Home | History | Annotate | Download | only in AArch64
      1 //===- AArch64InstrInfo.cpp - AArch64 Instruction Information -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the AArch64 implementation of the TargetInstrInfo class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "AArch64InstrInfo.h"
     15 #include "AArch64Subtarget.h"
     16 #include "MCTargetDesc/AArch64AddressingModes.h"
     17 #include "llvm/CodeGen/MachineFrameInfo.h"
     18 #include "llvm/CodeGen/MachineInstrBuilder.h"
     19 #include "llvm/CodeGen/MachineMemOperand.h"
     20 #include "llvm/CodeGen/MachineRegisterInfo.h"
     21 #include "llvm/CodeGen/PseudoSourceValue.h"
     22 #include "llvm/MC/MCInst.h"
     23 #include "llvm/Support/ErrorHandling.h"
     24 #include "llvm/Support/TargetRegistry.h"
     25 
     26 using namespace llvm;
     27 
     28 #define GET_INSTRINFO_CTOR_DTOR
     29 #include "AArch64GenInstrInfo.inc"
     30 
     31 AArch64InstrInfo::AArch64InstrInfo(const AArch64Subtarget &STI)
     32     : AArch64GenInstrInfo(AArch64::ADJCALLSTACKDOWN, AArch64::ADJCALLSTACKUP),
     33       RI(this, &STI), Subtarget(STI) {}
     34 
     35 /// GetInstSize - Return the number of bytes of code the specified
     36 /// instruction may be.  This returns the maximum number of bytes.
     37 unsigned AArch64InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
     38   const MachineBasicBlock &MBB = *MI->getParent();
     39   const MachineFunction *MF = MBB.getParent();
     40   const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
     41 
     42   if (MI->getOpcode() == AArch64::INLINEASM)
     43     return getInlineAsmLength(MI->getOperand(0).getSymbolName(), *MAI);
     44 
     45   const MCInstrDesc &Desc = MI->getDesc();
     46   switch (Desc.getOpcode()) {
     47   default:
     48     // Anything not explicitly designated otherwise is a nomal 4-byte insn.
     49     return 4;
     50   case TargetOpcode::DBG_VALUE:
     51   case TargetOpcode::EH_LABEL:
     52   case TargetOpcode::IMPLICIT_DEF:
     53   case TargetOpcode::KILL:
     54     return 0;
     55   }
     56 
     57   llvm_unreachable("GetInstSizeInBytes()- Unable to determin insn size");
     58 }
     59 
     60 static void parseCondBranch(MachineInstr *LastInst, MachineBasicBlock *&Target,
     61                             SmallVectorImpl<MachineOperand> &Cond) {
     62   // Block ends with fall-through condbranch.
     63   switch (LastInst->getOpcode()) {
     64   default:
     65     llvm_unreachable("Unknown branch instruction?");
     66   case AArch64::Bcc:
     67     Target = LastInst->getOperand(1).getMBB();
     68     Cond.push_back(LastInst->getOperand(0));
     69     break;
     70   case AArch64::CBZW:
     71   case AArch64::CBZX:
     72   case AArch64::CBNZW:
     73   case AArch64::CBNZX:
     74     Target = LastInst->getOperand(1).getMBB();
     75     Cond.push_back(MachineOperand::CreateImm(-1));
     76     Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
     77     Cond.push_back(LastInst->getOperand(0));
     78     break;
     79   case AArch64::TBZW:
     80   case AArch64::TBZX:
     81   case AArch64::TBNZW:
     82   case AArch64::TBNZX:
     83     Target = LastInst->getOperand(2).getMBB();
     84     Cond.push_back(MachineOperand::CreateImm(-1));
     85     Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
     86     Cond.push_back(LastInst->getOperand(0));
     87     Cond.push_back(LastInst->getOperand(1));
     88   }
     89 }
     90 
     91 // Branch analysis.
     92 bool AArch64InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
     93                                    MachineBasicBlock *&TBB,
     94                                    MachineBasicBlock *&FBB,
     95                                    SmallVectorImpl<MachineOperand> &Cond,
     96                                    bool AllowModify) const {
     97   // If the block has no terminators, it just falls into the block after it.
     98   MachineBasicBlock::iterator I = MBB.end();
     99   if (I == MBB.begin())
    100     return false;
    101   --I;
    102   while (I->isDebugValue()) {
    103     if (I == MBB.begin())
    104       return false;
    105     --I;
    106   }
    107   if (!isUnpredicatedTerminator(I))
    108     return false;
    109 
    110   // Get the last instruction in the block.
    111   MachineInstr *LastInst = I;
    112 
    113   // If there is only one terminator instruction, process it.
    114   unsigned LastOpc = LastInst->getOpcode();
    115   if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
    116     if (isUncondBranchOpcode(LastOpc)) {
    117       TBB = LastInst->getOperand(0).getMBB();
    118       return false;
    119     }
    120     if (isCondBranchOpcode(LastOpc)) {
    121       // Block ends with fall-through condbranch.
    122       parseCondBranch(LastInst, TBB, Cond);
    123       return false;
    124     }
    125     return true; // Can't handle indirect branch.
    126   }
    127 
    128   // Get the instruction before it if it is a terminator.
    129   MachineInstr *SecondLastInst = I;
    130   unsigned SecondLastOpc = SecondLastInst->getOpcode();
    131 
    132   // If AllowModify is true and the block ends with two or more unconditional
    133   // branches, delete all but the first unconditional branch.
    134   if (AllowModify && isUncondBranchOpcode(LastOpc)) {
    135     while (isUncondBranchOpcode(SecondLastOpc)) {
    136       LastInst->eraseFromParent();
    137       LastInst = SecondLastInst;
    138       LastOpc = LastInst->getOpcode();
    139       if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
    140         // Return now the only terminator is an unconditional branch.
    141         TBB = LastInst->getOperand(0).getMBB();
    142         return false;
    143       } else {
    144         SecondLastInst = I;
    145         SecondLastOpc = SecondLastInst->getOpcode();
    146       }
    147     }
    148   }
    149 
    150   // If there are three terminators, we don't know what sort of block this is.
    151   if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(--I))
    152     return true;
    153 
    154   // If the block ends with a B and a Bcc, handle it.
    155   if (isCondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
    156     parseCondBranch(SecondLastInst, TBB, Cond);
    157     FBB = LastInst->getOperand(0).getMBB();
    158     return false;
    159   }
    160 
    161   // If the block ends with two unconditional branches, handle it.  The second
    162   // one is not executed, so remove it.
    163   if (isUncondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
    164     TBB = SecondLastInst->getOperand(0).getMBB();
    165     I = LastInst;
    166     if (AllowModify)
    167       I->eraseFromParent();
    168     return false;
    169   }
    170 
    171   // ...likewise if it ends with an indirect branch followed by an unconditional
    172   // branch.
    173   if (isIndirectBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
    174     I = LastInst;
    175     if (AllowModify)
    176       I->eraseFromParent();
    177     return true;
    178   }
    179 
    180   // Otherwise, can't handle this.
    181   return true;
    182 }
    183 
    184 bool AArch64InstrInfo::ReverseBranchCondition(
    185     SmallVectorImpl<MachineOperand> &Cond) const {
    186   if (Cond[0].getImm() != -1) {
    187     // Regular Bcc
    188     AArch64CC::CondCode CC = (AArch64CC::CondCode)(int)Cond[0].getImm();
    189     Cond[0].setImm(AArch64CC::getInvertedCondCode(CC));
    190   } else {
    191     // Folded compare-and-branch
    192     switch (Cond[1].getImm()) {
    193     default:
    194       llvm_unreachable("Unknown conditional branch!");
    195     case AArch64::CBZW:
    196       Cond[1].setImm(AArch64::CBNZW);
    197       break;
    198     case AArch64::CBNZW:
    199       Cond[1].setImm(AArch64::CBZW);
    200       break;
    201     case AArch64::CBZX:
    202       Cond[1].setImm(AArch64::CBNZX);
    203       break;
    204     case AArch64::CBNZX:
    205       Cond[1].setImm(AArch64::CBZX);
    206       break;
    207     case AArch64::TBZW:
    208       Cond[1].setImm(AArch64::TBNZW);
    209       break;
    210     case AArch64::TBNZW:
    211       Cond[1].setImm(AArch64::TBZW);
    212       break;
    213     case AArch64::TBZX:
    214       Cond[1].setImm(AArch64::TBNZX);
    215       break;
    216     case AArch64::TBNZX:
    217       Cond[1].setImm(AArch64::TBZX);
    218       break;
    219     }
    220   }
    221 
    222   return false;
    223 }
    224 
    225 unsigned AArch64InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
    226   MachineBasicBlock::iterator I = MBB.end();
    227   if (I == MBB.begin())
    228     return 0;
    229   --I;
    230   while (I->isDebugValue()) {
    231     if (I == MBB.begin())
    232       return 0;
    233     --I;
    234   }
    235   if (!isUncondBranchOpcode(I->getOpcode()) &&
    236       !isCondBranchOpcode(I->getOpcode()))
    237     return 0;
    238 
    239   // Remove the branch.
    240   I->eraseFromParent();
    241 
    242   I = MBB.end();
    243 
    244   if (I == MBB.begin())
    245     return 1;
    246   --I;
    247   if (!isCondBranchOpcode(I->getOpcode()))
    248     return 1;
    249 
    250   // Remove the branch.
    251   I->eraseFromParent();
    252   return 2;
    253 }
    254 
    255 void AArch64InstrInfo::instantiateCondBranch(
    256     MachineBasicBlock &MBB, DebugLoc DL, MachineBasicBlock *TBB,
    257     const SmallVectorImpl<MachineOperand> &Cond) const {
    258   if (Cond[0].getImm() != -1) {
    259     // Regular Bcc
    260     BuildMI(&MBB, DL, get(AArch64::Bcc)).addImm(Cond[0].getImm()).addMBB(TBB);
    261   } else {
    262     // Folded compare-and-branch
    263     const MachineInstrBuilder MIB =
    264         BuildMI(&MBB, DL, get(Cond[1].getImm())).addReg(Cond[2].getReg());
    265     if (Cond.size() > 3)
    266       MIB.addImm(Cond[3].getImm());
    267     MIB.addMBB(TBB);
    268   }
    269 }
    270 
    271 unsigned AArch64InstrInfo::InsertBranch(
    272     MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
    273     const SmallVectorImpl<MachineOperand> &Cond, DebugLoc DL) const {
    274   // Shouldn't be a fall through.
    275   assert(TBB && "InsertBranch must not be told to insert a fallthrough");
    276 
    277   if (!FBB) {
    278     if (Cond.empty()) // Unconditional branch?
    279       BuildMI(&MBB, DL, get(AArch64::B)).addMBB(TBB);
    280     else
    281       instantiateCondBranch(MBB, DL, TBB, Cond);
    282     return 1;
    283   }
    284 
    285   // Two-way conditional branch.
    286   instantiateCondBranch(MBB, DL, TBB, Cond);
    287   BuildMI(&MBB, DL, get(AArch64::B)).addMBB(FBB);
    288   return 2;
    289 }
    290 
    291 // Find the original register that VReg is copied from.
    292 static unsigned removeCopies(const MachineRegisterInfo &MRI, unsigned VReg) {
    293   while (TargetRegisterInfo::isVirtualRegister(VReg)) {
    294     const MachineInstr *DefMI = MRI.getVRegDef(VReg);
    295     if (!DefMI->isFullCopy())
    296       return VReg;
    297     VReg = DefMI->getOperand(1).getReg();
    298   }
    299   return VReg;
    300 }
    301 
    302 // Determine if VReg is defined by an instruction that can be folded into a
    303 // csel instruction. If so, return the folded opcode, and the replacement
    304 // register.
    305 static unsigned canFoldIntoCSel(const MachineRegisterInfo &MRI, unsigned VReg,
    306                                 unsigned *NewVReg = nullptr) {
    307   VReg = removeCopies(MRI, VReg);
    308   if (!TargetRegisterInfo::isVirtualRegister(VReg))
    309     return 0;
    310 
    311   bool Is64Bit = AArch64::GPR64allRegClass.hasSubClassEq(MRI.getRegClass(VReg));
    312   const MachineInstr *DefMI = MRI.getVRegDef(VReg);
    313   unsigned Opc = 0;
    314   unsigned SrcOpNum = 0;
    315   switch (DefMI->getOpcode()) {
    316   case AArch64::ADDSXri:
    317   case AArch64::ADDSWri:
    318     // if NZCV is used, do not fold.
    319     if (DefMI->findRegisterDefOperandIdx(AArch64::NZCV, true) == -1)
    320       return 0;
    321   // fall-through to ADDXri and ADDWri.
    322   case AArch64::ADDXri:
    323   case AArch64::ADDWri:
    324     // add x, 1 -> csinc.
    325     if (!DefMI->getOperand(2).isImm() || DefMI->getOperand(2).getImm() != 1 ||
    326         DefMI->getOperand(3).getImm() != 0)
    327       return 0;
    328     SrcOpNum = 1;
    329     Opc = Is64Bit ? AArch64::CSINCXr : AArch64::CSINCWr;
    330     break;
    331 
    332   case AArch64::ORNXrr:
    333   case AArch64::ORNWrr: {
    334     // not x -> csinv, represented as orn dst, xzr, src.
    335     unsigned ZReg = removeCopies(MRI, DefMI->getOperand(1).getReg());
    336     if (ZReg != AArch64::XZR && ZReg != AArch64::WZR)
    337       return 0;
    338     SrcOpNum = 2;
    339     Opc = Is64Bit ? AArch64::CSINVXr : AArch64::CSINVWr;
    340     break;
    341   }
    342 
    343   case AArch64::SUBSXrr:
    344   case AArch64::SUBSWrr:
    345     // if NZCV is used, do not fold.
    346     if (DefMI->findRegisterDefOperandIdx(AArch64::NZCV, true) == -1)
    347       return 0;
    348   // fall-through to SUBXrr and SUBWrr.
    349   case AArch64::SUBXrr:
    350   case AArch64::SUBWrr: {
    351     // neg x -> csneg, represented as sub dst, xzr, src.
    352     unsigned ZReg = removeCopies(MRI, DefMI->getOperand(1).getReg());
    353     if (ZReg != AArch64::XZR && ZReg != AArch64::WZR)
    354       return 0;
    355     SrcOpNum = 2;
    356     Opc = Is64Bit ? AArch64::CSNEGXr : AArch64::CSNEGWr;
    357     break;
    358   }
    359   default:
    360     return 0;
    361   }
    362   assert(Opc && SrcOpNum && "Missing parameters");
    363 
    364   if (NewVReg)
    365     *NewVReg = DefMI->getOperand(SrcOpNum).getReg();
    366   return Opc;
    367 }
    368 
    369 bool AArch64InstrInfo::canInsertSelect(
    370     const MachineBasicBlock &MBB, const SmallVectorImpl<MachineOperand> &Cond,
    371     unsigned TrueReg, unsigned FalseReg, int &CondCycles, int &TrueCycles,
    372     int &FalseCycles) const {
    373   // Check register classes.
    374   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
    375   const TargetRegisterClass *RC =
    376       RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
    377   if (!RC)
    378     return false;
    379 
    380   // Expanding cbz/tbz requires an extra cycle of latency on the condition.
    381   unsigned ExtraCondLat = Cond.size() != 1;
    382 
    383   // GPRs are handled by csel.
    384   // FIXME: Fold in x+1, -x, and ~x when applicable.
    385   if (AArch64::GPR64allRegClass.hasSubClassEq(RC) ||
    386       AArch64::GPR32allRegClass.hasSubClassEq(RC)) {
    387     // Single-cycle csel, csinc, csinv, and csneg.
    388     CondCycles = 1 + ExtraCondLat;
    389     TrueCycles = FalseCycles = 1;
    390     if (canFoldIntoCSel(MRI, TrueReg))
    391       TrueCycles = 0;
    392     else if (canFoldIntoCSel(MRI, FalseReg))
    393       FalseCycles = 0;
    394     return true;
    395   }
    396 
    397   // Scalar floating point is handled by fcsel.
    398   // FIXME: Form fabs, fmin, and fmax when applicable.
    399   if (AArch64::FPR64RegClass.hasSubClassEq(RC) ||
    400       AArch64::FPR32RegClass.hasSubClassEq(RC)) {
    401     CondCycles = 5 + ExtraCondLat;
    402     TrueCycles = FalseCycles = 2;
    403     return true;
    404   }
    405 
    406   // Can't do vectors.
    407   return false;
    408 }
    409 
    410 void AArch64InstrInfo::insertSelect(MachineBasicBlock &MBB,
    411                                     MachineBasicBlock::iterator I, DebugLoc DL,
    412                                     unsigned DstReg,
    413                                     const SmallVectorImpl<MachineOperand> &Cond,
    414                                     unsigned TrueReg, unsigned FalseReg) const {
    415   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
    416 
    417   // Parse the condition code, see parseCondBranch() above.
    418   AArch64CC::CondCode CC;
    419   switch (Cond.size()) {
    420   default:
    421     llvm_unreachable("Unknown condition opcode in Cond");
    422   case 1: // b.cc
    423     CC = AArch64CC::CondCode(Cond[0].getImm());
    424     break;
    425   case 3: { // cbz/cbnz
    426     // We must insert a compare against 0.
    427     bool Is64Bit;
    428     switch (Cond[1].getImm()) {
    429     default:
    430       llvm_unreachable("Unknown branch opcode in Cond");
    431     case AArch64::CBZW:
    432       Is64Bit = 0;
    433       CC = AArch64CC::EQ;
    434       break;
    435     case AArch64::CBZX:
    436       Is64Bit = 1;
    437       CC = AArch64CC::EQ;
    438       break;
    439     case AArch64::CBNZW:
    440       Is64Bit = 0;
    441       CC = AArch64CC::NE;
    442       break;
    443     case AArch64::CBNZX:
    444       Is64Bit = 1;
    445       CC = AArch64CC::NE;
    446       break;
    447     }
    448     unsigned SrcReg = Cond[2].getReg();
    449     if (Is64Bit) {
    450       // cmp reg, #0 is actually subs xzr, reg, #0.
    451       MRI.constrainRegClass(SrcReg, &AArch64::GPR64spRegClass);
    452       BuildMI(MBB, I, DL, get(AArch64::SUBSXri), AArch64::XZR)
    453           .addReg(SrcReg)
    454           .addImm(0)
    455           .addImm(0);
    456     } else {
    457       MRI.constrainRegClass(SrcReg, &AArch64::GPR32spRegClass);
    458       BuildMI(MBB, I, DL, get(AArch64::SUBSWri), AArch64::WZR)
    459           .addReg(SrcReg)
    460           .addImm(0)
    461           .addImm(0);
    462     }
    463     break;
    464   }
    465   case 4: { // tbz/tbnz
    466     // We must insert a tst instruction.
    467     switch (Cond[1].getImm()) {
    468     default:
    469       llvm_unreachable("Unknown branch opcode in Cond");
    470     case AArch64::TBZW:
    471     case AArch64::TBZX:
    472       CC = AArch64CC::EQ;
    473       break;
    474     case AArch64::TBNZW:
    475     case AArch64::TBNZX:
    476       CC = AArch64CC::NE;
    477       break;
    478     }
    479     // cmp reg, #foo is actually ands xzr, reg, #1<<foo.
    480     if (Cond[1].getImm() == AArch64::TBZW || Cond[1].getImm() == AArch64::TBNZW)
    481       BuildMI(MBB, I, DL, get(AArch64::ANDSWri), AArch64::WZR)
    482           .addReg(Cond[2].getReg())
    483           .addImm(
    484               AArch64_AM::encodeLogicalImmediate(1ull << Cond[3].getImm(), 32));
    485     else
    486       BuildMI(MBB, I, DL, get(AArch64::ANDSXri), AArch64::XZR)
    487           .addReg(Cond[2].getReg())
    488           .addImm(
    489               AArch64_AM::encodeLogicalImmediate(1ull << Cond[3].getImm(), 64));
    490     break;
    491   }
    492   }
    493 
    494   unsigned Opc = 0;
    495   const TargetRegisterClass *RC = nullptr;
    496   bool TryFold = false;
    497   if (MRI.constrainRegClass(DstReg, &AArch64::GPR64RegClass)) {
    498     RC = &AArch64::GPR64RegClass;
    499     Opc = AArch64::CSELXr;
    500     TryFold = true;
    501   } else if (MRI.constrainRegClass(DstReg, &AArch64::GPR32RegClass)) {
    502     RC = &AArch64::GPR32RegClass;
    503     Opc = AArch64::CSELWr;
    504     TryFold = true;
    505   } else if (MRI.constrainRegClass(DstReg, &AArch64::FPR64RegClass)) {
    506     RC = &AArch64::FPR64RegClass;
    507     Opc = AArch64::FCSELDrrr;
    508   } else if (MRI.constrainRegClass(DstReg, &AArch64::FPR32RegClass)) {
    509     RC = &AArch64::FPR32RegClass;
    510     Opc = AArch64::FCSELSrrr;
    511   }
    512   assert(RC && "Unsupported regclass");
    513 
    514   // Try folding simple instructions into the csel.
    515   if (TryFold) {
    516     unsigned NewVReg = 0;
    517     unsigned FoldedOpc = canFoldIntoCSel(MRI, TrueReg, &NewVReg);
    518     if (FoldedOpc) {
    519       // The folded opcodes csinc, csinc and csneg apply the operation to
    520       // FalseReg, so we need to invert the condition.
    521       CC = AArch64CC::getInvertedCondCode(CC);
    522       TrueReg = FalseReg;
    523     } else
    524       FoldedOpc = canFoldIntoCSel(MRI, FalseReg, &NewVReg);
    525 
    526     // Fold the operation. Leave any dead instructions for DCE to clean up.
    527     if (FoldedOpc) {
    528       FalseReg = NewVReg;
    529       Opc = FoldedOpc;
    530       // The extends the live range of NewVReg.
    531       MRI.clearKillFlags(NewVReg);
    532     }
    533   }
    534 
    535   // Pull all virtual register into the appropriate class.
    536   MRI.constrainRegClass(TrueReg, RC);
    537   MRI.constrainRegClass(FalseReg, RC);
    538 
    539   // Insert the csel.
    540   BuildMI(MBB, I, DL, get(Opc), DstReg).addReg(TrueReg).addReg(FalseReg).addImm(
    541       CC);
    542 }
    543 
    544 bool AArch64InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
    545                                              unsigned &SrcReg, unsigned &DstReg,
    546                                              unsigned &SubIdx) const {
    547   switch (MI.getOpcode()) {
    548   default:
    549     return false;
    550   case AArch64::SBFMXri: // aka sxtw
    551   case AArch64::UBFMXri: // aka uxtw
    552     // Check for the 32 -> 64 bit extension case, these instructions can do
    553     // much more.
    554     if (MI.getOperand(2).getImm() != 0 || MI.getOperand(3).getImm() != 31)
    555       return false;
    556     // This is a signed or unsigned 32 -> 64 bit extension.
    557     SrcReg = MI.getOperand(1).getReg();
    558     DstReg = MI.getOperand(0).getReg();
    559     SubIdx = AArch64::sub_32;
    560     return true;
    561   }
    562 }
    563 
    564 /// analyzeCompare - For a comparison instruction, return the source registers
    565 /// in SrcReg and SrcReg2, and the value it compares against in CmpValue.
    566 /// Return true if the comparison instruction can be analyzed.
    567 bool AArch64InstrInfo::analyzeCompare(const MachineInstr *MI, unsigned &SrcReg,
    568                                       unsigned &SrcReg2, int &CmpMask,
    569                                       int &CmpValue) const {
    570   switch (MI->getOpcode()) {
    571   default:
    572     break;
    573   case AArch64::SUBSWrr:
    574   case AArch64::SUBSWrs:
    575   case AArch64::SUBSWrx:
    576   case AArch64::SUBSXrr:
    577   case AArch64::SUBSXrs:
    578   case AArch64::SUBSXrx:
    579   case AArch64::ADDSWrr:
    580   case AArch64::ADDSWrs:
    581   case AArch64::ADDSWrx:
    582   case AArch64::ADDSXrr:
    583   case AArch64::ADDSXrs:
    584   case AArch64::ADDSXrx:
    585     // Replace SUBSWrr with SUBWrr if NZCV is not used.
    586     SrcReg = MI->getOperand(1).getReg();
    587     SrcReg2 = MI->getOperand(2).getReg();
    588     CmpMask = ~0;
    589     CmpValue = 0;
    590     return true;
    591   case AArch64::SUBSWri:
    592   case AArch64::ADDSWri:
    593   case AArch64::SUBSXri:
    594   case AArch64::ADDSXri:
    595     SrcReg = MI->getOperand(1).getReg();
    596     SrcReg2 = 0;
    597     CmpMask = ~0;
    598     CmpValue = MI->getOperand(2).getImm();
    599     return true;
    600   case AArch64::ANDSWri:
    601   case AArch64::ANDSXri:
    602     // ANDS does not use the same encoding scheme as the others xxxS
    603     // instructions.
    604     SrcReg = MI->getOperand(1).getReg();
    605     SrcReg2 = 0;
    606     CmpMask = ~0;
    607     CmpValue = AArch64_AM::decodeLogicalImmediate(
    608         MI->getOperand(2).getImm(),
    609         MI->getOpcode() == AArch64::ANDSWri ? 32 : 64);
    610     return true;
    611   }
    612 
    613   return false;
    614 }
    615 
    616 static bool UpdateOperandRegClass(MachineInstr *Instr) {
    617   MachineBasicBlock *MBB = Instr->getParent();
    618   assert(MBB && "Can't get MachineBasicBlock here");
    619   MachineFunction *MF = MBB->getParent();
    620   assert(MF && "Can't get MachineFunction here");
    621   const TargetMachine *TM = &MF->getTarget();
    622   const TargetInstrInfo *TII = TM->getInstrInfo();
    623   const TargetRegisterInfo *TRI = TM->getRegisterInfo();
    624   MachineRegisterInfo *MRI = &MF->getRegInfo();
    625 
    626   for (unsigned OpIdx = 0, EndIdx = Instr->getNumOperands(); OpIdx < EndIdx;
    627        ++OpIdx) {
    628     MachineOperand &MO = Instr->getOperand(OpIdx);
    629     const TargetRegisterClass *OpRegCstraints =
    630         Instr->getRegClassConstraint(OpIdx, TII, TRI);
    631 
    632     // If there's no constraint, there's nothing to do.
    633     if (!OpRegCstraints)
    634       continue;
    635     // If the operand is a frame index, there's nothing to do here.
    636     // A frame index operand will resolve correctly during PEI.
    637     if (MO.isFI())
    638       continue;
    639 
    640     assert(MO.isReg() &&
    641            "Operand has register constraints without being a register!");
    642 
    643     unsigned Reg = MO.getReg();
    644     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
    645       if (!OpRegCstraints->contains(Reg))
    646         return false;
    647     } else if (!OpRegCstraints->hasSubClassEq(MRI->getRegClass(Reg)) &&
    648                !MRI->constrainRegClass(Reg, OpRegCstraints))
    649       return false;
    650   }
    651 
    652   return true;
    653 }
    654 
    655 /// optimizeCompareInstr - Convert the instruction supplying the argument to the
    656 /// comparison into one that sets the zero bit in the flags register.
    657 bool AArch64InstrInfo::optimizeCompareInstr(
    658     MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2, int CmpMask,
    659     int CmpValue, const MachineRegisterInfo *MRI) const {
    660 
    661   // Replace SUBSWrr with SUBWrr if NZCV is not used.
    662   int Cmp_NZCV = CmpInstr->findRegisterDefOperandIdx(AArch64::NZCV, true);
    663   if (Cmp_NZCV != -1) {
    664     unsigned NewOpc;
    665     switch (CmpInstr->getOpcode()) {
    666     default:
    667       return false;
    668     case AArch64::ADDSWrr:      NewOpc = AArch64::ADDWrr; break;
    669     case AArch64::ADDSWri:      NewOpc = AArch64::ADDWri; break;
    670     case AArch64::ADDSWrs:      NewOpc = AArch64::ADDWrs; break;
    671     case AArch64::ADDSWrx:      NewOpc = AArch64::ADDWrx; break;
    672     case AArch64::ADDSXrr:      NewOpc = AArch64::ADDXrr; break;
    673     case AArch64::ADDSXri:      NewOpc = AArch64::ADDXri; break;
    674     case AArch64::ADDSXrs:      NewOpc = AArch64::ADDXrs; break;
    675     case AArch64::ADDSXrx:      NewOpc = AArch64::ADDXrx; break;
    676     case AArch64::SUBSWrr:      NewOpc = AArch64::SUBWrr; break;
    677     case AArch64::SUBSWri:      NewOpc = AArch64::SUBWri; break;
    678     case AArch64::SUBSWrs:      NewOpc = AArch64::SUBWrs; break;
    679     case AArch64::SUBSWrx:      NewOpc = AArch64::SUBWrx; break;
    680     case AArch64::SUBSXrr:      NewOpc = AArch64::SUBXrr; break;
    681     case AArch64::SUBSXri:      NewOpc = AArch64::SUBXri; break;
    682     case AArch64::SUBSXrs:      NewOpc = AArch64::SUBXrs; break;
    683     case AArch64::SUBSXrx:      NewOpc = AArch64::SUBXrx; break;
    684     }
    685 
    686     const MCInstrDesc &MCID = get(NewOpc);
    687     CmpInstr->setDesc(MCID);
    688     CmpInstr->RemoveOperand(Cmp_NZCV);
    689     bool succeeded = UpdateOperandRegClass(CmpInstr);
    690     (void)succeeded;
    691     assert(succeeded && "Some operands reg class are incompatible!");
    692     return true;
    693   }
    694 
    695   // Continue only if we have a "ri" where immediate is zero.
    696   if (CmpValue != 0 || SrcReg2 != 0)
    697     return false;
    698 
    699   // CmpInstr is a Compare instruction if destination register is not used.
    700   if (!MRI->use_nodbg_empty(CmpInstr->getOperand(0).getReg()))
    701     return false;
    702 
    703   // Get the unique definition of SrcReg.
    704   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
    705   if (!MI)
    706     return false;
    707 
    708   // We iterate backward, starting from the instruction before CmpInstr and
    709   // stop when reaching the definition of the source register or done with the
    710   // basic block, to check whether NZCV is used or modified in between.
    711   MachineBasicBlock::iterator I = CmpInstr, E = MI,
    712                               B = CmpInstr->getParent()->begin();
    713 
    714   // Early exit if CmpInstr is at the beginning of the BB.
    715   if (I == B)
    716     return false;
    717 
    718   // Check whether the definition of SrcReg is in the same basic block as
    719   // Compare. If not, we can't optimize away the Compare.
    720   if (MI->getParent() != CmpInstr->getParent())
    721     return false;
    722 
    723   // Check that NZCV isn't set between the comparison instruction and the one we
    724   // want to change.
    725   const TargetRegisterInfo *TRI = &getRegisterInfo();
    726   for (--I; I != E; --I) {
    727     const MachineInstr &Instr = *I;
    728 
    729     if (Instr.modifiesRegister(AArch64::NZCV, TRI) ||
    730         Instr.readsRegister(AArch64::NZCV, TRI))
    731       // This instruction modifies or uses NZCV after the one we want to
    732       // change. We can't do this transformation.
    733       return false;
    734     if (I == B)
    735       // The 'and' is below the comparison instruction.
    736       return false;
    737   }
    738 
    739   unsigned NewOpc = MI->getOpcode();
    740   switch (MI->getOpcode()) {
    741   default:
    742     return false;
    743   case AArch64::ADDSWrr:
    744   case AArch64::ADDSWri:
    745   case AArch64::ADDSXrr:
    746   case AArch64::ADDSXri:
    747   case AArch64::SUBSWrr:
    748   case AArch64::SUBSWri:
    749   case AArch64::SUBSXrr:
    750   case AArch64::SUBSXri:
    751     break;
    752   case AArch64::ADDWrr:    NewOpc = AArch64::ADDSWrr; break;
    753   case AArch64::ADDWri:    NewOpc = AArch64::ADDSWri; break;
    754   case AArch64::ADDXrr:    NewOpc = AArch64::ADDSXrr; break;
    755   case AArch64::ADDXri:    NewOpc = AArch64::ADDSXri; break;
    756   case AArch64::ADCWr:     NewOpc = AArch64::ADCSWr; break;
    757   case AArch64::ADCXr:     NewOpc = AArch64::ADCSXr; break;
    758   case AArch64::SUBWrr:    NewOpc = AArch64::SUBSWrr; break;
    759   case AArch64::SUBWri:    NewOpc = AArch64::SUBSWri; break;
    760   case AArch64::SUBXrr:    NewOpc = AArch64::SUBSXrr; break;
    761   case AArch64::SUBXri:    NewOpc = AArch64::SUBSXri; break;
    762   case AArch64::SBCWr:     NewOpc = AArch64::SBCSWr; break;
    763   case AArch64::SBCXr:     NewOpc = AArch64::SBCSXr; break;
    764   case AArch64::ANDWri:    NewOpc = AArch64::ANDSWri; break;
    765   case AArch64::ANDXri:    NewOpc = AArch64::ANDSXri; break;
    766   }
    767 
    768   // Scan forward for the use of NZCV.
    769   // When checking against MI: if it's a conditional code requires
    770   // checking of V bit, then this is not safe to do.
    771   // It is safe to remove CmpInstr if NZCV is redefined or killed.
    772   // If we are done with the basic block, we need to check whether NZCV is
    773   // live-out.
    774   bool IsSafe = false;
    775   for (MachineBasicBlock::iterator I = CmpInstr,
    776                                    E = CmpInstr->getParent()->end();
    777        !IsSafe && ++I != E;) {
    778     const MachineInstr &Instr = *I;
    779     for (unsigned IO = 0, EO = Instr.getNumOperands(); !IsSafe && IO != EO;
    780          ++IO) {
    781       const MachineOperand &MO = Instr.getOperand(IO);
    782       if (MO.isRegMask() && MO.clobbersPhysReg(AArch64::NZCV)) {
    783         IsSafe = true;
    784         break;
    785       }
    786       if (!MO.isReg() || MO.getReg() != AArch64::NZCV)
    787         continue;
    788       if (MO.isDef()) {
    789         IsSafe = true;
    790         break;
    791       }
    792 
    793       // Decode the condition code.
    794       unsigned Opc = Instr.getOpcode();
    795       AArch64CC::CondCode CC;
    796       switch (Opc) {
    797       default:
    798         return false;
    799       case AArch64::Bcc:
    800         CC = (AArch64CC::CondCode)Instr.getOperand(IO - 2).getImm();
    801         break;
    802       case AArch64::CSINVWr:
    803       case AArch64::CSINVXr:
    804       case AArch64::CSINCWr:
    805       case AArch64::CSINCXr:
    806       case AArch64::CSELWr:
    807       case AArch64::CSELXr:
    808       case AArch64::CSNEGWr:
    809       case AArch64::CSNEGXr:
    810       case AArch64::FCSELSrrr:
    811       case AArch64::FCSELDrrr:
    812         CC = (AArch64CC::CondCode)Instr.getOperand(IO - 1).getImm();
    813         break;
    814       }
    815 
    816       // It is not safe to remove Compare instruction if Overflow(V) is used.
    817       switch (CC) {
    818       default:
    819         // NZCV can be used multiple times, we should continue.
    820         break;
    821       case AArch64CC::VS:
    822       case AArch64CC::VC:
    823       case AArch64CC::GE:
    824       case AArch64CC::LT:
    825       case AArch64CC::GT:
    826       case AArch64CC::LE:
    827         return false;
    828       }
    829     }
    830   }
    831 
    832   // If NZCV is not killed nor re-defined, we should check whether it is
    833   // live-out. If it is live-out, do not optimize.
    834   if (!IsSafe) {
    835     MachineBasicBlock *ParentBlock = CmpInstr->getParent();
    836     for (auto *MBB : ParentBlock->successors())
    837       if (MBB->isLiveIn(AArch64::NZCV))
    838         return false;
    839   }
    840 
    841   // Update the instruction to set NZCV.
    842   MI->setDesc(get(NewOpc));
    843   CmpInstr->eraseFromParent();
    844   bool succeeded = UpdateOperandRegClass(MI);
    845   (void)succeeded;
    846   assert(succeeded && "Some operands reg class are incompatible!");
    847   MI->addRegisterDefined(AArch64::NZCV, TRI);
    848   return true;
    849 }
    850 
    851 /// Return true if this is this instruction has a non-zero immediate
    852 bool AArch64InstrInfo::hasShiftedReg(const MachineInstr *MI) const {
    853   switch (MI->getOpcode()) {
    854   default:
    855     break;
    856   case AArch64::ADDSWrs:
    857   case AArch64::ADDSXrs:
    858   case AArch64::ADDWrs:
    859   case AArch64::ADDXrs:
    860   case AArch64::ANDSWrs:
    861   case AArch64::ANDSXrs:
    862   case AArch64::ANDWrs:
    863   case AArch64::ANDXrs:
    864   case AArch64::BICSWrs:
    865   case AArch64::BICSXrs:
    866   case AArch64::BICWrs:
    867   case AArch64::BICXrs:
    868   case AArch64::CRC32Brr:
    869   case AArch64::CRC32CBrr:
    870   case AArch64::CRC32CHrr:
    871   case AArch64::CRC32CWrr:
    872   case AArch64::CRC32CXrr:
    873   case AArch64::CRC32Hrr:
    874   case AArch64::CRC32Wrr:
    875   case AArch64::CRC32Xrr:
    876   case AArch64::EONWrs:
    877   case AArch64::EONXrs:
    878   case AArch64::EORWrs:
    879   case AArch64::EORXrs:
    880   case AArch64::ORNWrs:
    881   case AArch64::ORNXrs:
    882   case AArch64::ORRWrs:
    883   case AArch64::ORRXrs:
    884   case AArch64::SUBSWrs:
    885   case AArch64::SUBSXrs:
    886   case AArch64::SUBWrs:
    887   case AArch64::SUBXrs:
    888     if (MI->getOperand(3).isImm()) {
    889       unsigned val = MI->getOperand(3).getImm();
    890       return (val != 0);
    891     }
    892     break;
    893   }
    894   return false;
    895 }
    896 
    897 /// Return true if this is this instruction has a non-zero immediate
    898 bool AArch64InstrInfo::hasExtendedReg(const MachineInstr *MI) const {
    899   switch (MI->getOpcode()) {
    900   default:
    901     break;
    902   case AArch64::ADDSWrx:
    903   case AArch64::ADDSXrx:
    904   case AArch64::ADDSXrx64:
    905   case AArch64::ADDWrx:
    906   case AArch64::ADDXrx:
    907   case AArch64::ADDXrx64:
    908   case AArch64::SUBSWrx:
    909   case AArch64::SUBSXrx:
    910   case AArch64::SUBSXrx64:
    911   case AArch64::SUBWrx:
    912   case AArch64::SUBXrx:
    913   case AArch64::SUBXrx64:
    914     if (MI->getOperand(3).isImm()) {
    915       unsigned val = MI->getOperand(3).getImm();
    916       return (val != 0);
    917     }
    918     break;
    919   }
    920 
    921   return false;
    922 }
    923 
    924 // Return true if this instruction simply sets its single destination register
    925 // to zero. This is equivalent to a register rename of the zero-register.
    926 bool AArch64InstrInfo::isGPRZero(const MachineInstr *MI) const {
    927   switch (MI->getOpcode()) {
    928   default:
    929     break;
    930   case AArch64::MOVZWi:
    931   case AArch64::MOVZXi: // movz Rd, #0 (LSL #0)
    932     if (MI->getOperand(1).isImm() && MI->getOperand(1).getImm() == 0) {
    933       assert(MI->getDesc().getNumOperands() == 3 &&
    934              MI->getOperand(2).getImm() == 0 && "invalid MOVZi operands");
    935       return true;
    936     }
    937     break;
    938   case AArch64::ANDWri: // and Rd, Rzr, #imm
    939     return MI->getOperand(1).getReg() == AArch64::WZR;
    940   case AArch64::ANDXri:
    941     return MI->getOperand(1).getReg() == AArch64::XZR;
    942   case TargetOpcode::COPY:
    943     return MI->getOperand(1).getReg() == AArch64::WZR;
    944   }
    945   return false;
    946 }
    947 
    948 // Return true if this instruction simply renames a general register without
    949 // modifying bits.
    950 bool AArch64InstrInfo::isGPRCopy(const MachineInstr *MI) const {
    951   switch (MI->getOpcode()) {
    952   default:
    953     break;
    954   case TargetOpcode::COPY: {
    955     // GPR32 copies will by lowered to ORRXrs
    956     unsigned DstReg = MI->getOperand(0).getReg();
    957     return (AArch64::GPR32RegClass.contains(DstReg) ||
    958             AArch64::GPR64RegClass.contains(DstReg));
    959   }
    960   case AArch64::ORRXrs: // orr Xd, Xzr, Xm (LSL #0)
    961     if (MI->getOperand(1).getReg() == AArch64::XZR) {
    962       assert(MI->getDesc().getNumOperands() == 4 &&
    963              MI->getOperand(3).getImm() == 0 && "invalid ORRrs operands");
    964       return true;
    965     }
    966   case AArch64::ADDXri: // add Xd, Xn, #0 (LSL #0)
    967     if (MI->getOperand(2).getImm() == 0) {
    968       assert(MI->getDesc().getNumOperands() == 4 &&
    969              MI->getOperand(3).getImm() == 0 && "invalid ADDXri operands");
    970       return true;
    971     }
    972   }
    973   return false;
    974 }
    975 
    976 // Return true if this instruction simply renames a general register without
    977 // modifying bits.
    978 bool AArch64InstrInfo::isFPRCopy(const MachineInstr *MI) const {
    979   switch (MI->getOpcode()) {
    980   default:
    981     break;
    982   case TargetOpcode::COPY: {
    983     // FPR64 copies will by lowered to ORR.16b
    984     unsigned DstReg = MI->getOperand(0).getReg();
    985     return (AArch64::FPR64RegClass.contains(DstReg) ||
    986             AArch64::FPR128RegClass.contains(DstReg));
    987   }
    988   case AArch64::ORRv16i8:
    989     if (MI->getOperand(1).getReg() == MI->getOperand(2).getReg()) {
    990       assert(MI->getDesc().getNumOperands() == 3 && MI->getOperand(0).isReg() &&
    991              "invalid ORRv16i8 operands");
    992       return true;
    993     }
    994   }
    995   return false;
    996 }
    997 
    998 unsigned AArch64InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
    999                                                int &FrameIndex) const {
   1000   switch (MI->getOpcode()) {
   1001   default:
   1002     break;
   1003   case AArch64::LDRWui:
   1004   case AArch64::LDRXui:
   1005   case AArch64::LDRBui:
   1006   case AArch64::LDRHui:
   1007   case AArch64::LDRSui:
   1008   case AArch64::LDRDui:
   1009   case AArch64::LDRQui:
   1010     if (MI->getOperand(0).getSubReg() == 0 && MI->getOperand(1).isFI() &&
   1011         MI->getOperand(2).isImm() && MI->getOperand(2).getImm() == 0) {
   1012       FrameIndex = MI->getOperand(1).getIndex();
   1013       return MI->getOperand(0).getReg();
   1014     }
   1015     break;
   1016   }
   1017 
   1018   return 0;
   1019 }
   1020 
   1021 unsigned AArch64InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
   1022                                               int &FrameIndex) const {
   1023   switch (MI->getOpcode()) {
   1024   default:
   1025     break;
   1026   case AArch64::STRWui:
   1027   case AArch64::STRXui:
   1028   case AArch64::STRBui:
   1029   case AArch64::STRHui:
   1030   case AArch64::STRSui:
   1031   case AArch64::STRDui:
   1032   case AArch64::STRQui:
   1033     if (MI->getOperand(0).getSubReg() == 0 && MI->getOperand(1).isFI() &&
   1034         MI->getOperand(2).isImm() && MI->getOperand(2).getImm() == 0) {
   1035       FrameIndex = MI->getOperand(1).getIndex();
   1036       return MI->getOperand(0).getReg();
   1037     }
   1038     break;
   1039   }
   1040   return 0;
   1041 }
   1042 
   1043 /// Return true if this is load/store scales or extends its register offset.
   1044 /// This refers to scaling a dynamic index as opposed to scaled immediates.
   1045 /// MI should be a memory op that allows scaled addressing.
   1046 bool AArch64InstrInfo::isScaledAddr(const MachineInstr *MI) const {
   1047   switch (MI->getOpcode()) {
   1048   default:
   1049     break;
   1050   case AArch64::LDRBBroW:
   1051   case AArch64::LDRBroW:
   1052   case AArch64::LDRDroW:
   1053   case AArch64::LDRHHroW:
   1054   case AArch64::LDRHroW:
   1055   case AArch64::LDRQroW:
   1056   case AArch64::LDRSBWroW:
   1057   case AArch64::LDRSBXroW:
   1058   case AArch64::LDRSHWroW:
   1059   case AArch64::LDRSHXroW:
   1060   case AArch64::LDRSWroW:
   1061   case AArch64::LDRSroW:
   1062   case AArch64::LDRWroW:
   1063   case AArch64::LDRXroW:
   1064   case AArch64::STRBBroW:
   1065   case AArch64::STRBroW:
   1066   case AArch64::STRDroW:
   1067   case AArch64::STRHHroW:
   1068   case AArch64::STRHroW:
   1069   case AArch64::STRQroW:
   1070   case AArch64::STRSroW:
   1071   case AArch64::STRWroW:
   1072   case AArch64::STRXroW:
   1073   case AArch64::LDRBBroX:
   1074   case AArch64::LDRBroX:
   1075   case AArch64::LDRDroX:
   1076   case AArch64::LDRHHroX:
   1077   case AArch64::LDRHroX:
   1078   case AArch64::LDRQroX:
   1079   case AArch64::LDRSBWroX:
   1080   case AArch64::LDRSBXroX:
   1081   case AArch64::LDRSHWroX:
   1082   case AArch64::LDRSHXroX:
   1083   case AArch64::LDRSWroX:
   1084   case AArch64::LDRSroX:
   1085   case AArch64::LDRWroX:
   1086   case AArch64::LDRXroX:
   1087   case AArch64::STRBBroX:
   1088   case AArch64::STRBroX:
   1089   case AArch64::STRDroX:
   1090   case AArch64::STRHHroX:
   1091   case AArch64::STRHroX:
   1092   case AArch64::STRQroX:
   1093   case AArch64::STRSroX:
   1094   case AArch64::STRWroX:
   1095   case AArch64::STRXroX:
   1096 
   1097     unsigned Val = MI->getOperand(3).getImm();
   1098     AArch64_AM::ShiftExtendType ExtType = AArch64_AM::getMemExtendType(Val);
   1099     return (ExtType != AArch64_AM::UXTX) || AArch64_AM::getMemDoShift(Val);
   1100   }
   1101   return false;
   1102 }
   1103 
   1104 /// Check all MachineMemOperands for a hint to suppress pairing.
   1105 bool AArch64InstrInfo::isLdStPairSuppressed(const MachineInstr *MI) const {
   1106   assert(MOSuppressPair < (1 << MachineMemOperand::MOTargetNumBits) &&
   1107          "Too many target MO flags");
   1108   for (auto *MM : MI->memoperands()) {
   1109     if (MM->getFlags() &
   1110         (MOSuppressPair << MachineMemOperand::MOTargetStartBit)) {
   1111       return true;
   1112     }
   1113   }
   1114   return false;
   1115 }
   1116 
   1117 /// Set a flag on the first MachineMemOperand to suppress pairing.
   1118 void AArch64InstrInfo::suppressLdStPair(MachineInstr *MI) const {
   1119   if (MI->memoperands_empty())
   1120     return;
   1121 
   1122   assert(MOSuppressPair < (1 << MachineMemOperand::MOTargetNumBits) &&
   1123          "Too many target MO flags");
   1124   (*MI->memoperands_begin())
   1125       ->setFlags(MOSuppressPair << MachineMemOperand::MOTargetStartBit);
   1126 }
   1127 
   1128 bool
   1129 AArch64InstrInfo::getLdStBaseRegImmOfs(MachineInstr *LdSt, unsigned &BaseReg,
   1130                                        unsigned &Offset,
   1131                                        const TargetRegisterInfo *TRI) const {
   1132   switch (LdSt->getOpcode()) {
   1133   default:
   1134     return false;
   1135   case AArch64::STRSui:
   1136   case AArch64::STRDui:
   1137   case AArch64::STRQui:
   1138   case AArch64::STRXui:
   1139   case AArch64::STRWui:
   1140   case AArch64::LDRSui:
   1141   case AArch64::LDRDui:
   1142   case AArch64::LDRQui:
   1143   case AArch64::LDRXui:
   1144   case AArch64::LDRWui:
   1145     if (!LdSt->getOperand(1).isReg() || !LdSt->getOperand(2).isImm())
   1146       return false;
   1147     BaseReg = LdSt->getOperand(1).getReg();
   1148     MachineFunction &MF = *LdSt->getParent()->getParent();
   1149     unsigned Width = getRegClass(LdSt->getDesc(), 0, TRI, MF)->getSize();
   1150     Offset = LdSt->getOperand(2).getImm() * Width;
   1151     return true;
   1152   };
   1153 }
   1154 
   1155 /// Detect opportunities for ldp/stp formation.
   1156 ///
   1157 /// Only called for LdSt for which getLdStBaseRegImmOfs returns true.
   1158 bool AArch64InstrInfo::shouldClusterLoads(MachineInstr *FirstLdSt,
   1159                                           MachineInstr *SecondLdSt,
   1160                                           unsigned NumLoads) const {
   1161   // Only cluster up to a single pair.
   1162   if (NumLoads > 1)
   1163     return false;
   1164   if (FirstLdSt->getOpcode() != SecondLdSt->getOpcode())
   1165     return false;
   1166   // getLdStBaseRegImmOfs guarantees that oper 2 isImm.
   1167   unsigned Ofs1 = FirstLdSt->getOperand(2).getImm();
   1168   // Allow 6 bits of positive range.
   1169   if (Ofs1 > 64)
   1170     return false;
   1171   // The caller should already have ordered First/SecondLdSt by offset.
   1172   unsigned Ofs2 = SecondLdSt->getOperand(2).getImm();
   1173   return Ofs1 + 1 == Ofs2;
   1174 }
   1175 
   1176 bool AArch64InstrInfo::shouldScheduleAdjacent(MachineInstr *First,
   1177                                               MachineInstr *Second) const {
   1178   // Cyclone can fuse CMN, CMP followed by Bcc.
   1179 
   1180   // FIXME: B0 can also fuse:
   1181   // AND, BIC, ORN, ORR, or EOR (optional S) followed by Bcc or CBZ or CBNZ.
   1182   if (Second->getOpcode() != AArch64::Bcc)
   1183     return false;
   1184   switch (First->getOpcode()) {
   1185   default:
   1186     return false;
   1187   case AArch64::SUBSWri:
   1188   case AArch64::ADDSWri:
   1189   case AArch64::ANDSWri:
   1190   case AArch64::SUBSXri:
   1191   case AArch64::ADDSXri:
   1192   case AArch64::ANDSXri:
   1193     return true;
   1194   }
   1195 }
   1196 
   1197 MachineInstr *AArch64InstrInfo::emitFrameIndexDebugValue(MachineFunction &MF,
   1198                                                          int FrameIx,
   1199                                                          uint64_t Offset,
   1200                                                          const MDNode *MDPtr,
   1201                                                          DebugLoc DL) const {
   1202   MachineInstrBuilder MIB = BuildMI(MF, DL, get(AArch64::DBG_VALUE))
   1203                                 .addFrameIndex(FrameIx)
   1204                                 .addImm(0)
   1205                                 .addImm(Offset)
   1206                                 .addMetadata(MDPtr);
   1207   return &*MIB;
   1208 }
   1209 
   1210 static const MachineInstrBuilder &AddSubReg(const MachineInstrBuilder &MIB,
   1211                                             unsigned Reg, unsigned SubIdx,
   1212                                             unsigned State,
   1213                                             const TargetRegisterInfo *TRI) {
   1214   if (!SubIdx)
   1215     return MIB.addReg(Reg, State);
   1216 
   1217   if (TargetRegisterInfo::isPhysicalRegister(Reg))
   1218     return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
   1219   return MIB.addReg(Reg, State, SubIdx);
   1220 }
   1221 
   1222 static bool forwardCopyWillClobberTuple(unsigned DestReg, unsigned SrcReg,
   1223                                         unsigned NumRegs) {
   1224   // We really want the positive remainder mod 32 here, that happens to be
   1225   // easily obtainable with a mask.
   1226   return ((DestReg - SrcReg) & 0x1f) < NumRegs;
   1227 }
   1228 
   1229 void AArch64InstrInfo::copyPhysRegTuple(
   1230     MachineBasicBlock &MBB, MachineBasicBlock::iterator I, DebugLoc DL,
   1231     unsigned DestReg, unsigned SrcReg, bool KillSrc, unsigned Opcode,
   1232     llvm::ArrayRef<unsigned> Indices) const {
   1233   assert(Subtarget.hasNEON() &&
   1234          "Unexpected register copy without NEON");
   1235   const TargetRegisterInfo *TRI = &getRegisterInfo();
   1236   uint16_t DestEncoding = TRI->getEncodingValue(DestReg);
   1237   uint16_t SrcEncoding = TRI->getEncodingValue(SrcReg);
   1238   unsigned NumRegs = Indices.size();
   1239 
   1240   int SubReg = 0, End = NumRegs, Incr = 1;
   1241   if (forwardCopyWillClobberTuple(DestEncoding, SrcEncoding, NumRegs)) {
   1242     SubReg = NumRegs - 1;
   1243     End = -1;
   1244     Incr = -1;
   1245   }
   1246 
   1247   for (; SubReg != End; SubReg += Incr) {
   1248     const MachineInstrBuilder &MIB = BuildMI(MBB, I, DL, get(Opcode));
   1249     AddSubReg(MIB, DestReg, Indices[SubReg], RegState::Define, TRI);
   1250     AddSubReg(MIB, SrcReg, Indices[SubReg], 0, TRI);
   1251     AddSubReg(MIB, SrcReg, Indices[SubReg], getKillRegState(KillSrc), TRI);
   1252   }
   1253 }
   1254 
   1255 void AArch64InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
   1256                                    MachineBasicBlock::iterator I, DebugLoc DL,
   1257                                    unsigned DestReg, unsigned SrcReg,
   1258                                    bool KillSrc) const {
   1259   if (AArch64::GPR32spRegClass.contains(DestReg) &&
   1260       (AArch64::GPR32spRegClass.contains(SrcReg) || SrcReg == AArch64::WZR)) {
   1261     const TargetRegisterInfo *TRI = &getRegisterInfo();
   1262 
   1263     if (DestReg == AArch64::WSP || SrcReg == AArch64::WSP) {
   1264       // If either operand is WSP, expand to ADD #0.
   1265       if (Subtarget.hasZeroCycleRegMove()) {
   1266         // Cyclone recognizes "ADD Xd, Xn, #0" as a zero-cycle register move.
   1267         unsigned DestRegX = TRI->getMatchingSuperReg(DestReg, AArch64::sub_32,
   1268                                                      &AArch64::GPR64spRegClass);
   1269         unsigned SrcRegX = TRI->getMatchingSuperReg(SrcReg, AArch64::sub_32,
   1270                                                     &AArch64::GPR64spRegClass);
   1271         // This instruction is reading and writing X registers.  This may upset
   1272         // the register scavenger and machine verifier, so we need to indicate
   1273         // that we are reading an undefined value from SrcRegX, but a proper
   1274         // value from SrcReg.
   1275         BuildMI(MBB, I, DL, get(AArch64::ADDXri), DestRegX)
   1276             .addReg(SrcRegX, RegState::Undef)
   1277             .addImm(0)
   1278             .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0))
   1279             .addReg(SrcReg, RegState::Implicit | getKillRegState(KillSrc));
   1280       } else {
   1281         BuildMI(MBB, I, DL, get(AArch64::ADDWri), DestReg)
   1282             .addReg(SrcReg, getKillRegState(KillSrc))
   1283             .addImm(0)
   1284             .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
   1285       }
   1286     } else if (SrcReg == AArch64::WZR && Subtarget.hasZeroCycleZeroing()) {
   1287       BuildMI(MBB, I, DL, get(AArch64::MOVZWi), DestReg).addImm(0).addImm(
   1288           AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
   1289     } else {
   1290       if (Subtarget.hasZeroCycleRegMove()) {
   1291         // Cyclone recognizes "ORR Xd, XZR, Xm" as a zero-cycle register move.
   1292         unsigned DestRegX = TRI->getMatchingSuperReg(DestReg, AArch64::sub_32,
   1293                                                      &AArch64::GPR64spRegClass);
   1294         unsigned SrcRegX = TRI->getMatchingSuperReg(SrcReg, AArch64::sub_32,
   1295                                                     &AArch64::GPR64spRegClass);
   1296         // This instruction is reading and writing X registers.  This may upset
   1297         // the register scavenger and machine verifier, so we need to indicate
   1298         // that we are reading an undefined value from SrcRegX, but a proper
   1299         // value from SrcReg.
   1300         BuildMI(MBB, I, DL, get(AArch64::ORRXrr), DestRegX)
   1301             .addReg(AArch64::XZR)
   1302             .addReg(SrcRegX, RegState::Undef)
   1303             .addReg(SrcReg, RegState::Implicit | getKillRegState(KillSrc));
   1304       } else {
   1305         // Otherwise, expand to ORR WZR.
   1306         BuildMI(MBB, I, DL, get(AArch64::ORRWrr), DestReg)
   1307             .addReg(AArch64::WZR)
   1308             .addReg(SrcReg, getKillRegState(KillSrc));
   1309       }
   1310     }
   1311     return;
   1312   }
   1313 
   1314   if (AArch64::GPR64spRegClass.contains(DestReg) &&
   1315       (AArch64::GPR64spRegClass.contains(SrcReg) || SrcReg == AArch64::XZR)) {
   1316     if (DestReg == AArch64::SP || SrcReg == AArch64::SP) {
   1317       // If either operand is SP, expand to ADD #0.
   1318       BuildMI(MBB, I, DL, get(AArch64::ADDXri), DestReg)
   1319           .addReg(SrcReg, getKillRegState(KillSrc))
   1320           .addImm(0)
   1321           .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
   1322     } else if (SrcReg == AArch64::XZR && Subtarget.hasZeroCycleZeroing()) {
   1323       BuildMI(MBB, I, DL, get(AArch64::MOVZXi), DestReg).addImm(0).addImm(
   1324           AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
   1325     } else {
   1326       // Otherwise, expand to ORR XZR.
   1327       BuildMI(MBB, I, DL, get(AArch64::ORRXrr), DestReg)
   1328           .addReg(AArch64::XZR)
   1329           .addReg(SrcReg, getKillRegState(KillSrc));
   1330     }
   1331     return;
   1332   }
   1333 
   1334   // Copy a DDDD register quad by copying the individual sub-registers.
   1335   if (AArch64::DDDDRegClass.contains(DestReg) &&
   1336       AArch64::DDDDRegClass.contains(SrcReg)) {
   1337     static const unsigned Indices[] = { AArch64::dsub0, AArch64::dsub1,
   1338                                         AArch64::dsub2, AArch64::dsub3 };
   1339     copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv8i8,
   1340                      Indices);
   1341     return;
   1342   }
   1343 
   1344   // Copy a DDD register triple by copying the individual sub-registers.
   1345   if (AArch64::DDDRegClass.contains(DestReg) &&
   1346       AArch64::DDDRegClass.contains(SrcReg)) {
   1347     static const unsigned Indices[] = { AArch64::dsub0, AArch64::dsub1,
   1348                                         AArch64::dsub2 };
   1349     copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv8i8,
   1350                      Indices);
   1351     return;
   1352   }
   1353 
   1354   // Copy a DD register pair by copying the individual sub-registers.
   1355   if (AArch64::DDRegClass.contains(DestReg) &&
   1356       AArch64::DDRegClass.contains(SrcReg)) {
   1357     static const unsigned Indices[] = { AArch64::dsub0, AArch64::dsub1 };
   1358     copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv8i8,
   1359                      Indices);
   1360     return;
   1361   }
   1362 
   1363   // Copy a QQQQ register quad by copying the individual sub-registers.
   1364   if (AArch64::QQQQRegClass.contains(DestReg) &&
   1365       AArch64::QQQQRegClass.contains(SrcReg)) {
   1366     static const unsigned Indices[] = { AArch64::qsub0, AArch64::qsub1,
   1367                                         AArch64::qsub2, AArch64::qsub3 };
   1368     copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv16i8,
   1369                      Indices);
   1370     return;
   1371   }
   1372 
   1373   // Copy a QQQ register triple by copying the individual sub-registers.
   1374   if (AArch64::QQQRegClass.contains(DestReg) &&
   1375       AArch64::QQQRegClass.contains(SrcReg)) {
   1376     static const unsigned Indices[] = { AArch64::qsub0, AArch64::qsub1,
   1377                                         AArch64::qsub2 };
   1378     copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv16i8,
   1379                      Indices);
   1380     return;
   1381   }
   1382 
   1383   // Copy a QQ register pair by copying the individual sub-registers.
   1384   if (AArch64::QQRegClass.contains(DestReg) &&
   1385       AArch64::QQRegClass.contains(SrcReg)) {
   1386     static const unsigned Indices[] = { AArch64::qsub0, AArch64::qsub1 };
   1387     copyPhysRegTuple(MBB, I, DL, DestReg, SrcReg, KillSrc, AArch64::ORRv16i8,
   1388                      Indices);
   1389     return;
   1390   }
   1391 
   1392   if (AArch64::FPR128RegClass.contains(DestReg) &&
   1393       AArch64::FPR128RegClass.contains(SrcReg)) {
   1394     if(Subtarget.hasNEON()) {
   1395       BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg)
   1396           .addReg(SrcReg)
   1397           .addReg(SrcReg, getKillRegState(KillSrc));
   1398     } else {
   1399       BuildMI(MBB, I, DL, get(AArch64::STRQpre))
   1400         .addReg(AArch64::SP, RegState::Define)
   1401         .addReg(SrcReg, getKillRegState(KillSrc))
   1402         .addReg(AArch64::SP)
   1403         .addImm(-16);
   1404       BuildMI(MBB, I, DL, get(AArch64::LDRQpre))
   1405         .addReg(AArch64::SP, RegState::Define)
   1406         .addReg(DestReg, RegState::Define)
   1407         .addReg(AArch64::SP)
   1408         .addImm(16);
   1409     }
   1410     return;
   1411   }
   1412 
   1413   if (AArch64::FPR64RegClass.contains(DestReg) &&
   1414       AArch64::FPR64RegClass.contains(SrcReg)) {
   1415     if(Subtarget.hasNEON()) {
   1416       DestReg = RI.getMatchingSuperReg(DestReg, AArch64::dsub,
   1417                                        &AArch64::FPR128RegClass);
   1418       SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::dsub,
   1419                                       &AArch64::FPR128RegClass);
   1420       BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg)
   1421           .addReg(SrcReg)
   1422           .addReg(SrcReg, getKillRegState(KillSrc));
   1423     } else {
   1424       BuildMI(MBB, I, DL, get(AArch64::FMOVDr), DestReg)
   1425           .addReg(SrcReg, getKillRegState(KillSrc));
   1426     }
   1427     return;
   1428   }
   1429 
   1430   if (AArch64::FPR32RegClass.contains(DestReg) &&
   1431       AArch64::FPR32RegClass.contains(SrcReg)) {
   1432     if(Subtarget.hasNEON()) {
   1433       DestReg = RI.getMatchingSuperReg(DestReg, AArch64::ssub,
   1434                                        &AArch64::FPR128RegClass);
   1435       SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::ssub,
   1436                                       &AArch64::FPR128RegClass);
   1437       BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg)
   1438           .addReg(SrcReg)
   1439           .addReg(SrcReg, getKillRegState(KillSrc));
   1440     } else {
   1441       BuildMI(MBB, I, DL, get(AArch64::FMOVSr), DestReg)
   1442           .addReg(SrcReg, getKillRegState(KillSrc));
   1443     }
   1444     return;
   1445   }
   1446 
   1447   if (AArch64::FPR16RegClass.contains(DestReg) &&
   1448       AArch64::FPR16RegClass.contains(SrcReg)) {
   1449     if(Subtarget.hasNEON()) {
   1450       DestReg = RI.getMatchingSuperReg(DestReg, AArch64::hsub,
   1451                                        &AArch64::FPR128RegClass);
   1452       SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::hsub,
   1453                                       &AArch64::FPR128RegClass);
   1454       BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg)
   1455           .addReg(SrcReg)
   1456           .addReg(SrcReg, getKillRegState(KillSrc));
   1457     } else {
   1458       DestReg = RI.getMatchingSuperReg(DestReg, AArch64::hsub,
   1459                                        &AArch64::FPR32RegClass);
   1460       SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::hsub,
   1461                                       &AArch64::FPR32RegClass);
   1462       BuildMI(MBB, I, DL, get(AArch64::FMOVSr), DestReg)
   1463           .addReg(SrcReg, getKillRegState(KillSrc));
   1464     }
   1465     return;
   1466   }
   1467 
   1468   if (AArch64::FPR8RegClass.contains(DestReg) &&
   1469       AArch64::FPR8RegClass.contains(SrcReg)) {
   1470     if(Subtarget.hasNEON()) {
   1471       DestReg = RI.getMatchingSuperReg(DestReg, AArch64::bsub,
   1472                                        &AArch64::FPR128RegClass);
   1473       SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::bsub,
   1474                                       &AArch64::FPR128RegClass);
   1475       BuildMI(MBB, I, DL, get(AArch64::ORRv16i8), DestReg)
   1476           .addReg(SrcReg)
   1477           .addReg(SrcReg, getKillRegState(KillSrc));
   1478     } else {
   1479       DestReg = RI.getMatchingSuperReg(DestReg, AArch64::bsub,
   1480                                        &AArch64::FPR32RegClass);
   1481       SrcReg = RI.getMatchingSuperReg(SrcReg, AArch64::bsub,
   1482                                       &AArch64::FPR32RegClass);
   1483       BuildMI(MBB, I, DL, get(AArch64::FMOVSr), DestReg)
   1484           .addReg(SrcReg, getKillRegState(KillSrc));
   1485     }
   1486     return;
   1487   }
   1488 
   1489   // Copies between GPR64 and FPR64.
   1490   if (AArch64::FPR64RegClass.contains(DestReg) &&
   1491       AArch64::GPR64RegClass.contains(SrcReg)) {
   1492     BuildMI(MBB, I, DL, get(AArch64::FMOVXDr), DestReg)
   1493         .addReg(SrcReg, getKillRegState(KillSrc));
   1494     return;
   1495   }
   1496   if (AArch64::GPR64RegClass.contains(DestReg) &&
   1497       AArch64::FPR64RegClass.contains(SrcReg)) {
   1498     BuildMI(MBB, I, DL, get(AArch64::FMOVDXr), DestReg)
   1499         .addReg(SrcReg, getKillRegState(KillSrc));
   1500     return;
   1501   }
   1502   // Copies between GPR32 and FPR32.
   1503   if (AArch64::FPR32RegClass.contains(DestReg) &&
   1504       AArch64::GPR32RegClass.contains(SrcReg)) {
   1505     BuildMI(MBB, I, DL, get(AArch64::FMOVWSr), DestReg)
   1506         .addReg(SrcReg, getKillRegState(KillSrc));
   1507     return;
   1508   }
   1509   if (AArch64::GPR32RegClass.contains(DestReg) &&
   1510       AArch64::FPR32RegClass.contains(SrcReg)) {
   1511     BuildMI(MBB, I, DL, get(AArch64::FMOVSWr), DestReg)
   1512         .addReg(SrcReg, getKillRegState(KillSrc));
   1513     return;
   1514   }
   1515 
   1516   if (DestReg == AArch64::NZCV) {
   1517     assert(AArch64::GPR64RegClass.contains(SrcReg) && "Invalid NZCV copy");
   1518     BuildMI(MBB, I, DL, get(AArch64::MSR))
   1519       .addImm(AArch64SysReg::NZCV)
   1520       .addReg(SrcReg, getKillRegState(KillSrc))
   1521       .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define);
   1522     return;
   1523   }
   1524 
   1525   if (SrcReg == AArch64::NZCV) {
   1526     assert(AArch64::GPR64RegClass.contains(DestReg) && "Invalid NZCV copy");
   1527     BuildMI(MBB, I, DL, get(AArch64::MRS))
   1528       .addReg(DestReg)
   1529       .addImm(AArch64SysReg::NZCV)
   1530       .addReg(AArch64::NZCV, RegState::Implicit | getKillRegState(KillSrc));
   1531     return;
   1532   }
   1533 
   1534   llvm_unreachable("unimplemented reg-to-reg copy");
   1535 }
   1536 
   1537 void AArch64InstrInfo::storeRegToStackSlot(
   1538     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned SrcReg,
   1539     bool isKill, int FI, const TargetRegisterClass *RC,
   1540     const TargetRegisterInfo *TRI) const {
   1541   DebugLoc DL;
   1542   if (MBBI != MBB.end())
   1543     DL = MBBI->getDebugLoc();
   1544   MachineFunction &MF = *MBB.getParent();
   1545   MachineFrameInfo &MFI = *MF.getFrameInfo();
   1546   unsigned Align = MFI.getObjectAlignment(FI);
   1547 
   1548   MachinePointerInfo PtrInfo(PseudoSourceValue::getFixedStack(FI));
   1549   MachineMemOperand *MMO = MF.getMachineMemOperand(
   1550       PtrInfo, MachineMemOperand::MOStore, MFI.getObjectSize(FI), Align);
   1551   unsigned Opc = 0;
   1552   bool Offset = true;
   1553   switch (RC->getSize()) {
   1554   case 1:
   1555     if (AArch64::FPR8RegClass.hasSubClassEq(RC))
   1556       Opc = AArch64::STRBui;
   1557     break;
   1558   case 2:
   1559     if (AArch64::FPR16RegClass.hasSubClassEq(RC))
   1560       Opc = AArch64::STRHui;
   1561     break;
   1562   case 4:
   1563     if (AArch64::GPR32allRegClass.hasSubClassEq(RC)) {
   1564       Opc = AArch64::STRWui;
   1565       if (TargetRegisterInfo::isVirtualRegister(SrcReg))
   1566         MF.getRegInfo().constrainRegClass(SrcReg, &AArch64::GPR32RegClass);
   1567       else
   1568         assert(SrcReg != AArch64::WSP);
   1569     } else if (AArch64::FPR32RegClass.hasSubClassEq(RC))
   1570       Opc = AArch64::STRSui;
   1571     break;
   1572   case 8:
   1573     if (AArch64::GPR64allRegClass.hasSubClassEq(RC)) {
   1574       Opc = AArch64::STRXui;
   1575       if (TargetRegisterInfo::isVirtualRegister(SrcReg))
   1576         MF.getRegInfo().constrainRegClass(SrcReg, &AArch64::GPR64RegClass);
   1577       else
   1578         assert(SrcReg != AArch64::SP);
   1579     } else if (AArch64::FPR64RegClass.hasSubClassEq(RC))
   1580       Opc = AArch64::STRDui;
   1581     break;
   1582   case 16:
   1583     if (AArch64::FPR128RegClass.hasSubClassEq(RC))
   1584       Opc = AArch64::STRQui;
   1585     else if (AArch64::DDRegClass.hasSubClassEq(RC)) {
   1586       assert(Subtarget.hasNEON() &&
   1587              "Unexpected register store without NEON");
   1588       Opc = AArch64::ST1Twov1d, Offset = false;
   1589     }
   1590     break;
   1591   case 24:
   1592     if (AArch64::DDDRegClass.hasSubClassEq(RC)) {
   1593       assert(Subtarget.hasNEON() &&
   1594              "Unexpected register store without NEON");
   1595       Opc = AArch64::ST1Threev1d, Offset = false;
   1596     }
   1597     break;
   1598   case 32:
   1599     if (AArch64::DDDDRegClass.hasSubClassEq(RC)) {
   1600       assert(Subtarget.hasNEON() &&
   1601              "Unexpected register store without NEON");
   1602       Opc = AArch64::ST1Fourv1d, Offset = false;
   1603     } else if (AArch64::QQRegClass.hasSubClassEq(RC)) {
   1604       assert(Subtarget.hasNEON() &&
   1605              "Unexpected register store without NEON");
   1606       Opc = AArch64::ST1Twov2d, Offset = false;
   1607     }
   1608     break;
   1609   case 48:
   1610     if (AArch64::QQQRegClass.hasSubClassEq(RC)) {
   1611       assert(Subtarget.hasNEON() &&
   1612              "Unexpected register store without NEON");
   1613       Opc = AArch64::ST1Threev2d, Offset = false;
   1614     }
   1615     break;
   1616   case 64:
   1617     if (AArch64::QQQQRegClass.hasSubClassEq(RC)) {
   1618       assert(Subtarget.hasNEON() &&
   1619              "Unexpected register store without NEON");
   1620       Opc = AArch64::ST1Fourv2d, Offset = false;
   1621     }
   1622     break;
   1623   }
   1624   assert(Opc && "Unknown register class");
   1625 
   1626   const MachineInstrBuilder &MI = BuildMI(MBB, MBBI, DL, get(Opc))
   1627                                       .addReg(SrcReg, getKillRegState(isKill))
   1628                                       .addFrameIndex(FI);
   1629 
   1630   if (Offset)
   1631     MI.addImm(0);
   1632   MI.addMemOperand(MMO);
   1633 }
   1634 
   1635 void AArch64InstrInfo::loadRegFromStackSlot(
   1636     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned DestReg,
   1637     int FI, const TargetRegisterClass *RC,
   1638     const TargetRegisterInfo *TRI) const {
   1639   DebugLoc DL;
   1640   if (MBBI != MBB.end())
   1641     DL = MBBI->getDebugLoc();
   1642   MachineFunction &MF = *MBB.getParent();
   1643   MachineFrameInfo &MFI = *MF.getFrameInfo();
   1644   unsigned Align = MFI.getObjectAlignment(FI);
   1645   MachinePointerInfo PtrInfo(PseudoSourceValue::getFixedStack(FI));
   1646   MachineMemOperand *MMO = MF.getMachineMemOperand(
   1647       PtrInfo, MachineMemOperand::MOLoad, MFI.getObjectSize(FI), Align);
   1648 
   1649   unsigned Opc = 0;
   1650   bool Offset = true;
   1651   switch (RC->getSize()) {
   1652   case 1:
   1653     if (AArch64::FPR8RegClass.hasSubClassEq(RC))
   1654       Opc = AArch64::LDRBui;
   1655     break;
   1656   case 2:
   1657     if (AArch64::FPR16RegClass.hasSubClassEq(RC))
   1658       Opc = AArch64::LDRHui;
   1659     break;
   1660   case 4:
   1661     if (AArch64::GPR32allRegClass.hasSubClassEq(RC)) {
   1662       Opc = AArch64::LDRWui;
   1663       if (TargetRegisterInfo::isVirtualRegister(DestReg))
   1664         MF.getRegInfo().constrainRegClass(DestReg, &AArch64::GPR32RegClass);
   1665       else
   1666         assert(DestReg != AArch64::WSP);
   1667     } else if (AArch64::FPR32RegClass.hasSubClassEq(RC))
   1668       Opc = AArch64::LDRSui;
   1669     break;
   1670   case 8:
   1671     if (AArch64::GPR64allRegClass.hasSubClassEq(RC)) {
   1672       Opc = AArch64::LDRXui;
   1673       if (TargetRegisterInfo::isVirtualRegister(DestReg))
   1674         MF.getRegInfo().constrainRegClass(DestReg, &AArch64::GPR64RegClass);
   1675       else
   1676         assert(DestReg != AArch64::SP);
   1677     } else if (AArch64::FPR64RegClass.hasSubClassEq(RC))
   1678       Opc = AArch64::LDRDui;
   1679     break;
   1680   case 16:
   1681     if (AArch64::FPR128RegClass.hasSubClassEq(RC))
   1682       Opc = AArch64::LDRQui;
   1683     else if (AArch64::DDRegClass.hasSubClassEq(RC)) {
   1684       assert(Subtarget.hasNEON() &&
   1685              "Unexpected register load without NEON");
   1686       Opc = AArch64::LD1Twov1d, Offset = false;
   1687     }
   1688     break;
   1689   case 24:
   1690     if (AArch64::DDDRegClass.hasSubClassEq(RC)) {
   1691       assert(Subtarget.hasNEON() &&
   1692              "Unexpected register load without NEON");
   1693       Opc = AArch64::LD1Threev1d, Offset = false;
   1694     }
   1695     break;
   1696   case 32:
   1697     if (AArch64::DDDDRegClass.hasSubClassEq(RC)) {
   1698       assert(Subtarget.hasNEON() &&
   1699              "Unexpected register load without NEON");
   1700       Opc = AArch64::LD1Fourv1d, Offset = false;
   1701     } else if (AArch64::QQRegClass.hasSubClassEq(RC)) {
   1702       assert(Subtarget.hasNEON() &&
   1703              "Unexpected register load without NEON");
   1704       Opc = AArch64::LD1Twov2d, Offset = false;
   1705     }
   1706     break;
   1707   case 48:
   1708     if (AArch64::QQQRegClass.hasSubClassEq(RC)) {
   1709       assert(Subtarget.hasNEON() &&
   1710              "Unexpected register load without NEON");
   1711       Opc = AArch64::LD1Threev2d, Offset = false;
   1712     }
   1713     break;
   1714   case 64:
   1715     if (AArch64::QQQQRegClass.hasSubClassEq(RC)) {
   1716       assert(Subtarget.hasNEON() &&
   1717              "Unexpected register load without NEON");
   1718       Opc = AArch64::LD1Fourv2d, Offset = false;
   1719     }
   1720     break;
   1721   }
   1722   assert(Opc && "Unknown register class");
   1723 
   1724   const MachineInstrBuilder &MI = BuildMI(MBB, MBBI, DL, get(Opc))
   1725                                       .addReg(DestReg, getDefRegState(true))
   1726                                       .addFrameIndex(FI);
   1727   if (Offset)
   1728     MI.addImm(0);
   1729   MI.addMemOperand(MMO);
   1730 }
   1731 
   1732 void llvm::emitFrameOffset(MachineBasicBlock &MBB,
   1733                            MachineBasicBlock::iterator MBBI, DebugLoc DL,
   1734                            unsigned DestReg, unsigned SrcReg, int Offset,
   1735                            const TargetInstrInfo *TII,
   1736                            MachineInstr::MIFlag Flag, bool SetNZCV) {
   1737   if (DestReg == SrcReg && Offset == 0)
   1738     return;
   1739 
   1740   bool isSub = Offset < 0;
   1741   if (isSub)
   1742     Offset = -Offset;
   1743 
   1744   // FIXME: If the offset won't fit in 24-bits, compute the offset into a
   1745   // scratch register.  If DestReg is a virtual register, use it as the
   1746   // scratch register; otherwise, create a new virtual register (to be
   1747   // replaced by the scavenger at the end of PEI).  That case can be optimized
   1748   // slightly if DestReg is SP which is always 16-byte aligned, so the scratch
   1749   // register can be loaded with offset%8 and the add/sub can use an extending
   1750   // instruction with LSL#3.
   1751   // Currently the function handles any offsets but generates a poor sequence
   1752   // of code.
   1753   //  assert(Offset < (1 << 24) && "unimplemented reg plus immediate");
   1754 
   1755   unsigned Opc;
   1756   if (SetNZCV)
   1757     Opc = isSub ? AArch64::SUBSXri : AArch64::ADDSXri;
   1758   else
   1759     Opc = isSub ? AArch64::SUBXri : AArch64::ADDXri;
   1760   const unsigned MaxEncoding = 0xfff;
   1761   const unsigned ShiftSize = 12;
   1762   const unsigned MaxEncodableValue = MaxEncoding << ShiftSize;
   1763   while (((unsigned)Offset) >= (1 << ShiftSize)) {
   1764     unsigned ThisVal;
   1765     if (((unsigned)Offset) > MaxEncodableValue) {
   1766       ThisVal = MaxEncodableValue;
   1767     } else {
   1768       ThisVal = Offset & MaxEncodableValue;
   1769     }
   1770     assert((ThisVal >> ShiftSize) <= MaxEncoding &&
   1771            "Encoding cannot handle value that big");
   1772     BuildMI(MBB, MBBI, DL, TII->get(Opc), DestReg)
   1773         .addReg(SrcReg)
   1774         .addImm(ThisVal >> ShiftSize)
   1775         .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftSize))
   1776         .setMIFlag(Flag);
   1777 
   1778     SrcReg = DestReg;
   1779     Offset -= ThisVal;
   1780     if (Offset == 0)
   1781       return;
   1782   }
   1783   BuildMI(MBB, MBBI, DL, TII->get(Opc), DestReg)
   1784       .addReg(SrcReg)
   1785       .addImm(Offset)
   1786       .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0))
   1787       .setMIFlag(Flag);
   1788 }
   1789 
   1790 MachineInstr *
   1791 AArch64InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr *MI,
   1792                                         const SmallVectorImpl<unsigned> &Ops,
   1793                                         int FrameIndex) const {
   1794   // This is a bit of a hack. Consider this instruction:
   1795   //
   1796   //   %vreg0<def> = COPY %SP; GPR64all:%vreg0
   1797   //
   1798   // We explicitly chose GPR64all for the virtual register so such a copy might
   1799   // be eliminated by RegisterCoalescer. However, that may not be possible, and
   1800   // %vreg0 may even spill. We can't spill %SP, and since it is in the GPR64all
   1801   // register class, TargetInstrInfo::foldMemoryOperand() is going to try.
   1802   //
   1803   // To prevent that, we are going to constrain the %vreg0 register class here.
   1804   //
   1805   // <rdar://problem/11522048>
   1806   //
   1807   if (MI->isCopy()) {
   1808     unsigned DstReg = MI->getOperand(0).getReg();
   1809     unsigned SrcReg = MI->getOperand(1).getReg();
   1810     if (SrcReg == AArch64::SP &&
   1811         TargetRegisterInfo::isVirtualRegister(DstReg)) {
   1812       MF.getRegInfo().constrainRegClass(DstReg, &AArch64::GPR64RegClass);
   1813       return nullptr;
   1814     }
   1815     if (DstReg == AArch64::SP &&
   1816         TargetRegisterInfo::isVirtualRegister(SrcReg)) {
   1817       MF.getRegInfo().constrainRegClass(SrcReg, &AArch64::GPR64RegClass);
   1818       return nullptr;
   1819     }
   1820   }
   1821 
   1822   // Cannot fold.
   1823   return nullptr;
   1824 }
   1825 
   1826 int llvm::isAArch64FrameOffsetLegal(const MachineInstr &MI, int &Offset,
   1827                                     bool *OutUseUnscaledOp,
   1828                                     unsigned *OutUnscaledOp,
   1829                                     int *EmittableOffset) {
   1830   int Scale = 1;
   1831   bool IsSigned = false;
   1832   // The ImmIdx should be changed case by case if it is not 2.
   1833   unsigned ImmIdx = 2;
   1834   unsigned UnscaledOp = 0;
   1835   // Set output values in case of early exit.
   1836   if (EmittableOffset)
   1837     *EmittableOffset = 0;
   1838   if (OutUseUnscaledOp)
   1839     *OutUseUnscaledOp = false;
   1840   if (OutUnscaledOp)
   1841     *OutUnscaledOp = 0;
   1842   switch (MI.getOpcode()) {
   1843   default:
   1844     llvm_unreachable("unhandled opcode in rewriteAArch64FrameIndex");
   1845   // Vector spills/fills can't take an immediate offset.
   1846   case AArch64::LD1Twov2d:
   1847   case AArch64::LD1Threev2d:
   1848   case AArch64::LD1Fourv2d:
   1849   case AArch64::LD1Twov1d:
   1850   case AArch64::LD1Threev1d:
   1851   case AArch64::LD1Fourv1d:
   1852   case AArch64::ST1Twov2d:
   1853   case AArch64::ST1Threev2d:
   1854   case AArch64::ST1Fourv2d:
   1855   case AArch64::ST1Twov1d:
   1856   case AArch64::ST1Threev1d:
   1857   case AArch64::ST1Fourv1d:
   1858     return AArch64FrameOffsetCannotUpdate;
   1859   case AArch64::PRFMui:
   1860     Scale = 8;
   1861     UnscaledOp = AArch64::PRFUMi;
   1862     break;
   1863   case AArch64::LDRXui:
   1864     Scale = 8;
   1865     UnscaledOp = AArch64::LDURXi;
   1866     break;
   1867   case AArch64::LDRWui:
   1868     Scale = 4;
   1869     UnscaledOp = AArch64::LDURWi;
   1870     break;
   1871   case AArch64::LDRBui:
   1872     Scale = 1;
   1873     UnscaledOp = AArch64::LDURBi;
   1874     break;
   1875   case AArch64::LDRHui:
   1876     Scale = 2;
   1877     UnscaledOp = AArch64::LDURHi;
   1878     break;
   1879   case AArch64::LDRSui:
   1880     Scale = 4;
   1881     UnscaledOp = AArch64::LDURSi;
   1882     break;
   1883   case AArch64::LDRDui:
   1884     Scale = 8;
   1885     UnscaledOp = AArch64::LDURDi;
   1886     break;
   1887   case AArch64::LDRQui:
   1888     Scale = 16;
   1889     UnscaledOp = AArch64::LDURQi;
   1890     break;
   1891   case AArch64::LDRBBui:
   1892     Scale = 1;
   1893     UnscaledOp = AArch64::LDURBBi;
   1894     break;
   1895   case AArch64::LDRHHui:
   1896     Scale = 2;
   1897     UnscaledOp = AArch64::LDURHHi;
   1898     break;
   1899   case AArch64::LDRSBXui:
   1900     Scale = 1;
   1901     UnscaledOp = AArch64::LDURSBXi;
   1902     break;
   1903   case AArch64::LDRSBWui:
   1904     Scale = 1;
   1905     UnscaledOp = AArch64::LDURSBWi;
   1906     break;
   1907   case AArch64::LDRSHXui:
   1908     Scale = 2;
   1909     UnscaledOp = AArch64::LDURSHXi;
   1910     break;
   1911   case AArch64::LDRSHWui:
   1912     Scale = 2;
   1913     UnscaledOp = AArch64::LDURSHWi;
   1914     break;
   1915   case AArch64::LDRSWui:
   1916     Scale = 4;
   1917     UnscaledOp = AArch64::LDURSWi;
   1918     break;
   1919 
   1920   case AArch64::STRXui:
   1921     Scale = 8;
   1922     UnscaledOp = AArch64::STURXi;
   1923     break;
   1924   case AArch64::STRWui:
   1925     Scale = 4;
   1926     UnscaledOp = AArch64::STURWi;
   1927     break;
   1928   case AArch64::STRBui:
   1929     Scale = 1;
   1930     UnscaledOp = AArch64::STURBi;
   1931     break;
   1932   case AArch64::STRHui:
   1933     Scale = 2;
   1934     UnscaledOp = AArch64::STURHi;
   1935     break;
   1936   case AArch64::STRSui:
   1937     Scale = 4;
   1938     UnscaledOp = AArch64::STURSi;
   1939     break;
   1940   case AArch64::STRDui:
   1941     Scale = 8;
   1942     UnscaledOp = AArch64::STURDi;
   1943     break;
   1944   case AArch64::STRQui:
   1945     Scale = 16;
   1946     UnscaledOp = AArch64::STURQi;
   1947     break;
   1948   case AArch64::STRBBui:
   1949     Scale = 1;
   1950     UnscaledOp = AArch64::STURBBi;
   1951     break;
   1952   case AArch64::STRHHui:
   1953     Scale = 2;
   1954     UnscaledOp = AArch64::STURHHi;
   1955     break;
   1956 
   1957   case AArch64::LDPXi:
   1958   case AArch64::LDPDi:
   1959   case AArch64::STPXi:
   1960   case AArch64::STPDi:
   1961     IsSigned = true;
   1962     Scale = 8;
   1963     break;
   1964   case AArch64::LDPQi:
   1965   case AArch64::STPQi:
   1966     IsSigned = true;
   1967     Scale = 16;
   1968     break;
   1969   case AArch64::LDPWi:
   1970   case AArch64::LDPSi:
   1971   case AArch64::STPWi:
   1972   case AArch64::STPSi:
   1973     IsSigned = true;
   1974     Scale = 4;
   1975     break;
   1976 
   1977   case AArch64::LDURXi:
   1978   case AArch64::LDURWi:
   1979   case AArch64::LDURBi:
   1980   case AArch64::LDURHi:
   1981   case AArch64::LDURSi:
   1982   case AArch64::LDURDi:
   1983   case AArch64::LDURQi:
   1984   case AArch64::LDURHHi:
   1985   case AArch64::LDURBBi:
   1986   case AArch64::LDURSBXi:
   1987   case AArch64::LDURSBWi:
   1988   case AArch64::LDURSHXi:
   1989   case AArch64::LDURSHWi:
   1990   case AArch64::LDURSWi:
   1991   case AArch64::STURXi:
   1992   case AArch64::STURWi:
   1993   case AArch64::STURBi:
   1994   case AArch64::STURHi:
   1995   case AArch64::STURSi:
   1996   case AArch64::STURDi:
   1997   case AArch64::STURQi:
   1998   case AArch64::STURBBi:
   1999   case AArch64::STURHHi:
   2000     Scale = 1;
   2001     break;
   2002   }
   2003 
   2004   Offset += MI.getOperand(ImmIdx).getImm() * Scale;
   2005 
   2006   bool useUnscaledOp = false;
   2007   // If the offset doesn't match the scale, we rewrite the instruction to
   2008   // use the unscaled instruction instead. Likewise, if we have a negative
   2009   // offset (and have an unscaled op to use).
   2010   if ((Offset & (Scale - 1)) != 0 || (Offset < 0 && UnscaledOp != 0))
   2011     useUnscaledOp = true;
   2012 
   2013   // Use an unscaled addressing mode if the instruction has a negative offset
   2014   // (or if the instruction is already using an unscaled addressing mode).
   2015   unsigned MaskBits;
   2016   if (IsSigned) {
   2017     // ldp/stp instructions.
   2018     MaskBits = 7;
   2019     Offset /= Scale;
   2020   } else if (UnscaledOp == 0 || useUnscaledOp) {
   2021     MaskBits = 9;
   2022     IsSigned = true;
   2023     Scale = 1;
   2024   } else {
   2025     MaskBits = 12;
   2026     IsSigned = false;
   2027     Offset /= Scale;
   2028   }
   2029 
   2030   // Attempt to fold address computation.
   2031   int MaxOff = (1 << (MaskBits - IsSigned)) - 1;
   2032   int MinOff = (IsSigned ? (-MaxOff - 1) : 0);
   2033   if (Offset >= MinOff && Offset <= MaxOff) {
   2034     if (EmittableOffset)
   2035       *EmittableOffset = Offset;
   2036     Offset = 0;
   2037   } else {
   2038     int NewOff = Offset < 0 ? MinOff : MaxOff;
   2039     if (EmittableOffset)
   2040       *EmittableOffset = NewOff;
   2041     Offset = (Offset - NewOff) * Scale;
   2042   }
   2043   if (OutUseUnscaledOp)
   2044     *OutUseUnscaledOp = useUnscaledOp;
   2045   if (OutUnscaledOp)
   2046     *OutUnscaledOp = UnscaledOp;
   2047   return AArch64FrameOffsetCanUpdate |
   2048          (Offset == 0 ? AArch64FrameOffsetIsLegal : 0);
   2049 }
   2050 
   2051 bool llvm::rewriteAArch64FrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
   2052                                     unsigned FrameReg, int &Offset,
   2053                                     const AArch64InstrInfo *TII) {
   2054   unsigned Opcode = MI.getOpcode();
   2055   unsigned ImmIdx = FrameRegIdx + 1;
   2056 
   2057   if (Opcode == AArch64::ADDSXri || Opcode == AArch64::ADDXri) {
   2058     Offset += MI.getOperand(ImmIdx).getImm();
   2059     emitFrameOffset(*MI.getParent(), MI, MI.getDebugLoc(),
   2060                     MI.getOperand(0).getReg(), FrameReg, Offset, TII,
   2061                     MachineInstr::NoFlags, (Opcode == AArch64::ADDSXri));
   2062     MI.eraseFromParent();
   2063     Offset = 0;
   2064     return true;
   2065   }
   2066 
   2067   int NewOffset;
   2068   unsigned UnscaledOp;
   2069   bool UseUnscaledOp;
   2070   int Status = isAArch64FrameOffsetLegal(MI, Offset, &UseUnscaledOp,
   2071                                          &UnscaledOp, &NewOffset);
   2072   if (Status & AArch64FrameOffsetCanUpdate) {
   2073     if (Status & AArch64FrameOffsetIsLegal)
   2074       // Replace the FrameIndex with FrameReg.
   2075       MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
   2076     if (UseUnscaledOp)
   2077       MI.setDesc(TII->get(UnscaledOp));
   2078 
   2079     MI.getOperand(ImmIdx).ChangeToImmediate(NewOffset);
   2080     return Offset == 0;
   2081   }
   2082 
   2083   return false;
   2084 }
   2085 
   2086 void AArch64InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
   2087   NopInst.setOpcode(AArch64::HINT);
   2088   NopInst.addOperand(MCOperand::CreateImm(0));
   2089 }
   2090