Home | History | Annotate | Download | only in SelectionDAG
      1 //===-- SelectionDAGBuilder.h - Selection-DAG building --------*- C++ -*---===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef SELECTIONDAGBUILDER_H
     15 #define SELECTIONDAGBUILDER_H
     16 
     17 #include "llvm/ADT/APInt.h"
     18 #include "llvm/ADT/DenseMap.h"
     19 #include "llvm/CodeGen/SelectionDAG.h"
     20 #include "llvm/CodeGen/SelectionDAGNodes.h"
     21 #include "llvm/IR/CallSite.h"
     22 #include "llvm/IR/Constants.h"
     23 #include "llvm/Support/ErrorHandling.h"
     24 #include <vector>
     25 
     26 namespace llvm {
     27 
     28 class AddrSpaceCastInst;
     29 class AliasAnalysis;
     30 class AllocaInst;
     31 class BasicBlock;
     32 class BitCastInst;
     33 class BranchInst;
     34 class CallInst;
     35 class DbgValueInst;
     36 class ExtractElementInst;
     37 class ExtractValueInst;
     38 class FCmpInst;
     39 class FPExtInst;
     40 class FPToSIInst;
     41 class FPToUIInst;
     42 class FPTruncInst;
     43 class Function;
     44 class FunctionLoweringInfo;
     45 class GetElementPtrInst;
     46 class GCFunctionInfo;
     47 class ICmpInst;
     48 class IntToPtrInst;
     49 class IndirectBrInst;
     50 class InvokeInst;
     51 class InsertElementInst;
     52 class InsertValueInst;
     53 class Instruction;
     54 class LoadInst;
     55 class MachineBasicBlock;
     56 class MachineInstr;
     57 class MachineRegisterInfo;
     58 class MDNode;
     59 class MVT;
     60 class PHINode;
     61 class PtrToIntInst;
     62 class ReturnInst;
     63 class SDDbgValue;
     64 class SExtInst;
     65 class SelectInst;
     66 class ShuffleVectorInst;
     67 class SIToFPInst;
     68 class StoreInst;
     69 class SwitchInst;
     70 class DataLayout;
     71 class TargetLibraryInfo;
     72 class TargetLowering;
     73 class TruncInst;
     74 class UIToFPInst;
     75 class UnreachableInst;
     76 class VAArgInst;
     77 class ZExtInst;
     78 
     79 //===----------------------------------------------------------------------===//
     80 /// SelectionDAGBuilder - This is the common target-independent lowering
     81 /// implementation that is parameterized by a TargetLowering object.
     82 ///
     83 class SelectionDAGBuilder {
     84   /// CurInst - The current instruction being visited
     85   const Instruction *CurInst;
     86 
     87   DenseMap<const Value*, SDValue> NodeMap;
     88 
     89   /// UnusedArgNodeMap - Maps argument value for unused arguments. This is used
     90   /// to preserve debug information for incoming arguments.
     91   DenseMap<const Value*, SDValue> UnusedArgNodeMap;
     92 
     93   /// DanglingDebugInfo - Helper type for DanglingDebugInfoMap.
     94   class DanglingDebugInfo {
     95     const DbgValueInst* DI;
     96     DebugLoc dl;
     97     unsigned SDNodeOrder;
     98   public:
     99     DanglingDebugInfo() : DI(nullptr), dl(DebugLoc()), SDNodeOrder(0) { }
    100     DanglingDebugInfo(const DbgValueInst *di, DebugLoc DL, unsigned SDNO) :
    101       DI(di), dl(DL), SDNodeOrder(SDNO) { }
    102     const DbgValueInst* getDI() { return DI; }
    103     DebugLoc getdl() { return dl; }
    104     unsigned getSDNodeOrder() { return SDNodeOrder; }
    105   };
    106 
    107   /// DanglingDebugInfoMap - Keeps track of dbg_values for which we have not
    108   /// yet seen the referent.  We defer handling these until we do see it.
    109   DenseMap<const Value*, DanglingDebugInfo> DanglingDebugInfoMap;
    110 
    111 public:
    112   /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
    113   /// them up and then emit token factor nodes when possible.  This allows us to
    114   /// get simple disambiguation between loads without worrying about alias
    115   /// analysis.
    116   SmallVector<SDValue, 8> PendingLoads;
    117 private:
    118 
    119   /// PendingExports - CopyToReg nodes that copy values to virtual registers
    120   /// for export to other blocks need to be emitted before any terminator
    121   /// instruction, but they have no other ordering requirements. We bunch them
    122   /// up and the emit a single tokenfactor for them just before terminator
    123   /// instructions.
    124   SmallVector<SDValue, 8> PendingExports;
    125 
    126   /// SDNodeOrder - A unique monotonically increasing number used to order the
    127   /// SDNodes we create.
    128   unsigned SDNodeOrder;
    129 
    130   /// Case - A struct to record the Value for a switch case, and the
    131   /// case's target basic block.
    132   struct Case {
    133     const Constant *Low;
    134     const Constant *High;
    135     MachineBasicBlock* BB;
    136     uint32_t ExtraWeight;
    137 
    138     Case() : Low(nullptr), High(nullptr), BB(nullptr), ExtraWeight(0) { }
    139     Case(const Constant *low, const Constant *high, MachineBasicBlock *bb,
    140          uint32_t extraweight) : Low(low), High(high), BB(bb),
    141          ExtraWeight(extraweight) { }
    142 
    143     APInt size() const {
    144       const APInt &rHigh = cast<ConstantInt>(High)->getValue();
    145       const APInt &rLow  = cast<ConstantInt>(Low)->getValue();
    146       return (rHigh - rLow + 1ULL);
    147     }
    148   };
    149 
    150   struct CaseBits {
    151     uint64_t Mask;
    152     MachineBasicBlock* BB;
    153     unsigned Bits;
    154     uint32_t ExtraWeight;
    155 
    156     CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits,
    157              uint32_t Weight):
    158       Mask(mask), BB(bb), Bits(bits), ExtraWeight(Weight) { }
    159   };
    160 
    161   typedef std::vector<Case>           CaseVector;
    162   typedef std::vector<CaseBits>       CaseBitsVector;
    163   typedef CaseVector::iterator        CaseItr;
    164   typedef std::pair<CaseItr, CaseItr> CaseRange;
    165 
    166   /// CaseRec - A struct with ctor used in lowering switches to a binary tree
    167   /// of conditional branches.
    168   struct CaseRec {
    169     CaseRec(MachineBasicBlock *bb, const Constant *lt, const Constant *ge,
    170             CaseRange r) :
    171     CaseBB(bb), LT(lt), GE(ge), Range(r) {}
    172 
    173     /// CaseBB - The MBB in which to emit the compare and branch
    174     MachineBasicBlock *CaseBB;
    175     /// LT, GE - If nonzero, we know the current case value must be less-than or
    176     /// greater-than-or-equal-to these Constants.
    177     const Constant *LT;
    178     const Constant *GE;
    179     /// Range - A pair of iterators representing the range of case values to be
    180     /// processed at this point in the binary search tree.
    181     CaseRange Range;
    182   };
    183 
    184   typedef std::vector<CaseRec> CaseRecVector;
    185 
    186   /// The comparison function for sorting the switch case values in the vector.
    187   /// WARNING: Case ranges should be disjoint!
    188   struct CaseCmp {
    189     bool operator()(const Case &C1, const Case &C2) {
    190       assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
    191       const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
    192       const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
    193       return CI1->getValue().slt(CI2->getValue());
    194     }
    195   };
    196 
    197   struct CaseBitsCmp {
    198     bool operator()(const CaseBits &C1, const CaseBits &C2) {
    199       return C1.Bits > C2.Bits;
    200     }
    201   };
    202 
    203   size_t Clusterify(CaseVector &Cases, const SwitchInst &SI);
    204 
    205   /// CaseBlock - This structure is used to communicate between
    206   /// SelectionDAGBuilder and SDISel for the code generation of additional basic
    207   /// blocks needed by multi-case switch statements.
    208   struct CaseBlock {
    209     CaseBlock(ISD::CondCode cc, const Value *cmplhs, const Value *cmprhs,
    210               const Value *cmpmiddle,
    211               MachineBasicBlock *truebb, MachineBasicBlock *falsebb,
    212               MachineBasicBlock *me,
    213               uint32_t trueweight = 0, uint32_t falseweight = 0)
    214       : CC(cc), CmpLHS(cmplhs), CmpMHS(cmpmiddle), CmpRHS(cmprhs),
    215         TrueBB(truebb), FalseBB(falsebb), ThisBB(me),
    216         TrueWeight(trueweight), FalseWeight(falseweight) { }
    217 
    218     // CC - the condition code to use for the case block's setcc node
    219     ISD::CondCode CC;
    220 
    221     // CmpLHS/CmpRHS/CmpMHS - The LHS/MHS/RHS of the comparison to emit.
    222     // Emit by default LHS op RHS. MHS is used for range comparisons:
    223     // If MHS is not null: (LHS <= MHS) and (MHS <= RHS).
    224     const Value *CmpLHS, *CmpMHS, *CmpRHS;
    225 
    226     // TrueBB/FalseBB - the block to branch to if the setcc is true/false.
    227     MachineBasicBlock *TrueBB, *FalseBB;
    228 
    229     // ThisBB - the block into which to emit the code for the setcc and branches
    230     MachineBasicBlock *ThisBB;
    231 
    232     // TrueWeight/FalseWeight - branch weights.
    233     uint32_t TrueWeight, FalseWeight;
    234   };
    235 
    236   struct JumpTable {
    237     JumpTable(unsigned R, unsigned J, MachineBasicBlock *M,
    238               MachineBasicBlock *D): Reg(R), JTI(J), MBB(M), Default(D) {}
    239 
    240     /// Reg - the virtual register containing the index of the jump table entry
    241     //. to jump to.
    242     unsigned Reg;
    243     /// JTI - the JumpTableIndex for this jump table in the function.
    244     unsigned JTI;
    245     /// MBB - the MBB into which to emit the code for the indirect jump.
    246     MachineBasicBlock *MBB;
    247     /// Default - the MBB of the default bb, which is a successor of the range
    248     /// check MBB.  This is when updating PHI nodes in successors.
    249     MachineBasicBlock *Default;
    250   };
    251   struct JumpTableHeader {
    252     JumpTableHeader(APInt F, APInt L, const Value *SV, MachineBasicBlock *H,
    253                     bool E = false):
    254       First(F), Last(L), SValue(SV), HeaderBB(H), Emitted(E) {}
    255     APInt First;
    256     APInt Last;
    257     const Value *SValue;
    258     MachineBasicBlock *HeaderBB;
    259     bool Emitted;
    260   };
    261   typedef std::pair<JumpTableHeader, JumpTable> JumpTableBlock;
    262 
    263   struct BitTestCase {
    264     BitTestCase(uint64_t M, MachineBasicBlock* T, MachineBasicBlock* Tr,
    265                 uint32_t Weight):
    266       Mask(M), ThisBB(T), TargetBB(Tr), ExtraWeight(Weight) { }
    267     uint64_t Mask;
    268     MachineBasicBlock *ThisBB;
    269     MachineBasicBlock *TargetBB;
    270     uint32_t ExtraWeight;
    271   };
    272 
    273   typedef SmallVector<BitTestCase, 3> BitTestInfo;
    274 
    275   struct BitTestBlock {
    276     BitTestBlock(APInt F, APInt R, const Value* SV,
    277                  unsigned Rg, MVT RgVT, bool E,
    278                  MachineBasicBlock* P, MachineBasicBlock* D,
    279                  const BitTestInfo& C):
    280       First(F), Range(R), SValue(SV), Reg(Rg), RegVT(RgVT), Emitted(E),
    281       Parent(P), Default(D), Cases(C) { }
    282     APInt First;
    283     APInt Range;
    284     const Value *SValue;
    285     unsigned Reg;
    286     MVT RegVT;
    287     bool Emitted;
    288     MachineBasicBlock *Parent;
    289     MachineBasicBlock *Default;
    290     BitTestInfo Cases;
    291   };
    292 
    293   /// A class which encapsulates all of the information needed to generate a
    294   /// stack protector check and signals to isel via its state being initialized
    295   /// that a stack protector needs to be generated.
    296   ///
    297   /// *NOTE* The following is a high level documentation of SelectionDAG Stack
    298   /// Protector Generation. The reason that it is placed here is for a lack of
    299   /// other good places to stick it.
    300   ///
    301   /// High Level Overview of SelectionDAG Stack Protector Generation:
    302   ///
    303   /// Previously, generation of stack protectors was done exclusively in the
    304   /// pre-SelectionDAG Codegen LLVM IR Pass "Stack Protector". This necessitated
    305   /// splitting basic blocks at the IR level to create the success/failure basic
    306   /// blocks in the tail of the basic block in question. As a result of this,
    307   /// calls that would have qualified for the sibling call optimization were no
    308   /// longer eligible for optimization since said calls were no longer right in
    309   /// the "tail position" (i.e. the immediate predecessor of a ReturnInst
    310   /// instruction).
    311   ///
    312   /// Then it was noticed that since the sibling call optimization causes the
    313   /// callee to reuse the caller's stack, if we could delay the generation of
    314   /// the stack protector check until later in CodeGen after the sibling call
    315   /// decision was made, we get both the tail call optimization and the stack
    316   /// protector check!
    317   ///
    318   /// A few goals in solving this problem were:
    319   ///
    320   ///   1. Preserve the architecture independence of stack protector generation.
    321   ///
    322   ///   2. Preserve the normal IR level stack protector check for platforms like
    323   ///      OpenBSD for which we support platform-specific stack protector
    324   ///      generation.
    325   ///
    326   /// The main problem that guided the present solution is that one can not
    327   /// solve this problem in an architecture independent manner at the IR level
    328   /// only. This is because:
    329   ///
    330   ///   1. The decision on whether or not to perform a sibling call on certain
    331   ///      platforms (for instance i386) requires lower level information
    332   ///      related to available registers that can not be known at the IR level.
    333   ///
    334   ///   2. Even if the previous point were not true, the decision on whether to
    335   ///      perform a tail call is done in LowerCallTo in SelectionDAG which
    336   ///      occurs after the Stack Protector Pass. As a result, one would need to
    337   ///      put the relevant callinst into the stack protector check success
    338   ///      basic block (where the return inst is placed) and then move it back
    339   ///      later at SelectionDAG/MI time before the stack protector check if the
    340   ///      tail call optimization failed. The MI level option was nixed
    341   ///      immediately since it would require platform-specific pattern
    342   ///      matching. The SelectionDAG level option was nixed because
    343   ///      SelectionDAG only processes one IR level basic block at a time
    344   ///      implying one could not create a DAG Combine to move the callinst.
    345   ///
    346   /// To get around this problem a few things were realized:
    347   ///
    348   ///   1. While one can not handle multiple IR level basic blocks at the
    349   ///      SelectionDAG Level, one can generate multiple machine basic blocks
    350   ///      for one IR level basic block. This is how we handle bit tests and
    351   ///      switches.
    352   ///
    353   ///   2. At the MI level, tail calls are represented via a special return
    354   ///      MIInst called "tcreturn". Thus if we know the basic block in which we
    355   ///      wish to insert the stack protector check, we get the correct behavior
    356   ///      by always inserting the stack protector check right before the return
    357   ///      statement. This is a "magical transformation" since no matter where
    358   ///      the stack protector check intrinsic is, we always insert the stack
    359   ///      protector check code at the end of the BB.
    360   ///
    361   /// Given the aforementioned constraints, the following solution was devised:
    362   ///
    363   ///   1. On platforms that do not support SelectionDAG stack protector check
    364   ///      generation, allow for the normal IR level stack protector check
    365   ///      generation to continue.
    366   ///
    367   ///   2. On platforms that do support SelectionDAG stack protector check
    368   ///      generation:
    369   ///
    370   ///     a. Use the IR level stack protector pass to decide if a stack
    371   ///        protector is required/which BB we insert the stack protector check
    372   ///        in by reusing the logic already therein. If we wish to generate a
    373   ///        stack protector check in a basic block, we place a special IR
    374   ///        intrinsic called llvm.stackprotectorcheck right before the BB's
    375   ///        returninst or if there is a callinst that could potentially be
    376   ///        sibling call optimized, before the call inst.
    377   ///
    378   ///     b. Then when a BB with said intrinsic is processed, we codegen the BB
    379   ///        normally via SelectBasicBlock. In said process, when we visit the
    380   ///        stack protector check, we do not actually emit anything into the
    381   ///        BB. Instead, we just initialize the stack protector descriptor
    382   ///        class (which involves stashing information/creating the success
    383   ///        mbbb and the failure mbb if we have not created one for this
    384   ///        function yet) and export the guard variable that we are going to
    385   ///        compare.
    386   ///
    387   ///     c. After we finish selecting the basic block, in FinishBasicBlock if
    388   ///        the StackProtectorDescriptor attached to the SelectionDAGBuilder is
    389   ///        initialized, we first find a splice point in the parent basic block
    390   ///        before the terminator and then splice the terminator of said basic
    391   ///        block into the success basic block. Then we code-gen a new tail for
    392   ///        the parent basic block consisting of the two loads, the comparison,
    393   ///        and finally two branches to the success/failure basic blocks. We
    394   ///        conclude by code-gening the failure basic block if we have not
    395   ///        code-gened it already (all stack protector checks we generate in
    396   ///        the same function, use the same failure basic block).
    397   class StackProtectorDescriptor {
    398   public:
    399     StackProtectorDescriptor() : ParentMBB(nullptr), SuccessMBB(nullptr),
    400                                  FailureMBB(nullptr), Guard(nullptr) { }
    401     ~StackProtectorDescriptor() { }
    402 
    403     /// Returns true if all fields of the stack protector descriptor are
    404     /// initialized implying that we should/are ready to emit a stack protector.
    405     bool shouldEmitStackProtector() const {
    406       return ParentMBB && SuccessMBB && FailureMBB && Guard;
    407     }
    408 
    409     /// Initialize the stack protector descriptor structure for a new basic
    410     /// block.
    411     void initialize(const BasicBlock *BB,
    412                     MachineBasicBlock *MBB,
    413                     const CallInst &StackProtCheckCall) {
    414       // Make sure we are not initialized yet.
    415       assert(!shouldEmitStackProtector() && "Stack Protector Descriptor is "
    416              "already initialized!");
    417       ParentMBB = MBB;
    418       SuccessMBB = AddSuccessorMBB(BB, MBB);
    419       FailureMBB = AddSuccessorMBB(BB, MBB, FailureMBB);
    420       if (!Guard)
    421         Guard = StackProtCheckCall.getArgOperand(0);
    422     }
    423 
    424     /// Reset state that changes when we handle different basic blocks.
    425     ///
    426     /// This currently includes:
    427     ///
    428     /// 1. The specific basic block we are generating a
    429     /// stack protector for (ParentMBB).
    430     ///
    431     /// 2. The successor machine basic block that will contain the tail of
    432     /// parent mbb after we create the stack protector check (SuccessMBB). This
    433     /// BB is visited only on stack protector check success.
    434     void resetPerBBState() {
    435       ParentMBB = nullptr;
    436       SuccessMBB = nullptr;
    437     }
    438 
    439     /// Reset state that only changes when we switch functions.
    440     ///
    441     /// This currently includes:
    442     ///
    443     /// 1. FailureMBB since we reuse the failure code path for all stack
    444     /// protector checks created in an individual function.
    445     ///
    446     /// 2.The guard variable since the guard variable we are checking against is
    447     /// always the same.
    448     void resetPerFunctionState() {
    449       FailureMBB = nullptr;
    450       Guard = nullptr;
    451     }
    452 
    453     MachineBasicBlock *getParentMBB() { return ParentMBB; }
    454     MachineBasicBlock *getSuccessMBB() { return SuccessMBB; }
    455     MachineBasicBlock *getFailureMBB() { return FailureMBB; }
    456     const Value *getGuard() { return Guard; }
    457 
    458   private:
    459     /// The basic block for which we are generating the stack protector.
    460     ///
    461     /// As a result of stack protector generation, we will splice the
    462     /// terminators of this basic block into the successor mbb SuccessMBB and
    463     /// replace it with a compare/branch to the successor mbbs
    464     /// SuccessMBB/FailureMBB depending on whether or not the stack protector
    465     /// was violated.
    466     MachineBasicBlock *ParentMBB;
    467 
    468     /// A basic block visited on stack protector check success that contains the
    469     /// terminators of ParentMBB.
    470     MachineBasicBlock *SuccessMBB;
    471 
    472     /// This basic block visited on stack protector check failure that will
    473     /// contain a call to __stack_chk_fail().
    474     MachineBasicBlock *FailureMBB;
    475 
    476     /// The guard variable which we will compare against the stored value in the
    477     /// stack protector stack slot.
    478     const Value *Guard;
    479 
    480     /// Add a successor machine basic block to ParentMBB. If the successor mbb
    481     /// has not been created yet (i.e. if SuccMBB = 0), then the machine basic
    482     /// block will be created.
    483     MachineBasicBlock *AddSuccessorMBB(const BasicBlock *BB,
    484                                        MachineBasicBlock *ParentMBB,
    485                                        MachineBasicBlock *SuccMBB = nullptr);
    486   };
    487 
    488 private:
    489   const TargetMachine &TM;
    490 public:
    491   /// Lowest valid SDNodeOrder. The special case 0 is reserved for scheduling
    492   /// nodes without a corresponding SDNode.
    493   static const unsigned LowestSDNodeOrder = 1;
    494 
    495   SelectionDAG &DAG;
    496   const DataLayout *DL;
    497   AliasAnalysis *AA;
    498   const TargetLibraryInfo *LibInfo;
    499 
    500   /// SwitchCases - Vector of CaseBlock structures used to communicate
    501   /// SwitchInst code generation information.
    502   std::vector<CaseBlock> SwitchCases;
    503   /// JTCases - Vector of JumpTable structures used to communicate
    504   /// SwitchInst code generation information.
    505   std::vector<JumpTableBlock> JTCases;
    506   /// BitTestCases - Vector of BitTestBlock structures used to communicate
    507   /// SwitchInst code generation information.
    508   std::vector<BitTestBlock> BitTestCases;
    509   /// A StackProtectorDescriptor structure used to communicate stack protector
    510   /// information in between SelectBasicBlock and FinishBasicBlock.
    511   StackProtectorDescriptor SPDescriptor;
    512 
    513   // Emit PHI-node-operand constants only once even if used by multiple
    514   // PHI nodes.
    515   DenseMap<const Constant *, unsigned> ConstantsOut;
    516 
    517   /// FuncInfo - Information about the function as a whole.
    518   ///
    519   FunctionLoweringInfo &FuncInfo;
    520 
    521   /// OptLevel - What optimization level we're generating code for.
    522   ///
    523   CodeGenOpt::Level OptLevel;
    524 
    525   /// GFI - Garbage collection metadata for the function.
    526   GCFunctionInfo *GFI;
    527 
    528   /// LPadToCallSiteMap - Map a landing pad to the call site indexes.
    529   DenseMap<MachineBasicBlock*, SmallVector<unsigned, 4> > LPadToCallSiteMap;
    530 
    531   /// HasTailCall - This is set to true if a call in the current
    532   /// block has been translated as a tail call. In this case,
    533   /// no subsequent DAG nodes should be created.
    534   ///
    535   bool HasTailCall;
    536 
    537   LLVMContext *Context;
    538 
    539   SelectionDAGBuilder(SelectionDAG &dag, FunctionLoweringInfo &funcinfo,
    540                       CodeGenOpt::Level ol)
    541     : CurInst(nullptr), SDNodeOrder(LowestSDNodeOrder), TM(dag.getTarget()),
    542       DAG(dag), FuncInfo(funcinfo), OptLevel(ol),
    543       HasTailCall(false) {
    544   }
    545 
    546   void init(GCFunctionInfo *gfi, AliasAnalysis &aa,
    547             const TargetLibraryInfo *li);
    548 
    549   /// clear - Clear out the current SelectionDAG and the associated
    550   /// state and prepare this SelectionDAGBuilder object to be used
    551   /// for a new block. This doesn't clear out information about
    552   /// additional blocks that are needed to complete switch lowering
    553   /// or PHI node updating; that information is cleared out as it is
    554   /// consumed.
    555   void clear();
    556 
    557   /// clearDanglingDebugInfo - Clear the dangling debug information
    558   /// map. This function is separated from the clear so that debug
    559   /// information that is dangling in a basic block can be properly
    560   /// resolved in a different basic block. This allows the
    561   /// SelectionDAG to resolve dangling debug information attached
    562   /// to PHI nodes.
    563   void clearDanglingDebugInfo();
    564 
    565   /// getRoot - Return the current virtual root of the Selection DAG,
    566   /// flushing any PendingLoad items. This must be done before emitting
    567   /// a store or any other node that may need to be ordered after any
    568   /// prior load instructions.
    569   ///
    570   SDValue getRoot();
    571 
    572   /// getControlRoot - Similar to getRoot, but instead of flushing all the
    573   /// PendingLoad items, flush all the PendingExports items. It is necessary
    574   /// to do this before emitting a terminator instruction.
    575   ///
    576   SDValue getControlRoot();
    577 
    578   SDLoc getCurSDLoc() const {
    579     return SDLoc(CurInst, SDNodeOrder);
    580   }
    581 
    582   DebugLoc getCurDebugLoc() const {
    583     return CurInst ? CurInst->getDebugLoc() : DebugLoc();
    584   }
    585 
    586   unsigned getSDNodeOrder() const { return SDNodeOrder; }
    587 
    588   void CopyValueToVirtualRegister(const Value *V, unsigned Reg);
    589 
    590   void visit(const Instruction &I);
    591 
    592   void visit(unsigned Opcode, const User &I);
    593 
    594   // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
    595   // generate the debug data structures now that we've seen its definition.
    596   void resolveDanglingDebugInfo(const Value *V, SDValue Val);
    597   SDValue getValue(const Value *V);
    598   SDValue getNonRegisterValue(const Value *V);
    599   SDValue getValueImpl(const Value *V);
    600 
    601   void setValue(const Value *V, SDValue NewN) {
    602     SDValue &N = NodeMap[V];
    603     assert(!N.getNode() && "Already set a value for this node!");
    604     N = NewN;
    605   }
    606 
    607   void setUnusedArgValue(const Value *V, SDValue NewN) {
    608     SDValue &N = UnusedArgNodeMap[V];
    609     assert(!N.getNode() && "Already set a value for this node!");
    610     N = NewN;
    611   }
    612 
    613   void FindMergedConditions(const Value *Cond, MachineBasicBlock *TBB,
    614                             MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
    615                             MachineBasicBlock *SwitchBB, unsigned Opc,
    616                             uint32_t TW, uint32_t FW);
    617   void EmitBranchForMergedCondition(const Value *Cond, MachineBasicBlock *TBB,
    618                                     MachineBasicBlock *FBB,
    619                                     MachineBasicBlock *CurBB,
    620                                     MachineBasicBlock *SwitchBB,
    621                                     uint32_t TW, uint32_t FW);
    622   bool ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases);
    623   bool isExportableFromCurrentBlock(const Value *V, const BasicBlock *FromBB);
    624   void CopyToExportRegsIfNeeded(const Value *V);
    625   void ExportFromCurrentBlock(const Value *V);
    626   void LowerCallTo(ImmutableCallSite CS, SDValue Callee, bool IsTailCall,
    627                    MachineBasicBlock *LandingPad = nullptr);
    628 
    629   std::pair<SDValue, SDValue> LowerCallOperands(const CallInst &CI,
    630                                                 unsigned ArgIdx,
    631                                                 unsigned NumArgs,
    632                                                 SDValue Callee,
    633                                                 bool useVoidTy = false);
    634 
    635   /// UpdateSplitBlock - When an MBB was split during scheduling, update the
    636   /// references that need to refer to the last resulting block.
    637   void UpdateSplitBlock(MachineBasicBlock *First, MachineBasicBlock *Last);
    638 
    639 private:
    640   // Terminator instructions.
    641   void visitRet(const ReturnInst &I);
    642   void visitBr(const BranchInst &I);
    643   void visitSwitch(const SwitchInst &I);
    644   void visitIndirectBr(const IndirectBrInst &I);
    645   void visitUnreachable(const UnreachableInst &I);
    646 
    647   // Helpers for visitSwitch
    648   bool handleSmallSwitchRange(CaseRec& CR,
    649                               CaseRecVector& WorkList,
    650                               const Value* SV,
    651                               MachineBasicBlock* Default,
    652                               MachineBasicBlock *SwitchBB);
    653   bool handleJTSwitchCase(CaseRec& CR,
    654                           CaseRecVector& WorkList,
    655                           const Value* SV,
    656                           MachineBasicBlock* Default,
    657                           MachineBasicBlock *SwitchBB);
    658   bool handleBTSplitSwitchCase(CaseRec& CR,
    659                                CaseRecVector& WorkList,
    660                                const Value* SV,
    661                                MachineBasicBlock* Default,
    662                                MachineBasicBlock *SwitchBB);
    663   bool handleBitTestsSwitchCase(CaseRec& CR,
    664                                 CaseRecVector& WorkList,
    665                                 const Value* SV,
    666                                 MachineBasicBlock* Default,
    667                                 MachineBasicBlock *SwitchBB);
    668 
    669   uint32_t getEdgeWeight(const MachineBasicBlock *Src,
    670                          const MachineBasicBlock *Dst) const;
    671   void addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
    672                               uint32_t Weight = 0);
    673 public:
    674   void visitSwitchCase(CaseBlock &CB,
    675                        MachineBasicBlock *SwitchBB);
    676   void visitSPDescriptorParent(StackProtectorDescriptor &SPD,
    677                                MachineBasicBlock *ParentBB);
    678   void visitSPDescriptorFailure(StackProtectorDescriptor &SPD);
    679   void visitBitTestHeader(BitTestBlock &B, MachineBasicBlock *SwitchBB);
    680   void visitBitTestCase(BitTestBlock &BB,
    681                         MachineBasicBlock* NextMBB,
    682                         uint32_t BranchWeightToNext,
    683                         unsigned Reg,
    684                         BitTestCase &B,
    685                         MachineBasicBlock *SwitchBB);
    686   void visitJumpTable(JumpTable &JT);
    687   void visitJumpTableHeader(JumpTable &JT, JumpTableHeader &JTH,
    688                             MachineBasicBlock *SwitchBB);
    689 
    690 private:
    691   // These all get lowered before this pass.
    692   void visitInvoke(const InvokeInst &I);
    693   void visitResume(const ResumeInst &I);
    694 
    695   void visitBinary(const User &I, unsigned OpCode);
    696   void visitShift(const User &I, unsigned Opcode);
    697   void visitAdd(const User &I)  { visitBinary(I, ISD::ADD); }
    698   void visitFAdd(const User &I) { visitBinary(I, ISD::FADD); }
    699   void visitSub(const User &I)  { visitBinary(I, ISD::SUB); }
    700   void visitFSub(const User &I);
    701   void visitMul(const User &I)  { visitBinary(I, ISD::MUL); }
    702   void visitFMul(const User &I) { visitBinary(I, ISD::FMUL); }
    703   void visitURem(const User &I) { visitBinary(I, ISD::UREM); }
    704   void visitSRem(const User &I) { visitBinary(I, ISD::SREM); }
    705   void visitFRem(const User &I) { visitBinary(I, ISD::FREM); }
    706   void visitUDiv(const User &I) { visitBinary(I, ISD::UDIV); }
    707   void visitSDiv(const User &I);
    708   void visitFDiv(const User &I) { visitBinary(I, ISD::FDIV); }
    709   void visitAnd (const User &I) { visitBinary(I, ISD::AND); }
    710   void visitOr  (const User &I) { visitBinary(I, ISD::OR); }
    711   void visitXor (const User &I) { visitBinary(I, ISD::XOR); }
    712   void visitShl (const User &I) { visitShift(I, ISD::SHL); }
    713   void visitLShr(const User &I) { visitShift(I, ISD::SRL); }
    714   void visitAShr(const User &I) { visitShift(I, ISD::SRA); }
    715   void visitICmp(const User &I);
    716   void visitFCmp(const User &I);
    717   // Visit the conversion instructions
    718   void visitTrunc(const User &I);
    719   void visitZExt(const User &I);
    720   void visitSExt(const User &I);
    721   void visitFPTrunc(const User &I);
    722   void visitFPExt(const User &I);
    723   void visitFPToUI(const User &I);
    724   void visitFPToSI(const User &I);
    725   void visitUIToFP(const User &I);
    726   void visitSIToFP(const User &I);
    727   void visitPtrToInt(const User &I);
    728   void visitIntToPtr(const User &I);
    729   void visitBitCast(const User &I);
    730   void visitAddrSpaceCast(const User &I);
    731 
    732   void visitExtractElement(const User &I);
    733   void visitInsertElement(const User &I);
    734   void visitShuffleVector(const User &I);
    735 
    736   void visitExtractValue(const ExtractValueInst &I);
    737   void visitInsertValue(const InsertValueInst &I);
    738   void visitLandingPad(const LandingPadInst &I);
    739 
    740   void visitGetElementPtr(const User &I);
    741   void visitSelect(const User &I);
    742 
    743   void visitAlloca(const AllocaInst &I);
    744   void visitLoad(const LoadInst &I);
    745   void visitStore(const StoreInst &I);
    746   void visitAtomicCmpXchg(const AtomicCmpXchgInst &I);
    747   void visitAtomicRMW(const AtomicRMWInst &I);
    748   void visitFence(const FenceInst &I);
    749   void visitPHI(const PHINode &I);
    750   void visitCall(const CallInst &I);
    751   bool visitMemCmpCall(const CallInst &I);
    752   bool visitMemChrCall(const CallInst &I);
    753   bool visitStrCpyCall(const CallInst &I, bool isStpcpy);
    754   bool visitStrCmpCall(const CallInst &I);
    755   bool visitStrLenCall(const CallInst &I);
    756   bool visitStrNLenCall(const CallInst &I);
    757   bool visitUnaryFloatCall(const CallInst &I, unsigned Opcode);
    758   void visitAtomicLoad(const LoadInst &I);
    759   void visitAtomicStore(const StoreInst &I);
    760 
    761   void visitInlineAsm(ImmutableCallSite CS);
    762   const char *visitIntrinsicCall(const CallInst &I, unsigned Intrinsic);
    763   void visitTargetIntrinsic(const CallInst &I, unsigned Intrinsic);
    764 
    765   void visitVAStart(const CallInst &I);
    766   void visitVAArg(const VAArgInst &I);
    767   void visitVAEnd(const CallInst &I);
    768   void visitVACopy(const CallInst &I);
    769   void visitStackmap(const CallInst &I);
    770   void visitPatchpoint(const CallInst &I);
    771 
    772   void visitUserOp1(const Instruction &I) {
    773     llvm_unreachable("UserOp1 should not exist at instruction selection time!");
    774   }
    775   void visitUserOp2(const Instruction &I) {
    776     llvm_unreachable("UserOp2 should not exist at instruction selection time!");
    777   }
    778 
    779   void processIntegerCallValue(const Instruction &I,
    780                                SDValue Value, bool IsSigned);
    781 
    782   void HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB);
    783 
    784   /// EmitFuncArgumentDbgValue - If V is an function argument then create
    785   /// corresponding DBG_VALUE machine instruction for it now. At the end of
    786   /// instruction selection, they will be inserted to the entry BB.
    787   bool EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
    788                                 int64_t Offset, bool IsIndirect,
    789                                 const SDValue &N);
    790 };
    791 
    792 } // end namespace llvm
    793 
    794 #endif
    795