.dominates(B->getHeader(), A->getHeader())) return A;
    623   return A; // Arbitrarily break the tie.
    624 }
    625 
    626 /// getRelevantLoop - Get the most relevant loop associated with the given
    627 /// expression, according to PickMostRelevantLoop.
    628 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) {
    629   // Test whether we've already computed the most relevant loop for this SCEV.
    630   std::pair<DenseMap<const SCEV *, const Loop *>::iterator, bool> Pair =
    631     RelevantLoops.insert(std::make_pair(S, nullptr));
    632   if (!Pair.second)
    633     return Pair.first->second;
    634 
    635   if (isa<SCEVConstant>(S))
    636     // A constant has no relevant loops.
    637     return nullptr;
    638   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
    639     if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
    640       return Pair.first->second = SE.LI->getLoopFor(I->getParent());
    641     // A non-instruction has no relevant loops.
    642     return nullptr;
    643   }
    644   if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) {
    645     const Loop *L = nullptr;
    646     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
    647       L = AR->getLoop();
    648     for (SCEVNAryExpr::op_iterator I = N->op_begin(), E = N->op_end();
    649          I != E; ++I)
    650       L = PickMostRelevantLoop(L, getRelevantLoop(*I), *SE.DT);
    651     return RelevantLoops[N] = L;
    652   }
    653   if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) {
    654     const Loop *Result = getRelevantLoop(C->getOperand());
    655     return RelevantLoops[C] = Result;
    656   }
    657   if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
    658     const Loop *Result =
    659       PickMostRelevantLoop(getRelevantLoop(D->getLHS()),
    660                            getRelevantLoop(D->getRHS()),
    661                            *SE.DT);
    662     return RelevantLoops[D] = Result;
    663   }
    664   llvm_unreachable("Unexpected SCEV type!");
    665 }
    666 
    667 namespace {
    668 
    669 /// LoopCompare - Compare loops by PickMostRelevantLoop.
    670 class LoopCompare {
    671   DominatorTree &DT;
    672 public:
    673   explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
    674 
    675   bool operator()(std::pair<const Loop *, const SCEV *> LHS,
    676                   std::pair<const Loop *, const SCEV *> RHS) const {
    677     // Keep pointer operands sorted at the end.
    678     if (LHS.second->getType()->isPointerTy() !=
    679         RHS.second->getType()->isPointerTy())
    680       return LHS.second->getType()->isPointerTy();
    681 
    682     // Compare loops with PickMostRelevantLoop.
    683     if (LHS.first != RHS.first)
    684       return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
    685 
    686     // If one operand is a non-constant negative and the other is not,
    687     // put the non-constant negative on the right so that a sub can
    688     // be used instead of a negate and add.
    689     if (LHS.second->isNonConstantNegative()) {
    690       if (!RHS.second->isNonConstantNegative())
    691         return false;
    692     } else if (RHS.second->isNonConstantNegative())
    693       return true;
    694 
    695     // Otherwise they are equivalent according to this comparison.
    696     return false;
    697   }
    698 };
    699 
    700 }
    701 
    702 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
    703   Type *Ty = SE.getEffectiveSCEVType(S->getType());
    704 
    705   // Collect all the add operands in a loop, along with their associated loops.
    706   // Iterate in reverse so that constants are emitted last, all else equal, and
    707   // so that pointer operands are inserted first, which the code below relies on
    708   // to form more involved GEPs.
    709   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
    710   for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()),
    711        E(S->op_begin()); I != E; ++I)
    712     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
    713 
    714   // Sort by loop. Use a stable sort so that constants follow non-constants and
    715   // pointer operands precede non-pointer operands.
    716   std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(*SE.DT));
    717 
    718   // Emit instructions to add all the operands. Hoist as much as possible
    719   // out of loops, and form meaningful getelementptrs where possible.
    720   Value *Sum = nullptr;
    721   for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator
    722        I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) {
    723     const Loop *CurLoop = I->first;
    724     const SCEV *Op = I->second;
    725     if (!Sum) {
    726       // This is the first operand. Just expand it.
    727       Sum = expand(Op);
    728       ++I;
    729     } else if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) {
    730       // The running sum expression is a pointer. Try to form a getelementptr
    731       // at this level with that as the base.
    732       SmallVector<const SCEV *, 4> NewOps;
    733       for (; I != E && I->first == CurLoop; ++I) {
    734         // If the operand is SCEVUnknown and not instructions, peek through
    735         // it, to enable more of it to be folded into the GEP.
    736         const SCEV *X = I->second;
    737         if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X))
    738           if (!isa<Instruction>(U->getValue()))
    739             X = SE.getSCEV(U->getValue());
    740         NewOps.push_back(X);
    741       }
    742       Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum);
    743     } else if (PointerType *PTy = dyn_cast<PointerType>(Op->getType())) {
    744       // The running sum is an integer, and there's a pointer at this level.
    745       // Try to form a getelementptr. If the running sum is instructions,
    746       // use a SCEVUnknown to avoid re-analyzing them.
    747       SmallVector<const SCEV *, 4> NewOps;
    748       NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) :
    749                                                SE.getSCEV(Sum));
    750       for (++I; I != E && I->first == CurLoop; ++I)
    751         NewOps.push_back(I->second);
    752       Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op));
    753     } else if (Op->isNonConstantNegative()) {
    754       // Instead of doing a negate and add, just do a subtract.
    755       Value *W = expandCodeFor(SE.getNegativeSCEV(Op), Ty);
    756       Sum = InsertNoopCastOfTo(Sum, Ty);
    757       Sum = InsertBinop(Instruction::Sub, Sum, W);
    758       ++I;
    759     } else {
    760       // A simple add.
    761       Value *W = expandCodeFor(Op, Ty);
    762       Sum = InsertNoopCastOfTo(Sum, Ty);
    763       // Canonicalize a constant to the RHS.
    764       if (isa<Constant>(Sum)) std::swap(Sum, W);
    765       Sum = InsertBinop(Instruction::Add, Sum, W);
    766       ++I;
    767     }
    768   }
    769 
    770   return Sum;
    771 }
    772 
    773 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
    774   Type *Ty = SE.getEffectiveSCEVType(S->getType());
    775 
    776   // Collect all the mul operands in a loop, along with their associated loops.
    777   // Iterate in reverse so that constants are emitted last, all else equal.
    778   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
    779   for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()),
    780        E(S->op_begin()); I != E; ++I)
    781     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
    782 
    783   // Sort by loop. Use a stable sort so that constants follow non-constants.
    784   std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(*SE.DT));
    785 
    786   // Emit instructions to mul all the operands. Hoist as much as possible
    787   // out of loops.
    788   Value *Prod = nullptr;
    789   for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator
    790        I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) {
    791     const SCEV *Op = I->second;
    792     if (!Prod) {
    793       // This is the first operand. Just expand it.
    794       Prod = expand(Op);
    795       ++I;
    796     } else if (Op->isAllOnesValue()) {
    797       // Instead of doing a multiply by negative one, just do a negate.
    798       Prod = InsertNoopCastOfTo(Prod, Ty);
    799       Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod);
    800       ++I;
    801     } else {
    802       // A simple mul.
    803       Value *W = expandCodeFor(Op, Ty);
    804       Prod = InsertNoopCastOfTo(Prod, Ty);
    805       // Canonicalize a constant to the RHS.
    806       if (isa<Constant>(Prod)) std::swap(Prod, W);
    807       Prod = InsertBinop(Instruction::Mul, Prod, W);
    808       ++I;
    809     }
    810   }
    811 
    812   return Prod;
    813 }
    814 
    815 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
    816   Type *Ty = SE.getEffectiveSCEVType(S->getType());
    817 
    818   Value *LHS = expandCodeFor(S->getLHS(), Ty);
    819   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
    820     const APInt &RHS = SC->getValue()->getValue();
    821     if (RHS.isPowerOf2())
    822       return InsertBinop(Instruction::LShr, LHS,
    823                          ConstantInt::get(Ty, RHS.logBase2()));
    824   }
    825 
    826   Value *RHS = expandCodeFor(S->getRHS(), Ty);
    827   return InsertBinop(Instruction::UDiv, LHS, RHS);
    828 }
    829 
    830 /// Move parts of Base into Rest to leave Base with the minimal
    831 /// expression that provides a pointer operand suitable for a
    832 /// GEP expansion.
    833 static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest,
    834                               ScalarEvolution &SE) {
    835   while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
    836     Base = A->getStart();
    837     Rest = SE.getAddExpr(Rest,
    838                          SE.getAddRecExpr(SE.getConstant(A->getType(), 0),
    839                                           A->getStepRecurrence(SE),
    840                                           A->getLoop(),
    841                                           A->getNoWrapFlags(SCEV::FlagNW)));
    842   }
    843   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
    844     Base = A->getOperand(A->getNumOperands()-1);
    845     SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end());
    846     NewAddOps.back() = Rest;
    847     Rest = SE.getAddExpr(NewAddOps);
    848     ExposePointerBase(Base, Rest, SE);
    849   }
    850 }
    851 
    852 /// Determine if this is a well-behaved chain of instructions leading back to
    853 /// the PHI. If so, it may be reused by expanded expressions.
    854 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV,
    855                                          const Loop *L) {
    856   if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) ||
    857       (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV)))
    858     return false;
    859   // If any of the operands don't dominate the insert position, bail.
    860   // Addrec operands are always loop-invariant, so this can only happen
    861   // if there are instructions which haven't been hoisted.
    862   if (L == IVIncInsertLoop) {
    863     for (User::op_iterator OI = IncV->op_begin()+1,
    864            OE = IncV->op_end(); OI != OE; ++OI)
    865       if (Instruction *OInst = dyn_cast<Instruction>(OI))
    866         if (!SE.DT->dominates(OInst, IVIncInsertPos))
    867           return false;
    868   }
    869   // Advance to the next instruction.
    870   IncV = dyn_cast<Instruction>(IncV->getOperand(0));
    871   if (!IncV)
    872     return false;
    873 
    874   if (IncV->mayHaveSideEffects())
    875     return false;
    876 
    877   if (IncV != PN)
    878     return true;
    879 
    880   return isNormalAddRecExprPHI(PN, IncV, L);
    881 }
    882 
    883 /// getIVIncOperand returns an induction variable increment's induction
    884 /// variable operand.
    885 ///
    886 /// If allowScale is set, any type of GEP is allowed as long as the nonIV
    887 /// operands dominate InsertPos.
    888 ///
    889 /// If allowScale is not set, ensure that a GEP increment conforms to one of the
    890 /// simple patterns generated by getAddRecExprPHILiterally and
    891 /// expandAddtoGEP. If the pattern isn't recognized, return NULL.
    892 Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV,
    893                                            Instruction *InsertPos,
    894                                            bool allowScale) {
    895   if (IncV == InsertPos)
    896     return nullptr;
    897 
    898   switch (IncV->getOpcode()) {
    899   default:
    900     return nullptr;
    901   // Check for a simple Add/Sub or GEP of a loop invariant step.
    902   case Instruction::Add:
    903   case Instruction::Sub: {
    904     Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1));
    905     if (!OInst || SE.DT->dominates(OInst, InsertPos))
    906       return dyn_cast<Instruction>(IncV->getOperand(0));
    907     return nullptr;
    908   }
    909   case Instruction::BitCast:
    910     return dyn_cast<Instruction>(IncV->getOperand(0));
    911   case Instruction::GetElementPtr:
    912     for (Instruction::op_iterator I = IncV->op_begin()+1, E = IncV->op_end();
    913          I != E; ++I) {
    914       if (isa<Constant>(*I))
    915         continue;
    916       if (Instruction *OInst = dyn_cast<Instruction>(*I)) {
    917         if (!SE.DT->dominates(OInst, InsertPos))
    918           return nullptr;
    919       }
    920       if (allowScale) {
    921         // allow any kind of GEP as long as it can be hoisted.
    922         continue;
    923       }
    924       // This must be a pointer addition of constants (pretty), which is already
    925       // handled, or some number of address-size elements (ugly). Ugly geps
    926       // have 2 operands. i1* is used by the expander to represent an
    927       // address-size element.
    928       if (IncV->getNumOperands() != 2)
    929         return nullptr;
    930       unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace();
    931       if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS)
    932           && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS))
    933         return nullptr;
    934       break;
    935     }
    936     return dyn_cast<Instruction>(IncV->getOperand(0));
    937   }
    938 }
    939 
    940 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make
    941 /// it available to other uses in this loop. Recursively hoist any operands,
    942 /// until we reach a value that dominates InsertPos.
    943 bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos) {
    944   if (SE.DT->dominates(IncV, InsertPos))
    945       return true;
    946 
    947   // InsertPos must itself dominate IncV so that IncV's new position satisfies
    948   // its existing users.
    949   if (isa<PHINode>(InsertPos)
    950       || !SE.DT->dominates(InsertPos->getParent(), IncV->getParent()))
    951     return false;
    952 
    953   // Check that the chain of IV operands leading back to Phi can be hoisted.
    954   SmallVector<Instruction*, 4> IVIncs;
    955   for(;;) {
    956     Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true);
    957     if (!Oper)
    958       return false;
    959     // IncV is safe to hoist.
    960     IVIncs.push_back(IncV);
    961     IncV = Oper;
    962     if (SE.DT->dominates(IncV, InsertPos))
    963       break;
    964   }
    965   for (SmallVectorImpl<Instruction*>::reverse_iterator I = IVIncs.rbegin(),
    966          E = IVIncs.rend(); I != E; ++I) {
    967     (*I)->moveBefore(InsertPos);
    968   }
    969   return true;
    970 }
    971 
    972 /// Determine if this cyclic phi is in a form that would have been generated by
    973 /// LSR. We don't care if the phi was actually expanded in this pass, as long
    974 /// as it is in a low-cost form, for example, no implied multiplication. This
    975 /// should match any patterns generated by getAddRecExprPHILiterally and
    976 /// expandAddtoGEP.
    977 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV,
    978                                            const Loop *L) {
    979   for(Instruction *IVOper = IncV;
    980       (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(),
    981                                 /*allowScale=*/false));) {
    982     if (IVOper == PN)
    983       return true;
    984   }
    985   return false;
    986 }
    987 
    988 /// expandIVInc - Expand an IV increment at Builder's current InsertPos.
    989 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may
    990 /// need to materialize IV increments elsewhere to handle difficult situations.
    991 Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
    992                                  Type *ExpandTy, Type *IntTy,
    993                                  bool useSubtract) {
    994   Value *IncV;
    995   // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
    996   if (ExpandTy->isPointerTy()) {
    997     PointerType *GEPPtrTy = cast<PointerType>(ExpandTy);
    998     // If the step isn't constant, don't use an implicitly scaled GEP, because
    999     // that would require a multiply inside the loop.
   1000     if (!isa<ConstantInt>(StepV))
   1001       GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()),
   1002                                   GEPPtrTy->getAddressSpace());
   1003     const SCEV *const StepArray[1] = { SE.getSCEV(StepV) };
   1004     IncV = expandAddToGEP(StepArray, StepArray+1, GEPPtrTy, IntTy, PN);
   1005     if (IncV->getType() != PN->getType()) {
   1006       IncV = Builder.CreateBitCast(IncV, PN->getType());
   1007       rememberInstruction(IncV);
   1008     }
   1009   } else {
   1010     IncV = useSubtract ?
   1011       Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") :
   1012       Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next");
   1013     rememberInstruction(IncV);
   1014   }
   1015   return IncV;
   1016 }
   1017 
   1018 /// \brief Hoist the addrec instruction chain rooted in the loop phi above the
   1019 /// position. This routine assumes that this is possible (has been checked).
   1020 static void hoistBeforePos(DominatorTree *DT, Instruction *InstToHoist,
   1021                            Instruction *Pos, PHINode *LoopPhi) {
   1022   do {
   1023     if (DT->dominates(InstToHoist, Pos))
   1024       break;
   1025     // Make sure the increment is where we want it. But don't move it
   1026     // down past a potential existing post-inc user.
   1027     InstToHoist->moveBefore(Pos);
   1028     Pos = InstToHoist;
   1029     InstToHoist = cast<Instruction>(InstToHoist->getOperand(0));
   1030   } while (InstToHoist != LoopPhi);
   1031 }
   1032 
   1033 /// \brief Check whether we can cheaply express the requested SCEV in terms of
   1034 /// the available PHI SCEV by truncation and/or invertion of the step.
   1035 static bool canBeCheaplyTransformed(ScalarEvolution &SE,
   1036                                     const SCEVAddRecExpr *Phi,
   1037                                     const SCEVAddRecExpr *Requested,
   1038                                     bool &InvertStep) {
   1039   Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType());
   1040   Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType());
   1041 
   1042   if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth())
   1043     return false;
   1044 
   1045   // Try truncate it if necessary.
   1046   Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy));
   1047   if (!Phi)
   1048     return false;
   1049 
   1050   // Check whether truncation will help.
   1051   if (Phi == Requested) {
   1052     InvertStep = false;
   1053     return true;
   1054   }
   1055 
   1056   // Check whether inverting will help: {R,+,-1} == R - {0,+,1}.
   1057   if (SE.getAddExpr(Requested->getStart(),
   1058                     SE.getNegativeSCEV(Requested)) == Phi) {
   1059     InvertStep = true;
   1060     return true;
   1061   }
   1062 
   1063   return false;
   1064 }
   1065 
   1066 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
   1067 /// the base addrec, which is the addrec without any non-loop-dominating
   1068 /// values, and return the PHI.
   1069 PHINode *
   1070 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
   1071                                         const Loop *L,
   1072                                         Type *ExpandTy,
   1073                                         Type *IntTy,
   1074                                         Type *&TruncTy,
   1075                                         bool &InvertStep) {
   1076   assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position");
   1077 
   1078   // Reuse a previously-inserted PHI, if present.
   1079   BasicBlock *LatchBlock = L->getLoopLatch();
   1080   if (LatchBlock) {
   1081     PHINode *AddRecPhiMatch = nullptr;
   1082     Instruction *IncV = nullptr;
   1083     TruncTy = nullptr;
   1084     InvertStep = false;
   1085 
   1086     // Only try partially matching scevs that need truncation and/or
   1087     // step-inversion if we know this loop is outside the current loop.
   1088     bool TryNonMatchingSCEV = IVIncInsertLoop &&
   1089       SE.DT->properlyDominates(LatchBlock, IVIncInsertLoop->getHeader());
   1090 
   1091     for (BasicBlock::iterator I = L->getHeader()->begin();
   1092          PHINode *PN = dyn_cast<PHINode>(I); ++I) {
   1093       if (!SE.isSCEVable(PN->getType()))
   1094         continue;
   1095 
   1096       const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PN));
   1097       if (!PhiSCEV)
   1098         continue;
   1099 
   1100       bool IsMatchingSCEV = PhiSCEV == Normalized;
   1101       // We only handle truncation and inversion of phi recurrences for the
   1102       // expanded expression if the expanded expression's loop dominates the
   1103       // loop we insert to. Check now, so we can bail out early.
   1104       if (!IsMatchingSCEV && !TryNonMatchingSCEV)
   1105           continue;
   1106 
   1107       Instruction *TempIncV =
   1108           cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock));
   1109 
   1110       // Check whether we can reuse this PHI node.
   1111       if (LSRMode) {
   1112         if (!isExpandedAddRecExprPHI(PN, TempIncV, L))
   1113           continue;
   1114         if (L == IVIncInsertLoop && !hoistIVInc(TempIncV, IVIncInsertPos))
   1115           continue;
   1116       } else {
   1117         if (!isNormalAddRecExprPHI(PN, TempIncV, L))
   1118           continue;
   1119       }
   1120 
   1121       // Stop if we have found an exact match SCEV.
   1122       if (IsMatchingSCEV) {
   1123         IncV = TempIncV;
   1124         TruncTy = nullptr;
   1125         InvertStep = false;
   1126         AddRecPhiMatch = PN;
   1127         break;
   1128       }
   1129 
   1130       // Try whether the phi can be translated into the requested form
   1131       // (truncated and/or offset by a constant).
   1132       if ((!TruncTy || InvertStep) &&
   1133           canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) {
   1134         // Record the phi node. But don't stop we might find an exact match
   1135         // later.
   1136         AddRecPhiMatch = PN;
   1137         IncV = TempIncV;
   1138         TruncTy = SE.getEffectiveSCEVType(Normalized->getType());
   1139       }
   1140     }
   1141 
   1142     if (AddRecPhiMatch) {
   1143       // Potentially, move the increment. We have made sure in
   1144       // isExpandedAddRecExprPHI or hoistIVInc that this is possible.
   1145       if (L == IVIncInsertLoop)
   1146         hoistBeforePos(SE.DT, IncV, IVIncInsertPos, AddRecPhiMatch);
   1147 
   1148       // Ok, the add recurrence looks usable.
   1149       // Remember this PHI, even in post-inc mode.
   1150       InsertedValues.insert(AddRecPhiMatch);
   1151       // Remember the increment.
   1152       rememberInstruction(IncV);
   1153       return AddRecPhiMatch;
   1154     }
   1155   }
   1156 
   1157   // Save the original insertion point so we can restore it when we're done.
   1158   BuilderType::InsertPointGuard Guard(Builder);
   1159 
   1160   // Another AddRec may need to be recursively expanded below. For example, if
   1161   // this AddRec is quadratic, the StepV may itself be an AddRec in this
   1162   // loop. Remove this loop from the PostIncLoops set before expanding such
   1163   // AddRecs. Otherwise, we cannot find a valid position for the step
   1164   // (i.e. StepV can never dominate its loop header).  Ideally, we could do
   1165   // SavedIncLoops.swap(PostIncLoops), but we generally have a single element,
   1166   // so it's not worth implementing SmallPtrSet::swap.
   1167   PostIncLoopSet SavedPostIncLoops = PostIncLoops;
   1168   PostIncLoops.clear();
   1169 
   1170   // Expand code for the start value.
   1171   Value *StartV = expandCodeFor(Normalized->getStart(), ExpandTy,
   1172                                 L->getHeader()->begin());
   1173 
   1174   // StartV must be hoisted into L's preheader to dominate the new phi.
   1175   assert(!isa<Instruction>(StartV) ||
   1176          SE.DT->properlyDominates(cast<Instruction>(StartV)->getParent(),
   1177                                   L->getHeader()));
   1178 
   1179   // Expand code for the step value. Do this before creating the PHI so that PHI
   1180   // reuse code doesn't see an incomplete PHI.
   1181   const SCEV *Step = Normalized->getStepRecurrence(SE);
   1182   // If the stride is negative, insert a sub instead of an add for the increment
   1183   // (unless it's a constant, because subtracts of constants are canonicalized
   1184   // to adds).
   1185   bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
   1186   if (useSubtract)
   1187     Step = SE.getNegativeSCEV(Step);
   1188   // Expand the step somewhere that dominates the loop header.
   1189   Value *StepV = expandCodeFor(Step, IntTy, L->getHeader()->begin());
   1190 
   1191   // Create the PHI.
   1192   BasicBlock *Header = L->getHeader();
   1193   Builder.SetInsertPoint(Header, Header->begin());
   1194   pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
   1195   PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE),
   1196                                   Twine(IVName) + ".iv");
   1197   rememberInstruction(PN);
   1198 
   1199   // Create the step instructions and populate the PHI.
   1200   for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
   1201     BasicBlock *Pred = *HPI;
   1202 
   1203     // Add a start value.
   1204     if (!L->contains(Pred)) {
   1205       PN->addIncoming(StartV, Pred);
   1206       continue;
   1207     }
   1208 
   1209     // Create a step value and add it to the PHI.
   1210     // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the
   1211     // instructions at IVIncInsertPos.
   1212     Instruction *InsertPos = L == IVIncInsertLoop ?
   1213       IVIncInsertPos : Pred->getTerminator();
   1214     Builder.SetInsertPoint(InsertPos);
   1215     Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
   1216     if (isa<OverflowingBinaryOperator>(IncV)) {
   1217       if (Normalized->getNoWrapFlags(SCEV::FlagNUW))
   1218         cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap();
   1219       if (Normalized->getNoWrapFlags(SCEV::FlagNSW))
   1220         cast<BinaryOperator>(IncV)->setHasNoSignedWrap();
   1221     }
   1222     PN->addIncoming(IncV, Pred);
   1223   }
   1224 
   1225   // After expanding subexpressions, restore the PostIncLoops set so the caller
   1226   // can ensure that IVIncrement dominates the current uses.
   1227   PostIncLoops = SavedPostIncLoops;
   1228 
   1229   // Remember this PHI, even in post-inc mode.
   1230   InsertedValues.insert(PN);
   1231 
   1232   return PN;
   1233 }
   1234 
   1235 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
   1236   Type *STy = S->getType();
   1237   Type *IntTy = SE.getEffectiveSCEVType(STy);
   1238   const Loop *L = S->getLoop();
   1239 
   1240   // Determine a normalized form of this expression, which is the expression
   1241   // before any post-inc adjustment is made.
   1242   const SCEVAddRecExpr *Normalized = S;
   1243   if (PostIncLoops.count(L)) {
   1244     PostIncLoopSet Loops;
   1245     Loops.insert(L);
   1246     Normalized =
   1247       cast<SCEVAddRecExpr>(TransformForPostIncUse(Normalize, S, nullptr,
   1248                                                   nullptr, Loops, SE, *SE.DT));
   1249   }
   1250 
   1251   // Strip off any non-loop-dominating component from the addrec start.
   1252   const SCEV *Start = Normalized->getStart();
   1253   const SCEV *PostLoopOffset = nullptr;
   1254   if (!SE.properlyDominates(Start, L->getHeader())) {
   1255     PostLoopOffset = Start;
   1256     Start = SE.getConstant(Normalized->getType(), 0);
   1257     Normalized = cast<SCEVAddRecExpr>(
   1258       SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE),
   1259                        Normalized->getLoop(),
   1260                        Normalized->getNoWrapFlags(SCEV::FlagNW)));
   1261   }
   1262 
   1263   // Strip off any non-loop-dominating component from the addrec step.
   1264   const SCEV *Step = Normalized->getStepRecurrence(SE);
   1265   const SCEV *PostLoopScale = nullptr;
   1266   if (!SE.dominates(Step, L->getHeader())) {
   1267     PostLoopScale = Step;
   1268     Step = SE.getConstant(Normalized->getType(), 1);
   1269     Normalized =
   1270       cast<SCEVAddRecExpr>(SE.getAddRecExpr(
   1271                              Start, Step, Normalized->getLoop(),
   1272                              Normalized->getNoWrapFlags(SCEV::FlagNW)));
   1273   }
   1274 
   1275   // Expand the core addrec. If we need post-loop scaling, force it to
   1276   // expand to an integer type to avoid the need for additional casting.
   1277   Type *ExpandTy = PostLoopScale ? IntTy : STy;
   1278   // In some cases, we decide to reuse an existing phi node but need to truncate
   1279   // it and/or invert the step.
   1280   Type *TruncTy = nullptr;
   1281   bool InvertStep = false;
   1282   PHINode *PN = getAddRecExprPHILiterally(Normalized, L, ExpandTy, IntTy,
   1283                                           TruncTy, InvertStep);
   1284 
   1285   // Accommodate post-inc mode, if necessary.
   1286   Value *Result;
   1287   if (!PostIncLoops.count(L))
   1288     Result = PN;
   1289   else {
   1290     // In PostInc mode, use the post-incremented value.
   1291     BasicBlock *LatchBlock = L->getLoopLatch();
   1292     assert(LatchBlock && "PostInc mode requires a unique loop latch!");
   1293     Result = PN->getIncomingValueForBlock(LatchBlock);
   1294 
   1295     // For an expansion to use the postinc form, the client must call
   1296     // expandCodeFor with an InsertPoint that is either outside the PostIncLoop
   1297     // or dominated by IVIncInsertPos.
   1298     if (isa<Instruction>(Result)
   1299         && !SE.DT->dominates(cast<Instruction>(Result),
   1300                              Builder.GetInsertPoint())) {
   1301       // The induction variable's postinc expansion does not dominate this use.
   1302       // IVUsers tries to prevent this case, so it is rare. However, it can
   1303       // happen when an IVUser outside the loop is not dominated by the latch
   1304       // block. Adjusting IVIncInsertPos before expansion begins cannot handle
   1305       // all cases. Consider a phi outide whose operand is replaced during
   1306       // expansion with the value of the postinc user. Without fundamentally
   1307       // changing the way postinc users are tracked, the only remedy is
   1308       // inserting an extra IV increment. StepV might fold into PostLoopOffset,
   1309       // but hopefully expandCodeFor handles that.
   1310       bool useSubtract =
   1311         !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
   1312       if (useSubtract)
   1313         Step = SE.getNegativeSCEV(Step);
   1314       Value *StepV;
   1315       {
   1316         // Expand the step somewhere that dominates the loop header.
   1317         BuilderType::InsertPointGuard Guard(Builder);
   1318         StepV = expandCodeFor(Step, IntTy, L->getHeader()->begin());
   1319       }
   1320       Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
   1321     }
   1322   }
   1323 
   1324   // We have decided to reuse an induction variable of a dominating loop. Apply
   1325   // truncation and/or invertion of the step.
   1326   if (TruncTy) {
   1327     Type *ResTy = Result->getType();
   1328     // Normalize the result type.
   1329     if (ResTy != SE.getEffectiveSCEVType(ResTy))
   1330       Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy));
   1331     // Truncate the result.
   1332     if (TruncTy != Result->getType()) {
   1333       Result = Builder.CreateTrunc(Result, TruncTy);
   1334       rememberInstruction(Result);
   1335     }
   1336     // Invert the result.
   1337     if (InvertStep) {
   1338       Result = Builder.CreateSub(expandCodeFor(Normalized->getStart(), TruncTy),
   1339                                  Result);
   1340       rememberInstruction(Result);
   1341     }
   1342   }
   1343 
   1344   // Re-apply any non-loop-dominating scale.
   1345   if (PostLoopScale) {
   1346     assert(S->isAffine() && "Can't linearly scale non-affine recurrences.");
   1347     Result = InsertNoopCastOfTo(Result, IntTy);
   1348     Result = Builder.CreateMul(Result,
   1349                                expandCodeFor(PostLoopScale, IntTy));
   1350     rememberInstruction(Result);
   1351   }
   1352 
   1353   // Re-apply any non-loop-dominating offset.
   1354   if (PostLoopOffset) {
   1355     if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) {
   1356       const SCEV *const OffsetArray[1] = { PostLoopOffset };
   1357       Result = expandAddToGEP(OffsetArray, OffsetArray+1, PTy, IntTy, Result);
   1358     } else {
   1359       Result = InsertNoopCastOfTo(Result, IntTy);
   1360       Result = Builder.CreateAdd(Result,
   1361                                  expandCodeFor(PostLoopOffset, IntTy));
   1362       rememberInstruction(Result);
   1363     }
   1364   }
   1365 
   1366   return Result;
   1367 }
   1368 
   1369 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
   1370   if (!CanonicalMode) return expandAddRecExprLiterally(S);
   1371 
   1372   Type *Ty = SE.getEffectiveSCEVType(S->getType());
   1373   const Loop *L = S->getLoop();
   1374 
   1375   // First check for an existing canonical IV in a suitable type.
   1376   PHINode *CanonicalIV = nullptr;
   1377   if (PHINode *PN = L->getCanonicalInductionVariable())
   1378     if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
   1379       CanonicalIV = PN;
   1380 
   1381   // Rewrite an AddRec in terms of the canonical induction variable, if
   1382   // its type is more narrow.
   1383   if (CanonicalIV &&
   1384       SE.getTypeSizeInBits(CanonicalIV->getType()) >
   1385       SE.getTypeSizeInBits(Ty)) {
   1386     SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
   1387     for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
   1388       NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType());
   1389     Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(),
   1390                                        S->getNoWrapFlags(SCEV::FlagNW)));
   1391     BasicBlock::iterator NewInsertPt =
   1392       std::next(BasicBlock::iterator(cast<Instruction>(V)));
   1393     BuilderType::InsertPointGuard Guard(Builder);
   1394     while (isa<PHINode>(NewInsertPt) || isa<DbgInfoIntrinsic>(NewInsertPt) ||
   1395            isa<LandingPadInst>(NewInsertPt))
   1396       ++NewInsertPt;
   1397     V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr,
   1398                       NewInsertPt);
   1399     return V;
   1400   }
   1401 
   1402   // {X,+,F} --> X + {0,+,F}
   1403   if (!S->getStart()->isZero()) {
   1404     SmallVector<const SCEV *, 4> NewOps(S->op_begin(), S->op_end());
   1405     NewOps[0] = SE.getConstant(Ty, 0);
   1406     const SCEV *Rest = SE.getAddRecExpr(NewOps, L,
   1407                                         S->getNoWrapFlags(SCEV::FlagNW));
   1408 
   1409     // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
   1410     // comments on expandAddToGEP for details.
   1411     const SCEV *Base = S->getStart();
   1412     const SCEV *RestArray[1] = { Rest };
   1413     // Dig into the expression to find the pointer base for a GEP.
   1414     ExposePointerBase(Base, RestArray[0], SE);
   1415     // If we found a pointer, expand the AddRec with a GEP.
   1416     if (PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
   1417       // Make sure the Base isn't something exotic, such as a multiplied
   1418       // or divided pointer value. In those cases, the result type isn't
   1419       // actually a pointer type.
   1420       if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) {
   1421         Value *StartV = expand(Base);
   1422         assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
   1423         return expandAddToGEP(RestArray, RestArray+1, PTy, Ty, StartV);
   1424       }
   1425     }
   1426 
   1427     // Just do a normal add. Pre-expand the operands to suppress folding.
   1428     return expand(SE.getAddExpr(SE.getUnknown(expand(S->getStart())),
   1429                                 SE.getUnknown(expand(Rest))));
   1430   }
   1431 
   1432   // If we don't yet have a canonical IV, create one.
   1433   if (!CanonicalIV) {
   1434     // Create and insert the PHI node for the induction variable in the
   1435     // specified loop.
   1436     BasicBlock *Header = L->getHeader();
   1437     pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
   1438     CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar",
   1439                                   Header->begin());
   1440     rememberInstruction(CanonicalIV);
   1441 
   1442     SmallSet<BasicBlock *, 4> PredSeen;
   1443     Constant *One = ConstantInt::get(Ty, 1);
   1444     for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
   1445       BasicBlock *HP = *HPI;
   1446       if (!PredSeen.insert(HP))
   1447         continue;
   1448 
   1449       if (L->contains(HP)) {
   1450         // Insert a unit add instruction right before the terminator
   1451         // corresponding to the back-edge.
   1452         Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One,
   1453                                                      "indvar.next",
   1454                                                      HP->getTerminator());
   1455         Add->setDebugLoc(HP->getTerminator()->getDebugLoc());
   1456         rememberInstruction(Add);
   1457         CanonicalIV->addIncoming(Add, HP);
   1458       } else {
   1459         CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP);
   1460       }
   1461     }
   1462   }
   1463 
   1464   // {0,+,1} --> Insert a canonical induction variable into the loop!
   1465   if (S->isAffine() && S->getOperand(1)->isOne()) {
   1466     assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
   1467            "IVs with types different from the canonical IV should "
   1468            "already have been handled!");
   1469     return CanonicalIV;
   1470   }
   1471 
   1472   // {0,+,F} --> {0,+,1} * F
   1473 
   1474   // If this is a simple linear addrec, emit it now as a special case.
   1475   if (S->isAffine())    // {0,+,F} --> i*F
   1476     return
   1477       expand(SE.getTruncateOrNoop(
   1478         SE.getMulExpr(SE.getUnknown(CanonicalIV),
   1479                       SE.getNoopOrAnyExtend(S->getOperand(1),
   1480                                             CanonicalIV->getType())),
   1481         Ty));
   1482 
   1483   // If this is a chain of recurrences, turn it into a closed form, using the
   1484   // folders, then expandCodeFor the closed form.  This allows the folders to
   1485   // simplify the expression without having to build a bunch of special code
   1486   // into this folder.
   1487   const SCEV *IH = SE.getUnknown(CanonicalIV);   // Get I as a "symbolic" SCEV.
   1488 
   1489   // Promote S up to the canonical IV type, if the cast is foldable.
   1490   const SCEV *NewS = S;
   1491   const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType());
   1492   if (isa<SCEVAddRecExpr>(Ext))
   1493     NewS = Ext;
   1494 
   1495   const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
   1496   //cerr << "Evaluated: " << *this << "\n     to: " << *V << "\n";
   1497 
   1498   // Truncate the result down to the original type, if needed.
   1499   const SCEV *T = SE.getTruncateOrNoop(V, Ty);
   1500   return expand(T);
   1501 }
   1502 
   1503 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
   1504   Type *Ty = SE.getEffectiveSCEVType(S->getType());
   1505   Value *V = expandCodeFor(S->getOperand(),
   1506                            SE.getEffectiveSCEVType(S->getOperand()->getType()));
   1507   Value *I = Builder.CreateTrunc(V, Ty);
   1508   rememberInstruction(I);
   1509   return I;
   1510 }
   1511 
   1512 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
   1513   Type *Ty = SE.getEffectiveSCEVType(S->getType());
   1514   Value *V = expandCodeFor(S->getOperand(),
   1515                            SE.getEffectiveSCEVType(S->getOperand()->getType()));
   1516   Value *I = Builder.CreateZExt(V, Ty);
   1517   rememberInstruction(I);
   1518   return I;
   1519 }
   1520 
   1521 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
   1522   Type *Ty = SE.getEffectiveSCEVType(S->getType());
   1523   Value *V = expandCodeFor(S->getOperand(),
   1524                            SE.getEffectiveSCEVType(S->getOperand()->getType()));
   1525   Value *I = Builder.CreateSExt(V, Ty);
   1526   rememberInstruction(I);
   1527   return I;
   1528 }
   1529 
   1530 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
   1531   Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
   1532   Type *Ty = LHS->getType();
   1533   for (int i = S->getNumOperands()-2; i >= 0; --i) {
   1534     // In the case of mixed integer and pointer types, do the
   1535     // rest of the comparisons as integer.
   1536     if (S->getOperand(i)->getType() != Ty) {
   1537       Ty = SE.getEffectiveSCEVType(Ty);
   1538       LHS = InsertNoopCastOfTo(LHS, Ty);
   1539     }
   1540     Value *RHS = expandCodeFor(S->getOperand(i), Ty);
   1541     Value *ICmp = Builder.CreateICmpSGT(LHS, RHS);
   1542     rememberInstruction(ICmp);
   1543     Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
   1544     rememberInstruction(Sel);
   1545     LHS = Sel;
   1546   }
   1547   // In the case of mixed integer and pointer types, cast the
   1548   // final result back to the pointer type.
   1549   if (LHS->getType() != S->getType())
   1550     LHS = InsertNoopCastOfTo(LHS, S->getType());
   1551   return LHS;
   1552 }
   1553 
   1554 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
   1555   Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
   1556   Type *Ty = LHS->getType();
   1557   for (int i = S->getNumOperands()-2; i >= 0; --i) {
   1558     // In the case of mixed integer and pointer types, do the
   1559     // rest of the comparisons as integer.
   1560     if (S->getOperand(i)->getType() != Ty) {
   1561       Ty = SE.getEffectiveSCEVType(Ty);
   1562       LHS = InsertNoopCastOfTo(LHS, Ty);
   1563     }
   1564     Value *RHS = expandCodeFor(S->getOperand(i), Ty);
   1565     Value *ICmp = Builder.CreateICmpUGT(LHS, RHS);
   1566     rememberInstruction(ICmp);
   1567     Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
   1568     rememberInstruction(Sel);
   1569     LHS = Sel;
   1570   }
   1571   // In the case of mixed integer and pointer types, cast the
   1572   // final result back to the pointer type.
   1573   if (LHS->getType() != S->getType())
   1574     LHS = InsertNoopCastOfTo(LHS, S->getType());
   1575   return LHS;
   1576 }
   1577 
   1578 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty,
   1579                                    Instruction *IP) {
   1580   Builder.SetInsertPoint(IP->getParent(), IP);
   1581   return expandCodeFor(SH, Ty);
   1582 }
   1583 
   1584 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) {
   1585   // Expand the code for this SCEV.
   1586   Value *V = expand(SH);
   1587   if (Ty) {
   1588     assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
   1589            "non-trivial casts should be done with the SCEVs directly!");
   1590     V = InsertNoopCastOfTo(V, Ty);
   1591   }
   1592   return V;
   1593 }
   1594 
   1595 Value *SCEVExpander::expand(const SCEV *S) {
   1596   // Compute an insertion point for this SCEV object. Hoist the instructions
   1597   // as far out in the loop nest as possible.
   1598   Instruction *InsertPt = Builder.GetInsertPoint();
   1599   for (Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock()); ;
   1600        L = L->getParentLoop())
   1601     if (SE.isLoopInvariant(S, L)) {
   1602       if (!L) break;
   1603       if (BasicBlock *Preheader = L->getLoopPreheader())
   1604         InsertPt = Preheader->getTerminator();
   1605       else {
   1606         // LSR sets the insertion point for AddRec start/step values to the
   1607         // block start to simplify value reuse, even though it's an invalid
   1608         // position. SCEVExpander must correct for this in all cases.
   1609         InsertPt = L->getHeader()->getFirstInsertionPt();
   1610       }
   1611     } else {
   1612       // If the SCEV is computable at this level, insert it into the header
   1613       // after the PHIs (and after any other instructions that we've inserted
   1614       // there) so that it is guaranteed to dominate any user inside the loop.
   1615       if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L))
   1616         InsertPt = L->getHeader()->getFirstInsertionPt();
   1617       while (InsertPt != Builder.GetInsertPoint()
   1618              && (isInsertedInstruction(InsertPt)
   1619                  || isa<DbgInfoIntrinsic>(InsertPt))) {
   1620         InsertPt = std::next(BasicBlock::iterator(InsertPt));
   1621       }
   1622       break;
   1623     }
   1624 
   1625   // Check to see if we already expanded this here.
   1626   std::map<std::pair<const SCEV *, Instruction *>, TrackingVH<Value> >::iterator
   1627     I = InsertedExpressions.find(std::make_pair(S, InsertPt));
   1628   if (I != InsertedExpressions.end())
   1629     return I->second;
   1630 
   1631   BuilderType::InsertPointGuard Guard(Builder);
   1632   Builder.SetInsertPoint(InsertPt->getParent(), InsertPt);
   1633 
   1634   // Expand the expression into instructions.
   1635   Value *V = visit(S);
   1636 
   1637   // Remember the expanded value for this SCEV at this location.
   1638   //
   1639   // This is independent of PostIncLoops. The mapped value simply materializes
   1640   // the expression at this insertion point. If the mapped value happened to be
   1641   // a postinc expansion, it could be reused by a non-postinc user, but only if
   1642   // its insertion point was already at the head of the loop.
   1643   InsertedExpressions[std::make_pair(S, InsertPt)] = V;
   1644   return V;
   1645 }
   1646 
   1647 void SCEVExpander::rememberInstruction(Value *I) {
   1648   if (!PostIncLoops.empty())
   1649     InsertedPostIncValues.insert(I);
   1650   else
   1651     InsertedValues.insert(I);
   1652 }
   1653 
   1654 /// getOrInsertCanonicalInductionVariable - This method returns the
   1655 /// canonical induction variable of the specified type for the specified
   1656 /// loop (inserting one if there is none).  A canonical induction variable
   1657 /// starts at zero and steps by one on each iteration.
   1658 PHINode *
   1659 SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L,
   1660                                                     Type *Ty) {
   1661   assert(Ty->isIntegerTy() && "Can only insert integer induction variables!");
   1662 
   1663   // Build a SCEV for {0,+,1}<L>.
   1664   // Conservatively use FlagAnyWrap for now.
   1665   const SCEV *H = SE.getAddRecExpr(SE.getConstant(Ty, 0),
   1666                                    SE.getConstant(Ty, 1), L, SCEV::FlagAnyWrap);
   1667 
   1668   // Emit code for it.
   1669   BuilderType::InsertPointGuard Guard(Builder);
   1670   PHINode *V = cast<PHINode>(expandCodeFor(H, nullptr,
   1671                                            L->getHeader()->begin()));
   1672 
   1673   return V;
   1674 }
   1675 
   1676 /// replaceCongruentIVs - Check for congruent phis in this loop header and
   1677 /// replace them with their most canonical representative. Return the number of
   1678 /// phis eliminated.
   1679 ///
   1680 /// This does not depend on any SCEVExpander state but should be used in
   1681 /// the same context that SCEVExpander is used.
   1682 unsigned SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT,
   1683                                            SmallVectorImpl<WeakVH> &DeadInsts,
   1684                                            const TargetTransformInfo *TTI) {
   1685   // Find integer phis in order of increasing width.
   1686   SmallVector<PHINode*, 8> Phis;
   1687   for (BasicBlock::iterator I = L->getHeader()->begin();
   1688        PHINode *Phi = dyn_cast<PHINode>(I); ++I) {
   1689     Phis.push_back(Phi);
   1690   }
   1691   if (TTI)
   1692     std::sort(Phis.begin(), Phis.end(), [](Value *LHS, Value *RHS) {
   1693       // Put pointers at the back and make sure pointer < pointer = false.
   1694       if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
   1695         return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy();
   1696       return RHS->getType()->getPrimitiveSizeInBits() <
   1697              LHS->getType()->getPrimitiveSizeInBits();
   1698     });
   1699 
   1700   unsigned NumElim = 0;
   1701   DenseMap<const SCEV *, PHINode *> ExprToIVMap;
   1702   // Process phis from wide to narrow. Mapping wide phis to the their truncation
   1703   // so narrow phis can reuse them.
   1704   for (SmallVectorImpl<PHINode*>::const_iterator PIter = Phis.begin(),
   1705          PEnd = Phis.end(); PIter != PEnd; ++PIter) {
   1706     PHINode *Phi = *PIter;
   1707 
   1708     // Fold constant phis. They may be congruent to other constant phis and
   1709     // would confuse the logic below that expects proper IVs.
   1710     if (Value *V = SimplifyInstruction(Phi, SE.DL, SE.TLI, SE.DT)) {
   1711       Phi->replaceAllUsesWith(V);
   1712       DeadInsts.push_back(Phi);
   1713       ++NumElim;
   1714       DEBUG_WITH_TYPE(DebugType, dbgs()
   1715                       << "INDVARS: Eliminated constant iv: " << *Phi << '\n');
   1716       continue;
   1717     }
   1718 
   1719     if (!SE.isSCEVable(Phi->getType()))
   1720       continue;
   1721 
   1722     PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)];
   1723     if (!OrigPhiRef) {
   1724       OrigPhiRef = Phi;
   1725       if (Phi->getType()->isIntegerTy() && TTI
   1726           && TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) {
   1727         // This phi can be freely truncated to the narrowest phi type. Map the
   1728         // truncated expression to it so it will be reused for narrow types.
   1729         const SCEV *TruncExpr =
   1730           SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType());
   1731         ExprToIVMap[TruncExpr] = Phi;
   1732       }
   1733       continue;
   1734     }
   1735 
   1736     // Replacing a pointer phi with an integer phi or vice-versa doesn't make
   1737     // sense.
   1738     if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy())
   1739       continue;
   1740 
   1741     if (BasicBlock *LatchBlock = L->getLoopLatch()) {
   1742       Instruction *OrigInc =
   1743         cast<Instruction>(OrigPhiRef->getIncomingValueForBlock(LatchBlock));
   1744       Instruction *IsomorphicInc =
   1745         cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
   1746 
   1747       // If this phi has the same width but is more canonical, replace the
   1748       // original with it. As part of the "more canonical" determination,
   1749       // respect a prior decision to use an IV chain.
   1750       if (OrigPhiRef->getType() == Phi->getType()
   1751           && !(ChainedPhis.count(Phi)
   1752                || isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L))
   1753           && (ChainedPhis.count(Phi)
   1754               || isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) {
   1755         std::swap(OrigPhiRef, Phi);
   1756         std::swap(OrigInc, IsomorphicInc);
   1757       }
   1758       // Replacing the congruent phi is sufficient because acyclic redundancy
   1759       // elimination, CSE/GVN, should handle the rest. However, once SCEV proves
   1760       // that a phi is congruent, it's often the head of an IV user cycle that
   1761       // is isomorphic with the original phi. It's worth eagerly cleaning up the
   1762       // common case of a single IV increment so that DeleteDeadPHIs can remove
   1763       // cycles that had postinc uses.
   1764       const SCEV *TruncExpr = SE.getTruncateOrNoop(SE.getSCEV(OrigInc),
   1765                                                    IsomorphicInc->getType());
   1766       if (OrigInc != IsomorphicInc
   1767           && TruncExpr == SE.getSCEV(IsomorphicInc)
   1768           && ((isa<PHINode>(OrigInc) && isa<PHINode>(IsomorphicInc))
   1769               || hoistIVInc(OrigInc, IsomorphicInc))) {
   1770         DEBUG_WITH_TYPE(DebugType, dbgs()
   1771                         << "INDVARS: Eliminated congruent iv.inc: "
   1772                         << *IsomorphicInc << '\n');
   1773         Value *NewInc = OrigInc;
   1774         if (OrigInc->getType() != IsomorphicInc->getType()) {
   1775           Instruction *IP = isa<PHINode>(OrigInc)
   1776             ? (Instruction*)L->getHeader()->getFirstInsertionPt()
   1777             : OrigInc->getNextNode();
   1778           IRBuilder<> Builder(IP);
   1779           Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc());
   1780           NewInc = Builder.
   1781             CreateTruncOrBitCast(OrigInc, IsomorphicInc->getType(), IVName);
   1782         }
   1783         IsomorphicInc->replaceAllUsesWith(NewInc);
   1784         DeadInsts.push_back(IsomorphicInc);
   1785       }
   1786     }
   1787     DEBUG_WITH_TYPE(DebugType, dbgs()
   1788                     << "INDVARS: Eliminated congruent iv: " << *Phi << '\n');
   1789     ++NumElim;
   1790     Value *NewIV = OrigPhiRef;
   1791     if (OrigPhiRef->getType() != Phi->getType()) {
   1792       IRBuilder<> Builder(L->getHeader()->getFirstInsertionPt());
   1793       Builder.SetCurrentDebugLocation(Phi->getDebugLoc());
   1794       NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName);
   1795     }
   1796     Phi->replaceAllUsesWith(NewIV);
   1797     DeadInsts.push_back(Phi);
   1798   }
   1799   return NumElim;
   1800 }
   1801 
   1802 namespace {
   1803 // Search for a SCEV subexpression that is not safe to expand.  Any expression
   1804 // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely
   1805 // UDiv expressions. We don't know if the UDiv is derived from an IR divide
   1806 // instruction, but the important thing is that we prove the denominator is
   1807 // nonzero before expansion.
   1808 //
   1809 // IVUsers already checks that IV-derived expressions are safe. So this check is
   1810 // only needed when the expression includes some subexpression that is not IV
   1811 // derived.
   1812 //
   1813 // Currently, we only allow division by a nonzero constant here. If this is
   1814 // inadequate, we could easily allow division by SCEVUnknown by using
   1815 // ValueTracking to check isKnownNonZero().
   1816 //
   1817 // We cannot generally expand recurrences unless the step dominates the loop
   1818 // header. The expander handles the special case of affine recurrences by
   1819 // scaling the recurrence outside the loop, but this technique isn't generally
   1820 // applicable. Expanding a nested recurrence outside a loop requires computing
   1821 // binomial coefficients. This could be done, but the recurrence has to be in a
   1822 // perfectly reduced form, which can't be guaranteed.
   1823 struct SCEVFindUnsafe {
   1824   ScalarEvolution &SE;
   1825   bool IsUnsafe;
   1826 
   1827   SCEVFindUnsafe(ScalarEvolution &se): SE(se), IsUnsafe(false) {}
   1828 
   1829   bool follow(const SCEV *S) {
   1830     if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
   1831       const SCEVConstant *SC = dyn_cast<SCEVConstant>(D->getRHS());
   1832       if (!SC || SC->getValue()->isZero()) {
   1833         IsUnsafe = true;
   1834         return false;
   1835       }
   1836     }
   1837     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
   1838       const SCEV *Step = AR->getStepRecurrence(SE);
   1839       if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) {
   1840         IsUnsafe = true;
   1841         return false;
   1842       }
   1843     }
   1844     return true;
   1845   }
   1846   bool isDone() const { return IsUnsafe; }
   1847 };
   1848 }
   1849 
   1850 namespace llvm {
   1851 bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE) {
   1852   SCEVFindUnsafe Search(SE);
   1853   visitAll(S, Search);
   1854   return !Search.IsUnsafe;
   1855 }
   1856 }
   1857