Home | History | Annotate | Download | only in Hexagon
      1 //===-- HexagonInstrInfo.cpp - Hexagon Instruction Information ------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the Hexagon implementation of the TargetInstrInfo class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "HexagonInstrInfo.h"
     15 #include "Hexagon.h"
     16 #include "HexagonRegisterInfo.h"
     17 #include "HexagonSubtarget.h"
     18 #include "llvm/ADT/STLExtras.h"
     19 #include "llvm/ADT/SmallVector.h"
     20 #include "llvm/CodeGen/DFAPacketizer.h"
     21 #include "llvm/CodeGen/MachineFrameInfo.h"
     22 #include "llvm/CodeGen/MachineInstrBuilder.h"
     23 #include "llvm/CodeGen/MachineMemOperand.h"
     24 #include "llvm/CodeGen/MachineRegisterInfo.h"
     25 #include "llvm/CodeGen/PseudoSourceValue.h"
     26 #include "llvm/Support/Debug.h"
     27 #include "llvm/Support/MathExtras.h"
     28 #include "llvm/Support/raw_ostream.h"
     29 
     30 using namespace llvm;
     31 
     32 #define DEBUG_TYPE "hexagon-instrinfo"
     33 
     34 #define GET_INSTRINFO_CTOR_DTOR
     35 #define GET_INSTRMAP_INFO
     36 #include "HexagonGenInstrInfo.inc"
     37 #include "HexagonGenDFAPacketizer.inc"
     38 
     39 ///
     40 /// Constants for Hexagon instructions.
     41 ///
     42 const int Hexagon_MEMW_OFFSET_MAX = 4095;
     43 const int Hexagon_MEMW_OFFSET_MIN = -4096;
     44 const int Hexagon_MEMD_OFFSET_MAX = 8191;
     45 const int Hexagon_MEMD_OFFSET_MIN = -8192;
     46 const int Hexagon_MEMH_OFFSET_MAX = 2047;
     47 const int Hexagon_MEMH_OFFSET_MIN = -2048;
     48 const int Hexagon_MEMB_OFFSET_MAX = 1023;
     49 const int Hexagon_MEMB_OFFSET_MIN = -1024;
     50 const int Hexagon_ADDI_OFFSET_MAX = 32767;
     51 const int Hexagon_ADDI_OFFSET_MIN = -32768;
     52 const int Hexagon_MEMD_AUTOINC_MAX = 56;
     53 const int Hexagon_MEMD_AUTOINC_MIN = -64;
     54 const int Hexagon_MEMW_AUTOINC_MAX = 28;
     55 const int Hexagon_MEMW_AUTOINC_MIN = -32;
     56 const int Hexagon_MEMH_AUTOINC_MAX = 14;
     57 const int Hexagon_MEMH_AUTOINC_MIN = -16;
     58 const int Hexagon_MEMB_AUTOINC_MAX = 7;
     59 const int Hexagon_MEMB_AUTOINC_MIN = -8;
     60 
     61 // Pin the vtable to this file.
     62 void HexagonInstrInfo::anchor() {}
     63 
     64 HexagonInstrInfo::HexagonInstrInfo(HexagonSubtarget &ST)
     65   : HexagonGenInstrInfo(Hexagon::ADJCALLSTACKDOWN, Hexagon::ADJCALLSTACKUP),
     66     RI(ST), Subtarget(ST) {
     67 }
     68 
     69 
     70 /// isLoadFromStackSlot - If the specified machine instruction is a direct
     71 /// load from a stack slot, return the virtual or physical register number of
     72 /// the destination along with the FrameIndex of the loaded stack slot.  If
     73 /// not, return 0.  This predicate must return 0 if the instruction has
     74 /// any side effects other than loading from the stack slot.
     75 unsigned HexagonInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
     76                                              int &FrameIndex) const {
     77 
     78 
     79   switch (MI->getOpcode()) {
     80   default: break;
     81   case Hexagon::LDriw:
     82   case Hexagon::LDrid:
     83   case Hexagon::LDrih:
     84   case Hexagon::LDrib:
     85   case Hexagon::LDriub:
     86     if (MI->getOperand(2).isFI() &&
     87         MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) {
     88       FrameIndex = MI->getOperand(2).getIndex();
     89       return MI->getOperand(0).getReg();
     90     }
     91     break;
     92   }
     93   return 0;
     94 }
     95 
     96 
     97 /// isStoreToStackSlot - If the specified machine instruction is a direct
     98 /// store to a stack slot, return the virtual or physical register number of
     99 /// the source reg along with the FrameIndex of the loaded stack slot.  If
    100 /// not, return 0.  This predicate must return 0 if the instruction has
    101 /// any side effects other than storing to the stack slot.
    102 unsigned HexagonInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
    103                                             int &FrameIndex) const {
    104   switch (MI->getOpcode()) {
    105   default: break;
    106   case Hexagon::STriw:
    107   case Hexagon::STrid:
    108   case Hexagon::STrih:
    109   case Hexagon::STrib:
    110     if (MI->getOperand(2).isFI() &&
    111         MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) {
    112       FrameIndex = MI->getOperand(0).getIndex();
    113       return MI->getOperand(2).getReg();
    114     }
    115     break;
    116   }
    117   return 0;
    118 }
    119 
    120 
    121 unsigned
    122 HexagonInstrInfo::InsertBranch(MachineBasicBlock &MBB,MachineBasicBlock *TBB,
    123                              MachineBasicBlock *FBB,
    124                              const SmallVectorImpl<MachineOperand> &Cond,
    125                              DebugLoc DL) const{
    126 
    127     int BOpc   = Hexagon::JMP;
    128     int BccOpc = Hexagon::JMP_t;
    129 
    130     assert(TBB && "InsertBranch must not be told to insert a fallthrough");
    131 
    132     int regPos = 0;
    133     // Check if ReverseBranchCondition has asked to reverse this branch
    134     // If we want to reverse the branch an odd number of times, we want
    135     // JMP_f.
    136     if (!Cond.empty() && Cond[0].isImm() && Cond[0].getImm() == 0) {
    137       BccOpc = Hexagon::JMP_f;
    138       regPos = 1;
    139     }
    140 
    141     if (!FBB) {
    142       if (Cond.empty()) {
    143         // Due to a bug in TailMerging/CFG Optimization, we need to add a
    144         // special case handling of a predicated jump followed by an
    145         // unconditional jump. If not, Tail Merging and CFG Optimization go
    146         // into an infinite loop.
    147         MachineBasicBlock *NewTBB, *NewFBB;
    148         SmallVector<MachineOperand, 4> Cond;
    149         MachineInstr *Term = MBB.getFirstTerminator();
    150         if (isPredicated(Term) && !AnalyzeBranch(MBB, NewTBB, NewFBB, Cond,
    151                                                  false)) {
    152           MachineBasicBlock *NextBB =
    153             std::next(MachineFunction::iterator(&MBB));
    154           if (NewTBB == NextBB) {
    155             ReverseBranchCondition(Cond);
    156             RemoveBranch(MBB);
    157             return InsertBranch(MBB, TBB, nullptr, Cond, DL);
    158           }
    159         }
    160         BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
    161       } else {
    162         BuildMI(&MBB, DL,
    163                 get(BccOpc)).addReg(Cond[regPos].getReg()).addMBB(TBB);
    164       }
    165       return 1;
    166     }
    167 
    168     BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[regPos].getReg()).addMBB(TBB);
    169     BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
    170 
    171     return 2;
    172 }
    173 
    174 
    175 bool HexagonInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
    176                                      MachineBasicBlock *&TBB,
    177                                  MachineBasicBlock *&FBB,
    178                                  SmallVectorImpl<MachineOperand> &Cond,
    179                                  bool AllowModify) const {
    180   TBB = nullptr;
    181   FBB = nullptr;
    182 
    183   // If the block has no terminators, it just falls into the block after it.
    184   MachineBasicBlock::instr_iterator I = MBB.instr_end();
    185   if (I == MBB.instr_begin())
    186     return false;
    187 
    188   // A basic block may looks like this:
    189   //
    190   //  [   insn
    191   //     EH_LABEL
    192   //      insn
    193   //      insn
    194   //      insn
    195   //     EH_LABEL
    196   //      insn     ]
    197   //
    198   // It has two succs but does not have a terminator
    199   // Don't know how to handle it.
    200   do {
    201     --I;
    202     if (I->isEHLabel())
    203       return true;
    204   } while (I != MBB.instr_begin());
    205 
    206   I = MBB.instr_end();
    207   --I;
    208 
    209   while (I->isDebugValue()) {
    210     if (I == MBB.instr_begin())
    211       return false;
    212     --I;
    213   }
    214 
    215   // Delete the JMP if it's equivalent to a fall-through.
    216   if (AllowModify && I->getOpcode() == Hexagon::JMP &&
    217       MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
    218     DEBUG(dbgs()<< "\nErasing the jump to successor block\n";);
    219     I->eraseFromParent();
    220     I = MBB.instr_end();
    221     if (I == MBB.instr_begin())
    222       return false;
    223     --I;
    224   }
    225   if (!isUnpredicatedTerminator(I))
    226     return false;
    227 
    228   // Get the last instruction in the block.
    229   MachineInstr *LastInst = I;
    230   MachineInstr *SecondLastInst = nullptr;
    231   // Find one more terminator if present.
    232   do {
    233     if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(I)) {
    234       if (!SecondLastInst)
    235         SecondLastInst = I;
    236       else
    237         // This is a third branch.
    238         return true;
    239     }
    240     if (I == MBB.instr_begin())
    241       break;
    242     --I;
    243   } while(I);
    244 
    245   int LastOpcode = LastInst->getOpcode();
    246 
    247   bool LastOpcodeHasJMP_c = PredOpcodeHasJMP_c(LastOpcode);
    248   bool LastOpcodeHasNot = PredOpcodeHasNot(LastOpcode);
    249 
    250   // If there is only one terminator instruction, process it.
    251   if (LastInst && !SecondLastInst) {
    252     if (LastOpcode == Hexagon::JMP) {
    253       TBB = LastInst->getOperand(0).getMBB();
    254       return false;
    255     }
    256     if (LastOpcode == Hexagon::ENDLOOP0) {
    257       TBB = LastInst->getOperand(0).getMBB();
    258       Cond.push_back(LastInst->getOperand(0));
    259       return false;
    260     }
    261     if (LastOpcodeHasJMP_c) {
    262       TBB = LastInst->getOperand(1).getMBB();
    263       if (LastOpcodeHasNot) {
    264         Cond.push_back(MachineOperand::CreateImm(0));
    265       }
    266       Cond.push_back(LastInst->getOperand(0));
    267       return false;
    268     }
    269     // Otherwise, don't know what this is.
    270     return true;
    271   }
    272 
    273   int SecLastOpcode = SecondLastInst->getOpcode();
    274 
    275   bool SecLastOpcodeHasJMP_c = PredOpcodeHasJMP_c(SecLastOpcode);
    276   bool SecLastOpcodeHasNot = PredOpcodeHasNot(SecLastOpcode);
    277   if (SecLastOpcodeHasJMP_c && (LastOpcode == Hexagon::JMP)) {
    278     TBB =  SecondLastInst->getOperand(1).getMBB();
    279     if (SecLastOpcodeHasNot)
    280       Cond.push_back(MachineOperand::CreateImm(0));
    281     Cond.push_back(SecondLastInst->getOperand(0));
    282     FBB = LastInst->getOperand(0).getMBB();
    283     return false;
    284   }
    285 
    286   // If the block ends with two Hexagon:JMPs, handle it.  The second one is not
    287   // executed, so remove it.
    288   if (SecLastOpcode == Hexagon::JMP && LastOpcode == Hexagon::JMP) {
    289     TBB = SecondLastInst->getOperand(0).getMBB();
    290     I = LastInst;
    291     if (AllowModify)
    292       I->eraseFromParent();
    293     return false;
    294   }
    295 
    296   // If the block ends with an ENDLOOP, and JMP, handle it.
    297   if (SecLastOpcode == Hexagon::ENDLOOP0 &&
    298       LastOpcode == Hexagon::JMP) {
    299     TBB = SecondLastInst->getOperand(0).getMBB();
    300     Cond.push_back(SecondLastInst->getOperand(0));
    301     FBB = LastInst->getOperand(0).getMBB();
    302     return false;
    303   }
    304 
    305   // Otherwise, can't handle this.
    306   return true;
    307 }
    308 
    309 
    310 unsigned HexagonInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
    311   int BOpc   = Hexagon::JMP;
    312   int BccOpc = Hexagon::JMP_t;
    313   int BccOpcNot = Hexagon::JMP_f;
    314 
    315   MachineBasicBlock::iterator I = MBB.end();
    316   if (I == MBB.begin()) return 0;
    317   --I;
    318   if (I->getOpcode() != BOpc && I->getOpcode() != BccOpc &&
    319       I->getOpcode() != BccOpcNot)
    320     return 0;
    321 
    322   // Remove the branch.
    323   I->eraseFromParent();
    324 
    325   I = MBB.end();
    326 
    327   if (I == MBB.begin()) return 1;
    328   --I;
    329   if (I->getOpcode() != BccOpc && I->getOpcode() != BccOpcNot)
    330     return 1;
    331 
    332   // Remove the branch.
    333   I->eraseFromParent();
    334   return 2;
    335 }
    336 
    337 
    338 /// \brief For a comparison instruction, return the source registers in
    339 /// \p SrcReg and \p SrcReg2 if having two register operands, and the value it
    340 /// compares against in CmpValue. Return true if the comparison instruction
    341 /// can be analyzed.
    342 bool HexagonInstrInfo::analyzeCompare(const MachineInstr *MI,
    343                                       unsigned &SrcReg, unsigned &SrcReg2,
    344                                       int &Mask, int &Value) const {
    345   unsigned Opc = MI->getOpcode();
    346 
    347   // Set mask and the first source register.
    348   switch (Opc) {
    349     case Hexagon::CMPEHexagon4rr:
    350     case Hexagon::CMPEQri:
    351     case Hexagon::CMPEQrr:
    352     case Hexagon::CMPGT64rr:
    353     case Hexagon::CMPGTU64rr:
    354     case Hexagon::CMPGTUri:
    355     case Hexagon::CMPGTUrr:
    356     case Hexagon::CMPGTri:
    357     case Hexagon::CMPGTrr:
    358       SrcReg = MI->getOperand(1).getReg();
    359       Mask = ~0;
    360       break;
    361     case Hexagon::CMPbEQri_V4:
    362     case Hexagon::CMPbEQrr_sbsb_V4:
    363     case Hexagon::CMPbEQrr_ubub_V4:
    364     case Hexagon::CMPbGTUri_V4:
    365     case Hexagon::CMPbGTUrr_V4:
    366     case Hexagon::CMPbGTrr_V4:
    367       SrcReg = MI->getOperand(1).getReg();
    368       Mask = 0xFF;
    369       break;
    370     case Hexagon::CMPhEQri_V4:
    371     case Hexagon::CMPhEQrr_shl_V4:
    372     case Hexagon::CMPhEQrr_xor_V4:
    373     case Hexagon::CMPhGTUri_V4:
    374     case Hexagon::CMPhGTUrr_V4:
    375     case Hexagon::CMPhGTrr_shl_V4:
    376       SrcReg = MI->getOperand(1).getReg();
    377       Mask = 0xFFFF;
    378       break;
    379   }
    380 
    381   // Set the value/second source register.
    382   switch (Opc) {
    383     case Hexagon::CMPEHexagon4rr:
    384     case Hexagon::CMPEQrr:
    385     case Hexagon::CMPGT64rr:
    386     case Hexagon::CMPGTU64rr:
    387     case Hexagon::CMPGTUrr:
    388     case Hexagon::CMPGTrr:
    389     case Hexagon::CMPbEQrr_sbsb_V4:
    390     case Hexagon::CMPbEQrr_ubub_V4:
    391     case Hexagon::CMPbGTUrr_V4:
    392     case Hexagon::CMPbGTrr_V4:
    393     case Hexagon::CMPhEQrr_shl_V4:
    394     case Hexagon::CMPhEQrr_xor_V4:
    395     case Hexagon::CMPhGTUrr_V4:
    396     case Hexagon::CMPhGTrr_shl_V4:
    397       SrcReg2 = MI->getOperand(2).getReg();
    398       return true;
    399 
    400     case Hexagon::CMPEQri:
    401     case Hexagon::CMPGTUri:
    402     case Hexagon::CMPGTri:
    403     case Hexagon::CMPbEQri_V4:
    404     case Hexagon::CMPbGTUri_V4:
    405     case Hexagon::CMPhEQri_V4:
    406     case Hexagon::CMPhGTUri_V4:
    407       SrcReg2 = 0;
    408       Value = MI->getOperand(2).getImm();
    409       return true;
    410   }
    411 
    412   return false;
    413 }
    414 
    415 
    416 void HexagonInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
    417                                  MachineBasicBlock::iterator I, DebugLoc DL,
    418                                  unsigned DestReg, unsigned SrcReg,
    419                                  bool KillSrc) const {
    420   if (Hexagon::IntRegsRegClass.contains(SrcReg, DestReg)) {
    421     BuildMI(MBB, I, DL, get(Hexagon::TFR), DestReg).addReg(SrcReg);
    422     return;
    423   }
    424   if (Hexagon::DoubleRegsRegClass.contains(SrcReg, DestReg)) {
    425     BuildMI(MBB, I, DL, get(Hexagon::TFR64), DestReg).addReg(SrcReg);
    426     return;
    427   }
    428   if (Hexagon::PredRegsRegClass.contains(SrcReg, DestReg)) {
    429     // Map Pd = Ps to Pd = or(Ps, Ps).
    430     BuildMI(MBB, I, DL, get(Hexagon::OR_pp),
    431             DestReg).addReg(SrcReg).addReg(SrcReg);
    432     return;
    433   }
    434   if (Hexagon::DoubleRegsRegClass.contains(DestReg) &&
    435       Hexagon::IntRegsRegClass.contains(SrcReg)) {
    436     // We can have an overlap between single and double reg: r1:0 = r0.
    437     if(SrcReg == RI.getSubReg(DestReg, Hexagon::subreg_loreg)) {
    438         // r1:0 = r0
    439         BuildMI(MBB, I, DL, get(Hexagon::TFRI), (RI.getSubReg(DestReg,
    440                 Hexagon::subreg_hireg))).addImm(0);
    441     } else {
    442         // r1:0 = r1 or no overlap.
    443         BuildMI(MBB, I, DL, get(Hexagon::TFR), (RI.getSubReg(DestReg,
    444                 Hexagon::subreg_loreg))).addReg(SrcReg);
    445         BuildMI(MBB, I, DL, get(Hexagon::TFRI), (RI.getSubReg(DestReg,
    446                 Hexagon::subreg_hireg))).addImm(0);
    447     }
    448     return;
    449   }
    450   if (Hexagon::CRRegsRegClass.contains(DestReg) &&
    451       Hexagon::IntRegsRegClass.contains(SrcReg)) {
    452     BuildMI(MBB, I, DL, get(Hexagon::TFCR), DestReg).addReg(SrcReg);
    453     return;
    454   }
    455   if (Hexagon::PredRegsRegClass.contains(SrcReg) &&
    456       Hexagon::IntRegsRegClass.contains(DestReg)) {
    457     BuildMI(MBB, I, DL, get(Hexagon::TFR_RsPd), DestReg).
    458       addReg(SrcReg, getKillRegState(KillSrc));
    459     return;
    460   }
    461   if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
    462       Hexagon::PredRegsRegClass.contains(DestReg)) {
    463     BuildMI(MBB, I, DL, get(Hexagon::TFR_PdRs), DestReg).
    464       addReg(SrcReg, getKillRegState(KillSrc));
    465     return;
    466   }
    467 
    468   llvm_unreachable("Unimplemented");
    469 }
    470 
    471 
    472 void HexagonInstrInfo::
    473 storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
    474                     unsigned SrcReg, bool isKill, int FI,
    475                     const TargetRegisterClass *RC,
    476                     const TargetRegisterInfo *TRI) const {
    477 
    478   DebugLoc DL = MBB.findDebugLoc(I);
    479   MachineFunction &MF = *MBB.getParent();
    480   MachineFrameInfo &MFI = *MF.getFrameInfo();
    481   unsigned Align = MFI.getObjectAlignment(FI);
    482 
    483   MachineMemOperand *MMO =
    484       MF.getMachineMemOperand(
    485                       MachinePointerInfo(PseudoSourceValue::getFixedStack(FI)),
    486                       MachineMemOperand::MOStore,
    487                       MFI.getObjectSize(FI),
    488                       Align);
    489 
    490   if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) {
    491     BuildMI(MBB, I, DL, get(Hexagon::STriw))
    492           .addFrameIndex(FI).addImm(0)
    493           .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
    494   } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) {
    495     BuildMI(MBB, I, DL, get(Hexagon::STrid))
    496           .addFrameIndex(FI).addImm(0)
    497           .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
    498   } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) {
    499     BuildMI(MBB, I, DL, get(Hexagon::STriw_pred))
    500           .addFrameIndex(FI).addImm(0)
    501           .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
    502   } else {
    503     llvm_unreachable("Unimplemented");
    504   }
    505 }
    506 
    507 
    508 void HexagonInstrInfo::storeRegToAddr(
    509                                  MachineFunction &MF, unsigned SrcReg,
    510                                  bool isKill,
    511                                  SmallVectorImpl<MachineOperand> &Addr,
    512                                  const TargetRegisterClass *RC,
    513                                  SmallVectorImpl<MachineInstr*> &NewMIs) const
    514 {
    515   llvm_unreachable("Unimplemented");
    516 }
    517 
    518 
    519 void HexagonInstrInfo::
    520 loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
    521                      unsigned DestReg, int FI,
    522                      const TargetRegisterClass *RC,
    523                      const TargetRegisterInfo *TRI) const {
    524   DebugLoc DL = MBB.findDebugLoc(I);
    525   MachineFunction &MF = *MBB.getParent();
    526   MachineFrameInfo &MFI = *MF.getFrameInfo();
    527   unsigned Align = MFI.getObjectAlignment(FI);
    528 
    529   MachineMemOperand *MMO =
    530       MF.getMachineMemOperand(
    531                       MachinePointerInfo(PseudoSourceValue::getFixedStack(FI)),
    532                       MachineMemOperand::MOLoad,
    533                       MFI.getObjectSize(FI),
    534                       Align);
    535   if (RC == &Hexagon::IntRegsRegClass) {
    536     BuildMI(MBB, I, DL, get(Hexagon::LDriw), DestReg)
    537           .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
    538   } else if (RC == &Hexagon::DoubleRegsRegClass) {
    539     BuildMI(MBB, I, DL, get(Hexagon::LDrid), DestReg)
    540           .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
    541   } else if (RC == &Hexagon::PredRegsRegClass) {
    542     BuildMI(MBB, I, DL, get(Hexagon::LDriw_pred), DestReg)
    543           .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
    544   } else {
    545     llvm_unreachable("Can't store this register to stack slot");
    546   }
    547 }
    548 
    549 
    550 void HexagonInstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
    551                                         SmallVectorImpl<MachineOperand> &Addr,
    552                                         const TargetRegisterClass *RC,
    553                                  SmallVectorImpl<MachineInstr*> &NewMIs) const {
    554   llvm_unreachable("Unimplemented");
    555 }
    556 
    557 
    558 MachineInstr *HexagonInstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
    559                                                     MachineInstr* MI,
    560                                           const SmallVectorImpl<unsigned> &Ops,
    561                                                     int FI) const {
    562   // Hexagon_TODO: Implement.
    563   return nullptr;
    564 }
    565 
    566 unsigned HexagonInstrInfo::createVR(MachineFunction* MF, MVT VT) const {
    567 
    568   MachineRegisterInfo &RegInfo = MF->getRegInfo();
    569   const TargetRegisterClass *TRC;
    570   if (VT == MVT::i1) {
    571     TRC = &Hexagon::PredRegsRegClass;
    572   } else if (VT == MVT::i32 || VT == MVT::f32) {
    573     TRC = &Hexagon::IntRegsRegClass;
    574   } else if (VT == MVT::i64 || VT == MVT::f64) {
    575     TRC = &Hexagon::DoubleRegsRegClass;
    576   } else {
    577     llvm_unreachable("Cannot handle this register class");
    578   }
    579 
    580   unsigned NewReg = RegInfo.createVirtualRegister(TRC);
    581   return NewReg;
    582 }
    583 
    584 bool HexagonInstrInfo::isExtendable(const MachineInstr *MI) const {
    585   // Constant extenders are allowed only for V4 and above.
    586   if (!Subtarget.hasV4TOps())
    587     return false;
    588 
    589   const MCInstrDesc &MID = MI->getDesc();
    590   const uint64_t F = MID.TSFlags;
    591   if ((F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask)
    592     return true;
    593 
    594   // TODO: This is largely obsolete now. Will need to be removed
    595   // in consecutive patches.
    596   switch(MI->getOpcode()) {
    597     // TFR_FI Remains a special case.
    598     case Hexagon::TFR_FI:
    599       return true;
    600     default:
    601       return false;
    602   }
    603   return  false;
    604 }
    605 
    606 // This returns true in two cases:
    607 // - The OP code itself indicates that this is an extended instruction.
    608 // - One of MOs has been marked with HMOTF_ConstExtended flag.
    609 bool HexagonInstrInfo::isExtended(const MachineInstr *MI) const {
    610   // First check if this is permanently extended op code.
    611   const uint64_t F = MI->getDesc().TSFlags;
    612   if ((F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask)
    613     return true;
    614   // Use MO operand flags to determine if one of MI's operands
    615   // has HMOTF_ConstExtended flag set.
    616   for (MachineInstr::const_mop_iterator I = MI->operands_begin(),
    617        E = MI->operands_end(); I != E; ++I) {
    618     if (I->getTargetFlags() && HexagonII::HMOTF_ConstExtended)
    619       return true;
    620   }
    621   return  false;
    622 }
    623 
    624 bool HexagonInstrInfo::isBranch (const MachineInstr *MI) const {
    625   return MI->getDesc().isBranch();
    626 }
    627 
    628 bool HexagonInstrInfo::isNewValueInst(const MachineInstr *MI) const {
    629   if (isNewValueJump(MI))
    630     return true;
    631 
    632   if (isNewValueStore(MI))
    633     return true;
    634 
    635   return false;
    636 }
    637 
    638 bool HexagonInstrInfo::isSaveCalleeSavedRegsCall(const MachineInstr *MI) const {
    639   return MI->getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4;
    640 }
    641 
    642 bool HexagonInstrInfo::isPredicable(MachineInstr *MI) const {
    643   bool isPred = MI->getDesc().isPredicable();
    644 
    645   if (!isPred)
    646     return false;
    647 
    648   const int Opc = MI->getOpcode();
    649 
    650   switch(Opc) {
    651   case Hexagon::TFRI:
    652     return isInt<12>(MI->getOperand(1).getImm());
    653 
    654   case Hexagon::STrid:
    655   case Hexagon::STrid_indexed:
    656     return isShiftedUInt<6,3>(MI->getOperand(1).getImm());
    657 
    658   case Hexagon::STriw:
    659   case Hexagon::STriw_indexed:
    660   case Hexagon::STriw_nv_V4:
    661     return isShiftedUInt<6,2>(MI->getOperand(1).getImm());
    662 
    663   case Hexagon::STrih:
    664   case Hexagon::STrih_indexed:
    665   case Hexagon::STrih_nv_V4:
    666     return isShiftedUInt<6,1>(MI->getOperand(1).getImm());
    667 
    668   case Hexagon::STrib:
    669   case Hexagon::STrib_indexed:
    670   case Hexagon::STrib_nv_V4:
    671     return isUInt<6>(MI->getOperand(1).getImm());
    672 
    673   case Hexagon::LDrid:
    674   case Hexagon::LDrid_indexed:
    675     return isShiftedUInt<6,3>(MI->getOperand(2).getImm());
    676 
    677   case Hexagon::LDriw:
    678   case Hexagon::LDriw_indexed:
    679     return isShiftedUInt<6,2>(MI->getOperand(2).getImm());
    680 
    681   case Hexagon::LDrih:
    682   case Hexagon::LDriuh:
    683   case Hexagon::LDrih_indexed:
    684   case Hexagon::LDriuh_indexed:
    685     return isShiftedUInt<6,1>(MI->getOperand(2).getImm());
    686 
    687   case Hexagon::LDrib:
    688   case Hexagon::LDriub:
    689   case Hexagon::LDrib_indexed:
    690   case Hexagon::LDriub_indexed:
    691     return isUInt<6>(MI->getOperand(2).getImm());
    692 
    693   case Hexagon::POST_LDrid:
    694     return isShiftedInt<4,3>(MI->getOperand(3).getImm());
    695 
    696   case Hexagon::POST_LDriw:
    697     return isShiftedInt<4,2>(MI->getOperand(3).getImm());
    698 
    699   case Hexagon::POST_LDrih:
    700   case Hexagon::POST_LDriuh:
    701     return isShiftedInt<4,1>(MI->getOperand(3).getImm());
    702 
    703   case Hexagon::POST_LDrib:
    704   case Hexagon::POST_LDriub:
    705     return isInt<4>(MI->getOperand(3).getImm());
    706 
    707   case Hexagon::STrib_imm_V4:
    708   case Hexagon::STrih_imm_V4:
    709   case Hexagon::STriw_imm_V4:
    710     return (isUInt<6>(MI->getOperand(1).getImm()) &&
    711             isInt<6>(MI->getOperand(2).getImm()));
    712 
    713   case Hexagon::ADD_ri:
    714     return isInt<8>(MI->getOperand(2).getImm());
    715 
    716   case Hexagon::ASLH:
    717   case Hexagon::ASRH:
    718   case Hexagon::SXTB:
    719   case Hexagon::SXTH:
    720   case Hexagon::ZXTB:
    721   case Hexagon::ZXTH:
    722     return Subtarget.hasV4TOps();
    723   }
    724 
    725   return true;
    726 }
    727 
    728 // This function performs the following inversiones:
    729 //
    730 //  cPt    ---> cNotPt
    731 //  cNotPt ---> cPt
    732 //
    733 unsigned HexagonInstrInfo::getInvertedPredicatedOpcode(const int Opc) const {
    734   int InvPredOpcode;
    735   InvPredOpcode = isPredicatedTrue(Opc) ? Hexagon::getFalsePredOpcode(Opc)
    736                                         : Hexagon::getTruePredOpcode(Opc);
    737   if (InvPredOpcode >= 0) // Valid instruction with the inverted predicate.
    738     return InvPredOpcode;
    739 
    740   switch(Opc) {
    741     default: llvm_unreachable("Unexpected predicated instruction");
    742     case Hexagon::COMBINE_rr_cPt:
    743       return Hexagon::COMBINE_rr_cNotPt;
    744     case Hexagon::COMBINE_rr_cNotPt:
    745       return Hexagon::COMBINE_rr_cPt;
    746 
    747       // Dealloc_return.
    748     case Hexagon::DEALLOC_RET_cPt_V4:
    749       return Hexagon::DEALLOC_RET_cNotPt_V4;
    750     case Hexagon::DEALLOC_RET_cNotPt_V4:
    751       return Hexagon::DEALLOC_RET_cPt_V4;
    752   }
    753 }
    754 
    755 // New Value Store instructions.
    756 bool HexagonInstrInfo::isNewValueStore(const MachineInstr *MI) const {
    757   const uint64_t F = MI->getDesc().TSFlags;
    758 
    759   return ((F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask);
    760 }
    761 
    762 bool HexagonInstrInfo::isNewValueStore(unsigned Opcode) const {
    763   const uint64_t F = get(Opcode).TSFlags;
    764 
    765   return ((F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask);
    766 }
    767 
    768 int HexagonInstrInfo::
    769 getMatchingCondBranchOpcode(int Opc, bool invertPredicate) const {
    770   enum Hexagon::PredSense inPredSense;
    771   inPredSense = invertPredicate ? Hexagon::PredSense_false :
    772                                   Hexagon::PredSense_true;
    773   int CondOpcode = Hexagon::getPredOpcode(Opc, inPredSense);
    774   if (CondOpcode >= 0) // Valid Conditional opcode/instruction
    775     return CondOpcode;
    776 
    777   // This switch case will be removed once all the instructions have been
    778   // modified to use relation maps.
    779   switch(Opc) {
    780   case Hexagon::TFRI_f:
    781     return !invertPredicate ? Hexagon::TFRI_cPt_f :
    782                               Hexagon::TFRI_cNotPt_f;
    783   case Hexagon::COMBINE_rr:
    784     return !invertPredicate ? Hexagon::COMBINE_rr_cPt :
    785                               Hexagon::COMBINE_rr_cNotPt;
    786 
    787   // Word.
    788   case Hexagon::STriw_f:
    789     return !invertPredicate ? Hexagon::STriw_cPt :
    790                               Hexagon::STriw_cNotPt;
    791   case Hexagon::STriw_indexed_f:
    792     return !invertPredicate ? Hexagon::STriw_indexed_cPt :
    793                               Hexagon::STriw_indexed_cNotPt;
    794 
    795   // DEALLOC_RETURN.
    796   case Hexagon::DEALLOC_RET_V4:
    797     return !invertPredicate ? Hexagon::DEALLOC_RET_cPt_V4 :
    798                               Hexagon::DEALLOC_RET_cNotPt_V4;
    799   }
    800   llvm_unreachable("Unexpected predicable instruction");
    801 }
    802 
    803 
    804 bool HexagonInstrInfo::
    805 PredicateInstruction(MachineInstr *MI,
    806                      const SmallVectorImpl<MachineOperand> &Cond) const {
    807   int Opc = MI->getOpcode();
    808   assert (isPredicable(MI) && "Expected predicable instruction");
    809   bool invertJump = (!Cond.empty() && Cond[0].isImm() &&
    810                      (Cond[0].getImm() == 0));
    811 
    812   // This will change MI's opcode to its predicate version.
    813   // However, its operand list is still the old one, i.e. the
    814   // non-predicate one.
    815   MI->setDesc(get(getMatchingCondBranchOpcode(Opc, invertJump)));
    816 
    817   int oper = -1;
    818   unsigned int GAIdx = 0;
    819 
    820   // Indicates whether the current MI has a GlobalAddress operand
    821   bool hasGAOpnd = false;
    822   std::vector<MachineOperand> tmpOpnds;
    823 
    824   // Indicates whether we need to shift operands to right.
    825   bool needShift = true;
    826 
    827   // The predicate is ALWAYS the FIRST input operand !!!
    828   if (MI->getNumOperands() == 0) {
    829     // The non-predicate version of MI does not take any operands,
    830     // i.e. no outs and no ins. In this condition, the predicate
    831     // operand will be directly placed at Operands[0]. No operand
    832     // shift is needed.
    833     // Example: BARRIER
    834     needShift = false;
    835     oper = -1;
    836   }
    837   else if (   MI->getOperand(MI->getNumOperands()-1).isReg()
    838            && MI->getOperand(MI->getNumOperands()-1).isDef()
    839            && !MI->getOperand(MI->getNumOperands()-1).isImplicit()) {
    840     // The non-predicate version of MI does not have any input operands.
    841     // In this condition, we extend the length of Operands[] by one and
    842     // copy the original last operand to the newly allocated slot.
    843     // At this moment, it is just a place holder. Later, we will put
    844     // predicate operand directly into it. No operand shift is needed.
    845     // Example: r0=BARRIER (this is a faked insn used here for illustration)
    846     MI->addOperand(MI->getOperand(MI->getNumOperands()-1));
    847     needShift = false;
    848     oper = MI->getNumOperands() - 2;
    849   }
    850   else {
    851     // We need to right shift all input operands by one. Duplicate the
    852     // last operand into the newly allocated slot.
    853     MI->addOperand(MI->getOperand(MI->getNumOperands()-1));
    854   }
    855 
    856   if (needShift)
    857   {
    858     // Operands[ MI->getNumOperands() - 2 ] has been copied into
    859     // Operands[ MI->getNumOperands() - 1 ], so we start from
    860     // Operands[ MI->getNumOperands() - 3 ].
    861     // oper is a signed int.
    862     // It is ok if "MI->getNumOperands()-3" is -3, -2, or -1.
    863     for (oper = MI->getNumOperands() - 3; oper >= 0; --oper)
    864     {
    865       MachineOperand &MO = MI->getOperand(oper);
    866 
    867       // Opnd[0] Opnd[1] Opnd[2] Opnd[3] Opnd[4]   Opnd[5]   Opnd[6]   Opnd[7]
    868       // <Def0>  <Def1>  <Use0>  <Use1>  <ImpDef0> <ImpDef1> <ImpUse0> <ImpUse1>
    869       //               /\~
    870       //              /||\~
    871       //               ||
    872       //        Predicate Operand here
    873       if (MO.isReg() && !MO.isUse() && !MO.isImplicit()) {
    874         break;
    875       }
    876       if (MO.isReg()) {
    877         MI->getOperand(oper+1).ChangeToRegister(MO.getReg(), MO.isDef(),
    878                                                 MO.isImplicit(), MO.isKill(),
    879                                                 MO.isDead(), MO.isUndef(),
    880                                                 MO.isDebug());
    881       }
    882       else if (MO.isImm()) {
    883         MI->getOperand(oper+1).ChangeToImmediate(MO.getImm());
    884       }
    885       else if (MO.isGlobal()) {
    886         // MI can not have more than one GlobalAddress operand.
    887         assert(hasGAOpnd == false && "MI can only have one GlobalAddress opnd");
    888 
    889         // There is no member function called "ChangeToGlobalAddress" in the
    890         // MachineOperand class (not like "ChangeToRegister" and
    891         // "ChangeToImmediate"). So we have to remove them from Operands[] list
    892         // first, and then add them back after we have inserted the predicate
    893         // operand. tmpOpnds[] is to remember these operands before we remove
    894         // them.
    895         tmpOpnds.push_back(MO);
    896 
    897         // Operands[oper] is a GlobalAddress operand;
    898         // Operands[oper+1] has been copied into Operands[oper+2];
    899         hasGAOpnd = true;
    900         GAIdx = oper;
    901         continue;
    902       }
    903       else {
    904         assert(false && "Unexpected operand type");
    905       }
    906     }
    907   }
    908 
    909   int regPos = invertJump ? 1 : 0;
    910   MachineOperand PredMO = Cond[regPos];
    911 
    912   // [oper] now points to the last explicit Def. Predicate operand must be
    913   // located at [oper+1]. See diagram above.
    914   // This assumes that the predicate is always the first operand,
    915   // i.e. Operands[0+numResults], in the set of inputs
    916   // It is better to have an assert here to check this. But I don't know how
    917   // to write this assert because findFirstPredOperandIdx() would return -1
    918   if (oper < -1) oper = -1;
    919 
    920   MI->getOperand(oper+1).ChangeToRegister(PredMO.getReg(), PredMO.isDef(),
    921                                           PredMO.isImplicit(), false,
    922                                           PredMO.isDead(), PredMO.isUndef(),
    923                                           PredMO.isDebug());
    924 
    925   MachineRegisterInfo &RegInfo = MI->getParent()->getParent()->getRegInfo();
    926   RegInfo.clearKillFlags(PredMO.getReg());
    927 
    928   if (hasGAOpnd)
    929   {
    930     unsigned int i;
    931 
    932     // Operands[GAIdx] is the original GlobalAddress operand, which is
    933     // already copied into tmpOpnds[0].
    934     // Operands[GAIdx] now stores a copy of Operands[GAIdx-1]
    935     // Operands[GAIdx+1] has already been copied into Operands[GAIdx+2],
    936     // so we start from [GAIdx+2]
    937     for (i = GAIdx + 2; i < MI->getNumOperands(); ++i)
    938       tmpOpnds.push_back(MI->getOperand(i));
    939 
    940     // Remove all operands in range [ (GAIdx+1) ... (MI->getNumOperands()-1) ]
    941     // It is very important that we always remove from the end of Operands[]
    942     // MI->getNumOperands() is at least 2 if program goes to here.
    943     for (i = MI->getNumOperands() - 1; i > GAIdx; --i)
    944       MI->RemoveOperand(i);
    945 
    946     for (i = 0; i < tmpOpnds.size(); ++i)
    947       MI->addOperand(tmpOpnds[i]);
    948   }
    949 
    950   return true;
    951 }
    952 
    953 
    954 bool
    955 HexagonInstrInfo::
    956 isProfitableToIfCvt(MachineBasicBlock &MBB,
    957                     unsigned NumCycles,
    958                     unsigned ExtraPredCycles,
    959                     const BranchProbability &Probability) const {
    960   return true;
    961 }
    962 
    963 
    964 bool
    965 HexagonInstrInfo::
    966 isProfitableToIfCvt(MachineBasicBlock &TMBB,
    967                     unsigned NumTCycles,
    968                     unsigned ExtraTCycles,
    969                     MachineBasicBlock &FMBB,
    970                     unsigned NumFCycles,
    971                     unsigned ExtraFCycles,
    972                     const BranchProbability &Probability) const {
    973   return true;
    974 }
    975 
    976 // Returns true if an instruction is predicated irrespective of the predicate
    977 // sense. For example, all of the following will return true.
    978 // if (p0) R1 = add(R2, R3)
    979 // if (!p0) R1 = add(R2, R3)
    980 // if (p0.new) R1 = add(R2, R3)
    981 // if (!p0.new) R1 = add(R2, R3)
    982 bool HexagonInstrInfo::isPredicated(const MachineInstr *MI) const {
    983   const uint64_t F = MI->getDesc().TSFlags;
    984 
    985   return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
    986 }
    987 
    988 bool HexagonInstrInfo::isPredicated(unsigned Opcode) const {
    989   const uint64_t F = get(Opcode).TSFlags;
    990 
    991   return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
    992 }
    993 
    994 bool HexagonInstrInfo::isPredicatedTrue(const MachineInstr *MI) const {
    995   const uint64_t F = MI->getDesc().TSFlags;
    996 
    997   assert(isPredicated(MI));
    998   return (!((F >> HexagonII::PredicatedFalsePos) &
    999             HexagonII::PredicatedFalseMask));
   1000 }
   1001 
   1002 bool HexagonInstrInfo::isPredicatedTrue(unsigned Opcode) const {
   1003   const uint64_t F = get(Opcode).TSFlags;
   1004 
   1005   // Make sure that the instruction is predicated.
   1006   assert((F>> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
   1007   return (!((F >> HexagonII::PredicatedFalsePos) &
   1008             HexagonII::PredicatedFalseMask));
   1009 }
   1010 
   1011 bool HexagonInstrInfo::isPredicatedNew(const MachineInstr *MI) const {
   1012   const uint64_t F = MI->getDesc().TSFlags;
   1013 
   1014   assert(isPredicated(MI));
   1015   return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask);
   1016 }
   1017 
   1018 bool HexagonInstrInfo::isPredicatedNew(unsigned Opcode) const {
   1019   const uint64_t F = get(Opcode).TSFlags;
   1020 
   1021   assert(isPredicated(Opcode));
   1022   return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask);
   1023 }
   1024 
   1025 // Returns true, if a ST insn can be promoted to a new-value store.
   1026 bool HexagonInstrInfo::mayBeNewStore(const MachineInstr *MI) const {
   1027   const HexagonRegisterInfo& QRI = getRegisterInfo();
   1028   const uint64_t F = MI->getDesc().TSFlags;
   1029 
   1030   return ((F >> HexagonII::mayNVStorePos) &
   1031            HexagonII::mayNVStoreMask &
   1032            QRI.Subtarget.hasV4TOps());
   1033 }
   1034 
   1035 bool
   1036 HexagonInstrInfo::DefinesPredicate(MachineInstr *MI,
   1037                                    std::vector<MachineOperand> &Pred) const {
   1038   for (unsigned oper = 0; oper < MI->getNumOperands(); ++oper) {
   1039     MachineOperand MO = MI->getOperand(oper);
   1040     if (MO.isReg() && MO.isDef()) {
   1041       const TargetRegisterClass* RC = RI.getMinimalPhysRegClass(MO.getReg());
   1042       if (RC == &Hexagon::PredRegsRegClass) {
   1043         Pred.push_back(MO);
   1044         return true;
   1045       }
   1046     }
   1047   }
   1048   return false;
   1049 }
   1050 
   1051 
   1052 bool
   1053 HexagonInstrInfo::
   1054 SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
   1055                   const SmallVectorImpl<MachineOperand> &Pred2) const {
   1056   // TODO: Fix this
   1057   return false;
   1058 }
   1059 
   1060 
   1061 //
   1062 // We indicate that we want to reverse the branch by
   1063 // inserting a 0 at the beginning of the Cond vector.
   1064 //
   1065 bool HexagonInstrInfo::
   1066 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
   1067   if (!Cond.empty() && Cond[0].isImm() && Cond[0].getImm() == 0) {
   1068     Cond.erase(Cond.begin());
   1069   } else {
   1070     Cond.insert(Cond.begin(), MachineOperand::CreateImm(0));
   1071   }
   1072   return false;
   1073 }
   1074 
   1075 
   1076 bool HexagonInstrInfo::
   1077 isProfitableToDupForIfCvt(MachineBasicBlock &MBB,unsigned NumInstrs,
   1078                           const BranchProbability &Probability) const {
   1079   return (NumInstrs <= 4);
   1080 }
   1081 
   1082 bool HexagonInstrInfo::isDeallocRet(const MachineInstr *MI) const {
   1083   switch (MI->getOpcode()) {
   1084   default: return false;
   1085   case Hexagon::DEALLOC_RET_V4 :
   1086   case Hexagon::DEALLOC_RET_cPt_V4 :
   1087   case Hexagon::DEALLOC_RET_cNotPt_V4 :
   1088   case Hexagon::DEALLOC_RET_cdnPnt_V4 :
   1089   case Hexagon::DEALLOC_RET_cNotdnPnt_V4 :
   1090   case Hexagon::DEALLOC_RET_cdnPt_V4 :
   1091   case Hexagon::DEALLOC_RET_cNotdnPt_V4 :
   1092    return true;
   1093   }
   1094 }
   1095 
   1096 
   1097 bool HexagonInstrInfo::
   1098 isValidOffset(const int Opcode, const int Offset) const {
   1099   // This function is to check whether the "Offset" is in the correct range of
   1100   // the given "Opcode". If "Offset" is not in the correct range, "ADD_ri" is
   1101   // inserted to calculate the final address. Due to this reason, the function
   1102   // assumes that the "Offset" has correct alignment.
   1103   // We used to assert if the offset was not properly aligned, however,
   1104   // there are cases where a misaligned pointer recast can cause this
   1105   // problem, and we need to allow for it. The front end warns of such
   1106   // misaligns with respect to load size.
   1107 
   1108   switch(Opcode) {
   1109 
   1110   case Hexagon::LDriw:
   1111   case Hexagon::LDriw_indexed:
   1112   case Hexagon::LDriw_f:
   1113   case Hexagon::STriw_indexed:
   1114   case Hexagon::STriw:
   1115   case Hexagon::STriw_f:
   1116     return (Offset >= Hexagon_MEMW_OFFSET_MIN) &&
   1117       (Offset <= Hexagon_MEMW_OFFSET_MAX);
   1118 
   1119   case Hexagon::LDrid:
   1120   case Hexagon::LDrid_indexed:
   1121   case Hexagon::LDrid_f:
   1122   case Hexagon::STrid:
   1123   case Hexagon::STrid_indexed:
   1124   case Hexagon::STrid_f:
   1125     return (Offset >= Hexagon_MEMD_OFFSET_MIN) &&
   1126       (Offset <= Hexagon_MEMD_OFFSET_MAX);
   1127 
   1128   case Hexagon::LDrih:
   1129   case Hexagon::LDriuh:
   1130   case Hexagon::STrih:
   1131     return (Offset >= Hexagon_MEMH_OFFSET_MIN) &&
   1132       (Offset <= Hexagon_MEMH_OFFSET_MAX);
   1133 
   1134   case Hexagon::LDrib:
   1135   case Hexagon::STrib:
   1136   case Hexagon::LDriub:
   1137     return (Offset >= Hexagon_MEMB_OFFSET_MIN) &&
   1138       (Offset <= Hexagon_MEMB_OFFSET_MAX);
   1139 
   1140   case Hexagon::ADD_ri:
   1141   case Hexagon::TFR_FI:
   1142     return (Offset >= Hexagon_ADDI_OFFSET_MIN) &&
   1143       (Offset <= Hexagon_ADDI_OFFSET_MAX);
   1144 
   1145   case Hexagon::MemOPw_ADDi_V4 :
   1146   case Hexagon::MemOPw_SUBi_V4 :
   1147   case Hexagon::MemOPw_ADDr_V4 :
   1148   case Hexagon::MemOPw_SUBr_V4 :
   1149   case Hexagon::MemOPw_ANDr_V4 :
   1150   case Hexagon::MemOPw_ORr_V4 :
   1151     return (0 <= Offset && Offset <= 255);
   1152 
   1153   case Hexagon::MemOPh_ADDi_V4 :
   1154   case Hexagon::MemOPh_SUBi_V4 :
   1155   case Hexagon::MemOPh_ADDr_V4 :
   1156   case Hexagon::MemOPh_SUBr_V4 :
   1157   case Hexagon::MemOPh_ANDr_V4 :
   1158   case Hexagon::MemOPh_ORr_V4 :
   1159     return (0 <= Offset && Offset <= 127);
   1160 
   1161   case Hexagon::MemOPb_ADDi_V4 :
   1162   case Hexagon::MemOPb_SUBi_V4 :
   1163   case Hexagon::MemOPb_ADDr_V4 :
   1164   case Hexagon::MemOPb_SUBr_V4 :
   1165   case Hexagon::MemOPb_ANDr_V4 :
   1166   case Hexagon::MemOPb_ORr_V4 :
   1167     return (0 <= Offset && Offset <= 63);
   1168 
   1169   // LDri_pred and STriw_pred are pseudo operations, so it has to take offset of
   1170   // any size. Later pass knows how to handle it.
   1171   case Hexagon::STriw_pred:
   1172   case Hexagon::LDriw_pred:
   1173     return true;
   1174 
   1175   case Hexagon::LOOP0_i:
   1176     return isUInt<10>(Offset);
   1177 
   1178   // INLINEASM is very special.
   1179   case Hexagon::INLINEASM:
   1180     return true;
   1181   }
   1182 
   1183   llvm_unreachable("No offset range is defined for this opcode. "
   1184                    "Please define it in the above switch statement!");
   1185 }
   1186 
   1187 
   1188 //
   1189 // Check if the Offset is a valid auto-inc imm by Load/Store Type.
   1190 //
   1191 bool HexagonInstrInfo::
   1192 isValidAutoIncImm(const EVT VT, const int Offset) const {
   1193 
   1194   if (VT == MVT::i64) {
   1195       return (Offset >= Hexagon_MEMD_AUTOINC_MIN &&
   1196               Offset <= Hexagon_MEMD_AUTOINC_MAX &&
   1197               (Offset & 0x7) == 0);
   1198   }
   1199   if (VT == MVT::i32) {
   1200       return (Offset >= Hexagon_MEMW_AUTOINC_MIN &&
   1201               Offset <= Hexagon_MEMW_AUTOINC_MAX &&
   1202               (Offset & 0x3) == 0);
   1203   }
   1204   if (VT == MVT::i16) {
   1205       return (Offset >= Hexagon_MEMH_AUTOINC_MIN &&
   1206               Offset <= Hexagon_MEMH_AUTOINC_MAX &&
   1207               (Offset & 0x1) == 0);
   1208   }
   1209   if (VT == MVT::i8) {
   1210       return (Offset >= Hexagon_MEMB_AUTOINC_MIN &&
   1211               Offset <= Hexagon_MEMB_AUTOINC_MAX);
   1212   }
   1213   llvm_unreachable("Not an auto-inc opc!");
   1214 }
   1215 
   1216 
   1217 bool HexagonInstrInfo::
   1218 isMemOp(const MachineInstr *MI) const {
   1219 //  return MI->getDesc().mayLoad() && MI->getDesc().mayStore();
   1220 
   1221   switch (MI->getOpcode())
   1222   {
   1223     default: return false;
   1224     case Hexagon::MemOPw_ADDi_V4 :
   1225     case Hexagon::MemOPw_SUBi_V4 :
   1226     case Hexagon::MemOPw_ADDr_V4 :
   1227     case Hexagon::MemOPw_SUBr_V4 :
   1228     case Hexagon::MemOPw_ANDr_V4 :
   1229     case Hexagon::MemOPw_ORr_V4 :
   1230     case Hexagon::MemOPh_ADDi_V4 :
   1231     case Hexagon::MemOPh_SUBi_V4 :
   1232     case Hexagon::MemOPh_ADDr_V4 :
   1233     case Hexagon::MemOPh_SUBr_V4 :
   1234     case Hexagon::MemOPh_ANDr_V4 :
   1235     case Hexagon::MemOPh_ORr_V4 :
   1236     case Hexagon::MemOPb_ADDi_V4 :
   1237     case Hexagon::MemOPb_SUBi_V4 :
   1238     case Hexagon::MemOPb_ADDr_V4 :
   1239     case Hexagon::MemOPb_SUBr_V4 :
   1240     case Hexagon::MemOPb_ANDr_V4 :
   1241     case Hexagon::MemOPb_ORr_V4 :
   1242     case Hexagon::MemOPb_SETBITi_V4:
   1243     case Hexagon::MemOPh_SETBITi_V4:
   1244     case Hexagon::MemOPw_SETBITi_V4:
   1245     case Hexagon::MemOPb_CLRBITi_V4:
   1246     case Hexagon::MemOPh_CLRBITi_V4:
   1247     case Hexagon::MemOPw_CLRBITi_V4:
   1248     return true;
   1249   }
   1250   return false;
   1251 }
   1252 
   1253 
   1254 bool HexagonInstrInfo::
   1255 isSpillPredRegOp(const MachineInstr *MI) const {
   1256   switch (MI->getOpcode()) {
   1257     default: return false;
   1258     case Hexagon::STriw_pred :
   1259     case Hexagon::LDriw_pred :
   1260       return true;
   1261   }
   1262 }
   1263 
   1264 bool HexagonInstrInfo::isNewValueJumpCandidate(const MachineInstr *MI) const {
   1265   switch (MI->getOpcode()) {
   1266     default: return false;
   1267     case Hexagon::CMPEQrr:
   1268     case Hexagon::CMPEQri:
   1269     case Hexagon::CMPGTrr:
   1270     case Hexagon::CMPGTri:
   1271     case Hexagon::CMPGTUrr:
   1272     case Hexagon::CMPGTUri:
   1273       return true;
   1274   }
   1275 }
   1276 
   1277 bool HexagonInstrInfo::
   1278 isConditionalTransfer (const MachineInstr *MI) const {
   1279   switch (MI->getOpcode()) {
   1280     default: return false;
   1281     case Hexagon::TFR_cPt:
   1282     case Hexagon::TFR_cNotPt:
   1283     case Hexagon::TFRI_cPt:
   1284     case Hexagon::TFRI_cNotPt:
   1285     case Hexagon::TFR_cdnPt:
   1286     case Hexagon::TFR_cdnNotPt:
   1287     case Hexagon::TFRI_cdnPt:
   1288     case Hexagon::TFRI_cdnNotPt:
   1289       return true;
   1290   }
   1291 }
   1292 
   1293 bool HexagonInstrInfo::isConditionalALU32 (const MachineInstr* MI) const {
   1294   const HexagonRegisterInfo& QRI = getRegisterInfo();
   1295   switch (MI->getOpcode())
   1296   {
   1297     default: return false;
   1298     case Hexagon::ADD_ri_cPt:
   1299     case Hexagon::ADD_ri_cNotPt:
   1300     case Hexagon::ADD_rr_cPt:
   1301     case Hexagon::ADD_rr_cNotPt:
   1302     case Hexagon::XOR_rr_cPt:
   1303     case Hexagon::XOR_rr_cNotPt:
   1304     case Hexagon::AND_rr_cPt:
   1305     case Hexagon::AND_rr_cNotPt:
   1306     case Hexagon::OR_rr_cPt:
   1307     case Hexagon::OR_rr_cNotPt:
   1308     case Hexagon::SUB_rr_cPt:
   1309     case Hexagon::SUB_rr_cNotPt:
   1310     case Hexagon::COMBINE_rr_cPt:
   1311     case Hexagon::COMBINE_rr_cNotPt:
   1312       return true;
   1313     case Hexagon::ASLH_cPt_V4:
   1314     case Hexagon::ASLH_cNotPt_V4:
   1315     case Hexagon::ASRH_cPt_V4:
   1316     case Hexagon::ASRH_cNotPt_V4:
   1317     case Hexagon::SXTB_cPt_V4:
   1318     case Hexagon::SXTB_cNotPt_V4:
   1319     case Hexagon::SXTH_cPt_V4:
   1320     case Hexagon::SXTH_cNotPt_V4:
   1321     case Hexagon::ZXTB_cPt_V4:
   1322     case Hexagon::ZXTB_cNotPt_V4:
   1323     case Hexagon::ZXTH_cPt_V4:
   1324     case Hexagon::ZXTH_cNotPt_V4:
   1325       return QRI.Subtarget.hasV4TOps();
   1326   }
   1327 }
   1328 
   1329 bool HexagonInstrInfo::
   1330 isConditionalLoad (const MachineInstr* MI) const {
   1331   const HexagonRegisterInfo& QRI = getRegisterInfo();
   1332   switch (MI->getOpcode())
   1333   {
   1334     default: return false;
   1335     case Hexagon::LDrid_cPt :
   1336     case Hexagon::LDrid_cNotPt :
   1337     case Hexagon::LDrid_indexed_cPt :
   1338     case Hexagon::LDrid_indexed_cNotPt :
   1339     case Hexagon::LDriw_cPt :
   1340     case Hexagon::LDriw_cNotPt :
   1341     case Hexagon::LDriw_indexed_cPt :
   1342     case Hexagon::LDriw_indexed_cNotPt :
   1343     case Hexagon::LDrih_cPt :
   1344     case Hexagon::LDrih_cNotPt :
   1345     case Hexagon::LDrih_indexed_cPt :
   1346     case Hexagon::LDrih_indexed_cNotPt :
   1347     case Hexagon::LDrib_cPt :
   1348     case Hexagon::LDrib_cNotPt :
   1349     case Hexagon::LDrib_indexed_cPt :
   1350     case Hexagon::LDrib_indexed_cNotPt :
   1351     case Hexagon::LDriuh_cPt :
   1352     case Hexagon::LDriuh_cNotPt :
   1353     case Hexagon::LDriuh_indexed_cPt :
   1354     case Hexagon::LDriuh_indexed_cNotPt :
   1355     case Hexagon::LDriub_cPt :
   1356     case Hexagon::LDriub_cNotPt :
   1357     case Hexagon::LDriub_indexed_cPt :
   1358     case Hexagon::LDriub_indexed_cNotPt :
   1359       return true;
   1360     case Hexagon::POST_LDrid_cPt :
   1361     case Hexagon::POST_LDrid_cNotPt :
   1362     case Hexagon::POST_LDriw_cPt :
   1363     case Hexagon::POST_LDriw_cNotPt :
   1364     case Hexagon::POST_LDrih_cPt :
   1365     case Hexagon::POST_LDrih_cNotPt :
   1366     case Hexagon::POST_LDrib_cPt :
   1367     case Hexagon::POST_LDrib_cNotPt :
   1368     case Hexagon::POST_LDriuh_cPt :
   1369     case Hexagon::POST_LDriuh_cNotPt :
   1370     case Hexagon::POST_LDriub_cPt :
   1371     case Hexagon::POST_LDriub_cNotPt :
   1372       return QRI.Subtarget.hasV4TOps();
   1373     case Hexagon::LDrid_indexed_shl_cPt_V4 :
   1374     case Hexagon::LDrid_indexed_shl_cNotPt_V4 :
   1375     case Hexagon::LDrib_indexed_shl_cPt_V4 :
   1376     case Hexagon::LDrib_indexed_shl_cNotPt_V4 :
   1377     case Hexagon::LDriub_indexed_shl_cPt_V4 :
   1378     case Hexagon::LDriub_indexed_shl_cNotPt_V4 :
   1379     case Hexagon::LDrih_indexed_shl_cPt_V4 :
   1380     case Hexagon::LDrih_indexed_shl_cNotPt_V4 :
   1381     case Hexagon::LDriuh_indexed_shl_cPt_V4 :
   1382     case Hexagon::LDriuh_indexed_shl_cNotPt_V4 :
   1383     case Hexagon::LDriw_indexed_shl_cPt_V4 :
   1384     case Hexagon::LDriw_indexed_shl_cNotPt_V4 :
   1385       return QRI.Subtarget.hasV4TOps();
   1386   }
   1387 }
   1388 
   1389 // Returns true if an instruction is a conditional store.
   1390 //
   1391 // Note: It doesn't include conditional new-value stores as they can't be
   1392 // converted to .new predicate.
   1393 //
   1394 //               p.new NV store [ if(p0.new)memw(R0+#0)=R2.new ]
   1395 //                ^           ^
   1396 //               /             \ (not OK. it will cause new-value store to be
   1397 //              /               X conditional on p0.new while R2 producer is
   1398 //             /                 \ on p0)
   1399 //            /                   \.
   1400 //     p.new store                 p.old NV store
   1401 // [if(p0.new)memw(R0+#0)=R2]    [if(p0)memw(R0+#0)=R2.new]
   1402 //            ^                  ^
   1403 //             \                /
   1404 //              \              /
   1405 //               \            /
   1406 //                 p.old store
   1407 //             [if (p0)memw(R0+#0)=R2]
   1408 //
   1409 // The above diagram shows the steps involoved in the conversion of a predicated
   1410 // store instruction to its .new predicated new-value form.
   1411 //
   1412 // The following set of instructions further explains the scenario where
   1413 // conditional new-value store becomes invalid when promoted to .new predicate
   1414 // form.
   1415 //
   1416 // { 1) if (p0) r0 = add(r1, r2)
   1417 //   2) p0 = cmp.eq(r3, #0) }
   1418 //
   1419 //   3) if (p0) memb(r1+#0) = r0  --> this instruction can't be grouped with
   1420 // the first two instructions because in instr 1, r0 is conditional on old value
   1421 // of p0 but its use in instr 3 is conditional on p0 modified by instr 2 which
   1422 // is not valid for new-value stores.
   1423 bool HexagonInstrInfo::
   1424 isConditionalStore (const MachineInstr* MI) const {
   1425   const HexagonRegisterInfo& QRI = getRegisterInfo();
   1426   switch (MI->getOpcode())
   1427   {
   1428     default: return false;
   1429     case Hexagon::STrib_imm_cPt_V4 :
   1430     case Hexagon::STrib_imm_cNotPt_V4 :
   1431     case Hexagon::STrib_indexed_shl_cPt_V4 :
   1432     case Hexagon::STrib_indexed_shl_cNotPt_V4 :
   1433     case Hexagon::STrib_cPt :
   1434     case Hexagon::STrib_cNotPt :
   1435     case Hexagon::POST_STbri_cPt :
   1436     case Hexagon::POST_STbri_cNotPt :
   1437     case Hexagon::STrid_indexed_cPt :
   1438     case Hexagon::STrid_indexed_cNotPt :
   1439     case Hexagon::STrid_indexed_shl_cPt_V4 :
   1440     case Hexagon::POST_STdri_cPt :
   1441     case Hexagon::POST_STdri_cNotPt :
   1442     case Hexagon::STrih_cPt :
   1443     case Hexagon::STrih_cNotPt :
   1444     case Hexagon::STrih_indexed_cPt :
   1445     case Hexagon::STrih_indexed_cNotPt :
   1446     case Hexagon::STrih_imm_cPt_V4 :
   1447     case Hexagon::STrih_imm_cNotPt_V4 :
   1448     case Hexagon::STrih_indexed_shl_cPt_V4 :
   1449     case Hexagon::STrih_indexed_shl_cNotPt_V4 :
   1450     case Hexagon::POST_SThri_cPt :
   1451     case Hexagon::POST_SThri_cNotPt :
   1452     case Hexagon::STriw_cPt :
   1453     case Hexagon::STriw_cNotPt :
   1454     case Hexagon::STriw_indexed_cPt :
   1455     case Hexagon::STriw_indexed_cNotPt :
   1456     case Hexagon::STriw_imm_cPt_V4 :
   1457     case Hexagon::STriw_imm_cNotPt_V4 :
   1458     case Hexagon::STriw_indexed_shl_cPt_V4 :
   1459     case Hexagon::STriw_indexed_shl_cNotPt_V4 :
   1460     case Hexagon::POST_STwri_cPt :
   1461     case Hexagon::POST_STwri_cNotPt :
   1462       return QRI.Subtarget.hasV4TOps();
   1463 
   1464     // V4 global address store before promoting to dot new.
   1465     case Hexagon::STd_GP_cPt_V4 :
   1466     case Hexagon::STd_GP_cNotPt_V4 :
   1467     case Hexagon::STb_GP_cPt_V4 :
   1468     case Hexagon::STb_GP_cNotPt_V4 :
   1469     case Hexagon::STh_GP_cPt_V4 :
   1470     case Hexagon::STh_GP_cNotPt_V4 :
   1471     case Hexagon::STw_GP_cPt_V4 :
   1472     case Hexagon::STw_GP_cNotPt_V4 :
   1473       return QRI.Subtarget.hasV4TOps();
   1474 
   1475     // Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded
   1476     // from the "Conditional Store" list. Because a predicated new value store
   1477     // would NOT be promoted to a double dot new store. See diagram below:
   1478     // This function returns yes for those stores that are predicated but not
   1479     // yet promoted to predicate dot new instructions.
   1480     //
   1481     //                          +---------------------+
   1482     //                    /-----| if (p0) memw(..)=r0 |---------\~
   1483     //                   ||     +---------------------+         ||
   1484     //          promote  ||       /\       /\                   ||  promote
   1485     //                   ||      /||\     /||\                  ||
   1486     //                  \||/    demote     ||                  \||/
   1487     //                   \/       ||       ||                   \/
   1488     //       +-------------------------+   ||   +-------------------------+
   1489     //       | if (p0.new) memw(..)=r0 |   ||   | if (p0) memw(..)=r0.new |
   1490     //       +-------------------------+   ||   +-------------------------+
   1491     //                        ||           ||         ||
   1492     //                        ||         demote      \||/
   1493     //                      promote        ||         \/ NOT possible
   1494     //                        ||           ||         /\~
   1495     //                       \||/          ||        /||\~
   1496     //                        \/           ||         ||
   1497     //                      +-----------------------------+
   1498     //                      | if (p0.new) memw(..)=r0.new |
   1499     //                      +-----------------------------+
   1500     //                           Double Dot New Store
   1501     //
   1502   }
   1503 }
   1504 
   1505 
   1506 bool HexagonInstrInfo::isNewValueJump(const MachineInstr *MI) const {
   1507   if (isNewValue(MI) && isBranch(MI))
   1508     return true;
   1509   return false;
   1510 }
   1511 
   1512 bool HexagonInstrInfo::isPostIncrement (const MachineInstr* MI) const {
   1513   return (getAddrMode(MI) == HexagonII::PostInc);
   1514 }
   1515 
   1516 bool HexagonInstrInfo::isNewValue(const MachineInstr* MI) const {
   1517   const uint64_t F = MI->getDesc().TSFlags;
   1518   return ((F >> HexagonII::NewValuePos) & HexagonII::NewValueMask);
   1519 }
   1520 
   1521 // Returns true, if any one of the operands is a dot new
   1522 // insn, whether it is predicated dot new or register dot new.
   1523 bool HexagonInstrInfo::isDotNewInst (const MachineInstr* MI) const {
   1524   return (isNewValueInst(MI) ||
   1525      (isPredicated(MI) && isPredicatedNew(MI)));
   1526 }
   1527 
   1528 // Returns the most basic instruction for the .new predicated instructions and
   1529 // new-value stores.
   1530 // For example, all of the following instructions will be converted back to the
   1531 // same instruction:
   1532 // 1) if (p0.new) memw(R0+#0) = R1.new  --->
   1533 // 2) if (p0) memw(R0+#0)= R1.new      -------> if (p0) memw(R0+#0) = R1
   1534 // 3) if (p0.new) memw(R0+#0) = R1      --->
   1535 //
   1536 
   1537 int HexagonInstrInfo::GetDotOldOp(const int opc) const {
   1538   int NewOp = opc;
   1539   if (isPredicated(NewOp) && isPredicatedNew(NewOp)) { // Get predicate old form
   1540     NewOp = Hexagon::getPredOldOpcode(NewOp);
   1541     assert(NewOp >= 0 &&
   1542            "Couldn't change predicate new instruction to its old form.");
   1543   }
   1544 
   1545   if (isNewValueStore(NewOp)) { // Convert into non-new-value format
   1546     NewOp = Hexagon::getNonNVStore(NewOp);
   1547     assert(NewOp >= 0 && "Couldn't change new-value store to its old form.");
   1548   }
   1549   return NewOp;
   1550 }
   1551 
   1552 // Return the new value instruction for a given store.
   1553 int HexagonInstrInfo::GetDotNewOp(const MachineInstr* MI) const {
   1554   int NVOpcode = Hexagon::getNewValueOpcode(MI->getOpcode());
   1555   if (NVOpcode >= 0) // Valid new-value store instruction.
   1556     return NVOpcode;
   1557 
   1558   switch (MI->getOpcode()) {
   1559   default: llvm_unreachable("Unknown .new type");
   1560   // store new value byte
   1561   case Hexagon::STrib_shl_V4:
   1562     return Hexagon::STrib_shl_nv_V4;
   1563 
   1564   case Hexagon::STrih_shl_V4:
   1565     return Hexagon::STrih_shl_nv_V4;
   1566 
   1567   case Hexagon::STriw_f:
   1568     return Hexagon::STriw_nv_V4;
   1569 
   1570   case Hexagon::STriw_indexed_f:
   1571     return Hexagon::STriw_indexed_nv_V4;
   1572 
   1573   case Hexagon::STriw_shl_V4:
   1574     return Hexagon::STriw_shl_nv_V4;
   1575 
   1576   }
   1577   return 0;
   1578 }
   1579 
   1580 // Return .new predicate version for an instruction.
   1581 int HexagonInstrInfo::GetDotNewPredOp(MachineInstr *MI,
   1582                                       const MachineBranchProbabilityInfo
   1583                                       *MBPI) const {
   1584 
   1585   int NewOpcode = Hexagon::getPredNewOpcode(MI->getOpcode());
   1586   if (NewOpcode >= 0) // Valid predicate new instruction
   1587     return NewOpcode;
   1588 
   1589   switch (MI->getOpcode()) {
   1590   default: llvm_unreachable("Unknown .new type");
   1591   // Condtional Jumps
   1592   case Hexagon::JMP_t:
   1593   case Hexagon::JMP_f:
   1594     return getDotNewPredJumpOp(MI, MBPI);
   1595 
   1596   case Hexagon::JMPR_t:
   1597     return Hexagon::JMPR_tnew_tV3;
   1598 
   1599   case Hexagon::JMPR_f:
   1600     return Hexagon::JMPR_fnew_tV3;
   1601 
   1602   case Hexagon::JMPret_t:
   1603     return Hexagon::JMPret_tnew_tV3;
   1604 
   1605   case Hexagon::JMPret_f:
   1606     return Hexagon::JMPret_fnew_tV3;
   1607 
   1608 
   1609   // Conditional combine
   1610   case Hexagon::COMBINE_rr_cPt :
   1611     return Hexagon::COMBINE_rr_cdnPt;
   1612   case Hexagon::COMBINE_rr_cNotPt :
   1613     return Hexagon::COMBINE_rr_cdnNotPt;
   1614   }
   1615 }
   1616 
   1617 
   1618 unsigned HexagonInstrInfo::getAddrMode(const MachineInstr* MI) const {
   1619   const uint64_t F = MI->getDesc().TSFlags;
   1620 
   1621   return((F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask);
   1622 }
   1623 
   1624 /// immediateExtend - Changes the instruction in place to one using an immediate
   1625 /// extender.
   1626 void HexagonInstrInfo::immediateExtend(MachineInstr *MI) const {
   1627   assert((isExtendable(MI)||isConstExtended(MI)) &&
   1628                                "Instruction must be extendable");
   1629   // Find which operand is extendable.
   1630   short ExtOpNum = getCExtOpNum(MI);
   1631   MachineOperand &MO = MI->getOperand(ExtOpNum);
   1632   // This needs to be something we understand.
   1633   assert((MO.isMBB() || MO.isImm()) &&
   1634          "Branch with unknown extendable field type");
   1635   // Mark given operand as extended.
   1636   MO.addTargetFlag(HexagonII::HMOTF_ConstExtended);
   1637 }
   1638 
   1639 DFAPacketizer *HexagonInstrInfo::
   1640 CreateTargetScheduleState(const TargetMachine *TM,
   1641                            const ScheduleDAG *DAG) const {
   1642   const InstrItineraryData *II = TM->getInstrItineraryData();
   1643   return TM->getSubtarget<HexagonGenSubtargetInfo>().createDFAPacketizer(II);
   1644 }
   1645 
   1646 bool HexagonInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
   1647                                             const MachineBasicBlock *MBB,
   1648                                             const MachineFunction &MF) const {
   1649   // Debug info is never a scheduling boundary. It's necessary to be explicit
   1650   // due to the special treatment of IT instructions below, otherwise a
   1651   // dbg_value followed by an IT will result in the IT instruction being
   1652   // considered a scheduling hazard, which is wrong. It should be the actual
   1653   // instruction preceding the dbg_value instruction(s), just like it is
   1654   // when debug info is not present.
   1655   if (MI->isDebugValue())
   1656     return false;
   1657 
   1658   // Terminators and labels can't be scheduled around.
   1659   if (MI->getDesc().isTerminator() || MI->isPosition() || MI->isInlineAsm())
   1660     return true;
   1661 
   1662   return false;
   1663 }
   1664 
   1665 bool HexagonInstrInfo::isConstExtended(MachineInstr *MI) const {
   1666 
   1667   // Constant extenders are allowed only for V4 and above.
   1668   if (!Subtarget.hasV4TOps())
   1669     return false;
   1670 
   1671   const uint64_t F = MI->getDesc().TSFlags;
   1672   unsigned isExtended = (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask;
   1673   if (isExtended) // Instruction must be extended.
   1674     return true;
   1675 
   1676   unsigned isExtendable = (F >> HexagonII::ExtendablePos)
   1677                           & HexagonII::ExtendableMask;
   1678   if (!isExtendable)
   1679     return false;
   1680 
   1681   short ExtOpNum = getCExtOpNum(MI);
   1682   const MachineOperand &MO = MI->getOperand(ExtOpNum);
   1683   // Use MO operand flags to determine if MO
   1684   // has the HMOTF_ConstExtended flag set.
   1685   if (MO.getTargetFlags() && HexagonII::HMOTF_ConstExtended)
   1686     return true;
   1687   // If this is a Machine BB address we are talking about, and it is
   1688   // not marked as extended, say so.
   1689   if (MO.isMBB())
   1690     return false;
   1691 
   1692   // We could be using an instruction with an extendable immediate and shoehorn
   1693   // a global address into it. If it is a global address it will be constant
   1694   // extended. We do this for COMBINE.
   1695   // We currently only handle isGlobal() because it is the only kind of
   1696   // object we are going to end up with here for now.
   1697   // In the future we probably should add isSymbol(), etc.
   1698   if (MO.isGlobal() || MO.isSymbol())
   1699     return true;
   1700 
   1701   // If the extendable operand is not 'Immediate' type, the instruction should
   1702   // have 'isExtended' flag set.
   1703   assert(MO.isImm() && "Extendable operand must be Immediate type");
   1704 
   1705   int MinValue = getMinValue(MI);
   1706   int MaxValue = getMaxValue(MI);
   1707   int ImmValue = MO.getImm();
   1708 
   1709   return (ImmValue < MinValue || ImmValue > MaxValue);
   1710 }
   1711 
   1712 // Returns the opcode to use when converting MI, which is a conditional jump,
   1713 // into a conditional instruction which uses the .new value of the predicate.
   1714 // We also use branch probabilities to add a hint to the jump.
   1715 int
   1716 HexagonInstrInfo::getDotNewPredJumpOp(MachineInstr *MI,
   1717                                   const
   1718                                   MachineBranchProbabilityInfo *MBPI) const {
   1719 
   1720   // We assume that block can have at most two successors.
   1721   bool taken = false;
   1722   MachineBasicBlock *Src = MI->getParent();
   1723   MachineOperand *BrTarget = &MI->getOperand(1);
   1724   MachineBasicBlock *Dst = BrTarget->getMBB();
   1725 
   1726   const BranchProbability Prediction = MBPI->getEdgeProbability(Src, Dst);
   1727   if (Prediction >= BranchProbability(1,2))
   1728     taken = true;
   1729 
   1730   switch (MI->getOpcode()) {
   1731   case Hexagon::JMP_t:
   1732     return taken ? Hexagon::JMP_tnew_t : Hexagon::JMP_tnew_nt;
   1733   case Hexagon::JMP_f:
   1734     return taken ? Hexagon::JMP_fnew_t : Hexagon::JMP_fnew_nt;
   1735 
   1736   default:
   1737     llvm_unreachable("Unexpected jump instruction.");
   1738   }
   1739 }
   1740 // Returns true if a particular operand is extendable for an instruction.
   1741 bool HexagonInstrInfo::isOperandExtended(const MachineInstr *MI,
   1742                                          unsigned short OperandNum) const {
   1743   // Constant extenders are allowed only for V4 and above.
   1744   if (!Subtarget.hasV4TOps())
   1745     return false;
   1746 
   1747   const uint64_t F = MI->getDesc().TSFlags;
   1748 
   1749   return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask)
   1750           == OperandNum;
   1751 }
   1752 
   1753 // Returns Operand Index for the constant extended instruction.
   1754 unsigned short HexagonInstrInfo::getCExtOpNum(const MachineInstr *MI) const {
   1755   const uint64_t F = MI->getDesc().TSFlags;
   1756   return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask);
   1757 }
   1758 
   1759 // Returns the min value that doesn't need to be extended.
   1760 int HexagonInstrInfo::getMinValue(const MachineInstr *MI) const {
   1761   const uint64_t F = MI->getDesc().TSFlags;
   1762   unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
   1763                     & HexagonII::ExtentSignedMask;
   1764   unsigned bits =  (F >> HexagonII::ExtentBitsPos)
   1765                     & HexagonII::ExtentBitsMask;
   1766 
   1767   if (isSigned) // if value is signed
   1768     return -1 << (bits - 1);
   1769   else
   1770     return 0;
   1771 }
   1772 
   1773 // Returns the max value that doesn't need to be extended.
   1774 int HexagonInstrInfo::getMaxValue(const MachineInstr *MI) const {
   1775   const uint64_t F = MI->getDesc().TSFlags;
   1776   unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
   1777                     & HexagonII::ExtentSignedMask;
   1778   unsigned bits =  (F >> HexagonII::ExtentBitsPos)
   1779                     & HexagonII::ExtentBitsMask;
   1780 
   1781   if (isSigned) // if value is signed
   1782     return ~(-1 << (bits - 1));
   1783   else
   1784     return ~(-1 << bits);
   1785 }
   1786 
   1787 // Returns true if an instruction can be converted into a non-extended
   1788 // equivalent instruction.
   1789 bool HexagonInstrInfo::NonExtEquivalentExists (const MachineInstr *MI) const {
   1790 
   1791   short NonExtOpcode;
   1792   // Check if the instruction has a register form that uses register in place
   1793   // of the extended operand, if so return that as the non-extended form.
   1794   if (Hexagon::getRegForm(MI->getOpcode()) >= 0)
   1795     return true;
   1796 
   1797   if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) {
   1798     // Check addressing mode and retrieve non-ext equivalent instruction.
   1799 
   1800     switch (getAddrMode(MI)) {
   1801     case HexagonII::Absolute :
   1802       // Load/store with absolute addressing mode can be converted into
   1803       // base+offset mode.
   1804       NonExtOpcode = Hexagon::getBasedWithImmOffset(MI->getOpcode());
   1805       break;
   1806     case HexagonII::BaseImmOffset :
   1807       // Load/store with base+offset addressing mode can be converted into
   1808       // base+register offset addressing mode. However left shift operand should
   1809       // be set to 0.
   1810       NonExtOpcode = Hexagon::getBaseWithRegOffset(MI->getOpcode());
   1811       break;
   1812     default:
   1813       return false;
   1814     }
   1815     if (NonExtOpcode < 0)
   1816       return false;
   1817     return true;
   1818   }
   1819   return false;
   1820 }
   1821 
   1822 // Returns opcode of the non-extended equivalent instruction.
   1823 short HexagonInstrInfo::getNonExtOpcode (const MachineInstr *MI) const {
   1824 
   1825   // Check if the instruction has a register form that uses register in place
   1826   // of the extended operand, if so return that as the non-extended form.
   1827   short NonExtOpcode = Hexagon::getRegForm(MI->getOpcode());
   1828     if (NonExtOpcode >= 0)
   1829       return NonExtOpcode;
   1830 
   1831   if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) {
   1832     // Check addressing mode and retrieve non-ext equivalent instruction.
   1833     switch (getAddrMode(MI)) {
   1834     case HexagonII::Absolute :
   1835       return Hexagon::getBasedWithImmOffset(MI->getOpcode());
   1836     case HexagonII::BaseImmOffset :
   1837       return Hexagon::getBaseWithRegOffset(MI->getOpcode());
   1838     default:
   1839       return -1;
   1840     }
   1841   }
   1842   return -1;
   1843 }
   1844 
   1845 bool HexagonInstrInfo::PredOpcodeHasJMP_c(Opcode_t Opcode) const {
   1846   return (Opcode == Hexagon::JMP_t) ||
   1847          (Opcode == Hexagon::JMP_f) ||
   1848          (Opcode == Hexagon::JMP_tnew_t) ||
   1849          (Opcode == Hexagon::JMP_fnew_t) ||
   1850          (Opcode == Hexagon::JMP_tnew_nt) ||
   1851          (Opcode == Hexagon::JMP_fnew_nt);
   1852 }
   1853 
   1854 bool HexagonInstrInfo::PredOpcodeHasNot(Opcode_t Opcode) const {
   1855   return (Opcode == Hexagon::JMP_f) ||
   1856          (Opcode == Hexagon::JMP_fnew_t) ||
   1857          (Opcode == Hexagon::JMP_fnew_nt);
   1858 }
   1859