1 /*------------------------------------------------------------------------- 2 * drawElements Quality Program OpenGL ES 3.1 Module 3 * ------------------------------------------------- 4 * 5 * Copyright 2014 The Android Open Source Project 6 * 7 * Licensed under the Apache License, Version 2.0 (the "License"); 8 * you may not use this file except in compliance with the License. 9 * You may obtain a copy of the License at 10 * 11 * http://www.apache.org/licenses/LICENSE-2.0 12 * 13 * Unless required by applicable law or agreed to in writing, software 14 * distributed under the License is distributed on an "AS IS" BASIS, 15 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 16 * See the License for the specific language governing permissions and 17 * limitations under the License. 18 * 19 *//*! 20 * \file 21 * \brief FBO test utilities. 22 *//*--------------------------------------------------------------------*/ 23 24 #include "es31fFboTestUtil.hpp" 25 #include "sglrContextUtil.hpp" 26 #include "sglrGLContext.hpp" 27 #include "sglrReferenceContext.hpp" 28 #include "gluTextureUtil.hpp" 29 #include "tcuTextureUtil.hpp" 30 #include "deStringUtil.hpp" 31 #include "deMath.h" 32 #include "glwEnums.hpp" 33 #include "glwFunctions.hpp" 34 35 #include <limits> 36 37 namespace deqp 38 { 39 namespace gles31 40 { 41 namespace Functional 42 { 43 namespace FboTestUtil 44 { 45 46 using std::string; 47 using std::vector; 48 using tcu::Vec2; 49 using tcu::Vec3; 50 using tcu::Vec4; 51 using tcu::IVec2; 52 using tcu::IVec3; 53 using tcu::IVec4; 54 55 static rr::GenericVecType mapDataTypeToGenericVecType(glu::DataType type) 56 { 57 switch (type) 58 { 59 case glu::TYPE_FLOAT_VEC4: return rr::GENERICVECTYPE_FLOAT; 60 case glu::TYPE_INT_VEC4: return rr::GENERICVECTYPE_INT32; 61 case glu::TYPE_UINT_VEC4: return rr::GENERICVECTYPE_UINT32; 62 default: 63 DE_ASSERT(DE_FALSE); 64 return rr::GENERICVECTYPE_LAST; 65 } 66 } 67 68 template <typename T> 69 static tcu::Vector<T, 4> castVectorSaturate (const tcu::Vec4& in) 70 { 71 return tcu::Vector<T, 4>((in.x() + 0.5f >= std::numeric_limits<T>::max()) ? (std::numeric_limits<T>::max()) : ((in.x() - 0.5f <= std::numeric_limits<T>::min()) ? (std::numeric_limits<T>::min()) : (T(in.x()))), 72 (in.y() + 0.5f >= std::numeric_limits<T>::max()) ? (std::numeric_limits<T>::max()) : ((in.y() - 0.5f <= std::numeric_limits<T>::min()) ? (std::numeric_limits<T>::min()) : (T(in.y()))), 73 (in.z() + 0.5f >= std::numeric_limits<T>::max()) ? (std::numeric_limits<T>::max()) : ((in.z() - 0.5f <= std::numeric_limits<T>::min()) ? (std::numeric_limits<T>::min()) : (T(in.z()))), 74 (in.w() + 0.5f >= std::numeric_limits<T>::max()) ? (std::numeric_limits<T>::max()) : ((in.w() - 0.5f <= std::numeric_limits<T>::min()) ? (std::numeric_limits<T>::min()) : (T(in.w())))); 75 } 76 77 static string genTexFragmentShader (const vector<glu::DataType>& samplerTypes, glu::DataType outputType) 78 { 79 const char* precision = "highp"; 80 std::ostringstream src; 81 82 src << "#version 300 es\n" 83 << "layout(location = 0) out highp " << glu::getDataTypeName(outputType) << " o_color0;\n"; 84 85 src << "in highp vec2 v_coord;\n"; 86 87 for (int samplerNdx = 0; samplerNdx < (int)samplerTypes.size(); samplerNdx++) 88 { 89 src << "uniform " << precision << " " << glu::getDataTypeName(samplerTypes[samplerNdx]) << " u_sampler" << samplerNdx << ";\n"; 90 src << "uniform " << precision << " vec4 u_texScale" << samplerNdx << ";\n"; 91 src << "uniform " << precision << " vec4 u_texBias" << samplerNdx << ";\n"; 92 } 93 94 // Output scale & bias 95 src << "uniform " << precision << " vec4 u_outScale0;\n" 96 << "uniform " << precision << " vec4 u_outBias0;\n"; 97 98 src << "\n" 99 << "void main (void)\n" 100 << "{\n" 101 << " " << precision << " vec4 out0 = vec4(0.0);\n"; 102 103 // Texture input fetch and combine. 104 for (int inNdx = 0; inNdx < (int)samplerTypes.size(); inNdx++) 105 src << "\tout0 += vec4(" 106 << "texture(u_sampler" << inNdx << ", v_coord)) * u_texScale" << inNdx << " + u_texBias" << inNdx << ";\n"; 107 108 // Write output. 109 src << " o_color0 = " << glu::getDataTypeName(outputType) << "(out0 * u_outScale0 + u_outBias0);\n"; 110 111 src << "}\n"; 112 113 return src.str(); 114 } 115 116 static sglr::pdec::ShaderProgramDeclaration genTexture2DShaderDecl (const DataTypes& samplerTypes, glu::DataType outputType) 117 { 118 sglr::pdec::ShaderProgramDeclaration decl; 119 120 decl << sglr::pdec::VertexAttribute("a_position", rr::GENERICVECTYPE_FLOAT); 121 decl << sglr::pdec::VertexAttribute("a_coord", rr::GENERICVECTYPE_FLOAT); 122 decl << sglr::pdec::VertexToFragmentVarying(rr::GENERICVECTYPE_FLOAT); 123 decl << sglr::pdec::FragmentOutput(mapDataTypeToGenericVecType(outputType)); 124 125 decl << sglr::pdec::VertexSource( 126 "#version 300 es\n" 127 "in highp vec4 a_position;\n" 128 "in highp vec2 a_coord;\n" 129 "out highp vec2 v_coord;\n" 130 "void main(void)\n" 131 "{\n" 132 " gl_Position = a_position;\n" 133 " v_coord = a_coord;\n" 134 "}\n"); 135 decl << sglr::pdec::FragmentSource(genTexFragmentShader(samplerTypes.vec, outputType)); 136 137 decl << sglr::pdec::Uniform("u_outScale0", glu::TYPE_FLOAT_VEC4); 138 decl << sglr::pdec::Uniform("u_outBias0", glu::TYPE_FLOAT_VEC4); 139 140 for (size_t ndx = 0; ndx < samplerTypes.vec.size(); ++ndx) 141 { 142 decl << sglr::pdec::Uniform(std::string("u_sampler") + de::toString(ndx), samplerTypes.vec[ndx]); 143 decl << sglr::pdec::Uniform(std::string("u_texScale") + de::toString(ndx), glu::TYPE_FLOAT_VEC4); 144 decl << sglr::pdec::Uniform(std::string("u_texBias") + de::toString(ndx), glu::TYPE_FLOAT_VEC4); 145 } 146 147 return decl; 148 } 149 150 Texture2DShader::Texture2DShader (const DataTypes& samplerTypes, glu::DataType outputType, const Vec4& outScale, const Vec4& outBias) 151 : sglr::ShaderProgram (genTexture2DShaderDecl(samplerTypes, outputType)) 152 , m_outScale (outScale) 153 , m_outBias (outBias) 154 , m_outputType (outputType) 155 { 156 m_inputs.resize(samplerTypes.vec.size()); 157 158 // Initialize units. 159 for (int ndx = 0; ndx < (int)m_inputs.size(); ndx++) 160 { 161 m_inputs[ndx].unitNdx = ndx; 162 m_inputs[ndx].scale = Vec4(1.0f); 163 m_inputs[ndx].bias = Vec4(0.0f); 164 } 165 } 166 167 void Texture2DShader::setUnit (int inputNdx, int unitNdx) 168 { 169 m_inputs[inputNdx].unitNdx = unitNdx; 170 } 171 172 void Texture2DShader::setTexScaleBias (int inputNdx, const Vec4& scale, const Vec4& bias) 173 { 174 m_inputs[inputNdx].scale = scale; 175 m_inputs[inputNdx].bias = bias; 176 } 177 178 void Texture2DShader::setOutScaleBias (const Vec4& scale, const Vec4& bias) 179 { 180 m_outScale = scale; 181 m_outBias = bias; 182 } 183 184 void Texture2DShader::setUniforms (sglr::Context& gl, deUint32 program) const 185 { 186 gl.useProgram(program); 187 188 for (int texNdx = 0; texNdx < (int)m_inputs.size(); texNdx++) 189 { 190 string samplerName = string("u_sampler") + de::toString(texNdx); 191 string scaleName = string("u_texScale") + de::toString(texNdx); 192 string biasName = string("u_texBias") + de::toString(texNdx); 193 194 gl.uniform1i(gl.getUniformLocation(program, samplerName.c_str()), m_inputs[texNdx].unitNdx); 195 gl.uniform4fv(gl.getUniformLocation(program, scaleName.c_str()), 1, m_inputs[texNdx].scale.getPtr()); 196 gl.uniform4fv(gl.getUniformLocation(program, biasName.c_str()), 1, m_inputs[texNdx].bias.getPtr()); 197 } 198 199 gl.uniform4fv(gl.getUniformLocation(program, "u_outScale0"), 1, m_outScale.getPtr()); 200 gl.uniform4fv(gl.getUniformLocation(program, "u_outBias0"), 1, m_outBias.getPtr()); 201 } 202 203 void Texture2DShader::shadeVertices (const rr::VertexAttrib* inputs, rr::VertexPacket* const* packets, const int numPackets) const 204 { 205 for (int packetNdx = 0; packetNdx < numPackets; ++packetNdx) 206 { 207 rr::VertexPacket& packet = *packets[packetNdx]; 208 209 packet.position = rr::readVertexAttribFloat(inputs[0], packet.instanceNdx, packet.vertexNdx); 210 packet.outputs[0] = rr::readVertexAttribFloat(inputs[1], packet.instanceNdx, packet.vertexNdx); 211 } 212 } 213 214 void Texture2DShader::shadeFragments (rr::FragmentPacket* packets, const int numPackets, const rr::FragmentShadingContext& context) const 215 { 216 const tcu::Vec4 outScale (m_uniforms[0].value.f4); 217 const tcu::Vec4 outBias (m_uniforms[1].value.f4); 218 219 tcu::Vec2 texCoords[4]; 220 tcu::Vec4 colors[4]; 221 222 for (int packetNdx = 0; packetNdx < numPackets; ++packetNdx) 223 { 224 // setup tex coords 225 for (int fragNdx = 0; fragNdx < 4; ++fragNdx) 226 { 227 const tcu::Vec4 coord = rr::readTriangleVarying<float>(packets[packetNdx], context, 0, fragNdx); 228 texCoords[fragNdx] = tcu::Vec2(coord.x(), coord.y()); 229 } 230 231 // clear result 232 for (int fragNdx = 0; fragNdx < 4; ++fragNdx) 233 colors[fragNdx] = tcu::Vec4(0.0f); 234 235 // sample each texture 236 for (int ndx = 0; ndx < (int)m_inputs.size(); ndx++) 237 { 238 const sglr::rc::Texture2D* tex = m_uniforms[2 + ndx*3].sampler.tex2D; 239 const tcu::Vec4 scale (m_uniforms[2 + ndx*3 + 1].value.f4); 240 const tcu::Vec4 bias (m_uniforms[2 + ndx*3 + 2].value.f4); 241 tcu::Vec4 tmpColors[4]; 242 243 tex->sample4(tmpColors, texCoords); 244 245 for (int fragNdx = 0; fragNdx < 4; ++fragNdx) 246 colors[fragNdx] += tmpColors[fragNdx] * scale + bias; 247 } 248 249 // write out 250 for (int fragNdx = 0; fragNdx < 4; ++fragNdx) 251 { 252 const tcu::Vec4 color = colors[fragNdx] * outScale + outBias; 253 const tcu::IVec4 icolor = castVectorSaturate<deInt32>(color); 254 const tcu::UVec4 uicolor = castVectorSaturate<deUint32>(color); 255 256 if (m_outputType == glu::TYPE_FLOAT_VEC4) rr::writeFragmentOutput(context, packetNdx, fragNdx, 0, color); 257 else if (m_outputType == glu::TYPE_INT_VEC4) rr::writeFragmentOutput(context, packetNdx, fragNdx, 0, icolor); 258 else if (m_outputType == glu::TYPE_UINT_VEC4) rr::writeFragmentOutput(context, packetNdx, fragNdx, 0, uicolor); 259 else 260 DE_ASSERT(DE_FALSE); 261 } 262 } 263 } 264 265 TextureCubeArrayShader::TextureCubeArrayShader (glu::DataType samplerType, glu::DataType outputType) 266 : sglr::ShaderProgram(sglr::pdec::ShaderProgramDeclaration() 267 << sglr::pdec::VertexAttribute("a_position", rr::GENERICVECTYPE_FLOAT) 268 << sglr::pdec::VertexAttribute("a_coord", rr::GENERICVECTYPE_FLOAT) 269 << sglr::pdec::VertexToFragmentVarying(rr::GENERICVECTYPE_FLOAT) 270 << sglr::pdec::FragmentOutput(mapDataTypeToGenericVecType(outputType)) 271 << sglr::pdec::Uniform("u_coordMat", glu::TYPE_FLOAT_MAT3) 272 << sglr::pdec::Uniform("u_sampler0", samplerType) 273 << sglr::pdec::Uniform("u_scale", glu::TYPE_FLOAT_VEC4) 274 << sglr::pdec::Uniform("u_bias", glu::TYPE_FLOAT_VEC4) 275 << sglr::pdec::Uniform("u_layer", glu::TYPE_INT) 276 << sglr::pdec::VertexSource( 277 "#version 310 es\n" 278 "#extension GL_EXT_texture_cube_map_array : require\n" 279 "in highp vec4 a_position;\n" 280 "in mediump vec2 a_coord;\n" 281 "uniform mat3 u_coordMat;\n" 282 "out highp vec3 v_coord;\n" 283 "void main (void)\n" 284 "{\n" 285 " gl_Position = a_position;\n" 286 " v_coord = u_coordMat * vec3(a_coord, 1.0);\n" 287 "}\n") 288 << sglr::pdec::FragmentSource( 289 string("") + 290 "#version 310 es\n" 291 "#extension GL_EXT_texture_cube_map_array : require\n" 292 "uniform highp " + glu::getDataTypeName(samplerType) + " u_sampler0;\n" 293 "uniform highp vec4 u_scale;\n" 294 "uniform highp vec4 u_bias;\n" 295 "uniform highp int u_layer;\n" 296 "in highp vec3 v_coord;\n" 297 "layout(location = 0) out highp " + glu::getDataTypeName(outputType) + " o_color;\n" 298 "void main (void)\n" 299 "{\n" 300 " o_color = " + glu::getDataTypeName(outputType) + "(vec4(texture(u_sampler0, vec4(v_coord, u_layer))) * u_scale + u_bias);\n" 301 "}\n")) 302 , m_texScale (1.0f) 303 , m_texBias (0.0f) 304 , m_layer (0) 305 , m_outputType (outputType) 306 { 307 } 308 309 void TextureCubeArrayShader::setLayer (int layer) 310 { 311 m_layer = layer; 312 } 313 314 void TextureCubeArrayShader::setFace (tcu::CubeFace face) 315 { 316 static const float s_cubeTransforms[][3*3] = 317 { 318 // Face -X: (x, y, 1) -> (-1, -(2*y-1), +(2*x-1)) 319 { 0.0f, 0.0f, -1.0f, 320 0.0f, -2.0f, 1.0f, 321 2.0f, 0.0f, -1.0f }, 322 // Face +X: (x, y, 1) -> (+1, -(2*y-1), -(2*x-1)) 323 { 0.0f, 0.0f, 1.0f, 324 0.0f, -2.0f, 1.0f, 325 -2.0f, 0.0f, 1.0f }, 326 // Face -Y: (x, y, 1) -> (+(2*x-1), -1, -(2*y-1)) 327 { 2.0f, 0.0f, -1.0f, 328 0.0f, 0.0f, -1.0f, 329 0.0f, -2.0f, 1.0f }, 330 // Face +Y: (x, y, 1) -> (+(2*x-1), +1, +(2*y-1)) 331 { 2.0f, 0.0f, -1.0f, 332 0.0f, 0.0f, 1.0f, 333 0.0f, 2.0f, -1.0f }, 334 // Face -Z: (x, y, 1) -> (-(2*x-1), -(2*y-1), -1) 335 { -2.0f, 0.0f, 1.0f, 336 0.0f, -2.0f, 1.0f, 337 0.0f, 0.0f, -1.0f }, 338 // Face +Z: (x, y, 1) -> (+(2*x-1), -(2*y-1), +1) 339 { 2.0f, 0.0f, -1.0f, 340 0.0f, -2.0f, 1.0f, 341 0.0f, 0.0f, 1.0f } 342 }; 343 DE_ASSERT(de::inBounds<int>(face, 0, tcu::CUBEFACE_LAST)); 344 m_coordMat = tcu::Mat3(s_cubeTransforms[face]); 345 } 346 347 void TextureCubeArrayShader::setTexScaleBias (const Vec4& scale, const Vec4& bias) 348 { 349 m_texScale = scale; 350 m_texBias = bias; 351 } 352 353 void TextureCubeArrayShader::setUniforms (sglr::Context& gl, deUint32 program) const 354 { 355 gl.useProgram(program); 356 357 gl.uniform1i(gl.getUniformLocation(program, "u_sampler0"), 0); 358 gl.uniformMatrix3fv(gl.getUniformLocation(program, "u_coordMat"), 1, GL_FALSE, m_coordMat.getColumnMajorData().getPtr()); 359 gl.uniform1i(gl.getUniformLocation(program, "u_layer"), m_layer); 360 gl.uniform4fv(gl.getUniformLocation(program, "u_scale"), 1, m_texScale.getPtr()); 361 gl.uniform4fv(gl.getUniformLocation(program, "u_bias"), 1, m_texBias.getPtr()); 362 } 363 364 void TextureCubeArrayShader::shadeVertices (const rr::VertexAttrib* inputs, rr::VertexPacket* const* packets, const int numPackets) const 365 { 366 tcu::Mat3 texCoordMat = tcu::Mat3(m_uniforms[0].value.m3); 367 368 for (int packetNdx = 0; packetNdx < numPackets; ++packetNdx) 369 { 370 rr::VertexPacket& packet = *packets[packetNdx]; 371 const tcu::Vec2 a_coord = rr::readVertexAttribFloat(inputs[1], packet.instanceNdx, packet.vertexNdx).xy(); 372 const tcu::Vec3 v_coord = texCoordMat * tcu::Vec3(a_coord.x(), a_coord.y(), 1.0f); 373 374 packet.position = rr::readVertexAttribFloat(inputs[0], packet.instanceNdx, packet.vertexNdx); 375 packet.outputs[0] = tcu::Vec4(v_coord.x(), v_coord.y(), v_coord.z(), 0.0f); 376 } 377 } 378 379 void TextureCubeArrayShader::shadeFragments (rr::FragmentPacket* packets, const int numPackets, const rr::FragmentShadingContext& context) const 380 { 381 const tcu::Vec4 texScale (m_uniforms[2].value.f4); 382 const tcu::Vec4 texBias (m_uniforms[3].value.f4); 383 384 tcu::Vec4 texCoords[4]; 385 tcu::Vec4 colors[4]; 386 387 for (int packetNdx = 0; packetNdx < numPackets; ++packetNdx) 388 { 389 const sglr::rc::TextureCubeArray* tex = m_uniforms[1].sampler.texCubeArray; 390 391 for (int fragNdx = 0; fragNdx < 4; ++fragNdx) 392 { 393 const tcu::Vec4 coord = rr::readTriangleVarying<float>(packets[packetNdx], context, 0, fragNdx); 394 texCoords[fragNdx] = tcu::Vec4(coord.x(), coord.y(), coord.z(), (float)m_layer); 395 } 396 397 tex->sample4(colors, texCoords); 398 399 for (int fragNdx = 0; fragNdx < 4; ++fragNdx) 400 { 401 const tcu::Vec4 color = colors[fragNdx] * texScale + texBias; 402 const tcu::IVec4 icolor = castVectorSaturate<deInt32>(color); 403 const tcu::UVec4 uicolor = castVectorSaturate<deUint32>(color); 404 405 if (m_outputType == glu::TYPE_FLOAT_VEC4) rr::writeFragmentOutput(context, packetNdx, fragNdx, 0, color); 406 else if (m_outputType == glu::TYPE_INT_VEC4) rr::writeFragmentOutput(context, packetNdx, fragNdx, 0, icolor); 407 else if (m_outputType == glu::TYPE_UINT_VEC4) rr::writeFragmentOutput(context, packetNdx, fragNdx, 0, uicolor); 408 else 409 DE_ASSERT(DE_FALSE); 410 } 411 } 412 } 413 414 void clearColorBuffer (sglr::Context& ctx, const tcu::TextureFormat& format, const tcu::Vec4& value) 415 { 416 const tcu::TextureChannelClass fmtClass = tcu::getTextureChannelClass(format.type); 417 418 switch (fmtClass) 419 { 420 case tcu::TEXTURECHANNELCLASS_FLOATING_POINT: 421 case tcu::TEXTURECHANNELCLASS_SIGNED_FIXED_POINT: 422 case tcu::TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT: 423 ctx.clearBufferfv(GL_COLOR, 0, value.getPtr()); 424 break; 425 426 case tcu::TEXTURECHANNELCLASS_UNSIGNED_INTEGER: 427 ctx.clearBufferuiv(GL_COLOR, 0, value.asUint().getPtr()); 428 break; 429 430 case tcu::TEXTURECHANNELCLASS_SIGNED_INTEGER: 431 ctx.clearBufferiv(GL_COLOR, 0, value.asInt().getPtr()); 432 break; 433 434 default: 435 DE_ASSERT(DE_FALSE); 436 } 437 } 438 439 void readPixels (sglr::Context& ctx, tcu::Surface& dst, int x, int y, int width, int height, const tcu::TextureFormat& format, const tcu::Vec4& scale, const tcu::Vec4& bias) 440 { 441 tcu::TextureFormat readFormat = getFramebufferReadFormat(format); 442 glu::TransferFormat transferFmt = glu::getTransferFormat(readFormat); 443 int alignment = 4; // \note GL_PACK_ALIGNMENT = 4 is assumed. 444 int rowSize = deAlign32(readFormat.getPixelSize()*width, alignment); 445 vector<deUint8> data (rowSize*height); 446 447 ctx.readPixels(x, y, width, height, transferFmt.format, transferFmt.dataType, &data[0]); 448 449 // Convert to surface. 450 tcu::ConstPixelBufferAccess src(readFormat, width, height, 1, rowSize, 0, &data[0]); 451 452 dst.setSize(width, height); 453 tcu::PixelBufferAccess dstAccess = dst.getAccess(); 454 455 for (int yo = 0; yo < height; yo++) 456 for (int xo = 0; xo < width; xo++) 457 dstAccess.setPixel(src.getPixel(xo, yo) * scale + bias, xo, yo); 458 } 459 460 static const char* getFboIncompleteReasonName (deUint32 reason) 461 { 462 switch (reason) 463 { 464 case GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT: return "GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT"; 465 case GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT: return "GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT"; 466 case GL_FRAMEBUFFER_INCOMPLETE_DIMENSIONS: return "GL_FRAMEBUFFER_INCOMPLETE_DIMENSIONS"; 467 case GL_FRAMEBUFFER_UNSUPPORTED: return "GL_FRAMEBUFFER_UNSUPPORTED"; 468 case GL_FRAMEBUFFER_COMPLETE: return "GL_FRAMEBUFFER_COMPLETE"; 469 default: return "UNKNOWN"; 470 } 471 } 472 473 FboIncompleteException::FboIncompleteException (deUint32 reason, const char* file, int line) 474 : TestError ("Framebuffer is not complete", getFboIncompleteReasonName(reason), file, line) 475 , m_reason (reason) 476 { 477 } 478 479 const char* getFormatName (deUint32 format) 480 { 481 switch (format) 482 { 483 case GL_RGB565: return "rgb565"; 484 case GL_RGB5_A1: return "rgb5_a1"; 485 case GL_RGBA4: return "rgba4"; 486 case GL_DEPTH_COMPONENT16: return "depth_component16"; 487 case GL_STENCIL_INDEX8: return "stencil_index8"; 488 case GL_RGBA32F: return "rgba32f"; 489 case GL_RGBA32I: return "rgba32i"; 490 case GL_RGBA32UI: return "rgba32ui"; 491 case GL_RGBA16F: return "rgba16f"; 492 case GL_RGBA16I: return "rgba16i"; 493 case GL_RGBA16UI: return "rgba16ui"; 494 case GL_RGBA8: return "rgba8"; 495 case GL_RGBA8I: return "rgba8i"; 496 case GL_RGBA8UI: return "rgba8ui"; 497 case GL_SRGB8_ALPHA8: return "srgb8_alpha8"; 498 case GL_RGB10_A2: return "rgb10_a2"; 499 case GL_RGB10_A2UI: return "rgb10_a2ui"; 500 case GL_RGBA8_SNORM: return "rgba8_snorm"; 501 case GL_RGB8: return "rgb8"; 502 case GL_R11F_G11F_B10F: return "r11f_g11f_b10f"; 503 case GL_RGB32F: return "rgb32f"; 504 case GL_RGB32I: return "rgb32i"; 505 case GL_RGB32UI: return "rgb32ui"; 506 case GL_RGB16F: return "rgb16f"; 507 case GL_RGB16I: return "rgb16i"; 508 case GL_RGB16UI: return "rgb16ui"; 509 case GL_RGB8_SNORM: return "rgb8_snorm"; 510 case GL_RGB8I: return "rgb8i"; 511 case GL_RGB8UI: return "rgb8ui"; 512 case GL_SRGB8: return "srgb8"; 513 case GL_RGB9_E5: return "rgb9_e5"; 514 case GL_RG32F: return "rg32f"; 515 case GL_RG32I: return "rg32i"; 516 case GL_RG32UI: return "rg32ui"; 517 case GL_RG16F: return "rg16f"; 518 case GL_RG16I: return "rg16i"; 519 case GL_RG16UI: return "rg16ui"; 520 case GL_RG8: return "rg8"; 521 case GL_RG8I: return "rg8i"; 522 case GL_RG8UI: return "rg8ui"; 523 case GL_RG8_SNORM: return "rg8_snorm"; 524 case GL_R32F: return "r32f"; 525 case GL_R32I: return "r32i"; 526 case GL_R32UI: return "r32ui"; 527 case GL_R16F: return "r16f"; 528 case GL_R16I: return "r16i"; 529 case GL_R16UI: return "r16ui"; 530 case GL_R8: return "r8"; 531 case GL_R8I: return "r8i"; 532 case GL_R8UI: return "r8ui"; 533 case GL_R8_SNORM: return "r8_snorm"; 534 case GL_DEPTH_COMPONENT32F: return "depth_component32f"; 535 case GL_DEPTH_COMPONENT24: return "depth_component24"; 536 case GL_DEPTH32F_STENCIL8: return "depth32f_stencil8"; 537 case GL_DEPTH24_STENCIL8: return "depth24_stencil8"; 538 539 default: 540 TCU_FAIL("Unknown format"); 541 } 542 } 543 544 glu::DataType getFragmentOutputType (const tcu::TextureFormat& format) 545 { 546 switch (tcu::getTextureChannelClass(format.type)) 547 { 548 case tcu::TEXTURECHANNELCLASS_FLOATING_POINT: 549 case tcu::TEXTURECHANNELCLASS_SIGNED_FIXED_POINT: 550 case tcu::TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT: 551 return glu::TYPE_FLOAT_VEC4; 552 553 case tcu::TEXTURECHANNELCLASS_UNSIGNED_INTEGER: 554 return glu::TYPE_UINT_VEC4; 555 556 case tcu::TEXTURECHANNELCLASS_SIGNED_INTEGER: 557 return glu::TYPE_INT_VEC4; 558 559 default: 560 DE_ASSERT(!"Unknown format"); 561 return glu::TYPE_LAST; 562 } 563 } 564 565 tcu::TextureFormat getFramebufferReadFormat (const tcu::TextureFormat& format) 566 { 567 switch (tcu::getTextureChannelClass(format.type)) 568 { 569 case tcu::TEXTURECHANNELCLASS_FLOATING_POINT: 570 return tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::FLOAT); 571 572 case tcu::TEXTURECHANNELCLASS_SIGNED_FIXED_POINT: 573 case tcu::TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT: 574 return tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::UNORM_INT8); 575 576 case tcu::TEXTURECHANNELCLASS_UNSIGNED_INTEGER: 577 return tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::UNSIGNED_INT32); 578 579 case tcu::TEXTURECHANNELCLASS_SIGNED_INTEGER: 580 return tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::SIGNED_INT32); 581 582 default: 583 DE_ASSERT(!"Unknown format"); 584 return tcu::TextureFormat(); 585 } 586 } 587 588 static int calculateU8ConversionError (int srcBits) 589 { 590 if (srcBits > 0) 591 { 592 const int clampedBits = de::clamp<int>(srcBits, 0, 8); 593 const int srcMaxValue = de::max((1<<clampedBits) - 1, 1); 594 const int error = int(deFloatCeil(255.0f * 2.0f / float(srcMaxValue))); 595 596 return de::clamp<int>(error, 0, 255); 597 } 598 else 599 return 1; 600 } 601 602 tcu::RGBA getFormatThreshold (const tcu::TextureFormat& format) 603 { 604 const tcu::IVec4 bits = tcu::getTextureFormatBitDepth(format); 605 606 return tcu::RGBA(calculateU8ConversionError(bits.x()), 607 calculateU8ConversionError(bits.y()), 608 calculateU8ConversionError(bits.z()), 609 calculateU8ConversionError(bits.w())); 610 } 611 612 tcu::RGBA getFormatThreshold (deUint32 glFormat) 613 { 614 const tcu::TextureFormat format = glu::mapGLInternalFormat(glFormat); 615 616 return getFormatThreshold(format); 617 } 618 619 } // FboTestUtil 620 } // Functional 621 } // gles31 622 } // deqp 623