1 //===-- HexagonInstrInfo.cpp - Hexagon Instruction Information ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the Hexagon implementation of the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "HexagonInstrInfo.h" 15 #include "Hexagon.h" 16 #include "HexagonRegisterInfo.h" 17 #include "HexagonSubtarget.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/CodeGen/DFAPacketizer.h" 21 #include "llvm/CodeGen/MachineFrameInfo.h" 22 #include "llvm/CodeGen/MachineInstrBuilder.h" 23 #include "llvm/CodeGen/MachineMemOperand.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/PseudoSourceValue.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/MathExtras.h" 28 #include "llvm/Support/raw_ostream.h" 29 30 using namespace llvm; 31 32 #define DEBUG_TYPE "hexagon-instrinfo" 33 34 #define GET_INSTRINFO_CTOR_DTOR 35 #define GET_INSTRMAP_INFO 36 #include "HexagonGenInstrInfo.inc" 37 #include "HexagonGenDFAPacketizer.inc" 38 39 /// 40 /// Constants for Hexagon instructions. 41 /// 42 const int Hexagon_MEMW_OFFSET_MAX = 4095; 43 const int Hexagon_MEMW_OFFSET_MIN = -4096; 44 const int Hexagon_MEMD_OFFSET_MAX = 8191; 45 const int Hexagon_MEMD_OFFSET_MIN = -8192; 46 const int Hexagon_MEMH_OFFSET_MAX = 2047; 47 const int Hexagon_MEMH_OFFSET_MIN = -2048; 48 const int Hexagon_MEMB_OFFSET_MAX = 1023; 49 const int Hexagon_MEMB_OFFSET_MIN = -1024; 50 const int Hexagon_ADDI_OFFSET_MAX = 32767; 51 const int Hexagon_ADDI_OFFSET_MIN = -32768; 52 const int Hexagon_MEMD_AUTOINC_MAX = 56; 53 const int Hexagon_MEMD_AUTOINC_MIN = -64; 54 const int Hexagon_MEMW_AUTOINC_MAX = 28; 55 const int Hexagon_MEMW_AUTOINC_MIN = -32; 56 const int Hexagon_MEMH_AUTOINC_MAX = 14; 57 const int Hexagon_MEMH_AUTOINC_MIN = -16; 58 const int Hexagon_MEMB_AUTOINC_MAX = 7; 59 const int Hexagon_MEMB_AUTOINC_MIN = -8; 60 61 // Pin the vtable to this file. 62 void HexagonInstrInfo::anchor() {} 63 64 HexagonInstrInfo::HexagonInstrInfo(HexagonSubtarget &ST) 65 : HexagonGenInstrInfo(Hexagon::ADJCALLSTACKDOWN, Hexagon::ADJCALLSTACKUP), 66 RI(ST), Subtarget(ST) { 67 } 68 69 70 /// isLoadFromStackSlot - If the specified machine instruction is a direct 71 /// load from a stack slot, return the virtual or physical register number of 72 /// the destination along with the FrameIndex of the loaded stack slot. If 73 /// not, return 0. This predicate must return 0 if the instruction has 74 /// any side effects other than loading from the stack slot. 75 unsigned HexagonInstrInfo::isLoadFromStackSlot(const MachineInstr *MI, 76 int &FrameIndex) const { 77 78 79 switch (MI->getOpcode()) { 80 default: break; 81 case Hexagon::LDriw: 82 case Hexagon::LDrid: 83 case Hexagon::LDrih: 84 case Hexagon::LDrib: 85 case Hexagon::LDriub: 86 if (MI->getOperand(2).isFI() && 87 MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) { 88 FrameIndex = MI->getOperand(2).getIndex(); 89 return MI->getOperand(0).getReg(); 90 } 91 break; 92 } 93 return 0; 94 } 95 96 97 /// isStoreToStackSlot - If the specified machine instruction is a direct 98 /// store to a stack slot, return the virtual or physical register number of 99 /// the source reg along with the FrameIndex of the loaded stack slot. If 100 /// not, return 0. This predicate must return 0 if the instruction has 101 /// any side effects other than storing to the stack slot. 102 unsigned HexagonInstrInfo::isStoreToStackSlot(const MachineInstr *MI, 103 int &FrameIndex) const { 104 switch (MI->getOpcode()) { 105 default: break; 106 case Hexagon::STriw: 107 case Hexagon::STrid: 108 case Hexagon::STrih: 109 case Hexagon::STrib: 110 if (MI->getOperand(2).isFI() && 111 MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) { 112 FrameIndex = MI->getOperand(0).getIndex(); 113 return MI->getOperand(2).getReg(); 114 } 115 break; 116 } 117 return 0; 118 } 119 120 121 unsigned 122 HexagonInstrInfo::InsertBranch(MachineBasicBlock &MBB,MachineBasicBlock *TBB, 123 MachineBasicBlock *FBB, 124 const SmallVectorImpl<MachineOperand> &Cond, 125 DebugLoc DL) const{ 126 127 int BOpc = Hexagon::JMP; 128 int BccOpc = Hexagon::JMP_t; 129 130 assert(TBB && "InsertBranch must not be told to insert a fallthrough"); 131 132 int regPos = 0; 133 // Check if ReverseBranchCondition has asked to reverse this branch 134 // If we want to reverse the branch an odd number of times, we want 135 // JMP_f. 136 if (!Cond.empty() && Cond[0].isImm() && Cond[0].getImm() == 0) { 137 BccOpc = Hexagon::JMP_f; 138 regPos = 1; 139 } 140 141 if (!FBB) { 142 if (Cond.empty()) { 143 // Due to a bug in TailMerging/CFG Optimization, we need to add a 144 // special case handling of a predicated jump followed by an 145 // unconditional jump. If not, Tail Merging and CFG Optimization go 146 // into an infinite loop. 147 MachineBasicBlock *NewTBB, *NewFBB; 148 SmallVector<MachineOperand, 4> Cond; 149 MachineInstr *Term = MBB.getFirstTerminator(); 150 if (isPredicated(Term) && !AnalyzeBranch(MBB, NewTBB, NewFBB, Cond, 151 false)) { 152 MachineBasicBlock *NextBB = 153 std::next(MachineFunction::iterator(&MBB)); 154 if (NewTBB == NextBB) { 155 ReverseBranchCondition(Cond); 156 RemoveBranch(MBB); 157 return InsertBranch(MBB, TBB, nullptr, Cond, DL); 158 } 159 } 160 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB); 161 } else { 162 BuildMI(&MBB, DL, 163 get(BccOpc)).addReg(Cond[regPos].getReg()).addMBB(TBB); 164 } 165 return 1; 166 } 167 168 BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[regPos].getReg()).addMBB(TBB); 169 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB); 170 171 return 2; 172 } 173 174 175 bool HexagonInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, 176 MachineBasicBlock *&TBB, 177 MachineBasicBlock *&FBB, 178 SmallVectorImpl<MachineOperand> &Cond, 179 bool AllowModify) const { 180 TBB = nullptr; 181 FBB = nullptr; 182 183 // If the block has no terminators, it just falls into the block after it. 184 MachineBasicBlock::instr_iterator I = MBB.instr_end(); 185 if (I == MBB.instr_begin()) 186 return false; 187 188 // A basic block may looks like this: 189 // 190 // [ insn 191 // EH_LABEL 192 // insn 193 // insn 194 // insn 195 // EH_LABEL 196 // insn ] 197 // 198 // It has two succs but does not have a terminator 199 // Don't know how to handle it. 200 do { 201 --I; 202 if (I->isEHLabel()) 203 return true; 204 } while (I != MBB.instr_begin()); 205 206 I = MBB.instr_end(); 207 --I; 208 209 while (I->isDebugValue()) { 210 if (I == MBB.instr_begin()) 211 return false; 212 --I; 213 } 214 215 // Delete the JMP if it's equivalent to a fall-through. 216 if (AllowModify && I->getOpcode() == Hexagon::JMP && 217 MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { 218 DEBUG(dbgs()<< "\nErasing the jump to successor block\n";); 219 I->eraseFromParent(); 220 I = MBB.instr_end(); 221 if (I == MBB.instr_begin()) 222 return false; 223 --I; 224 } 225 if (!isUnpredicatedTerminator(I)) 226 return false; 227 228 // Get the last instruction in the block. 229 MachineInstr *LastInst = I; 230 MachineInstr *SecondLastInst = nullptr; 231 // Find one more terminator if present. 232 do { 233 if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(I)) { 234 if (!SecondLastInst) 235 SecondLastInst = I; 236 else 237 // This is a third branch. 238 return true; 239 } 240 if (I == MBB.instr_begin()) 241 break; 242 --I; 243 } while(I); 244 245 int LastOpcode = LastInst->getOpcode(); 246 247 bool LastOpcodeHasJMP_c = PredOpcodeHasJMP_c(LastOpcode); 248 bool LastOpcodeHasNot = PredOpcodeHasNot(LastOpcode); 249 250 // If there is only one terminator instruction, process it. 251 if (LastInst && !SecondLastInst) { 252 if (LastOpcode == Hexagon::JMP) { 253 TBB = LastInst->getOperand(0).getMBB(); 254 return false; 255 } 256 if (LastOpcode == Hexagon::ENDLOOP0) { 257 TBB = LastInst->getOperand(0).getMBB(); 258 Cond.push_back(LastInst->getOperand(0)); 259 return false; 260 } 261 if (LastOpcodeHasJMP_c) { 262 TBB = LastInst->getOperand(1).getMBB(); 263 if (LastOpcodeHasNot) { 264 Cond.push_back(MachineOperand::CreateImm(0)); 265 } 266 Cond.push_back(LastInst->getOperand(0)); 267 return false; 268 } 269 // Otherwise, don't know what this is. 270 return true; 271 } 272 273 int SecLastOpcode = SecondLastInst->getOpcode(); 274 275 bool SecLastOpcodeHasJMP_c = PredOpcodeHasJMP_c(SecLastOpcode); 276 bool SecLastOpcodeHasNot = PredOpcodeHasNot(SecLastOpcode); 277 if (SecLastOpcodeHasJMP_c && (LastOpcode == Hexagon::JMP)) { 278 TBB = SecondLastInst->getOperand(1).getMBB(); 279 if (SecLastOpcodeHasNot) 280 Cond.push_back(MachineOperand::CreateImm(0)); 281 Cond.push_back(SecondLastInst->getOperand(0)); 282 FBB = LastInst->getOperand(0).getMBB(); 283 return false; 284 } 285 286 // If the block ends with two Hexagon:JMPs, handle it. The second one is not 287 // executed, so remove it. 288 if (SecLastOpcode == Hexagon::JMP && LastOpcode == Hexagon::JMP) { 289 TBB = SecondLastInst->getOperand(0).getMBB(); 290 I = LastInst; 291 if (AllowModify) 292 I->eraseFromParent(); 293 return false; 294 } 295 296 // If the block ends with an ENDLOOP, and JMP, handle it. 297 if (SecLastOpcode == Hexagon::ENDLOOP0 && 298 LastOpcode == Hexagon::JMP) { 299 TBB = SecondLastInst->getOperand(0).getMBB(); 300 Cond.push_back(SecondLastInst->getOperand(0)); 301 FBB = LastInst->getOperand(0).getMBB(); 302 return false; 303 } 304 305 // Otherwise, can't handle this. 306 return true; 307 } 308 309 310 unsigned HexagonInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { 311 int BOpc = Hexagon::JMP; 312 int BccOpc = Hexagon::JMP_t; 313 int BccOpcNot = Hexagon::JMP_f; 314 315 MachineBasicBlock::iterator I = MBB.end(); 316 if (I == MBB.begin()) return 0; 317 --I; 318 if (I->getOpcode() != BOpc && I->getOpcode() != BccOpc && 319 I->getOpcode() != BccOpcNot) 320 return 0; 321 322 // Remove the branch. 323 I->eraseFromParent(); 324 325 I = MBB.end(); 326 327 if (I == MBB.begin()) return 1; 328 --I; 329 if (I->getOpcode() != BccOpc && I->getOpcode() != BccOpcNot) 330 return 1; 331 332 // Remove the branch. 333 I->eraseFromParent(); 334 return 2; 335 } 336 337 338 /// \brief For a comparison instruction, return the source registers in 339 /// \p SrcReg and \p SrcReg2 if having two register operands, and the value it 340 /// compares against in CmpValue. Return true if the comparison instruction 341 /// can be analyzed. 342 bool HexagonInstrInfo::analyzeCompare(const MachineInstr *MI, 343 unsigned &SrcReg, unsigned &SrcReg2, 344 int &Mask, int &Value) const { 345 unsigned Opc = MI->getOpcode(); 346 347 // Set mask and the first source register. 348 switch (Opc) { 349 case Hexagon::CMPEHexagon4rr: 350 case Hexagon::CMPEQri: 351 case Hexagon::CMPEQrr: 352 case Hexagon::CMPGT64rr: 353 case Hexagon::CMPGTU64rr: 354 case Hexagon::CMPGTUri: 355 case Hexagon::CMPGTUrr: 356 case Hexagon::CMPGTri: 357 case Hexagon::CMPGTrr: 358 SrcReg = MI->getOperand(1).getReg(); 359 Mask = ~0; 360 break; 361 case Hexagon::CMPbEQri_V4: 362 case Hexagon::CMPbEQrr_sbsb_V4: 363 case Hexagon::CMPbEQrr_ubub_V4: 364 case Hexagon::CMPbGTUri_V4: 365 case Hexagon::CMPbGTUrr_V4: 366 case Hexagon::CMPbGTrr_V4: 367 SrcReg = MI->getOperand(1).getReg(); 368 Mask = 0xFF; 369 break; 370 case Hexagon::CMPhEQri_V4: 371 case Hexagon::CMPhEQrr_shl_V4: 372 case Hexagon::CMPhEQrr_xor_V4: 373 case Hexagon::CMPhGTUri_V4: 374 case Hexagon::CMPhGTUrr_V4: 375 case Hexagon::CMPhGTrr_shl_V4: 376 SrcReg = MI->getOperand(1).getReg(); 377 Mask = 0xFFFF; 378 break; 379 } 380 381 // Set the value/second source register. 382 switch (Opc) { 383 case Hexagon::CMPEHexagon4rr: 384 case Hexagon::CMPEQrr: 385 case Hexagon::CMPGT64rr: 386 case Hexagon::CMPGTU64rr: 387 case Hexagon::CMPGTUrr: 388 case Hexagon::CMPGTrr: 389 case Hexagon::CMPbEQrr_sbsb_V4: 390 case Hexagon::CMPbEQrr_ubub_V4: 391 case Hexagon::CMPbGTUrr_V4: 392 case Hexagon::CMPbGTrr_V4: 393 case Hexagon::CMPhEQrr_shl_V4: 394 case Hexagon::CMPhEQrr_xor_V4: 395 case Hexagon::CMPhGTUrr_V4: 396 case Hexagon::CMPhGTrr_shl_V4: 397 SrcReg2 = MI->getOperand(2).getReg(); 398 return true; 399 400 case Hexagon::CMPEQri: 401 case Hexagon::CMPGTUri: 402 case Hexagon::CMPGTri: 403 case Hexagon::CMPbEQri_V4: 404 case Hexagon::CMPbGTUri_V4: 405 case Hexagon::CMPhEQri_V4: 406 case Hexagon::CMPhGTUri_V4: 407 SrcReg2 = 0; 408 Value = MI->getOperand(2).getImm(); 409 return true; 410 } 411 412 return false; 413 } 414 415 416 void HexagonInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 417 MachineBasicBlock::iterator I, DebugLoc DL, 418 unsigned DestReg, unsigned SrcReg, 419 bool KillSrc) const { 420 if (Hexagon::IntRegsRegClass.contains(SrcReg, DestReg)) { 421 BuildMI(MBB, I, DL, get(Hexagon::TFR), DestReg).addReg(SrcReg); 422 return; 423 } 424 if (Hexagon::DoubleRegsRegClass.contains(SrcReg, DestReg)) { 425 BuildMI(MBB, I, DL, get(Hexagon::TFR64), DestReg).addReg(SrcReg); 426 return; 427 } 428 if (Hexagon::PredRegsRegClass.contains(SrcReg, DestReg)) { 429 // Map Pd = Ps to Pd = or(Ps, Ps). 430 BuildMI(MBB, I, DL, get(Hexagon::OR_pp), 431 DestReg).addReg(SrcReg).addReg(SrcReg); 432 return; 433 } 434 if (Hexagon::DoubleRegsRegClass.contains(DestReg) && 435 Hexagon::IntRegsRegClass.contains(SrcReg)) { 436 // We can have an overlap between single and double reg: r1:0 = r0. 437 if(SrcReg == RI.getSubReg(DestReg, Hexagon::subreg_loreg)) { 438 // r1:0 = r0 439 BuildMI(MBB, I, DL, get(Hexagon::TFRI), (RI.getSubReg(DestReg, 440 Hexagon::subreg_hireg))).addImm(0); 441 } else { 442 // r1:0 = r1 or no overlap. 443 BuildMI(MBB, I, DL, get(Hexagon::TFR), (RI.getSubReg(DestReg, 444 Hexagon::subreg_loreg))).addReg(SrcReg); 445 BuildMI(MBB, I, DL, get(Hexagon::TFRI), (RI.getSubReg(DestReg, 446 Hexagon::subreg_hireg))).addImm(0); 447 } 448 return; 449 } 450 if (Hexagon::CRRegsRegClass.contains(DestReg) && 451 Hexagon::IntRegsRegClass.contains(SrcReg)) { 452 BuildMI(MBB, I, DL, get(Hexagon::TFCR), DestReg).addReg(SrcReg); 453 return; 454 } 455 if (Hexagon::PredRegsRegClass.contains(SrcReg) && 456 Hexagon::IntRegsRegClass.contains(DestReg)) { 457 BuildMI(MBB, I, DL, get(Hexagon::TFR_RsPd), DestReg). 458 addReg(SrcReg, getKillRegState(KillSrc)); 459 return; 460 } 461 if (Hexagon::IntRegsRegClass.contains(SrcReg) && 462 Hexagon::PredRegsRegClass.contains(DestReg)) { 463 BuildMI(MBB, I, DL, get(Hexagon::TFR_PdRs), DestReg). 464 addReg(SrcReg, getKillRegState(KillSrc)); 465 return; 466 } 467 468 llvm_unreachable("Unimplemented"); 469 } 470 471 472 void HexagonInstrInfo:: 473 storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, 474 unsigned SrcReg, bool isKill, int FI, 475 const TargetRegisterClass *RC, 476 const TargetRegisterInfo *TRI) const { 477 478 DebugLoc DL = MBB.findDebugLoc(I); 479 MachineFunction &MF = *MBB.getParent(); 480 MachineFrameInfo &MFI = *MF.getFrameInfo(); 481 unsigned Align = MFI.getObjectAlignment(FI); 482 483 MachineMemOperand *MMO = 484 MF.getMachineMemOperand( 485 MachinePointerInfo(PseudoSourceValue::getFixedStack(FI)), 486 MachineMemOperand::MOStore, 487 MFI.getObjectSize(FI), 488 Align); 489 490 if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) { 491 BuildMI(MBB, I, DL, get(Hexagon::STriw)) 492 .addFrameIndex(FI).addImm(0) 493 .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO); 494 } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) { 495 BuildMI(MBB, I, DL, get(Hexagon::STrid)) 496 .addFrameIndex(FI).addImm(0) 497 .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO); 498 } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) { 499 BuildMI(MBB, I, DL, get(Hexagon::STriw_pred)) 500 .addFrameIndex(FI).addImm(0) 501 .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO); 502 } else { 503 llvm_unreachable("Unimplemented"); 504 } 505 } 506 507 508 void HexagonInstrInfo::storeRegToAddr( 509 MachineFunction &MF, unsigned SrcReg, 510 bool isKill, 511 SmallVectorImpl<MachineOperand> &Addr, 512 const TargetRegisterClass *RC, 513 SmallVectorImpl<MachineInstr*> &NewMIs) const 514 { 515 llvm_unreachable("Unimplemented"); 516 } 517 518 519 void HexagonInstrInfo:: 520 loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, 521 unsigned DestReg, int FI, 522 const TargetRegisterClass *RC, 523 const TargetRegisterInfo *TRI) const { 524 DebugLoc DL = MBB.findDebugLoc(I); 525 MachineFunction &MF = *MBB.getParent(); 526 MachineFrameInfo &MFI = *MF.getFrameInfo(); 527 unsigned Align = MFI.getObjectAlignment(FI); 528 529 MachineMemOperand *MMO = 530 MF.getMachineMemOperand( 531 MachinePointerInfo(PseudoSourceValue::getFixedStack(FI)), 532 MachineMemOperand::MOLoad, 533 MFI.getObjectSize(FI), 534 Align); 535 if (RC == &Hexagon::IntRegsRegClass) { 536 BuildMI(MBB, I, DL, get(Hexagon::LDriw), DestReg) 537 .addFrameIndex(FI).addImm(0).addMemOperand(MMO); 538 } else if (RC == &Hexagon::DoubleRegsRegClass) { 539 BuildMI(MBB, I, DL, get(Hexagon::LDrid), DestReg) 540 .addFrameIndex(FI).addImm(0).addMemOperand(MMO); 541 } else if (RC == &Hexagon::PredRegsRegClass) { 542 BuildMI(MBB, I, DL, get(Hexagon::LDriw_pred), DestReg) 543 .addFrameIndex(FI).addImm(0).addMemOperand(MMO); 544 } else { 545 llvm_unreachable("Can't store this register to stack slot"); 546 } 547 } 548 549 550 void HexagonInstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg, 551 SmallVectorImpl<MachineOperand> &Addr, 552 const TargetRegisterClass *RC, 553 SmallVectorImpl<MachineInstr*> &NewMIs) const { 554 llvm_unreachable("Unimplemented"); 555 } 556 557 558 MachineInstr *HexagonInstrInfo::foldMemoryOperandImpl(MachineFunction &MF, 559 MachineInstr* MI, 560 const SmallVectorImpl<unsigned> &Ops, 561 int FI) const { 562 // Hexagon_TODO: Implement. 563 return nullptr; 564 } 565 566 unsigned HexagonInstrInfo::createVR(MachineFunction* MF, MVT VT) const { 567 568 MachineRegisterInfo &RegInfo = MF->getRegInfo(); 569 const TargetRegisterClass *TRC; 570 if (VT == MVT::i1) { 571 TRC = &Hexagon::PredRegsRegClass; 572 } else if (VT == MVT::i32 || VT == MVT::f32) { 573 TRC = &Hexagon::IntRegsRegClass; 574 } else if (VT == MVT::i64 || VT == MVT::f64) { 575 TRC = &Hexagon::DoubleRegsRegClass; 576 } else { 577 llvm_unreachable("Cannot handle this register class"); 578 } 579 580 unsigned NewReg = RegInfo.createVirtualRegister(TRC); 581 return NewReg; 582 } 583 584 bool HexagonInstrInfo::isExtendable(const MachineInstr *MI) const { 585 // Constant extenders are allowed only for V4 and above. 586 if (!Subtarget.hasV4TOps()) 587 return false; 588 589 const MCInstrDesc &MID = MI->getDesc(); 590 const uint64_t F = MID.TSFlags; 591 if ((F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask) 592 return true; 593 594 // TODO: This is largely obsolete now. Will need to be removed 595 // in consecutive patches. 596 switch(MI->getOpcode()) { 597 // TFR_FI Remains a special case. 598 case Hexagon::TFR_FI: 599 return true; 600 default: 601 return false; 602 } 603 return false; 604 } 605 606 // This returns true in two cases: 607 // - The OP code itself indicates that this is an extended instruction. 608 // - One of MOs has been marked with HMOTF_ConstExtended flag. 609 bool HexagonInstrInfo::isExtended(const MachineInstr *MI) const { 610 // First check if this is permanently extended op code. 611 const uint64_t F = MI->getDesc().TSFlags; 612 if ((F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask) 613 return true; 614 // Use MO operand flags to determine if one of MI's operands 615 // has HMOTF_ConstExtended flag set. 616 for (MachineInstr::const_mop_iterator I = MI->operands_begin(), 617 E = MI->operands_end(); I != E; ++I) { 618 if (I->getTargetFlags() && HexagonII::HMOTF_ConstExtended) 619 return true; 620 } 621 return false; 622 } 623 624 bool HexagonInstrInfo::isBranch (const MachineInstr *MI) const { 625 return MI->getDesc().isBranch(); 626 } 627 628 bool HexagonInstrInfo::isNewValueInst(const MachineInstr *MI) const { 629 if (isNewValueJump(MI)) 630 return true; 631 632 if (isNewValueStore(MI)) 633 return true; 634 635 return false; 636 } 637 638 bool HexagonInstrInfo::isSaveCalleeSavedRegsCall(const MachineInstr *MI) const { 639 return MI->getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4; 640 } 641 642 bool HexagonInstrInfo::isPredicable(MachineInstr *MI) const { 643 bool isPred = MI->getDesc().isPredicable(); 644 645 if (!isPred) 646 return false; 647 648 const int Opc = MI->getOpcode(); 649 650 switch(Opc) { 651 case Hexagon::TFRI: 652 return isInt<12>(MI->getOperand(1).getImm()); 653 654 case Hexagon::STrid: 655 case Hexagon::STrid_indexed: 656 return isShiftedUInt<6,3>(MI->getOperand(1).getImm()); 657 658 case Hexagon::STriw: 659 case Hexagon::STriw_indexed: 660 case Hexagon::STriw_nv_V4: 661 return isShiftedUInt<6,2>(MI->getOperand(1).getImm()); 662 663 case Hexagon::STrih: 664 case Hexagon::STrih_indexed: 665 case Hexagon::STrih_nv_V4: 666 return isShiftedUInt<6,1>(MI->getOperand(1).getImm()); 667 668 case Hexagon::STrib: 669 case Hexagon::STrib_indexed: 670 case Hexagon::STrib_nv_V4: 671 return isUInt<6>(MI->getOperand(1).getImm()); 672 673 case Hexagon::LDrid: 674 case Hexagon::LDrid_indexed: 675 return isShiftedUInt<6,3>(MI->getOperand(2).getImm()); 676 677 case Hexagon::LDriw: 678 case Hexagon::LDriw_indexed: 679 return isShiftedUInt<6,2>(MI->getOperand(2).getImm()); 680 681 case Hexagon::LDrih: 682 case Hexagon::LDriuh: 683 case Hexagon::LDrih_indexed: 684 case Hexagon::LDriuh_indexed: 685 return isShiftedUInt<6,1>(MI->getOperand(2).getImm()); 686 687 case Hexagon::LDrib: 688 case Hexagon::LDriub: 689 case Hexagon::LDrib_indexed: 690 case Hexagon::LDriub_indexed: 691 return isUInt<6>(MI->getOperand(2).getImm()); 692 693 case Hexagon::POST_LDrid: 694 return isShiftedInt<4,3>(MI->getOperand(3).getImm()); 695 696 case Hexagon::POST_LDriw: 697 return isShiftedInt<4,2>(MI->getOperand(3).getImm()); 698 699 case Hexagon::POST_LDrih: 700 case Hexagon::POST_LDriuh: 701 return isShiftedInt<4,1>(MI->getOperand(3).getImm()); 702 703 case Hexagon::POST_LDrib: 704 case Hexagon::POST_LDriub: 705 return isInt<4>(MI->getOperand(3).getImm()); 706 707 case Hexagon::STrib_imm_V4: 708 case Hexagon::STrih_imm_V4: 709 case Hexagon::STriw_imm_V4: 710 return (isUInt<6>(MI->getOperand(1).getImm()) && 711 isInt<6>(MI->getOperand(2).getImm())); 712 713 case Hexagon::ADD_ri: 714 return isInt<8>(MI->getOperand(2).getImm()); 715 716 case Hexagon::ASLH: 717 case Hexagon::ASRH: 718 case Hexagon::SXTB: 719 case Hexagon::SXTH: 720 case Hexagon::ZXTB: 721 case Hexagon::ZXTH: 722 return Subtarget.hasV4TOps(); 723 } 724 725 return true; 726 } 727 728 // This function performs the following inversiones: 729 // 730 // cPt ---> cNotPt 731 // cNotPt ---> cPt 732 // 733 unsigned HexagonInstrInfo::getInvertedPredicatedOpcode(const int Opc) const { 734 int InvPredOpcode; 735 InvPredOpcode = isPredicatedTrue(Opc) ? Hexagon::getFalsePredOpcode(Opc) 736 : Hexagon::getTruePredOpcode(Opc); 737 if (InvPredOpcode >= 0) // Valid instruction with the inverted predicate. 738 return InvPredOpcode; 739 740 switch(Opc) { 741 default: llvm_unreachable("Unexpected predicated instruction"); 742 case Hexagon::COMBINE_rr_cPt: 743 return Hexagon::COMBINE_rr_cNotPt; 744 case Hexagon::COMBINE_rr_cNotPt: 745 return Hexagon::COMBINE_rr_cPt; 746 747 // Dealloc_return. 748 case Hexagon::DEALLOC_RET_cPt_V4: 749 return Hexagon::DEALLOC_RET_cNotPt_V4; 750 case Hexagon::DEALLOC_RET_cNotPt_V4: 751 return Hexagon::DEALLOC_RET_cPt_V4; 752 } 753 } 754 755 // New Value Store instructions. 756 bool HexagonInstrInfo::isNewValueStore(const MachineInstr *MI) const { 757 const uint64_t F = MI->getDesc().TSFlags; 758 759 return ((F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask); 760 } 761 762 bool HexagonInstrInfo::isNewValueStore(unsigned Opcode) const { 763 const uint64_t F = get(Opcode).TSFlags; 764 765 return ((F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask); 766 } 767 768 int HexagonInstrInfo:: 769 getMatchingCondBranchOpcode(int Opc, bool invertPredicate) const { 770 enum Hexagon::PredSense inPredSense; 771 inPredSense = invertPredicate ? Hexagon::PredSense_false : 772 Hexagon::PredSense_true; 773 int CondOpcode = Hexagon::getPredOpcode(Opc, inPredSense); 774 if (CondOpcode >= 0) // Valid Conditional opcode/instruction 775 return CondOpcode; 776 777 // This switch case will be removed once all the instructions have been 778 // modified to use relation maps. 779 switch(Opc) { 780 case Hexagon::TFRI_f: 781 return !invertPredicate ? Hexagon::TFRI_cPt_f : 782 Hexagon::TFRI_cNotPt_f; 783 case Hexagon::COMBINE_rr: 784 return !invertPredicate ? Hexagon::COMBINE_rr_cPt : 785 Hexagon::COMBINE_rr_cNotPt; 786 787 // Word. 788 case Hexagon::STriw_f: 789 return !invertPredicate ? Hexagon::STriw_cPt : 790 Hexagon::STriw_cNotPt; 791 case Hexagon::STriw_indexed_f: 792 return !invertPredicate ? Hexagon::STriw_indexed_cPt : 793 Hexagon::STriw_indexed_cNotPt; 794 795 // DEALLOC_RETURN. 796 case Hexagon::DEALLOC_RET_V4: 797 return !invertPredicate ? Hexagon::DEALLOC_RET_cPt_V4 : 798 Hexagon::DEALLOC_RET_cNotPt_V4; 799 } 800 llvm_unreachable("Unexpected predicable instruction"); 801 } 802 803 804 bool HexagonInstrInfo:: 805 PredicateInstruction(MachineInstr *MI, 806 const SmallVectorImpl<MachineOperand> &Cond) const { 807 int Opc = MI->getOpcode(); 808 assert (isPredicable(MI) && "Expected predicable instruction"); 809 bool invertJump = (!Cond.empty() && Cond[0].isImm() && 810 (Cond[0].getImm() == 0)); 811 812 // This will change MI's opcode to its predicate version. 813 // However, its operand list is still the old one, i.e. the 814 // non-predicate one. 815 MI->setDesc(get(getMatchingCondBranchOpcode(Opc, invertJump))); 816 817 int oper = -1; 818 unsigned int GAIdx = 0; 819 820 // Indicates whether the current MI has a GlobalAddress operand 821 bool hasGAOpnd = false; 822 std::vector<MachineOperand> tmpOpnds; 823 824 // Indicates whether we need to shift operands to right. 825 bool needShift = true; 826 827 // The predicate is ALWAYS the FIRST input operand !!! 828 if (MI->getNumOperands() == 0) { 829 // The non-predicate version of MI does not take any operands, 830 // i.e. no outs and no ins. In this condition, the predicate 831 // operand will be directly placed at Operands[0]. No operand 832 // shift is needed. 833 // Example: BARRIER 834 needShift = false; 835 oper = -1; 836 } 837 else if ( MI->getOperand(MI->getNumOperands()-1).isReg() 838 && MI->getOperand(MI->getNumOperands()-1).isDef() 839 && !MI->getOperand(MI->getNumOperands()-1).isImplicit()) { 840 // The non-predicate version of MI does not have any input operands. 841 // In this condition, we extend the length of Operands[] by one and 842 // copy the original last operand to the newly allocated slot. 843 // At this moment, it is just a place holder. Later, we will put 844 // predicate operand directly into it. No operand shift is needed. 845 // Example: r0=BARRIER (this is a faked insn used here for illustration) 846 MI->addOperand(MI->getOperand(MI->getNumOperands()-1)); 847 needShift = false; 848 oper = MI->getNumOperands() - 2; 849 } 850 else { 851 // We need to right shift all input operands by one. Duplicate the 852 // last operand into the newly allocated slot. 853 MI->addOperand(MI->getOperand(MI->getNumOperands()-1)); 854 } 855 856 if (needShift) 857 { 858 // Operands[ MI->getNumOperands() - 2 ] has been copied into 859 // Operands[ MI->getNumOperands() - 1 ], so we start from 860 // Operands[ MI->getNumOperands() - 3 ]. 861 // oper is a signed int. 862 // It is ok if "MI->getNumOperands()-3" is -3, -2, or -1. 863 for (oper = MI->getNumOperands() - 3; oper >= 0; --oper) 864 { 865 MachineOperand &MO = MI->getOperand(oper); 866 867 // Opnd[0] Opnd[1] Opnd[2] Opnd[3] Opnd[4] Opnd[5] Opnd[6] Opnd[7] 868 // <Def0> <Def1> <Use0> <Use1> <ImpDef0> <ImpDef1> <ImpUse0> <ImpUse1> 869 // /\~ 870 // /||\~ 871 // || 872 // Predicate Operand here 873 if (MO.isReg() && !MO.isUse() && !MO.isImplicit()) { 874 break; 875 } 876 if (MO.isReg()) { 877 MI->getOperand(oper+1).ChangeToRegister(MO.getReg(), MO.isDef(), 878 MO.isImplicit(), MO.isKill(), 879 MO.isDead(), MO.isUndef(), 880 MO.isDebug()); 881 } 882 else if (MO.isImm()) { 883 MI->getOperand(oper+1).ChangeToImmediate(MO.getImm()); 884 } 885 else if (MO.isGlobal()) { 886 // MI can not have more than one GlobalAddress operand. 887 assert(hasGAOpnd == false && "MI can only have one GlobalAddress opnd"); 888 889 // There is no member function called "ChangeToGlobalAddress" in the 890 // MachineOperand class (not like "ChangeToRegister" and 891 // "ChangeToImmediate"). So we have to remove them from Operands[] list 892 // first, and then add them back after we have inserted the predicate 893 // operand. tmpOpnds[] is to remember these operands before we remove 894 // them. 895 tmpOpnds.push_back(MO); 896 897 // Operands[oper] is a GlobalAddress operand; 898 // Operands[oper+1] has been copied into Operands[oper+2]; 899 hasGAOpnd = true; 900 GAIdx = oper; 901 continue; 902 } 903 else { 904 assert(false && "Unexpected operand type"); 905 } 906 } 907 } 908 909 int regPos = invertJump ? 1 : 0; 910 MachineOperand PredMO = Cond[regPos]; 911 912 // [oper] now points to the last explicit Def. Predicate operand must be 913 // located at [oper+1]. See diagram above. 914 // This assumes that the predicate is always the first operand, 915 // i.e. Operands[0+numResults], in the set of inputs 916 // It is better to have an assert here to check this. But I don't know how 917 // to write this assert because findFirstPredOperandIdx() would return -1 918 if (oper < -1) oper = -1; 919 920 MI->getOperand(oper+1).ChangeToRegister(PredMO.getReg(), PredMO.isDef(), 921 PredMO.isImplicit(), false, 922 PredMO.isDead(), PredMO.isUndef(), 923 PredMO.isDebug()); 924 925 MachineRegisterInfo &RegInfo = MI->getParent()->getParent()->getRegInfo(); 926 RegInfo.clearKillFlags(PredMO.getReg()); 927 928 if (hasGAOpnd) 929 { 930 unsigned int i; 931 932 // Operands[GAIdx] is the original GlobalAddress operand, which is 933 // already copied into tmpOpnds[0]. 934 // Operands[GAIdx] now stores a copy of Operands[GAIdx-1] 935 // Operands[GAIdx+1] has already been copied into Operands[GAIdx+2], 936 // so we start from [GAIdx+2] 937 for (i = GAIdx + 2; i < MI->getNumOperands(); ++i) 938 tmpOpnds.push_back(MI->getOperand(i)); 939 940 // Remove all operands in range [ (GAIdx+1) ... (MI->getNumOperands()-1) ] 941 // It is very important that we always remove from the end of Operands[] 942 // MI->getNumOperands() is at least 2 if program goes to here. 943 for (i = MI->getNumOperands() - 1; i > GAIdx; --i) 944 MI->RemoveOperand(i); 945 946 for (i = 0; i < tmpOpnds.size(); ++i) 947 MI->addOperand(tmpOpnds[i]); 948 } 949 950 return true; 951 } 952 953 954 bool 955 HexagonInstrInfo:: 956 isProfitableToIfCvt(MachineBasicBlock &MBB, 957 unsigned NumCycles, 958 unsigned ExtraPredCycles, 959 const BranchProbability &Probability) const { 960 return true; 961 } 962 963 964 bool 965 HexagonInstrInfo:: 966 isProfitableToIfCvt(MachineBasicBlock &TMBB, 967 unsigned NumTCycles, 968 unsigned ExtraTCycles, 969 MachineBasicBlock &FMBB, 970 unsigned NumFCycles, 971 unsigned ExtraFCycles, 972 const BranchProbability &Probability) const { 973 return true; 974 } 975 976 // Returns true if an instruction is predicated irrespective of the predicate 977 // sense. For example, all of the following will return true. 978 // if (p0) R1 = add(R2, R3) 979 // if (!p0) R1 = add(R2, R3) 980 // if (p0.new) R1 = add(R2, R3) 981 // if (!p0.new) R1 = add(R2, R3) 982 bool HexagonInstrInfo::isPredicated(const MachineInstr *MI) const { 983 const uint64_t F = MI->getDesc().TSFlags; 984 985 return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask); 986 } 987 988 bool HexagonInstrInfo::isPredicated(unsigned Opcode) const { 989 const uint64_t F = get(Opcode).TSFlags; 990 991 return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask); 992 } 993 994 bool HexagonInstrInfo::isPredicatedTrue(const MachineInstr *MI) const { 995 const uint64_t F = MI->getDesc().TSFlags; 996 997 assert(isPredicated(MI)); 998 return (!((F >> HexagonII::PredicatedFalsePos) & 999 HexagonII::PredicatedFalseMask)); 1000 } 1001 1002 bool HexagonInstrInfo::isPredicatedTrue(unsigned Opcode) const { 1003 const uint64_t F = get(Opcode).TSFlags; 1004 1005 // Make sure that the instruction is predicated. 1006 assert((F>> HexagonII::PredicatedPos) & HexagonII::PredicatedMask); 1007 return (!((F >> HexagonII::PredicatedFalsePos) & 1008 HexagonII::PredicatedFalseMask)); 1009 } 1010 1011 bool HexagonInstrInfo::isPredicatedNew(const MachineInstr *MI) const { 1012 const uint64_t F = MI->getDesc().TSFlags; 1013 1014 assert(isPredicated(MI)); 1015 return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask); 1016 } 1017 1018 bool HexagonInstrInfo::isPredicatedNew(unsigned Opcode) const { 1019 const uint64_t F = get(Opcode).TSFlags; 1020 1021 assert(isPredicated(Opcode)); 1022 return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask); 1023 } 1024 1025 // Returns true, if a ST insn can be promoted to a new-value store. 1026 bool HexagonInstrInfo::mayBeNewStore(const MachineInstr *MI) const { 1027 const HexagonRegisterInfo& QRI = getRegisterInfo(); 1028 const uint64_t F = MI->getDesc().TSFlags; 1029 1030 return ((F >> HexagonII::mayNVStorePos) & 1031 HexagonII::mayNVStoreMask & 1032 QRI.Subtarget.hasV4TOps()); 1033 } 1034 1035 bool 1036 HexagonInstrInfo::DefinesPredicate(MachineInstr *MI, 1037 std::vector<MachineOperand> &Pred) const { 1038 for (unsigned oper = 0; oper < MI->getNumOperands(); ++oper) { 1039 MachineOperand MO = MI->getOperand(oper); 1040 if (MO.isReg() && MO.isDef()) { 1041 const TargetRegisterClass* RC = RI.getMinimalPhysRegClass(MO.getReg()); 1042 if (RC == &Hexagon::PredRegsRegClass) { 1043 Pred.push_back(MO); 1044 return true; 1045 } 1046 } 1047 } 1048 return false; 1049 } 1050 1051 1052 bool 1053 HexagonInstrInfo:: 1054 SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1, 1055 const SmallVectorImpl<MachineOperand> &Pred2) const { 1056 // TODO: Fix this 1057 return false; 1058 } 1059 1060 1061 // 1062 // We indicate that we want to reverse the branch by 1063 // inserting a 0 at the beginning of the Cond vector. 1064 // 1065 bool HexagonInstrInfo:: 1066 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 1067 if (!Cond.empty() && Cond[0].isImm() && Cond[0].getImm() == 0) { 1068 Cond.erase(Cond.begin()); 1069 } else { 1070 Cond.insert(Cond.begin(), MachineOperand::CreateImm(0)); 1071 } 1072 return false; 1073 } 1074 1075 1076 bool HexagonInstrInfo:: 1077 isProfitableToDupForIfCvt(MachineBasicBlock &MBB,unsigned NumInstrs, 1078 const BranchProbability &Probability) const { 1079 return (NumInstrs <= 4); 1080 } 1081 1082 bool HexagonInstrInfo::isDeallocRet(const MachineInstr *MI) const { 1083 switch (MI->getOpcode()) { 1084 default: return false; 1085 case Hexagon::DEALLOC_RET_V4 : 1086 case Hexagon::DEALLOC_RET_cPt_V4 : 1087 case Hexagon::DEALLOC_RET_cNotPt_V4 : 1088 case Hexagon::DEALLOC_RET_cdnPnt_V4 : 1089 case Hexagon::DEALLOC_RET_cNotdnPnt_V4 : 1090 case Hexagon::DEALLOC_RET_cdnPt_V4 : 1091 case Hexagon::DEALLOC_RET_cNotdnPt_V4 : 1092 return true; 1093 } 1094 } 1095 1096 1097 bool HexagonInstrInfo:: 1098 isValidOffset(const int Opcode, const int Offset) const { 1099 // This function is to check whether the "Offset" is in the correct range of 1100 // the given "Opcode". If "Offset" is not in the correct range, "ADD_ri" is 1101 // inserted to calculate the final address. Due to this reason, the function 1102 // assumes that the "Offset" has correct alignment. 1103 // We used to assert if the offset was not properly aligned, however, 1104 // there are cases where a misaligned pointer recast can cause this 1105 // problem, and we need to allow for it. The front end warns of such 1106 // misaligns with respect to load size. 1107 1108 switch(Opcode) { 1109 1110 case Hexagon::LDriw: 1111 case Hexagon::LDriw_indexed: 1112 case Hexagon::LDriw_f: 1113 case Hexagon::STriw_indexed: 1114 case Hexagon::STriw: 1115 case Hexagon::STriw_f: 1116 return (Offset >= Hexagon_MEMW_OFFSET_MIN) && 1117 (Offset <= Hexagon_MEMW_OFFSET_MAX); 1118 1119 case Hexagon::LDrid: 1120 case Hexagon::LDrid_indexed: 1121 case Hexagon::LDrid_f: 1122 case Hexagon::STrid: 1123 case Hexagon::STrid_indexed: 1124 case Hexagon::STrid_f: 1125 return (Offset >= Hexagon_MEMD_OFFSET_MIN) && 1126 (Offset <= Hexagon_MEMD_OFFSET_MAX); 1127 1128 case Hexagon::LDrih: 1129 case Hexagon::LDriuh: 1130 case Hexagon::STrih: 1131 return (Offset >= Hexagon_MEMH_OFFSET_MIN) && 1132 (Offset <= Hexagon_MEMH_OFFSET_MAX); 1133 1134 case Hexagon::LDrib: 1135 case Hexagon::STrib: 1136 case Hexagon::LDriub: 1137 return (Offset >= Hexagon_MEMB_OFFSET_MIN) && 1138 (Offset <= Hexagon_MEMB_OFFSET_MAX); 1139 1140 case Hexagon::ADD_ri: 1141 case Hexagon::TFR_FI: 1142 return (Offset >= Hexagon_ADDI_OFFSET_MIN) && 1143 (Offset <= Hexagon_ADDI_OFFSET_MAX); 1144 1145 case Hexagon::MemOPw_ADDi_V4 : 1146 case Hexagon::MemOPw_SUBi_V4 : 1147 case Hexagon::MemOPw_ADDr_V4 : 1148 case Hexagon::MemOPw_SUBr_V4 : 1149 case Hexagon::MemOPw_ANDr_V4 : 1150 case Hexagon::MemOPw_ORr_V4 : 1151 return (0 <= Offset && Offset <= 255); 1152 1153 case Hexagon::MemOPh_ADDi_V4 : 1154 case Hexagon::MemOPh_SUBi_V4 : 1155 case Hexagon::MemOPh_ADDr_V4 : 1156 case Hexagon::MemOPh_SUBr_V4 : 1157 case Hexagon::MemOPh_ANDr_V4 : 1158 case Hexagon::MemOPh_ORr_V4 : 1159 return (0 <= Offset && Offset <= 127); 1160 1161 case Hexagon::MemOPb_ADDi_V4 : 1162 case Hexagon::MemOPb_SUBi_V4 : 1163 case Hexagon::MemOPb_ADDr_V4 : 1164 case Hexagon::MemOPb_SUBr_V4 : 1165 case Hexagon::MemOPb_ANDr_V4 : 1166 case Hexagon::MemOPb_ORr_V4 : 1167 return (0 <= Offset && Offset <= 63); 1168 1169 // LDri_pred and STriw_pred are pseudo operations, so it has to take offset of 1170 // any size. Later pass knows how to handle it. 1171 case Hexagon::STriw_pred: 1172 case Hexagon::LDriw_pred: 1173 return true; 1174 1175 case Hexagon::LOOP0_i: 1176 return isUInt<10>(Offset); 1177 1178 // INLINEASM is very special. 1179 case Hexagon::INLINEASM: 1180 return true; 1181 } 1182 1183 llvm_unreachable("No offset range is defined for this opcode. " 1184 "Please define it in the above switch statement!"); 1185 } 1186 1187 1188 // 1189 // Check if the Offset is a valid auto-inc imm by Load/Store Type. 1190 // 1191 bool HexagonInstrInfo:: 1192 isValidAutoIncImm(const EVT VT, const int Offset) const { 1193 1194 if (VT == MVT::i64) { 1195 return (Offset >= Hexagon_MEMD_AUTOINC_MIN && 1196 Offset <= Hexagon_MEMD_AUTOINC_MAX && 1197 (Offset & 0x7) == 0); 1198 } 1199 if (VT == MVT::i32) { 1200 return (Offset >= Hexagon_MEMW_AUTOINC_MIN && 1201 Offset <= Hexagon_MEMW_AUTOINC_MAX && 1202 (Offset & 0x3) == 0); 1203 } 1204 if (VT == MVT::i16) { 1205 return (Offset >= Hexagon_MEMH_AUTOINC_MIN && 1206 Offset <= Hexagon_MEMH_AUTOINC_MAX && 1207 (Offset & 0x1) == 0); 1208 } 1209 if (VT == MVT::i8) { 1210 return (Offset >= Hexagon_MEMB_AUTOINC_MIN && 1211 Offset <= Hexagon_MEMB_AUTOINC_MAX); 1212 } 1213 llvm_unreachable("Not an auto-inc opc!"); 1214 } 1215 1216 1217 bool HexagonInstrInfo:: 1218 isMemOp(const MachineInstr *MI) const { 1219 // return MI->getDesc().mayLoad() && MI->getDesc().mayStore(); 1220 1221 switch (MI->getOpcode()) 1222 { 1223 default: return false; 1224 case Hexagon::MemOPw_ADDi_V4 : 1225 case Hexagon::MemOPw_SUBi_V4 : 1226 case Hexagon::MemOPw_ADDr_V4 : 1227 case Hexagon::MemOPw_SUBr_V4 : 1228 case Hexagon::MemOPw_ANDr_V4 : 1229 case Hexagon::MemOPw_ORr_V4 : 1230 case Hexagon::MemOPh_ADDi_V4 : 1231 case Hexagon::MemOPh_SUBi_V4 : 1232 case Hexagon::MemOPh_ADDr_V4 : 1233 case Hexagon::MemOPh_SUBr_V4 : 1234 case Hexagon::MemOPh_ANDr_V4 : 1235 case Hexagon::MemOPh_ORr_V4 : 1236 case Hexagon::MemOPb_ADDi_V4 : 1237 case Hexagon::MemOPb_SUBi_V4 : 1238 case Hexagon::MemOPb_ADDr_V4 : 1239 case Hexagon::MemOPb_SUBr_V4 : 1240 case Hexagon::MemOPb_ANDr_V4 : 1241 case Hexagon::MemOPb_ORr_V4 : 1242 case Hexagon::MemOPb_SETBITi_V4: 1243 case Hexagon::MemOPh_SETBITi_V4: 1244 case Hexagon::MemOPw_SETBITi_V4: 1245 case Hexagon::MemOPb_CLRBITi_V4: 1246 case Hexagon::MemOPh_CLRBITi_V4: 1247 case Hexagon::MemOPw_CLRBITi_V4: 1248 return true; 1249 } 1250 return false; 1251 } 1252 1253 1254 bool HexagonInstrInfo:: 1255 isSpillPredRegOp(const MachineInstr *MI) const { 1256 switch (MI->getOpcode()) { 1257 default: return false; 1258 case Hexagon::STriw_pred : 1259 case Hexagon::LDriw_pred : 1260 return true; 1261 } 1262 } 1263 1264 bool HexagonInstrInfo::isNewValueJumpCandidate(const MachineInstr *MI) const { 1265 switch (MI->getOpcode()) { 1266 default: return false; 1267 case Hexagon::CMPEQrr: 1268 case Hexagon::CMPEQri: 1269 case Hexagon::CMPGTrr: 1270 case Hexagon::CMPGTri: 1271 case Hexagon::CMPGTUrr: 1272 case Hexagon::CMPGTUri: 1273 return true; 1274 } 1275 } 1276 1277 bool HexagonInstrInfo:: 1278 isConditionalTransfer (const MachineInstr *MI) const { 1279 switch (MI->getOpcode()) { 1280 default: return false; 1281 case Hexagon::TFR_cPt: 1282 case Hexagon::TFR_cNotPt: 1283 case Hexagon::TFRI_cPt: 1284 case Hexagon::TFRI_cNotPt: 1285 case Hexagon::TFR_cdnPt: 1286 case Hexagon::TFR_cdnNotPt: 1287 case Hexagon::TFRI_cdnPt: 1288 case Hexagon::TFRI_cdnNotPt: 1289 return true; 1290 } 1291 } 1292 1293 bool HexagonInstrInfo::isConditionalALU32 (const MachineInstr* MI) const { 1294 const HexagonRegisterInfo& QRI = getRegisterInfo(); 1295 switch (MI->getOpcode()) 1296 { 1297 default: return false; 1298 case Hexagon::ADD_ri_cPt: 1299 case Hexagon::ADD_ri_cNotPt: 1300 case Hexagon::ADD_rr_cPt: 1301 case Hexagon::ADD_rr_cNotPt: 1302 case Hexagon::XOR_rr_cPt: 1303 case Hexagon::XOR_rr_cNotPt: 1304 case Hexagon::AND_rr_cPt: 1305 case Hexagon::AND_rr_cNotPt: 1306 case Hexagon::OR_rr_cPt: 1307 case Hexagon::OR_rr_cNotPt: 1308 case Hexagon::SUB_rr_cPt: 1309 case Hexagon::SUB_rr_cNotPt: 1310 case Hexagon::COMBINE_rr_cPt: 1311 case Hexagon::COMBINE_rr_cNotPt: 1312 return true; 1313 case Hexagon::ASLH_cPt_V4: 1314 case Hexagon::ASLH_cNotPt_V4: 1315 case Hexagon::ASRH_cPt_V4: 1316 case Hexagon::ASRH_cNotPt_V4: 1317 case Hexagon::SXTB_cPt_V4: 1318 case Hexagon::SXTB_cNotPt_V4: 1319 case Hexagon::SXTH_cPt_V4: 1320 case Hexagon::SXTH_cNotPt_V4: 1321 case Hexagon::ZXTB_cPt_V4: 1322 case Hexagon::ZXTB_cNotPt_V4: 1323 case Hexagon::ZXTH_cPt_V4: 1324 case Hexagon::ZXTH_cNotPt_V4: 1325 return QRI.Subtarget.hasV4TOps(); 1326 } 1327 } 1328 1329 bool HexagonInstrInfo:: 1330 isConditionalLoad (const MachineInstr* MI) const { 1331 const HexagonRegisterInfo& QRI = getRegisterInfo(); 1332 switch (MI->getOpcode()) 1333 { 1334 default: return false; 1335 case Hexagon::LDrid_cPt : 1336 case Hexagon::LDrid_cNotPt : 1337 case Hexagon::LDrid_indexed_cPt : 1338 case Hexagon::LDrid_indexed_cNotPt : 1339 case Hexagon::LDriw_cPt : 1340 case Hexagon::LDriw_cNotPt : 1341 case Hexagon::LDriw_indexed_cPt : 1342 case Hexagon::LDriw_indexed_cNotPt : 1343 case Hexagon::LDrih_cPt : 1344 case Hexagon::LDrih_cNotPt : 1345 case Hexagon::LDrih_indexed_cPt : 1346 case Hexagon::LDrih_indexed_cNotPt : 1347 case Hexagon::LDrib_cPt : 1348 case Hexagon::LDrib_cNotPt : 1349 case Hexagon::LDrib_indexed_cPt : 1350 case Hexagon::LDrib_indexed_cNotPt : 1351 case Hexagon::LDriuh_cPt : 1352 case Hexagon::LDriuh_cNotPt : 1353 case Hexagon::LDriuh_indexed_cPt : 1354 case Hexagon::LDriuh_indexed_cNotPt : 1355 case Hexagon::LDriub_cPt : 1356 case Hexagon::LDriub_cNotPt : 1357 case Hexagon::LDriub_indexed_cPt : 1358 case Hexagon::LDriub_indexed_cNotPt : 1359 return true; 1360 case Hexagon::POST_LDrid_cPt : 1361 case Hexagon::POST_LDrid_cNotPt : 1362 case Hexagon::POST_LDriw_cPt : 1363 case Hexagon::POST_LDriw_cNotPt : 1364 case Hexagon::POST_LDrih_cPt : 1365 case Hexagon::POST_LDrih_cNotPt : 1366 case Hexagon::POST_LDrib_cPt : 1367 case Hexagon::POST_LDrib_cNotPt : 1368 case Hexagon::POST_LDriuh_cPt : 1369 case Hexagon::POST_LDriuh_cNotPt : 1370 case Hexagon::POST_LDriub_cPt : 1371 case Hexagon::POST_LDriub_cNotPt : 1372 return QRI.Subtarget.hasV4TOps(); 1373 case Hexagon::LDrid_indexed_shl_cPt_V4 : 1374 case Hexagon::LDrid_indexed_shl_cNotPt_V4 : 1375 case Hexagon::LDrib_indexed_shl_cPt_V4 : 1376 case Hexagon::LDrib_indexed_shl_cNotPt_V4 : 1377 case Hexagon::LDriub_indexed_shl_cPt_V4 : 1378 case Hexagon::LDriub_indexed_shl_cNotPt_V4 : 1379 case Hexagon::LDrih_indexed_shl_cPt_V4 : 1380 case Hexagon::LDrih_indexed_shl_cNotPt_V4 : 1381 case Hexagon::LDriuh_indexed_shl_cPt_V4 : 1382 case Hexagon::LDriuh_indexed_shl_cNotPt_V4 : 1383 case Hexagon::LDriw_indexed_shl_cPt_V4 : 1384 case Hexagon::LDriw_indexed_shl_cNotPt_V4 : 1385 return QRI.Subtarget.hasV4TOps(); 1386 } 1387 } 1388 1389 // Returns true if an instruction is a conditional store. 1390 // 1391 // Note: It doesn't include conditional new-value stores as they can't be 1392 // converted to .new predicate. 1393 // 1394 // p.new NV store [ if(p0.new)memw(R0+#0)=R2.new ] 1395 // ^ ^ 1396 // / \ (not OK. it will cause new-value store to be 1397 // / X conditional on p0.new while R2 producer is 1398 // / \ on p0) 1399 // / \. 1400 // p.new store p.old NV store 1401 // [if(p0.new)memw(R0+#0)=R2] [if(p0)memw(R0+#0)=R2.new] 1402 // ^ ^ 1403 // \ / 1404 // \ / 1405 // \ / 1406 // p.old store 1407 // [if (p0)memw(R0+#0)=R2] 1408 // 1409 // The above diagram shows the steps involoved in the conversion of a predicated 1410 // store instruction to its .new predicated new-value form. 1411 // 1412 // The following set of instructions further explains the scenario where 1413 // conditional new-value store becomes invalid when promoted to .new predicate 1414 // form. 1415 // 1416 // { 1) if (p0) r0 = add(r1, r2) 1417 // 2) p0 = cmp.eq(r3, #0) } 1418 // 1419 // 3) if (p0) memb(r1+#0) = r0 --> this instruction can't be grouped with 1420 // the first two instructions because in instr 1, r0 is conditional on old value 1421 // of p0 but its use in instr 3 is conditional on p0 modified by instr 2 which 1422 // is not valid for new-value stores. 1423 bool HexagonInstrInfo:: 1424 isConditionalStore (const MachineInstr* MI) const { 1425 const HexagonRegisterInfo& QRI = getRegisterInfo(); 1426 switch (MI->getOpcode()) 1427 { 1428 default: return false; 1429 case Hexagon::STrib_imm_cPt_V4 : 1430 case Hexagon::STrib_imm_cNotPt_V4 : 1431 case Hexagon::STrib_indexed_shl_cPt_V4 : 1432 case Hexagon::STrib_indexed_shl_cNotPt_V4 : 1433 case Hexagon::STrib_cPt : 1434 case Hexagon::STrib_cNotPt : 1435 case Hexagon::POST_STbri_cPt : 1436 case Hexagon::POST_STbri_cNotPt : 1437 case Hexagon::STrid_indexed_cPt : 1438 case Hexagon::STrid_indexed_cNotPt : 1439 case Hexagon::STrid_indexed_shl_cPt_V4 : 1440 case Hexagon::POST_STdri_cPt : 1441 case Hexagon::POST_STdri_cNotPt : 1442 case Hexagon::STrih_cPt : 1443 case Hexagon::STrih_cNotPt : 1444 case Hexagon::STrih_indexed_cPt : 1445 case Hexagon::STrih_indexed_cNotPt : 1446 case Hexagon::STrih_imm_cPt_V4 : 1447 case Hexagon::STrih_imm_cNotPt_V4 : 1448 case Hexagon::STrih_indexed_shl_cPt_V4 : 1449 case Hexagon::STrih_indexed_shl_cNotPt_V4 : 1450 case Hexagon::POST_SThri_cPt : 1451 case Hexagon::POST_SThri_cNotPt : 1452 case Hexagon::STriw_cPt : 1453 case Hexagon::STriw_cNotPt : 1454 case Hexagon::STriw_indexed_cPt : 1455 case Hexagon::STriw_indexed_cNotPt : 1456 case Hexagon::STriw_imm_cPt_V4 : 1457 case Hexagon::STriw_imm_cNotPt_V4 : 1458 case Hexagon::STriw_indexed_shl_cPt_V4 : 1459 case Hexagon::STriw_indexed_shl_cNotPt_V4 : 1460 case Hexagon::POST_STwri_cPt : 1461 case Hexagon::POST_STwri_cNotPt : 1462 return QRI.Subtarget.hasV4TOps(); 1463 1464 // V4 global address store before promoting to dot new. 1465 case Hexagon::STd_GP_cPt_V4 : 1466 case Hexagon::STd_GP_cNotPt_V4 : 1467 case Hexagon::STb_GP_cPt_V4 : 1468 case Hexagon::STb_GP_cNotPt_V4 : 1469 case Hexagon::STh_GP_cPt_V4 : 1470 case Hexagon::STh_GP_cNotPt_V4 : 1471 case Hexagon::STw_GP_cPt_V4 : 1472 case Hexagon::STw_GP_cNotPt_V4 : 1473 return QRI.Subtarget.hasV4TOps(); 1474 1475 // Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded 1476 // from the "Conditional Store" list. Because a predicated new value store 1477 // would NOT be promoted to a double dot new store. See diagram below: 1478 // This function returns yes for those stores that are predicated but not 1479 // yet promoted to predicate dot new instructions. 1480 // 1481 // +---------------------+ 1482 // /-----| if (p0) memw(..)=r0 |---------\~ 1483 // || +---------------------+ || 1484 // promote || /\ /\ || promote 1485 // || /||\ /||\ || 1486 // \||/ demote || \||/ 1487 // \/ || || \/ 1488 // +-------------------------+ || +-------------------------+ 1489 // | if (p0.new) memw(..)=r0 | || | if (p0) memw(..)=r0.new | 1490 // +-------------------------+ || +-------------------------+ 1491 // || || || 1492 // || demote \||/ 1493 // promote || \/ NOT possible 1494 // || || /\~ 1495 // \||/ || /||\~ 1496 // \/ || || 1497 // +-----------------------------+ 1498 // | if (p0.new) memw(..)=r0.new | 1499 // +-----------------------------+ 1500 // Double Dot New Store 1501 // 1502 } 1503 } 1504 1505 1506 bool HexagonInstrInfo::isNewValueJump(const MachineInstr *MI) const { 1507 if (isNewValue(MI) && isBranch(MI)) 1508 return true; 1509 return false; 1510 } 1511 1512 bool HexagonInstrInfo::isPostIncrement (const MachineInstr* MI) const { 1513 return (getAddrMode(MI) == HexagonII::PostInc); 1514 } 1515 1516 bool HexagonInstrInfo::isNewValue(const MachineInstr* MI) const { 1517 const uint64_t F = MI->getDesc().TSFlags; 1518 return ((F >> HexagonII::NewValuePos) & HexagonII::NewValueMask); 1519 } 1520 1521 // Returns true, if any one of the operands is a dot new 1522 // insn, whether it is predicated dot new or register dot new. 1523 bool HexagonInstrInfo::isDotNewInst (const MachineInstr* MI) const { 1524 return (isNewValueInst(MI) || 1525 (isPredicated(MI) && isPredicatedNew(MI))); 1526 } 1527 1528 // Returns the most basic instruction for the .new predicated instructions and 1529 // new-value stores. 1530 // For example, all of the following instructions will be converted back to the 1531 // same instruction: 1532 // 1) if (p0.new) memw(R0+#0) = R1.new ---> 1533 // 2) if (p0) memw(R0+#0)= R1.new -------> if (p0) memw(R0+#0) = R1 1534 // 3) if (p0.new) memw(R0+#0) = R1 ---> 1535 // 1536 1537 int HexagonInstrInfo::GetDotOldOp(const int opc) const { 1538 int NewOp = opc; 1539 if (isPredicated(NewOp) && isPredicatedNew(NewOp)) { // Get predicate old form 1540 NewOp = Hexagon::getPredOldOpcode(NewOp); 1541 assert(NewOp >= 0 && 1542 "Couldn't change predicate new instruction to its old form."); 1543 } 1544 1545 if (isNewValueStore(NewOp)) { // Convert into non-new-value format 1546 NewOp = Hexagon::getNonNVStore(NewOp); 1547 assert(NewOp >= 0 && "Couldn't change new-value store to its old form."); 1548 } 1549 return NewOp; 1550 } 1551 1552 // Return the new value instruction for a given store. 1553 int HexagonInstrInfo::GetDotNewOp(const MachineInstr* MI) const { 1554 int NVOpcode = Hexagon::getNewValueOpcode(MI->getOpcode()); 1555 if (NVOpcode >= 0) // Valid new-value store instruction. 1556 return NVOpcode; 1557 1558 switch (MI->getOpcode()) { 1559 default: llvm_unreachable("Unknown .new type"); 1560 // store new value byte 1561 case Hexagon::STrib_shl_V4: 1562 return Hexagon::STrib_shl_nv_V4; 1563 1564 case Hexagon::STrih_shl_V4: 1565 return Hexagon::STrih_shl_nv_V4; 1566 1567 case Hexagon::STriw_f: 1568 return Hexagon::STriw_nv_V4; 1569 1570 case Hexagon::STriw_indexed_f: 1571 return Hexagon::STriw_indexed_nv_V4; 1572 1573 case Hexagon::STriw_shl_V4: 1574 return Hexagon::STriw_shl_nv_V4; 1575 1576 } 1577 return 0; 1578 } 1579 1580 // Return .new predicate version for an instruction. 1581 int HexagonInstrInfo::GetDotNewPredOp(MachineInstr *MI, 1582 const MachineBranchProbabilityInfo 1583 *MBPI) const { 1584 1585 int NewOpcode = Hexagon::getPredNewOpcode(MI->getOpcode()); 1586 if (NewOpcode >= 0) // Valid predicate new instruction 1587 return NewOpcode; 1588 1589 switch (MI->getOpcode()) { 1590 default: llvm_unreachable("Unknown .new type"); 1591 // Condtional Jumps 1592 case Hexagon::JMP_t: 1593 case Hexagon::JMP_f: 1594 return getDotNewPredJumpOp(MI, MBPI); 1595 1596 case Hexagon::JMPR_t: 1597 return Hexagon::JMPR_tnew_tV3; 1598 1599 case Hexagon::JMPR_f: 1600 return Hexagon::JMPR_fnew_tV3; 1601 1602 case Hexagon::JMPret_t: 1603 return Hexagon::JMPret_tnew_tV3; 1604 1605 case Hexagon::JMPret_f: 1606 return Hexagon::JMPret_fnew_tV3; 1607 1608 1609 // Conditional combine 1610 case Hexagon::COMBINE_rr_cPt : 1611 return Hexagon::COMBINE_rr_cdnPt; 1612 case Hexagon::COMBINE_rr_cNotPt : 1613 return Hexagon::COMBINE_rr_cdnNotPt; 1614 } 1615 } 1616 1617 1618 unsigned HexagonInstrInfo::getAddrMode(const MachineInstr* MI) const { 1619 const uint64_t F = MI->getDesc().TSFlags; 1620 1621 return((F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask); 1622 } 1623 1624 /// immediateExtend - Changes the instruction in place to one using an immediate 1625 /// extender. 1626 void HexagonInstrInfo::immediateExtend(MachineInstr *MI) const { 1627 assert((isExtendable(MI)||isConstExtended(MI)) && 1628 "Instruction must be extendable"); 1629 // Find which operand is extendable. 1630 short ExtOpNum = getCExtOpNum(MI); 1631 MachineOperand &MO = MI->getOperand(ExtOpNum); 1632 // This needs to be something we understand. 1633 assert((MO.isMBB() || MO.isImm()) && 1634 "Branch with unknown extendable field type"); 1635 // Mark given operand as extended. 1636 MO.addTargetFlag(HexagonII::HMOTF_ConstExtended); 1637 } 1638 1639 DFAPacketizer *HexagonInstrInfo:: 1640 CreateTargetScheduleState(const TargetMachine *TM, 1641 const ScheduleDAG *DAG) const { 1642 const InstrItineraryData *II = TM->getInstrItineraryData(); 1643 return TM->getSubtarget<HexagonGenSubtargetInfo>().createDFAPacketizer(II); 1644 } 1645 1646 bool HexagonInstrInfo::isSchedulingBoundary(const MachineInstr *MI, 1647 const MachineBasicBlock *MBB, 1648 const MachineFunction &MF) const { 1649 // Debug info is never a scheduling boundary. It's necessary to be explicit 1650 // due to the special treatment of IT instructions below, otherwise a 1651 // dbg_value followed by an IT will result in the IT instruction being 1652 // considered a scheduling hazard, which is wrong. It should be the actual 1653 // instruction preceding the dbg_value instruction(s), just like it is 1654 // when debug info is not present. 1655 if (MI->isDebugValue()) 1656 return false; 1657 1658 // Terminators and labels can't be scheduled around. 1659 if (MI->getDesc().isTerminator() || MI->isPosition() || MI->isInlineAsm()) 1660 return true; 1661 1662 return false; 1663 } 1664 1665 bool HexagonInstrInfo::isConstExtended(MachineInstr *MI) const { 1666 1667 // Constant extenders are allowed only for V4 and above. 1668 if (!Subtarget.hasV4TOps()) 1669 return false; 1670 1671 const uint64_t F = MI->getDesc().TSFlags; 1672 unsigned isExtended = (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask; 1673 if (isExtended) // Instruction must be extended. 1674 return true; 1675 1676 unsigned isExtendable = (F >> HexagonII::ExtendablePos) 1677 & HexagonII::ExtendableMask; 1678 if (!isExtendable) 1679 return false; 1680 1681 short ExtOpNum = getCExtOpNum(MI); 1682 const MachineOperand &MO = MI->getOperand(ExtOpNum); 1683 // Use MO operand flags to determine if MO 1684 // has the HMOTF_ConstExtended flag set. 1685 if (MO.getTargetFlags() && HexagonII::HMOTF_ConstExtended) 1686 return true; 1687 // If this is a Machine BB address we are talking about, and it is 1688 // not marked as extended, say so. 1689 if (MO.isMBB()) 1690 return false; 1691 1692 // We could be using an instruction with an extendable immediate and shoehorn 1693 // a global address into it. If it is a global address it will be constant 1694 // extended. We do this for COMBINE. 1695 // We currently only handle isGlobal() because it is the only kind of 1696 // object we are going to end up with here for now. 1697 // In the future we probably should add isSymbol(), etc. 1698 if (MO.isGlobal() || MO.isSymbol()) 1699 return true; 1700 1701 // If the extendable operand is not 'Immediate' type, the instruction should 1702 // have 'isExtended' flag set. 1703 assert(MO.isImm() && "Extendable operand must be Immediate type"); 1704 1705 int MinValue = getMinValue(MI); 1706 int MaxValue = getMaxValue(MI); 1707 int ImmValue = MO.getImm(); 1708 1709 return (ImmValue < MinValue || ImmValue > MaxValue); 1710 } 1711 1712 // Returns the opcode to use when converting MI, which is a conditional jump, 1713 // into a conditional instruction which uses the .new value of the predicate. 1714 // We also use branch probabilities to add a hint to the jump. 1715 int 1716 HexagonInstrInfo::getDotNewPredJumpOp(MachineInstr *MI, 1717 const 1718 MachineBranchProbabilityInfo *MBPI) const { 1719 1720 // We assume that block can have at most two successors. 1721 bool taken = false; 1722 MachineBasicBlock *Src = MI->getParent(); 1723 MachineOperand *BrTarget = &MI->getOperand(1); 1724 MachineBasicBlock *Dst = BrTarget->getMBB(); 1725 1726 const BranchProbability Prediction = MBPI->getEdgeProbability(Src, Dst); 1727 if (Prediction >= BranchProbability(1,2)) 1728 taken = true; 1729 1730 switch (MI->getOpcode()) { 1731 case Hexagon::JMP_t: 1732 return taken ? Hexagon::JMP_tnew_t : Hexagon::JMP_tnew_nt; 1733 case Hexagon::JMP_f: 1734 return taken ? Hexagon::JMP_fnew_t : Hexagon::JMP_fnew_nt; 1735 1736 default: 1737 llvm_unreachable("Unexpected jump instruction."); 1738 } 1739 } 1740 // Returns true if a particular operand is extendable for an instruction. 1741 bool HexagonInstrInfo::isOperandExtended(const MachineInstr *MI, 1742 unsigned short OperandNum) const { 1743 // Constant extenders are allowed only for V4 and above. 1744 if (!Subtarget.hasV4TOps()) 1745 return false; 1746 1747 const uint64_t F = MI->getDesc().TSFlags; 1748 1749 return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask) 1750 == OperandNum; 1751 } 1752 1753 // Returns Operand Index for the constant extended instruction. 1754 unsigned short HexagonInstrInfo::getCExtOpNum(const MachineInstr *MI) const { 1755 const uint64_t F = MI->getDesc().TSFlags; 1756 return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask); 1757 } 1758 1759 // Returns the min value that doesn't need to be extended. 1760 int HexagonInstrInfo::getMinValue(const MachineInstr *MI) const { 1761 const uint64_t F = MI->getDesc().TSFlags; 1762 unsigned isSigned = (F >> HexagonII::ExtentSignedPos) 1763 & HexagonII::ExtentSignedMask; 1764 unsigned bits = (F >> HexagonII::ExtentBitsPos) 1765 & HexagonII::ExtentBitsMask; 1766 1767 if (isSigned) // if value is signed 1768 return -1 << (bits - 1); 1769 else 1770 return 0; 1771 } 1772 1773 // Returns the max value that doesn't need to be extended. 1774 int HexagonInstrInfo::getMaxValue(const MachineInstr *MI) const { 1775 const uint64_t F = MI->getDesc().TSFlags; 1776 unsigned isSigned = (F >> HexagonII::ExtentSignedPos) 1777 & HexagonII::ExtentSignedMask; 1778 unsigned bits = (F >> HexagonII::ExtentBitsPos) 1779 & HexagonII::ExtentBitsMask; 1780 1781 if (isSigned) // if value is signed 1782 return ~(-1 << (bits - 1)); 1783 else 1784 return ~(-1 << bits); 1785 } 1786 1787 // Returns true if an instruction can be converted into a non-extended 1788 // equivalent instruction. 1789 bool HexagonInstrInfo::NonExtEquivalentExists (const MachineInstr *MI) const { 1790 1791 short NonExtOpcode; 1792 // Check if the instruction has a register form that uses register in place 1793 // of the extended operand, if so return that as the non-extended form. 1794 if (Hexagon::getRegForm(MI->getOpcode()) >= 0) 1795 return true; 1796 1797 if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) { 1798 // Check addressing mode and retrieve non-ext equivalent instruction. 1799 1800 switch (getAddrMode(MI)) { 1801 case HexagonII::Absolute : 1802 // Load/store with absolute addressing mode can be converted into 1803 // base+offset mode. 1804 NonExtOpcode = Hexagon::getBasedWithImmOffset(MI->getOpcode()); 1805 break; 1806 case HexagonII::BaseImmOffset : 1807 // Load/store with base+offset addressing mode can be converted into 1808 // base+register offset addressing mode. However left shift operand should 1809 // be set to 0. 1810 NonExtOpcode = Hexagon::getBaseWithRegOffset(MI->getOpcode()); 1811 break; 1812 default: 1813 return false; 1814 } 1815 if (NonExtOpcode < 0) 1816 return false; 1817 return true; 1818 } 1819 return false; 1820 } 1821 1822 // Returns opcode of the non-extended equivalent instruction. 1823 short HexagonInstrInfo::getNonExtOpcode (const MachineInstr *MI) const { 1824 1825 // Check if the instruction has a register form that uses register in place 1826 // of the extended operand, if so return that as the non-extended form. 1827 short NonExtOpcode = Hexagon::getRegForm(MI->getOpcode()); 1828 if (NonExtOpcode >= 0) 1829 return NonExtOpcode; 1830 1831 if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) { 1832 // Check addressing mode and retrieve non-ext equivalent instruction. 1833 switch (getAddrMode(MI)) { 1834 case HexagonII::Absolute : 1835 return Hexagon::getBasedWithImmOffset(MI->getOpcode()); 1836 case HexagonII::BaseImmOffset : 1837 return Hexagon::getBaseWithRegOffset(MI->getOpcode()); 1838 default: 1839 return -1; 1840 } 1841 } 1842 return -1; 1843 } 1844 1845 bool HexagonInstrInfo::PredOpcodeHasJMP_c(Opcode_t Opcode) const { 1846 return (Opcode == Hexagon::JMP_t) || 1847 (Opcode == Hexagon::JMP_f) || 1848 (Opcode == Hexagon::JMP_tnew_t) || 1849 (Opcode == Hexagon::JMP_fnew_t) || 1850 (Opcode == Hexagon::JMP_tnew_nt) || 1851 (Opcode == Hexagon::JMP_fnew_nt); 1852 } 1853 1854 bool HexagonInstrInfo::PredOpcodeHasNot(Opcode_t Opcode) const { 1855 return (Opcode == Hexagon::JMP_f) || 1856 (Opcode == Hexagon::JMP_fnew_t) || 1857 (Opcode == Hexagon::JMP_fnew_nt); 1858 } 1859