Home | History | Annotate | Download | only in quick
      1 /*
      2  * Copyright (C) 2012 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 #include "dex/compiler_ir.h"
     17 #include "dex/compiler_internals.h"
     18 #include "dex/quick/arm/arm_lir.h"
     19 #include "dex/quick/mir_to_lir-inl.h"
     20 #include "entrypoints/quick/quick_entrypoints.h"
     21 #include "mirror/array.h"
     22 #include "mirror/object_array-inl.h"
     23 #include "mirror/object-inl.h"
     24 #include "mirror/object_reference.h"
     25 #include "verifier/method_verifier.h"
     26 #include <functional>
     27 
     28 namespace art {
     29 
     30 // Shortcuts to repeatedly used long types.
     31 typedef mirror::ObjectArray<mirror::Object> ObjArray;
     32 typedef mirror::ObjectArray<mirror::Class> ClassArray;
     33 
     34 /*
     35  * This source files contains "gen" codegen routines that should
     36  * be applicable to most targets.  Only mid-level support utilities
     37  * and "op" calls may be used here.
     38  */
     39 
     40 /*
     41  * Generate a kPseudoBarrier marker to indicate the boundary of special
     42  * blocks.
     43  */
     44 void Mir2Lir::GenBarrier() {
     45   LIR* barrier = NewLIR0(kPseudoBarrier);
     46   /* Mark all resources as being clobbered */
     47   DCHECK(!barrier->flags.use_def_invalid);
     48   barrier->u.m.def_mask = &kEncodeAll;
     49 }
     50 
     51 void Mir2Lir::GenDivZeroException() {
     52   LIR* branch = OpUnconditionalBranch(nullptr);
     53   AddDivZeroCheckSlowPath(branch);
     54 }
     55 
     56 void Mir2Lir::GenDivZeroCheck(ConditionCode c_code) {
     57   LIR* branch = OpCondBranch(c_code, nullptr);
     58   AddDivZeroCheckSlowPath(branch);
     59 }
     60 
     61 void Mir2Lir::GenDivZeroCheck(RegStorage reg) {
     62   LIR* branch = OpCmpImmBranch(kCondEq, reg, 0, nullptr);
     63   AddDivZeroCheckSlowPath(branch);
     64 }
     65 
     66 void Mir2Lir::AddDivZeroCheckSlowPath(LIR* branch) {
     67   class DivZeroCheckSlowPath : public Mir2Lir::LIRSlowPath {
     68    public:
     69     DivZeroCheckSlowPath(Mir2Lir* m2l, LIR* branch)
     70         : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch) {
     71     }
     72 
     73     void Compile() OVERRIDE {
     74       m2l_->ResetRegPool();
     75       m2l_->ResetDefTracking();
     76       GenerateTargetLabel(kPseudoThrowTarget);
     77       m2l_->CallRuntimeHelper(kQuickThrowDivZero, true);
     78     }
     79   };
     80 
     81   AddSlowPath(new (arena_) DivZeroCheckSlowPath(this, branch));
     82 }
     83 
     84 void Mir2Lir::GenArrayBoundsCheck(RegStorage index, RegStorage length) {
     85   class ArrayBoundsCheckSlowPath : public Mir2Lir::LIRSlowPath {
     86    public:
     87     ArrayBoundsCheckSlowPath(Mir2Lir* m2l, LIR* branch, RegStorage index, RegStorage length)
     88         : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch),
     89           index_(index), length_(length) {
     90     }
     91 
     92     void Compile() OVERRIDE {
     93       m2l_->ResetRegPool();
     94       m2l_->ResetDefTracking();
     95       GenerateTargetLabel(kPseudoThrowTarget);
     96       m2l_->CallRuntimeHelperRegReg(kQuickThrowArrayBounds, index_, length_, true);
     97     }
     98 
     99    private:
    100     const RegStorage index_;
    101     const RegStorage length_;
    102   };
    103 
    104   LIR* branch = OpCmpBranch(kCondUge, index, length, nullptr);
    105   AddSlowPath(new (arena_) ArrayBoundsCheckSlowPath(this, branch, index, length));
    106 }
    107 
    108 void Mir2Lir::GenArrayBoundsCheck(int index, RegStorage length) {
    109   class ArrayBoundsCheckSlowPath : public Mir2Lir::LIRSlowPath {
    110    public:
    111     ArrayBoundsCheckSlowPath(Mir2Lir* m2l, LIR* branch, int index, RegStorage length)
    112         : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch),
    113           index_(index), length_(length) {
    114     }
    115 
    116     void Compile() OVERRIDE {
    117       m2l_->ResetRegPool();
    118       m2l_->ResetDefTracking();
    119       GenerateTargetLabel(kPseudoThrowTarget);
    120 
    121       RegStorage arg1_32 = m2l_->TargetReg(kArg1, kNotWide);
    122       RegStorage arg0_32 = m2l_->TargetReg(kArg0, kNotWide);
    123 
    124       m2l_->OpRegCopy(arg1_32, length_);
    125       m2l_->LoadConstant(arg0_32, index_);
    126       m2l_->CallRuntimeHelperRegReg(kQuickThrowArrayBounds, arg0_32, arg1_32, true);
    127     }
    128 
    129    private:
    130     const int32_t index_;
    131     const RegStorage length_;
    132   };
    133 
    134   LIR* branch = OpCmpImmBranch(kCondLs, length, index, nullptr);
    135   AddSlowPath(new (arena_) ArrayBoundsCheckSlowPath(this, branch, index, length));
    136 }
    137 
    138 LIR* Mir2Lir::GenNullCheck(RegStorage reg) {
    139   class NullCheckSlowPath : public Mir2Lir::LIRSlowPath {
    140    public:
    141     NullCheckSlowPath(Mir2Lir* m2l, LIR* branch)
    142         : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch) {
    143     }
    144 
    145     void Compile() OVERRIDE {
    146       m2l_->ResetRegPool();
    147       m2l_->ResetDefTracking();
    148       GenerateTargetLabel(kPseudoThrowTarget);
    149       m2l_->CallRuntimeHelper(kQuickThrowNullPointer, true);
    150     }
    151   };
    152 
    153   LIR* branch = OpCmpImmBranch(kCondEq, reg, 0, nullptr);
    154   AddSlowPath(new (arena_) NullCheckSlowPath(this, branch));
    155   return branch;
    156 }
    157 
    158 /* Perform null-check on a register.  */
    159 LIR* Mir2Lir::GenNullCheck(RegStorage m_reg, int opt_flags) {
    160   if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
    161     return GenExplicitNullCheck(m_reg, opt_flags);
    162   }
    163   // If null check has not been eliminated, reset redundant store tracking.
    164   if ((opt_flags & MIR_IGNORE_NULL_CHECK) == 0) {
    165     ResetDefTracking();
    166   }
    167   return nullptr;
    168 }
    169 
    170 /* Perform an explicit null-check on a register.  */
    171 LIR* Mir2Lir::GenExplicitNullCheck(RegStorage m_reg, int opt_flags) {
    172   if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
    173     return NULL;
    174   }
    175   return GenNullCheck(m_reg);
    176 }
    177 
    178 void Mir2Lir::MarkPossibleNullPointerException(int opt_flags) {
    179   if (cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
    180     if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
    181       return;
    182     }
    183     // Insert after last instruction.
    184     MarkSafepointPC(last_lir_insn_);
    185   }
    186 }
    187 
    188 void Mir2Lir::MarkPossibleNullPointerExceptionAfter(int opt_flags, LIR* after) {
    189   if (cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
    190     if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
    191       return;
    192     }
    193     MarkSafepointPCAfter(after);
    194   }
    195 }
    196 
    197 void Mir2Lir::MarkPossibleStackOverflowException() {
    198   if (cu_->compiler_driver->GetCompilerOptions().GetImplicitStackOverflowChecks()) {
    199     MarkSafepointPC(last_lir_insn_);
    200   }
    201 }
    202 
    203 void Mir2Lir::ForceImplicitNullCheck(RegStorage reg, int opt_flags) {
    204   if (cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
    205     if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
    206       return;
    207     }
    208     // Force an implicit null check by performing a memory operation (load) from the given
    209     // register with offset 0.  This will cause a signal if the register contains 0 (null).
    210     RegStorage tmp = AllocTemp();
    211     // TODO: for Mips, would be best to use rZERO as the bogus register target.
    212     LIR* load = Load32Disp(reg, 0, tmp);
    213     FreeTemp(tmp);
    214     MarkSafepointPC(load);
    215   }
    216 }
    217 
    218 void Mir2Lir::GenCompareAndBranch(Instruction::Code opcode, RegLocation rl_src1,
    219                                   RegLocation rl_src2, LIR* taken,
    220                                   LIR* fall_through) {
    221   DCHECK(!rl_src1.fp);
    222   DCHECK(!rl_src2.fp);
    223   ConditionCode cond;
    224   switch (opcode) {
    225     case Instruction::IF_EQ:
    226       cond = kCondEq;
    227       break;
    228     case Instruction::IF_NE:
    229       cond = kCondNe;
    230       break;
    231     case Instruction::IF_LT:
    232       cond = kCondLt;
    233       break;
    234     case Instruction::IF_GE:
    235       cond = kCondGe;
    236       break;
    237     case Instruction::IF_GT:
    238       cond = kCondGt;
    239       break;
    240     case Instruction::IF_LE:
    241       cond = kCondLe;
    242       break;
    243     default:
    244       cond = static_cast<ConditionCode>(0);
    245       LOG(FATAL) << "Unexpected opcode " << opcode;
    246   }
    247 
    248   // Normalize such that if either operand is constant, src2 will be constant
    249   if (rl_src1.is_const) {
    250     RegLocation rl_temp = rl_src1;
    251     rl_src1 = rl_src2;
    252     rl_src2 = rl_temp;
    253     cond = FlipComparisonOrder(cond);
    254   }
    255 
    256   rl_src1 = LoadValue(rl_src1);
    257   // Is this really an immediate comparison?
    258   if (rl_src2.is_const) {
    259     // If it's already live in a register or not easily materialized, just keep going
    260     RegLocation rl_temp = UpdateLoc(rl_src2);
    261     int32_t constant_value = mir_graph_->ConstantValue(rl_src2);
    262     if ((rl_temp.location == kLocDalvikFrame) &&
    263         InexpensiveConstantInt(constant_value, opcode)) {
    264       // OK - convert this to a compare immediate and branch
    265       OpCmpImmBranch(cond, rl_src1.reg, mir_graph_->ConstantValue(rl_src2), taken);
    266       return;
    267     }
    268 
    269     // It's also commonly more efficient to have a test against zero with Eq/Ne. This is not worse
    270     // for x86, and allows a cbz/cbnz for Arm and Mips. At the same time, it works around a register
    271     // mismatch for 64b systems, where a reference is compared against null, as dex bytecode uses
    272     // the 32b literal 0 for null.
    273     if (constant_value == 0 && (cond == kCondEq || cond == kCondNe)) {
    274       // Use the OpCmpImmBranch and ignore the value in the register.
    275       OpCmpImmBranch(cond, rl_src1.reg, 0, taken);
    276       return;
    277     }
    278   }
    279 
    280   rl_src2 = LoadValue(rl_src2);
    281   OpCmpBranch(cond, rl_src1.reg, rl_src2.reg, taken);
    282 }
    283 
    284 void Mir2Lir::GenCompareZeroAndBranch(Instruction::Code opcode, RegLocation rl_src, LIR* taken,
    285                                       LIR* fall_through) {
    286   ConditionCode cond;
    287   DCHECK(!rl_src.fp);
    288   rl_src = LoadValue(rl_src);
    289   switch (opcode) {
    290     case Instruction::IF_EQZ:
    291       cond = kCondEq;
    292       break;
    293     case Instruction::IF_NEZ:
    294       cond = kCondNe;
    295       break;
    296     case Instruction::IF_LTZ:
    297       cond = kCondLt;
    298       break;
    299     case Instruction::IF_GEZ:
    300       cond = kCondGe;
    301       break;
    302     case Instruction::IF_GTZ:
    303       cond = kCondGt;
    304       break;
    305     case Instruction::IF_LEZ:
    306       cond = kCondLe;
    307       break;
    308     default:
    309       cond = static_cast<ConditionCode>(0);
    310       LOG(FATAL) << "Unexpected opcode " << opcode;
    311   }
    312   OpCmpImmBranch(cond, rl_src.reg, 0, taken);
    313 }
    314 
    315 void Mir2Lir::GenIntToLong(RegLocation rl_dest, RegLocation rl_src) {
    316   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
    317   if (rl_src.location == kLocPhysReg) {
    318     OpRegCopy(rl_result.reg, rl_src.reg);
    319   } else {
    320     LoadValueDirect(rl_src, rl_result.reg.GetLow());
    321   }
    322   OpRegRegImm(kOpAsr, rl_result.reg.GetHigh(), rl_result.reg.GetLow(), 31);
    323   StoreValueWide(rl_dest, rl_result);
    324 }
    325 
    326 void Mir2Lir::GenIntNarrowing(Instruction::Code opcode, RegLocation rl_dest,
    327                               RegLocation rl_src) {
    328   rl_src = LoadValue(rl_src, kCoreReg);
    329   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
    330   OpKind op = kOpInvalid;
    331   switch (opcode) {
    332     case Instruction::INT_TO_BYTE:
    333       op = kOp2Byte;
    334       break;
    335     case Instruction::INT_TO_SHORT:
    336        op = kOp2Short;
    337        break;
    338     case Instruction::INT_TO_CHAR:
    339        op = kOp2Char;
    340        break;
    341     default:
    342       LOG(ERROR) << "Bad int conversion type";
    343   }
    344   OpRegReg(op, rl_result.reg, rl_src.reg);
    345   StoreValue(rl_dest, rl_result);
    346 }
    347 
    348 /*
    349  * Let helper function take care of everything.  Will call
    350  * Array::AllocFromCode(type_idx, method, count);
    351  * Note: AllocFromCode will handle checks for errNegativeArraySize.
    352  */
    353 void Mir2Lir::GenNewArray(uint32_t type_idx, RegLocation rl_dest,
    354                           RegLocation rl_src) {
    355   FlushAllRegs();  /* Everything to home location */
    356   const DexFile* dex_file = cu_->dex_file;
    357   CompilerDriver* driver = cu_->compiler_driver;
    358   if (cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx, *dex_file, type_idx)) {
    359     bool is_type_initialized;  // Ignored as an array does not have an initializer.
    360     bool use_direct_type_ptr;
    361     uintptr_t direct_type_ptr;
    362     bool is_finalizable;
    363     if (kEmbedClassInCode &&
    364         driver->CanEmbedTypeInCode(*dex_file, type_idx, &is_type_initialized, &use_direct_type_ptr,
    365                                    &direct_type_ptr, &is_finalizable)) {
    366       // The fast path.
    367       if (!use_direct_type_ptr) {
    368         LoadClassType(type_idx, kArg0);
    369         CallRuntimeHelperRegMethodRegLocation(kQuickAllocArrayResolved, TargetReg(kArg0, kNotWide),
    370                                               rl_src, true);
    371       } else {
    372         // Use the direct pointer.
    373         CallRuntimeHelperImmMethodRegLocation(kQuickAllocArrayResolved, direct_type_ptr, rl_src,
    374                                               true);
    375       }
    376     } else {
    377       // The slow path.
    378       CallRuntimeHelperImmMethodRegLocation(kQuickAllocArray, type_idx, rl_src, true);
    379     }
    380   } else {
    381     CallRuntimeHelperImmMethodRegLocation(kQuickAllocArrayWithAccessCheck, type_idx, rl_src, true);
    382   }
    383   StoreValue(rl_dest, GetReturn(kRefReg));
    384 }
    385 
    386 /*
    387  * Similar to GenNewArray, but with post-allocation initialization.
    388  * Verifier guarantees we're dealing with an array class.  Current
    389  * code throws runtime exception "bad Filled array req" for 'D' and 'J'.
    390  * Current code also throws internal unimp if not 'L', '[' or 'I'.
    391  */
    392 void Mir2Lir::GenFilledNewArray(CallInfo* info) {
    393   int elems = info->num_arg_words;
    394   int type_idx = info->index;
    395   FlushAllRegs();  /* Everything to home location */
    396   QuickEntrypointEnum target;
    397   if (cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx, *cu_->dex_file,
    398                                                        type_idx)) {
    399     target = kQuickCheckAndAllocArray;
    400   } else {
    401     target = kQuickCheckAndAllocArrayWithAccessCheck;
    402   }
    403   CallRuntimeHelperImmMethodImm(target, type_idx, elems, true);
    404   FreeTemp(TargetReg(kArg2, kNotWide));
    405   FreeTemp(TargetReg(kArg1, kNotWide));
    406   /*
    407    * NOTE: the implicit target for Instruction::FILLED_NEW_ARRAY is the
    408    * return region.  Because AllocFromCode placed the new array
    409    * in kRet0, we'll just lock it into place.  When debugger support is
    410    * added, it may be necessary to additionally copy all return
    411    * values to a home location in thread-local storage
    412    */
    413   RegStorage ref_reg = TargetReg(kRet0, kRef);
    414   LockTemp(ref_reg);
    415 
    416   // TODO: use the correct component size, currently all supported types
    417   // share array alignment with ints (see comment at head of function)
    418   size_t component_size = sizeof(int32_t);
    419 
    420   // Having a range of 0 is legal
    421   if (info->is_range && (elems > 0)) {
    422     /*
    423      * Bit of ugliness here.  We're going generate a mem copy loop
    424      * on the register range, but it is possible that some regs
    425      * in the range have been promoted.  This is unlikely, but
    426      * before generating the copy, we'll just force a flush
    427      * of any regs in the source range that have been promoted to
    428      * home location.
    429      */
    430     for (int i = 0; i < elems; i++) {
    431       RegLocation loc = UpdateLoc(info->args[i]);
    432       if (loc.location == kLocPhysReg) {
    433         ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
    434         Store32Disp(TargetPtrReg(kSp), SRegOffset(loc.s_reg_low), loc.reg);
    435       }
    436     }
    437     /*
    438      * TUNING note: generated code here could be much improved, but
    439      * this is an uncommon operation and isn't especially performance
    440      * critical.
    441      */
    442     // This is addressing the stack, which may be out of the 4G area.
    443     RegStorage r_src = AllocTempRef();
    444     RegStorage r_dst = AllocTempRef();
    445     RegStorage r_idx = AllocTempRef();  // Not really a reference, but match src/dst.
    446     RegStorage r_val;
    447     switch (cu_->instruction_set) {
    448       case kThumb2:
    449       case kArm64:
    450         r_val = TargetReg(kLr, kNotWide);
    451         break;
    452       case kX86:
    453       case kX86_64:
    454         FreeTemp(ref_reg);
    455         r_val = AllocTemp();
    456         break;
    457       case kMips:
    458         r_val = AllocTemp();
    459         break;
    460       default: LOG(FATAL) << "Unexpected instruction set: " << cu_->instruction_set;
    461     }
    462     // Set up source pointer
    463     RegLocation rl_first = info->args[0];
    464     OpRegRegImm(kOpAdd, r_src, TargetPtrReg(kSp), SRegOffset(rl_first.s_reg_low));
    465     // Set up the target pointer
    466     OpRegRegImm(kOpAdd, r_dst, ref_reg,
    467                 mirror::Array::DataOffset(component_size).Int32Value());
    468     // Set up the loop counter (known to be > 0)
    469     LoadConstant(r_idx, elems - 1);
    470     // Generate the copy loop.  Going backwards for convenience
    471     LIR* target = NewLIR0(kPseudoTargetLabel);
    472     // Copy next element
    473     {
    474       ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
    475       LoadBaseIndexed(r_src, r_idx, r_val, 2, k32);
    476       // NOTE: No dalvik register annotation, local optimizations will be stopped
    477       // by the loop boundaries.
    478     }
    479     StoreBaseIndexed(r_dst, r_idx, r_val, 2, k32);
    480     FreeTemp(r_val);
    481     OpDecAndBranch(kCondGe, r_idx, target);
    482     if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) {
    483       // Restore the target pointer
    484       OpRegRegImm(kOpAdd, ref_reg, r_dst,
    485                   -mirror::Array::DataOffset(component_size).Int32Value());
    486     }
    487   } else if (!info->is_range) {
    488     // TUNING: interleave
    489     for (int i = 0; i < elems; i++) {
    490       RegLocation rl_arg = LoadValue(info->args[i], kCoreReg);
    491       Store32Disp(ref_reg,
    492                   mirror::Array::DataOffset(component_size).Int32Value() + i * 4, rl_arg.reg);
    493       // If the LoadValue caused a temp to be allocated, free it
    494       if (IsTemp(rl_arg.reg)) {
    495         FreeTemp(rl_arg.reg);
    496       }
    497     }
    498   }
    499   if (info->result.location != kLocInvalid) {
    500     StoreValue(info->result, GetReturn(kRefReg));
    501   }
    502 }
    503 
    504 //
    505 // Slow path to ensure a class is initialized for sget/sput.
    506 //
    507 class StaticFieldSlowPath : public Mir2Lir::LIRSlowPath {
    508  public:
    509   StaticFieldSlowPath(Mir2Lir* m2l, LIR* unresolved, LIR* uninit, LIR* cont, int storage_index,
    510                       RegStorage r_base) :
    511     LIRSlowPath(m2l, m2l->GetCurrentDexPc(), unresolved, cont), uninit_(uninit),
    512                storage_index_(storage_index), r_base_(r_base) {
    513   }
    514 
    515   void Compile() {
    516     LIR* unresolved_target = GenerateTargetLabel();
    517     uninit_->target = unresolved_target;
    518     m2l_->CallRuntimeHelperImm(kQuickInitializeStaticStorage, storage_index_, true);
    519     // Copy helper's result into r_base, a no-op on all but MIPS.
    520     m2l_->OpRegCopy(r_base_,  m2l_->TargetReg(kRet0, kRef));
    521 
    522     m2l_->OpUnconditionalBranch(cont_);
    523   }
    524 
    525  private:
    526   LIR* const uninit_;
    527   const int storage_index_;
    528   const RegStorage r_base_;
    529 };
    530 
    531 void Mir2Lir::GenSput(MIR* mir, RegLocation rl_src, bool is_long_or_double,
    532                       bool is_object) {
    533   const MirSFieldLoweringInfo& field_info = mir_graph_->GetSFieldLoweringInfo(mir);
    534   cu_->compiler_driver->ProcessedStaticField(field_info.FastPut(), field_info.IsReferrersClass());
    535   OpSize store_size = LoadStoreOpSize(is_long_or_double, is_object);
    536   if (!SLOW_FIELD_PATH && field_info.FastPut()) {
    537     DCHECK_GE(field_info.FieldOffset().Int32Value(), 0);
    538     RegStorage r_base;
    539     if (field_info.IsReferrersClass()) {
    540       // Fast path, static storage base is this method's class
    541       RegLocation rl_method = LoadCurrMethod();
    542       r_base = AllocTempRef();
    543       LoadRefDisp(rl_method.reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(), r_base,
    544                   kNotVolatile);
    545       if (IsTemp(rl_method.reg)) {
    546         FreeTemp(rl_method.reg);
    547       }
    548     } else {
    549       // Medium path, static storage base in a different class which requires checks that the other
    550       // class is initialized.
    551       // TODO: remove initialized check now that we are initializing classes in the compiler driver.
    552       DCHECK_NE(field_info.StorageIndex(), DexFile::kDexNoIndex);
    553       // May do runtime call so everything to home locations.
    554       FlushAllRegs();
    555       // Using fixed register to sync with possible call to runtime support.
    556       RegStorage r_method = TargetReg(kArg1, kRef);
    557       LockTemp(r_method);
    558       LoadCurrMethodDirect(r_method);
    559       r_base = TargetReg(kArg0, kRef);
    560       LockTemp(r_base);
    561       LoadRefDisp(r_method, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), r_base,
    562                   kNotVolatile);
    563       int32_t offset_of_field = ObjArray::OffsetOfElement(field_info.StorageIndex()).Int32Value();
    564       LoadRefDisp(r_base, offset_of_field, r_base, kNotVolatile);
    565       // r_base now points at static storage (Class*) or NULL if the type is not yet resolved.
    566       if (!field_info.IsInitialized() &&
    567           (mir->optimization_flags & MIR_IGNORE_CLINIT_CHECK) == 0) {
    568         // Check if r_base is NULL or a not yet initialized class.
    569 
    570         // The slow path is invoked if the r_base is NULL or the class pointed
    571         // to by it is not initialized.
    572         LIR* unresolved_branch = OpCmpImmBranch(kCondEq, r_base, 0, NULL);
    573         RegStorage r_tmp = TargetReg(kArg2, kNotWide);
    574         LockTemp(r_tmp);
    575         LIR* uninit_branch = OpCmpMemImmBranch(kCondLt, r_tmp, r_base,
    576                                           mirror::Class::StatusOffset().Int32Value(),
    577                                           mirror::Class::kStatusInitialized, nullptr, nullptr);
    578         LIR* cont = NewLIR0(kPseudoTargetLabel);
    579 
    580         AddSlowPath(new (arena_) StaticFieldSlowPath(this, unresolved_branch, uninit_branch, cont,
    581                                                      field_info.StorageIndex(), r_base));
    582 
    583         FreeTemp(r_tmp);
    584         // Ensure load of status and store of value don't re-order.
    585         // TODO: Presumably the actual value store is control-dependent on the status load,
    586         // and will thus not be reordered in any case, since stores are never speculated.
    587         // Does later code "know" that the class is now initialized?  If so, we still
    588         // need the barrier to guard later static loads.
    589         GenMemBarrier(kLoadAny);
    590       }
    591       FreeTemp(r_method);
    592     }
    593     // rBase now holds static storage base
    594     RegisterClass reg_class = RegClassForFieldLoadStore(store_size, field_info.IsVolatile());
    595     if (is_long_or_double) {
    596       rl_src = LoadValueWide(rl_src, reg_class);
    597     } else {
    598       rl_src = LoadValue(rl_src, reg_class);
    599     }
    600     if (is_object) {
    601       StoreRefDisp(r_base, field_info.FieldOffset().Int32Value(), rl_src.reg,
    602                    field_info.IsVolatile() ? kVolatile : kNotVolatile);
    603     } else {
    604       StoreBaseDisp(r_base, field_info.FieldOffset().Int32Value(), rl_src.reg, store_size,
    605                     field_info.IsVolatile() ? kVolatile : kNotVolatile);
    606     }
    607     if (is_object && !mir_graph_->IsConstantNullRef(rl_src)) {
    608       MarkGCCard(rl_src.reg, r_base);
    609     }
    610     FreeTemp(r_base);
    611   } else {
    612     FlushAllRegs();  // Everything to home locations
    613     QuickEntrypointEnum target =
    614         is_long_or_double ? kQuickSet64Static
    615             : (is_object ? kQuickSetObjStatic : kQuickSet32Static);
    616     CallRuntimeHelperImmRegLocation(target, field_info.FieldIndex(), rl_src, true);
    617   }
    618 }
    619 
    620 void Mir2Lir::GenSget(MIR* mir, RegLocation rl_dest,
    621                       bool is_long_or_double, bool is_object) {
    622   const MirSFieldLoweringInfo& field_info = mir_graph_->GetSFieldLoweringInfo(mir);
    623   cu_->compiler_driver->ProcessedStaticField(field_info.FastGet(), field_info.IsReferrersClass());
    624   OpSize load_size = LoadStoreOpSize(is_long_or_double, is_object);
    625   if (!SLOW_FIELD_PATH && field_info.FastGet()) {
    626     DCHECK_GE(field_info.FieldOffset().Int32Value(), 0);
    627     RegStorage r_base;
    628     if (field_info.IsReferrersClass()) {
    629       // Fast path, static storage base is this method's class
    630       RegLocation rl_method  = LoadCurrMethod();
    631       r_base = AllocTempRef();
    632       LoadRefDisp(rl_method.reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(), r_base,
    633                   kNotVolatile);
    634     } else {
    635       // Medium path, static storage base in a different class which requires checks that the other
    636       // class is initialized
    637       DCHECK_NE(field_info.StorageIndex(), DexFile::kDexNoIndex);
    638       // May do runtime call so everything to home locations.
    639       FlushAllRegs();
    640       // Using fixed register to sync with possible call to runtime support.
    641       RegStorage r_method = TargetReg(kArg1, kRef);
    642       LockTemp(r_method);
    643       LoadCurrMethodDirect(r_method);
    644       r_base = TargetReg(kArg0, kRef);
    645       LockTemp(r_base);
    646       LoadRefDisp(r_method, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), r_base,
    647                   kNotVolatile);
    648       int32_t offset_of_field = ObjArray::OffsetOfElement(field_info.StorageIndex()).Int32Value();
    649       LoadRefDisp(r_base, offset_of_field, r_base, kNotVolatile);
    650       // r_base now points at static storage (Class*) or NULL if the type is not yet resolved.
    651       if (!field_info.IsInitialized() &&
    652           (mir->optimization_flags & MIR_IGNORE_CLINIT_CHECK) == 0) {
    653         // Check if r_base is NULL or a not yet initialized class.
    654 
    655         // The slow path is invoked if the r_base is NULL or the class pointed
    656         // to by it is not initialized.
    657         LIR* unresolved_branch = OpCmpImmBranch(kCondEq, r_base, 0, NULL);
    658         RegStorage r_tmp = TargetReg(kArg2, kNotWide);
    659         LockTemp(r_tmp);
    660         LIR* uninit_branch = OpCmpMemImmBranch(kCondLt, r_tmp, r_base,
    661                                           mirror::Class::StatusOffset().Int32Value(),
    662                                           mirror::Class::kStatusInitialized, nullptr, nullptr);
    663         LIR* cont = NewLIR0(kPseudoTargetLabel);
    664 
    665         AddSlowPath(new (arena_) StaticFieldSlowPath(this, unresolved_branch, uninit_branch, cont,
    666                                                      field_info.StorageIndex(), r_base));
    667 
    668         FreeTemp(r_tmp);
    669         // Ensure load of status and load of value don't re-order.
    670         GenMemBarrier(kLoadAny);
    671       }
    672       FreeTemp(r_method);
    673     }
    674     // r_base now holds static storage base
    675     RegisterClass reg_class = RegClassForFieldLoadStore(load_size, field_info.IsVolatile());
    676     RegLocation rl_result = EvalLoc(rl_dest, reg_class, true);
    677 
    678     int field_offset = field_info.FieldOffset().Int32Value();
    679     if (is_object) {
    680       LoadRefDisp(r_base, field_offset, rl_result.reg, field_info.IsVolatile() ? kVolatile :
    681           kNotVolatile);
    682     } else {
    683       LoadBaseDisp(r_base, field_offset, rl_result.reg, load_size, field_info.IsVolatile() ?
    684           kVolatile : kNotVolatile);
    685     }
    686     FreeTemp(r_base);
    687 
    688     if (is_long_or_double) {
    689       StoreValueWide(rl_dest, rl_result);
    690     } else {
    691       StoreValue(rl_dest, rl_result);
    692     }
    693   } else {
    694     FlushAllRegs();  // Everything to home locations
    695     QuickEntrypointEnum target =
    696         is_long_or_double ? kQuickGet64Static
    697             : (is_object ? kQuickGetObjStatic : kQuickGet32Static);
    698     CallRuntimeHelperImm(target, field_info.FieldIndex(), true);
    699 
    700     // FIXME: pGetXXStatic always return an int or int64 regardless of rl_dest.fp.
    701     if (is_long_or_double) {
    702       RegLocation rl_result = GetReturnWide(kCoreReg);
    703       StoreValueWide(rl_dest, rl_result);
    704     } else {
    705       RegLocation rl_result = GetReturn(rl_dest.ref ? kRefReg : kCoreReg);
    706       StoreValue(rl_dest, rl_result);
    707     }
    708   }
    709 }
    710 
    711 // Generate code for all slow paths.
    712 void Mir2Lir::HandleSlowPaths() {
    713   // We should check slow_paths_.Size() every time, because a new slow path
    714   // may be created during slowpath->Compile().
    715   for (size_t i = 0; i < slow_paths_.Size(); ++i) {
    716     LIRSlowPath* slowpath = slow_paths_.Get(i);
    717     slowpath->Compile();
    718   }
    719   slow_paths_.Reset();
    720 }
    721 
    722 void Mir2Lir::GenIGet(MIR* mir, int opt_flags, OpSize size,
    723                       RegLocation rl_dest, RegLocation rl_obj, bool is_long_or_double,
    724                       bool is_object) {
    725   const MirIFieldLoweringInfo& field_info = mir_graph_->GetIFieldLoweringInfo(mir);
    726   cu_->compiler_driver->ProcessedInstanceField(field_info.FastGet());
    727   OpSize load_size = LoadStoreOpSize(is_long_or_double, is_object);
    728   if (!SLOW_FIELD_PATH && field_info.FastGet()) {
    729     RegisterClass reg_class = RegClassForFieldLoadStore(load_size, field_info.IsVolatile());
    730     // A load of the class will lead to an iget with offset 0.
    731     DCHECK_GE(field_info.FieldOffset().Int32Value(), 0);
    732     rl_obj = LoadValue(rl_obj, kRefReg);
    733     GenNullCheck(rl_obj.reg, opt_flags);
    734     RegLocation rl_result = EvalLoc(rl_dest, reg_class, true);
    735     int field_offset = field_info.FieldOffset().Int32Value();
    736     LIR* load_lir;
    737     if (is_object) {
    738       load_lir = LoadRefDisp(rl_obj.reg, field_offset, rl_result.reg, field_info.IsVolatile() ?
    739           kVolatile : kNotVolatile);
    740     } else {
    741       load_lir = LoadBaseDisp(rl_obj.reg, field_offset, rl_result.reg, load_size,
    742                               field_info.IsVolatile() ? kVolatile : kNotVolatile);
    743     }
    744     MarkPossibleNullPointerExceptionAfter(opt_flags, load_lir);
    745     if (is_long_or_double) {
    746       StoreValueWide(rl_dest, rl_result);
    747     } else {
    748       StoreValue(rl_dest, rl_result);
    749     }
    750   } else {
    751     QuickEntrypointEnum target =
    752         is_long_or_double ? kQuickGet64Instance
    753             : (is_object ? kQuickGetObjInstance : kQuickGet32Instance);
    754     // Second argument of pGetXXInstance is always a reference.
    755     DCHECK_EQ(static_cast<unsigned int>(rl_obj.wide), 0U);
    756     CallRuntimeHelperImmRegLocation(target, field_info.FieldIndex(), rl_obj, true);
    757 
    758     // FIXME: pGetXXInstance always return an int or int64 regardless of rl_dest.fp.
    759     if (is_long_or_double) {
    760       RegLocation rl_result = GetReturnWide(kCoreReg);
    761       StoreValueWide(rl_dest, rl_result);
    762     } else {
    763       RegLocation rl_result = GetReturn(rl_dest.ref ? kRefReg : kCoreReg);
    764       StoreValue(rl_dest, rl_result);
    765     }
    766   }
    767 }
    768 
    769 void Mir2Lir::GenIPut(MIR* mir, int opt_flags, OpSize size,
    770                       RegLocation rl_src, RegLocation rl_obj, bool is_long_or_double,
    771                       bool is_object) {
    772   const MirIFieldLoweringInfo& field_info = mir_graph_->GetIFieldLoweringInfo(mir);
    773   cu_->compiler_driver->ProcessedInstanceField(field_info.FastPut());
    774   OpSize store_size = LoadStoreOpSize(is_long_or_double, is_object);
    775   if (!SLOW_FIELD_PATH && field_info.FastPut()) {
    776     RegisterClass reg_class = RegClassForFieldLoadStore(store_size, field_info.IsVolatile());
    777     // Dex code never writes to the class field.
    778     DCHECK_GE(static_cast<uint32_t>(field_info.FieldOffset().Int32Value()),
    779               sizeof(mirror::HeapReference<mirror::Class>));
    780     rl_obj = LoadValue(rl_obj, kRefReg);
    781     if (is_long_or_double) {
    782       rl_src = LoadValueWide(rl_src, reg_class);
    783     } else {
    784       rl_src = LoadValue(rl_src, reg_class);
    785     }
    786     GenNullCheck(rl_obj.reg, opt_flags);
    787     int field_offset = field_info.FieldOffset().Int32Value();
    788     LIR* null_ck_insn;
    789     if (is_object) {
    790       null_ck_insn = StoreRefDisp(rl_obj.reg, field_offset, rl_src.reg, field_info.IsVolatile() ?
    791           kVolatile : kNotVolatile);
    792     } else {
    793       null_ck_insn = StoreBaseDisp(rl_obj.reg, field_offset, rl_src.reg, store_size,
    794                                    field_info.IsVolatile() ? kVolatile : kNotVolatile);
    795     }
    796     MarkPossibleNullPointerExceptionAfter(opt_flags, null_ck_insn);
    797     if (is_object && !mir_graph_->IsConstantNullRef(rl_src)) {
    798       MarkGCCard(rl_src.reg, rl_obj.reg);
    799     }
    800   } else {
    801     QuickEntrypointEnum target =
    802         is_long_or_double ? kQuickSet64Instance
    803             : (is_object ? kQuickSetObjInstance : kQuickSet32Instance);
    804     CallRuntimeHelperImmRegLocationRegLocation(target, field_info.FieldIndex(), rl_obj, rl_src,
    805                                                true);
    806   }
    807 }
    808 
    809 void Mir2Lir::GenArrayObjPut(int opt_flags, RegLocation rl_array, RegLocation rl_index,
    810                              RegLocation rl_src) {
    811   bool needs_range_check = !(opt_flags & MIR_IGNORE_RANGE_CHECK);
    812   bool needs_null_check = !((cu_->disable_opt & (1 << kNullCheckElimination)) &&
    813       (opt_flags & MIR_IGNORE_NULL_CHECK));
    814   QuickEntrypointEnum target = needs_range_check
    815         ? (needs_null_check ? kQuickAputObjectWithNullAndBoundCheck
    816                             : kQuickAputObjectWithBoundCheck)
    817         : kQuickAputObject;
    818   CallRuntimeHelperRegLocationRegLocationRegLocation(target, rl_array, rl_index, rl_src, true);
    819 }
    820 
    821 void Mir2Lir::GenConstClass(uint32_t type_idx, RegLocation rl_dest) {
    822   RegLocation rl_method = LoadCurrMethod();
    823   CheckRegLocation(rl_method);
    824   RegStorage res_reg = AllocTempRef();
    825   RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true);
    826   if (!cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx,
    827                                                         *cu_->dex_file,
    828                                                         type_idx)) {
    829     // Call out to helper which resolves type and verifies access.
    830     // Resolved type returned in kRet0.
    831     CallRuntimeHelperImmReg(kQuickInitializeTypeAndVerifyAccess, type_idx, rl_method.reg, true);
    832     RegLocation rl_result = GetReturn(kRefReg);
    833     StoreValue(rl_dest, rl_result);
    834   } else {
    835     // We're don't need access checks, load type from dex cache
    836     int32_t dex_cache_offset =
    837         mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value();
    838     LoadRefDisp(rl_method.reg, dex_cache_offset, res_reg, kNotVolatile);
    839     int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
    840     LoadRefDisp(res_reg, offset_of_type, rl_result.reg, kNotVolatile);
    841     if (!cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file,
    842         type_idx) || SLOW_TYPE_PATH) {
    843       // Slow path, at runtime test if type is null and if so initialize
    844       FlushAllRegs();
    845       LIR* branch = OpCmpImmBranch(kCondEq, rl_result.reg, 0, NULL);
    846       LIR* cont = NewLIR0(kPseudoTargetLabel);
    847 
    848       // Object to generate the slow path for class resolution.
    849       class SlowPath : public LIRSlowPath {
    850        public:
    851         SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, const int type_idx,
    852                  const RegLocation& rl_method, const RegLocation& rl_result) :
    853                    LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont), type_idx_(type_idx),
    854                    rl_method_(rl_method), rl_result_(rl_result) {
    855         }
    856 
    857         void Compile() {
    858           GenerateTargetLabel();
    859 
    860           m2l_->CallRuntimeHelperImmReg(kQuickInitializeType, type_idx_, rl_method_.reg, true);
    861           m2l_->OpRegCopy(rl_result_.reg,  m2l_->TargetReg(kRet0, kRef));
    862           m2l_->OpUnconditionalBranch(cont_);
    863         }
    864 
    865        private:
    866         const int type_idx_;
    867         const RegLocation rl_method_;
    868         const RegLocation rl_result_;
    869       };
    870 
    871       // Add to list for future.
    872       AddSlowPath(new (arena_) SlowPath(this, branch, cont, type_idx, rl_method, rl_result));
    873 
    874       StoreValue(rl_dest, rl_result);
    875      } else {
    876       // Fast path, we're done - just store result
    877       StoreValue(rl_dest, rl_result);
    878     }
    879   }
    880 }
    881 
    882 void Mir2Lir::GenConstString(uint32_t string_idx, RegLocation rl_dest) {
    883   /* NOTE: Most strings should be available at compile time */
    884   const int32_t offset_of_string =
    885       mirror::ObjectArray<mirror::String>::OffsetOfElement(string_idx).Int32Value();
    886   if (!cu_->compiler_driver->CanAssumeStringIsPresentInDexCache(
    887       *cu_->dex_file, string_idx) || SLOW_STRING_PATH) {
    888     // slow path, resolve string if not in dex cache
    889     FlushAllRegs();
    890     LockCallTemps();  // Using explicit registers
    891 
    892     // If the Method* is already in a register, we can save a copy.
    893     RegLocation rl_method = mir_graph_->GetMethodLoc();
    894     RegStorage r_method;
    895     if (rl_method.location == kLocPhysReg) {
    896       // A temp would conflict with register use below.
    897       DCHECK(!IsTemp(rl_method.reg));
    898       r_method = rl_method.reg;
    899     } else {
    900       r_method = TargetReg(kArg2, kRef);
    901       LoadCurrMethodDirect(r_method);
    902     }
    903     // Method to declaring class.
    904     LoadRefDisp(r_method, mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
    905                 TargetReg(kArg0, kRef), kNotVolatile);
    906     // Declaring class to dex cache strings.
    907     LoadRefDisp(TargetReg(kArg0, kRef), mirror::Class::DexCacheStringsOffset().Int32Value(),
    908                 TargetReg(kArg0, kRef), kNotVolatile);
    909 
    910     // Might call out to helper, which will return resolved string in kRet0
    911     LoadRefDisp(TargetReg(kArg0, kRef), offset_of_string, TargetReg(kRet0, kRef), kNotVolatile);
    912     LIR* fromfast = OpCmpImmBranch(kCondEq, TargetReg(kRet0, kRef), 0, NULL);
    913     LIR* cont = NewLIR0(kPseudoTargetLabel);
    914 
    915     {
    916       // Object to generate the slow path for string resolution.
    917       class SlowPath : public LIRSlowPath {
    918        public:
    919         SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, RegStorage r_method, int32_t string_idx) :
    920           LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont),
    921           r_method_(r_method), string_idx_(string_idx) {
    922         }
    923 
    924         void Compile() {
    925           GenerateTargetLabel();
    926           m2l_->CallRuntimeHelperRegImm(kQuickResolveString, r_method_, string_idx_, true);
    927           m2l_->OpUnconditionalBranch(cont_);
    928         }
    929 
    930        private:
    931          const RegStorage r_method_;
    932          const int32_t string_idx_;
    933       };
    934 
    935       AddSlowPath(new (arena_) SlowPath(this, fromfast, cont, r_method, string_idx));
    936     }
    937 
    938     GenBarrier();
    939     StoreValue(rl_dest, GetReturn(kRefReg));
    940   } else {
    941     // Try to see if we can embed a direct pointer.
    942     bool use_direct_ptr = false;
    943     size_t direct_ptr = 0;
    944     bool embed_string = false;
    945     // TODO: Implement for X86.
    946     if (cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64) {
    947       embed_string = cu_->compiler_driver->CanEmbedStringInCode(*cu_->dex_file, string_idx,
    948                                                                 &use_direct_ptr, &direct_ptr);
    949     }
    950     if (embed_string) {
    951       RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true);
    952       if (!use_direct_ptr) {
    953         LoadString(string_idx, rl_result.reg);
    954       } else {
    955         LoadConstant(rl_result.reg, static_cast<int32_t>(direct_ptr));
    956       }
    957       StoreValue(rl_dest, rl_result);
    958     } else {
    959       RegLocation rl_method = LoadCurrMethod();
    960       RegStorage res_reg = AllocTempRef();
    961       RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true);
    962 
    963       // Method to declaring class.
    964       LoadRefDisp(rl_method.reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
    965                   res_reg, kNotVolatile);
    966       // Declaring class to dex cache strings.
    967       LoadRefDisp(res_reg, mirror::Class::DexCacheStringsOffset().Int32Value(), res_reg,
    968                   kNotVolatile);
    969 
    970       LoadRefDisp(res_reg, offset_of_string, rl_result.reg, kNotVolatile);
    971       StoreValue(rl_dest, rl_result);
    972     }
    973   }
    974 }
    975 
    976 /*
    977  * Let helper function take care of everything.  Will
    978  * call Class::NewInstanceFromCode(type_idx, method);
    979  */
    980 void Mir2Lir::GenNewInstance(uint32_t type_idx, RegLocation rl_dest) {
    981   FlushAllRegs();  /* Everything to home location */
    982   // alloc will always check for resolution, do we also need to verify
    983   // access because the verifier was unable to?
    984   const DexFile* dex_file = cu_->dex_file;
    985   CompilerDriver* driver = cu_->compiler_driver;
    986   if (driver->CanAccessInstantiableTypeWithoutChecks(cu_->method_idx, *dex_file, type_idx)) {
    987     bool is_type_initialized;
    988     bool use_direct_type_ptr;
    989     uintptr_t direct_type_ptr;
    990     bool is_finalizable;
    991     if (kEmbedClassInCode &&
    992         driver->CanEmbedTypeInCode(*dex_file, type_idx, &is_type_initialized, &use_direct_type_ptr,
    993                                    &direct_type_ptr, &is_finalizable) &&
    994                                    !is_finalizable) {
    995       // The fast path.
    996       if (!use_direct_type_ptr) {
    997         LoadClassType(type_idx, kArg0);
    998         if (!is_type_initialized) {
    999           CallRuntimeHelperRegMethod(kQuickAllocObjectResolved, TargetReg(kArg0, kRef), true);
   1000         } else {
   1001           CallRuntimeHelperRegMethod(kQuickAllocObjectInitialized, TargetReg(kArg0, kRef), true);
   1002         }
   1003       } else {
   1004         // Use the direct pointer.
   1005         if (!is_type_initialized) {
   1006           CallRuntimeHelperImmMethod(kQuickAllocObjectResolved, direct_type_ptr, true);
   1007         } else {
   1008           CallRuntimeHelperImmMethod(kQuickAllocObjectInitialized, direct_type_ptr, true);
   1009         }
   1010       }
   1011     } else {
   1012       // The slow path.
   1013       CallRuntimeHelperImmMethod(kQuickAllocObject, type_idx, true);
   1014     }
   1015   } else {
   1016     CallRuntimeHelperImmMethod(kQuickAllocObjectWithAccessCheck, type_idx, true);
   1017   }
   1018   StoreValue(rl_dest, GetReturn(kRefReg));
   1019 }
   1020 
   1021 void Mir2Lir::GenThrow(RegLocation rl_src) {
   1022   FlushAllRegs();
   1023   CallRuntimeHelperRegLocation(kQuickDeliverException, rl_src, true);
   1024 }
   1025 
   1026 // For final classes there are no sub-classes to check and so we can answer the instance-of
   1027 // question with simple comparisons.
   1028 void Mir2Lir::GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx, RegLocation rl_dest,
   1029                                  RegLocation rl_src) {
   1030   // X86 has its own implementation.
   1031   DCHECK(cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64);
   1032 
   1033   RegLocation object = LoadValue(rl_src, kRefReg);
   1034   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
   1035   RegStorage result_reg = rl_result.reg;
   1036   if (IsSameReg(result_reg, object.reg)) {
   1037     result_reg = AllocTypedTemp(false, kCoreReg);
   1038     DCHECK(!IsSameReg(result_reg, object.reg));
   1039   }
   1040   LoadConstant(result_reg, 0);     // assume false
   1041   LIR* null_branchover = OpCmpImmBranch(kCondEq, object.reg, 0, NULL);
   1042 
   1043   RegStorage check_class = AllocTypedTemp(false, kRefReg);
   1044   RegStorage object_class = AllocTypedTemp(false, kRefReg);
   1045 
   1046   LoadCurrMethodDirect(check_class);
   1047   if (use_declaring_class) {
   1048     LoadRefDisp(check_class, mirror::ArtMethod::DeclaringClassOffset().Int32Value(), check_class,
   1049                 kNotVolatile);
   1050     LoadRefDisp(object.reg,  mirror::Object::ClassOffset().Int32Value(), object_class,
   1051                 kNotVolatile);
   1052   } else {
   1053     LoadRefDisp(check_class, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
   1054                 check_class, kNotVolatile);
   1055     LoadRefDisp(object.reg,  mirror::Object::ClassOffset().Int32Value(), object_class,
   1056                 kNotVolatile);
   1057     int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
   1058     LoadRefDisp(check_class, offset_of_type, check_class, kNotVolatile);
   1059   }
   1060 
   1061   // FIXME: what should we be comparing here? compressed or decompressed references?
   1062   if (cu_->instruction_set == kThumb2) {
   1063     OpRegReg(kOpCmp, check_class, object_class);  // Same?
   1064     LIR* it = OpIT(kCondEq, "");   // if-convert the test
   1065     LoadConstant(result_reg, 1);     // .eq case - load true
   1066     OpEndIT(it);
   1067   } else {
   1068     GenSelectConst32(check_class, object_class, kCondEq, 1, 0, result_reg, kCoreReg);
   1069   }
   1070   LIR* target = NewLIR0(kPseudoTargetLabel);
   1071   null_branchover->target = target;
   1072   FreeTemp(object_class);
   1073   FreeTemp(check_class);
   1074   if (IsTemp(result_reg)) {
   1075     OpRegCopy(rl_result.reg, result_reg);
   1076     FreeTemp(result_reg);
   1077   }
   1078   StoreValue(rl_dest, rl_result);
   1079 }
   1080 
   1081 void Mir2Lir::GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
   1082                                          bool type_known_abstract, bool use_declaring_class,
   1083                                          bool can_assume_type_is_in_dex_cache,
   1084                                          uint32_t type_idx, RegLocation rl_dest,
   1085                                          RegLocation rl_src) {
   1086   FlushAllRegs();
   1087   // May generate a call - use explicit registers
   1088   LockCallTemps();
   1089   RegStorage method_reg = TargetReg(kArg1, kRef);
   1090   LoadCurrMethodDirect(method_reg);   // kArg1 <= current Method*
   1091   RegStorage class_reg = TargetReg(kArg2, kRef);  // kArg2 will hold the Class*
   1092   RegStorage ref_reg = TargetReg(kArg0, kRef);  // kArg0 will hold the ref.
   1093   RegStorage ret_reg = GetReturn(kRefReg).reg;
   1094   if (needs_access_check) {
   1095     // Check we have access to type_idx and if not throw IllegalAccessError,
   1096     // returns Class* in kArg0
   1097     CallRuntimeHelperImm(kQuickInitializeTypeAndVerifyAccess, type_idx, true);
   1098     OpRegCopy(class_reg, ret_reg);  // Align usage with fast path
   1099     LoadValueDirectFixed(rl_src, ref_reg);  // kArg0 <= ref
   1100   } else if (use_declaring_class) {
   1101     LoadValueDirectFixed(rl_src, ref_reg);  // kArg0 <= ref
   1102     LoadRefDisp(method_reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
   1103                 class_reg, kNotVolatile);
   1104   } else {
   1105     if (can_assume_type_is_in_dex_cache) {
   1106       // Conditionally, as in the other case we will also load it.
   1107       LoadValueDirectFixed(rl_src, ref_reg);  // kArg0 <= ref
   1108     }
   1109 
   1110     // Load dex cache entry into class_reg (kArg2)
   1111     LoadRefDisp(method_reg, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
   1112                 class_reg, kNotVolatile);
   1113     int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
   1114     LoadRefDisp(class_reg, offset_of_type, class_reg, kNotVolatile);
   1115     if (!can_assume_type_is_in_dex_cache) {
   1116       LIR* slow_path_branch = OpCmpImmBranch(kCondEq, class_reg, 0, NULL);
   1117       LIR* slow_path_target = NewLIR0(kPseudoTargetLabel);
   1118 
   1119       // Should load value here.
   1120       LoadValueDirectFixed(rl_src, ref_reg);  // kArg0 <= ref
   1121 
   1122       class InitTypeSlowPath : public Mir2Lir::LIRSlowPath {
   1123        public:
   1124         InitTypeSlowPath(Mir2Lir* m2l, LIR* branch, LIR* cont, uint32_t type_idx,
   1125                          RegLocation rl_src)
   1126             : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch, cont), type_idx_(type_idx),
   1127               rl_src_(rl_src) {
   1128         }
   1129 
   1130         void Compile() OVERRIDE {
   1131           GenerateTargetLabel();
   1132 
   1133           m2l_->CallRuntimeHelperImm(kQuickInitializeType, type_idx_, true);
   1134           m2l_->OpRegCopy(m2l_->TargetReg(kArg2, kRef),
   1135                           m2l_->TargetReg(kRet0, kRef));  // Align usage with fast path
   1136           m2l_->OpUnconditionalBranch(cont_);
   1137         }
   1138 
   1139        private:
   1140         uint32_t type_idx_;
   1141         RegLocation rl_src_;
   1142       };
   1143 
   1144       AddSlowPath(new (arena_) InitTypeSlowPath(this, slow_path_branch, slow_path_target,
   1145                                                 type_idx, rl_src));
   1146     }
   1147   }
   1148   /* kArg0 is ref, kArg2 is class. If ref==null, use directly as bool result */
   1149   RegLocation rl_result = GetReturn(kCoreReg);
   1150   if (!IsSameReg(rl_result.reg, ref_reg)) {
   1151     // On MIPS and x86_64 rArg0 != rl_result, place false in result if branch is taken.
   1152     LoadConstant(rl_result.reg, 0);
   1153   }
   1154   LIR* branch1 = OpCmpImmBranch(kCondEq, ref_reg, 0, NULL);
   1155 
   1156   /* load object->klass_ */
   1157   RegStorage ref_class_reg = TargetReg(kArg1, kRef);  // kArg1 will hold the Class* of ref.
   1158   DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
   1159   LoadRefDisp(ref_reg, mirror::Object::ClassOffset().Int32Value(),
   1160               ref_class_reg, kNotVolatile);
   1161   /* kArg0 is ref, kArg1 is ref->klass_, kArg2 is class */
   1162   LIR* branchover = NULL;
   1163   if (type_known_final) {
   1164     // rl_result == ref == class.
   1165     GenSelectConst32(ref_class_reg, class_reg, kCondEq, 1, 0, rl_result.reg,
   1166                      kCoreReg);
   1167   } else {
   1168     if (cu_->instruction_set == kThumb2) {
   1169       RegStorage r_tgt = LoadHelper(kQuickInstanceofNonTrivial);
   1170       LIR* it = nullptr;
   1171       if (!type_known_abstract) {
   1172       /* Uses conditional nullification */
   1173         OpRegReg(kOpCmp, ref_class_reg, class_reg);  // Same?
   1174         it = OpIT(kCondEq, "EE");   // if-convert the test
   1175         LoadConstant(rl_result.reg, 1);     // .eq case - load true
   1176       }
   1177       OpRegCopy(ref_reg, class_reg);    // .ne case - arg0 <= class
   1178       OpReg(kOpBlx, r_tgt);    // .ne case: helper(class, ref->class)
   1179       if (it != nullptr) {
   1180         OpEndIT(it);
   1181       }
   1182       FreeTemp(r_tgt);
   1183     } else {
   1184       if (!type_known_abstract) {
   1185         /* Uses branchovers */
   1186         LoadConstant(rl_result.reg, 1);     // assume true
   1187         branchover = OpCmpBranch(kCondEq, TargetReg(kArg1, kRef), TargetReg(kArg2, kRef), NULL);
   1188       }
   1189 
   1190       OpRegCopy(TargetReg(kArg0, kRef), class_reg);    // .ne case - arg0 <= class
   1191       CallRuntimeHelper(kQuickInstanceofNonTrivial, false);
   1192     }
   1193   }
   1194   // TODO: only clobber when type isn't final?
   1195   ClobberCallerSave();
   1196   /* branch targets here */
   1197   LIR* target = NewLIR0(kPseudoTargetLabel);
   1198   StoreValue(rl_dest, rl_result);
   1199   branch1->target = target;
   1200   if (branchover != nullptr) {
   1201     branchover->target = target;
   1202   }
   1203 }
   1204 
   1205 void Mir2Lir::GenInstanceof(uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src) {
   1206   bool type_known_final, type_known_abstract, use_declaring_class;
   1207   bool needs_access_check = !cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx,
   1208                                                                               *cu_->dex_file,
   1209                                                                               type_idx,
   1210                                                                               &type_known_final,
   1211                                                                               &type_known_abstract,
   1212                                                                               &use_declaring_class);
   1213   bool can_assume_type_is_in_dex_cache = !needs_access_check &&
   1214       cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file, type_idx);
   1215 
   1216   if ((use_declaring_class || can_assume_type_is_in_dex_cache) && type_known_final) {
   1217     GenInstanceofFinal(use_declaring_class, type_idx, rl_dest, rl_src);
   1218   } else {
   1219     GenInstanceofCallingHelper(needs_access_check, type_known_final, type_known_abstract,
   1220                                use_declaring_class, can_assume_type_is_in_dex_cache,
   1221                                type_idx, rl_dest, rl_src);
   1222   }
   1223 }
   1224 
   1225 void Mir2Lir::GenCheckCast(uint32_t insn_idx, uint32_t type_idx, RegLocation rl_src) {
   1226   bool type_known_final, type_known_abstract, use_declaring_class;
   1227   bool needs_access_check = !cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx,
   1228                                                                               *cu_->dex_file,
   1229                                                                               type_idx,
   1230                                                                               &type_known_final,
   1231                                                                               &type_known_abstract,
   1232                                                                               &use_declaring_class);
   1233   // Note: currently type_known_final is unused, as optimizing will only improve the performance
   1234   // of the exception throw path.
   1235   DexCompilationUnit* cu = mir_graph_->GetCurrentDexCompilationUnit();
   1236   if (!needs_access_check && cu_->compiler_driver->IsSafeCast(cu, insn_idx)) {
   1237     // Verifier type analysis proved this check cast would never cause an exception.
   1238     return;
   1239   }
   1240   FlushAllRegs();
   1241   // May generate a call - use explicit registers
   1242   LockCallTemps();
   1243   RegStorage method_reg = TargetReg(kArg1, kRef);
   1244   LoadCurrMethodDirect(method_reg);  // kArg1 <= current Method*
   1245   RegStorage class_reg = TargetReg(kArg2, kRef);  // kArg2 will hold the Class*
   1246   if (needs_access_check) {
   1247     // Check we have access to type_idx and if not throw IllegalAccessError,
   1248     // returns Class* in kRet0
   1249     // InitializeTypeAndVerifyAccess(idx, method)
   1250     CallRuntimeHelperImm(kQuickInitializeTypeAndVerifyAccess, type_idx, true);
   1251     OpRegCopy(class_reg, TargetReg(kRet0, kRef));  // Align usage with fast path
   1252   } else if (use_declaring_class) {
   1253     LoadRefDisp(method_reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
   1254                 class_reg, kNotVolatile);
   1255   } else {
   1256     // Load dex cache entry into class_reg (kArg2)
   1257     LoadRefDisp(method_reg, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
   1258                 class_reg, kNotVolatile);
   1259     int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
   1260     LoadRefDisp(class_reg, offset_of_type, class_reg, kNotVolatile);
   1261     if (!cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file, type_idx)) {
   1262       // Need to test presence of type in dex cache at runtime
   1263       LIR* hop_branch = OpCmpImmBranch(kCondEq, class_reg, 0, NULL);
   1264       LIR* cont = NewLIR0(kPseudoTargetLabel);
   1265 
   1266       // Slow path to initialize the type.  Executed if the type is NULL.
   1267       class SlowPath : public LIRSlowPath {
   1268        public:
   1269         SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, const int type_idx,
   1270                  const RegStorage class_reg) :
   1271                    LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont), type_idx_(type_idx),
   1272                    class_reg_(class_reg) {
   1273         }
   1274 
   1275         void Compile() {
   1276           GenerateTargetLabel();
   1277 
   1278           // Call out to helper, which will return resolved type in kArg0
   1279           // InitializeTypeFromCode(idx, method)
   1280           m2l_->CallRuntimeHelperImmReg(kQuickInitializeType, type_idx_,
   1281                                         m2l_->TargetReg(kArg1, kRef), true);
   1282           m2l_->OpRegCopy(class_reg_, m2l_->TargetReg(kRet0, kRef));  // Align usage with fast path
   1283           m2l_->OpUnconditionalBranch(cont_);
   1284         }
   1285 
   1286        public:
   1287         const int type_idx_;
   1288         const RegStorage class_reg_;
   1289       };
   1290 
   1291       AddSlowPath(new (arena_) SlowPath(this, hop_branch, cont, type_idx, class_reg));
   1292     }
   1293   }
   1294   // At this point, class_reg (kArg2) has class
   1295   LoadValueDirectFixed(rl_src, TargetReg(kArg0, kRef));  // kArg0 <= ref
   1296 
   1297   // Slow path for the case where the classes are not equal.  In this case we need
   1298   // to call a helper function to do the check.
   1299   class SlowPath : public LIRSlowPath {
   1300    public:
   1301     SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, bool load):
   1302                LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont), load_(load) {
   1303     }
   1304 
   1305     void Compile() {
   1306       GenerateTargetLabel();
   1307 
   1308       if (load_) {
   1309         m2l_->LoadRefDisp(m2l_->TargetReg(kArg0, kRef), mirror::Object::ClassOffset().Int32Value(),
   1310                           m2l_->TargetReg(kArg1, kRef), kNotVolatile);
   1311       }
   1312       m2l_->CallRuntimeHelperRegReg(kQuickCheckCast, m2l_->TargetReg(kArg2, kRef),
   1313                                     m2l_->TargetReg(kArg1, kRef), true);
   1314       m2l_->OpUnconditionalBranch(cont_);
   1315     }
   1316 
   1317    private:
   1318     const bool load_;
   1319   };
   1320 
   1321   if (type_known_abstract) {
   1322     // Easier case, run slow path if target is non-null (slow path will load from target)
   1323     LIR* branch = OpCmpImmBranch(kCondNe, TargetReg(kArg0, kRef), 0, nullptr);
   1324     LIR* cont = NewLIR0(kPseudoTargetLabel);
   1325     AddSlowPath(new (arena_) SlowPath(this, branch, cont, true));
   1326   } else {
   1327     // Harder, more common case.  We need to generate a forward branch over the load
   1328     // if the target is null.  If it's non-null we perform the load and branch to the
   1329     // slow path if the classes are not equal.
   1330 
   1331     /* Null is OK - continue */
   1332     LIR* branch1 = OpCmpImmBranch(kCondEq, TargetReg(kArg0, kRef), 0, nullptr);
   1333     /* load object->klass_ */
   1334     DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
   1335     LoadRefDisp(TargetReg(kArg0, kRef), mirror::Object::ClassOffset().Int32Value(),
   1336                 TargetReg(kArg1, kRef), kNotVolatile);
   1337 
   1338     LIR* branch2 = OpCmpBranch(kCondNe, TargetReg(kArg1, kRef), class_reg, nullptr);
   1339     LIR* cont = NewLIR0(kPseudoTargetLabel);
   1340 
   1341     // Add the slow path that will not perform load since this is already done.
   1342     AddSlowPath(new (arena_) SlowPath(this, branch2, cont, false));
   1343 
   1344     // Set the null check to branch to the continuation.
   1345     branch1->target = cont;
   1346   }
   1347 }
   1348 
   1349 void Mir2Lir::GenLong3Addr(OpKind first_op, OpKind second_op, RegLocation rl_dest,
   1350                            RegLocation rl_src1, RegLocation rl_src2) {
   1351   RegLocation rl_result;
   1352   if (cu_->instruction_set == kThumb2) {
   1353     /*
   1354      * NOTE:  This is the one place in the code in which we might have
   1355      * as many as six live temporary registers.  There are 5 in the normal
   1356      * set for Arm.  Until we have spill capabilities, temporarily add
   1357      * lr to the temp set.  It is safe to do this locally, but note that
   1358      * lr is used explicitly elsewhere in the code generator and cannot
   1359      * normally be used as a general temp register.
   1360      */
   1361     MarkTemp(TargetReg(kLr, kNotWide));   // Add lr to the temp pool
   1362     FreeTemp(TargetReg(kLr, kNotWide));   // and make it available
   1363   }
   1364   rl_src1 = LoadValueWide(rl_src1, kCoreReg);
   1365   rl_src2 = LoadValueWide(rl_src2, kCoreReg);
   1366   rl_result = EvalLoc(rl_dest, kCoreReg, true);
   1367   // The longs may overlap - use intermediate temp if so
   1368   if ((rl_result.reg.GetLowReg() == rl_src1.reg.GetHighReg()) || (rl_result.reg.GetLowReg() == rl_src2.reg.GetHighReg())) {
   1369     RegStorage t_reg = AllocTemp();
   1370     OpRegRegReg(first_op, t_reg, rl_src1.reg.GetLow(), rl_src2.reg.GetLow());
   1371     OpRegRegReg(second_op, rl_result.reg.GetHigh(), rl_src1.reg.GetHigh(), rl_src2.reg.GetHigh());
   1372     OpRegCopy(rl_result.reg.GetLow(), t_reg);
   1373     FreeTemp(t_reg);
   1374   } else {
   1375     OpRegRegReg(first_op, rl_result.reg.GetLow(), rl_src1.reg.GetLow(), rl_src2.reg.GetLow());
   1376     OpRegRegReg(second_op, rl_result.reg.GetHigh(), rl_src1.reg.GetHigh(), rl_src2.reg.GetHigh());
   1377   }
   1378   /*
   1379    * NOTE: If rl_dest refers to a frame variable in a large frame, the
   1380    * following StoreValueWide might need to allocate a temp register.
   1381    * To further work around the lack of a spill capability, explicitly
   1382    * free any temps from rl_src1 & rl_src2 that aren't still live in rl_result.
   1383    * Remove when spill is functional.
   1384    */
   1385   FreeRegLocTemps(rl_result, rl_src1);
   1386   FreeRegLocTemps(rl_result, rl_src2);
   1387   StoreValueWide(rl_dest, rl_result);
   1388   if (cu_->instruction_set == kThumb2) {
   1389     Clobber(TargetReg(kLr, kNotWide));
   1390     UnmarkTemp(TargetReg(kLr, kNotWide));  // Remove lr from the temp pool
   1391   }
   1392 }
   1393 
   1394 void Mir2Lir::GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest,
   1395                              RegLocation rl_src1, RegLocation rl_shift) {
   1396   QuickEntrypointEnum target;
   1397   switch (opcode) {
   1398     case Instruction::SHL_LONG:
   1399     case Instruction::SHL_LONG_2ADDR:
   1400       target = kQuickShlLong;
   1401       break;
   1402     case Instruction::SHR_LONG:
   1403     case Instruction::SHR_LONG_2ADDR:
   1404       target = kQuickShrLong;
   1405       break;
   1406     case Instruction::USHR_LONG:
   1407     case Instruction::USHR_LONG_2ADDR:
   1408       target = kQuickUshrLong;
   1409       break;
   1410     default:
   1411       LOG(FATAL) << "Unexpected case";
   1412       target = kQuickShlLong;
   1413   }
   1414   FlushAllRegs();   /* Send everything to home location */
   1415   CallRuntimeHelperRegLocationRegLocation(target, rl_src1, rl_shift, false);
   1416   RegLocation rl_result = GetReturnWide(kCoreReg);
   1417   StoreValueWide(rl_dest, rl_result);
   1418 }
   1419 
   1420 
   1421 void Mir2Lir::GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
   1422                             RegLocation rl_src1, RegLocation rl_src2) {
   1423   DCHECK(cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64);
   1424   OpKind op = kOpBkpt;
   1425   bool is_div_rem = false;
   1426   bool check_zero = false;
   1427   bool unary = false;
   1428   RegLocation rl_result;
   1429   bool shift_op = false;
   1430   switch (opcode) {
   1431     case Instruction::NEG_INT:
   1432       op = kOpNeg;
   1433       unary = true;
   1434       break;
   1435     case Instruction::NOT_INT:
   1436       op = kOpMvn;
   1437       unary = true;
   1438       break;
   1439     case Instruction::ADD_INT:
   1440     case Instruction::ADD_INT_2ADDR:
   1441       op = kOpAdd;
   1442       break;
   1443     case Instruction::SUB_INT:
   1444     case Instruction::SUB_INT_2ADDR:
   1445       op = kOpSub;
   1446       break;
   1447     case Instruction::MUL_INT:
   1448     case Instruction::MUL_INT_2ADDR:
   1449       op = kOpMul;
   1450       break;
   1451     case Instruction::DIV_INT:
   1452     case Instruction::DIV_INT_2ADDR:
   1453       check_zero = true;
   1454       op = kOpDiv;
   1455       is_div_rem = true;
   1456       break;
   1457     /* NOTE: returns in kArg1 */
   1458     case Instruction::REM_INT:
   1459     case Instruction::REM_INT_2ADDR:
   1460       check_zero = true;
   1461       op = kOpRem;
   1462       is_div_rem = true;
   1463       break;
   1464     case Instruction::AND_INT:
   1465     case Instruction::AND_INT_2ADDR:
   1466       op = kOpAnd;
   1467       break;
   1468     case Instruction::OR_INT:
   1469     case Instruction::OR_INT_2ADDR:
   1470       op = kOpOr;
   1471       break;
   1472     case Instruction::XOR_INT:
   1473     case Instruction::XOR_INT_2ADDR:
   1474       op = kOpXor;
   1475       break;
   1476     case Instruction::SHL_INT:
   1477     case Instruction::SHL_INT_2ADDR:
   1478       shift_op = true;
   1479       op = kOpLsl;
   1480       break;
   1481     case Instruction::SHR_INT:
   1482     case Instruction::SHR_INT_2ADDR:
   1483       shift_op = true;
   1484       op = kOpAsr;
   1485       break;
   1486     case Instruction::USHR_INT:
   1487     case Instruction::USHR_INT_2ADDR:
   1488       shift_op = true;
   1489       op = kOpLsr;
   1490       break;
   1491     default:
   1492       LOG(FATAL) << "Invalid word arith op: " << opcode;
   1493   }
   1494   if (!is_div_rem) {
   1495     if (unary) {
   1496       rl_src1 = LoadValue(rl_src1, kCoreReg);
   1497       rl_result = EvalLoc(rl_dest, kCoreReg, true);
   1498       OpRegReg(op, rl_result.reg, rl_src1.reg);
   1499     } else {
   1500       if ((shift_op) && (cu_->instruction_set != kArm64)) {
   1501         rl_src2 = LoadValue(rl_src2, kCoreReg);
   1502         RegStorage t_reg = AllocTemp();
   1503         OpRegRegImm(kOpAnd, t_reg, rl_src2.reg, 31);
   1504         rl_src1 = LoadValue(rl_src1, kCoreReg);
   1505         rl_result = EvalLoc(rl_dest, kCoreReg, true);
   1506         OpRegRegReg(op, rl_result.reg, rl_src1.reg, t_reg);
   1507         FreeTemp(t_reg);
   1508       } else {
   1509         rl_src1 = LoadValue(rl_src1, kCoreReg);
   1510         rl_src2 = LoadValue(rl_src2, kCoreReg);
   1511         rl_result = EvalLoc(rl_dest, kCoreReg, true);
   1512         OpRegRegReg(op, rl_result.reg, rl_src1.reg, rl_src2.reg);
   1513       }
   1514     }
   1515     StoreValue(rl_dest, rl_result);
   1516   } else {
   1517     bool done = false;      // Set to true if we happen to find a way to use a real instruction.
   1518     if (cu_->instruction_set == kMips || cu_->instruction_set == kArm64) {
   1519       rl_src1 = LoadValue(rl_src1, kCoreReg);
   1520       rl_src2 = LoadValue(rl_src2, kCoreReg);
   1521       if (check_zero) {
   1522         GenDivZeroCheck(rl_src2.reg);
   1523       }
   1524       rl_result = GenDivRem(rl_dest, rl_src1.reg, rl_src2.reg, op == kOpDiv);
   1525       done = true;
   1526     } else if (cu_->instruction_set == kThumb2) {
   1527       if (cu_->GetInstructionSetFeatures().HasDivideInstruction()) {
   1528         // Use ARM SDIV instruction for division.  For remainder we also need to
   1529         // calculate using a MUL and subtract.
   1530         rl_src1 = LoadValue(rl_src1, kCoreReg);
   1531         rl_src2 = LoadValue(rl_src2, kCoreReg);
   1532         if (check_zero) {
   1533           GenDivZeroCheck(rl_src2.reg);
   1534         }
   1535         rl_result = GenDivRem(rl_dest, rl_src1.reg, rl_src2.reg, op == kOpDiv);
   1536         done = true;
   1537       }
   1538     }
   1539 
   1540     // If we haven't already generated the code use the callout function.
   1541     if (!done) {
   1542       FlushAllRegs();   /* Send everything to home location */
   1543       LoadValueDirectFixed(rl_src2, TargetReg(kArg1, kNotWide));
   1544       RegStorage r_tgt = CallHelperSetup(kQuickIdivmod);
   1545       LoadValueDirectFixed(rl_src1, TargetReg(kArg0, kNotWide));
   1546       if (check_zero) {
   1547         GenDivZeroCheck(TargetReg(kArg1, kNotWide));
   1548       }
   1549       // NOTE: callout here is not a safepoint.
   1550       CallHelper(r_tgt, kQuickIdivmod, false /* not a safepoint */);
   1551       if (op == kOpDiv)
   1552         rl_result = GetReturn(kCoreReg);
   1553       else
   1554         rl_result = GetReturnAlt();
   1555     }
   1556     StoreValue(rl_dest, rl_result);
   1557   }
   1558 }
   1559 
   1560 /*
   1561  * The following are the first-level codegen routines that analyze the format
   1562  * of each bytecode then either dispatch special purpose codegen routines
   1563  * or produce corresponding Thumb instructions directly.
   1564  */
   1565 
   1566 // Returns true if no more than two bits are set in 'x'.
   1567 static bool IsPopCountLE2(unsigned int x) {
   1568   x &= x - 1;
   1569   return (x & (x - 1)) == 0;
   1570 }
   1571 
   1572 // Returns true if it added instructions to 'cu' to divide 'rl_src' by 'lit'
   1573 // and store the result in 'rl_dest'.
   1574 bool Mir2Lir::HandleEasyDivRem(Instruction::Code dalvik_opcode, bool is_div,
   1575                                RegLocation rl_src, RegLocation rl_dest, int lit) {
   1576   if ((lit < 2) || ((cu_->instruction_set != kThumb2) && !IsPowerOfTwo(lit))) {
   1577     return false;
   1578   }
   1579   // No divide instruction for Arm, so check for more special cases
   1580   if ((cu_->instruction_set == kThumb2) && !IsPowerOfTwo(lit)) {
   1581     return SmallLiteralDivRem(dalvik_opcode, is_div, rl_src, rl_dest, lit);
   1582   }
   1583   int k = LowestSetBit(lit);
   1584   if (k >= 30) {
   1585     // Avoid special cases.
   1586     return false;
   1587   }
   1588   rl_src = LoadValue(rl_src, kCoreReg);
   1589   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
   1590   if (is_div) {
   1591     RegStorage t_reg = AllocTemp();
   1592     if (lit == 2) {
   1593       // Division by 2 is by far the most common division by constant.
   1594       OpRegRegImm(kOpLsr, t_reg, rl_src.reg, 32 - k);
   1595       OpRegRegReg(kOpAdd, t_reg, t_reg, rl_src.reg);
   1596       OpRegRegImm(kOpAsr, rl_result.reg, t_reg, k);
   1597     } else {
   1598       OpRegRegImm(kOpAsr, t_reg, rl_src.reg, 31);
   1599       OpRegRegImm(kOpLsr, t_reg, t_reg, 32 - k);
   1600       OpRegRegReg(kOpAdd, t_reg, t_reg, rl_src.reg);
   1601       OpRegRegImm(kOpAsr, rl_result.reg, t_reg, k);
   1602     }
   1603   } else {
   1604     RegStorage t_reg1 = AllocTemp();
   1605     RegStorage t_reg2 = AllocTemp();
   1606     if (lit == 2) {
   1607       OpRegRegImm(kOpLsr, t_reg1, rl_src.reg, 32 - k);
   1608       OpRegRegReg(kOpAdd, t_reg2, t_reg1, rl_src.reg);
   1609       OpRegRegImm(kOpAnd, t_reg2, t_reg2, lit -1);
   1610       OpRegRegReg(kOpSub, rl_result.reg, t_reg2, t_reg1);
   1611     } else {
   1612       OpRegRegImm(kOpAsr, t_reg1, rl_src.reg, 31);
   1613       OpRegRegImm(kOpLsr, t_reg1, t_reg1, 32 - k);
   1614       OpRegRegReg(kOpAdd, t_reg2, t_reg1, rl_src.reg);
   1615       OpRegRegImm(kOpAnd, t_reg2, t_reg2, lit - 1);
   1616       OpRegRegReg(kOpSub, rl_result.reg, t_reg2, t_reg1);
   1617     }
   1618   }
   1619   StoreValue(rl_dest, rl_result);
   1620   return true;
   1621 }
   1622 
   1623 // Returns true if it added instructions to 'cu' to multiply 'rl_src' by 'lit'
   1624 // and store the result in 'rl_dest'.
   1625 bool Mir2Lir::HandleEasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) {
   1626   if (lit < 0) {
   1627     return false;
   1628   }
   1629   if (lit == 0) {
   1630     RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
   1631     LoadConstant(rl_result.reg, 0);
   1632     StoreValue(rl_dest, rl_result);
   1633     return true;
   1634   }
   1635   if (lit == 1) {
   1636     rl_src = LoadValue(rl_src, kCoreReg);
   1637     RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
   1638     OpRegCopy(rl_result.reg, rl_src.reg);
   1639     StoreValue(rl_dest, rl_result);
   1640     return true;
   1641   }
   1642   // There is RegRegRegShift on Arm, so check for more special cases
   1643   if (cu_->instruction_set == kThumb2) {
   1644     return EasyMultiply(rl_src, rl_dest, lit);
   1645   }
   1646   // Can we simplify this multiplication?
   1647   bool power_of_two = false;
   1648   bool pop_count_le2 = false;
   1649   bool power_of_two_minus_one = false;
   1650   if (IsPowerOfTwo(lit)) {
   1651     power_of_two = true;
   1652   } else if (IsPopCountLE2(lit)) {
   1653     pop_count_le2 = true;
   1654   } else if (IsPowerOfTwo(lit + 1)) {
   1655     power_of_two_minus_one = true;
   1656   } else {
   1657     return false;
   1658   }
   1659   rl_src = LoadValue(rl_src, kCoreReg);
   1660   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
   1661   if (power_of_two) {
   1662     // Shift.
   1663     OpRegRegImm(kOpLsl, rl_result.reg, rl_src.reg, LowestSetBit(lit));
   1664   } else if (pop_count_le2) {
   1665     // Shift and add and shift.
   1666     int first_bit = LowestSetBit(lit);
   1667     int second_bit = LowestSetBit(lit ^ (1 << first_bit));
   1668     GenMultiplyByTwoBitMultiplier(rl_src, rl_result, lit, first_bit, second_bit);
   1669   } else {
   1670     // Reverse subtract: (src << (shift + 1)) - src.
   1671     DCHECK(power_of_two_minus_one);
   1672     // TUNING: rsb dst, src, src lsl#LowestSetBit(lit + 1)
   1673     RegStorage t_reg = AllocTemp();
   1674     OpRegRegImm(kOpLsl, t_reg, rl_src.reg, LowestSetBit(lit + 1));
   1675     OpRegRegReg(kOpSub, rl_result.reg, t_reg, rl_src.reg);
   1676   }
   1677   StoreValue(rl_dest, rl_result);
   1678   return true;
   1679 }
   1680 
   1681 void Mir2Lir::GenArithOpIntLit(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src,
   1682                                int lit) {
   1683   RegLocation rl_result;
   1684   OpKind op = static_cast<OpKind>(0);    /* Make gcc happy */
   1685   int shift_op = false;
   1686   bool is_div = false;
   1687 
   1688   switch (opcode) {
   1689     case Instruction::RSUB_INT_LIT8:
   1690     case Instruction::RSUB_INT: {
   1691       rl_src = LoadValue(rl_src, kCoreReg);
   1692       rl_result = EvalLoc(rl_dest, kCoreReg, true);
   1693       if (cu_->instruction_set == kThumb2) {
   1694         OpRegRegImm(kOpRsub, rl_result.reg, rl_src.reg, lit);
   1695       } else {
   1696         OpRegReg(kOpNeg, rl_result.reg, rl_src.reg);
   1697         OpRegImm(kOpAdd, rl_result.reg, lit);
   1698       }
   1699       StoreValue(rl_dest, rl_result);
   1700       return;
   1701     }
   1702 
   1703     case Instruction::SUB_INT:
   1704     case Instruction::SUB_INT_2ADDR:
   1705       lit = -lit;
   1706       // Intended fallthrough
   1707     case Instruction::ADD_INT:
   1708     case Instruction::ADD_INT_2ADDR:
   1709     case Instruction::ADD_INT_LIT8:
   1710     case Instruction::ADD_INT_LIT16:
   1711       op = kOpAdd;
   1712       break;
   1713     case Instruction::MUL_INT:
   1714     case Instruction::MUL_INT_2ADDR:
   1715     case Instruction::MUL_INT_LIT8:
   1716     case Instruction::MUL_INT_LIT16: {
   1717       if (HandleEasyMultiply(rl_src, rl_dest, lit)) {
   1718         return;
   1719       }
   1720       op = kOpMul;
   1721       break;
   1722     }
   1723     case Instruction::AND_INT:
   1724     case Instruction::AND_INT_2ADDR:
   1725     case Instruction::AND_INT_LIT8:
   1726     case Instruction::AND_INT_LIT16:
   1727       op = kOpAnd;
   1728       break;
   1729     case Instruction::OR_INT:
   1730     case Instruction::OR_INT_2ADDR:
   1731     case Instruction::OR_INT_LIT8:
   1732     case Instruction::OR_INT_LIT16:
   1733       op = kOpOr;
   1734       break;
   1735     case Instruction::XOR_INT:
   1736     case Instruction::XOR_INT_2ADDR:
   1737     case Instruction::XOR_INT_LIT8:
   1738     case Instruction::XOR_INT_LIT16:
   1739       op = kOpXor;
   1740       break;
   1741     case Instruction::SHL_INT_LIT8:
   1742     case Instruction::SHL_INT:
   1743     case Instruction::SHL_INT_2ADDR:
   1744       lit &= 31;
   1745       shift_op = true;
   1746       op = kOpLsl;
   1747       break;
   1748     case Instruction::SHR_INT_LIT8:
   1749     case Instruction::SHR_INT:
   1750     case Instruction::SHR_INT_2ADDR:
   1751       lit &= 31;
   1752       shift_op = true;
   1753       op = kOpAsr;
   1754       break;
   1755     case Instruction::USHR_INT_LIT8:
   1756     case Instruction::USHR_INT:
   1757     case Instruction::USHR_INT_2ADDR:
   1758       lit &= 31;
   1759       shift_op = true;
   1760       op = kOpLsr;
   1761       break;
   1762 
   1763     case Instruction::DIV_INT:
   1764     case Instruction::DIV_INT_2ADDR:
   1765     case Instruction::DIV_INT_LIT8:
   1766     case Instruction::DIV_INT_LIT16:
   1767     case Instruction::REM_INT:
   1768     case Instruction::REM_INT_2ADDR:
   1769     case Instruction::REM_INT_LIT8:
   1770     case Instruction::REM_INT_LIT16: {
   1771       if (lit == 0) {
   1772         GenDivZeroException();
   1773         return;
   1774       }
   1775       if ((opcode == Instruction::DIV_INT) ||
   1776           (opcode == Instruction::DIV_INT_2ADDR) ||
   1777           (opcode == Instruction::DIV_INT_LIT8) ||
   1778           (opcode == Instruction::DIV_INT_LIT16)) {
   1779         is_div = true;
   1780       } else {
   1781         is_div = false;
   1782       }
   1783       if (HandleEasyDivRem(opcode, is_div, rl_src, rl_dest, lit)) {
   1784         return;
   1785       }
   1786 
   1787       bool done = false;
   1788       if (cu_->instruction_set == kMips || cu_->instruction_set == kArm64) {
   1789         rl_src = LoadValue(rl_src, kCoreReg);
   1790         rl_result = GenDivRemLit(rl_dest, rl_src.reg, lit, is_div);
   1791         done = true;
   1792       } else if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) {
   1793         rl_result = GenDivRemLit(rl_dest, rl_src, lit, is_div);
   1794         done = true;
   1795       } else if (cu_->instruction_set == kThumb2) {
   1796         if (cu_->GetInstructionSetFeatures().HasDivideInstruction()) {
   1797           // Use ARM SDIV instruction for division.  For remainder we also need to
   1798           // calculate using a MUL and subtract.
   1799           rl_src = LoadValue(rl_src, kCoreReg);
   1800           rl_result = GenDivRemLit(rl_dest, rl_src.reg, lit, is_div);
   1801           done = true;
   1802         }
   1803       }
   1804 
   1805       if (!done) {
   1806         FlushAllRegs();   /* Everything to home location. */
   1807         LoadValueDirectFixed(rl_src, TargetReg(kArg0, kNotWide));
   1808         Clobber(TargetReg(kArg0, kNotWide));
   1809         CallRuntimeHelperRegImm(kQuickIdivmod, TargetReg(kArg0, kNotWide), lit, false);
   1810         if (is_div)
   1811           rl_result = GetReturn(kCoreReg);
   1812         else
   1813           rl_result = GetReturnAlt();
   1814       }
   1815       StoreValue(rl_dest, rl_result);
   1816       return;
   1817     }
   1818     default:
   1819       LOG(FATAL) << "Unexpected opcode " << opcode;
   1820   }
   1821   rl_src = LoadValue(rl_src, kCoreReg);
   1822   rl_result = EvalLoc(rl_dest, kCoreReg, true);
   1823   // Avoid shifts by literal 0 - no support in Thumb.  Change to copy.
   1824   if (shift_op && (lit == 0)) {
   1825     OpRegCopy(rl_result.reg, rl_src.reg);
   1826   } else {
   1827     OpRegRegImm(op, rl_result.reg, rl_src.reg, lit);
   1828   }
   1829   StoreValue(rl_dest, rl_result);
   1830 }
   1831 
   1832 void Mir2Lir::GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest,
   1833                              RegLocation rl_src1, RegLocation rl_src2) {
   1834   RegLocation rl_result;
   1835   OpKind first_op = kOpBkpt;
   1836   OpKind second_op = kOpBkpt;
   1837   bool call_out = false;
   1838   bool check_zero = false;
   1839   int ret_reg = TargetReg(kRet0, kNotWide).GetReg();
   1840   QuickEntrypointEnum target;
   1841 
   1842   switch (opcode) {
   1843     case Instruction::NOT_LONG:
   1844       rl_src2 = LoadValueWide(rl_src2, kCoreReg);
   1845       rl_result = EvalLoc(rl_dest, kCoreReg, true);
   1846       // Check for destructive overlap
   1847       if (rl_result.reg.GetLowReg() == rl_src2.reg.GetHighReg()) {
   1848         RegStorage t_reg = AllocTemp();
   1849         OpRegCopy(t_reg, rl_src2.reg.GetHigh());
   1850         OpRegReg(kOpMvn, rl_result.reg.GetLow(), rl_src2.reg.GetLow());
   1851         OpRegReg(kOpMvn, rl_result.reg.GetHigh(), t_reg);
   1852         FreeTemp(t_reg);
   1853       } else {
   1854         OpRegReg(kOpMvn, rl_result.reg.GetLow(), rl_src2.reg.GetLow());
   1855         OpRegReg(kOpMvn, rl_result.reg.GetHigh(), rl_src2.reg.GetHigh());
   1856       }
   1857       StoreValueWide(rl_dest, rl_result);
   1858       return;
   1859     case Instruction::ADD_LONG:
   1860     case Instruction::ADD_LONG_2ADDR:
   1861       first_op = kOpAdd;
   1862       second_op = kOpAdc;
   1863       break;
   1864     case Instruction::SUB_LONG:
   1865     case Instruction::SUB_LONG_2ADDR:
   1866       first_op = kOpSub;
   1867       second_op = kOpSbc;
   1868       break;
   1869     case Instruction::MUL_LONG:
   1870     case Instruction::MUL_LONG_2ADDR:
   1871       call_out = true;
   1872       ret_reg = TargetReg(kRet0, kNotWide).GetReg();
   1873       target = kQuickLmul;
   1874       break;
   1875     case Instruction::DIV_LONG:
   1876     case Instruction::DIV_LONG_2ADDR:
   1877       call_out = true;
   1878       check_zero = true;
   1879       ret_reg = TargetReg(kRet0, kNotWide).GetReg();
   1880       target = kQuickLdiv;
   1881       break;
   1882     case Instruction::REM_LONG:
   1883     case Instruction::REM_LONG_2ADDR:
   1884       call_out = true;
   1885       check_zero = true;
   1886       target = kQuickLmod;
   1887       /* NOTE - for Arm, result is in kArg2/kArg3 instead of kRet0/kRet1 */
   1888       ret_reg = (cu_->instruction_set == kThumb2) ? TargetReg(kArg2, kNotWide).GetReg() :
   1889           TargetReg(kRet0, kNotWide).GetReg();
   1890       break;
   1891     case Instruction::AND_LONG_2ADDR:
   1892     case Instruction::AND_LONG:
   1893       first_op = kOpAnd;
   1894       second_op = kOpAnd;
   1895       break;
   1896     case Instruction::OR_LONG:
   1897     case Instruction::OR_LONG_2ADDR:
   1898       first_op = kOpOr;
   1899       second_op = kOpOr;
   1900       break;
   1901     case Instruction::XOR_LONG:
   1902     case Instruction::XOR_LONG_2ADDR:
   1903       first_op = kOpXor;
   1904       second_op = kOpXor;
   1905       break;
   1906     default:
   1907       LOG(FATAL) << "Invalid long arith op";
   1908   }
   1909   if (!call_out) {
   1910     GenLong3Addr(first_op, second_op, rl_dest, rl_src1, rl_src2);
   1911   } else {
   1912     FlushAllRegs();   /* Send everything to home location */
   1913     if (check_zero) {
   1914       RegStorage r_tmp1 = TargetReg(kArg0, kWide);
   1915       RegStorage r_tmp2 = TargetReg(kArg2, kWide);
   1916       LoadValueDirectWideFixed(rl_src2, r_tmp2);
   1917       RegStorage r_tgt = CallHelperSetup(target);
   1918       GenDivZeroCheckWide(r_tmp2);
   1919       LoadValueDirectWideFixed(rl_src1, r_tmp1);
   1920       // NOTE: callout here is not a safepoint
   1921       CallHelper(r_tgt, target, false /* not safepoint */);
   1922     } else {
   1923       CallRuntimeHelperRegLocationRegLocation(target, rl_src1, rl_src2, false);
   1924     }
   1925     // Adjust return regs in to handle case of rem returning kArg2/kArg3
   1926     if (ret_reg == TargetReg(kRet0, kNotWide).GetReg())
   1927       rl_result = GetReturnWide(kCoreReg);
   1928     else
   1929       rl_result = GetReturnWideAlt();
   1930     StoreValueWide(rl_dest, rl_result);
   1931   }
   1932 }
   1933 
   1934 void Mir2Lir::GenConst(RegLocation rl_dest, int value) {
   1935   RegLocation rl_result = EvalLoc(rl_dest, kAnyReg, true);
   1936   LoadConstantNoClobber(rl_result.reg, value);
   1937   StoreValue(rl_dest, rl_result);
   1938   if (value == 0) {
   1939     Workaround7250540(rl_dest, rl_result.reg);
   1940   }
   1941 }
   1942 
   1943 void Mir2Lir::GenConversionCall(QuickEntrypointEnum trampoline, RegLocation rl_dest,
   1944                                 RegLocation rl_src) {
   1945   /*
   1946    * Don't optimize the register usage since it calls out to support
   1947    * functions
   1948    */
   1949 
   1950   FlushAllRegs();   /* Send everything to home location */
   1951   CallRuntimeHelperRegLocation(trampoline, rl_src, false);
   1952   if (rl_dest.wide) {
   1953     RegLocation rl_result;
   1954     rl_result = GetReturnWide(LocToRegClass(rl_dest));
   1955     StoreValueWide(rl_dest, rl_result);
   1956   } else {
   1957     RegLocation rl_result;
   1958     rl_result = GetReturn(LocToRegClass(rl_dest));
   1959     StoreValue(rl_dest, rl_result);
   1960   }
   1961 }
   1962 
   1963 class SuspendCheckSlowPath : public Mir2Lir::LIRSlowPath {
   1964  public:
   1965   SuspendCheckSlowPath(Mir2Lir* m2l, LIR* branch, LIR* cont)
   1966       : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch, cont) {
   1967   }
   1968 
   1969   void Compile() OVERRIDE {
   1970     m2l_->ResetRegPool();
   1971     m2l_->ResetDefTracking();
   1972     GenerateTargetLabel(kPseudoSuspendTarget);
   1973     m2l_->CallRuntimeHelper(kQuickTestSuspend, true);
   1974     if (cont_ != nullptr) {
   1975       m2l_->OpUnconditionalBranch(cont_);
   1976     }
   1977   }
   1978 };
   1979 
   1980 /* Check if we need to check for pending suspend request */
   1981 void Mir2Lir::GenSuspendTest(int opt_flags) {
   1982   if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitSuspendChecks()) {
   1983     if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
   1984       return;
   1985     }
   1986     FlushAllRegs();
   1987     LIR* branch = OpTestSuspend(NULL);
   1988     LIR* cont = NewLIR0(kPseudoTargetLabel);
   1989     AddSlowPath(new (arena_) SuspendCheckSlowPath(this, branch, cont));
   1990   } else {
   1991     if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
   1992       return;
   1993     }
   1994     FlushAllRegs();     // TODO: needed?
   1995     LIR* inst = CheckSuspendUsingLoad();
   1996     MarkSafepointPC(inst);
   1997   }
   1998 }
   1999 
   2000 /* Check if we need to check for pending suspend request */
   2001 void Mir2Lir::GenSuspendTestAndBranch(int opt_flags, LIR* target) {
   2002   if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitSuspendChecks()) {
   2003     if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
   2004       OpUnconditionalBranch(target);
   2005       return;
   2006     }
   2007     OpTestSuspend(target);
   2008     FlushAllRegs();
   2009     LIR* branch = OpUnconditionalBranch(nullptr);
   2010     AddSlowPath(new (arena_) SuspendCheckSlowPath(this, branch, target));
   2011   } else {
   2012     // For the implicit suspend check, just perform the trigger
   2013     // load and branch to the target.
   2014     if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
   2015       OpUnconditionalBranch(target);
   2016       return;
   2017     }
   2018     FlushAllRegs();
   2019     LIR* inst = CheckSuspendUsingLoad();
   2020     MarkSafepointPC(inst);
   2021     OpUnconditionalBranch(target);
   2022   }
   2023 }
   2024 
   2025 /* Call out to helper assembly routine that will null check obj and then lock it. */
   2026 void Mir2Lir::GenMonitorEnter(int opt_flags, RegLocation rl_src) {
   2027   FlushAllRegs();
   2028   CallRuntimeHelperRegLocation(kQuickLockObject, rl_src, true);
   2029 }
   2030 
   2031 /* Call out to helper assembly routine that will null check obj and then unlock it. */
   2032 void Mir2Lir::GenMonitorExit(int opt_flags, RegLocation rl_src) {
   2033   FlushAllRegs();
   2034   CallRuntimeHelperRegLocation(kQuickUnlockObject, rl_src, true);
   2035 }
   2036 
   2037 /* Generic code for generating a wide constant into a VR. */
   2038 void Mir2Lir::GenConstWide(RegLocation rl_dest, int64_t value) {
   2039   RegLocation rl_result = EvalLoc(rl_dest, kAnyReg, true);
   2040   LoadConstantWide(rl_result.reg, value);
   2041   StoreValueWide(rl_dest, rl_result);
   2042 }
   2043 
   2044 void Mir2Lir::GenSmallPackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) {
   2045   const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
   2046   const uint16_t entries = table[1];
   2047   // Chained cmp-and-branch.
   2048   const int32_t* as_int32 = reinterpret_cast<const int32_t*>(&table[2]);
   2049   int32_t current_key = as_int32[0];
   2050   const int32_t* targets = &as_int32[1];
   2051   rl_src = LoadValue(rl_src, kCoreReg);
   2052   int i = 0;
   2053   for (; i < entries; i++, current_key++) {
   2054     if (!InexpensiveConstantInt(current_key, Instruction::Code::IF_EQ)) {
   2055       // Switch to using a temp and add.
   2056       break;
   2057     }
   2058     BasicBlock* case_block =
   2059         mir_graph_->FindBlock(current_dalvik_offset_ + targets[i]);
   2060     OpCmpImmBranch(kCondEq, rl_src.reg, current_key, &block_label_list_[case_block->id]);
   2061   }
   2062   if (i < entries) {
   2063     // The rest do not seem to be inexpensive. Try to allocate a temp and use add.
   2064     RegStorage key_temp = AllocTypedTemp(false, kCoreReg, false);
   2065     if (key_temp.Valid()) {
   2066       LoadConstantNoClobber(key_temp, current_key);
   2067       for (; i < entries - 1; i++, current_key++) {
   2068         BasicBlock* case_block =
   2069             mir_graph_->FindBlock(current_dalvik_offset_ + targets[i]);
   2070         OpCmpBranch(kCondEq, rl_src.reg, key_temp, &block_label_list_[case_block->id]);
   2071         OpRegImm(kOpAdd, key_temp, 1);  // Increment key.
   2072       }
   2073       BasicBlock* case_block =
   2074           mir_graph_->FindBlock(current_dalvik_offset_ + targets[i]);
   2075       OpCmpBranch(kCondEq, rl_src.reg, key_temp, &block_label_list_[case_block->id]);
   2076     } else {
   2077       // No free temp, just finish the old loop.
   2078       for (; i < entries; i++, current_key++) {
   2079         BasicBlock* case_block =
   2080             mir_graph_->FindBlock(current_dalvik_offset_ + targets[i]);
   2081         OpCmpImmBranch(kCondEq, rl_src.reg, current_key, &block_label_list_[case_block->id]);
   2082       }
   2083     }
   2084   }
   2085 }
   2086 
   2087 void Mir2Lir::GenPackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) {
   2088   const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
   2089   if (cu_->verbose) {
   2090     DumpSparseSwitchTable(table);
   2091   }
   2092 
   2093   const uint16_t entries = table[1];
   2094   if (entries <= kSmallSwitchThreshold) {
   2095     GenSmallPackedSwitch(mir, table_offset, rl_src);
   2096   } else {
   2097     // Use the backend-specific implementation.
   2098     GenLargePackedSwitch(mir, table_offset, rl_src);
   2099   }
   2100 }
   2101 
   2102 void Mir2Lir::GenSmallSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) {
   2103   const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
   2104   const uint16_t entries = table[1];
   2105   // Chained cmp-and-branch.
   2106   const int32_t* keys = reinterpret_cast<const int32_t*>(&table[2]);
   2107   const int32_t* targets = &keys[entries];
   2108   rl_src = LoadValue(rl_src, kCoreReg);
   2109   for (int i = 0; i < entries; i++) {
   2110     int key = keys[i];
   2111     BasicBlock* case_block =
   2112         mir_graph_->FindBlock(current_dalvik_offset_ + targets[i]);
   2113     OpCmpImmBranch(kCondEq, rl_src.reg, key, &block_label_list_[case_block->id]);
   2114   }
   2115 }
   2116 
   2117 void Mir2Lir::GenSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) {
   2118   const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
   2119   if (cu_->verbose) {
   2120     DumpSparseSwitchTable(table);
   2121   }
   2122 
   2123   const uint16_t entries = table[1];
   2124   if (entries <= kSmallSwitchThreshold) {
   2125     GenSmallSparseSwitch(mir, table_offset, rl_src);
   2126   } else {
   2127     // Use the backend-specific implementation.
   2128     GenLargeSparseSwitch(mir, table_offset, rl_src);
   2129   }
   2130 }
   2131 
   2132 }  // namespace art
   2133