Home | History | Annotate | Download | only in x64
      1 // Copyright 2013 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "src/v8.h"
      6 
      7 #if V8_TARGET_ARCH_X64
      8 
      9 #include "src/bootstrapper.h"
     10 #include "src/code-stubs.h"
     11 #include "src/codegen.h"
     12 #include "src/ic/handler-compiler.h"
     13 #include "src/ic/ic.h"
     14 #include "src/isolate.h"
     15 #include "src/jsregexp.h"
     16 #include "src/regexp-macro-assembler.h"
     17 #include "src/runtime.h"
     18 
     19 namespace v8 {
     20 namespace internal {
     21 
     22 
     23 static void InitializeArrayConstructorDescriptor(
     24     Isolate* isolate, CodeStubDescriptor* descriptor,
     25     int constant_stack_parameter_count) {
     26   Address deopt_handler = Runtime::FunctionForId(
     27       Runtime::kArrayConstructor)->entry;
     28 
     29   if (constant_stack_parameter_count == 0) {
     30     descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
     31                            JS_FUNCTION_STUB_MODE);
     32   } else {
     33     descriptor->Initialize(rax, deopt_handler, constant_stack_parameter_count,
     34                            JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS);
     35   }
     36 }
     37 
     38 
     39 static void InitializeInternalArrayConstructorDescriptor(
     40     Isolate* isolate, CodeStubDescriptor* descriptor,
     41     int constant_stack_parameter_count) {
     42   Address deopt_handler = Runtime::FunctionForId(
     43       Runtime::kInternalArrayConstructor)->entry;
     44 
     45   if (constant_stack_parameter_count == 0) {
     46     descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
     47                            JS_FUNCTION_STUB_MODE);
     48   } else {
     49     descriptor->Initialize(rax, deopt_handler, constant_stack_parameter_count,
     50                            JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS);
     51   }
     52 }
     53 
     54 
     55 void ArrayNoArgumentConstructorStub::InitializeDescriptor(
     56     CodeStubDescriptor* descriptor) {
     57   InitializeArrayConstructorDescriptor(isolate(), descriptor, 0);
     58 }
     59 
     60 
     61 void ArraySingleArgumentConstructorStub::InitializeDescriptor(
     62     CodeStubDescriptor* descriptor) {
     63   InitializeArrayConstructorDescriptor(isolate(), descriptor, 1);
     64 }
     65 
     66 
     67 void ArrayNArgumentsConstructorStub::InitializeDescriptor(
     68     CodeStubDescriptor* descriptor) {
     69   InitializeArrayConstructorDescriptor(isolate(), descriptor, -1);
     70 }
     71 
     72 
     73 void InternalArrayNoArgumentConstructorStub::InitializeDescriptor(
     74     CodeStubDescriptor* descriptor) {
     75   InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 0);
     76 }
     77 
     78 
     79 void InternalArraySingleArgumentConstructorStub::InitializeDescriptor(
     80     CodeStubDescriptor* descriptor) {
     81   InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 1);
     82 }
     83 
     84 
     85 void InternalArrayNArgumentsConstructorStub::InitializeDescriptor(
     86     CodeStubDescriptor* descriptor) {
     87   InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, -1);
     88 }
     89 
     90 
     91 #define __ ACCESS_MASM(masm)
     92 
     93 
     94 void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm,
     95                                                ExternalReference miss) {
     96   // Update the static counter each time a new code stub is generated.
     97   isolate()->counters()->code_stubs()->Increment();
     98 
     99   CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor();
    100   int param_count = descriptor.GetEnvironmentParameterCount();
    101   {
    102     // Call the runtime system in a fresh internal frame.
    103     FrameScope scope(masm, StackFrame::INTERNAL);
    104     DCHECK(param_count == 0 ||
    105            rax.is(descriptor.GetEnvironmentParameterRegister(param_count - 1)));
    106     // Push arguments
    107     for (int i = 0; i < param_count; ++i) {
    108       __ Push(descriptor.GetEnvironmentParameterRegister(i));
    109     }
    110     __ CallExternalReference(miss, param_count);
    111   }
    112 
    113   __ Ret();
    114 }
    115 
    116 
    117 void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
    118   __ PushCallerSaved(save_doubles() ? kSaveFPRegs : kDontSaveFPRegs);
    119   const int argument_count = 1;
    120   __ PrepareCallCFunction(argument_count);
    121   __ LoadAddress(arg_reg_1,
    122                  ExternalReference::isolate_address(isolate()));
    123 
    124   AllowExternalCallThatCantCauseGC scope(masm);
    125   __ CallCFunction(
    126       ExternalReference::store_buffer_overflow_function(isolate()),
    127       argument_count);
    128   __ PopCallerSaved(save_doubles() ? kSaveFPRegs : kDontSaveFPRegs);
    129   __ ret(0);
    130 }
    131 
    132 
    133 class FloatingPointHelper : public AllStatic {
    134  public:
    135   enum ConvertUndefined {
    136     CONVERT_UNDEFINED_TO_ZERO,
    137     BAILOUT_ON_UNDEFINED
    138   };
    139   // Load the operands from rdx and rax into xmm0 and xmm1, as doubles.
    140   // If the operands are not both numbers, jump to not_numbers.
    141   // Leaves rdx and rax unchanged.  SmiOperands assumes both are smis.
    142   // NumberOperands assumes both are smis or heap numbers.
    143   static void LoadSSE2UnknownOperands(MacroAssembler* masm,
    144                                       Label* not_numbers);
    145 };
    146 
    147 
    148 void DoubleToIStub::Generate(MacroAssembler* masm) {
    149     Register input_reg = this->source();
    150     Register final_result_reg = this->destination();
    151     DCHECK(is_truncating());
    152 
    153     Label check_negative, process_64_bits, done;
    154 
    155     int double_offset = offset();
    156 
    157     // Account for return address and saved regs if input is rsp.
    158     if (input_reg.is(rsp)) double_offset += 3 * kRegisterSize;
    159 
    160     MemOperand mantissa_operand(MemOperand(input_reg, double_offset));
    161     MemOperand exponent_operand(MemOperand(input_reg,
    162                                            double_offset + kDoubleSize / 2));
    163 
    164     Register scratch1;
    165     Register scratch_candidates[3] = { rbx, rdx, rdi };
    166     for (int i = 0; i < 3; i++) {
    167       scratch1 = scratch_candidates[i];
    168       if (!final_result_reg.is(scratch1) && !input_reg.is(scratch1)) break;
    169     }
    170 
    171     // Since we must use rcx for shifts below, use some other register (rax)
    172     // to calculate the result if ecx is the requested return register.
    173     Register result_reg = final_result_reg.is(rcx) ? rax : final_result_reg;
    174     // Save ecx if it isn't the return register and therefore volatile, or if it
    175     // is the return register, then save the temp register we use in its stead
    176     // for the result.
    177     Register save_reg = final_result_reg.is(rcx) ? rax : rcx;
    178     __ pushq(scratch1);
    179     __ pushq(save_reg);
    180 
    181     bool stash_exponent_copy = !input_reg.is(rsp);
    182     __ movl(scratch1, mantissa_operand);
    183     __ movsd(xmm0, mantissa_operand);
    184     __ movl(rcx, exponent_operand);
    185     if (stash_exponent_copy) __ pushq(rcx);
    186 
    187     __ andl(rcx, Immediate(HeapNumber::kExponentMask));
    188     __ shrl(rcx, Immediate(HeapNumber::kExponentShift));
    189     __ leal(result_reg, MemOperand(rcx, -HeapNumber::kExponentBias));
    190     __ cmpl(result_reg, Immediate(HeapNumber::kMantissaBits));
    191     __ j(below, &process_64_bits);
    192 
    193     // Result is entirely in lower 32-bits of mantissa
    194     int delta = HeapNumber::kExponentBias + Double::kPhysicalSignificandSize;
    195     __ subl(rcx, Immediate(delta));
    196     __ xorl(result_reg, result_reg);
    197     __ cmpl(rcx, Immediate(31));
    198     __ j(above, &done);
    199     __ shll_cl(scratch1);
    200     __ jmp(&check_negative);
    201 
    202     __ bind(&process_64_bits);
    203     __ cvttsd2siq(result_reg, xmm0);
    204     __ jmp(&done, Label::kNear);
    205 
    206     // If the double was negative, negate the integer result.
    207     __ bind(&check_negative);
    208     __ movl(result_reg, scratch1);
    209     __ negl(result_reg);
    210     if (stash_exponent_copy) {
    211         __ cmpl(MemOperand(rsp, 0), Immediate(0));
    212     } else {
    213         __ cmpl(exponent_operand, Immediate(0));
    214     }
    215     __ cmovl(greater, result_reg, scratch1);
    216 
    217     // Restore registers
    218     __ bind(&done);
    219     if (stash_exponent_copy) {
    220         __ addp(rsp, Immediate(kDoubleSize));
    221     }
    222     if (!final_result_reg.is(result_reg)) {
    223         DCHECK(final_result_reg.is(rcx));
    224         __ movl(final_result_reg, result_reg);
    225     }
    226     __ popq(save_reg);
    227     __ popq(scratch1);
    228     __ ret(0);
    229 }
    230 
    231 
    232 void FloatingPointHelper::LoadSSE2UnknownOperands(MacroAssembler* masm,
    233                                                   Label* not_numbers) {
    234   Label load_smi_rdx, load_nonsmi_rax, load_smi_rax, load_float_rax, done;
    235   // Load operand in rdx into xmm0, or branch to not_numbers.
    236   __ LoadRoot(rcx, Heap::kHeapNumberMapRootIndex);
    237   __ JumpIfSmi(rdx, &load_smi_rdx);
    238   __ cmpp(FieldOperand(rdx, HeapObject::kMapOffset), rcx);
    239   __ j(not_equal, not_numbers);  // Argument in rdx is not a number.
    240   __ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset));
    241   // Load operand in rax into xmm1, or branch to not_numbers.
    242   __ JumpIfSmi(rax, &load_smi_rax);
    243 
    244   __ bind(&load_nonsmi_rax);
    245   __ cmpp(FieldOperand(rax, HeapObject::kMapOffset), rcx);
    246   __ j(not_equal, not_numbers);
    247   __ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset));
    248   __ jmp(&done);
    249 
    250   __ bind(&load_smi_rdx);
    251   __ SmiToInteger32(kScratchRegister, rdx);
    252   __ Cvtlsi2sd(xmm0, kScratchRegister);
    253   __ JumpIfNotSmi(rax, &load_nonsmi_rax);
    254 
    255   __ bind(&load_smi_rax);
    256   __ SmiToInteger32(kScratchRegister, rax);
    257   __ Cvtlsi2sd(xmm1, kScratchRegister);
    258   __ bind(&done);
    259 }
    260 
    261 
    262 void MathPowStub::Generate(MacroAssembler* masm) {
    263   const Register exponent = MathPowTaggedDescriptor::exponent();
    264   DCHECK(exponent.is(rdx));
    265   const Register base = rax;
    266   const Register scratch = rcx;
    267   const XMMRegister double_result = xmm3;
    268   const XMMRegister double_base = xmm2;
    269   const XMMRegister double_exponent = xmm1;
    270   const XMMRegister double_scratch = xmm4;
    271 
    272   Label call_runtime, done, exponent_not_smi, int_exponent;
    273 
    274   // Save 1 in double_result - we need this several times later on.
    275   __ movp(scratch, Immediate(1));
    276   __ Cvtlsi2sd(double_result, scratch);
    277 
    278   if (exponent_type() == ON_STACK) {
    279     Label base_is_smi, unpack_exponent;
    280     // The exponent and base are supplied as arguments on the stack.
    281     // This can only happen if the stub is called from non-optimized code.
    282     // Load input parameters from stack.
    283     StackArgumentsAccessor args(rsp, 2, ARGUMENTS_DONT_CONTAIN_RECEIVER);
    284     __ movp(base, args.GetArgumentOperand(0));
    285     __ movp(exponent, args.GetArgumentOperand(1));
    286     __ JumpIfSmi(base, &base_is_smi, Label::kNear);
    287     __ CompareRoot(FieldOperand(base, HeapObject::kMapOffset),
    288                    Heap::kHeapNumberMapRootIndex);
    289     __ j(not_equal, &call_runtime);
    290 
    291     __ movsd(double_base, FieldOperand(base, HeapNumber::kValueOffset));
    292     __ jmp(&unpack_exponent, Label::kNear);
    293 
    294     __ bind(&base_is_smi);
    295     __ SmiToInteger32(base, base);
    296     __ Cvtlsi2sd(double_base, base);
    297     __ bind(&unpack_exponent);
    298 
    299     __ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear);
    300     __ SmiToInteger32(exponent, exponent);
    301     __ jmp(&int_exponent);
    302 
    303     __ bind(&exponent_not_smi);
    304     __ CompareRoot(FieldOperand(exponent, HeapObject::kMapOffset),
    305                    Heap::kHeapNumberMapRootIndex);
    306     __ j(not_equal, &call_runtime);
    307     __ movsd(double_exponent, FieldOperand(exponent, HeapNumber::kValueOffset));
    308   } else if (exponent_type() == TAGGED) {
    309     __ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear);
    310     __ SmiToInteger32(exponent, exponent);
    311     __ jmp(&int_exponent);
    312 
    313     __ bind(&exponent_not_smi);
    314     __ movsd(double_exponent, FieldOperand(exponent, HeapNumber::kValueOffset));
    315   }
    316 
    317   if (exponent_type() != INTEGER) {
    318     Label fast_power, try_arithmetic_simplification;
    319     // Detect integer exponents stored as double.
    320     __ DoubleToI(exponent, double_exponent, double_scratch,
    321                  TREAT_MINUS_ZERO_AS_ZERO, &try_arithmetic_simplification,
    322                  &try_arithmetic_simplification,
    323                  &try_arithmetic_simplification);
    324     __ jmp(&int_exponent);
    325 
    326     __ bind(&try_arithmetic_simplification);
    327     __ cvttsd2si(exponent, double_exponent);
    328     // Skip to runtime if possibly NaN (indicated by the indefinite integer).
    329     __ cmpl(exponent, Immediate(0x1));
    330     __ j(overflow, &call_runtime);
    331 
    332     if (exponent_type() == ON_STACK) {
    333       // Detect square root case.  Crankshaft detects constant +/-0.5 at
    334       // compile time and uses DoMathPowHalf instead.  We then skip this check
    335       // for non-constant cases of +/-0.5 as these hardly occur.
    336       Label continue_sqrt, continue_rsqrt, not_plus_half;
    337       // Test for 0.5.
    338       // Load double_scratch with 0.5.
    339       __ movq(scratch, V8_UINT64_C(0x3FE0000000000000));
    340       __ movq(double_scratch, scratch);
    341       // Already ruled out NaNs for exponent.
    342       __ ucomisd(double_scratch, double_exponent);
    343       __ j(not_equal, &not_plus_half, Label::kNear);
    344 
    345       // Calculates square root of base.  Check for the special case of
    346       // Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13).
    347       // According to IEEE-754, double-precision -Infinity has the highest
    348       // 12 bits set and the lowest 52 bits cleared.
    349       __ movq(scratch, V8_UINT64_C(0xFFF0000000000000));
    350       __ movq(double_scratch, scratch);
    351       __ ucomisd(double_scratch, double_base);
    352       // Comparing -Infinity with NaN results in "unordered", which sets the
    353       // zero flag as if both were equal.  However, it also sets the carry flag.
    354       __ j(not_equal, &continue_sqrt, Label::kNear);
    355       __ j(carry, &continue_sqrt, Label::kNear);
    356 
    357       // Set result to Infinity in the special case.
    358       __ xorps(double_result, double_result);
    359       __ subsd(double_result, double_scratch);
    360       __ jmp(&done);
    361 
    362       __ bind(&continue_sqrt);
    363       // sqrtsd returns -0 when input is -0.  ECMA spec requires +0.
    364       __ xorps(double_scratch, double_scratch);
    365       __ addsd(double_scratch, double_base);  // Convert -0 to 0.
    366       __ sqrtsd(double_result, double_scratch);
    367       __ jmp(&done);
    368 
    369       // Test for -0.5.
    370       __ bind(&not_plus_half);
    371       // Load double_scratch with -0.5 by substracting 1.
    372       __ subsd(double_scratch, double_result);
    373       // Already ruled out NaNs for exponent.
    374       __ ucomisd(double_scratch, double_exponent);
    375       __ j(not_equal, &fast_power, Label::kNear);
    376 
    377       // Calculates reciprocal of square root of base.  Check for the special
    378       // case of Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13).
    379       // According to IEEE-754, double-precision -Infinity has the highest
    380       // 12 bits set and the lowest 52 bits cleared.
    381       __ movq(scratch, V8_UINT64_C(0xFFF0000000000000));
    382       __ movq(double_scratch, scratch);
    383       __ ucomisd(double_scratch, double_base);
    384       // Comparing -Infinity with NaN results in "unordered", which sets the
    385       // zero flag as if both were equal.  However, it also sets the carry flag.
    386       __ j(not_equal, &continue_rsqrt, Label::kNear);
    387       __ j(carry, &continue_rsqrt, Label::kNear);
    388 
    389       // Set result to 0 in the special case.
    390       __ xorps(double_result, double_result);
    391       __ jmp(&done);
    392 
    393       __ bind(&continue_rsqrt);
    394       // sqrtsd returns -0 when input is -0.  ECMA spec requires +0.
    395       __ xorps(double_exponent, double_exponent);
    396       __ addsd(double_exponent, double_base);  // Convert -0 to +0.
    397       __ sqrtsd(double_exponent, double_exponent);
    398       __ divsd(double_result, double_exponent);
    399       __ jmp(&done);
    400     }
    401 
    402     // Using FPU instructions to calculate power.
    403     Label fast_power_failed;
    404     __ bind(&fast_power);
    405     __ fnclex();  // Clear flags to catch exceptions later.
    406     // Transfer (B)ase and (E)xponent onto the FPU register stack.
    407     __ subp(rsp, Immediate(kDoubleSize));
    408     __ movsd(Operand(rsp, 0), double_exponent);
    409     __ fld_d(Operand(rsp, 0));  // E
    410     __ movsd(Operand(rsp, 0), double_base);
    411     __ fld_d(Operand(rsp, 0));  // B, E
    412 
    413     // Exponent is in st(1) and base is in st(0)
    414     // B ^ E = (2^(E * log2(B)) - 1) + 1 = (2^X - 1) + 1 for X = E * log2(B)
    415     // FYL2X calculates st(1) * log2(st(0))
    416     __ fyl2x();    // X
    417     __ fld(0);     // X, X
    418     __ frndint();  // rnd(X), X
    419     __ fsub(1);    // rnd(X), X-rnd(X)
    420     __ fxch(1);    // X - rnd(X), rnd(X)
    421     // F2XM1 calculates 2^st(0) - 1 for -1 < st(0) < 1
    422     __ f2xm1();    // 2^(X-rnd(X)) - 1, rnd(X)
    423     __ fld1();     // 1, 2^(X-rnd(X)) - 1, rnd(X)
    424     __ faddp(1);   // 2^(X-rnd(X)), rnd(X)
    425     // FSCALE calculates st(0) * 2^st(1)
    426     __ fscale();   // 2^X, rnd(X)
    427     __ fstp(1);
    428     // Bail out to runtime in case of exceptions in the status word.
    429     __ fnstsw_ax();
    430     __ testb(rax, Immediate(0x5F));  // Check for all but precision exception.
    431     __ j(not_zero, &fast_power_failed, Label::kNear);
    432     __ fstp_d(Operand(rsp, 0));
    433     __ movsd(double_result, Operand(rsp, 0));
    434     __ addp(rsp, Immediate(kDoubleSize));
    435     __ jmp(&done);
    436 
    437     __ bind(&fast_power_failed);
    438     __ fninit();
    439     __ addp(rsp, Immediate(kDoubleSize));
    440     __ jmp(&call_runtime);
    441   }
    442 
    443   // Calculate power with integer exponent.
    444   __ bind(&int_exponent);
    445   const XMMRegister double_scratch2 = double_exponent;
    446   // Back up exponent as we need to check if exponent is negative later.
    447   __ movp(scratch, exponent);  // Back up exponent.
    448   __ movsd(double_scratch, double_base);  // Back up base.
    449   __ movsd(double_scratch2, double_result);  // Load double_exponent with 1.
    450 
    451   // Get absolute value of exponent.
    452   Label no_neg, while_true, while_false;
    453   __ testl(scratch, scratch);
    454   __ j(positive, &no_neg, Label::kNear);
    455   __ negl(scratch);
    456   __ bind(&no_neg);
    457 
    458   __ j(zero, &while_false, Label::kNear);
    459   __ shrl(scratch, Immediate(1));
    460   // Above condition means CF==0 && ZF==0.  This means that the
    461   // bit that has been shifted out is 0 and the result is not 0.
    462   __ j(above, &while_true, Label::kNear);
    463   __ movsd(double_result, double_scratch);
    464   __ j(zero, &while_false, Label::kNear);
    465 
    466   __ bind(&while_true);
    467   __ shrl(scratch, Immediate(1));
    468   __ mulsd(double_scratch, double_scratch);
    469   __ j(above, &while_true, Label::kNear);
    470   __ mulsd(double_result, double_scratch);
    471   __ j(not_zero, &while_true);
    472 
    473   __ bind(&while_false);
    474   // If the exponent is negative, return 1/result.
    475   __ testl(exponent, exponent);
    476   __ j(greater, &done);
    477   __ divsd(double_scratch2, double_result);
    478   __ movsd(double_result, double_scratch2);
    479   // Test whether result is zero.  Bail out to check for subnormal result.
    480   // Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
    481   __ xorps(double_scratch2, double_scratch2);
    482   __ ucomisd(double_scratch2, double_result);
    483   // double_exponent aliased as double_scratch2 has already been overwritten
    484   // and may not have contained the exponent value in the first place when the
    485   // input was a smi.  We reset it with exponent value before bailing out.
    486   __ j(not_equal, &done);
    487   __ Cvtlsi2sd(double_exponent, exponent);
    488 
    489   // Returning or bailing out.
    490   Counters* counters = isolate()->counters();
    491   if (exponent_type() == ON_STACK) {
    492     // The arguments are still on the stack.
    493     __ bind(&call_runtime);
    494     __ TailCallRuntime(Runtime::kMathPowRT, 2, 1);
    495 
    496     // The stub is called from non-optimized code, which expects the result
    497     // as heap number in rax.
    498     __ bind(&done);
    499     __ AllocateHeapNumber(rax, rcx, &call_runtime);
    500     __ movsd(FieldOperand(rax, HeapNumber::kValueOffset), double_result);
    501     __ IncrementCounter(counters->math_pow(), 1);
    502     __ ret(2 * kPointerSize);
    503   } else {
    504     __ bind(&call_runtime);
    505     // Move base to the correct argument register.  Exponent is already in xmm1.
    506     __ movsd(xmm0, double_base);
    507     DCHECK(double_exponent.is(xmm1));
    508     {
    509       AllowExternalCallThatCantCauseGC scope(masm);
    510       __ PrepareCallCFunction(2);
    511       __ CallCFunction(
    512           ExternalReference::power_double_double_function(isolate()), 2);
    513     }
    514     // Return value is in xmm0.
    515     __ movsd(double_result, xmm0);
    516 
    517     __ bind(&done);
    518     __ IncrementCounter(counters->math_pow(), 1);
    519     __ ret(0);
    520   }
    521 }
    522 
    523 
    524 void FunctionPrototypeStub::Generate(MacroAssembler* masm) {
    525   Label miss;
    526   Register receiver = LoadDescriptor::ReceiverRegister();
    527 
    528   NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype(masm, receiver, r8,
    529                                                           r9, &miss);
    530   __ bind(&miss);
    531   PropertyAccessCompiler::TailCallBuiltin(
    532       masm, PropertyAccessCompiler::MissBuiltin(Code::LOAD_IC));
    533 }
    534 
    535 
    536 void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
    537   // The key is in rdx and the parameter count is in rax.
    538   DCHECK(rdx.is(ArgumentsAccessReadDescriptor::index()));
    539   DCHECK(rax.is(ArgumentsAccessReadDescriptor::parameter_count()));
    540 
    541   // Check that the key is a smi.
    542   Label slow;
    543   __ JumpIfNotSmi(rdx, &slow);
    544 
    545   // Check if the calling frame is an arguments adaptor frame.  We look at the
    546   // context offset, and if the frame is not a regular one, then we find a
    547   // Smi instead of the context.  We can't use SmiCompare here, because that
    548   // only works for comparing two smis.
    549   Label adaptor;
    550   __ movp(rbx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
    551   __ Cmp(Operand(rbx, StandardFrameConstants::kContextOffset),
    552          Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
    553   __ j(equal, &adaptor);
    554 
    555   // Check index against formal parameters count limit passed in
    556   // through register rax. Use unsigned comparison to get negative
    557   // check for free.
    558   __ cmpp(rdx, rax);
    559   __ j(above_equal, &slow);
    560 
    561   // Read the argument from the stack and return it.
    562   __ SmiSub(rax, rax, rdx);
    563   __ SmiToInteger32(rax, rax);
    564   StackArgumentsAccessor args(rbp, rax, ARGUMENTS_DONT_CONTAIN_RECEIVER);
    565   __ movp(rax, args.GetArgumentOperand(0));
    566   __ Ret();
    567 
    568   // Arguments adaptor case: Check index against actual arguments
    569   // limit found in the arguments adaptor frame. Use unsigned
    570   // comparison to get negative check for free.
    571   __ bind(&adaptor);
    572   __ movp(rcx, Operand(rbx, ArgumentsAdaptorFrameConstants::kLengthOffset));
    573   __ cmpp(rdx, rcx);
    574   __ j(above_equal, &slow);
    575 
    576   // Read the argument from the stack and return it.
    577   __ SmiSub(rcx, rcx, rdx);
    578   __ SmiToInteger32(rcx, rcx);
    579   StackArgumentsAccessor adaptor_args(rbx, rcx,
    580                                       ARGUMENTS_DONT_CONTAIN_RECEIVER);
    581   __ movp(rax, adaptor_args.GetArgumentOperand(0));
    582   __ Ret();
    583 
    584   // Slow-case: Handle non-smi or out-of-bounds access to arguments
    585   // by calling the runtime system.
    586   __ bind(&slow);
    587   __ PopReturnAddressTo(rbx);
    588   __ Push(rdx);
    589   __ PushReturnAddressFrom(rbx);
    590   __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
    591 }
    592 
    593 
    594 void ArgumentsAccessStub::GenerateNewSloppyFast(MacroAssembler* masm) {
    595   // Stack layout:
    596   //  rsp[0]  : return address
    597   //  rsp[8]  : number of parameters (tagged)
    598   //  rsp[16] : receiver displacement
    599   //  rsp[24] : function
    600   // Registers used over the whole function:
    601   //  rbx: the mapped parameter count (untagged)
    602   //  rax: the allocated object (tagged).
    603 
    604   Factory* factory = isolate()->factory();
    605 
    606   StackArgumentsAccessor args(rsp, 3, ARGUMENTS_DONT_CONTAIN_RECEIVER);
    607   __ SmiToInteger64(rbx, args.GetArgumentOperand(2));
    608   // rbx = parameter count (untagged)
    609 
    610   // Check if the calling frame is an arguments adaptor frame.
    611   Label runtime;
    612   Label adaptor_frame, try_allocate;
    613   __ movp(rdx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
    614   __ movp(rcx, Operand(rdx, StandardFrameConstants::kContextOffset));
    615   __ Cmp(rcx, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
    616   __ j(equal, &adaptor_frame);
    617 
    618   // No adaptor, parameter count = argument count.
    619   __ movp(rcx, rbx);
    620   __ jmp(&try_allocate, Label::kNear);
    621 
    622   // We have an adaptor frame. Patch the parameters pointer.
    623   __ bind(&adaptor_frame);
    624   __ SmiToInteger64(rcx,
    625                     Operand(rdx,
    626                             ArgumentsAdaptorFrameConstants::kLengthOffset));
    627   __ leap(rdx, Operand(rdx, rcx, times_pointer_size,
    628                       StandardFrameConstants::kCallerSPOffset));
    629   __ movp(args.GetArgumentOperand(1), rdx);
    630 
    631   // rbx = parameter count (untagged)
    632   // rcx = argument count (untagged)
    633   // Compute the mapped parameter count = min(rbx, rcx) in rbx.
    634   __ cmpp(rbx, rcx);
    635   __ j(less_equal, &try_allocate, Label::kNear);
    636   __ movp(rbx, rcx);
    637 
    638   __ bind(&try_allocate);
    639 
    640   // Compute the sizes of backing store, parameter map, and arguments object.
    641   // 1. Parameter map, has 2 extra words containing context and backing store.
    642   const int kParameterMapHeaderSize =
    643       FixedArray::kHeaderSize + 2 * kPointerSize;
    644   Label no_parameter_map;
    645   __ xorp(r8, r8);
    646   __ testp(rbx, rbx);
    647   __ j(zero, &no_parameter_map, Label::kNear);
    648   __ leap(r8, Operand(rbx, times_pointer_size, kParameterMapHeaderSize));
    649   __ bind(&no_parameter_map);
    650 
    651   // 2. Backing store.
    652   __ leap(r8, Operand(r8, rcx, times_pointer_size, FixedArray::kHeaderSize));
    653 
    654   // 3. Arguments object.
    655   __ addp(r8, Immediate(Heap::kSloppyArgumentsObjectSize));
    656 
    657   // Do the allocation of all three objects in one go.
    658   __ Allocate(r8, rax, rdx, rdi, &runtime, TAG_OBJECT);
    659 
    660   // rax = address of new object(s) (tagged)
    661   // rcx = argument count (untagged)
    662   // Get the arguments map from the current native context into rdi.
    663   Label has_mapped_parameters, instantiate;
    664   __ movp(rdi, Operand(rsi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
    665   __ movp(rdi, FieldOperand(rdi, GlobalObject::kNativeContextOffset));
    666   __ testp(rbx, rbx);
    667   __ j(not_zero, &has_mapped_parameters, Label::kNear);
    668 
    669   const int kIndex = Context::SLOPPY_ARGUMENTS_MAP_INDEX;
    670   __ movp(rdi, Operand(rdi, Context::SlotOffset(kIndex)));
    671   __ jmp(&instantiate, Label::kNear);
    672 
    673   const int kAliasedIndex = Context::ALIASED_ARGUMENTS_MAP_INDEX;
    674   __ bind(&has_mapped_parameters);
    675   __ movp(rdi, Operand(rdi, Context::SlotOffset(kAliasedIndex)));
    676   __ bind(&instantiate);
    677 
    678   // rax = address of new object (tagged)
    679   // rbx = mapped parameter count (untagged)
    680   // rcx = argument count (untagged)
    681   // rdi = address of arguments map (tagged)
    682   __ movp(FieldOperand(rax, JSObject::kMapOffset), rdi);
    683   __ LoadRoot(kScratchRegister, Heap::kEmptyFixedArrayRootIndex);
    684   __ movp(FieldOperand(rax, JSObject::kPropertiesOffset), kScratchRegister);
    685   __ movp(FieldOperand(rax, JSObject::kElementsOffset), kScratchRegister);
    686 
    687   // Set up the callee in-object property.
    688   STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
    689   __ movp(rdx, args.GetArgumentOperand(0));
    690   __ AssertNotSmi(rdx);
    691   __ movp(FieldOperand(rax, JSObject::kHeaderSize +
    692                        Heap::kArgumentsCalleeIndex * kPointerSize),
    693           rdx);
    694 
    695   // Use the length (smi tagged) and set that as an in-object property too.
    696   // Note: rcx is tagged from here on.
    697   STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
    698   __ Integer32ToSmi(rcx, rcx);
    699   __ movp(FieldOperand(rax, JSObject::kHeaderSize +
    700                        Heap::kArgumentsLengthIndex * kPointerSize),
    701           rcx);
    702 
    703   // Set up the elements pointer in the allocated arguments object.
    704   // If we allocated a parameter map, edi will point there, otherwise to the
    705   // backing store.
    706   __ leap(rdi, Operand(rax, Heap::kSloppyArgumentsObjectSize));
    707   __ movp(FieldOperand(rax, JSObject::kElementsOffset), rdi);
    708 
    709   // rax = address of new object (tagged)
    710   // rbx = mapped parameter count (untagged)
    711   // rcx = argument count (tagged)
    712   // rdi = address of parameter map or backing store (tagged)
    713 
    714   // Initialize parameter map. If there are no mapped arguments, we're done.
    715   Label skip_parameter_map;
    716   __ testp(rbx, rbx);
    717   __ j(zero, &skip_parameter_map);
    718 
    719   __ LoadRoot(kScratchRegister, Heap::kSloppyArgumentsElementsMapRootIndex);
    720   // rbx contains the untagged argument count. Add 2 and tag to write.
    721   __ movp(FieldOperand(rdi, FixedArray::kMapOffset), kScratchRegister);
    722   __ Integer64PlusConstantToSmi(r9, rbx, 2);
    723   __ movp(FieldOperand(rdi, FixedArray::kLengthOffset), r9);
    724   __ movp(FieldOperand(rdi, FixedArray::kHeaderSize + 0 * kPointerSize), rsi);
    725   __ leap(r9, Operand(rdi, rbx, times_pointer_size, kParameterMapHeaderSize));
    726   __ movp(FieldOperand(rdi, FixedArray::kHeaderSize + 1 * kPointerSize), r9);
    727 
    728   // Copy the parameter slots and the holes in the arguments.
    729   // We need to fill in mapped_parameter_count slots. They index the context,
    730   // where parameters are stored in reverse order, at
    731   //   MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
    732   // The mapped parameter thus need to get indices
    733   //   MIN_CONTEXT_SLOTS+parameter_count-1 ..
    734   //       MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
    735   // We loop from right to left.
    736   Label parameters_loop, parameters_test;
    737 
    738   // Load tagged parameter count into r9.
    739   __ Integer32ToSmi(r9, rbx);
    740   __ Move(r8, Smi::FromInt(Context::MIN_CONTEXT_SLOTS));
    741   __ addp(r8, args.GetArgumentOperand(2));
    742   __ subp(r8, r9);
    743   __ Move(r11, factory->the_hole_value());
    744   __ movp(rdx, rdi);
    745   __ leap(rdi, Operand(rdi, rbx, times_pointer_size, kParameterMapHeaderSize));
    746   // r9 = loop variable (tagged)
    747   // r8 = mapping index (tagged)
    748   // r11 = the hole value
    749   // rdx = address of parameter map (tagged)
    750   // rdi = address of backing store (tagged)
    751   __ jmp(&parameters_test, Label::kNear);
    752 
    753   __ bind(&parameters_loop);
    754   __ SmiSubConstant(r9, r9, Smi::FromInt(1));
    755   __ SmiToInteger64(kScratchRegister, r9);
    756   __ movp(FieldOperand(rdx, kScratchRegister,
    757                        times_pointer_size,
    758                        kParameterMapHeaderSize),
    759           r8);
    760   __ movp(FieldOperand(rdi, kScratchRegister,
    761                        times_pointer_size,
    762                        FixedArray::kHeaderSize),
    763           r11);
    764   __ SmiAddConstant(r8, r8, Smi::FromInt(1));
    765   __ bind(&parameters_test);
    766   __ SmiTest(r9);
    767   __ j(not_zero, &parameters_loop, Label::kNear);
    768 
    769   __ bind(&skip_parameter_map);
    770 
    771   // rcx = argument count (tagged)
    772   // rdi = address of backing store (tagged)
    773   // Copy arguments header and remaining slots (if there are any).
    774   __ Move(FieldOperand(rdi, FixedArray::kMapOffset),
    775           factory->fixed_array_map());
    776   __ movp(FieldOperand(rdi, FixedArray::kLengthOffset), rcx);
    777 
    778   Label arguments_loop, arguments_test;
    779   __ movp(r8, rbx);
    780   __ movp(rdx, args.GetArgumentOperand(1));
    781   // Untag rcx for the loop below.
    782   __ SmiToInteger64(rcx, rcx);
    783   __ leap(kScratchRegister, Operand(r8, times_pointer_size, 0));
    784   __ subp(rdx, kScratchRegister);
    785   __ jmp(&arguments_test, Label::kNear);
    786 
    787   __ bind(&arguments_loop);
    788   __ subp(rdx, Immediate(kPointerSize));
    789   __ movp(r9, Operand(rdx, 0));
    790   __ movp(FieldOperand(rdi, r8,
    791                        times_pointer_size,
    792                        FixedArray::kHeaderSize),
    793           r9);
    794   __ addp(r8, Immediate(1));
    795 
    796   __ bind(&arguments_test);
    797   __ cmpp(r8, rcx);
    798   __ j(less, &arguments_loop, Label::kNear);
    799 
    800   // Return and remove the on-stack parameters.
    801   __ ret(3 * kPointerSize);
    802 
    803   // Do the runtime call to allocate the arguments object.
    804   // rcx = argument count (untagged)
    805   __ bind(&runtime);
    806   __ Integer32ToSmi(rcx, rcx);
    807   __ movp(args.GetArgumentOperand(2), rcx);  // Patch argument count.
    808   __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1);
    809 }
    810 
    811 
    812 void ArgumentsAccessStub::GenerateNewSloppySlow(MacroAssembler* masm) {
    813   // rsp[0]  : return address
    814   // rsp[8]  : number of parameters
    815   // rsp[16] : receiver displacement
    816   // rsp[24] : function
    817 
    818   // Check if the calling frame is an arguments adaptor frame.
    819   Label runtime;
    820   __ movp(rdx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
    821   __ movp(rcx, Operand(rdx, StandardFrameConstants::kContextOffset));
    822   __ Cmp(rcx, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
    823   __ j(not_equal, &runtime);
    824 
    825   // Patch the arguments.length and the parameters pointer.
    826   StackArgumentsAccessor args(rsp, 3, ARGUMENTS_DONT_CONTAIN_RECEIVER);
    827   __ movp(rcx, Operand(rdx, ArgumentsAdaptorFrameConstants::kLengthOffset));
    828   __ movp(args.GetArgumentOperand(2), rcx);
    829   __ SmiToInteger64(rcx, rcx);
    830   __ leap(rdx, Operand(rdx, rcx, times_pointer_size,
    831               StandardFrameConstants::kCallerSPOffset));
    832   __ movp(args.GetArgumentOperand(1), rdx);
    833 
    834   __ bind(&runtime);
    835   __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1);
    836 }
    837 
    838 
    839 void LoadIndexedInterceptorStub::Generate(MacroAssembler* masm) {
    840   // Return address is on the stack.
    841   Label slow;
    842 
    843   Register receiver = LoadDescriptor::ReceiverRegister();
    844   Register key = LoadDescriptor::NameRegister();
    845   Register scratch = rax;
    846   DCHECK(!scratch.is(receiver) && !scratch.is(key));
    847 
    848   // Check that the key is an array index, that is Uint32.
    849   STATIC_ASSERT(kSmiValueSize <= 32);
    850   __ JumpUnlessNonNegativeSmi(key, &slow);
    851 
    852   // Everything is fine, call runtime.
    853   __ PopReturnAddressTo(scratch);
    854   __ Push(receiver);  // receiver
    855   __ Push(key);       // key
    856   __ PushReturnAddressFrom(scratch);
    857 
    858   // Perform tail call to the entry.
    859   __ TailCallExternalReference(
    860       ExternalReference(IC_Utility(IC::kLoadElementWithInterceptor),
    861                         masm->isolate()),
    862       2, 1);
    863 
    864   __ bind(&slow);
    865   PropertyAccessCompiler::TailCallBuiltin(
    866       masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
    867 }
    868 
    869 
    870 void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) {
    871   // rsp[0]  : return address
    872   // rsp[8]  : number of parameters
    873   // rsp[16] : receiver displacement
    874   // rsp[24] : function
    875 
    876   // Check if the calling frame is an arguments adaptor frame.
    877   Label adaptor_frame, try_allocate, runtime;
    878   __ movp(rdx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
    879   __ movp(rcx, Operand(rdx, StandardFrameConstants::kContextOffset));
    880   __ Cmp(rcx, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
    881   __ j(equal, &adaptor_frame);
    882 
    883   // Get the length from the frame.
    884   StackArgumentsAccessor args(rsp, 3, ARGUMENTS_DONT_CONTAIN_RECEIVER);
    885   __ movp(rcx, args.GetArgumentOperand(2));
    886   __ SmiToInteger64(rcx, rcx);
    887   __ jmp(&try_allocate);
    888 
    889   // Patch the arguments.length and the parameters pointer.
    890   __ bind(&adaptor_frame);
    891   __ movp(rcx, Operand(rdx, ArgumentsAdaptorFrameConstants::kLengthOffset));
    892   __ movp(args.GetArgumentOperand(2), rcx);
    893   __ SmiToInteger64(rcx, rcx);
    894   __ leap(rdx, Operand(rdx, rcx, times_pointer_size,
    895                       StandardFrameConstants::kCallerSPOffset));
    896   __ movp(args.GetArgumentOperand(1), rdx);
    897 
    898   // Try the new space allocation. Start out with computing the size of
    899   // the arguments object and the elements array.
    900   Label add_arguments_object;
    901   __ bind(&try_allocate);
    902   __ testp(rcx, rcx);
    903   __ j(zero, &add_arguments_object, Label::kNear);
    904   __ leap(rcx, Operand(rcx, times_pointer_size, FixedArray::kHeaderSize));
    905   __ bind(&add_arguments_object);
    906   __ addp(rcx, Immediate(Heap::kStrictArgumentsObjectSize));
    907 
    908   // Do the allocation of both objects in one go.
    909   __ Allocate(rcx, rax, rdx, rbx, &runtime, TAG_OBJECT);
    910 
    911   // Get the arguments map from the current native context.
    912   __ movp(rdi, Operand(rsi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
    913   __ movp(rdi, FieldOperand(rdi, GlobalObject::kNativeContextOffset));
    914   const int offset = Context::SlotOffset(Context::STRICT_ARGUMENTS_MAP_INDEX);
    915   __ movp(rdi, Operand(rdi, offset));
    916 
    917   __ movp(FieldOperand(rax, JSObject::kMapOffset), rdi);
    918   __ LoadRoot(kScratchRegister, Heap::kEmptyFixedArrayRootIndex);
    919   __ movp(FieldOperand(rax, JSObject::kPropertiesOffset), kScratchRegister);
    920   __ movp(FieldOperand(rax, JSObject::kElementsOffset), kScratchRegister);
    921 
    922   // Get the length (smi tagged) and set that as an in-object property too.
    923   STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
    924   __ movp(rcx, args.GetArgumentOperand(2));
    925   __ movp(FieldOperand(rax, JSObject::kHeaderSize +
    926                        Heap::kArgumentsLengthIndex * kPointerSize),
    927           rcx);
    928 
    929   // If there are no actual arguments, we're done.
    930   Label done;
    931   __ testp(rcx, rcx);
    932   __ j(zero, &done);
    933 
    934   // Get the parameters pointer from the stack.
    935   __ movp(rdx, args.GetArgumentOperand(1));
    936 
    937   // Set up the elements pointer in the allocated arguments object and
    938   // initialize the header in the elements fixed array.
    939   __ leap(rdi, Operand(rax, Heap::kStrictArgumentsObjectSize));
    940   __ movp(FieldOperand(rax, JSObject::kElementsOffset), rdi);
    941   __ LoadRoot(kScratchRegister, Heap::kFixedArrayMapRootIndex);
    942   __ movp(FieldOperand(rdi, FixedArray::kMapOffset), kScratchRegister);
    943 
    944 
    945   __ movp(FieldOperand(rdi, FixedArray::kLengthOffset), rcx);
    946   // Untag the length for the loop below.
    947   __ SmiToInteger64(rcx, rcx);
    948 
    949   // Copy the fixed array slots.
    950   Label loop;
    951   __ bind(&loop);
    952   __ movp(rbx, Operand(rdx, -1 * kPointerSize));  // Skip receiver.
    953   __ movp(FieldOperand(rdi, FixedArray::kHeaderSize), rbx);
    954   __ addp(rdi, Immediate(kPointerSize));
    955   __ subp(rdx, Immediate(kPointerSize));
    956   __ decp(rcx);
    957   __ j(not_zero, &loop);
    958 
    959   // Return and remove the on-stack parameters.
    960   __ bind(&done);
    961   __ ret(3 * kPointerSize);
    962 
    963   // Do the runtime call to allocate the arguments object.
    964   __ bind(&runtime);
    965   __ TailCallRuntime(Runtime::kNewStrictArguments, 3, 1);
    966 }
    967 
    968 
    969 void RegExpExecStub::Generate(MacroAssembler* masm) {
    970   // Just jump directly to runtime if native RegExp is not selected at compile
    971   // time or if regexp entry in generated code is turned off runtime switch or
    972   // at compilation.
    973 #ifdef V8_INTERPRETED_REGEXP
    974   __ TailCallRuntime(Runtime::kRegExpExecRT, 4, 1);
    975 #else  // V8_INTERPRETED_REGEXP
    976 
    977   // Stack frame on entry.
    978   //  rsp[0]  : return address
    979   //  rsp[8]  : last_match_info (expected JSArray)
    980   //  rsp[16] : previous index
    981   //  rsp[24] : subject string
    982   //  rsp[32] : JSRegExp object
    983 
    984   enum RegExpExecStubArgumentIndices {
    985     JS_REG_EXP_OBJECT_ARGUMENT_INDEX,
    986     SUBJECT_STRING_ARGUMENT_INDEX,
    987     PREVIOUS_INDEX_ARGUMENT_INDEX,
    988     LAST_MATCH_INFO_ARGUMENT_INDEX,
    989     REG_EXP_EXEC_ARGUMENT_COUNT
    990   };
    991 
    992   StackArgumentsAccessor args(rsp, REG_EXP_EXEC_ARGUMENT_COUNT,
    993                               ARGUMENTS_DONT_CONTAIN_RECEIVER);
    994   Label runtime;
    995   // Ensure that a RegExp stack is allocated.
    996   ExternalReference address_of_regexp_stack_memory_address =
    997       ExternalReference::address_of_regexp_stack_memory_address(isolate());
    998   ExternalReference address_of_regexp_stack_memory_size =
    999       ExternalReference::address_of_regexp_stack_memory_size(isolate());
   1000   __ Load(kScratchRegister, address_of_regexp_stack_memory_size);
   1001   __ testp(kScratchRegister, kScratchRegister);
   1002   __ j(zero, &runtime);
   1003 
   1004   // Check that the first argument is a JSRegExp object.
   1005   __ movp(rax, args.GetArgumentOperand(JS_REG_EXP_OBJECT_ARGUMENT_INDEX));
   1006   __ JumpIfSmi(rax, &runtime);
   1007   __ CmpObjectType(rax, JS_REGEXP_TYPE, kScratchRegister);
   1008   __ j(not_equal, &runtime);
   1009 
   1010   // Check that the RegExp has been compiled (data contains a fixed array).
   1011   __ movp(rax, FieldOperand(rax, JSRegExp::kDataOffset));
   1012   if (FLAG_debug_code) {
   1013     Condition is_smi = masm->CheckSmi(rax);
   1014     __ Check(NegateCondition(is_smi),
   1015         kUnexpectedTypeForRegExpDataFixedArrayExpected);
   1016     __ CmpObjectType(rax, FIXED_ARRAY_TYPE, kScratchRegister);
   1017     __ Check(equal, kUnexpectedTypeForRegExpDataFixedArrayExpected);
   1018   }
   1019 
   1020   // rax: RegExp data (FixedArray)
   1021   // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
   1022   __ SmiToInteger32(rbx, FieldOperand(rax, JSRegExp::kDataTagOffset));
   1023   __ cmpl(rbx, Immediate(JSRegExp::IRREGEXP));
   1024   __ j(not_equal, &runtime);
   1025 
   1026   // rax: RegExp data (FixedArray)
   1027   // Check that the number of captures fit in the static offsets vector buffer.
   1028   __ SmiToInteger32(rdx,
   1029                     FieldOperand(rax, JSRegExp::kIrregexpCaptureCountOffset));
   1030   // Check (number_of_captures + 1) * 2 <= offsets vector size
   1031   // Or              number_of_captures <= offsets vector size / 2 - 1
   1032   STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
   1033   __ cmpl(rdx, Immediate(Isolate::kJSRegexpStaticOffsetsVectorSize / 2 - 1));
   1034   __ j(above, &runtime);
   1035 
   1036   // Reset offset for possibly sliced string.
   1037   __ Set(r14, 0);
   1038   __ movp(rdi, args.GetArgumentOperand(SUBJECT_STRING_ARGUMENT_INDEX));
   1039   __ JumpIfSmi(rdi, &runtime);
   1040   __ movp(r15, rdi);  // Make a copy of the original subject string.
   1041   __ movp(rbx, FieldOperand(rdi, HeapObject::kMapOffset));
   1042   __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset));
   1043   // rax: RegExp data (FixedArray)
   1044   // rdi: subject string
   1045   // r15: subject string
   1046   // Handle subject string according to its encoding and representation:
   1047   // (1) Sequential two byte?  If yes, go to (9).
   1048   // (2) Sequential one byte?  If yes, go to (6).
   1049   // (3) Anything but sequential or cons?  If yes, go to (7).
   1050   // (4) Cons string.  If the string is flat, replace subject with first string.
   1051   //     Otherwise bailout.
   1052   // (5a) Is subject sequential two byte?  If yes, go to (9).
   1053   // (5b) Is subject external?  If yes, go to (8).
   1054   // (6) One byte sequential.  Load regexp code for one byte.
   1055   // (E) Carry on.
   1056   /// [...]
   1057 
   1058   // Deferred code at the end of the stub:
   1059   // (7) Not a long external string?  If yes, go to (10).
   1060   // (8) External string.  Make it, offset-wise, look like a sequential string.
   1061   // (8a) Is the external string one byte?  If yes, go to (6).
   1062   // (9) Two byte sequential.  Load regexp code for one byte. Go to (E).
   1063   // (10) Short external string or not a string?  If yes, bail out to runtime.
   1064   // (11) Sliced string.  Replace subject with parent. Go to (5a).
   1065 
   1066   Label seq_one_byte_string /* 6 */, seq_two_byte_string /* 9 */,
   1067         external_string /* 8 */, check_underlying /* 5a */,
   1068         not_seq_nor_cons /* 7 */, check_code /* E */,
   1069         not_long_external /* 10 */;
   1070 
   1071   // (1) Sequential two byte?  If yes, go to (9).
   1072   __ andb(rbx, Immediate(kIsNotStringMask |
   1073                          kStringRepresentationMask |
   1074                          kStringEncodingMask |
   1075                          kShortExternalStringMask));
   1076   STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0);
   1077   __ j(zero, &seq_two_byte_string);  // Go to (9).
   1078 
   1079   // (2) Sequential one byte?  If yes, go to (6).
   1080   // Any other sequential string must be one byte.
   1081   __ andb(rbx, Immediate(kIsNotStringMask |
   1082                          kStringRepresentationMask |
   1083                          kShortExternalStringMask));
   1084   __ j(zero, &seq_one_byte_string, Label::kNear);  // Go to (6).
   1085 
   1086   // (3) Anything but sequential or cons?  If yes, go to (7).
   1087   // We check whether the subject string is a cons, since sequential strings
   1088   // have already been covered.
   1089   STATIC_ASSERT(kConsStringTag < kExternalStringTag);
   1090   STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
   1091   STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
   1092   STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
   1093   __ cmpp(rbx, Immediate(kExternalStringTag));
   1094   __ j(greater_equal, &not_seq_nor_cons);  // Go to (7).
   1095 
   1096   // (4) Cons string.  Check that it's flat.
   1097   // Replace subject with first string and reload instance type.
   1098   __ CompareRoot(FieldOperand(rdi, ConsString::kSecondOffset),
   1099                  Heap::kempty_stringRootIndex);
   1100   __ j(not_equal, &runtime);
   1101   __ movp(rdi, FieldOperand(rdi, ConsString::kFirstOffset));
   1102   __ bind(&check_underlying);
   1103   __ movp(rbx, FieldOperand(rdi, HeapObject::kMapOffset));
   1104   __ movp(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset));
   1105 
   1106   // (5a) Is subject sequential two byte?  If yes, go to (9).
   1107   __ testb(rbx, Immediate(kStringRepresentationMask | kStringEncodingMask));
   1108   STATIC_ASSERT((kSeqStringTag | kTwoByteStringTag) == 0);
   1109   __ j(zero, &seq_two_byte_string);  // Go to (9).
   1110   // (5b) Is subject external?  If yes, go to (8).
   1111   __ testb(rbx, Immediate(kStringRepresentationMask));
   1112   // The underlying external string is never a short external string.
   1113   STATIC_ASSERT(ExternalString::kMaxShortLength < ConsString::kMinLength);
   1114   STATIC_ASSERT(ExternalString::kMaxShortLength < SlicedString::kMinLength);
   1115   __ j(not_zero, &external_string);  // Go to (8)
   1116 
   1117   // (6) One byte sequential.  Load regexp code for one byte.
   1118   __ bind(&seq_one_byte_string);
   1119   // rax: RegExp data (FixedArray)
   1120   __ movp(r11, FieldOperand(rax, JSRegExp::kDataOneByteCodeOffset));
   1121   __ Set(rcx, 1);  // Type is one byte.
   1122 
   1123   // (E) Carry on.  String handling is done.
   1124   __ bind(&check_code);
   1125   // r11: irregexp code
   1126   // Check that the irregexp code has been generated for the actual string
   1127   // encoding. If it has, the field contains a code object otherwise it contains
   1128   // smi (code flushing support)
   1129   __ JumpIfSmi(r11, &runtime);
   1130 
   1131   // rdi: sequential subject string (or look-alike, external string)
   1132   // r15: original subject string
   1133   // rcx: encoding of subject string (1 if one_byte, 0 if two_byte);
   1134   // r11: code
   1135   // Load used arguments before starting to push arguments for call to native
   1136   // RegExp code to avoid handling changing stack height.
   1137   // We have to use r15 instead of rdi to load the length because rdi might
   1138   // have been only made to look like a sequential string when it actually
   1139   // is an external string.
   1140   __ movp(rbx, args.GetArgumentOperand(PREVIOUS_INDEX_ARGUMENT_INDEX));
   1141   __ JumpIfNotSmi(rbx, &runtime);
   1142   __ SmiCompare(rbx, FieldOperand(r15, String::kLengthOffset));
   1143   __ j(above_equal, &runtime);
   1144   __ SmiToInteger64(rbx, rbx);
   1145 
   1146   // rdi: subject string
   1147   // rbx: previous index
   1148   // rcx: encoding of subject string (1 if one_byte 0 if two_byte);
   1149   // r11: code
   1150   // All checks done. Now push arguments for native regexp code.
   1151   Counters* counters = isolate()->counters();
   1152   __ IncrementCounter(counters->regexp_entry_native(), 1);
   1153 
   1154   // Isolates: note we add an additional parameter here (isolate pointer).
   1155   static const int kRegExpExecuteArguments = 9;
   1156   int argument_slots_on_stack =
   1157       masm->ArgumentStackSlotsForCFunctionCall(kRegExpExecuteArguments);
   1158   __ EnterApiExitFrame(argument_slots_on_stack);
   1159 
   1160   // Argument 9: Pass current isolate address.
   1161   __ LoadAddress(kScratchRegister,
   1162                  ExternalReference::isolate_address(isolate()));
   1163   __ movq(Operand(rsp, (argument_slots_on_stack - 1) * kRegisterSize),
   1164           kScratchRegister);
   1165 
   1166   // Argument 8: Indicate that this is a direct call from JavaScript.
   1167   __ movq(Operand(rsp, (argument_slots_on_stack - 2) * kRegisterSize),
   1168           Immediate(1));
   1169 
   1170   // Argument 7: Start (high end) of backtracking stack memory area.
   1171   __ Move(kScratchRegister, address_of_regexp_stack_memory_address);
   1172   __ movp(r9, Operand(kScratchRegister, 0));
   1173   __ Move(kScratchRegister, address_of_regexp_stack_memory_size);
   1174   __ addp(r9, Operand(kScratchRegister, 0));
   1175   __ movq(Operand(rsp, (argument_slots_on_stack - 3) * kRegisterSize), r9);
   1176 
   1177   // Argument 6: Set the number of capture registers to zero to force global
   1178   // regexps to behave as non-global.  This does not affect non-global regexps.
   1179   // Argument 6 is passed in r9 on Linux and on the stack on Windows.
   1180 #ifdef _WIN64
   1181   __ movq(Operand(rsp, (argument_slots_on_stack - 4) * kRegisterSize),
   1182           Immediate(0));
   1183 #else
   1184   __ Set(r9, 0);
   1185 #endif
   1186 
   1187   // Argument 5: static offsets vector buffer.
   1188   __ LoadAddress(
   1189       r8, ExternalReference::address_of_static_offsets_vector(isolate()));
   1190   // Argument 5 passed in r8 on Linux and on the stack on Windows.
   1191 #ifdef _WIN64
   1192   __ movq(Operand(rsp, (argument_slots_on_stack - 5) * kRegisterSize), r8);
   1193 #endif
   1194 
   1195   // rdi: subject string
   1196   // rbx: previous index
   1197   // rcx: encoding of subject string (1 if one_byte 0 if two_byte);
   1198   // r11: code
   1199   // r14: slice offset
   1200   // r15: original subject string
   1201 
   1202   // Argument 2: Previous index.
   1203   __ movp(arg_reg_2, rbx);
   1204 
   1205   // Argument 4: End of string data
   1206   // Argument 3: Start of string data
   1207   Label setup_two_byte, setup_rest, got_length, length_not_from_slice;
   1208   // Prepare start and end index of the input.
   1209   // Load the length from the original sliced string if that is the case.
   1210   __ addp(rbx, r14);
   1211   __ SmiToInteger32(arg_reg_3, FieldOperand(r15, String::kLengthOffset));
   1212   __ addp(r14, arg_reg_3);  // Using arg3 as scratch.
   1213 
   1214   // rbx: start index of the input
   1215   // r14: end index of the input
   1216   // r15: original subject string
   1217   __ testb(rcx, rcx);  // Last use of rcx as encoding of subject string.
   1218   __ j(zero, &setup_two_byte, Label::kNear);
   1219   __ leap(arg_reg_4,
   1220          FieldOperand(rdi, r14, times_1, SeqOneByteString::kHeaderSize));
   1221   __ leap(arg_reg_3,
   1222          FieldOperand(rdi, rbx, times_1, SeqOneByteString::kHeaderSize));
   1223   __ jmp(&setup_rest, Label::kNear);
   1224   __ bind(&setup_two_byte);
   1225   __ leap(arg_reg_4,
   1226          FieldOperand(rdi, r14, times_2, SeqTwoByteString::kHeaderSize));
   1227   __ leap(arg_reg_3,
   1228          FieldOperand(rdi, rbx, times_2, SeqTwoByteString::kHeaderSize));
   1229   __ bind(&setup_rest);
   1230 
   1231   // Argument 1: Original subject string.
   1232   // The original subject is in the previous stack frame. Therefore we have to
   1233   // use rbp, which points exactly to one pointer size below the previous rsp.
   1234   // (Because creating a new stack frame pushes the previous rbp onto the stack
   1235   // and thereby moves up rsp by one kPointerSize.)
   1236   __ movp(arg_reg_1, r15);
   1237 
   1238   // Locate the code entry and call it.
   1239   __ addp(r11, Immediate(Code::kHeaderSize - kHeapObjectTag));
   1240   __ call(r11);
   1241 
   1242   __ LeaveApiExitFrame(true);
   1243 
   1244   // Check the result.
   1245   Label success;
   1246   Label exception;
   1247   __ cmpl(rax, Immediate(1));
   1248   // We expect exactly one result since we force the called regexp to behave
   1249   // as non-global.
   1250   __ j(equal, &success, Label::kNear);
   1251   __ cmpl(rax, Immediate(NativeRegExpMacroAssembler::EXCEPTION));
   1252   __ j(equal, &exception);
   1253   __ cmpl(rax, Immediate(NativeRegExpMacroAssembler::FAILURE));
   1254   // If none of the above, it can only be retry.
   1255   // Handle that in the runtime system.
   1256   __ j(not_equal, &runtime);
   1257 
   1258   // For failure return null.
   1259   __ LoadRoot(rax, Heap::kNullValueRootIndex);
   1260   __ ret(REG_EXP_EXEC_ARGUMENT_COUNT * kPointerSize);
   1261 
   1262   // Load RegExp data.
   1263   __ bind(&success);
   1264   __ movp(rax, args.GetArgumentOperand(JS_REG_EXP_OBJECT_ARGUMENT_INDEX));
   1265   __ movp(rcx, FieldOperand(rax, JSRegExp::kDataOffset));
   1266   __ SmiToInteger32(rax,
   1267                     FieldOperand(rcx, JSRegExp::kIrregexpCaptureCountOffset));
   1268   // Calculate number of capture registers (number_of_captures + 1) * 2.
   1269   __ leal(rdx, Operand(rax, rax, times_1, 2));
   1270 
   1271   // rdx: Number of capture registers
   1272   // Check that the fourth object is a JSArray object.
   1273   __ movp(r15, args.GetArgumentOperand(LAST_MATCH_INFO_ARGUMENT_INDEX));
   1274   __ JumpIfSmi(r15, &runtime);
   1275   __ CmpObjectType(r15, JS_ARRAY_TYPE, kScratchRegister);
   1276   __ j(not_equal, &runtime);
   1277   // Check that the JSArray is in fast case.
   1278   __ movp(rbx, FieldOperand(r15, JSArray::kElementsOffset));
   1279   __ movp(rax, FieldOperand(rbx, HeapObject::kMapOffset));
   1280   __ CompareRoot(rax, Heap::kFixedArrayMapRootIndex);
   1281   __ j(not_equal, &runtime);
   1282   // Check that the last match info has space for the capture registers and the
   1283   // additional information. Ensure no overflow in add.
   1284   STATIC_ASSERT(FixedArray::kMaxLength < kMaxInt - FixedArray::kLengthOffset);
   1285   __ SmiToInteger32(rax, FieldOperand(rbx, FixedArray::kLengthOffset));
   1286   __ subl(rax, Immediate(RegExpImpl::kLastMatchOverhead));
   1287   __ cmpl(rdx, rax);
   1288   __ j(greater, &runtime);
   1289 
   1290   // rbx: last_match_info backing store (FixedArray)
   1291   // rdx: number of capture registers
   1292   // Store the capture count.
   1293   __ Integer32ToSmi(kScratchRegister, rdx);
   1294   __ movp(FieldOperand(rbx, RegExpImpl::kLastCaptureCountOffset),
   1295           kScratchRegister);
   1296   // Store last subject and last input.
   1297   __ movp(rax, args.GetArgumentOperand(SUBJECT_STRING_ARGUMENT_INDEX));
   1298   __ movp(FieldOperand(rbx, RegExpImpl::kLastSubjectOffset), rax);
   1299   __ movp(rcx, rax);
   1300   __ RecordWriteField(rbx,
   1301                       RegExpImpl::kLastSubjectOffset,
   1302                       rax,
   1303                       rdi,
   1304                       kDontSaveFPRegs);
   1305   __ movp(rax, rcx);
   1306   __ movp(FieldOperand(rbx, RegExpImpl::kLastInputOffset), rax);
   1307   __ RecordWriteField(rbx,
   1308                       RegExpImpl::kLastInputOffset,
   1309                       rax,
   1310                       rdi,
   1311                       kDontSaveFPRegs);
   1312 
   1313   // Get the static offsets vector filled by the native regexp code.
   1314   __ LoadAddress(
   1315       rcx, ExternalReference::address_of_static_offsets_vector(isolate()));
   1316 
   1317   // rbx: last_match_info backing store (FixedArray)
   1318   // rcx: offsets vector
   1319   // rdx: number of capture registers
   1320   Label next_capture, done;
   1321   // Capture register counter starts from number of capture registers and
   1322   // counts down until wraping after zero.
   1323   __ bind(&next_capture);
   1324   __ subp(rdx, Immediate(1));
   1325   __ j(negative, &done, Label::kNear);
   1326   // Read the value from the static offsets vector buffer and make it a smi.
   1327   __ movl(rdi, Operand(rcx, rdx, times_int_size, 0));
   1328   __ Integer32ToSmi(rdi, rdi);
   1329   // Store the smi value in the last match info.
   1330   __ movp(FieldOperand(rbx,
   1331                        rdx,
   1332                        times_pointer_size,
   1333                        RegExpImpl::kFirstCaptureOffset),
   1334           rdi);
   1335   __ jmp(&next_capture);
   1336   __ bind(&done);
   1337 
   1338   // Return last match info.
   1339   __ movp(rax, r15);
   1340   __ ret(REG_EXP_EXEC_ARGUMENT_COUNT * kPointerSize);
   1341 
   1342   __ bind(&exception);
   1343   // Result must now be exception. If there is no pending exception already a
   1344   // stack overflow (on the backtrack stack) was detected in RegExp code but
   1345   // haven't created the exception yet. Handle that in the runtime system.
   1346   // TODO(592): Rerunning the RegExp to get the stack overflow exception.
   1347   ExternalReference pending_exception_address(
   1348       Isolate::kPendingExceptionAddress, isolate());
   1349   Operand pending_exception_operand =
   1350       masm->ExternalOperand(pending_exception_address, rbx);
   1351   __ movp(rax, pending_exception_operand);
   1352   __ LoadRoot(rdx, Heap::kTheHoleValueRootIndex);
   1353   __ cmpp(rax, rdx);
   1354   __ j(equal, &runtime);
   1355   __ movp(pending_exception_operand, rdx);
   1356 
   1357   __ CompareRoot(rax, Heap::kTerminationExceptionRootIndex);
   1358   Label termination_exception;
   1359   __ j(equal, &termination_exception, Label::kNear);
   1360   __ Throw(rax);
   1361 
   1362   __ bind(&termination_exception);
   1363   __ ThrowUncatchable(rax);
   1364 
   1365   // Do the runtime call to execute the regexp.
   1366   __ bind(&runtime);
   1367   __ TailCallRuntime(Runtime::kRegExpExecRT, 4, 1);
   1368 
   1369   // Deferred code for string handling.
   1370   // (7) Not a long external string?  If yes, go to (10).
   1371   __ bind(&not_seq_nor_cons);
   1372   // Compare flags are still set from (3).
   1373   __ j(greater, &not_long_external, Label::kNear);  // Go to (10).
   1374 
   1375   // (8) External string.  Short external strings have been ruled out.
   1376   __ bind(&external_string);
   1377   __ movp(rbx, FieldOperand(rdi, HeapObject::kMapOffset));
   1378   __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset));
   1379   if (FLAG_debug_code) {
   1380     // Assert that we do not have a cons or slice (indirect strings) here.
   1381     // Sequential strings have already been ruled out.
   1382     __ testb(rbx, Immediate(kIsIndirectStringMask));
   1383     __ Assert(zero, kExternalStringExpectedButNotFound);
   1384   }
   1385   __ movp(rdi, FieldOperand(rdi, ExternalString::kResourceDataOffset));
   1386   // Move the pointer so that offset-wise, it looks like a sequential string.
   1387   STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
   1388   __ subp(rdi, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
   1389   STATIC_ASSERT(kTwoByteStringTag == 0);
   1390   // (8a) Is the external string one byte?  If yes, go to (6).
   1391   __ testb(rbx, Immediate(kStringEncodingMask));
   1392   __ j(not_zero, &seq_one_byte_string);  // Goto (6).
   1393 
   1394   // rdi: subject string (flat two-byte)
   1395   // rax: RegExp data (FixedArray)
   1396   // (9) Two byte sequential.  Load regexp code for one byte.  Go to (E).
   1397   __ bind(&seq_two_byte_string);
   1398   __ movp(r11, FieldOperand(rax, JSRegExp::kDataUC16CodeOffset));
   1399   __ Set(rcx, 0);  // Type is two byte.
   1400   __ jmp(&check_code);  // Go to (E).
   1401 
   1402   // (10) Not a string or a short external string?  If yes, bail out to runtime.
   1403   __ bind(&not_long_external);
   1404   // Catch non-string subject or short external string.
   1405   STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
   1406   __ testb(rbx, Immediate(kIsNotStringMask | kShortExternalStringMask));
   1407   __ j(not_zero, &runtime);
   1408 
   1409   // (11) Sliced string.  Replace subject with parent. Go to (5a).
   1410   // Load offset into r14 and replace subject string with parent.
   1411   __ SmiToInteger32(r14, FieldOperand(rdi, SlicedString::kOffsetOffset));
   1412   __ movp(rdi, FieldOperand(rdi, SlicedString::kParentOffset));
   1413   __ jmp(&check_underlying);
   1414 #endif  // V8_INTERPRETED_REGEXP
   1415 }
   1416 
   1417 
   1418 static int NegativeComparisonResult(Condition cc) {
   1419   DCHECK(cc != equal);
   1420   DCHECK((cc == less) || (cc == less_equal)
   1421       || (cc == greater) || (cc == greater_equal));
   1422   return (cc == greater || cc == greater_equal) ? LESS : GREATER;
   1423 }
   1424 
   1425 
   1426 static void CheckInputType(MacroAssembler* masm, Register input,
   1427                            CompareICState::State expected, Label* fail) {
   1428   Label ok;
   1429   if (expected == CompareICState::SMI) {
   1430     __ JumpIfNotSmi(input, fail);
   1431   } else if (expected == CompareICState::NUMBER) {
   1432     __ JumpIfSmi(input, &ok);
   1433     __ CompareMap(input, masm->isolate()->factory()->heap_number_map());
   1434     __ j(not_equal, fail);
   1435   }
   1436   // We could be strict about internalized/non-internalized here, but as long as
   1437   // hydrogen doesn't care, the stub doesn't have to care either.
   1438   __ bind(&ok);
   1439 }
   1440 
   1441 
   1442 static void BranchIfNotInternalizedString(MacroAssembler* masm,
   1443                                           Label* label,
   1444                                           Register object,
   1445                                           Register scratch) {
   1446   __ JumpIfSmi(object, label);
   1447   __ movp(scratch, FieldOperand(object, HeapObject::kMapOffset));
   1448   __ movzxbp(scratch,
   1449              FieldOperand(scratch, Map::kInstanceTypeOffset));
   1450   STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
   1451   __ testb(scratch, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
   1452   __ j(not_zero, label);
   1453 }
   1454 
   1455 
   1456 void CompareICStub::GenerateGeneric(MacroAssembler* masm) {
   1457   Label check_unequal_objects, done;
   1458   Condition cc = GetCondition();
   1459   Factory* factory = isolate()->factory();
   1460 
   1461   Label miss;
   1462   CheckInputType(masm, rdx, left(), &miss);
   1463   CheckInputType(masm, rax, right(), &miss);
   1464 
   1465   // Compare two smis.
   1466   Label non_smi, smi_done;
   1467   __ JumpIfNotBothSmi(rax, rdx, &non_smi);
   1468   __ subp(rdx, rax);
   1469   __ j(no_overflow, &smi_done);
   1470   __ notp(rdx);  // Correct sign in case of overflow. rdx cannot be 0 here.
   1471   __ bind(&smi_done);
   1472   __ movp(rax, rdx);
   1473   __ ret(0);
   1474   __ bind(&non_smi);
   1475 
   1476   // The compare stub returns a positive, negative, or zero 64-bit integer
   1477   // value in rax, corresponding to result of comparing the two inputs.
   1478   // NOTICE! This code is only reached after a smi-fast-case check, so
   1479   // it is certain that at least one operand isn't a smi.
   1480 
   1481   // Two identical objects are equal unless they are both NaN or undefined.
   1482   {
   1483     Label not_identical;
   1484     __ cmpp(rax, rdx);
   1485     __ j(not_equal, &not_identical, Label::kNear);
   1486 
   1487     if (cc != equal) {
   1488       // Check for undefined.  undefined OP undefined is false even though
   1489       // undefined == undefined.
   1490       Label check_for_nan;
   1491       __ CompareRoot(rdx, Heap::kUndefinedValueRootIndex);
   1492       __ j(not_equal, &check_for_nan, Label::kNear);
   1493       __ Set(rax, NegativeComparisonResult(cc));
   1494       __ ret(0);
   1495       __ bind(&check_for_nan);
   1496     }
   1497 
   1498     // Test for NaN. Sadly, we can't just compare to Factory::nan_value(),
   1499     // so we do the second best thing - test it ourselves.
   1500     Label heap_number;
   1501     // If it's not a heap number, then return equal for (in)equality operator.
   1502     __ Cmp(FieldOperand(rdx, HeapObject::kMapOffset),
   1503            factory->heap_number_map());
   1504     __ j(equal, &heap_number, Label::kNear);
   1505     if (cc != equal) {
   1506       // Call runtime on identical objects.  Otherwise return equal.
   1507       __ CmpObjectType(rax, FIRST_SPEC_OBJECT_TYPE, rcx);
   1508       __ j(above_equal, &not_identical, Label::kNear);
   1509     }
   1510     __ Set(rax, EQUAL);
   1511     __ ret(0);
   1512 
   1513     __ bind(&heap_number);
   1514     // It is a heap number, so return  equal if it's not NaN.
   1515     // For NaN, return 1 for every condition except greater and
   1516     // greater-equal.  Return -1 for them, so the comparison yields
   1517     // false for all conditions except not-equal.
   1518     __ Set(rax, EQUAL);
   1519     __ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset));
   1520     __ ucomisd(xmm0, xmm0);
   1521     __ setcc(parity_even, rax);
   1522     // rax is 0 for equal non-NaN heapnumbers, 1 for NaNs.
   1523     if (cc == greater_equal || cc == greater) {
   1524       __ negp(rax);
   1525     }
   1526     __ ret(0);
   1527 
   1528     __ bind(&not_identical);
   1529   }
   1530 
   1531   if (cc == equal) {  // Both strict and non-strict.
   1532     Label slow;  // Fallthrough label.
   1533 
   1534     // If we're doing a strict equality comparison, we don't have to do
   1535     // type conversion, so we generate code to do fast comparison for objects
   1536     // and oddballs. Non-smi numbers and strings still go through the usual
   1537     // slow-case code.
   1538     if (strict()) {
   1539       // If either is a Smi (we know that not both are), then they can only
   1540       // be equal if the other is a HeapNumber. If so, use the slow case.
   1541       {
   1542         Label not_smis;
   1543         __ SelectNonSmi(rbx, rax, rdx, &not_smis);
   1544 
   1545         // Check if the non-smi operand is a heap number.
   1546         __ Cmp(FieldOperand(rbx, HeapObject::kMapOffset),
   1547                factory->heap_number_map());
   1548         // If heap number, handle it in the slow case.
   1549         __ j(equal, &slow);
   1550         // Return non-equal.  ebx (the lower half of rbx) is not zero.
   1551         __ movp(rax, rbx);
   1552         __ ret(0);
   1553 
   1554         __ bind(&not_smis);
   1555       }
   1556 
   1557       // If either operand is a JSObject or an oddball value, then they are not
   1558       // equal since their pointers are different
   1559       // There is no test for undetectability in strict equality.
   1560 
   1561       // If the first object is a JS object, we have done pointer comparison.
   1562       STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE);
   1563       Label first_non_object;
   1564       __ CmpObjectType(rax, FIRST_SPEC_OBJECT_TYPE, rcx);
   1565       __ j(below, &first_non_object, Label::kNear);
   1566       // Return non-zero (rax (not rax) is not zero)
   1567       Label return_not_equal;
   1568       STATIC_ASSERT(kHeapObjectTag != 0);
   1569       __ bind(&return_not_equal);
   1570       __ ret(0);
   1571 
   1572       __ bind(&first_non_object);
   1573       // Check for oddballs: true, false, null, undefined.
   1574       __ CmpInstanceType(rcx, ODDBALL_TYPE);
   1575       __ j(equal, &return_not_equal);
   1576 
   1577       __ CmpObjectType(rdx, FIRST_SPEC_OBJECT_TYPE, rcx);
   1578       __ j(above_equal, &return_not_equal);
   1579 
   1580       // Check for oddballs: true, false, null, undefined.
   1581       __ CmpInstanceType(rcx, ODDBALL_TYPE);
   1582       __ j(equal, &return_not_equal);
   1583 
   1584       // Fall through to the general case.
   1585     }
   1586     __ bind(&slow);
   1587   }
   1588 
   1589   // Generate the number comparison code.
   1590   Label non_number_comparison;
   1591   Label unordered;
   1592   FloatingPointHelper::LoadSSE2UnknownOperands(masm, &non_number_comparison);
   1593   __ xorl(rax, rax);
   1594   __ xorl(rcx, rcx);
   1595   __ ucomisd(xmm0, xmm1);
   1596 
   1597   // Don't base result on EFLAGS when a NaN is involved.
   1598   __ j(parity_even, &unordered, Label::kNear);
   1599   // Return a result of -1, 0, or 1, based on EFLAGS.
   1600   __ setcc(above, rax);
   1601   __ setcc(below, rcx);
   1602   __ subp(rax, rcx);
   1603   __ ret(0);
   1604 
   1605   // If one of the numbers was NaN, then the result is always false.
   1606   // The cc is never not-equal.
   1607   __ bind(&unordered);
   1608   DCHECK(cc != not_equal);
   1609   if (cc == less || cc == less_equal) {
   1610     __ Set(rax, 1);
   1611   } else {
   1612     __ Set(rax, -1);
   1613   }
   1614   __ ret(0);
   1615 
   1616   // The number comparison code did not provide a valid result.
   1617   __ bind(&non_number_comparison);
   1618 
   1619   // Fast negative check for internalized-to-internalized equality.
   1620   Label check_for_strings;
   1621   if (cc == equal) {
   1622     BranchIfNotInternalizedString(
   1623         masm, &check_for_strings, rax, kScratchRegister);
   1624     BranchIfNotInternalizedString(
   1625         masm, &check_for_strings, rdx, kScratchRegister);
   1626 
   1627     // We've already checked for object identity, so if both operands are
   1628     // internalized strings they aren't equal. Register rax (not rax) already
   1629     // holds a non-zero value, which indicates not equal, so just return.
   1630     __ ret(0);
   1631   }
   1632 
   1633   __ bind(&check_for_strings);
   1634 
   1635   __ JumpIfNotBothSequentialOneByteStrings(rdx, rax, rcx, rbx,
   1636                                            &check_unequal_objects);
   1637 
   1638   // Inline comparison of one-byte strings.
   1639   if (cc == equal) {
   1640     StringHelper::GenerateFlatOneByteStringEquals(masm, rdx, rax, rcx, rbx);
   1641   } else {
   1642     StringHelper::GenerateCompareFlatOneByteStrings(masm, rdx, rax, rcx, rbx,
   1643                                                     rdi, r8);
   1644   }
   1645 
   1646 #ifdef DEBUG
   1647   __ Abort(kUnexpectedFallThroughFromStringComparison);
   1648 #endif
   1649 
   1650   __ bind(&check_unequal_objects);
   1651   if (cc == equal && !strict()) {
   1652     // Not strict equality.  Objects are unequal if
   1653     // they are both JSObjects and not undetectable,
   1654     // and their pointers are different.
   1655     Label not_both_objects, return_unequal;
   1656     // At most one is a smi, so we can test for smi by adding the two.
   1657     // A smi plus a heap object has the low bit set, a heap object plus
   1658     // a heap object has the low bit clear.
   1659     STATIC_ASSERT(kSmiTag == 0);
   1660     STATIC_ASSERT(kSmiTagMask == 1);
   1661     __ leap(rcx, Operand(rax, rdx, times_1, 0));
   1662     __ testb(rcx, Immediate(kSmiTagMask));
   1663     __ j(not_zero, &not_both_objects, Label::kNear);
   1664     __ CmpObjectType(rax, FIRST_SPEC_OBJECT_TYPE, rbx);
   1665     __ j(below, &not_both_objects, Label::kNear);
   1666     __ CmpObjectType(rdx, FIRST_SPEC_OBJECT_TYPE, rcx);
   1667     __ j(below, &not_both_objects, Label::kNear);
   1668     __ testb(FieldOperand(rbx, Map::kBitFieldOffset),
   1669              Immediate(1 << Map::kIsUndetectable));
   1670     __ j(zero, &return_unequal, Label::kNear);
   1671     __ testb(FieldOperand(rcx, Map::kBitFieldOffset),
   1672              Immediate(1 << Map::kIsUndetectable));
   1673     __ j(zero, &return_unequal, Label::kNear);
   1674     // The objects are both undetectable, so they both compare as the value
   1675     // undefined, and are equal.
   1676     __ Set(rax, EQUAL);
   1677     __ bind(&return_unequal);
   1678     // Return non-equal by returning the non-zero object pointer in rax,
   1679     // or return equal if we fell through to here.
   1680     __ ret(0);
   1681     __ bind(&not_both_objects);
   1682   }
   1683 
   1684   // Push arguments below the return address to prepare jump to builtin.
   1685   __ PopReturnAddressTo(rcx);
   1686   __ Push(rdx);
   1687   __ Push(rax);
   1688 
   1689   // Figure out which native to call and setup the arguments.
   1690   Builtins::JavaScript builtin;
   1691   if (cc == equal) {
   1692     builtin = strict() ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
   1693   } else {
   1694     builtin = Builtins::COMPARE;
   1695     __ Push(Smi::FromInt(NegativeComparisonResult(cc)));
   1696   }
   1697 
   1698   __ PushReturnAddressFrom(rcx);
   1699 
   1700   // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
   1701   // tagged as a small integer.
   1702   __ InvokeBuiltin(builtin, JUMP_FUNCTION);
   1703 
   1704   __ bind(&miss);
   1705   GenerateMiss(masm);
   1706 }
   1707 
   1708 
   1709 static void GenerateRecordCallTarget(MacroAssembler* masm) {
   1710   // Cache the called function in a feedback vector slot.  Cache states
   1711   // are uninitialized, monomorphic (indicated by a JSFunction), and
   1712   // megamorphic.
   1713   // rax : number of arguments to the construct function
   1714   // rbx : Feedback vector
   1715   // rdx : slot in feedback vector (Smi)
   1716   // rdi : the function to call
   1717   Isolate* isolate = masm->isolate();
   1718   Label initialize, done, miss, megamorphic, not_array_function,
   1719       done_no_smi_convert;
   1720 
   1721   // Load the cache state into rcx.
   1722   __ SmiToInteger32(rdx, rdx);
   1723   __ movp(rcx, FieldOperand(rbx, rdx, times_pointer_size,
   1724                             FixedArray::kHeaderSize));
   1725 
   1726   // A monomorphic cache hit or an already megamorphic state: invoke the
   1727   // function without changing the state.
   1728   __ cmpp(rcx, rdi);
   1729   __ j(equal, &done);
   1730   __ Cmp(rcx, TypeFeedbackVector::MegamorphicSentinel(isolate));
   1731   __ j(equal, &done);
   1732 
   1733   if (!FLAG_pretenuring_call_new) {
   1734     // If we came here, we need to see if we are the array function.
   1735     // If we didn't have a matching function, and we didn't find the megamorph
   1736     // sentinel, then we have in the slot either some other function or an
   1737     // AllocationSite. Do a map check on the object in rcx.
   1738     Handle<Map> allocation_site_map =
   1739         masm->isolate()->factory()->allocation_site_map();
   1740     __ Cmp(FieldOperand(rcx, 0), allocation_site_map);
   1741     __ j(not_equal, &miss);
   1742 
   1743     // Make sure the function is the Array() function
   1744     __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, rcx);
   1745     __ cmpp(rdi, rcx);
   1746     __ j(not_equal, &megamorphic);
   1747     __ jmp(&done);
   1748   }
   1749 
   1750   __ bind(&miss);
   1751 
   1752   // A monomorphic miss (i.e, here the cache is not uninitialized) goes
   1753   // megamorphic.
   1754   __ Cmp(rcx, TypeFeedbackVector::UninitializedSentinel(isolate));
   1755   __ j(equal, &initialize);
   1756   // MegamorphicSentinel is an immortal immovable object (undefined) so no
   1757   // write-barrier is needed.
   1758   __ bind(&megamorphic);
   1759   __ Move(FieldOperand(rbx, rdx, times_pointer_size, FixedArray::kHeaderSize),
   1760           TypeFeedbackVector::MegamorphicSentinel(isolate));
   1761   __ jmp(&done);
   1762 
   1763   // An uninitialized cache is patched with the function or sentinel to
   1764   // indicate the ElementsKind if function is the Array constructor.
   1765   __ bind(&initialize);
   1766 
   1767   if (!FLAG_pretenuring_call_new) {
   1768     // Make sure the function is the Array() function
   1769     __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, rcx);
   1770     __ cmpp(rdi, rcx);
   1771     __ j(not_equal, &not_array_function);
   1772 
   1773     {
   1774       FrameScope scope(masm, StackFrame::INTERNAL);
   1775 
   1776       // Arguments register must be smi-tagged to call out.
   1777       __ Integer32ToSmi(rax, rax);
   1778       __ Push(rax);
   1779       __ Push(rdi);
   1780       __ Integer32ToSmi(rdx, rdx);
   1781       __ Push(rdx);
   1782       __ Push(rbx);
   1783 
   1784       CreateAllocationSiteStub create_stub(isolate);
   1785       __ CallStub(&create_stub);
   1786 
   1787       __ Pop(rbx);
   1788       __ Pop(rdx);
   1789       __ Pop(rdi);
   1790       __ Pop(rax);
   1791       __ SmiToInteger32(rax, rax);
   1792     }
   1793     __ jmp(&done_no_smi_convert);
   1794 
   1795     __ bind(&not_array_function);
   1796   }
   1797 
   1798   __ movp(FieldOperand(rbx, rdx, times_pointer_size, FixedArray::kHeaderSize),
   1799           rdi);
   1800 
   1801   // We won't need rdx or rbx anymore, just save rdi
   1802   __ Push(rdi);
   1803   __ Push(rbx);
   1804   __ Push(rdx);
   1805   __ RecordWriteArray(rbx, rdi, rdx, kDontSaveFPRegs,
   1806                       EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
   1807   __ Pop(rdx);
   1808   __ Pop(rbx);
   1809   __ Pop(rdi);
   1810 
   1811   __ bind(&done);
   1812   __ Integer32ToSmi(rdx, rdx);
   1813 
   1814   __ bind(&done_no_smi_convert);
   1815 }
   1816 
   1817 
   1818 static void EmitContinueIfStrictOrNative(MacroAssembler* masm, Label* cont) {
   1819   // Do not transform the receiver for strict mode functions.
   1820   __ movp(rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
   1821   __ testb(FieldOperand(rcx, SharedFunctionInfo::kStrictModeByteOffset),
   1822            Immediate(1 << SharedFunctionInfo::kStrictModeBitWithinByte));
   1823   __ j(not_equal, cont);
   1824 
   1825   // Do not transform the receiver for natives.
   1826   // SharedFunctionInfo is already loaded into rcx.
   1827   __ testb(FieldOperand(rcx, SharedFunctionInfo::kNativeByteOffset),
   1828            Immediate(1 << SharedFunctionInfo::kNativeBitWithinByte));
   1829   __ j(not_equal, cont);
   1830 }
   1831 
   1832 
   1833 static void EmitSlowCase(Isolate* isolate,
   1834                          MacroAssembler* masm,
   1835                          StackArgumentsAccessor* args,
   1836                          int argc,
   1837                          Label* non_function) {
   1838   // Check for function proxy.
   1839   __ CmpInstanceType(rcx, JS_FUNCTION_PROXY_TYPE);
   1840   __ j(not_equal, non_function);
   1841   __ PopReturnAddressTo(rcx);
   1842   __ Push(rdi);  // put proxy as additional argument under return address
   1843   __ PushReturnAddressFrom(rcx);
   1844   __ Set(rax, argc + 1);
   1845   __ Set(rbx, 0);
   1846   __ GetBuiltinEntry(rdx, Builtins::CALL_FUNCTION_PROXY);
   1847   {
   1848     Handle<Code> adaptor =
   1849         masm->isolate()->builtins()->ArgumentsAdaptorTrampoline();
   1850     __ jmp(adaptor, RelocInfo::CODE_TARGET);
   1851   }
   1852 
   1853   // CALL_NON_FUNCTION expects the non-function callee as receiver (instead
   1854   // of the original receiver from the call site).
   1855   __ bind(non_function);
   1856   __ movp(args->GetReceiverOperand(), rdi);
   1857   __ Set(rax, argc);
   1858   __ Set(rbx, 0);
   1859   __ GetBuiltinEntry(rdx, Builtins::CALL_NON_FUNCTION);
   1860   Handle<Code> adaptor =
   1861       isolate->builtins()->ArgumentsAdaptorTrampoline();
   1862   __ Jump(adaptor, RelocInfo::CODE_TARGET);
   1863 }
   1864 
   1865 
   1866 static void EmitWrapCase(MacroAssembler* masm,
   1867                          StackArgumentsAccessor* args,
   1868                          Label* cont) {
   1869   // Wrap the receiver and patch it back onto the stack.
   1870   { FrameScope frame_scope(masm, StackFrame::INTERNAL);
   1871     __ Push(rdi);
   1872     __ Push(rax);
   1873     __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
   1874     __ Pop(rdi);
   1875   }
   1876   __ movp(args->GetReceiverOperand(), rax);
   1877   __ jmp(cont);
   1878 }
   1879 
   1880 
   1881 static void CallFunctionNoFeedback(MacroAssembler* masm,
   1882                                    int argc, bool needs_checks,
   1883                                    bool call_as_method) {
   1884   // rdi : the function to call
   1885 
   1886   // wrap_and_call can only be true if we are compiling a monomorphic method.
   1887   Isolate* isolate = masm->isolate();
   1888   Label slow, non_function, wrap, cont;
   1889   StackArgumentsAccessor args(rsp, argc);
   1890 
   1891   if (needs_checks) {
   1892     // Check that the function really is a JavaScript function.
   1893     __ JumpIfSmi(rdi, &non_function);
   1894 
   1895     // Goto slow case if we do not have a function.
   1896     __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
   1897     __ j(not_equal, &slow);
   1898   }
   1899 
   1900   // Fast-case: Just invoke the function.
   1901   ParameterCount actual(argc);
   1902 
   1903   if (call_as_method) {
   1904     if (needs_checks) {
   1905       EmitContinueIfStrictOrNative(masm, &cont);
   1906     }
   1907 
   1908     // Load the receiver from the stack.
   1909     __ movp(rax, args.GetReceiverOperand());
   1910 
   1911     if (needs_checks) {
   1912       __ JumpIfSmi(rax, &wrap);
   1913 
   1914       __ CmpObjectType(rax, FIRST_SPEC_OBJECT_TYPE, rcx);
   1915       __ j(below, &wrap);
   1916     } else {
   1917       __ jmp(&wrap);
   1918     }
   1919 
   1920     __ bind(&cont);
   1921   }
   1922 
   1923   __ InvokeFunction(rdi, actual, JUMP_FUNCTION, NullCallWrapper());
   1924 
   1925   if (needs_checks) {
   1926     // Slow-case: Non-function called.
   1927     __ bind(&slow);
   1928     EmitSlowCase(isolate, masm, &args, argc, &non_function);
   1929   }
   1930 
   1931   if (call_as_method) {
   1932     __ bind(&wrap);
   1933     EmitWrapCase(masm, &args, &cont);
   1934   }
   1935 }
   1936 
   1937 
   1938 void CallFunctionStub::Generate(MacroAssembler* masm) {
   1939   CallFunctionNoFeedback(masm, argc(), NeedsChecks(), CallAsMethod());
   1940 }
   1941 
   1942 
   1943 void CallConstructStub::Generate(MacroAssembler* masm) {
   1944   // rax : number of arguments
   1945   // rbx : feedback vector
   1946   // rdx : (only if rbx is not the megamorphic symbol) slot in feedback
   1947   //       vector (Smi)
   1948   // rdi : constructor function
   1949   Label slow, non_function_call;
   1950 
   1951   // Check that function is not a smi.
   1952   __ JumpIfSmi(rdi, &non_function_call);
   1953   // Check that function is a JSFunction.
   1954   __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
   1955   __ j(not_equal, &slow);
   1956 
   1957   if (RecordCallTarget()) {
   1958     GenerateRecordCallTarget(masm);
   1959 
   1960     __ SmiToInteger32(rdx, rdx);
   1961     if (FLAG_pretenuring_call_new) {
   1962       // Put the AllocationSite from the feedback vector into ebx.
   1963       // By adding kPointerSize we encode that we know the AllocationSite
   1964       // entry is at the feedback vector slot given by rdx + 1.
   1965       __ movp(rbx, FieldOperand(rbx, rdx, times_pointer_size,
   1966                                 FixedArray::kHeaderSize + kPointerSize));
   1967     } else {
   1968       Label feedback_register_initialized;
   1969       // Put the AllocationSite from the feedback vector into rbx, or undefined.
   1970       __ movp(rbx, FieldOperand(rbx, rdx, times_pointer_size,
   1971                                 FixedArray::kHeaderSize));
   1972       __ CompareRoot(FieldOperand(rbx, 0), Heap::kAllocationSiteMapRootIndex);
   1973       __ j(equal, &feedback_register_initialized);
   1974       __ LoadRoot(rbx, Heap::kUndefinedValueRootIndex);
   1975       __ bind(&feedback_register_initialized);
   1976     }
   1977 
   1978     __ AssertUndefinedOrAllocationSite(rbx);
   1979   }
   1980 
   1981   // Jump to the function-specific construct stub.
   1982   Register jmp_reg = rcx;
   1983   __ movp(jmp_reg, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
   1984   __ movp(jmp_reg, FieldOperand(jmp_reg,
   1985                                 SharedFunctionInfo::kConstructStubOffset));
   1986   __ leap(jmp_reg, FieldOperand(jmp_reg, Code::kHeaderSize));
   1987   __ jmp(jmp_reg);
   1988 
   1989   // rdi: called object
   1990   // rax: number of arguments
   1991   // rcx: object map
   1992   Label do_call;
   1993   __ bind(&slow);
   1994   __ CmpInstanceType(rcx, JS_FUNCTION_PROXY_TYPE);
   1995   __ j(not_equal, &non_function_call);
   1996   __ GetBuiltinEntry(rdx, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR);
   1997   __ jmp(&do_call);
   1998 
   1999   __ bind(&non_function_call);
   2000   __ GetBuiltinEntry(rdx, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
   2001   __ bind(&do_call);
   2002   // Set expected number of arguments to zero (not changing rax).
   2003   __ Set(rbx, 0);
   2004   __ Jump(isolate()->builtins()->ArgumentsAdaptorTrampoline(),
   2005           RelocInfo::CODE_TARGET);
   2006 }
   2007 
   2008 
   2009 static void EmitLoadTypeFeedbackVector(MacroAssembler* masm, Register vector) {
   2010   __ movp(vector, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
   2011   __ movp(vector, FieldOperand(vector, JSFunction::kSharedFunctionInfoOffset));
   2012   __ movp(vector, FieldOperand(vector,
   2013                                SharedFunctionInfo::kFeedbackVectorOffset));
   2014 }
   2015 
   2016 
   2017 void CallIC_ArrayStub::Generate(MacroAssembler* masm) {
   2018   // rdi - function
   2019   // rdx - slot id (as integer)
   2020   Label miss;
   2021   int argc = arg_count();
   2022   ParameterCount actual(argc);
   2023 
   2024   EmitLoadTypeFeedbackVector(masm, rbx);
   2025   __ SmiToInteger32(rdx, rdx);
   2026 
   2027   __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, rcx);
   2028   __ cmpp(rdi, rcx);
   2029   __ j(not_equal, &miss);
   2030 
   2031   __ movp(rax, Immediate(arg_count()));
   2032   __ movp(rcx, FieldOperand(rbx, rdx, times_pointer_size,
   2033                             FixedArray::kHeaderSize));
   2034   // Verify that ecx contains an AllocationSite
   2035   Factory* factory = masm->isolate()->factory();
   2036   __ Cmp(FieldOperand(rcx, HeapObject::kMapOffset),
   2037          factory->allocation_site_map());
   2038   __ j(not_equal, &miss);
   2039 
   2040   __ movp(rbx, rcx);
   2041   ArrayConstructorStub stub(masm->isolate(), arg_count());
   2042   __ TailCallStub(&stub);
   2043 
   2044   __ bind(&miss);
   2045   GenerateMiss(masm);
   2046 
   2047   // The slow case, we need this no matter what to complete a call after a miss.
   2048   CallFunctionNoFeedback(masm,
   2049                          arg_count(),
   2050                          true,
   2051                          CallAsMethod());
   2052 
   2053   // Unreachable.
   2054   __ int3();
   2055 }
   2056 
   2057 
   2058 void CallICStub::Generate(MacroAssembler* masm) {
   2059   // rdi - function
   2060   // rdx - slot id
   2061   Isolate* isolate = masm->isolate();
   2062   Label extra_checks_or_miss, slow_start;
   2063   Label slow, non_function, wrap, cont;
   2064   Label have_js_function;
   2065   int argc = arg_count();
   2066   StackArgumentsAccessor args(rsp, argc);
   2067   ParameterCount actual(argc);
   2068 
   2069   EmitLoadTypeFeedbackVector(masm, rbx);
   2070 
   2071   // The checks. First, does rdi match the recorded monomorphic target?
   2072   __ SmiToInteger32(rdx, rdx);
   2073   __ cmpp(rdi, FieldOperand(rbx, rdx, times_pointer_size,
   2074                             FixedArray::kHeaderSize));
   2075   __ j(not_equal, &extra_checks_or_miss);
   2076 
   2077   __ bind(&have_js_function);
   2078   if (CallAsMethod()) {
   2079     EmitContinueIfStrictOrNative(masm, &cont);
   2080 
   2081     // Load the receiver from the stack.
   2082     __ movp(rax, args.GetReceiverOperand());
   2083 
   2084     __ JumpIfSmi(rax, &wrap);
   2085 
   2086     __ CmpObjectType(rax, FIRST_SPEC_OBJECT_TYPE, rcx);
   2087     __ j(below, &wrap);
   2088 
   2089     __ bind(&cont);
   2090   }
   2091 
   2092   __ InvokeFunction(rdi, actual, JUMP_FUNCTION, NullCallWrapper());
   2093 
   2094   __ bind(&slow);
   2095   EmitSlowCase(isolate, masm, &args, argc, &non_function);
   2096 
   2097   if (CallAsMethod()) {
   2098     __ bind(&wrap);
   2099     EmitWrapCase(masm, &args, &cont);
   2100   }
   2101 
   2102   __ bind(&extra_checks_or_miss);
   2103   Label miss;
   2104 
   2105   __ movp(rcx, FieldOperand(rbx, rdx, times_pointer_size,
   2106                             FixedArray::kHeaderSize));
   2107   __ Cmp(rcx, TypeFeedbackVector::MegamorphicSentinel(isolate));
   2108   __ j(equal, &slow_start);
   2109   __ Cmp(rcx, TypeFeedbackVector::UninitializedSentinel(isolate));
   2110   __ j(equal, &miss);
   2111 
   2112   if (!FLAG_trace_ic) {
   2113     // We are going megamorphic. If the feedback is a JSFunction, it is fine
   2114     // to handle it here. More complex cases are dealt with in the runtime.
   2115     __ AssertNotSmi(rcx);
   2116     __ CmpObjectType(rcx, JS_FUNCTION_TYPE, rcx);
   2117     __ j(not_equal, &miss);
   2118     __ Move(FieldOperand(rbx, rdx, times_pointer_size, FixedArray::kHeaderSize),
   2119             TypeFeedbackVector::MegamorphicSentinel(isolate));
   2120     __ jmp(&slow_start);
   2121   }
   2122 
   2123   // We are here because tracing is on or we are going monomorphic.
   2124   __ bind(&miss);
   2125   GenerateMiss(masm);
   2126 
   2127   // the slow case
   2128   __ bind(&slow_start);
   2129   // Check that function is not a smi.
   2130   __ JumpIfSmi(rdi, &non_function);
   2131   // Check that function is a JSFunction.
   2132   __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
   2133   __ j(not_equal, &slow);
   2134   __ jmp(&have_js_function);
   2135 
   2136   // Unreachable
   2137   __ int3();
   2138 }
   2139 
   2140 
   2141 void CallICStub::GenerateMiss(MacroAssembler* masm) {
   2142   // Get the receiver of the function from the stack; 1 ~ return address.
   2143   __ movp(rcx, Operand(rsp, (arg_count() + 1) * kPointerSize));
   2144 
   2145   {
   2146     FrameScope scope(masm, StackFrame::INTERNAL);
   2147 
   2148     // Push the receiver and the function and feedback info.
   2149     __ Push(rcx);
   2150     __ Push(rdi);
   2151     __ Push(rbx);
   2152     __ Integer32ToSmi(rdx, rdx);
   2153     __ Push(rdx);
   2154 
   2155     // Call the entry.
   2156     IC::UtilityId id = GetICState() == DEFAULT ? IC::kCallIC_Miss
   2157                                                : IC::kCallIC_Customization_Miss;
   2158 
   2159     ExternalReference miss = ExternalReference(IC_Utility(id),
   2160                                                masm->isolate());
   2161     __ CallExternalReference(miss, 4);
   2162 
   2163     // Move result to edi and exit the internal frame.
   2164     __ movp(rdi, rax);
   2165   }
   2166 }
   2167 
   2168 
   2169 bool CEntryStub::NeedsImmovableCode() {
   2170   return false;
   2171 }
   2172 
   2173 
   2174 void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
   2175   CEntryStub::GenerateAheadOfTime(isolate);
   2176   StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
   2177   StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
   2178   // It is important that the store buffer overflow stubs are generated first.
   2179   ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate);
   2180   CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
   2181   BinaryOpICStub::GenerateAheadOfTime(isolate);
   2182   BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
   2183 }
   2184 
   2185 
   2186 void CodeStub::GenerateFPStubs(Isolate* isolate) {
   2187 }
   2188 
   2189 
   2190 void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
   2191   CEntryStub stub(isolate, 1, kDontSaveFPRegs);
   2192   stub.GetCode();
   2193   CEntryStub save_doubles(isolate, 1, kSaveFPRegs);
   2194   save_doubles.GetCode();
   2195 }
   2196 
   2197 
   2198 void CEntryStub::Generate(MacroAssembler* masm) {
   2199   // rax: number of arguments including receiver
   2200   // rbx: pointer to C function  (C callee-saved)
   2201   // rbp: frame pointer of calling JS frame (restored after C call)
   2202   // rsp: stack pointer  (restored after C call)
   2203   // rsi: current context (restored)
   2204 
   2205   ProfileEntryHookStub::MaybeCallEntryHook(masm);
   2206 
   2207   // Enter the exit frame that transitions from JavaScript to C++.
   2208 #ifdef _WIN64
   2209   int arg_stack_space = (result_size() < 2 ? 2 : 4);
   2210 #else   // _WIN64
   2211   int arg_stack_space = 0;
   2212 #endif  // _WIN64
   2213   __ EnterExitFrame(arg_stack_space, save_doubles());
   2214 
   2215   // rbx: pointer to builtin function  (C callee-saved).
   2216   // rbp: frame pointer of exit frame  (restored after C call).
   2217   // rsp: stack pointer (restored after C call).
   2218   // r14: number of arguments including receiver (C callee-saved).
   2219   // r15: argv pointer (C callee-saved).
   2220 
   2221   // Simple results returned in rax (both AMD64 and Win64 calling conventions).
   2222   // Complex results must be written to address passed as first argument.
   2223   // AMD64 calling convention: a struct of two pointers in rax+rdx
   2224 
   2225   // Check stack alignment.
   2226   if (FLAG_debug_code) {
   2227     __ CheckStackAlignment();
   2228   }
   2229 
   2230   // Call C function.
   2231 #ifdef _WIN64
   2232   // Windows 64-bit ABI passes arguments in rcx, rdx, r8, r9.
   2233   // Pass argv and argc as two parameters. The arguments object will
   2234   // be created by stubs declared by DECLARE_RUNTIME_FUNCTION().
   2235   if (result_size() < 2) {
   2236     // Pass a pointer to the Arguments object as the first argument.
   2237     // Return result in single register (rax).
   2238     __ movp(rcx, r14);  // argc.
   2239     __ movp(rdx, r15);  // argv.
   2240     __ Move(r8, ExternalReference::isolate_address(isolate()));
   2241   } else {
   2242     DCHECK_EQ(2, result_size());
   2243     // Pass a pointer to the result location as the first argument.
   2244     __ leap(rcx, StackSpaceOperand(2));
   2245     // Pass a pointer to the Arguments object as the second argument.
   2246     __ movp(rdx, r14);  // argc.
   2247     __ movp(r8, r15);   // argv.
   2248     __ Move(r9, ExternalReference::isolate_address(isolate()));
   2249   }
   2250 
   2251 #else  // _WIN64
   2252   // GCC passes arguments in rdi, rsi, rdx, rcx, r8, r9.
   2253   __ movp(rdi, r14);  // argc.
   2254   __ movp(rsi, r15);  // argv.
   2255   __ Move(rdx, ExternalReference::isolate_address(isolate()));
   2256 #endif  // _WIN64
   2257   __ call(rbx);
   2258   // Result is in rax - do not destroy this register!
   2259 
   2260 #ifdef _WIN64
   2261   // If return value is on the stack, pop it to registers.
   2262   if (result_size() > 1) {
   2263     DCHECK_EQ(2, result_size());
   2264     // Read result values stored on stack. Result is stored
   2265     // above the four argument mirror slots and the two
   2266     // Arguments object slots.
   2267     __ movq(rax, Operand(rsp, 6 * kRegisterSize));
   2268     __ movq(rdx, Operand(rsp, 7 * kRegisterSize));
   2269   }
   2270 #endif  // _WIN64
   2271 
   2272   // Runtime functions should not return 'the hole'.  Allowing it to escape may
   2273   // lead to crashes in the IC code later.
   2274   if (FLAG_debug_code) {
   2275     Label okay;
   2276     __ CompareRoot(rax, Heap::kTheHoleValueRootIndex);
   2277     __ j(not_equal, &okay, Label::kNear);
   2278     __ int3();
   2279     __ bind(&okay);
   2280   }
   2281 
   2282   // Check result for exception sentinel.
   2283   Label exception_returned;
   2284   __ CompareRoot(rax, Heap::kExceptionRootIndex);
   2285   __ j(equal, &exception_returned);
   2286 
   2287   ExternalReference pending_exception_address(
   2288       Isolate::kPendingExceptionAddress, isolate());
   2289 
   2290   // Check that there is no pending exception, otherwise we
   2291   // should have returned the exception sentinel.
   2292   if (FLAG_debug_code) {
   2293     Label okay;
   2294     __ LoadRoot(r14, Heap::kTheHoleValueRootIndex);
   2295     Operand pending_exception_operand =
   2296         masm->ExternalOperand(pending_exception_address);
   2297     __ cmpp(r14, pending_exception_operand);
   2298     __ j(equal, &okay, Label::kNear);
   2299     __ int3();
   2300     __ bind(&okay);
   2301   }
   2302 
   2303   // Exit the JavaScript to C++ exit frame.
   2304   __ LeaveExitFrame(save_doubles());
   2305   __ ret(0);
   2306 
   2307   // Handling of exception.
   2308   __ bind(&exception_returned);
   2309 
   2310   // Retrieve the pending exception.
   2311   Operand pending_exception_operand =
   2312       masm->ExternalOperand(pending_exception_address);
   2313   __ movp(rax, pending_exception_operand);
   2314 
   2315   // Clear the pending exception.
   2316   __ LoadRoot(rdx, Heap::kTheHoleValueRootIndex);
   2317   __ movp(pending_exception_operand, rdx);
   2318 
   2319   // Special handling of termination exceptions which are uncatchable
   2320   // by javascript code.
   2321   Label throw_termination_exception;
   2322   __ CompareRoot(rax, Heap::kTerminationExceptionRootIndex);
   2323   __ j(equal, &throw_termination_exception);
   2324 
   2325   // Handle normal exception.
   2326   __ Throw(rax);
   2327 
   2328   __ bind(&throw_termination_exception);
   2329   __ ThrowUncatchable(rax);
   2330 }
   2331 
   2332 
   2333 void JSEntryStub::Generate(MacroAssembler* masm) {
   2334   Label invoke, handler_entry, exit;
   2335   Label not_outermost_js, not_outermost_js_2;
   2336 
   2337   ProfileEntryHookStub::MaybeCallEntryHook(masm);
   2338 
   2339   {  // NOLINT. Scope block confuses linter.
   2340     MacroAssembler::NoRootArrayScope uninitialized_root_register(masm);
   2341     // Set up frame.
   2342     __ pushq(rbp);
   2343     __ movp(rbp, rsp);
   2344 
   2345     // Push the stack frame type marker twice.
   2346     int marker = type();
   2347     // Scratch register is neither callee-save, nor an argument register on any
   2348     // platform. It's free to use at this point.
   2349     // Cannot use smi-register for loading yet.
   2350     __ Move(kScratchRegister, Smi::FromInt(marker), Assembler::RelocInfoNone());
   2351     __ Push(kScratchRegister);  // context slot
   2352     __ Push(kScratchRegister);  // function slot
   2353     // Save callee-saved registers (X64/X32/Win64 calling conventions).
   2354     __ pushq(r12);
   2355     __ pushq(r13);
   2356     __ pushq(r14);
   2357     __ pushq(r15);
   2358 #ifdef _WIN64
   2359     __ pushq(rdi);  // Only callee save in Win64 ABI, argument in AMD64 ABI.
   2360     __ pushq(rsi);  // Only callee save in Win64 ABI, argument in AMD64 ABI.
   2361 #endif
   2362     __ pushq(rbx);
   2363 
   2364 #ifdef _WIN64
   2365     // On Win64 XMM6-XMM15 are callee-save
   2366     __ subp(rsp, Immediate(EntryFrameConstants::kXMMRegistersBlockSize));
   2367     __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 0), xmm6);
   2368     __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 1), xmm7);
   2369     __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 2), xmm8);
   2370     __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 3), xmm9);
   2371     __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 4), xmm10);
   2372     __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 5), xmm11);
   2373     __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 6), xmm12);
   2374     __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 7), xmm13);
   2375     __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 8), xmm14);
   2376     __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 9), xmm15);
   2377 #endif
   2378 
   2379     // Set up the roots and smi constant registers.
   2380     // Needs to be done before any further smi loads.
   2381     __ InitializeSmiConstantRegister();
   2382     __ InitializeRootRegister();
   2383   }
   2384 
   2385   // Save copies of the top frame descriptor on the stack.
   2386   ExternalReference c_entry_fp(Isolate::kCEntryFPAddress, isolate());
   2387   {
   2388     Operand c_entry_fp_operand = masm->ExternalOperand(c_entry_fp);
   2389     __ Push(c_entry_fp_operand);
   2390   }
   2391 
   2392   // If this is the outermost JS call, set js_entry_sp value.
   2393   ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate());
   2394   __ Load(rax, js_entry_sp);
   2395   __ testp(rax, rax);
   2396   __ j(not_zero, &not_outermost_js);
   2397   __ Push(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME));
   2398   __ movp(rax, rbp);
   2399   __ Store(js_entry_sp, rax);
   2400   Label cont;
   2401   __ jmp(&cont);
   2402   __ bind(&not_outermost_js);
   2403   __ Push(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME));
   2404   __ bind(&cont);
   2405 
   2406   // Jump to a faked try block that does the invoke, with a faked catch
   2407   // block that sets the pending exception.
   2408   __ jmp(&invoke);
   2409   __ bind(&handler_entry);
   2410   handler_offset_ = handler_entry.pos();
   2411   // Caught exception: Store result (exception) in the pending exception
   2412   // field in the JSEnv and return a failure sentinel.
   2413   ExternalReference pending_exception(Isolate::kPendingExceptionAddress,
   2414                                       isolate());
   2415   __ Store(pending_exception, rax);
   2416   __ LoadRoot(rax, Heap::kExceptionRootIndex);
   2417   __ jmp(&exit);
   2418 
   2419   // Invoke: Link this frame into the handler chain.  There's only one
   2420   // handler block in this code object, so its index is 0.
   2421   __ bind(&invoke);
   2422   __ PushTryHandler(StackHandler::JS_ENTRY, 0);
   2423 
   2424   // Clear any pending exceptions.
   2425   __ LoadRoot(rax, Heap::kTheHoleValueRootIndex);
   2426   __ Store(pending_exception, rax);
   2427 
   2428   // Fake a receiver (NULL).
   2429   __ Push(Immediate(0));  // receiver
   2430 
   2431   // Invoke the function by calling through JS entry trampoline builtin and
   2432   // pop the faked function when we return. We load the address from an
   2433   // external reference instead of inlining the call target address directly
   2434   // in the code, because the builtin stubs may not have been generated yet
   2435   // at the time this code is generated.
   2436   if (type() == StackFrame::ENTRY_CONSTRUCT) {
   2437     ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
   2438                                       isolate());
   2439     __ Load(rax, construct_entry);
   2440   } else {
   2441     ExternalReference entry(Builtins::kJSEntryTrampoline, isolate());
   2442     __ Load(rax, entry);
   2443   }
   2444   __ leap(kScratchRegister, FieldOperand(rax, Code::kHeaderSize));
   2445   __ call(kScratchRegister);
   2446 
   2447   // Unlink this frame from the handler chain.
   2448   __ PopTryHandler();
   2449 
   2450   __ bind(&exit);
   2451   // Check if the current stack frame is marked as the outermost JS frame.
   2452   __ Pop(rbx);
   2453   __ Cmp(rbx, Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME));
   2454   __ j(not_equal, &not_outermost_js_2);
   2455   __ Move(kScratchRegister, js_entry_sp);
   2456   __ movp(Operand(kScratchRegister, 0), Immediate(0));
   2457   __ bind(&not_outermost_js_2);
   2458 
   2459   // Restore the top frame descriptor from the stack.
   2460   { Operand c_entry_fp_operand = masm->ExternalOperand(c_entry_fp);
   2461     __ Pop(c_entry_fp_operand);
   2462   }
   2463 
   2464   // Restore callee-saved registers (X64 conventions).
   2465 #ifdef _WIN64
   2466   // On Win64 XMM6-XMM15 are callee-save
   2467   __ movdqu(xmm6, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 0));
   2468   __ movdqu(xmm7, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 1));
   2469   __ movdqu(xmm8, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 2));
   2470   __ movdqu(xmm9, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 3));
   2471   __ movdqu(xmm10, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 4));
   2472   __ movdqu(xmm11, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 5));
   2473   __ movdqu(xmm12, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 6));
   2474   __ movdqu(xmm13, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 7));
   2475   __ movdqu(xmm14, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 8));
   2476   __ movdqu(xmm15, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 9));
   2477   __ addp(rsp, Immediate(EntryFrameConstants::kXMMRegistersBlockSize));
   2478 #endif
   2479 
   2480   __ popq(rbx);
   2481 #ifdef _WIN64
   2482   // Callee save on in Win64 ABI, arguments/volatile in AMD64 ABI.
   2483   __ popq(rsi);
   2484   __ popq(rdi);
   2485 #endif
   2486   __ popq(r15);
   2487   __ popq(r14);
   2488   __ popq(r13);
   2489   __ popq(r12);
   2490   __ addp(rsp, Immediate(2 * kPointerSize));  // remove markers
   2491 
   2492   // Restore frame pointer and return.
   2493   __ popq(rbp);
   2494   __ ret(0);
   2495 }
   2496 
   2497 
   2498 void InstanceofStub::Generate(MacroAssembler* masm) {
   2499   // Implements "value instanceof function" operator.
   2500   // Expected input state with no inline cache:
   2501   //   rsp[0]  : return address
   2502   //   rsp[8]  : function pointer
   2503   //   rsp[16] : value
   2504   // Expected input state with an inline one-element cache:
   2505   //   rsp[0]  : return address
   2506   //   rsp[8]  : offset from return address to location of inline cache
   2507   //   rsp[16] : function pointer
   2508   //   rsp[24] : value
   2509   // Returns a bitwise zero to indicate that the value
   2510   // is and instance of the function and anything else to
   2511   // indicate that the value is not an instance.
   2512 
   2513   // Fixed register usage throughout the stub.
   2514   Register object = rax;     // Object (lhs).
   2515   Register map = rbx;        // Map of the object.
   2516   Register function = rdx;   // Function (rhs).
   2517   Register prototype = rdi;  // Prototype of the function.
   2518   Register scratch = rcx;
   2519 
   2520   static const int kOffsetToMapCheckValue = 2;
   2521   static const int kOffsetToResultValue = kPointerSize == kInt64Size ? 18 : 14;
   2522   // The last 4 bytes of the instruction sequence
   2523   //   movp(rdi, FieldOperand(rax, HeapObject::kMapOffset))
   2524   //   Move(kScratchRegister, Factory::the_hole_value())
   2525   // in front of the hole value address.
   2526   static const unsigned int kWordBeforeMapCheckValue =
   2527       kPointerSize == kInt64Size ? 0xBA49FF78 : 0xBA41FF78;
   2528   // The last 4 bytes of the instruction sequence
   2529   //   __ j(not_equal, &cache_miss);
   2530   //   __ LoadRoot(ToRegister(instr->result()), Heap::kTheHoleValueRootIndex);
   2531   // before the offset of the hole value in the root array.
   2532   static const unsigned int kWordBeforeResultValue =
   2533       kPointerSize == kInt64Size ? 0x458B4906 : 0x458B4106;
   2534 
   2535   int extra_argument_offset = HasCallSiteInlineCheck() ? 1 : 0;
   2536 
   2537   DCHECK_EQ(object.code(), InstanceofStub::left().code());
   2538   DCHECK_EQ(function.code(), InstanceofStub::right().code());
   2539 
   2540   // Get the object and function - they are always both needed.
   2541   // Go slow case if the object is a smi.
   2542   Label slow;
   2543   StackArgumentsAccessor args(rsp, 2 + extra_argument_offset,
   2544                               ARGUMENTS_DONT_CONTAIN_RECEIVER);
   2545   if (!HasArgsInRegisters()) {
   2546     __ movp(object, args.GetArgumentOperand(0));
   2547     __ movp(function, args.GetArgumentOperand(1));
   2548   }
   2549   __ JumpIfSmi(object, &slow);
   2550 
   2551   // Check that the left hand is a JS object. Leave its map in rax.
   2552   __ CmpObjectType(object, FIRST_SPEC_OBJECT_TYPE, map);
   2553   __ j(below, &slow);
   2554   __ CmpInstanceType(map, LAST_SPEC_OBJECT_TYPE);
   2555   __ j(above, &slow);
   2556 
   2557   // If there is a call site cache don't look in the global cache, but do the
   2558   // real lookup and update the call site cache.
   2559   if (!HasCallSiteInlineCheck() && !ReturnTrueFalseObject()) {
   2560     // Look up the function and the map in the instanceof cache.
   2561     Label miss;
   2562     __ CompareRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
   2563     __ j(not_equal, &miss, Label::kNear);
   2564     __ CompareRoot(map, Heap::kInstanceofCacheMapRootIndex);
   2565     __ j(not_equal, &miss, Label::kNear);
   2566     __ LoadRoot(rax, Heap::kInstanceofCacheAnswerRootIndex);
   2567     __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
   2568     __ bind(&miss);
   2569   }
   2570 
   2571   // Get the prototype of the function.
   2572   __ TryGetFunctionPrototype(function, prototype, &slow, true);
   2573 
   2574   // Check that the function prototype is a JS object.
   2575   __ JumpIfSmi(prototype, &slow);
   2576   __ CmpObjectType(prototype, FIRST_SPEC_OBJECT_TYPE, kScratchRegister);
   2577   __ j(below, &slow);
   2578   __ CmpInstanceType(kScratchRegister, LAST_SPEC_OBJECT_TYPE);
   2579   __ j(above, &slow);
   2580 
   2581   // Update the global instanceof or call site inlined cache with the current
   2582   // map and function. The cached answer will be set when it is known below.
   2583   if (!HasCallSiteInlineCheck()) {
   2584     __ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
   2585     __ StoreRoot(map, Heap::kInstanceofCacheMapRootIndex);
   2586   } else {
   2587     // The constants for the code patching are based on push instructions
   2588     // at the call site.
   2589     DCHECK(!HasArgsInRegisters());
   2590     // Get return address and delta to inlined map check.
   2591     __ movq(kScratchRegister, StackOperandForReturnAddress(0));
   2592     __ subp(kScratchRegister, args.GetArgumentOperand(2));
   2593     if (FLAG_debug_code) {
   2594       __ movl(scratch, Immediate(kWordBeforeMapCheckValue));
   2595       __ cmpl(Operand(kScratchRegister, kOffsetToMapCheckValue - 4), scratch);
   2596       __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheCheck);
   2597     }
   2598     __ movp(kScratchRegister,
   2599             Operand(kScratchRegister, kOffsetToMapCheckValue));
   2600     __ movp(Operand(kScratchRegister, 0), map);
   2601   }
   2602 
   2603   // Loop through the prototype chain looking for the function prototype.
   2604   __ movp(scratch, FieldOperand(map, Map::kPrototypeOffset));
   2605   Label loop, is_instance, is_not_instance;
   2606   __ LoadRoot(kScratchRegister, Heap::kNullValueRootIndex);
   2607   __ bind(&loop);
   2608   __ cmpp(scratch, prototype);
   2609   __ j(equal, &is_instance, Label::kNear);
   2610   __ cmpp(scratch, kScratchRegister);
   2611   // The code at is_not_instance assumes that kScratchRegister contains a
   2612   // non-zero GCable value (the null object in this case).
   2613   __ j(equal, &is_not_instance, Label::kNear);
   2614   __ movp(scratch, FieldOperand(scratch, HeapObject::kMapOffset));
   2615   __ movp(scratch, FieldOperand(scratch, Map::kPrototypeOffset));
   2616   __ jmp(&loop);
   2617 
   2618   __ bind(&is_instance);
   2619   if (!HasCallSiteInlineCheck()) {
   2620     __ xorl(rax, rax);
   2621     // Store bitwise zero in the cache.  This is a Smi in GC terms.
   2622     STATIC_ASSERT(kSmiTag == 0);
   2623     __ StoreRoot(rax, Heap::kInstanceofCacheAnswerRootIndex);
   2624     if (ReturnTrueFalseObject()) {
   2625       __ LoadRoot(rax, Heap::kTrueValueRootIndex);
   2626     }
   2627   } else {
   2628     // Store offset of true in the root array at the inline check site.
   2629     int true_offset = 0x100 +
   2630         (Heap::kTrueValueRootIndex << kPointerSizeLog2) - kRootRegisterBias;
   2631     // Assert it is a 1-byte signed value.
   2632     DCHECK(true_offset >= 0 && true_offset < 0x100);
   2633     __ movl(rax, Immediate(true_offset));
   2634     __ movq(kScratchRegister, StackOperandForReturnAddress(0));
   2635     __ subp(kScratchRegister, args.GetArgumentOperand(2));
   2636     __ movb(Operand(kScratchRegister, kOffsetToResultValue), rax);
   2637     if (FLAG_debug_code) {
   2638       __ movl(rax, Immediate(kWordBeforeResultValue));
   2639       __ cmpl(Operand(kScratchRegister, kOffsetToResultValue - 4), rax);
   2640       __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheMov);
   2641     }
   2642     if (!ReturnTrueFalseObject()) {
   2643       __ Set(rax, 0);
   2644     }
   2645   }
   2646   __ ret(((HasArgsInRegisters() ? 0 : 2) + extra_argument_offset) *
   2647          kPointerSize);
   2648 
   2649   __ bind(&is_not_instance);
   2650   if (!HasCallSiteInlineCheck()) {
   2651     // We have to store a non-zero value in the cache.
   2652     __ StoreRoot(kScratchRegister, Heap::kInstanceofCacheAnswerRootIndex);
   2653     if (ReturnTrueFalseObject()) {
   2654       __ LoadRoot(rax, Heap::kFalseValueRootIndex);
   2655     }
   2656   } else {
   2657     // Store offset of false in the root array at the inline check site.
   2658     int false_offset = 0x100 +
   2659         (Heap::kFalseValueRootIndex << kPointerSizeLog2) - kRootRegisterBias;
   2660     // Assert it is a 1-byte signed value.
   2661     DCHECK(false_offset >= 0 && false_offset < 0x100);
   2662     __ movl(rax, Immediate(false_offset));
   2663     __ movq(kScratchRegister, StackOperandForReturnAddress(0));
   2664     __ subp(kScratchRegister, args.GetArgumentOperand(2));
   2665     __ movb(Operand(kScratchRegister, kOffsetToResultValue), rax);
   2666     if (FLAG_debug_code) {
   2667       __ movl(rax, Immediate(kWordBeforeResultValue));
   2668       __ cmpl(Operand(kScratchRegister, kOffsetToResultValue - 4), rax);
   2669       __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheMov);
   2670     }
   2671   }
   2672   __ ret(((HasArgsInRegisters() ? 0 : 2) + extra_argument_offset) *
   2673          kPointerSize);
   2674 
   2675   // Slow-case: Go through the JavaScript implementation.
   2676   __ bind(&slow);
   2677   if (!ReturnTrueFalseObject()) {
   2678     // Tail call the builtin which returns 0 or 1.
   2679     DCHECK(!HasArgsInRegisters());
   2680     if (HasCallSiteInlineCheck()) {
   2681       // Remove extra value from the stack.
   2682       __ PopReturnAddressTo(rcx);
   2683       __ Pop(rax);
   2684       __ PushReturnAddressFrom(rcx);
   2685     }
   2686     __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
   2687   } else {
   2688     // Call the builtin and convert 0/1 to true/false.
   2689     {
   2690       FrameScope scope(masm, StackFrame::INTERNAL);
   2691       __ Push(object);
   2692       __ Push(function);
   2693       __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION);
   2694     }
   2695     Label true_value, done;
   2696     __ testq(rax, rax);
   2697     __ j(zero, &true_value, Label::kNear);
   2698     __ LoadRoot(rax, Heap::kFalseValueRootIndex);
   2699     __ jmp(&done, Label::kNear);
   2700     __ bind(&true_value);
   2701     __ LoadRoot(rax, Heap::kTrueValueRootIndex);
   2702     __ bind(&done);
   2703     __ ret(((HasArgsInRegisters() ? 0 : 2) + extra_argument_offset) *
   2704            kPointerSize);
   2705   }
   2706 }
   2707 
   2708 
   2709 // -------------------------------------------------------------------------
   2710 // StringCharCodeAtGenerator
   2711 
   2712 void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
   2713   // If the receiver is a smi trigger the non-string case.
   2714   __ JumpIfSmi(object_, receiver_not_string_);
   2715 
   2716   // Fetch the instance type of the receiver into result register.
   2717   __ movp(result_, FieldOperand(object_, HeapObject::kMapOffset));
   2718   __ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
   2719   // If the receiver is not a string trigger the non-string case.
   2720   __ testb(result_, Immediate(kIsNotStringMask));
   2721   __ j(not_zero, receiver_not_string_);
   2722 
   2723   // If the index is non-smi trigger the non-smi case.
   2724   __ JumpIfNotSmi(index_, &index_not_smi_);
   2725   __ bind(&got_smi_index_);
   2726 
   2727   // Check for index out of range.
   2728   __ SmiCompare(index_, FieldOperand(object_, String::kLengthOffset));
   2729   __ j(above_equal, index_out_of_range_);
   2730 
   2731   __ SmiToInteger32(index_, index_);
   2732 
   2733   StringCharLoadGenerator::Generate(
   2734       masm, object_, index_, result_, &call_runtime_);
   2735 
   2736   __ Integer32ToSmi(result_, result_);
   2737   __ bind(&exit_);
   2738 }
   2739 
   2740 
   2741 void StringCharCodeAtGenerator::GenerateSlow(
   2742     MacroAssembler* masm,
   2743     const RuntimeCallHelper& call_helper) {
   2744   __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
   2745 
   2746   Factory* factory = masm->isolate()->factory();
   2747   // Index is not a smi.
   2748   __ bind(&index_not_smi_);
   2749   // If index is a heap number, try converting it to an integer.
   2750   __ CheckMap(index_,
   2751               factory->heap_number_map(),
   2752               index_not_number_,
   2753               DONT_DO_SMI_CHECK);
   2754   call_helper.BeforeCall(masm);
   2755   __ Push(object_);
   2756   __ Push(index_);  // Consumed by runtime conversion function.
   2757   if (index_flags_ == STRING_INDEX_IS_NUMBER) {
   2758     __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
   2759   } else {
   2760     DCHECK(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
   2761     // NumberToSmi discards numbers that are not exact integers.
   2762     __ CallRuntime(Runtime::kNumberToSmi, 1);
   2763   }
   2764   if (!index_.is(rax)) {
   2765     // Save the conversion result before the pop instructions below
   2766     // have a chance to overwrite it.
   2767     __ movp(index_, rax);
   2768   }
   2769   __ Pop(object_);
   2770   // Reload the instance type.
   2771   __ movp(result_, FieldOperand(object_, HeapObject::kMapOffset));
   2772   __ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
   2773   call_helper.AfterCall(masm);
   2774   // If index is still not a smi, it must be out of range.
   2775   __ JumpIfNotSmi(index_, index_out_of_range_);
   2776   // Otherwise, return to the fast path.
   2777   __ jmp(&got_smi_index_);
   2778 
   2779   // Call runtime. We get here when the receiver is a string and the
   2780   // index is a number, but the code of getting the actual character
   2781   // is too complex (e.g., when the string needs to be flattened).
   2782   __ bind(&call_runtime_);
   2783   call_helper.BeforeCall(masm);
   2784   __ Push(object_);
   2785   __ Integer32ToSmi(index_, index_);
   2786   __ Push(index_);
   2787   __ CallRuntime(Runtime::kStringCharCodeAtRT, 2);
   2788   if (!result_.is(rax)) {
   2789     __ movp(result_, rax);
   2790   }
   2791   call_helper.AfterCall(masm);
   2792   __ jmp(&exit_);
   2793 
   2794   __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
   2795 }
   2796 
   2797 
   2798 // -------------------------------------------------------------------------
   2799 // StringCharFromCodeGenerator
   2800 
   2801 void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
   2802   // Fast case of Heap::LookupSingleCharacterStringFromCode.
   2803   __ JumpIfNotSmi(code_, &slow_case_);
   2804   __ SmiCompare(code_, Smi::FromInt(String::kMaxOneByteCharCode));
   2805   __ j(above, &slow_case_);
   2806 
   2807   __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
   2808   SmiIndex index = masm->SmiToIndex(kScratchRegister, code_, kPointerSizeLog2);
   2809   __ movp(result_, FieldOperand(result_, index.reg, index.scale,
   2810                                 FixedArray::kHeaderSize));
   2811   __ CompareRoot(result_, Heap::kUndefinedValueRootIndex);
   2812   __ j(equal, &slow_case_);
   2813   __ bind(&exit_);
   2814 }
   2815 
   2816 
   2817 void StringCharFromCodeGenerator::GenerateSlow(
   2818     MacroAssembler* masm,
   2819     const RuntimeCallHelper& call_helper) {
   2820   __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase);
   2821 
   2822   __ bind(&slow_case_);
   2823   call_helper.BeforeCall(masm);
   2824   __ Push(code_);
   2825   __ CallRuntime(Runtime::kCharFromCode, 1);
   2826   if (!result_.is(rax)) {
   2827     __ movp(result_, rax);
   2828   }
   2829   call_helper.AfterCall(masm);
   2830   __ jmp(&exit_);
   2831 
   2832   __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase);
   2833 }
   2834 
   2835 
   2836 void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
   2837                                           Register dest,
   2838                                           Register src,
   2839                                           Register count,
   2840                                           String::Encoding encoding) {
   2841   // Nothing to do for zero characters.
   2842   Label done;
   2843   __ testl(count, count);
   2844   __ j(zero, &done, Label::kNear);
   2845 
   2846   // Make count the number of bytes to copy.
   2847   if (encoding == String::TWO_BYTE_ENCODING) {
   2848     STATIC_ASSERT(2 == sizeof(uc16));
   2849     __ addl(count, count);
   2850   }
   2851 
   2852   // Copy remaining characters.
   2853   Label loop;
   2854   __ bind(&loop);
   2855   __ movb(kScratchRegister, Operand(src, 0));
   2856   __ movb(Operand(dest, 0), kScratchRegister);
   2857   __ incp(src);
   2858   __ incp(dest);
   2859   __ decl(count);
   2860   __ j(not_zero, &loop);
   2861 
   2862   __ bind(&done);
   2863 }
   2864 
   2865 
   2866 void SubStringStub::Generate(MacroAssembler* masm) {
   2867   Label runtime;
   2868 
   2869   // Stack frame on entry.
   2870   //  rsp[0]  : return address
   2871   //  rsp[8]  : to
   2872   //  rsp[16] : from
   2873   //  rsp[24] : string
   2874 
   2875   enum SubStringStubArgumentIndices {
   2876     STRING_ARGUMENT_INDEX,
   2877     FROM_ARGUMENT_INDEX,
   2878     TO_ARGUMENT_INDEX,
   2879     SUB_STRING_ARGUMENT_COUNT
   2880   };
   2881 
   2882   StackArgumentsAccessor args(rsp, SUB_STRING_ARGUMENT_COUNT,
   2883                               ARGUMENTS_DONT_CONTAIN_RECEIVER);
   2884 
   2885   // Make sure first argument is a string.
   2886   __ movp(rax, args.GetArgumentOperand(STRING_ARGUMENT_INDEX));
   2887   STATIC_ASSERT(kSmiTag == 0);
   2888   __ testl(rax, Immediate(kSmiTagMask));
   2889   __ j(zero, &runtime);
   2890   Condition is_string = masm->IsObjectStringType(rax, rbx, rbx);
   2891   __ j(NegateCondition(is_string), &runtime);
   2892 
   2893   // rax: string
   2894   // rbx: instance type
   2895   // Calculate length of sub string using the smi values.
   2896   __ movp(rcx, args.GetArgumentOperand(TO_ARGUMENT_INDEX));
   2897   __ movp(rdx, args.GetArgumentOperand(FROM_ARGUMENT_INDEX));
   2898   __ JumpUnlessBothNonNegativeSmi(rcx, rdx, &runtime);
   2899 
   2900   __ SmiSub(rcx, rcx, rdx);  // Overflow doesn't happen.
   2901   __ cmpp(rcx, FieldOperand(rax, String::kLengthOffset));
   2902   Label not_original_string;
   2903   // Shorter than original string's length: an actual substring.
   2904   __ j(below, &not_original_string, Label::kNear);
   2905   // Longer than original string's length or negative: unsafe arguments.
   2906   __ j(above, &runtime);
   2907   // Return original string.
   2908   Counters* counters = isolate()->counters();
   2909   __ IncrementCounter(counters->sub_string_native(), 1);
   2910   __ ret(SUB_STRING_ARGUMENT_COUNT * kPointerSize);
   2911   __ bind(&not_original_string);
   2912 
   2913   Label single_char;
   2914   __ SmiCompare(rcx, Smi::FromInt(1));
   2915   __ j(equal, &single_char);
   2916 
   2917   __ SmiToInteger32(rcx, rcx);
   2918 
   2919   // rax: string
   2920   // rbx: instance type
   2921   // rcx: sub string length
   2922   // rdx: from index (smi)
   2923   // Deal with different string types: update the index if necessary
   2924   // and put the underlying string into edi.
   2925   Label underlying_unpacked, sliced_string, seq_or_external_string;
   2926   // If the string is not indirect, it can only be sequential or external.
   2927   STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
   2928   STATIC_ASSERT(kIsIndirectStringMask != 0);
   2929   __ testb(rbx, Immediate(kIsIndirectStringMask));
   2930   __ j(zero, &seq_or_external_string, Label::kNear);
   2931 
   2932   __ testb(rbx, Immediate(kSlicedNotConsMask));
   2933   __ j(not_zero, &sliced_string, Label::kNear);
   2934   // Cons string.  Check whether it is flat, then fetch first part.
   2935   // Flat cons strings have an empty second part.
   2936   __ CompareRoot(FieldOperand(rax, ConsString::kSecondOffset),
   2937                  Heap::kempty_stringRootIndex);
   2938   __ j(not_equal, &runtime);
   2939   __ movp(rdi, FieldOperand(rax, ConsString::kFirstOffset));
   2940   // Update instance type.
   2941   __ movp(rbx, FieldOperand(rdi, HeapObject::kMapOffset));
   2942   __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset));
   2943   __ jmp(&underlying_unpacked, Label::kNear);
   2944 
   2945   __ bind(&sliced_string);
   2946   // Sliced string.  Fetch parent and correct start index by offset.
   2947   __ addp(rdx, FieldOperand(rax, SlicedString::kOffsetOffset));
   2948   __ movp(rdi, FieldOperand(rax, SlicedString::kParentOffset));
   2949   // Update instance type.
   2950   __ movp(rbx, FieldOperand(rdi, HeapObject::kMapOffset));
   2951   __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset));
   2952   __ jmp(&underlying_unpacked, Label::kNear);
   2953 
   2954   __ bind(&seq_or_external_string);
   2955   // Sequential or external string.  Just move string to the correct register.
   2956   __ movp(rdi, rax);
   2957 
   2958   __ bind(&underlying_unpacked);
   2959 
   2960   if (FLAG_string_slices) {
   2961     Label copy_routine;
   2962     // rdi: underlying subject string
   2963     // rbx: instance type of underlying subject string
   2964     // rdx: adjusted start index (smi)
   2965     // rcx: length
   2966     // If coming from the make_two_character_string path, the string
   2967     // is too short to be sliced anyways.
   2968     __ cmpp(rcx, Immediate(SlicedString::kMinLength));
   2969     // Short slice.  Copy instead of slicing.
   2970     __ j(less, &copy_routine);
   2971     // Allocate new sliced string.  At this point we do not reload the instance
   2972     // type including the string encoding because we simply rely on the info
   2973     // provided by the original string.  It does not matter if the original
   2974     // string's encoding is wrong because we always have to recheck encoding of
   2975     // the newly created string's parent anyways due to externalized strings.
   2976     Label two_byte_slice, set_slice_header;
   2977     STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0);
   2978     STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
   2979     __ testb(rbx, Immediate(kStringEncodingMask));
   2980     __ j(zero, &two_byte_slice, Label::kNear);
   2981     __ AllocateOneByteSlicedString(rax, rbx, r14, &runtime);
   2982     __ jmp(&set_slice_header, Label::kNear);
   2983     __ bind(&two_byte_slice);
   2984     __ AllocateTwoByteSlicedString(rax, rbx, r14, &runtime);
   2985     __ bind(&set_slice_header);
   2986     __ Integer32ToSmi(rcx, rcx);
   2987     __ movp(FieldOperand(rax, SlicedString::kLengthOffset), rcx);
   2988     __ movp(FieldOperand(rax, SlicedString::kHashFieldOffset),
   2989            Immediate(String::kEmptyHashField));
   2990     __ movp(FieldOperand(rax, SlicedString::kParentOffset), rdi);
   2991     __ movp(FieldOperand(rax, SlicedString::kOffsetOffset), rdx);
   2992     __ IncrementCounter(counters->sub_string_native(), 1);
   2993     __ ret(3 * kPointerSize);
   2994 
   2995     __ bind(&copy_routine);
   2996   }
   2997 
   2998   // rdi: underlying subject string
   2999   // rbx: instance type of underlying subject string
   3000   // rdx: adjusted start index (smi)
   3001   // rcx: length
   3002   // The subject string can only be external or sequential string of either
   3003   // encoding at this point.
   3004   Label two_byte_sequential, sequential_string;
   3005   STATIC_ASSERT(kExternalStringTag != 0);
   3006   STATIC_ASSERT(kSeqStringTag == 0);
   3007   __ testb(rbx, Immediate(kExternalStringTag));
   3008   __ j(zero, &sequential_string);
   3009 
   3010   // Handle external string.
   3011   // Rule out short external strings.
   3012   STATIC_ASSERT(kShortExternalStringTag != 0);
   3013   __ testb(rbx, Immediate(kShortExternalStringMask));
   3014   __ j(not_zero, &runtime);
   3015   __ movp(rdi, FieldOperand(rdi, ExternalString::kResourceDataOffset));
   3016   // Move the pointer so that offset-wise, it looks like a sequential string.
   3017   STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
   3018   __ subp(rdi, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
   3019 
   3020   __ bind(&sequential_string);
   3021   STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0);
   3022   __ testb(rbx, Immediate(kStringEncodingMask));
   3023   __ j(zero, &two_byte_sequential);
   3024 
   3025   // Allocate the result.
   3026   __ AllocateOneByteString(rax, rcx, r11, r14, r15, &runtime);
   3027 
   3028   // rax: result string
   3029   // rcx: result string length
   3030   {  // Locate character of sub string start.
   3031     SmiIndex smi_as_index = masm->SmiToIndex(rdx, rdx, times_1);
   3032     __ leap(r14, Operand(rdi, smi_as_index.reg, smi_as_index.scale,
   3033                         SeqOneByteString::kHeaderSize - kHeapObjectTag));
   3034   }
   3035   // Locate first character of result.
   3036   __ leap(rdi, FieldOperand(rax, SeqOneByteString::kHeaderSize));
   3037 
   3038   // rax: result string
   3039   // rcx: result length
   3040   // r14: first character of result
   3041   // rsi: character of sub string start
   3042   StringHelper::GenerateCopyCharacters(
   3043       masm, rdi, r14, rcx, String::ONE_BYTE_ENCODING);
   3044   __ IncrementCounter(counters->sub_string_native(), 1);
   3045   __ ret(SUB_STRING_ARGUMENT_COUNT * kPointerSize);
   3046 
   3047   __ bind(&two_byte_sequential);
   3048   // Allocate the result.
   3049   __ AllocateTwoByteString(rax, rcx, r11, r14, r15, &runtime);
   3050 
   3051   // rax: result string
   3052   // rcx: result string length
   3053   {  // Locate character of sub string start.
   3054     SmiIndex smi_as_index = masm->SmiToIndex(rdx, rdx, times_2);
   3055     __ leap(r14, Operand(rdi, smi_as_index.reg, smi_as_index.scale,
   3056                         SeqOneByteString::kHeaderSize - kHeapObjectTag));
   3057   }
   3058   // Locate first character of result.
   3059   __ leap(rdi, FieldOperand(rax, SeqTwoByteString::kHeaderSize));
   3060 
   3061   // rax: result string
   3062   // rcx: result length
   3063   // rdi: first character of result
   3064   // r14: character of sub string start
   3065   StringHelper::GenerateCopyCharacters(
   3066       masm, rdi, r14, rcx, String::TWO_BYTE_ENCODING);
   3067   __ IncrementCounter(counters->sub_string_native(), 1);
   3068   __ ret(SUB_STRING_ARGUMENT_COUNT * kPointerSize);
   3069 
   3070   // Just jump to runtime to create the sub string.
   3071   __ bind(&runtime);
   3072   __ TailCallRuntime(Runtime::kSubString, 3, 1);
   3073 
   3074   __ bind(&single_char);
   3075   // rax: string
   3076   // rbx: instance type
   3077   // rcx: sub string length (smi)
   3078   // rdx: from index (smi)
   3079   StringCharAtGenerator generator(
   3080       rax, rdx, rcx, rax, &runtime, &runtime, &runtime, STRING_INDEX_IS_NUMBER);
   3081   generator.GenerateFast(masm);
   3082   __ ret(SUB_STRING_ARGUMENT_COUNT * kPointerSize);
   3083   generator.SkipSlow(masm, &runtime);
   3084 }
   3085 
   3086 
   3087 void StringHelper::GenerateFlatOneByteStringEquals(MacroAssembler* masm,
   3088                                                    Register left,
   3089                                                    Register right,
   3090                                                    Register scratch1,
   3091                                                    Register scratch2) {
   3092   Register length = scratch1;
   3093 
   3094   // Compare lengths.
   3095   Label check_zero_length;
   3096   __ movp(length, FieldOperand(left, String::kLengthOffset));
   3097   __ SmiCompare(length, FieldOperand(right, String::kLengthOffset));
   3098   __ j(equal, &check_zero_length, Label::kNear);
   3099   __ Move(rax, Smi::FromInt(NOT_EQUAL));
   3100   __ ret(0);
   3101 
   3102   // Check if the length is zero.
   3103   Label compare_chars;
   3104   __ bind(&check_zero_length);
   3105   STATIC_ASSERT(kSmiTag == 0);
   3106   __ SmiTest(length);
   3107   __ j(not_zero, &compare_chars, Label::kNear);
   3108   __ Move(rax, Smi::FromInt(EQUAL));
   3109   __ ret(0);
   3110 
   3111   // Compare characters.
   3112   __ bind(&compare_chars);
   3113   Label strings_not_equal;
   3114   GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2,
   3115                                   &strings_not_equal, Label::kNear);
   3116 
   3117   // Characters are equal.
   3118   __ Move(rax, Smi::FromInt(EQUAL));
   3119   __ ret(0);
   3120 
   3121   // Characters are not equal.
   3122   __ bind(&strings_not_equal);
   3123   __ Move(rax, Smi::FromInt(NOT_EQUAL));
   3124   __ ret(0);
   3125 }
   3126 
   3127 
   3128 void StringHelper::GenerateCompareFlatOneByteStrings(
   3129     MacroAssembler* masm, Register left, Register right, Register scratch1,
   3130     Register scratch2, Register scratch3, Register scratch4) {
   3131   // Ensure that you can always subtract a string length from a non-negative
   3132   // number (e.g. another length).
   3133   STATIC_ASSERT(String::kMaxLength < 0x7fffffff);
   3134 
   3135   // Find minimum length and length difference.
   3136   __ movp(scratch1, FieldOperand(left, String::kLengthOffset));
   3137   __ movp(scratch4, scratch1);
   3138   __ SmiSub(scratch4,
   3139             scratch4,
   3140             FieldOperand(right, String::kLengthOffset));
   3141   // Register scratch4 now holds left.length - right.length.
   3142   const Register length_difference = scratch4;
   3143   Label left_shorter;
   3144   __ j(less, &left_shorter, Label::kNear);
   3145   // The right string isn't longer that the left one.
   3146   // Get the right string's length by subtracting the (non-negative) difference
   3147   // from the left string's length.
   3148   __ SmiSub(scratch1, scratch1, length_difference);
   3149   __ bind(&left_shorter);
   3150   // Register scratch1 now holds Min(left.length, right.length).
   3151   const Register min_length = scratch1;
   3152 
   3153   Label compare_lengths;
   3154   // If min-length is zero, go directly to comparing lengths.
   3155   __ SmiTest(min_length);
   3156   __ j(zero, &compare_lengths, Label::kNear);
   3157 
   3158   // Compare loop.
   3159   Label result_not_equal;
   3160   GenerateOneByteCharsCompareLoop(
   3161       masm, left, right, min_length, scratch2, &result_not_equal,
   3162       // In debug-code mode, SmiTest below might push
   3163       // the target label outside the near range.
   3164       Label::kFar);
   3165 
   3166   // Completed loop without finding different characters.
   3167   // Compare lengths (precomputed).
   3168   __ bind(&compare_lengths);
   3169   __ SmiTest(length_difference);
   3170   Label length_not_equal;
   3171   __ j(not_zero, &length_not_equal, Label::kNear);
   3172 
   3173   // Result is EQUAL.
   3174   __ Move(rax, Smi::FromInt(EQUAL));
   3175   __ ret(0);
   3176 
   3177   Label result_greater;
   3178   Label result_less;
   3179   __ bind(&length_not_equal);
   3180   __ j(greater, &result_greater, Label::kNear);
   3181   __ jmp(&result_less, Label::kNear);
   3182   __ bind(&result_not_equal);
   3183   // Unequal comparison of left to right, either character or length.
   3184   __ j(above, &result_greater, Label::kNear);
   3185   __ bind(&result_less);
   3186 
   3187   // Result is LESS.
   3188   __ Move(rax, Smi::FromInt(LESS));
   3189   __ ret(0);
   3190 
   3191   // Result is GREATER.
   3192   __ bind(&result_greater);
   3193   __ Move(rax, Smi::FromInt(GREATER));
   3194   __ ret(0);
   3195 }
   3196 
   3197 
   3198 void StringHelper::GenerateOneByteCharsCompareLoop(
   3199     MacroAssembler* masm, Register left, Register right, Register length,
   3200     Register scratch, Label* chars_not_equal, Label::Distance near_jump) {
   3201   // Change index to run from -length to -1 by adding length to string
   3202   // start. This means that loop ends when index reaches zero, which
   3203   // doesn't need an additional compare.
   3204   __ SmiToInteger32(length, length);
   3205   __ leap(left,
   3206          FieldOperand(left, length, times_1, SeqOneByteString::kHeaderSize));
   3207   __ leap(right,
   3208          FieldOperand(right, length, times_1, SeqOneByteString::kHeaderSize));
   3209   __ negq(length);
   3210   Register index = length;  // index = -length;
   3211 
   3212   // Compare loop.
   3213   Label loop;
   3214   __ bind(&loop);
   3215   __ movb(scratch, Operand(left, index, times_1, 0));
   3216   __ cmpb(scratch, Operand(right, index, times_1, 0));
   3217   __ j(not_equal, chars_not_equal, near_jump);
   3218   __ incq(index);
   3219   __ j(not_zero, &loop);
   3220 }
   3221 
   3222 
   3223 void StringCompareStub::Generate(MacroAssembler* masm) {
   3224   Label runtime;
   3225 
   3226   // Stack frame on entry.
   3227   //  rsp[0]  : return address
   3228   //  rsp[8]  : right string
   3229   //  rsp[16] : left string
   3230 
   3231   StackArgumentsAccessor args(rsp, 2, ARGUMENTS_DONT_CONTAIN_RECEIVER);
   3232   __ movp(rdx, args.GetArgumentOperand(0));  // left
   3233   __ movp(rax, args.GetArgumentOperand(1));  // right
   3234 
   3235   // Check for identity.
   3236   Label not_same;
   3237   __ cmpp(rdx, rax);
   3238   __ j(not_equal, &not_same, Label::kNear);
   3239   __ Move(rax, Smi::FromInt(EQUAL));
   3240   Counters* counters = isolate()->counters();
   3241   __ IncrementCounter(counters->string_compare_native(), 1);
   3242   __ ret(2 * kPointerSize);
   3243 
   3244   __ bind(&not_same);
   3245 
   3246   // Check that both are sequential one-byte strings.
   3247   __ JumpIfNotBothSequentialOneByteStrings(rdx, rax, rcx, rbx, &runtime);
   3248 
   3249   // Inline comparison of one-byte strings.
   3250   __ IncrementCounter(counters->string_compare_native(), 1);
   3251   // Drop arguments from the stack
   3252   __ PopReturnAddressTo(rcx);
   3253   __ addp(rsp, Immediate(2 * kPointerSize));
   3254   __ PushReturnAddressFrom(rcx);
   3255   StringHelper::GenerateCompareFlatOneByteStrings(masm, rdx, rax, rcx, rbx, rdi,
   3256                                                   r8);
   3257 
   3258   // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater)
   3259   // tagged as a small integer.
   3260   __ bind(&runtime);
   3261   __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
   3262 }
   3263 
   3264 
   3265 void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
   3266   // ----------- S t a t e -------------
   3267   //  -- rdx    : left
   3268   //  -- rax    : right
   3269   //  -- rsp[0] : return address
   3270   // -----------------------------------
   3271 
   3272   // Load rcx with the allocation site.  We stick an undefined dummy value here
   3273   // and replace it with the real allocation site later when we instantiate this
   3274   // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
   3275   __ Move(rcx, handle(isolate()->heap()->undefined_value()));
   3276 
   3277   // Make sure that we actually patched the allocation site.
   3278   if (FLAG_debug_code) {
   3279     __ testb(rcx, Immediate(kSmiTagMask));
   3280     __ Assert(not_equal, kExpectedAllocationSite);
   3281     __ Cmp(FieldOperand(rcx, HeapObject::kMapOffset),
   3282            isolate()->factory()->allocation_site_map());
   3283     __ Assert(equal, kExpectedAllocationSite);
   3284   }
   3285 
   3286   // Tail call into the stub that handles binary operations with allocation
   3287   // sites.
   3288   BinaryOpWithAllocationSiteStub stub(isolate(), state());
   3289   __ TailCallStub(&stub);
   3290 }
   3291 
   3292 
   3293 void CompareICStub::GenerateSmis(MacroAssembler* masm) {
   3294   DCHECK(state() == CompareICState::SMI);
   3295   Label miss;
   3296   __ JumpIfNotBothSmi(rdx, rax, &miss, Label::kNear);
   3297 
   3298   if (GetCondition() == equal) {
   3299     // For equality we do not care about the sign of the result.
   3300     __ subp(rax, rdx);
   3301   } else {
   3302     Label done;
   3303     __ subp(rdx, rax);
   3304     __ j(no_overflow, &done, Label::kNear);
   3305     // Correct sign of result in case of overflow.
   3306     __ notp(rdx);
   3307     __ bind(&done);
   3308     __ movp(rax, rdx);
   3309   }
   3310   __ ret(0);
   3311 
   3312   __ bind(&miss);
   3313   GenerateMiss(masm);
   3314 }
   3315 
   3316 
   3317 void CompareICStub::GenerateNumbers(MacroAssembler* masm) {
   3318   DCHECK(state() == CompareICState::NUMBER);
   3319 
   3320   Label generic_stub;
   3321   Label unordered, maybe_undefined1, maybe_undefined2;
   3322   Label miss;
   3323 
   3324   if (left() == CompareICState::SMI) {
   3325     __ JumpIfNotSmi(rdx, &miss);
   3326   }
   3327   if (right() == CompareICState::SMI) {
   3328     __ JumpIfNotSmi(rax, &miss);
   3329   }
   3330 
   3331   // Load left and right operand.
   3332   Label done, left, left_smi, right_smi;
   3333   __ JumpIfSmi(rax, &right_smi, Label::kNear);
   3334   __ CompareMap(rax, isolate()->factory()->heap_number_map());
   3335   __ j(not_equal, &maybe_undefined1, Label::kNear);
   3336   __ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset));
   3337   __ jmp(&left, Label::kNear);
   3338   __ bind(&right_smi);
   3339   __ SmiToInteger32(rcx, rax);  // Can't clobber rax yet.
   3340   __ Cvtlsi2sd(xmm1, rcx);
   3341 
   3342   __ bind(&left);
   3343   __ JumpIfSmi(rdx, &left_smi, Label::kNear);
   3344   __ CompareMap(rdx, isolate()->factory()->heap_number_map());
   3345   __ j(not_equal, &maybe_undefined2, Label::kNear);
   3346   __ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset));
   3347   __ jmp(&done);
   3348   __ bind(&left_smi);
   3349   __ SmiToInteger32(rcx, rdx);  // Can't clobber rdx yet.
   3350   __ Cvtlsi2sd(xmm0, rcx);
   3351 
   3352   __ bind(&done);
   3353   // Compare operands
   3354   __ ucomisd(xmm0, xmm1);
   3355 
   3356   // Don't base result on EFLAGS when a NaN is involved.
   3357   __ j(parity_even, &unordered, Label::kNear);
   3358 
   3359   // Return a result of -1, 0, or 1, based on EFLAGS.
   3360   // Performing mov, because xor would destroy the flag register.
   3361   __ movl(rax, Immediate(0));
   3362   __ movl(rcx, Immediate(0));
   3363   __ setcc(above, rax);  // Add one to zero if carry clear and not equal.
   3364   __ sbbp(rax, rcx);  // Subtract one if below (aka. carry set).
   3365   __ ret(0);
   3366 
   3367   __ bind(&unordered);
   3368   __ bind(&generic_stub);
   3369   CompareICStub stub(isolate(), op(), CompareICState::GENERIC,
   3370                      CompareICState::GENERIC, CompareICState::GENERIC);
   3371   __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);
   3372 
   3373   __ bind(&maybe_undefined1);
   3374   if (Token::IsOrderedRelationalCompareOp(op())) {
   3375     __ Cmp(rax, isolate()->factory()->undefined_value());
   3376     __ j(not_equal, &miss);
   3377     __ JumpIfSmi(rdx, &unordered);
   3378     __ CmpObjectType(rdx, HEAP_NUMBER_TYPE, rcx);
   3379     __ j(not_equal, &maybe_undefined2, Label::kNear);
   3380     __ jmp(&unordered);
   3381   }
   3382 
   3383   __ bind(&maybe_undefined2);
   3384   if (Token::IsOrderedRelationalCompareOp(op())) {
   3385     __ Cmp(rdx, isolate()->factory()->undefined_value());
   3386     __ j(equal, &unordered);
   3387   }
   3388 
   3389   __ bind(&miss);
   3390   GenerateMiss(masm);
   3391 }
   3392 
   3393 
   3394 void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) {
   3395   DCHECK(state() == CompareICState::INTERNALIZED_STRING);
   3396   DCHECK(GetCondition() == equal);
   3397 
   3398   // Registers containing left and right operands respectively.
   3399   Register left = rdx;
   3400   Register right = rax;
   3401   Register tmp1 = rcx;
   3402   Register tmp2 = rbx;
   3403 
   3404   // Check that both operands are heap objects.
   3405   Label miss;
   3406   Condition cond = masm->CheckEitherSmi(left, right, tmp1);
   3407   __ j(cond, &miss, Label::kNear);
   3408 
   3409   // Check that both operands are internalized strings.
   3410   __ movp(tmp1, FieldOperand(left, HeapObject::kMapOffset));
   3411   __ movp(tmp2, FieldOperand(right, HeapObject::kMapOffset));
   3412   __ movzxbp(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
   3413   __ movzxbp(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
   3414   STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
   3415   __ orp(tmp1, tmp2);
   3416   __ testb(tmp1, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
   3417   __ j(not_zero, &miss, Label::kNear);
   3418 
   3419   // Internalized strings are compared by identity.
   3420   Label done;
   3421   __ cmpp(left, right);
   3422   // Make sure rax is non-zero. At this point input operands are
   3423   // guaranteed to be non-zero.
   3424   DCHECK(right.is(rax));
   3425   __ j(not_equal, &done, Label::kNear);
   3426   STATIC_ASSERT(EQUAL == 0);
   3427   STATIC_ASSERT(kSmiTag == 0);
   3428   __ Move(rax, Smi::FromInt(EQUAL));
   3429   __ bind(&done);
   3430   __ ret(0);
   3431 
   3432   __ bind(&miss);
   3433   GenerateMiss(masm);
   3434 }
   3435 
   3436 
   3437 void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) {
   3438   DCHECK(state() == CompareICState::UNIQUE_NAME);
   3439   DCHECK(GetCondition() == equal);
   3440 
   3441   // Registers containing left and right operands respectively.
   3442   Register left = rdx;
   3443   Register right = rax;
   3444   Register tmp1 = rcx;
   3445   Register tmp2 = rbx;
   3446 
   3447   // Check that both operands are heap objects.
   3448   Label miss;
   3449   Condition cond = masm->CheckEitherSmi(left, right, tmp1);
   3450   __ j(cond, &miss, Label::kNear);
   3451 
   3452   // Check that both operands are unique names. This leaves the instance
   3453   // types loaded in tmp1 and tmp2.
   3454   __ movp(tmp1, FieldOperand(left, HeapObject::kMapOffset));
   3455   __ movp(tmp2, FieldOperand(right, HeapObject::kMapOffset));
   3456   __ movzxbp(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
   3457   __ movzxbp(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
   3458 
   3459   __ JumpIfNotUniqueNameInstanceType(tmp1, &miss, Label::kNear);
   3460   __ JumpIfNotUniqueNameInstanceType(tmp2, &miss, Label::kNear);
   3461 
   3462   // Unique names are compared by identity.
   3463   Label done;
   3464   __ cmpp(left, right);
   3465   // Make sure rax is non-zero. At this point input operands are
   3466   // guaranteed to be non-zero.
   3467   DCHECK(right.is(rax));
   3468   __ j(not_equal, &done, Label::kNear);
   3469   STATIC_ASSERT(EQUAL == 0);
   3470   STATIC_ASSERT(kSmiTag == 0);
   3471   __ Move(rax, Smi::FromInt(EQUAL));
   3472   __ bind(&done);
   3473   __ ret(0);
   3474 
   3475   __ bind(&miss);
   3476   GenerateMiss(masm);
   3477 }
   3478 
   3479 
   3480 void CompareICStub::GenerateStrings(MacroAssembler* masm) {
   3481   DCHECK(state() == CompareICState::STRING);
   3482   Label miss;
   3483 
   3484   bool equality = Token::IsEqualityOp(op());
   3485 
   3486   // Registers containing left and right operands respectively.
   3487   Register left = rdx;
   3488   Register right = rax;
   3489   Register tmp1 = rcx;
   3490   Register tmp2 = rbx;
   3491   Register tmp3 = rdi;
   3492 
   3493   // Check that both operands are heap objects.
   3494   Condition cond = masm->CheckEitherSmi(left, right, tmp1);
   3495   __ j(cond, &miss);
   3496 
   3497   // Check that both operands are strings. This leaves the instance
   3498   // types loaded in tmp1 and tmp2.
   3499   __ movp(tmp1, FieldOperand(left, HeapObject::kMapOffset));
   3500   __ movp(tmp2, FieldOperand(right, HeapObject::kMapOffset));
   3501   __ movzxbp(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
   3502   __ movzxbp(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
   3503   __ movp(tmp3, tmp1);
   3504   STATIC_ASSERT(kNotStringTag != 0);
   3505   __ orp(tmp3, tmp2);
   3506   __ testb(tmp3, Immediate(kIsNotStringMask));
   3507   __ j(not_zero, &miss);
   3508 
   3509   // Fast check for identical strings.
   3510   Label not_same;
   3511   __ cmpp(left, right);
   3512   __ j(not_equal, &not_same, Label::kNear);
   3513   STATIC_ASSERT(EQUAL == 0);
   3514   STATIC_ASSERT(kSmiTag == 0);
   3515   __ Move(rax, Smi::FromInt(EQUAL));
   3516   __ ret(0);
   3517 
   3518   // Handle not identical strings.
   3519   __ bind(&not_same);
   3520 
   3521   // Check that both strings are internalized strings. If they are, we're done
   3522   // because we already know they are not identical. We also know they are both
   3523   // strings.
   3524   if (equality) {
   3525     Label do_compare;
   3526     STATIC_ASSERT(kInternalizedTag == 0);
   3527     __ orp(tmp1, tmp2);
   3528     __ testb(tmp1, Immediate(kIsNotInternalizedMask));
   3529     __ j(not_zero, &do_compare, Label::kNear);
   3530     // Make sure rax is non-zero. At this point input operands are
   3531     // guaranteed to be non-zero.
   3532     DCHECK(right.is(rax));
   3533     __ ret(0);
   3534     __ bind(&do_compare);
   3535   }
   3536 
   3537   // Check that both strings are sequential one-byte.
   3538   Label runtime;
   3539   __ JumpIfNotBothSequentialOneByteStrings(left, right, tmp1, tmp2, &runtime);
   3540 
   3541   // Compare flat one-byte strings. Returns when done.
   3542   if (equality) {
   3543     StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1,
   3544                                                   tmp2);
   3545   } else {
   3546     StringHelper::GenerateCompareFlatOneByteStrings(
   3547         masm, left, right, tmp1, tmp2, tmp3, kScratchRegister);
   3548   }
   3549 
   3550   // Handle more complex cases in runtime.
   3551   __ bind(&runtime);
   3552   __ PopReturnAddressTo(tmp1);
   3553   __ Push(left);
   3554   __ Push(right);
   3555   __ PushReturnAddressFrom(tmp1);
   3556   if (equality) {
   3557     __ TailCallRuntime(Runtime::kStringEquals, 2, 1);
   3558   } else {
   3559     __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
   3560   }
   3561 
   3562   __ bind(&miss);
   3563   GenerateMiss(masm);
   3564 }
   3565 
   3566 
   3567 void CompareICStub::GenerateObjects(MacroAssembler* masm) {
   3568   DCHECK(state() == CompareICState::OBJECT);
   3569   Label miss;
   3570   Condition either_smi = masm->CheckEitherSmi(rdx, rax);
   3571   __ j(either_smi, &miss, Label::kNear);
   3572 
   3573   __ CmpObjectType(rax, JS_OBJECT_TYPE, rcx);
   3574   __ j(not_equal, &miss, Label::kNear);
   3575   __ CmpObjectType(rdx, JS_OBJECT_TYPE, rcx);
   3576   __ j(not_equal, &miss, Label::kNear);
   3577 
   3578   DCHECK(GetCondition() == equal);
   3579   __ subp(rax, rdx);
   3580   __ ret(0);
   3581 
   3582   __ bind(&miss);
   3583   GenerateMiss(masm);
   3584 }
   3585 
   3586 
   3587 void CompareICStub::GenerateKnownObjects(MacroAssembler* masm) {
   3588   Label miss;
   3589   Condition either_smi = masm->CheckEitherSmi(rdx, rax);
   3590   __ j(either_smi, &miss, Label::kNear);
   3591 
   3592   __ movp(rcx, FieldOperand(rax, HeapObject::kMapOffset));
   3593   __ movp(rbx, FieldOperand(rdx, HeapObject::kMapOffset));
   3594   __ Cmp(rcx, known_map_);
   3595   __ j(not_equal, &miss, Label::kNear);
   3596   __ Cmp(rbx, known_map_);
   3597   __ j(not_equal, &miss, Label::kNear);
   3598 
   3599   __ subp(rax, rdx);
   3600   __ ret(0);
   3601 
   3602   __ bind(&miss);
   3603   GenerateMiss(masm);
   3604 }
   3605 
   3606 
   3607 void CompareICStub::GenerateMiss(MacroAssembler* masm) {
   3608   {
   3609     // Call the runtime system in a fresh internal frame.
   3610     ExternalReference miss =
   3611         ExternalReference(IC_Utility(IC::kCompareIC_Miss), isolate());
   3612 
   3613     FrameScope scope(masm, StackFrame::INTERNAL);
   3614     __ Push(rdx);
   3615     __ Push(rax);
   3616     __ Push(rdx);
   3617     __ Push(rax);
   3618     __ Push(Smi::FromInt(op()));
   3619     __ CallExternalReference(miss, 3);
   3620 
   3621     // Compute the entry point of the rewritten stub.
   3622     __ leap(rdi, FieldOperand(rax, Code::kHeaderSize));
   3623     __ Pop(rax);
   3624     __ Pop(rdx);
   3625   }
   3626 
   3627   // Do a tail call to the rewritten stub.
   3628   __ jmp(rdi);
   3629 }
   3630 
   3631 
   3632 void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
   3633                                                       Label* miss,
   3634                                                       Label* done,
   3635                                                       Register properties,
   3636                                                       Handle<Name> name,
   3637                                                       Register r0) {
   3638   DCHECK(name->IsUniqueName());
   3639   // If names of slots in range from 1 to kProbes - 1 for the hash value are
   3640   // not equal to the name and kProbes-th slot is not used (its name is the
   3641   // undefined value), it guarantees the hash table doesn't contain the
   3642   // property. It's true even if some slots represent deleted properties
   3643   // (their names are the hole value).
   3644   for (int i = 0; i < kInlinedProbes; i++) {
   3645     // r0 points to properties hash.
   3646     // Compute the masked index: (hash + i + i * i) & mask.
   3647     Register index = r0;
   3648     // Capacity is smi 2^n.
   3649     __ SmiToInteger32(index, FieldOperand(properties, kCapacityOffset));
   3650     __ decl(index);
   3651     __ andp(index,
   3652             Immediate(name->Hash() + NameDictionary::GetProbeOffset(i)));
   3653 
   3654     // Scale the index by multiplying by the entry size.
   3655     DCHECK(NameDictionary::kEntrySize == 3);
   3656     __ leap(index, Operand(index, index, times_2, 0));  // index *= 3.
   3657 
   3658     Register entity_name = r0;
   3659     // Having undefined at this place means the name is not contained.
   3660     DCHECK_EQ(kSmiTagSize, 1);
   3661     __ movp(entity_name, Operand(properties,
   3662                                  index,
   3663                                  times_pointer_size,
   3664                                  kElementsStartOffset - kHeapObjectTag));
   3665     __ Cmp(entity_name, masm->isolate()->factory()->undefined_value());
   3666     __ j(equal, done);
   3667 
   3668     // Stop if found the property.
   3669     __ Cmp(entity_name, Handle<Name>(name));
   3670     __ j(equal, miss);
   3671 
   3672     Label good;
   3673     // Check for the hole and skip.
   3674     __ CompareRoot(entity_name, Heap::kTheHoleValueRootIndex);
   3675     __ j(equal, &good, Label::kNear);
   3676 
   3677     // Check if the entry name is not a unique name.
   3678     __ movp(entity_name, FieldOperand(entity_name, HeapObject::kMapOffset));
   3679     __ JumpIfNotUniqueNameInstanceType(
   3680         FieldOperand(entity_name, Map::kInstanceTypeOffset), miss);
   3681     __ bind(&good);
   3682   }
   3683 
   3684   NameDictionaryLookupStub stub(masm->isolate(), properties, r0, r0,
   3685                                 NEGATIVE_LOOKUP);
   3686   __ Push(Handle<Object>(name));
   3687   __ Push(Immediate(name->Hash()));
   3688   __ CallStub(&stub);
   3689   __ testp(r0, r0);
   3690   __ j(not_zero, miss);
   3691   __ jmp(done);
   3692 }
   3693 
   3694 
   3695 // Probe the name dictionary in the |elements| register. Jump to the
   3696 // |done| label if a property with the given name is found leaving the
   3697 // index into the dictionary in |r1|. Jump to the |miss| label
   3698 // otherwise.
   3699 void NameDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm,
   3700                                                       Label* miss,
   3701                                                       Label* done,
   3702                                                       Register elements,
   3703                                                       Register name,
   3704                                                       Register r0,
   3705                                                       Register r1) {
   3706   DCHECK(!elements.is(r0));
   3707   DCHECK(!elements.is(r1));
   3708   DCHECK(!name.is(r0));
   3709   DCHECK(!name.is(r1));
   3710 
   3711   __ AssertName(name);
   3712 
   3713   __ SmiToInteger32(r0, FieldOperand(elements, kCapacityOffset));
   3714   __ decl(r0);
   3715 
   3716   for (int i = 0; i < kInlinedProbes; i++) {
   3717     // Compute the masked index: (hash + i + i * i) & mask.
   3718     __ movl(r1, FieldOperand(name, Name::kHashFieldOffset));
   3719     __ shrl(r1, Immediate(Name::kHashShift));
   3720     if (i > 0) {
   3721       __ addl(r1, Immediate(NameDictionary::GetProbeOffset(i)));
   3722     }
   3723     __ andp(r1, r0);
   3724 
   3725     // Scale the index by multiplying by the entry size.
   3726     DCHECK(NameDictionary::kEntrySize == 3);
   3727     __ leap(r1, Operand(r1, r1, times_2, 0));  // r1 = r1 * 3
   3728 
   3729     // Check if the key is identical to the name.
   3730     __ cmpp(name, Operand(elements, r1, times_pointer_size,
   3731                           kElementsStartOffset - kHeapObjectTag));
   3732     __ j(equal, done);
   3733   }
   3734 
   3735   NameDictionaryLookupStub stub(masm->isolate(), elements, r0, r1,
   3736                                 POSITIVE_LOOKUP);
   3737   __ Push(name);
   3738   __ movl(r0, FieldOperand(name, Name::kHashFieldOffset));
   3739   __ shrl(r0, Immediate(Name::kHashShift));
   3740   __ Push(r0);
   3741   __ CallStub(&stub);
   3742 
   3743   __ testp(r0, r0);
   3744   __ j(zero, miss);
   3745   __ jmp(done);
   3746 }
   3747 
   3748 
   3749 void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
   3750   // This stub overrides SometimesSetsUpAFrame() to return false.  That means
   3751   // we cannot call anything that could cause a GC from this stub.
   3752   // Stack frame on entry:
   3753   //  rsp[0 * kPointerSize] : return address.
   3754   //  rsp[1 * kPointerSize] : key's hash.
   3755   //  rsp[2 * kPointerSize] : key.
   3756   // Registers:
   3757   //  dictionary_: NameDictionary to probe.
   3758   //  result_: used as scratch.
   3759   //  index_: will hold an index of entry if lookup is successful.
   3760   //          might alias with result_.
   3761   // Returns:
   3762   //  result_ is zero if lookup failed, non zero otherwise.
   3763 
   3764   Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
   3765 
   3766   Register scratch = result();
   3767 
   3768   __ SmiToInteger32(scratch, FieldOperand(dictionary(), kCapacityOffset));
   3769   __ decl(scratch);
   3770   __ Push(scratch);
   3771 
   3772   // If names of slots in range from 1 to kProbes - 1 for the hash value are
   3773   // not equal to the name and kProbes-th slot is not used (its name is the
   3774   // undefined value), it guarantees the hash table doesn't contain the
   3775   // property. It's true even if some slots represent deleted properties
   3776   // (their names are the null value).
   3777   StackArgumentsAccessor args(rsp, 2, ARGUMENTS_DONT_CONTAIN_RECEIVER,
   3778                               kPointerSize);
   3779   for (int i = kInlinedProbes; i < kTotalProbes; i++) {
   3780     // Compute the masked index: (hash + i + i * i) & mask.
   3781     __ movp(scratch, args.GetArgumentOperand(1));
   3782     if (i > 0) {
   3783       __ addl(scratch, Immediate(NameDictionary::GetProbeOffset(i)));
   3784     }
   3785     __ andp(scratch, Operand(rsp, 0));
   3786 
   3787     // Scale the index by multiplying by the entry size.
   3788     DCHECK(NameDictionary::kEntrySize == 3);
   3789     __ leap(index(), Operand(scratch, scratch, times_2, 0));  // index *= 3.
   3790 
   3791     // Having undefined at this place means the name is not contained.
   3792     __ movp(scratch, Operand(dictionary(), index(), times_pointer_size,
   3793                              kElementsStartOffset - kHeapObjectTag));
   3794 
   3795     __ Cmp(scratch, isolate()->factory()->undefined_value());
   3796     __ j(equal, &not_in_dictionary);
   3797 
   3798     // Stop if found the property.
   3799     __ cmpp(scratch, args.GetArgumentOperand(0));
   3800     __ j(equal, &in_dictionary);
   3801 
   3802     if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) {
   3803       // If we hit a key that is not a unique name during negative
   3804       // lookup we have to bailout as this key might be equal to the
   3805       // key we are looking for.
   3806 
   3807       // Check if the entry name is not a unique name.
   3808       __ movp(scratch, FieldOperand(scratch, HeapObject::kMapOffset));
   3809       __ JumpIfNotUniqueNameInstanceType(
   3810           FieldOperand(scratch, Map::kInstanceTypeOffset),
   3811           &maybe_in_dictionary);
   3812     }
   3813   }
   3814 
   3815   __ bind(&maybe_in_dictionary);
   3816   // If we are doing negative lookup then probing failure should be
   3817   // treated as a lookup success. For positive lookup probing failure
   3818   // should be treated as lookup failure.
   3819   if (mode() == POSITIVE_LOOKUP) {
   3820     __ movp(scratch, Immediate(0));
   3821     __ Drop(1);
   3822     __ ret(2 * kPointerSize);
   3823   }
   3824 
   3825   __ bind(&in_dictionary);
   3826   __ movp(scratch, Immediate(1));
   3827   __ Drop(1);
   3828   __ ret(2 * kPointerSize);
   3829 
   3830   __ bind(&not_in_dictionary);
   3831   __ movp(scratch, Immediate(0));
   3832   __ Drop(1);
   3833   __ ret(2 * kPointerSize);
   3834 }
   3835 
   3836 
   3837 void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
   3838     Isolate* isolate) {
   3839   StoreBufferOverflowStub stub1(isolate, kDontSaveFPRegs);
   3840   stub1.GetCode();
   3841   StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
   3842   stub2.GetCode();
   3843 }
   3844 
   3845 
   3846 // Takes the input in 3 registers: address_ value_ and object_.  A pointer to
   3847 // the value has just been written into the object, now this stub makes sure
   3848 // we keep the GC informed.  The word in the object where the value has been
   3849 // written is in the address register.
   3850 void RecordWriteStub::Generate(MacroAssembler* masm) {
   3851   Label skip_to_incremental_noncompacting;
   3852   Label skip_to_incremental_compacting;
   3853 
   3854   // The first two instructions are generated with labels so as to get the
   3855   // offset fixed up correctly by the bind(Label*) call.  We patch it back and
   3856   // forth between a compare instructions (a nop in this position) and the
   3857   // real branch when we start and stop incremental heap marking.
   3858   // See RecordWriteStub::Patch for details.
   3859   __ jmp(&skip_to_incremental_noncompacting, Label::kNear);
   3860   __ jmp(&skip_to_incremental_compacting, Label::kFar);
   3861 
   3862   if (remembered_set_action() == EMIT_REMEMBERED_SET) {
   3863     __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
   3864                            MacroAssembler::kReturnAtEnd);
   3865   } else {
   3866     __ ret(0);
   3867   }
   3868 
   3869   __ bind(&skip_to_incremental_noncompacting);
   3870   GenerateIncremental(masm, INCREMENTAL);
   3871 
   3872   __ bind(&skip_to_incremental_compacting);
   3873   GenerateIncremental(masm, INCREMENTAL_COMPACTION);
   3874 
   3875   // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
   3876   // Will be checked in IncrementalMarking::ActivateGeneratedStub.
   3877   masm->set_byte_at(0, kTwoByteNopInstruction);
   3878   masm->set_byte_at(2, kFiveByteNopInstruction);
   3879 }
   3880 
   3881 
   3882 void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
   3883   regs_.Save(masm);
   3884 
   3885   if (remembered_set_action() == EMIT_REMEMBERED_SET) {
   3886     Label dont_need_remembered_set;
   3887 
   3888     __ movp(regs_.scratch0(), Operand(regs_.address(), 0));
   3889     __ JumpIfNotInNewSpace(regs_.scratch0(),
   3890                            regs_.scratch0(),
   3891                            &dont_need_remembered_set);
   3892 
   3893     __ CheckPageFlag(regs_.object(),
   3894                      regs_.scratch0(),
   3895                      1 << MemoryChunk::SCAN_ON_SCAVENGE,
   3896                      not_zero,
   3897                      &dont_need_remembered_set);
   3898 
   3899     // First notify the incremental marker if necessary, then update the
   3900     // remembered set.
   3901     CheckNeedsToInformIncrementalMarker(
   3902         masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
   3903     InformIncrementalMarker(masm);
   3904     regs_.Restore(masm);
   3905     __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
   3906                            MacroAssembler::kReturnAtEnd);
   3907 
   3908     __ bind(&dont_need_remembered_set);
   3909   }
   3910 
   3911   CheckNeedsToInformIncrementalMarker(
   3912       masm, kReturnOnNoNeedToInformIncrementalMarker, mode);
   3913   InformIncrementalMarker(masm);
   3914   regs_.Restore(masm);
   3915   __ ret(0);
   3916 }
   3917 
   3918 
   3919 void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
   3920   regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode());
   3921   Register address =
   3922       arg_reg_1.is(regs_.address()) ? kScratchRegister : regs_.address();
   3923   DCHECK(!address.is(regs_.object()));
   3924   DCHECK(!address.is(arg_reg_1));
   3925   __ Move(address, regs_.address());
   3926   __ Move(arg_reg_1, regs_.object());
   3927   // TODO(gc) Can we just set address arg2 in the beginning?
   3928   __ Move(arg_reg_2, address);
   3929   __ LoadAddress(arg_reg_3,
   3930                  ExternalReference::isolate_address(isolate()));
   3931   int argument_count = 3;
   3932 
   3933   AllowExternalCallThatCantCauseGC scope(masm);
   3934   __ PrepareCallCFunction(argument_count);
   3935   __ CallCFunction(
   3936       ExternalReference::incremental_marking_record_write_function(isolate()),
   3937       argument_count);
   3938   regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode());
   3939 }
   3940 
   3941 
   3942 void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
   3943     MacroAssembler* masm,
   3944     OnNoNeedToInformIncrementalMarker on_no_need,
   3945     Mode mode) {
   3946   Label on_black;
   3947   Label need_incremental;
   3948   Label need_incremental_pop_object;
   3949 
   3950   __ movp(regs_.scratch0(), Immediate(~Page::kPageAlignmentMask));
   3951   __ andp(regs_.scratch0(), regs_.object());
   3952   __ movp(regs_.scratch1(),
   3953          Operand(regs_.scratch0(),
   3954                  MemoryChunk::kWriteBarrierCounterOffset));
   3955   __ subp(regs_.scratch1(), Immediate(1));
   3956   __ movp(Operand(regs_.scratch0(),
   3957                  MemoryChunk::kWriteBarrierCounterOffset),
   3958          regs_.scratch1());
   3959   __ j(negative, &need_incremental);
   3960 
   3961   // Let's look at the color of the object:  If it is not black we don't have
   3962   // to inform the incremental marker.
   3963   __ JumpIfBlack(regs_.object(),
   3964                  regs_.scratch0(),
   3965                  regs_.scratch1(),
   3966                  &on_black,
   3967                  Label::kNear);
   3968 
   3969   regs_.Restore(masm);
   3970   if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
   3971     __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
   3972                            MacroAssembler::kReturnAtEnd);
   3973   } else {
   3974     __ ret(0);
   3975   }
   3976 
   3977   __ bind(&on_black);
   3978 
   3979   // Get the value from the slot.
   3980   __ movp(regs_.scratch0(), Operand(regs_.address(), 0));
   3981 
   3982   if (mode == INCREMENTAL_COMPACTION) {
   3983     Label ensure_not_white;
   3984 
   3985     __ CheckPageFlag(regs_.scratch0(),  // Contains value.
   3986                      regs_.scratch1(),  // Scratch.
   3987                      MemoryChunk::kEvacuationCandidateMask,
   3988                      zero,
   3989                      &ensure_not_white,
   3990                      Label::kNear);
   3991 
   3992     __ CheckPageFlag(regs_.object(),
   3993                      regs_.scratch1(),  // Scratch.
   3994                      MemoryChunk::kSkipEvacuationSlotsRecordingMask,
   3995                      zero,
   3996                      &need_incremental);
   3997 
   3998     __ bind(&ensure_not_white);
   3999   }
   4000 
   4001   // We need an extra register for this, so we push the object register
   4002   // temporarily.
   4003   __ Push(regs_.object());
   4004   __ EnsureNotWhite(regs_.scratch0(),  // The value.
   4005                     regs_.scratch1(),  // Scratch.
   4006                     regs_.object(),  // Scratch.
   4007                     &need_incremental_pop_object,
   4008                     Label::kNear);
   4009   __ Pop(regs_.object());
   4010 
   4011   regs_.Restore(masm);
   4012   if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
   4013     __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
   4014                            MacroAssembler::kReturnAtEnd);
   4015   } else {
   4016     __ ret(0);
   4017   }
   4018 
   4019   __ bind(&need_incremental_pop_object);
   4020   __ Pop(regs_.object());
   4021 
   4022   __ bind(&need_incremental);
   4023 
   4024   // Fall through when we need to inform the incremental marker.
   4025 }
   4026 
   4027 
   4028 void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) {
   4029   // ----------- S t a t e -------------
   4030   //  -- rax     : element value to store
   4031   //  -- rcx     : element index as smi
   4032   //  -- rsp[0]  : return address
   4033   //  -- rsp[8]  : array literal index in function
   4034   //  -- rsp[16] : array literal
   4035   // clobbers rbx, rdx, rdi
   4036   // -----------------------------------
   4037 
   4038   Label element_done;
   4039   Label double_elements;
   4040   Label smi_element;
   4041   Label slow_elements;
   4042   Label fast_elements;
   4043 
   4044   // Get array literal index, array literal and its map.
   4045   StackArgumentsAccessor args(rsp, 2, ARGUMENTS_DONT_CONTAIN_RECEIVER);
   4046   __ movp(rdx, args.GetArgumentOperand(1));
   4047   __ movp(rbx, args.GetArgumentOperand(0));
   4048   __ movp(rdi, FieldOperand(rbx, JSObject::kMapOffset));
   4049 
   4050   __ CheckFastElements(rdi, &double_elements);
   4051 
   4052   // FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS
   4053   __ JumpIfSmi(rax, &smi_element);
   4054   __ CheckFastSmiElements(rdi, &fast_elements);
   4055 
   4056   // Store into the array literal requires a elements transition. Call into
   4057   // the runtime.
   4058 
   4059   __ bind(&slow_elements);
   4060   __ PopReturnAddressTo(rdi);
   4061   __ Push(rbx);
   4062   __ Push(rcx);
   4063   __ Push(rax);
   4064   __ movp(rbx, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
   4065   __ Push(FieldOperand(rbx, JSFunction::kLiteralsOffset));
   4066   __ Push(rdx);
   4067   __ PushReturnAddressFrom(rdi);
   4068   __ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1);
   4069 
   4070   // Array literal has ElementsKind of FAST_*_ELEMENTS and value is an object.
   4071   __ bind(&fast_elements);
   4072   __ SmiToInteger32(kScratchRegister, rcx);
   4073   __ movp(rbx, FieldOperand(rbx, JSObject::kElementsOffset));
   4074   __ leap(rcx, FieldOperand(rbx, kScratchRegister, times_pointer_size,
   4075                            FixedArrayBase::kHeaderSize));
   4076   __ movp(Operand(rcx, 0), rax);
   4077   // Update the write barrier for the array store.
   4078   __ RecordWrite(rbx, rcx, rax,
   4079                  kDontSaveFPRegs,
   4080                  EMIT_REMEMBERED_SET,
   4081                  OMIT_SMI_CHECK);
   4082   __ ret(0);
   4083 
   4084   // Array literal has ElementsKind of FAST_*_SMI_ELEMENTS or
   4085   // FAST_*_ELEMENTS, and value is Smi.
   4086   __ bind(&smi_element);
   4087   __ SmiToInteger32(kScratchRegister, rcx);
   4088   __ movp(rbx, FieldOperand(rbx, JSObject::kElementsOffset));
   4089   __ movp(FieldOperand(rbx, kScratchRegister, times_pointer_size,
   4090                        FixedArrayBase::kHeaderSize), rax);
   4091   __ ret(0);
   4092 
   4093   // Array literal has ElementsKind of FAST_DOUBLE_ELEMENTS.
   4094   __ bind(&double_elements);
   4095 
   4096   __ movp(r9, FieldOperand(rbx, JSObject::kElementsOffset));
   4097   __ SmiToInteger32(r11, rcx);
   4098   __ StoreNumberToDoubleElements(rax,
   4099                                  r9,
   4100                                  r11,
   4101                                  xmm0,
   4102                                  &slow_elements);
   4103   __ ret(0);
   4104 }
   4105 
   4106 
   4107 void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
   4108   CEntryStub ces(isolate(), 1, kSaveFPRegs);
   4109   __ Call(ces.GetCode(), RelocInfo::CODE_TARGET);
   4110   int parameter_count_offset =
   4111       StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset;
   4112   __ movp(rbx, MemOperand(rbp, parameter_count_offset));
   4113   masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
   4114   __ PopReturnAddressTo(rcx);
   4115   int additional_offset =
   4116       function_mode() == JS_FUNCTION_STUB_MODE ? kPointerSize : 0;
   4117   __ leap(rsp, MemOperand(rsp, rbx, times_pointer_size, additional_offset));
   4118   __ jmp(rcx);  // Return to IC Miss stub, continuation still on stack.
   4119 }
   4120 
   4121 
   4122 void LoadICTrampolineStub::Generate(MacroAssembler* masm) {
   4123   EmitLoadTypeFeedbackVector(masm, VectorLoadICDescriptor::VectorRegister());
   4124   VectorLoadStub stub(isolate(), state());
   4125   __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);
   4126 }
   4127 
   4128 
   4129 void KeyedLoadICTrampolineStub::Generate(MacroAssembler* masm) {
   4130   EmitLoadTypeFeedbackVector(masm, VectorLoadICDescriptor::VectorRegister());
   4131   VectorKeyedLoadStub stub(isolate());
   4132   __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);
   4133 }
   4134 
   4135 
   4136 void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
   4137   if (masm->isolate()->function_entry_hook() != NULL) {
   4138     ProfileEntryHookStub stub(masm->isolate());
   4139     masm->CallStub(&stub);
   4140   }
   4141 }
   4142 
   4143 
   4144 void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
   4145   // This stub can be called from essentially anywhere, so it needs to save
   4146   // all volatile and callee-save registers.
   4147   const size_t kNumSavedRegisters = 2;
   4148   __ pushq(arg_reg_1);
   4149   __ pushq(arg_reg_2);
   4150 
   4151   // Calculate the original stack pointer and store it in the second arg.
   4152   __ leap(arg_reg_2,
   4153          Operand(rsp, kNumSavedRegisters * kRegisterSize + kPCOnStackSize));
   4154 
   4155   // Calculate the function address to the first arg.
   4156   __ movp(arg_reg_1, Operand(rsp, kNumSavedRegisters * kRegisterSize));
   4157   __ subp(arg_reg_1, Immediate(Assembler::kShortCallInstructionLength));
   4158 
   4159   // Save the remainder of the volatile registers.
   4160   masm->PushCallerSaved(kSaveFPRegs, arg_reg_1, arg_reg_2);
   4161 
   4162   // Call the entry hook function.
   4163   __ Move(rax, FUNCTION_ADDR(isolate()->function_entry_hook()),
   4164           Assembler::RelocInfoNone());
   4165 
   4166   AllowExternalCallThatCantCauseGC scope(masm);
   4167 
   4168   const int kArgumentCount = 2;
   4169   __ PrepareCallCFunction(kArgumentCount);
   4170   __ CallCFunction(rax, kArgumentCount);
   4171 
   4172   // Restore volatile regs.
   4173   masm->PopCallerSaved(kSaveFPRegs, arg_reg_1, arg_reg_2);
   4174   __ popq(arg_reg_2);
   4175   __ popq(arg_reg_1);
   4176 
   4177   __ Ret();
   4178 }
   4179 
   4180 
   4181 template<class T>
   4182 static void CreateArrayDispatch(MacroAssembler* masm,
   4183                                 AllocationSiteOverrideMode mode) {
   4184   if (mode == DISABLE_ALLOCATION_SITES) {
   4185     T stub(masm->isolate(), GetInitialFastElementsKind(), mode);
   4186     __ TailCallStub(&stub);
   4187   } else if (mode == DONT_OVERRIDE) {
   4188     int last_index = GetSequenceIndexFromFastElementsKind(
   4189         TERMINAL_FAST_ELEMENTS_KIND);
   4190     for (int i = 0; i <= last_index; ++i) {
   4191       Label next;
   4192       ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
   4193       __ cmpl(rdx, Immediate(kind));
   4194       __ j(not_equal, &next);
   4195       T stub(masm->isolate(), kind);
   4196       __ TailCallStub(&stub);
   4197       __ bind(&next);
   4198     }
   4199 
   4200     // If we reached this point there is a problem.
   4201     __ Abort(kUnexpectedElementsKindInArrayConstructor);
   4202   } else {
   4203     UNREACHABLE();
   4204   }
   4205 }
   4206 
   4207 
   4208 static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
   4209                                            AllocationSiteOverrideMode mode) {
   4210   // rbx - allocation site (if mode != DISABLE_ALLOCATION_SITES)
   4211   // rdx - kind (if mode != DISABLE_ALLOCATION_SITES)
   4212   // rax - number of arguments
   4213   // rdi - constructor?
   4214   // rsp[0] - return address
   4215   // rsp[8] - last argument
   4216   Handle<Object> undefined_sentinel(
   4217       masm->isolate()->heap()->undefined_value(),
   4218       masm->isolate());
   4219 
   4220   Label normal_sequence;
   4221   if (mode == DONT_OVERRIDE) {
   4222     DCHECK(FAST_SMI_ELEMENTS == 0);
   4223     DCHECK(FAST_HOLEY_SMI_ELEMENTS == 1);
   4224     DCHECK(FAST_ELEMENTS == 2);
   4225     DCHECK(FAST_HOLEY_ELEMENTS == 3);
   4226     DCHECK(FAST_DOUBLE_ELEMENTS == 4);
   4227     DCHECK(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
   4228 
   4229     // is the low bit set? If so, we are holey and that is good.
   4230     __ testb(rdx, Immediate(1));
   4231     __ j(not_zero, &normal_sequence);
   4232   }
   4233 
   4234   // look at the first argument
   4235   StackArgumentsAccessor args(rsp, 1, ARGUMENTS_DONT_CONTAIN_RECEIVER);
   4236   __ movp(rcx, args.GetArgumentOperand(0));
   4237   __ testp(rcx, rcx);
   4238   __ j(zero, &normal_sequence);
   4239 
   4240   if (mode == DISABLE_ALLOCATION_SITES) {
   4241     ElementsKind initial = GetInitialFastElementsKind();
   4242     ElementsKind holey_initial = GetHoleyElementsKind(initial);
   4243 
   4244     ArraySingleArgumentConstructorStub stub_holey(masm->isolate(),
   4245                                                   holey_initial,
   4246                                                   DISABLE_ALLOCATION_SITES);
   4247     __ TailCallStub(&stub_holey);
   4248 
   4249     __ bind(&normal_sequence);
   4250     ArraySingleArgumentConstructorStub stub(masm->isolate(),
   4251                                             initial,
   4252                                             DISABLE_ALLOCATION_SITES);
   4253     __ TailCallStub(&stub);
   4254   } else if (mode == DONT_OVERRIDE) {
   4255     // We are going to create a holey array, but our kind is non-holey.
   4256     // Fix kind and retry (only if we have an allocation site in the slot).
   4257     __ incl(rdx);
   4258 
   4259     if (FLAG_debug_code) {
   4260       Handle<Map> allocation_site_map =
   4261           masm->isolate()->factory()->allocation_site_map();
   4262       __ Cmp(FieldOperand(rbx, 0), allocation_site_map);
   4263       __ Assert(equal, kExpectedAllocationSite);
   4264     }
   4265 
   4266     // Save the resulting elements kind in type info. We can't just store r3
   4267     // in the AllocationSite::transition_info field because elements kind is
   4268     // restricted to a portion of the field...upper bits need to be left alone.
   4269     STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
   4270     __ SmiAddConstant(FieldOperand(rbx, AllocationSite::kTransitionInfoOffset),
   4271                       Smi::FromInt(kFastElementsKindPackedToHoley));
   4272 
   4273     __ bind(&normal_sequence);
   4274     int last_index = GetSequenceIndexFromFastElementsKind(
   4275         TERMINAL_FAST_ELEMENTS_KIND);
   4276     for (int i = 0; i <= last_index; ++i) {
   4277       Label next;
   4278       ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
   4279       __ cmpl(rdx, Immediate(kind));
   4280       __ j(not_equal, &next);
   4281       ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
   4282       __ TailCallStub(&stub);
   4283       __ bind(&next);
   4284     }
   4285 
   4286     // If we reached this point there is a problem.
   4287     __ Abort(kUnexpectedElementsKindInArrayConstructor);
   4288   } else {
   4289     UNREACHABLE();
   4290   }
   4291 }
   4292 
   4293 
   4294 template<class T>
   4295 static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
   4296   int to_index = GetSequenceIndexFromFastElementsKind(
   4297       TERMINAL_FAST_ELEMENTS_KIND);
   4298   for (int i = 0; i <= to_index; ++i) {
   4299     ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
   4300     T stub(isolate, kind);
   4301     stub.GetCode();
   4302     if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
   4303       T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
   4304       stub1.GetCode();
   4305     }
   4306   }
   4307 }
   4308 
   4309 
   4310 void ArrayConstructorStubBase::GenerateStubsAheadOfTime(Isolate* isolate) {
   4311   ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
   4312       isolate);
   4313   ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
   4314       isolate);
   4315   ArrayConstructorStubAheadOfTimeHelper<ArrayNArgumentsConstructorStub>(
   4316       isolate);
   4317 }
   4318 
   4319 
   4320 void InternalArrayConstructorStubBase::GenerateStubsAheadOfTime(
   4321     Isolate* isolate) {
   4322   ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS };
   4323   for (int i = 0; i < 2; i++) {
   4324     // For internal arrays we only need a few things
   4325     InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
   4326     stubh1.GetCode();
   4327     InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
   4328     stubh2.GetCode();
   4329     InternalArrayNArgumentsConstructorStub stubh3(isolate, kinds[i]);
   4330     stubh3.GetCode();
   4331   }
   4332 }
   4333 
   4334 
   4335 void ArrayConstructorStub::GenerateDispatchToArrayStub(
   4336     MacroAssembler* masm,
   4337     AllocationSiteOverrideMode mode) {
   4338   if (argument_count() == ANY) {
   4339     Label not_zero_case, not_one_case;
   4340     __ testp(rax, rax);
   4341     __ j(not_zero, &not_zero_case);
   4342     CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
   4343 
   4344     __ bind(&not_zero_case);
   4345     __ cmpl(rax, Immediate(1));
   4346     __ j(greater, &not_one_case);
   4347     CreateArrayDispatchOneArgument(masm, mode);
   4348 
   4349     __ bind(&not_one_case);
   4350     CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
   4351   } else if (argument_count() == NONE) {
   4352     CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
   4353   } else if (argument_count() == ONE) {
   4354     CreateArrayDispatchOneArgument(masm, mode);
   4355   } else if (argument_count() == MORE_THAN_ONE) {
   4356     CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
   4357   } else {
   4358     UNREACHABLE();
   4359   }
   4360 }
   4361 
   4362 
   4363 void ArrayConstructorStub::Generate(MacroAssembler* masm) {
   4364   // ----------- S t a t e -------------
   4365   //  -- rax    : argc
   4366   //  -- rbx    : AllocationSite or undefined
   4367   //  -- rdi    : constructor
   4368   //  -- rsp[0] : return address
   4369   //  -- rsp[8] : last argument
   4370   // -----------------------------------
   4371   if (FLAG_debug_code) {
   4372     // The array construct code is only set for the global and natives
   4373     // builtin Array functions which always have maps.
   4374 
   4375     // Initial map for the builtin Array function should be a map.
   4376     __ movp(rcx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
   4377     // Will both indicate a NULL and a Smi.
   4378     STATIC_ASSERT(kSmiTag == 0);
   4379     Condition not_smi = NegateCondition(masm->CheckSmi(rcx));
   4380     __ Check(not_smi, kUnexpectedInitialMapForArrayFunction);
   4381     __ CmpObjectType(rcx, MAP_TYPE, rcx);
   4382     __ Check(equal, kUnexpectedInitialMapForArrayFunction);
   4383 
   4384     // We should either have undefined in rbx or a valid AllocationSite
   4385     __ AssertUndefinedOrAllocationSite(rbx);
   4386   }
   4387 
   4388   Label no_info;
   4389   // If the feedback vector is the undefined value call an array constructor
   4390   // that doesn't use AllocationSites.
   4391   __ CompareRoot(rbx, Heap::kUndefinedValueRootIndex);
   4392   __ j(equal, &no_info);
   4393 
   4394   // Only look at the lower 16 bits of the transition info.
   4395   __ movp(rdx, FieldOperand(rbx, AllocationSite::kTransitionInfoOffset));
   4396   __ SmiToInteger32(rdx, rdx);
   4397   STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
   4398   __ andp(rdx, Immediate(AllocationSite::ElementsKindBits::kMask));
   4399   GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
   4400 
   4401   __ bind(&no_info);
   4402   GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
   4403 }
   4404 
   4405 
   4406 void InternalArrayConstructorStub::GenerateCase(
   4407     MacroAssembler* masm, ElementsKind kind) {
   4408   Label not_zero_case, not_one_case;
   4409   Label normal_sequence;
   4410 
   4411   __ testp(rax, rax);
   4412   __ j(not_zero, &not_zero_case);
   4413   InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
   4414   __ TailCallStub(&stub0);
   4415 
   4416   __ bind(&not_zero_case);
   4417   __ cmpl(rax, Immediate(1));
   4418   __ j(greater, &not_one_case);
   4419 
   4420   if (IsFastPackedElementsKind(kind)) {
   4421     // We might need to create a holey array
   4422     // look at the first argument
   4423     StackArgumentsAccessor args(rsp, 1, ARGUMENTS_DONT_CONTAIN_RECEIVER);
   4424     __ movp(rcx, args.GetArgumentOperand(0));
   4425     __ testp(rcx, rcx);
   4426     __ j(zero, &normal_sequence);
   4427 
   4428     InternalArraySingleArgumentConstructorStub
   4429         stub1_holey(isolate(), GetHoleyElementsKind(kind));
   4430     __ TailCallStub(&stub1_holey);
   4431   }
   4432 
   4433   __ bind(&normal_sequence);
   4434   InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
   4435   __ TailCallStub(&stub1);
   4436 
   4437   __ bind(&not_one_case);
   4438   InternalArrayNArgumentsConstructorStub stubN(isolate(), kind);
   4439   __ TailCallStub(&stubN);
   4440 }
   4441 
   4442 
   4443 void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
   4444   // ----------- S t a t e -------------
   4445   //  -- rax    : argc
   4446   //  -- rdi    : constructor
   4447   //  -- rsp[0] : return address
   4448   //  -- rsp[8] : last argument
   4449   // -----------------------------------
   4450 
   4451   if (FLAG_debug_code) {
   4452     // The array construct code is only set for the global and natives
   4453     // builtin Array functions which always have maps.
   4454 
   4455     // Initial map for the builtin Array function should be a map.
   4456     __ movp(rcx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
   4457     // Will both indicate a NULL and a Smi.
   4458     STATIC_ASSERT(kSmiTag == 0);
   4459     Condition not_smi = NegateCondition(masm->CheckSmi(rcx));
   4460     __ Check(not_smi, kUnexpectedInitialMapForArrayFunction);
   4461     __ CmpObjectType(rcx, MAP_TYPE, rcx);
   4462     __ Check(equal, kUnexpectedInitialMapForArrayFunction);
   4463   }
   4464 
   4465   // Figure out the right elements kind
   4466   __ movp(rcx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
   4467 
   4468   // Load the map's "bit field 2" into |result|. We only need the first byte,
   4469   // but the following masking takes care of that anyway.
   4470   __ movzxbp(rcx, FieldOperand(rcx, Map::kBitField2Offset));
   4471   // Retrieve elements_kind from bit field 2.
   4472   __ DecodeField<Map::ElementsKindBits>(rcx);
   4473 
   4474   if (FLAG_debug_code) {
   4475     Label done;
   4476     __ cmpl(rcx, Immediate(FAST_ELEMENTS));
   4477     __ j(equal, &done);
   4478     __ cmpl(rcx, Immediate(FAST_HOLEY_ELEMENTS));
   4479     __ Assert(equal,
   4480               kInvalidElementsKindForInternalArrayOrInternalPackedArray);
   4481     __ bind(&done);
   4482   }
   4483 
   4484   Label fast_elements_case;
   4485   __ cmpl(rcx, Immediate(FAST_ELEMENTS));
   4486   __ j(equal, &fast_elements_case);
   4487   GenerateCase(masm, FAST_HOLEY_ELEMENTS);
   4488 
   4489   __ bind(&fast_elements_case);
   4490   GenerateCase(masm, FAST_ELEMENTS);
   4491 }
   4492 
   4493 
   4494 void CallApiFunctionStub::Generate(MacroAssembler* masm) {
   4495   // ----------- S t a t e -------------
   4496   //  -- rax                 : callee
   4497   //  -- rbx                 : call_data
   4498   //  -- rcx                 : holder
   4499   //  -- rdx                 : api_function_address
   4500   //  -- rsi                 : context
   4501   //  --
   4502   //  -- rsp[0]              : return address
   4503   //  -- rsp[8]              : last argument
   4504   //  -- ...
   4505   //  -- rsp[argc * 8]       : first argument
   4506   //  -- rsp[(argc + 1) * 8] : receiver
   4507   // -----------------------------------
   4508 
   4509   Register callee = rax;
   4510   Register call_data = rbx;
   4511   Register holder = rcx;
   4512   Register api_function_address = rdx;
   4513   Register return_address = rdi;
   4514   Register context = rsi;
   4515 
   4516   int argc = this->argc();
   4517   bool is_store = this->is_store();
   4518   bool call_data_undefined = this->call_data_undefined();
   4519 
   4520   typedef FunctionCallbackArguments FCA;
   4521 
   4522   STATIC_ASSERT(FCA::kContextSaveIndex == 6);
   4523   STATIC_ASSERT(FCA::kCalleeIndex == 5);
   4524   STATIC_ASSERT(FCA::kDataIndex == 4);
   4525   STATIC_ASSERT(FCA::kReturnValueOffset == 3);
   4526   STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
   4527   STATIC_ASSERT(FCA::kIsolateIndex == 1);
   4528   STATIC_ASSERT(FCA::kHolderIndex == 0);
   4529   STATIC_ASSERT(FCA::kArgsLength == 7);
   4530 
   4531   __ PopReturnAddressTo(return_address);
   4532 
   4533   // context save
   4534   __ Push(context);
   4535   // load context from callee
   4536   __ movp(context, FieldOperand(callee, JSFunction::kContextOffset));
   4537 
   4538   // callee
   4539   __ Push(callee);
   4540 
   4541   // call data
   4542   __ Push(call_data);
   4543   Register scratch = call_data;
   4544   if (!call_data_undefined) {
   4545     __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
   4546   }
   4547   // return value
   4548   __ Push(scratch);
   4549   // return value default
   4550   __ Push(scratch);
   4551   // isolate
   4552   __ Move(scratch,
   4553           ExternalReference::isolate_address(isolate()));
   4554   __ Push(scratch);
   4555   // holder
   4556   __ Push(holder);
   4557 
   4558   __ movp(scratch, rsp);
   4559   // Push return address back on stack.
   4560   __ PushReturnAddressFrom(return_address);
   4561 
   4562   // Allocate the v8::Arguments structure in the arguments' space since
   4563   // it's not controlled by GC.
   4564   const int kApiStackSpace = 4;
   4565 
   4566   __ PrepareCallApiFunction(kApiStackSpace);
   4567 
   4568   // FunctionCallbackInfo::implicit_args_.
   4569   __ movp(StackSpaceOperand(0), scratch);
   4570   __ addp(scratch, Immediate((argc + FCA::kArgsLength - 1) * kPointerSize));
   4571   __ movp(StackSpaceOperand(1), scratch);  // FunctionCallbackInfo::values_.
   4572   __ Set(StackSpaceOperand(2), argc);  // FunctionCallbackInfo::length_.
   4573   // FunctionCallbackInfo::is_construct_call_.
   4574   __ Set(StackSpaceOperand(3), 0);
   4575 
   4576 #if defined(__MINGW64__) || defined(_WIN64)
   4577   Register arguments_arg = rcx;
   4578   Register callback_arg = rdx;
   4579 #else
   4580   Register arguments_arg = rdi;
   4581   Register callback_arg = rsi;
   4582 #endif
   4583 
   4584   // It's okay if api_function_address == callback_arg
   4585   // but not arguments_arg
   4586   DCHECK(!api_function_address.is(arguments_arg));
   4587 
   4588   // v8::InvocationCallback's argument.
   4589   __ leap(arguments_arg, StackSpaceOperand(0));
   4590 
   4591   ExternalReference thunk_ref =
   4592       ExternalReference::invoke_function_callback(isolate());
   4593 
   4594   // Accessor for FunctionCallbackInfo and first js arg.
   4595   StackArgumentsAccessor args_from_rbp(rbp, FCA::kArgsLength + 1,
   4596                                        ARGUMENTS_DONT_CONTAIN_RECEIVER);
   4597   Operand context_restore_operand = args_from_rbp.GetArgumentOperand(
   4598       FCA::kArgsLength - FCA::kContextSaveIndex);
   4599   // Stores return the first js argument
   4600   Operand return_value_operand = args_from_rbp.GetArgumentOperand(
   4601       is_store ? 0 : FCA::kArgsLength - FCA::kReturnValueOffset);
   4602   __ CallApiFunctionAndReturn(
   4603       api_function_address,
   4604       thunk_ref,
   4605       callback_arg,
   4606       argc + FCA::kArgsLength + 1,
   4607       return_value_operand,
   4608       &context_restore_operand);
   4609 }
   4610 
   4611 
   4612 void CallApiGetterStub::Generate(MacroAssembler* masm) {
   4613   // ----------- S t a t e -------------
   4614   //  -- rsp[0]                  : return address
   4615   //  -- rsp[8]                  : name
   4616   //  -- rsp[16 - kArgsLength*8] : PropertyCallbackArguments object
   4617   //  -- ...
   4618   //  -- r8                    : api_function_address
   4619   // -----------------------------------
   4620 
   4621 #if defined(__MINGW64__) || defined(_WIN64)
   4622   Register getter_arg = r8;
   4623   Register accessor_info_arg = rdx;
   4624   Register name_arg = rcx;
   4625 #else
   4626   Register getter_arg = rdx;
   4627   Register accessor_info_arg = rsi;
   4628   Register name_arg = rdi;
   4629 #endif
   4630   Register api_function_address = ApiGetterDescriptor::function_address();
   4631   DCHECK(api_function_address.is(r8));
   4632   Register scratch = rax;
   4633 
   4634   // v8::Arguments::values_ and handler for name.
   4635   const int kStackSpace = PropertyCallbackArguments::kArgsLength + 1;
   4636 
   4637   // Allocate v8::AccessorInfo in non-GCed stack space.
   4638   const int kArgStackSpace = 1;
   4639 
   4640   __ leap(name_arg, Operand(rsp, kPCOnStackSize));
   4641 
   4642   __ PrepareCallApiFunction(kArgStackSpace);
   4643   __ leap(scratch, Operand(name_arg, 1 * kPointerSize));
   4644 
   4645   // v8::PropertyAccessorInfo::args_.
   4646   __ movp(StackSpaceOperand(0), scratch);
   4647 
   4648   // The context register (rsi) has been saved in PrepareCallApiFunction and
   4649   // could be used to pass arguments.
   4650   __ leap(accessor_info_arg, StackSpaceOperand(0));
   4651 
   4652   ExternalReference thunk_ref =
   4653       ExternalReference::invoke_accessor_getter_callback(isolate());
   4654 
   4655   // It's okay if api_function_address == getter_arg
   4656   // but not accessor_info_arg or name_arg
   4657   DCHECK(!api_function_address.is(accessor_info_arg) &&
   4658          !api_function_address.is(name_arg));
   4659 
   4660   // The name handler is counted as an argument.
   4661   StackArgumentsAccessor args(rbp, PropertyCallbackArguments::kArgsLength);
   4662   Operand return_value_operand = args.GetArgumentOperand(
   4663       PropertyCallbackArguments::kArgsLength - 1 -
   4664       PropertyCallbackArguments::kReturnValueOffset);
   4665   __ CallApiFunctionAndReturn(api_function_address,
   4666                               thunk_ref,
   4667                               getter_arg,
   4668                               kStackSpace,
   4669                               return_value_operand,
   4670                               NULL);
   4671 }
   4672 
   4673 
   4674 #undef __
   4675 
   4676 } }  // namespace v8::internal
   4677 
   4678 #endif  // V8_TARGET_ARCH_X64
   4679