1 //===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the SelectionDAGISel class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/SelectionDAGISel.h" 15 #include "ScheduleDAGSDNodes.h" 16 #include "SelectionDAGBuilder.h" 17 #include "llvm/ADT/PostOrderIterator.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/BranchProbabilityInfo.h" 21 #include "llvm/Analysis/CFG.h" 22 #include "llvm/CodeGen/FastISel.h" 23 #include "llvm/CodeGen/FunctionLoweringInfo.h" 24 #include "llvm/CodeGen/GCMetadata.h" 25 #include "llvm/CodeGen/GCStrategy.h" 26 #include "llvm/CodeGen/MachineFrameInfo.h" 27 #include "llvm/CodeGen/MachineFunction.h" 28 #include "llvm/CodeGen/MachineInstrBuilder.h" 29 #include "llvm/CodeGen/MachineModuleInfo.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 32 #include "llvm/CodeGen/SchedulerRegistry.h" 33 #include "llvm/CodeGen/SelectionDAG.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DebugInfo.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/InlineAsm.h" 38 #include "llvm/IR/Instructions.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/IR/Intrinsics.h" 41 #include "llvm/IR/LLVMContext.h" 42 #include "llvm/IR/Module.h" 43 #include "llvm/Support/Compiler.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/Timer.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include "llvm/Target/TargetInstrInfo.h" 49 #include "llvm/Target/TargetIntrinsicInfo.h" 50 #include "llvm/Target/TargetLibraryInfo.h" 51 #include "llvm/Target/TargetLowering.h" 52 #include "llvm/Target/TargetMachine.h" 53 #include "llvm/Target/TargetOptions.h" 54 #include "llvm/Target/TargetRegisterInfo.h" 55 #include "llvm/Target/TargetSubtargetInfo.h" 56 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 57 #include <algorithm> 58 using namespace llvm; 59 60 #define DEBUG_TYPE "isel" 61 62 STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on"); 63 STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected"); 64 STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel"); 65 STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG"); 66 STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path"); 67 STATISTIC(NumEntryBlocks, "Number of entry blocks encountered"); 68 STATISTIC(NumFastIselFailLowerArguments, 69 "Number of entry blocks where fast isel failed to lower arguments"); 70 71 #ifndef NDEBUG 72 static cl::opt<bool> 73 EnableFastISelVerbose2("fast-isel-verbose2", cl::Hidden, 74 cl::desc("Enable extra verbose messages in the \"fast\" " 75 "instruction selector")); 76 77 // Terminators 78 STATISTIC(NumFastIselFailRet,"Fast isel fails on Ret"); 79 STATISTIC(NumFastIselFailBr,"Fast isel fails on Br"); 80 STATISTIC(NumFastIselFailSwitch,"Fast isel fails on Switch"); 81 STATISTIC(NumFastIselFailIndirectBr,"Fast isel fails on IndirectBr"); 82 STATISTIC(NumFastIselFailInvoke,"Fast isel fails on Invoke"); 83 STATISTIC(NumFastIselFailResume,"Fast isel fails on Resume"); 84 STATISTIC(NumFastIselFailUnreachable,"Fast isel fails on Unreachable"); 85 86 // Standard binary operators... 87 STATISTIC(NumFastIselFailAdd,"Fast isel fails on Add"); 88 STATISTIC(NumFastIselFailFAdd,"Fast isel fails on FAdd"); 89 STATISTIC(NumFastIselFailSub,"Fast isel fails on Sub"); 90 STATISTIC(NumFastIselFailFSub,"Fast isel fails on FSub"); 91 STATISTIC(NumFastIselFailMul,"Fast isel fails on Mul"); 92 STATISTIC(NumFastIselFailFMul,"Fast isel fails on FMul"); 93 STATISTIC(NumFastIselFailUDiv,"Fast isel fails on UDiv"); 94 STATISTIC(NumFastIselFailSDiv,"Fast isel fails on SDiv"); 95 STATISTIC(NumFastIselFailFDiv,"Fast isel fails on FDiv"); 96 STATISTIC(NumFastIselFailURem,"Fast isel fails on URem"); 97 STATISTIC(NumFastIselFailSRem,"Fast isel fails on SRem"); 98 STATISTIC(NumFastIselFailFRem,"Fast isel fails on FRem"); 99 100 // Logical operators... 101 STATISTIC(NumFastIselFailAnd,"Fast isel fails on And"); 102 STATISTIC(NumFastIselFailOr,"Fast isel fails on Or"); 103 STATISTIC(NumFastIselFailXor,"Fast isel fails on Xor"); 104 105 // Memory instructions... 106 STATISTIC(NumFastIselFailAlloca,"Fast isel fails on Alloca"); 107 STATISTIC(NumFastIselFailLoad,"Fast isel fails on Load"); 108 STATISTIC(NumFastIselFailStore,"Fast isel fails on Store"); 109 STATISTIC(NumFastIselFailAtomicCmpXchg,"Fast isel fails on AtomicCmpXchg"); 110 STATISTIC(NumFastIselFailAtomicRMW,"Fast isel fails on AtomicRWM"); 111 STATISTIC(NumFastIselFailFence,"Fast isel fails on Frence"); 112 STATISTIC(NumFastIselFailGetElementPtr,"Fast isel fails on GetElementPtr"); 113 114 // Convert instructions... 115 STATISTIC(NumFastIselFailTrunc,"Fast isel fails on Trunc"); 116 STATISTIC(NumFastIselFailZExt,"Fast isel fails on ZExt"); 117 STATISTIC(NumFastIselFailSExt,"Fast isel fails on SExt"); 118 STATISTIC(NumFastIselFailFPTrunc,"Fast isel fails on FPTrunc"); 119 STATISTIC(NumFastIselFailFPExt,"Fast isel fails on FPExt"); 120 STATISTIC(NumFastIselFailFPToUI,"Fast isel fails on FPToUI"); 121 STATISTIC(NumFastIselFailFPToSI,"Fast isel fails on FPToSI"); 122 STATISTIC(NumFastIselFailUIToFP,"Fast isel fails on UIToFP"); 123 STATISTIC(NumFastIselFailSIToFP,"Fast isel fails on SIToFP"); 124 STATISTIC(NumFastIselFailIntToPtr,"Fast isel fails on IntToPtr"); 125 STATISTIC(NumFastIselFailPtrToInt,"Fast isel fails on PtrToInt"); 126 STATISTIC(NumFastIselFailBitCast,"Fast isel fails on BitCast"); 127 128 // Other instructions... 129 STATISTIC(NumFastIselFailICmp,"Fast isel fails on ICmp"); 130 STATISTIC(NumFastIselFailFCmp,"Fast isel fails on FCmp"); 131 STATISTIC(NumFastIselFailPHI,"Fast isel fails on PHI"); 132 STATISTIC(NumFastIselFailSelect,"Fast isel fails on Select"); 133 STATISTIC(NumFastIselFailCall,"Fast isel fails on Call"); 134 STATISTIC(NumFastIselFailShl,"Fast isel fails on Shl"); 135 STATISTIC(NumFastIselFailLShr,"Fast isel fails on LShr"); 136 STATISTIC(NumFastIselFailAShr,"Fast isel fails on AShr"); 137 STATISTIC(NumFastIselFailVAArg,"Fast isel fails on VAArg"); 138 STATISTIC(NumFastIselFailExtractElement,"Fast isel fails on ExtractElement"); 139 STATISTIC(NumFastIselFailInsertElement,"Fast isel fails on InsertElement"); 140 STATISTIC(NumFastIselFailShuffleVector,"Fast isel fails on ShuffleVector"); 141 STATISTIC(NumFastIselFailExtractValue,"Fast isel fails on ExtractValue"); 142 STATISTIC(NumFastIselFailInsertValue,"Fast isel fails on InsertValue"); 143 STATISTIC(NumFastIselFailLandingPad,"Fast isel fails on LandingPad"); 144 145 // Intrinsic instructions... 146 STATISTIC(NumFastIselFailIntrinsicCall, "Fast isel fails on Intrinsic call"); 147 STATISTIC(NumFastIselFailSAddWithOverflow, 148 "Fast isel fails on sadd.with.overflow"); 149 STATISTIC(NumFastIselFailUAddWithOverflow, 150 "Fast isel fails on uadd.with.overflow"); 151 STATISTIC(NumFastIselFailSSubWithOverflow, 152 "Fast isel fails on ssub.with.overflow"); 153 STATISTIC(NumFastIselFailUSubWithOverflow, 154 "Fast isel fails on usub.with.overflow"); 155 STATISTIC(NumFastIselFailSMulWithOverflow, 156 "Fast isel fails on smul.with.overflow"); 157 STATISTIC(NumFastIselFailUMulWithOverflow, 158 "Fast isel fails on umul.with.overflow"); 159 STATISTIC(NumFastIselFailFrameaddress, "Fast isel fails on Frameaddress"); 160 STATISTIC(NumFastIselFailSqrt, "Fast isel fails on sqrt call"); 161 STATISTIC(NumFastIselFailStackMap, "Fast isel fails on StackMap call"); 162 STATISTIC(NumFastIselFailPatchPoint, "Fast isel fails on PatchPoint call"); 163 #endif 164 165 static cl::opt<bool> 166 EnableFastISelVerbose("fast-isel-verbose", cl::Hidden, 167 cl::desc("Enable verbose messages in the \"fast\" " 168 "instruction selector")); 169 static cl::opt<bool> 170 EnableFastISelAbort("fast-isel-abort", cl::Hidden, 171 cl::desc("Enable abort calls when \"fast\" instruction selection " 172 "fails to lower an instruction")); 173 static cl::opt<bool> 174 EnableFastISelAbortArgs("fast-isel-abort-args", cl::Hidden, 175 cl::desc("Enable abort calls when \"fast\" instruction selection " 176 "fails to lower a formal argument")); 177 178 static cl::opt<bool> 179 UseMBPI("use-mbpi", 180 cl::desc("use Machine Branch Probability Info"), 181 cl::init(true), cl::Hidden); 182 183 #ifndef NDEBUG 184 static cl::opt<bool> 185 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden, 186 cl::desc("Pop up a window to show dags before the first " 187 "dag combine pass")); 188 static cl::opt<bool> 189 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden, 190 cl::desc("Pop up a window to show dags before legalize types")); 191 static cl::opt<bool> 192 ViewLegalizeDAGs("view-legalize-dags", cl::Hidden, 193 cl::desc("Pop up a window to show dags before legalize")); 194 static cl::opt<bool> 195 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden, 196 cl::desc("Pop up a window to show dags before the second " 197 "dag combine pass")); 198 static cl::opt<bool> 199 ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden, 200 cl::desc("Pop up a window to show dags before the post legalize types" 201 " dag combine pass")); 202 static cl::opt<bool> 203 ViewISelDAGs("view-isel-dags", cl::Hidden, 204 cl::desc("Pop up a window to show isel dags as they are selected")); 205 static cl::opt<bool> 206 ViewSchedDAGs("view-sched-dags", cl::Hidden, 207 cl::desc("Pop up a window to show sched dags as they are processed")); 208 static cl::opt<bool> 209 ViewSUnitDAGs("view-sunit-dags", cl::Hidden, 210 cl::desc("Pop up a window to show SUnit dags after they are processed")); 211 #else 212 static const bool ViewDAGCombine1 = false, 213 ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false, 214 ViewDAGCombine2 = false, 215 ViewDAGCombineLT = false, 216 ViewISelDAGs = false, ViewSchedDAGs = false, 217 ViewSUnitDAGs = false; 218 #endif 219 220 //===---------------------------------------------------------------------===// 221 /// 222 /// RegisterScheduler class - Track the registration of instruction schedulers. 223 /// 224 //===---------------------------------------------------------------------===// 225 MachinePassRegistry RegisterScheduler::Registry; 226 227 //===---------------------------------------------------------------------===// 228 /// 229 /// ISHeuristic command line option for instruction schedulers. 230 /// 231 //===---------------------------------------------------------------------===// 232 static cl::opt<RegisterScheduler::FunctionPassCtor, false, 233 RegisterPassParser<RegisterScheduler> > 234 ISHeuristic("pre-RA-sched", 235 cl::init(&createDefaultScheduler), cl::Hidden, 236 cl::desc("Instruction schedulers available (before register" 237 " allocation):")); 238 239 static RegisterScheduler 240 defaultListDAGScheduler("default", "Best scheduler for the target", 241 createDefaultScheduler); 242 243 namespace llvm { 244 //===--------------------------------------------------------------------===// 245 /// \brief This class is used by SelectionDAGISel to temporarily override 246 /// the optimization level on a per-function basis. 247 class OptLevelChanger { 248 SelectionDAGISel &IS; 249 CodeGenOpt::Level SavedOptLevel; 250 bool SavedFastISel; 251 252 public: 253 OptLevelChanger(SelectionDAGISel &ISel, 254 CodeGenOpt::Level NewOptLevel) : IS(ISel) { 255 SavedOptLevel = IS.OptLevel; 256 if (NewOptLevel == SavedOptLevel) 257 return; 258 IS.OptLevel = NewOptLevel; 259 IS.TM.setOptLevel(NewOptLevel); 260 SavedFastISel = IS.TM.Options.EnableFastISel; 261 if (NewOptLevel == CodeGenOpt::None) 262 IS.TM.setFastISel(true); 263 DEBUG(dbgs() << "\nChanging optimization level for Function " 264 << IS.MF->getFunction()->getName() << "\n"); 265 DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel 266 << " ; After: -O" << NewOptLevel << "\n"); 267 } 268 269 ~OptLevelChanger() { 270 if (IS.OptLevel == SavedOptLevel) 271 return; 272 DEBUG(dbgs() << "\nRestoring optimization level for Function " 273 << IS.MF->getFunction()->getName() << "\n"); 274 DEBUG(dbgs() << "\tBefore: -O" << IS.OptLevel 275 << " ; After: -O" << SavedOptLevel << "\n"); 276 IS.OptLevel = SavedOptLevel; 277 IS.TM.setOptLevel(SavedOptLevel); 278 IS.TM.setFastISel(SavedFastISel); 279 } 280 }; 281 282 //===--------------------------------------------------------------------===// 283 /// createDefaultScheduler - This creates an instruction scheduler appropriate 284 /// for the target. 285 ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS, 286 CodeGenOpt::Level OptLevel) { 287 const TargetLowering *TLI = IS->getTargetLowering(); 288 const TargetSubtargetInfo &ST = IS->TM.getSubtarget<TargetSubtargetInfo>(); 289 290 if (OptLevel == CodeGenOpt::None || ST.useMachineScheduler() || 291 TLI->getSchedulingPreference() == Sched::Source) 292 return createSourceListDAGScheduler(IS, OptLevel); 293 if (TLI->getSchedulingPreference() == Sched::RegPressure) 294 return createBURRListDAGScheduler(IS, OptLevel); 295 if (TLI->getSchedulingPreference() == Sched::Hybrid) 296 return createHybridListDAGScheduler(IS, OptLevel); 297 if (TLI->getSchedulingPreference() == Sched::VLIW) 298 return createVLIWDAGScheduler(IS, OptLevel); 299 assert(TLI->getSchedulingPreference() == Sched::ILP && 300 "Unknown sched type!"); 301 return createILPListDAGScheduler(IS, OptLevel); 302 } 303 } 304 305 // EmitInstrWithCustomInserter - This method should be implemented by targets 306 // that mark instructions with the 'usesCustomInserter' flag. These 307 // instructions are special in various ways, which require special support to 308 // insert. The specified MachineInstr is created but not inserted into any 309 // basic blocks, and this method is called to expand it into a sequence of 310 // instructions, potentially also creating new basic blocks and control flow. 311 // When new basic blocks are inserted and the edges from MBB to its successors 312 // are modified, the method should insert pairs of <OldSucc, NewSucc> into the 313 // DenseMap. 314 MachineBasicBlock * 315 TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, 316 MachineBasicBlock *MBB) const { 317 #ifndef NDEBUG 318 dbgs() << "If a target marks an instruction with " 319 "'usesCustomInserter', it must implement " 320 "TargetLowering::EmitInstrWithCustomInserter!"; 321 #endif 322 llvm_unreachable(nullptr); 323 } 324 325 void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI, 326 SDNode *Node) const { 327 assert(!MI->hasPostISelHook() && 328 "If a target marks an instruction with 'hasPostISelHook', " 329 "it must implement TargetLowering::AdjustInstrPostInstrSelection!"); 330 } 331 332 //===----------------------------------------------------------------------===// 333 // SelectionDAGISel code 334 //===----------------------------------------------------------------------===// 335 336 SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, 337 CodeGenOpt::Level OL) : 338 MachineFunctionPass(ID), TM(tm), 339 FuncInfo(new FunctionLoweringInfo(TM)), 340 CurDAG(new SelectionDAG(tm, OL)), 341 SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)), 342 GFI(), 343 OptLevel(OL), 344 DAGSize(0) { 345 initializeGCModuleInfoPass(*PassRegistry::getPassRegistry()); 346 initializeAliasAnalysisAnalysisGroup(*PassRegistry::getPassRegistry()); 347 initializeBranchProbabilityInfoPass(*PassRegistry::getPassRegistry()); 348 initializeTargetLibraryInfoPass(*PassRegistry::getPassRegistry()); 349 } 350 351 SelectionDAGISel::~SelectionDAGISel() { 352 delete SDB; 353 delete CurDAG; 354 delete FuncInfo; 355 } 356 357 void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const { 358 AU.addRequired<AliasAnalysis>(); 359 AU.addPreserved<AliasAnalysis>(); 360 AU.addRequired<GCModuleInfo>(); 361 AU.addPreserved<GCModuleInfo>(); 362 AU.addRequired<TargetLibraryInfo>(); 363 if (UseMBPI && OptLevel != CodeGenOpt::None) 364 AU.addRequired<BranchProbabilityInfo>(); 365 MachineFunctionPass::getAnalysisUsage(AU); 366 } 367 368 /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that 369 /// may trap on it. In this case we have to split the edge so that the path 370 /// through the predecessor block that doesn't go to the phi block doesn't 371 /// execute the possibly trapping instruction. 372 /// 373 /// This is required for correctness, so it must be done at -O0. 374 /// 375 static void SplitCriticalSideEffectEdges(Function &Fn, Pass *SDISel) { 376 // Loop for blocks with phi nodes. 377 for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) { 378 PHINode *PN = dyn_cast<PHINode>(BB->begin()); 379 if (!PN) continue; 380 381 ReprocessBlock: 382 // For each block with a PHI node, check to see if any of the input values 383 // are potentially trapping constant expressions. Constant expressions are 384 // the only potentially trapping value that can occur as the argument to a 385 // PHI. 386 for (BasicBlock::iterator I = BB->begin(); (PN = dyn_cast<PHINode>(I)); ++I) 387 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 388 ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i)); 389 if (!CE || !CE->canTrap()) continue; 390 391 // The only case we have to worry about is when the edge is critical. 392 // Since this block has a PHI Node, we assume it has multiple input 393 // edges: check to see if the pred has multiple successors. 394 BasicBlock *Pred = PN->getIncomingBlock(i); 395 if (Pred->getTerminator()->getNumSuccessors() == 1) 396 continue; 397 398 // Okay, we have to split this edge. 399 SplitCriticalEdge(Pred->getTerminator(), 400 GetSuccessorNumber(Pred, BB), SDISel, true); 401 goto ReprocessBlock; 402 } 403 } 404 } 405 406 bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) { 407 // Do some sanity-checking on the command-line options. 408 assert((!EnableFastISelVerbose || TM.Options.EnableFastISel) && 409 "-fast-isel-verbose requires -fast-isel"); 410 assert((!EnableFastISelAbort || TM.Options.EnableFastISel) && 411 "-fast-isel-abort requires -fast-isel"); 412 413 const Function &Fn = *mf.getFunction(); 414 const TargetInstrInfo &TII = *TM.getInstrInfo(); 415 const TargetRegisterInfo &TRI = *TM.getRegisterInfo(); 416 const TargetLowering *TLI = TM.getTargetLowering(); 417 418 MF = &mf; 419 RegInfo = &MF->getRegInfo(); 420 AA = &getAnalysis<AliasAnalysis>(); 421 LibInfo = &getAnalysis<TargetLibraryInfo>(); 422 GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : nullptr; 423 424 TargetSubtargetInfo &ST = 425 const_cast<TargetSubtargetInfo&>(TM.getSubtarget<TargetSubtargetInfo>()); 426 ST.resetSubtargetFeatures(MF); 427 TM.resetTargetOptions(MF); 428 429 // Reset OptLevel to None for optnone functions. 430 CodeGenOpt::Level NewOptLevel = OptLevel; 431 if (Fn.hasFnAttribute(Attribute::OptimizeNone)) 432 NewOptLevel = CodeGenOpt::None; 433 OptLevelChanger OLC(*this, NewOptLevel); 434 435 DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n"); 436 437 SplitCriticalSideEffectEdges(const_cast<Function&>(Fn), this); 438 439 CurDAG->init(*MF, TLI); 440 FuncInfo->set(Fn, *MF, CurDAG); 441 442 if (UseMBPI && OptLevel != CodeGenOpt::None) 443 FuncInfo->BPI = &getAnalysis<BranchProbabilityInfo>(); 444 else 445 FuncInfo->BPI = nullptr; 446 447 SDB->init(GFI, *AA, LibInfo); 448 449 MF->setHasInlineAsm(false); 450 451 SelectAllBasicBlocks(Fn); 452 453 // If the first basic block in the function has live ins that need to be 454 // copied into vregs, emit the copies into the top of the block before 455 // emitting the code for the block. 456 MachineBasicBlock *EntryMBB = MF->begin(); 457 RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII); 458 459 DenseMap<unsigned, unsigned> LiveInMap; 460 if (!FuncInfo->ArgDbgValues.empty()) 461 for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(), 462 E = RegInfo->livein_end(); LI != E; ++LI) 463 if (LI->second) 464 LiveInMap.insert(std::make_pair(LI->first, LI->second)); 465 466 // Insert DBG_VALUE instructions for function arguments to the entry block. 467 for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) { 468 MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1]; 469 bool hasFI = MI->getOperand(0).isFI(); 470 unsigned Reg = 471 hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg(); 472 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 473 EntryMBB->insert(EntryMBB->begin(), MI); 474 else { 475 MachineInstr *Def = RegInfo->getVRegDef(Reg); 476 if (Def) { 477 MachineBasicBlock::iterator InsertPos = Def; 478 // FIXME: VR def may not be in entry block. 479 Def->getParent()->insert(std::next(InsertPos), MI); 480 } else 481 DEBUG(dbgs() << "Dropping debug info for dead vreg" 482 << TargetRegisterInfo::virtReg2Index(Reg) << "\n"); 483 } 484 485 // If Reg is live-in then update debug info to track its copy in a vreg. 486 DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg); 487 if (LDI != LiveInMap.end()) { 488 assert(!hasFI && "There's no handling of frame pointer updating here yet " 489 "- add if needed"); 490 MachineInstr *Def = RegInfo->getVRegDef(LDI->second); 491 MachineBasicBlock::iterator InsertPos = Def; 492 const MDNode *Variable = 493 MI->getOperand(MI->getNumOperands()-1).getMetadata(); 494 bool IsIndirect = MI->isIndirectDebugValue(); 495 unsigned Offset = IsIndirect ? MI->getOperand(1).getImm() : 0; 496 // Def is never a terminator here, so it is ok to increment InsertPos. 497 BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(), 498 TII.get(TargetOpcode::DBG_VALUE), 499 IsIndirect, 500 LDI->second, Offset, Variable); 501 502 // If this vreg is directly copied into an exported register then 503 // that COPY instructions also need DBG_VALUE, if it is the only 504 // user of LDI->second. 505 MachineInstr *CopyUseMI = nullptr; 506 for (MachineRegisterInfo::use_instr_iterator 507 UI = RegInfo->use_instr_begin(LDI->second), 508 E = RegInfo->use_instr_end(); UI != E; ) { 509 MachineInstr *UseMI = &*(UI++); 510 if (UseMI->isDebugValue()) continue; 511 if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) { 512 CopyUseMI = UseMI; continue; 513 } 514 // Otherwise this is another use or second copy use. 515 CopyUseMI = nullptr; break; 516 } 517 if (CopyUseMI) { 518 MachineInstr *NewMI = 519 BuildMI(*MF, CopyUseMI->getDebugLoc(), 520 TII.get(TargetOpcode::DBG_VALUE), 521 IsIndirect, 522 CopyUseMI->getOperand(0).getReg(), 523 Offset, Variable); 524 MachineBasicBlock::iterator Pos = CopyUseMI; 525 EntryMBB->insertAfter(Pos, NewMI); 526 } 527 } 528 } 529 530 // Determine if there are any calls in this machine function. 531 MachineFrameInfo *MFI = MF->getFrameInfo(); 532 for (const auto &MBB : *MF) { 533 if (MFI->hasCalls() && MF->hasInlineAsm()) 534 break; 535 536 for (const auto &MI : MBB) { 537 const MCInstrDesc &MCID = TM.getInstrInfo()->get(MI.getOpcode()); 538 if ((MCID.isCall() && !MCID.isReturn()) || 539 MI.isStackAligningInlineAsm()) { 540 MFI->setHasCalls(true); 541 } 542 if (MI.isInlineAsm()) { 543 MF->setHasInlineAsm(true); 544 } 545 } 546 } 547 548 // Determine if there is a call to setjmp in the machine function. 549 MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice()); 550 551 // Replace forward-declared registers with the registers containing 552 // the desired value. 553 MachineRegisterInfo &MRI = MF->getRegInfo(); 554 for (DenseMap<unsigned, unsigned>::iterator 555 I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end(); 556 I != E; ++I) { 557 unsigned From = I->first; 558 unsigned To = I->second; 559 // If To is also scheduled to be replaced, find what its ultimate 560 // replacement is. 561 for (;;) { 562 DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To); 563 if (J == E) break; 564 To = J->second; 565 } 566 // Make sure the new register has a sufficiently constrained register class. 567 if (TargetRegisterInfo::isVirtualRegister(From) && 568 TargetRegisterInfo::isVirtualRegister(To)) 569 MRI.constrainRegClass(To, MRI.getRegClass(From)); 570 // Replace it. 571 MRI.replaceRegWith(From, To); 572 } 573 574 // Freeze the set of reserved registers now that MachineFrameInfo has been 575 // set up. All the information required by getReservedRegs() should be 576 // available now. 577 MRI.freezeReservedRegs(*MF); 578 579 // Release function-specific state. SDB and CurDAG are already cleared 580 // at this point. 581 FuncInfo->clear(); 582 583 DEBUG(dbgs() << "*** MachineFunction at end of ISel ***\n"); 584 DEBUG(MF->print(dbgs())); 585 586 return true; 587 } 588 589 void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin, 590 BasicBlock::const_iterator End, 591 bool &HadTailCall) { 592 // Lower all of the non-terminator instructions. If a call is emitted 593 // as a tail call, cease emitting nodes for this block. Terminators 594 // are handled below. 595 for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I) 596 SDB->visit(*I); 597 598 // Make sure the root of the DAG is up-to-date. 599 CurDAG->setRoot(SDB->getControlRoot()); 600 HadTailCall = SDB->HasTailCall; 601 SDB->clear(); 602 603 // Final step, emit the lowered DAG as machine code. 604 CodeGenAndEmitDAG(); 605 } 606 607 void SelectionDAGISel::ComputeLiveOutVRegInfo() { 608 SmallPtrSet<SDNode*, 128> VisitedNodes; 609 SmallVector<SDNode*, 128> Worklist; 610 611 Worklist.push_back(CurDAG->getRoot().getNode()); 612 613 APInt KnownZero; 614 APInt KnownOne; 615 616 do { 617 SDNode *N = Worklist.pop_back_val(); 618 619 // If we've already seen this node, ignore it. 620 if (!VisitedNodes.insert(N)) 621 continue; 622 623 // Otherwise, add all chain operands to the worklist. 624 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) 625 if (N->getOperand(i).getValueType() == MVT::Other) 626 Worklist.push_back(N->getOperand(i).getNode()); 627 628 // If this is a CopyToReg with a vreg dest, process it. 629 if (N->getOpcode() != ISD::CopyToReg) 630 continue; 631 632 unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg(); 633 if (!TargetRegisterInfo::isVirtualRegister(DestReg)) 634 continue; 635 636 // Ignore non-scalar or non-integer values. 637 SDValue Src = N->getOperand(2); 638 EVT SrcVT = Src.getValueType(); 639 if (!SrcVT.isInteger() || SrcVT.isVector()) 640 continue; 641 642 unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src); 643 CurDAG->computeKnownBits(Src, KnownZero, KnownOne); 644 FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, KnownZero, KnownOne); 645 } while (!Worklist.empty()); 646 } 647 648 void SelectionDAGISel::CodeGenAndEmitDAG() { 649 std::string GroupName; 650 if (TimePassesIsEnabled) 651 GroupName = "Instruction Selection and Scheduling"; 652 std::string BlockName; 653 int BlockNumber = -1; 654 (void)BlockNumber; 655 #ifdef NDEBUG 656 if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs || 657 ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs || 658 ViewSUnitDAGs) 659 #endif 660 { 661 BlockNumber = FuncInfo->MBB->getNumber(); 662 BlockName = MF->getName().str() + ":" + 663 FuncInfo->MBB->getBasicBlock()->getName().str(); 664 } 665 DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber 666 << " '" << BlockName << "'\n"; CurDAG->dump()); 667 668 if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName); 669 670 // Run the DAG combiner in pre-legalize mode. 671 { 672 NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled); 673 CurDAG->Combine(BeforeLegalizeTypes, *AA, OptLevel); 674 } 675 676 DEBUG(dbgs() << "Optimized lowered selection DAG: BB#" << BlockNumber 677 << " '" << BlockName << "'\n"; CurDAG->dump()); 678 679 // Second step, hack on the DAG until it only uses operations and types that 680 // the target supports. 681 if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " + 682 BlockName); 683 684 bool Changed; 685 { 686 NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled); 687 Changed = CurDAG->LegalizeTypes(); 688 } 689 690 DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber 691 << " '" << BlockName << "'\n"; CurDAG->dump()); 692 693 CurDAG->NewNodesMustHaveLegalTypes = true; 694 695 if (Changed) { 696 if (ViewDAGCombineLT) 697 CurDAG->viewGraph("dag-combine-lt input for " + BlockName); 698 699 // Run the DAG combiner in post-type-legalize mode. 700 { 701 NamedRegionTimer T("DAG Combining after legalize types", GroupName, 702 TimePassesIsEnabled); 703 CurDAG->Combine(AfterLegalizeTypes, *AA, OptLevel); 704 } 705 706 DEBUG(dbgs() << "Optimized type-legalized selection DAG: BB#" << BlockNumber 707 << " '" << BlockName << "'\n"; CurDAG->dump()); 708 709 } 710 711 { 712 NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled); 713 Changed = CurDAG->LegalizeVectors(); 714 } 715 716 if (Changed) { 717 { 718 NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled); 719 CurDAG->LegalizeTypes(); 720 } 721 722 if (ViewDAGCombineLT) 723 CurDAG->viewGraph("dag-combine-lv input for " + BlockName); 724 725 // Run the DAG combiner in post-type-legalize mode. 726 { 727 NamedRegionTimer T("DAG Combining after legalize vectors", GroupName, 728 TimePassesIsEnabled); 729 CurDAG->Combine(AfterLegalizeVectorOps, *AA, OptLevel); 730 } 731 732 DEBUG(dbgs() << "Optimized vector-legalized selection DAG: BB#" 733 << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump()); 734 } 735 736 if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName); 737 738 { 739 NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled); 740 CurDAG->Legalize(); 741 } 742 743 DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber 744 << " '" << BlockName << "'\n"; CurDAG->dump()); 745 746 if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName); 747 748 // Run the DAG combiner in post-legalize mode. 749 { 750 NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled); 751 CurDAG->Combine(AfterLegalizeDAG, *AA, OptLevel); 752 } 753 754 DEBUG(dbgs() << "Optimized legalized selection DAG: BB#" << BlockNumber 755 << " '" << BlockName << "'\n"; CurDAG->dump()); 756 757 if (OptLevel != CodeGenOpt::None) 758 ComputeLiveOutVRegInfo(); 759 760 if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName); 761 762 // Third, instruction select all of the operations to machine code, adding the 763 // code to the MachineBasicBlock. 764 { 765 NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled); 766 DoInstructionSelection(); 767 } 768 769 DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber 770 << " '" << BlockName << "'\n"; CurDAG->dump()); 771 772 if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName); 773 774 // Schedule machine code. 775 ScheduleDAGSDNodes *Scheduler = CreateScheduler(); 776 { 777 NamedRegionTimer T("Instruction Scheduling", GroupName, 778 TimePassesIsEnabled); 779 Scheduler->Run(CurDAG, FuncInfo->MBB); 780 } 781 782 if (ViewSUnitDAGs) Scheduler->viewGraph(); 783 784 // Emit machine code to BB. This can change 'BB' to the last block being 785 // inserted into. 786 MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB; 787 { 788 NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled); 789 790 // FuncInfo->InsertPt is passed by reference and set to the end of the 791 // scheduled instructions. 792 LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt); 793 } 794 795 // If the block was split, make sure we update any references that are used to 796 // update PHI nodes later on. 797 if (FirstMBB != LastMBB) 798 SDB->UpdateSplitBlock(FirstMBB, LastMBB); 799 800 // Free the scheduler state. 801 { 802 NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName, 803 TimePassesIsEnabled); 804 delete Scheduler; 805 } 806 807 // Free the SelectionDAG state, now that we're finished with it. 808 CurDAG->clear(); 809 } 810 811 namespace { 812 /// ISelUpdater - helper class to handle updates of the instruction selection 813 /// graph. 814 class ISelUpdater : public SelectionDAG::DAGUpdateListener { 815 SelectionDAG::allnodes_iterator &ISelPosition; 816 public: 817 ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp) 818 : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {} 819 820 /// NodeDeleted - Handle nodes deleted from the graph. If the node being 821 /// deleted is the current ISelPosition node, update ISelPosition. 822 /// 823 void NodeDeleted(SDNode *N, SDNode *E) override { 824 if (ISelPosition == SelectionDAG::allnodes_iterator(N)) 825 ++ISelPosition; 826 } 827 }; 828 } // end anonymous namespace 829 830 void SelectionDAGISel::DoInstructionSelection() { 831 DEBUG(dbgs() << "===== Instruction selection begins: BB#" 832 << FuncInfo->MBB->getNumber() 833 << " '" << FuncInfo->MBB->getName() << "'\n"); 834 835 PreprocessISelDAG(); 836 837 // Select target instructions for the DAG. 838 { 839 // Number all nodes with a topological order and set DAGSize. 840 DAGSize = CurDAG->AssignTopologicalOrder(); 841 842 // Create a dummy node (which is not added to allnodes), that adds 843 // a reference to the root node, preventing it from being deleted, 844 // and tracking any changes of the root. 845 HandleSDNode Dummy(CurDAG->getRoot()); 846 SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode()); 847 ++ISelPosition; 848 849 // Make sure that ISelPosition gets properly updated when nodes are deleted 850 // in calls made from this function. 851 ISelUpdater ISU(*CurDAG, ISelPosition); 852 853 // The AllNodes list is now topological-sorted. Visit the 854 // nodes by starting at the end of the list (the root of the 855 // graph) and preceding back toward the beginning (the entry 856 // node). 857 while (ISelPosition != CurDAG->allnodes_begin()) { 858 SDNode *Node = --ISelPosition; 859 // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes, 860 // but there are currently some corner cases that it misses. Also, this 861 // makes it theoretically possible to disable the DAGCombiner. 862 if (Node->use_empty()) 863 continue; 864 865 SDNode *ResNode = Select(Node); 866 867 // FIXME: This is pretty gross. 'Select' should be changed to not return 868 // anything at all and this code should be nuked with a tactical strike. 869 870 // If node should not be replaced, continue with the next one. 871 if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE) 872 continue; 873 // Replace node. 874 if (ResNode) { 875 ReplaceUses(Node, ResNode); 876 } 877 878 // If after the replacement this node is not used any more, 879 // remove this dead node. 880 if (Node->use_empty()) // Don't delete EntryToken, etc. 881 CurDAG->RemoveDeadNode(Node); 882 } 883 884 CurDAG->setRoot(Dummy.getValue()); 885 } 886 887 DEBUG(dbgs() << "===== Instruction selection ends:\n"); 888 889 PostprocessISelDAG(); 890 } 891 892 /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and 893 /// do other setup for EH landing-pad blocks. 894 void SelectionDAGISel::PrepareEHLandingPad() { 895 MachineBasicBlock *MBB = FuncInfo->MBB; 896 897 // Add a label to mark the beginning of the landing pad. Deletion of the 898 // landing pad can thus be detected via the MachineModuleInfo. 899 MCSymbol *Label = MF->getMMI().addLandingPad(MBB); 900 901 // Assign the call site to the landing pad's begin label. 902 MF->getMMI().setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]); 903 904 const MCInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL); 905 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II) 906 .addSym(Label); 907 908 // Mark exception register as live in. 909 const TargetLowering *TLI = getTargetLowering(); 910 const TargetRegisterClass *PtrRC = TLI->getRegClassFor(TLI->getPointerTy()); 911 if (unsigned Reg = TLI->getExceptionPointerRegister()) 912 FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC); 913 914 // Mark exception selector register as live in. 915 if (unsigned Reg = TLI->getExceptionSelectorRegister()) 916 FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC); 917 } 918 919 /// isFoldedOrDeadInstruction - Return true if the specified instruction is 920 /// side-effect free and is either dead or folded into a generated instruction. 921 /// Return false if it needs to be emitted. 922 static bool isFoldedOrDeadInstruction(const Instruction *I, 923 FunctionLoweringInfo *FuncInfo) { 924 return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded. 925 !isa<TerminatorInst>(I) && // Terminators aren't folded. 926 !isa<DbgInfoIntrinsic>(I) && // Debug instructions aren't folded. 927 !isa<LandingPadInst>(I) && // Landingpad instructions aren't folded. 928 !FuncInfo->isExportedInst(I); // Exported instrs must be computed. 929 } 930 931 #ifndef NDEBUG 932 // Collect per Instruction statistics for fast-isel misses. Only those 933 // instructions that cause the bail are accounted for. It does not account for 934 // instructions higher in the block. Thus, summing the per instructions stats 935 // will not add up to what is reported by NumFastIselFailures. 936 static void collectFailStats(const Instruction *I) { 937 switch (I->getOpcode()) { 938 default: assert (0 && "<Invalid operator> "); 939 940 // Terminators 941 case Instruction::Ret: NumFastIselFailRet++; return; 942 case Instruction::Br: NumFastIselFailBr++; return; 943 case Instruction::Switch: NumFastIselFailSwitch++; return; 944 case Instruction::IndirectBr: NumFastIselFailIndirectBr++; return; 945 case Instruction::Invoke: NumFastIselFailInvoke++; return; 946 case Instruction::Resume: NumFastIselFailResume++; return; 947 case Instruction::Unreachable: NumFastIselFailUnreachable++; return; 948 949 // Standard binary operators... 950 case Instruction::Add: NumFastIselFailAdd++; return; 951 case Instruction::FAdd: NumFastIselFailFAdd++; return; 952 case Instruction::Sub: NumFastIselFailSub++; return; 953 case Instruction::FSub: NumFastIselFailFSub++; return; 954 case Instruction::Mul: NumFastIselFailMul++; return; 955 case Instruction::FMul: NumFastIselFailFMul++; return; 956 case Instruction::UDiv: NumFastIselFailUDiv++; return; 957 case Instruction::SDiv: NumFastIselFailSDiv++; return; 958 case Instruction::FDiv: NumFastIselFailFDiv++; return; 959 case Instruction::URem: NumFastIselFailURem++; return; 960 case Instruction::SRem: NumFastIselFailSRem++; return; 961 case Instruction::FRem: NumFastIselFailFRem++; return; 962 963 // Logical operators... 964 case Instruction::And: NumFastIselFailAnd++; return; 965 case Instruction::Or: NumFastIselFailOr++; return; 966 case Instruction::Xor: NumFastIselFailXor++; return; 967 968 // Memory instructions... 969 case Instruction::Alloca: NumFastIselFailAlloca++; return; 970 case Instruction::Load: NumFastIselFailLoad++; return; 971 case Instruction::Store: NumFastIselFailStore++; return; 972 case Instruction::AtomicCmpXchg: NumFastIselFailAtomicCmpXchg++; return; 973 case Instruction::AtomicRMW: NumFastIselFailAtomicRMW++; return; 974 case Instruction::Fence: NumFastIselFailFence++; return; 975 case Instruction::GetElementPtr: NumFastIselFailGetElementPtr++; return; 976 977 // Convert instructions... 978 case Instruction::Trunc: NumFastIselFailTrunc++; return; 979 case Instruction::ZExt: NumFastIselFailZExt++; return; 980 case Instruction::SExt: NumFastIselFailSExt++; return; 981 case Instruction::FPTrunc: NumFastIselFailFPTrunc++; return; 982 case Instruction::FPExt: NumFastIselFailFPExt++; return; 983 case Instruction::FPToUI: NumFastIselFailFPToUI++; return; 984 case Instruction::FPToSI: NumFastIselFailFPToSI++; return; 985 case Instruction::UIToFP: NumFastIselFailUIToFP++; return; 986 case Instruction::SIToFP: NumFastIselFailSIToFP++; return; 987 case Instruction::IntToPtr: NumFastIselFailIntToPtr++; return; 988 case Instruction::PtrToInt: NumFastIselFailPtrToInt++; return; 989 case Instruction::BitCast: NumFastIselFailBitCast++; return; 990 991 // Other instructions... 992 case Instruction::ICmp: NumFastIselFailICmp++; return; 993 case Instruction::FCmp: NumFastIselFailFCmp++; return; 994 case Instruction::PHI: NumFastIselFailPHI++; return; 995 case Instruction::Select: NumFastIselFailSelect++; return; 996 case Instruction::Call: { 997 if (auto const *Intrinsic = dyn_cast<IntrinsicInst>(I)) { 998 switch (Intrinsic->getIntrinsicID()) { 999 default: 1000 NumFastIselFailIntrinsicCall++; return; 1001 case Intrinsic::sadd_with_overflow: 1002 NumFastIselFailSAddWithOverflow++; return; 1003 case Intrinsic::uadd_with_overflow: 1004 NumFastIselFailUAddWithOverflow++; return; 1005 case Intrinsic::ssub_with_overflow: 1006 NumFastIselFailSSubWithOverflow++; return; 1007 case Intrinsic::usub_with_overflow: 1008 NumFastIselFailUSubWithOverflow++; return; 1009 case Intrinsic::smul_with_overflow: 1010 NumFastIselFailSMulWithOverflow++; return; 1011 case Intrinsic::umul_with_overflow: 1012 NumFastIselFailUMulWithOverflow++; return; 1013 case Intrinsic::frameaddress: 1014 NumFastIselFailFrameaddress++; return; 1015 case Intrinsic::sqrt: 1016 NumFastIselFailSqrt++; return; 1017 case Intrinsic::experimental_stackmap: 1018 NumFastIselFailStackMap++; return; 1019 case Intrinsic::experimental_patchpoint_void: // fall-through 1020 case Intrinsic::experimental_patchpoint_i64: 1021 NumFastIselFailPatchPoint++; return; 1022 } 1023 } 1024 NumFastIselFailCall++; 1025 return; 1026 } 1027 case Instruction::Shl: NumFastIselFailShl++; return; 1028 case Instruction::LShr: NumFastIselFailLShr++; return; 1029 case Instruction::AShr: NumFastIselFailAShr++; return; 1030 case Instruction::VAArg: NumFastIselFailVAArg++; return; 1031 case Instruction::ExtractElement: NumFastIselFailExtractElement++; return; 1032 case Instruction::InsertElement: NumFastIselFailInsertElement++; return; 1033 case Instruction::ShuffleVector: NumFastIselFailShuffleVector++; return; 1034 case Instruction::ExtractValue: NumFastIselFailExtractValue++; return; 1035 case Instruction::InsertValue: NumFastIselFailInsertValue++; return; 1036 case Instruction::LandingPad: NumFastIselFailLandingPad++; return; 1037 } 1038 } 1039 #endif 1040 1041 void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) { 1042 // Initialize the Fast-ISel state, if needed. 1043 FastISel *FastIS = nullptr; 1044 if (TM.Options.EnableFastISel) 1045 FastIS = getTargetLowering()->createFastISel(*FuncInfo, LibInfo); 1046 1047 // Iterate over all basic blocks in the function. 1048 ReversePostOrderTraversal<const Function*> RPOT(&Fn); 1049 for (ReversePostOrderTraversal<const Function*>::rpo_iterator 1050 I = RPOT.begin(), E = RPOT.end(); I != E; ++I) { 1051 const BasicBlock *LLVMBB = *I; 1052 1053 if (OptLevel != CodeGenOpt::None) { 1054 bool AllPredsVisited = true; 1055 for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB); 1056 PI != PE; ++PI) { 1057 if (!FuncInfo->VisitedBBs.count(*PI)) { 1058 AllPredsVisited = false; 1059 break; 1060 } 1061 } 1062 1063 if (AllPredsVisited) { 1064 for (BasicBlock::const_iterator I = LLVMBB->begin(); 1065 const PHINode *PN = dyn_cast<PHINode>(I); ++I) 1066 FuncInfo->ComputePHILiveOutRegInfo(PN); 1067 } else { 1068 for (BasicBlock::const_iterator I = LLVMBB->begin(); 1069 const PHINode *PN = dyn_cast<PHINode>(I); ++I) 1070 FuncInfo->InvalidatePHILiveOutRegInfo(PN); 1071 } 1072 1073 FuncInfo->VisitedBBs.insert(LLVMBB); 1074 } 1075 1076 BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI(); 1077 BasicBlock::const_iterator const End = LLVMBB->end(); 1078 BasicBlock::const_iterator BI = End; 1079 1080 FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB]; 1081 FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI(); 1082 1083 // Setup an EH landing-pad block. 1084 FuncInfo->ExceptionPointerVirtReg = 0; 1085 FuncInfo->ExceptionSelectorVirtReg = 0; 1086 if (FuncInfo->MBB->isLandingPad()) 1087 PrepareEHLandingPad(); 1088 1089 // Before doing SelectionDAG ISel, see if FastISel has been requested. 1090 if (FastIS) { 1091 FastIS->startNewBlock(); 1092 1093 // Emit code for any incoming arguments. This must happen before 1094 // beginning FastISel on the entry block. 1095 if (LLVMBB == &Fn.getEntryBlock()) { 1096 ++NumEntryBlocks; 1097 1098 // Lower any arguments needed in this block if this is the entry block. 1099 if (!FastIS->LowerArguments()) { 1100 // Fast isel failed to lower these arguments 1101 ++NumFastIselFailLowerArguments; 1102 if (EnableFastISelAbortArgs) 1103 llvm_unreachable("FastISel didn't lower all arguments"); 1104 1105 // Use SelectionDAG argument lowering 1106 LowerArguments(Fn); 1107 CurDAG->setRoot(SDB->getControlRoot()); 1108 SDB->clear(); 1109 CodeGenAndEmitDAG(); 1110 } 1111 1112 // If we inserted any instructions at the beginning, make a note of 1113 // where they are, so we can be sure to emit subsequent instructions 1114 // after them. 1115 if (FuncInfo->InsertPt != FuncInfo->MBB->begin()) 1116 FastIS->setLastLocalValue(std::prev(FuncInfo->InsertPt)); 1117 else 1118 FastIS->setLastLocalValue(nullptr); 1119 } 1120 1121 unsigned NumFastIselRemaining = std::distance(Begin, End); 1122 // Do FastISel on as many instructions as possible. 1123 for (; BI != Begin; --BI) { 1124 const Instruction *Inst = std::prev(BI); 1125 1126 // If we no longer require this instruction, skip it. 1127 if (isFoldedOrDeadInstruction(Inst, FuncInfo)) { 1128 --NumFastIselRemaining; 1129 continue; 1130 } 1131 1132 // Bottom-up: reset the insert pos at the top, after any local-value 1133 // instructions. 1134 FastIS->recomputeInsertPt(); 1135 1136 // Try to select the instruction with FastISel. 1137 if (FastIS->SelectInstruction(Inst)) { 1138 --NumFastIselRemaining; 1139 ++NumFastIselSuccess; 1140 // If fast isel succeeded, skip over all the folded instructions, and 1141 // then see if there is a load right before the selected instructions. 1142 // Try to fold the load if so. 1143 const Instruction *BeforeInst = Inst; 1144 while (BeforeInst != Begin) { 1145 BeforeInst = std::prev(BasicBlock::const_iterator(BeforeInst)); 1146 if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo)) 1147 break; 1148 } 1149 if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) && 1150 BeforeInst->hasOneUse() && 1151 FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) { 1152 // If we succeeded, don't re-select the load. 1153 BI = std::next(BasicBlock::const_iterator(BeforeInst)); 1154 --NumFastIselRemaining; 1155 ++NumFastIselSuccess; 1156 } 1157 continue; 1158 } 1159 1160 #ifndef NDEBUG 1161 if (EnableFastISelVerbose2) 1162 collectFailStats(Inst); 1163 #endif 1164 1165 // Then handle certain instructions as single-LLVM-Instruction blocks. 1166 if (isa<CallInst>(Inst)) { 1167 1168 if (EnableFastISelVerbose || EnableFastISelAbort) { 1169 dbgs() << "FastISel missed call: "; 1170 Inst->dump(); 1171 } 1172 1173 if (!Inst->getType()->isVoidTy() && !Inst->use_empty()) { 1174 unsigned &R = FuncInfo->ValueMap[Inst]; 1175 if (!R) 1176 R = FuncInfo->CreateRegs(Inst->getType()); 1177 } 1178 1179 bool HadTailCall = false; 1180 MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt; 1181 SelectBasicBlock(Inst, BI, HadTailCall); 1182 1183 // If the call was emitted as a tail call, we're done with the block. 1184 // We also need to delete any previously emitted instructions. 1185 if (HadTailCall) { 1186 FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end()); 1187 --BI; 1188 break; 1189 } 1190 1191 // Recompute NumFastIselRemaining as Selection DAG instruction 1192 // selection may have handled the call, input args, etc. 1193 unsigned RemainingNow = std::distance(Begin, BI); 1194 NumFastIselFailures += NumFastIselRemaining - RemainingNow; 1195 NumFastIselRemaining = RemainingNow; 1196 continue; 1197 } 1198 1199 if (isa<TerminatorInst>(Inst) && !isa<BranchInst>(Inst)) { 1200 // Don't abort, and use a different message for terminator misses. 1201 NumFastIselFailures += NumFastIselRemaining; 1202 if (EnableFastISelVerbose || EnableFastISelAbort) { 1203 dbgs() << "FastISel missed terminator: "; 1204 Inst->dump(); 1205 } 1206 } else { 1207 NumFastIselFailures += NumFastIselRemaining; 1208 if (EnableFastISelVerbose || EnableFastISelAbort) { 1209 dbgs() << "FastISel miss: "; 1210 Inst->dump(); 1211 } 1212 if (EnableFastISelAbort) 1213 // The "fast" selector couldn't handle something and bailed. 1214 // For the purpose of debugging, just abort. 1215 llvm_unreachable("FastISel didn't select the entire block"); 1216 } 1217 break; 1218 } 1219 1220 FastIS->recomputeInsertPt(); 1221 } else { 1222 // Lower any arguments needed in this block if this is the entry block. 1223 if (LLVMBB == &Fn.getEntryBlock()) { 1224 ++NumEntryBlocks; 1225 LowerArguments(Fn); 1226 } 1227 } 1228 1229 if (Begin != BI) 1230 ++NumDAGBlocks; 1231 else 1232 ++NumFastIselBlocks; 1233 1234 if (Begin != BI) { 1235 // Run SelectionDAG instruction selection on the remainder of the block 1236 // not handled by FastISel. If FastISel is not run, this is the entire 1237 // block. 1238 bool HadTailCall; 1239 SelectBasicBlock(Begin, BI, HadTailCall); 1240 } 1241 1242 FinishBasicBlock(); 1243 FuncInfo->PHINodesToUpdate.clear(); 1244 } 1245 1246 delete FastIS; 1247 SDB->clearDanglingDebugInfo(); 1248 SDB->SPDescriptor.resetPerFunctionState(); 1249 } 1250 1251 /// Given that the input MI is before a partial terminator sequence TSeq, return 1252 /// true if M + TSeq also a partial terminator sequence. 1253 /// 1254 /// A Terminator sequence is a sequence of MachineInstrs which at this point in 1255 /// lowering copy vregs into physical registers, which are then passed into 1256 /// terminator instructors so we can satisfy ABI constraints. A partial 1257 /// terminator sequence is an improper subset of a terminator sequence (i.e. it 1258 /// may be the whole terminator sequence). 1259 static bool MIIsInTerminatorSequence(const MachineInstr *MI) { 1260 // If we do not have a copy or an implicit def, we return true if and only if 1261 // MI is a debug value. 1262 if (!MI->isCopy() && !MI->isImplicitDef()) 1263 // Sometimes DBG_VALUE MI sneak in between the copies from the vregs to the 1264 // physical registers if there is debug info associated with the terminator 1265 // of our mbb. We want to include said debug info in our terminator 1266 // sequence, so we return true in that case. 1267 return MI->isDebugValue(); 1268 1269 // We have left the terminator sequence if we are not doing one of the 1270 // following: 1271 // 1272 // 1. Copying a vreg into a physical register. 1273 // 2. Copying a vreg into a vreg. 1274 // 3. Defining a register via an implicit def. 1275 1276 // OPI should always be a register definition... 1277 MachineInstr::const_mop_iterator OPI = MI->operands_begin(); 1278 if (!OPI->isReg() || !OPI->isDef()) 1279 return false; 1280 1281 // Defining any register via an implicit def is always ok. 1282 if (MI->isImplicitDef()) 1283 return true; 1284 1285 // Grab the copy source... 1286 MachineInstr::const_mop_iterator OPI2 = OPI; 1287 ++OPI2; 1288 assert(OPI2 != MI->operands_end() 1289 && "Should have a copy implying we should have 2 arguments."); 1290 1291 // Make sure that the copy dest is not a vreg when the copy source is a 1292 // physical register. 1293 if (!OPI2->isReg() || 1294 (!TargetRegisterInfo::isPhysicalRegister(OPI->getReg()) && 1295 TargetRegisterInfo::isPhysicalRegister(OPI2->getReg()))) 1296 return false; 1297 1298 return true; 1299 } 1300 1301 /// Find the split point at which to splice the end of BB into its success stack 1302 /// protector check machine basic block. 1303 /// 1304 /// On many platforms, due to ABI constraints, terminators, even before register 1305 /// allocation, use physical registers. This creates an issue for us since 1306 /// physical registers at this point can not travel across basic 1307 /// blocks. Luckily, selectiondag always moves physical registers into vregs 1308 /// when they enter functions and moves them through a sequence of copies back 1309 /// into the physical registers right before the terminator creating a 1310 /// ``Terminator Sequence''. This function is searching for the beginning of the 1311 /// terminator sequence so that we can ensure that we splice off not just the 1312 /// terminator, but additionally the copies that move the vregs into the 1313 /// physical registers. 1314 static MachineBasicBlock::iterator 1315 FindSplitPointForStackProtector(MachineBasicBlock *BB, DebugLoc DL) { 1316 MachineBasicBlock::iterator SplitPoint = BB->getFirstTerminator(); 1317 // 1318 if (SplitPoint == BB->begin()) 1319 return SplitPoint; 1320 1321 MachineBasicBlock::iterator Start = BB->begin(); 1322 MachineBasicBlock::iterator Previous = SplitPoint; 1323 --Previous; 1324 1325 while (MIIsInTerminatorSequence(Previous)) { 1326 SplitPoint = Previous; 1327 if (Previous == Start) 1328 break; 1329 --Previous; 1330 } 1331 1332 return SplitPoint; 1333 } 1334 1335 void 1336 SelectionDAGISel::FinishBasicBlock() { 1337 1338 DEBUG(dbgs() << "Total amount of phi nodes to update: " 1339 << FuncInfo->PHINodesToUpdate.size() << "\n"; 1340 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) 1341 dbgs() << "Node " << i << " : (" 1342 << FuncInfo->PHINodesToUpdate[i].first 1343 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n"); 1344 1345 const bool MustUpdatePHINodes = SDB->SwitchCases.empty() && 1346 SDB->JTCases.empty() && 1347 SDB->BitTestCases.empty(); 1348 1349 // Next, now that we know what the last MBB the LLVM BB expanded is, update 1350 // PHI nodes in successors. 1351 if (MustUpdatePHINodes) { 1352 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) { 1353 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first); 1354 assert(PHI->isPHI() && 1355 "This is not a machine PHI node that we are updating!"); 1356 if (!FuncInfo->MBB->isSuccessor(PHI->getParent())) 1357 continue; 1358 PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB); 1359 } 1360 } 1361 1362 // Handle stack protector. 1363 if (SDB->SPDescriptor.shouldEmitStackProtector()) { 1364 MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB(); 1365 MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB(); 1366 1367 // Find the split point to split the parent mbb. At the same time copy all 1368 // physical registers used in the tail of parent mbb into virtual registers 1369 // before the split point and back into physical registers after the split 1370 // point. This prevents us needing to deal with Live-ins and many other 1371 // register allocation issues caused by us splitting the parent mbb. The 1372 // register allocator will clean up said virtual copies later on. 1373 MachineBasicBlock::iterator SplitPoint = 1374 FindSplitPointForStackProtector(ParentMBB, SDB->getCurDebugLoc()); 1375 1376 // Splice the terminator of ParentMBB into SuccessMBB. 1377 SuccessMBB->splice(SuccessMBB->end(), ParentMBB, 1378 SplitPoint, 1379 ParentMBB->end()); 1380 1381 // Add compare/jump on neq/jump to the parent BB. 1382 FuncInfo->MBB = ParentMBB; 1383 FuncInfo->InsertPt = ParentMBB->end(); 1384 SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB); 1385 CurDAG->setRoot(SDB->getRoot()); 1386 SDB->clear(); 1387 CodeGenAndEmitDAG(); 1388 1389 // CodeGen Failure MBB if we have not codegened it yet. 1390 MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB(); 1391 if (!FailureMBB->size()) { 1392 FuncInfo->MBB = FailureMBB; 1393 FuncInfo->InsertPt = FailureMBB->end(); 1394 SDB->visitSPDescriptorFailure(SDB->SPDescriptor); 1395 CurDAG->setRoot(SDB->getRoot()); 1396 SDB->clear(); 1397 CodeGenAndEmitDAG(); 1398 } 1399 1400 // Clear the Per-BB State. 1401 SDB->SPDescriptor.resetPerBBState(); 1402 } 1403 1404 // If we updated PHI Nodes, return early. 1405 if (MustUpdatePHINodes) 1406 return; 1407 1408 for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) { 1409 // Lower header first, if it wasn't already lowered 1410 if (!SDB->BitTestCases[i].Emitted) { 1411 // Set the current basic block to the mbb we wish to insert the code into 1412 FuncInfo->MBB = SDB->BitTestCases[i].Parent; 1413 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1414 // Emit the code 1415 SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB); 1416 CurDAG->setRoot(SDB->getRoot()); 1417 SDB->clear(); 1418 CodeGenAndEmitDAG(); 1419 } 1420 1421 uint32_t UnhandledWeight = 0; 1422 for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) 1423 UnhandledWeight += SDB->BitTestCases[i].Cases[j].ExtraWeight; 1424 1425 for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) { 1426 UnhandledWeight -= SDB->BitTestCases[i].Cases[j].ExtraWeight; 1427 // Set the current basic block to the mbb we wish to insert the code into 1428 FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB; 1429 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1430 // Emit the code 1431 if (j+1 != ej) 1432 SDB->visitBitTestCase(SDB->BitTestCases[i], 1433 SDB->BitTestCases[i].Cases[j+1].ThisBB, 1434 UnhandledWeight, 1435 SDB->BitTestCases[i].Reg, 1436 SDB->BitTestCases[i].Cases[j], 1437 FuncInfo->MBB); 1438 else 1439 SDB->visitBitTestCase(SDB->BitTestCases[i], 1440 SDB->BitTestCases[i].Default, 1441 UnhandledWeight, 1442 SDB->BitTestCases[i].Reg, 1443 SDB->BitTestCases[i].Cases[j], 1444 FuncInfo->MBB); 1445 1446 1447 CurDAG->setRoot(SDB->getRoot()); 1448 SDB->clear(); 1449 CodeGenAndEmitDAG(); 1450 } 1451 1452 // Update PHI Nodes 1453 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size(); 1454 pi != pe; ++pi) { 1455 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first); 1456 MachineBasicBlock *PHIBB = PHI->getParent(); 1457 assert(PHI->isPHI() && 1458 "This is not a machine PHI node that we are updating!"); 1459 // This is "default" BB. We have two jumps to it. From "header" BB and 1460 // from last "case" BB. 1461 if (PHIBB == SDB->BitTestCases[i].Default) 1462 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second) 1463 .addMBB(SDB->BitTestCases[i].Parent) 1464 .addReg(FuncInfo->PHINodesToUpdate[pi].second) 1465 .addMBB(SDB->BitTestCases[i].Cases.back().ThisBB); 1466 // One of "cases" BB. 1467 for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); 1468 j != ej; ++j) { 1469 MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB; 1470 if (cBB->isSuccessor(PHIBB)) 1471 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB); 1472 } 1473 } 1474 } 1475 SDB->BitTestCases.clear(); 1476 1477 // If the JumpTable record is filled in, then we need to emit a jump table. 1478 // Updating the PHI nodes is tricky in this case, since we need to determine 1479 // whether the PHI is a successor of the range check MBB or the jump table MBB 1480 for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) { 1481 // Lower header first, if it wasn't already lowered 1482 if (!SDB->JTCases[i].first.Emitted) { 1483 // Set the current basic block to the mbb we wish to insert the code into 1484 FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB; 1485 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1486 // Emit the code 1487 SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first, 1488 FuncInfo->MBB); 1489 CurDAG->setRoot(SDB->getRoot()); 1490 SDB->clear(); 1491 CodeGenAndEmitDAG(); 1492 } 1493 1494 // Set the current basic block to the mbb we wish to insert the code into 1495 FuncInfo->MBB = SDB->JTCases[i].second.MBB; 1496 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1497 // Emit the code 1498 SDB->visitJumpTable(SDB->JTCases[i].second); 1499 CurDAG->setRoot(SDB->getRoot()); 1500 SDB->clear(); 1501 CodeGenAndEmitDAG(); 1502 1503 // Update PHI Nodes 1504 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size(); 1505 pi != pe; ++pi) { 1506 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first); 1507 MachineBasicBlock *PHIBB = PHI->getParent(); 1508 assert(PHI->isPHI() && 1509 "This is not a machine PHI node that we are updating!"); 1510 // "default" BB. We can go there only from header BB. 1511 if (PHIBB == SDB->JTCases[i].second.Default) 1512 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second) 1513 .addMBB(SDB->JTCases[i].first.HeaderBB); 1514 // JT BB. Just iterate over successors here 1515 if (FuncInfo->MBB->isSuccessor(PHIBB)) 1516 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB); 1517 } 1518 } 1519 SDB->JTCases.clear(); 1520 1521 // If the switch block involved a branch to one of the actual successors, we 1522 // need to update PHI nodes in that block. 1523 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) { 1524 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first); 1525 assert(PHI->isPHI() && 1526 "This is not a machine PHI node that we are updating!"); 1527 if (FuncInfo->MBB->isSuccessor(PHI->getParent())) 1528 PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB); 1529 } 1530 1531 // If we generated any switch lowering information, build and codegen any 1532 // additional DAGs necessary. 1533 for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) { 1534 // Set the current basic block to the mbb we wish to insert the code into 1535 FuncInfo->MBB = SDB->SwitchCases[i].ThisBB; 1536 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1537 1538 // Determine the unique successors. 1539 SmallVector<MachineBasicBlock *, 2> Succs; 1540 Succs.push_back(SDB->SwitchCases[i].TrueBB); 1541 if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB) 1542 Succs.push_back(SDB->SwitchCases[i].FalseBB); 1543 1544 // Emit the code. Note that this could result in FuncInfo->MBB being split. 1545 SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB); 1546 CurDAG->setRoot(SDB->getRoot()); 1547 SDB->clear(); 1548 CodeGenAndEmitDAG(); 1549 1550 // Remember the last block, now that any splitting is done, for use in 1551 // populating PHI nodes in successors. 1552 MachineBasicBlock *ThisBB = FuncInfo->MBB; 1553 1554 // Handle any PHI nodes in successors of this chunk, as if we were coming 1555 // from the original BB before switch expansion. Note that PHI nodes can 1556 // occur multiple times in PHINodesToUpdate. We have to be very careful to 1557 // handle them the right number of times. 1558 for (unsigned i = 0, e = Succs.size(); i != e; ++i) { 1559 FuncInfo->MBB = Succs[i]; 1560 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1561 // FuncInfo->MBB may have been removed from the CFG if a branch was 1562 // constant folded. 1563 if (ThisBB->isSuccessor(FuncInfo->MBB)) { 1564 for (MachineBasicBlock::iterator 1565 MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end(); 1566 MBBI != MBBE && MBBI->isPHI(); ++MBBI) { 1567 MachineInstrBuilder PHI(*MF, MBBI); 1568 // This value for this PHI node is recorded in PHINodesToUpdate. 1569 for (unsigned pn = 0; ; ++pn) { 1570 assert(pn != FuncInfo->PHINodesToUpdate.size() && 1571 "Didn't find PHI entry!"); 1572 if (FuncInfo->PHINodesToUpdate[pn].first == PHI) { 1573 PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB); 1574 break; 1575 } 1576 } 1577 } 1578 } 1579 } 1580 } 1581 SDB->SwitchCases.clear(); 1582 } 1583 1584 1585 /// Create the scheduler. If a specific scheduler was specified 1586 /// via the SchedulerRegistry, use it, otherwise select the 1587 /// one preferred by the target. 1588 /// 1589 ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() { 1590 RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault(); 1591 1592 if (!Ctor) { 1593 Ctor = ISHeuristic; 1594 RegisterScheduler::setDefault(Ctor); 1595 } 1596 1597 return Ctor(this, OptLevel); 1598 } 1599 1600 //===----------------------------------------------------------------------===// 1601 // Helper functions used by the generated instruction selector. 1602 //===----------------------------------------------------------------------===// 1603 // Calls to these methods are generated by tblgen. 1604 1605 /// CheckAndMask - The isel is trying to match something like (and X, 255). If 1606 /// the dag combiner simplified the 255, we still want to match. RHS is the 1607 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value 1608 /// specified in the .td file (e.g. 255). 1609 bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS, 1610 int64_t DesiredMaskS) const { 1611 const APInt &ActualMask = RHS->getAPIntValue(); 1612 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS); 1613 1614 // If the actual mask exactly matches, success! 1615 if (ActualMask == DesiredMask) 1616 return true; 1617 1618 // If the actual AND mask is allowing unallowed bits, this doesn't match. 1619 if (ActualMask.intersects(~DesiredMask)) 1620 return false; 1621 1622 // Otherwise, the DAG Combiner may have proven that the value coming in is 1623 // either already zero or is not demanded. Check for known zero input bits. 1624 APInt NeededMask = DesiredMask & ~ActualMask; 1625 if (CurDAG->MaskedValueIsZero(LHS, NeededMask)) 1626 return true; 1627 1628 // TODO: check to see if missing bits are just not demanded. 1629 1630 // Otherwise, this pattern doesn't match. 1631 return false; 1632 } 1633 1634 /// CheckOrMask - The isel is trying to match something like (or X, 255). If 1635 /// the dag combiner simplified the 255, we still want to match. RHS is the 1636 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value 1637 /// specified in the .td file (e.g. 255). 1638 bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS, 1639 int64_t DesiredMaskS) const { 1640 const APInt &ActualMask = RHS->getAPIntValue(); 1641 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS); 1642 1643 // If the actual mask exactly matches, success! 1644 if (ActualMask == DesiredMask) 1645 return true; 1646 1647 // If the actual AND mask is allowing unallowed bits, this doesn't match. 1648 if (ActualMask.intersects(~DesiredMask)) 1649 return false; 1650 1651 // Otherwise, the DAG Combiner may have proven that the value coming in is 1652 // either already zero or is not demanded. Check for known zero input bits. 1653 APInt NeededMask = DesiredMask & ~ActualMask; 1654 1655 APInt KnownZero, KnownOne; 1656 CurDAG->computeKnownBits(LHS, KnownZero, KnownOne); 1657 1658 // If all the missing bits in the or are already known to be set, match! 1659 if ((NeededMask & KnownOne) == NeededMask) 1660 return true; 1661 1662 // TODO: check to see if missing bits are just not demanded. 1663 1664 // Otherwise, this pattern doesn't match. 1665 return false; 1666 } 1667 1668 1669 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated 1670 /// by tblgen. Others should not call it. 1671 void SelectionDAGISel:: 1672 SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) { 1673 std::vector<SDValue> InOps; 1674 std::swap(InOps, Ops); 1675 1676 Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0 1677 Ops.push_back(InOps[InlineAsm::Op_AsmString]); // 1 1678 Ops.push_back(InOps[InlineAsm::Op_MDNode]); // 2, !srcloc 1679 Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]); // 3 (SideEffect, AlignStack) 1680 1681 unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size(); 1682 if (InOps[e-1].getValueType() == MVT::Glue) 1683 --e; // Don't process a glue operand if it is here. 1684 1685 while (i != e) { 1686 unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue(); 1687 if (!InlineAsm::isMemKind(Flags)) { 1688 // Just skip over this operand, copying the operands verbatim. 1689 Ops.insert(Ops.end(), InOps.begin()+i, 1690 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1); 1691 i += InlineAsm::getNumOperandRegisters(Flags) + 1; 1692 } else { 1693 assert(InlineAsm::getNumOperandRegisters(Flags) == 1 && 1694 "Memory operand with multiple values?"); 1695 // Otherwise, this is a memory operand. Ask the target to select it. 1696 std::vector<SDValue> SelOps; 1697 if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps)) 1698 report_fatal_error("Could not match memory address. Inline asm" 1699 " failure!"); 1700 1701 // Add this to the output node. 1702 unsigned NewFlags = 1703 InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size()); 1704 Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32)); 1705 Ops.insert(Ops.end(), SelOps.begin(), SelOps.end()); 1706 i += 2; 1707 } 1708 } 1709 1710 // Add the glue input back if present. 1711 if (e != InOps.size()) 1712 Ops.push_back(InOps.back()); 1713 } 1714 1715 /// findGlueUse - Return use of MVT::Glue value produced by the specified 1716 /// SDNode. 1717 /// 1718 static SDNode *findGlueUse(SDNode *N) { 1719 unsigned FlagResNo = N->getNumValues()-1; 1720 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 1721 SDUse &Use = I.getUse(); 1722 if (Use.getResNo() == FlagResNo) 1723 return Use.getUser(); 1724 } 1725 return nullptr; 1726 } 1727 1728 /// findNonImmUse - Return true if "Use" is a non-immediate use of "Def". 1729 /// This function recursively traverses up the operand chain, ignoring 1730 /// certain nodes. 1731 static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse, 1732 SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited, 1733 bool IgnoreChains) { 1734 // The NodeID's are given uniques ID's where a node ID is guaranteed to be 1735 // greater than all of its (recursive) operands. If we scan to a point where 1736 // 'use' is smaller than the node we're scanning for, then we know we will 1737 // never find it. 1738 // 1739 // The Use may be -1 (unassigned) if it is a newly allocated node. This can 1740 // happen because we scan down to newly selected nodes in the case of glue 1741 // uses. 1742 if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1)) 1743 return false; 1744 1745 // Don't revisit nodes if we already scanned it and didn't fail, we know we 1746 // won't fail if we scan it again. 1747 if (!Visited.insert(Use)) 1748 return false; 1749 1750 for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) { 1751 // Ignore chain uses, they are validated by HandleMergeInputChains. 1752 if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains) 1753 continue; 1754 1755 SDNode *N = Use->getOperand(i).getNode(); 1756 if (N == Def) { 1757 if (Use == ImmedUse || Use == Root) 1758 continue; // We are not looking for immediate use. 1759 assert(N != Root); 1760 return true; 1761 } 1762 1763 // Traverse up the operand chain. 1764 if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains)) 1765 return true; 1766 } 1767 return false; 1768 } 1769 1770 /// IsProfitableToFold - Returns true if it's profitable to fold the specific 1771 /// operand node N of U during instruction selection that starts at Root. 1772 bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U, 1773 SDNode *Root) const { 1774 if (OptLevel == CodeGenOpt::None) return false; 1775 return N.hasOneUse(); 1776 } 1777 1778 /// IsLegalToFold - Returns true if the specific operand node N of 1779 /// U can be folded during instruction selection that starts at Root. 1780 bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root, 1781 CodeGenOpt::Level OptLevel, 1782 bool IgnoreChains) { 1783 if (OptLevel == CodeGenOpt::None) return false; 1784 1785 // If Root use can somehow reach N through a path that that doesn't contain 1786 // U then folding N would create a cycle. e.g. In the following 1787 // diagram, Root can reach N through X. If N is folded into into Root, then 1788 // X is both a predecessor and a successor of U. 1789 // 1790 // [N*] // 1791 // ^ ^ // 1792 // / \ // 1793 // [U*] [X]? // 1794 // ^ ^ // 1795 // \ / // 1796 // \ / // 1797 // [Root*] // 1798 // 1799 // * indicates nodes to be folded together. 1800 // 1801 // If Root produces glue, then it gets (even more) interesting. Since it 1802 // will be "glued" together with its glue use in the scheduler, we need to 1803 // check if it might reach N. 1804 // 1805 // [N*] // 1806 // ^ ^ // 1807 // / \ // 1808 // [U*] [X]? // 1809 // ^ ^ // 1810 // \ \ // 1811 // \ | // 1812 // [Root*] | // 1813 // ^ | // 1814 // f | // 1815 // | / // 1816 // [Y] / // 1817 // ^ / // 1818 // f / // 1819 // | / // 1820 // [GU] // 1821 // 1822 // If GU (glue use) indirectly reaches N (the load), and Root folds N 1823 // (call it Fold), then X is a predecessor of GU and a successor of 1824 // Fold. But since Fold and GU are glued together, this will create 1825 // a cycle in the scheduling graph. 1826 1827 // If the node has glue, walk down the graph to the "lowest" node in the 1828 // glueged set. 1829 EVT VT = Root->getValueType(Root->getNumValues()-1); 1830 while (VT == MVT::Glue) { 1831 SDNode *GU = findGlueUse(Root); 1832 if (!GU) 1833 break; 1834 Root = GU; 1835 VT = Root->getValueType(Root->getNumValues()-1); 1836 1837 // If our query node has a glue result with a use, we've walked up it. If 1838 // the user (which has already been selected) has a chain or indirectly uses 1839 // the chain, our WalkChainUsers predicate will not consider it. Because of 1840 // this, we cannot ignore chains in this predicate. 1841 IgnoreChains = false; 1842 } 1843 1844 1845 SmallPtrSet<SDNode*, 16> Visited; 1846 return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains); 1847 } 1848 1849 SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) { 1850 std::vector<SDValue> Ops(N->op_begin(), N->op_end()); 1851 SelectInlineAsmMemoryOperands(Ops); 1852 1853 EVT VTs[] = { MVT::Other, MVT::Glue }; 1854 SDValue New = CurDAG->getNode(ISD::INLINEASM, SDLoc(N), VTs, Ops); 1855 New->setNodeId(-1); 1856 return New.getNode(); 1857 } 1858 1859 SDNode 1860 *SelectionDAGISel::Select_READ_REGISTER(SDNode *Op) { 1861 SDLoc dl(Op); 1862 MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(0)); 1863 const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0)); 1864 unsigned Reg = getTargetLowering()->getRegisterByName( 1865 RegStr->getString().data(), Op->getValueType(0)); 1866 SDValue New = CurDAG->getCopyFromReg( 1867 CurDAG->getEntryNode(), dl, Reg, Op->getValueType(0)); 1868 New->setNodeId(-1); 1869 return New.getNode(); 1870 } 1871 1872 SDNode 1873 *SelectionDAGISel::Select_WRITE_REGISTER(SDNode *Op) { 1874 SDLoc dl(Op); 1875 MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(1)); 1876 const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0)); 1877 unsigned Reg = getTargetLowering()->getRegisterByName( 1878 RegStr->getString().data(), Op->getOperand(2).getValueType()); 1879 SDValue New = CurDAG->getCopyToReg( 1880 CurDAG->getEntryNode(), dl, Reg, Op->getOperand(2)); 1881 New->setNodeId(-1); 1882 return New.getNode(); 1883 } 1884 1885 1886 1887 SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) { 1888 return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0)); 1889 } 1890 1891 /// GetVBR - decode a vbr encoding whose top bit is set. 1892 LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t 1893 GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) { 1894 assert(Val >= 128 && "Not a VBR"); 1895 Val &= 127; // Remove first vbr bit. 1896 1897 unsigned Shift = 7; 1898 uint64_t NextBits; 1899 do { 1900 NextBits = MatcherTable[Idx++]; 1901 Val |= (NextBits&127) << Shift; 1902 Shift += 7; 1903 } while (NextBits & 128); 1904 1905 return Val; 1906 } 1907 1908 1909 /// UpdateChainsAndGlue - When a match is complete, this method updates uses of 1910 /// interior glue and chain results to use the new glue and chain results. 1911 void SelectionDAGISel:: 1912 UpdateChainsAndGlue(SDNode *NodeToMatch, SDValue InputChain, 1913 const SmallVectorImpl<SDNode*> &ChainNodesMatched, 1914 SDValue InputGlue, 1915 const SmallVectorImpl<SDNode*> &GlueResultNodesMatched, 1916 bool isMorphNodeTo) { 1917 SmallVector<SDNode*, 4> NowDeadNodes; 1918 1919 // Now that all the normal results are replaced, we replace the chain and 1920 // glue results if present. 1921 if (!ChainNodesMatched.empty()) { 1922 assert(InputChain.getNode() && 1923 "Matched input chains but didn't produce a chain"); 1924 // Loop over all of the nodes we matched that produced a chain result. 1925 // Replace all the chain results with the final chain we ended up with. 1926 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { 1927 SDNode *ChainNode = ChainNodesMatched[i]; 1928 1929 // If this node was already deleted, don't look at it. 1930 if (ChainNode->getOpcode() == ISD::DELETED_NODE) 1931 continue; 1932 1933 // Don't replace the results of the root node if we're doing a 1934 // MorphNodeTo. 1935 if (ChainNode == NodeToMatch && isMorphNodeTo) 1936 continue; 1937 1938 SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1); 1939 if (ChainVal.getValueType() == MVT::Glue) 1940 ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2); 1941 assert(ChainVal.getValueType() == MVT::Other && "Not a chain?"); 1942 CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain); 1943 1944 // If the node became dead and we haven't already seen it, delete it. 1945 if (ChainNode->use_empty() && 1946 !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode)) 1947 NowDeadNodes.push_back(ChainNode); 1948 } 1949 } 1950 1951 // If the result produces glue, update any glue results in the matched 1952 // pattern with the glue result. 1953 if (InputGlue.getNode()) { 1954 // Handle any interior nodes explicitly marked. 1955 for (unsigned i = 0, e = GlueResultNodesMatched.size(); i != e; ++i) { 1956 SDNode *FRN = GlueResultNodesMatched[i]; 1957 1958 // If this node was already deleted, don't look at it. 1959 if (FRN->getOpcode() == ISD::DELETED_NODE) 1960 continue; 1961 1962 assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Glue && 1963 "Doesn't have a glue result"); 1964 CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1), 1965 InputGlue); 1966 1967 // If the node became dead and we haven't already seen it, delete it. 1968 if (FRN->use_empty() && 1969 !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN)) 1970 NowDeadNodes.push_back(FRN); 1971 } 1972 } 1973 1974 if (!NowDeadNodes.empty()) 1975 CurDAG->RemoveDeadNodes(NowDeadNodes); 1976 1977 DEBUG(dbgs() << "ISEL: Match complete!\n"); 1978 } 1979 1980 enum ChainResult { 1981 CR_Simple, 1982 CR_InducesCycle, 1983 CR_LeadsToInteriorNode 1984 }; 1985 1986 /// WalkChainUsers - Walk down the users of the specified chained node that is 1987 /// part of the pattern we're matching, looking at all of the users we find. 1988 /// This determines whether something is an interior node, whether we have a 1989 /// non-pattern node in between two pattern nodes (which prevent folding because 1990 /// it would induce a cycle) and whether we have a TokenFactor node sandwiched 1991 /// between pattern nodes (in which case the TF becomes part of the pattern). 1992 /// 1993 /// The walk we do here is guaranteed to be small because we quickly get down to 1994 /// already selected nodes "below" us. 1995 static ChainResult 1996 WalkChainUsers(const SDNode *ChainedNode, 1997 SmallVectorImpl<SDNode*> &ChainedNodesInPattern, 1998 SmallVectorImpl<SDNode*> &InteriorChainedNodes) { 1999 ChainResult Result = CR_Simple; 2000 2001 for (SDNode::use_iterator UI = ChainedNode->use_begin(), 2002 E = ChainedNode->use_end(); UI != E; ++UI) { 2003 // Make sure the use is of the chain, not some other value we produce. 2004 if (UI.getUse().getValueType() != MVT::Other) continue; 2005 2006 SDNode *User = *UI; 2007 2008 if (User->getOpcode() == ISD::HANDLENODE) // Root of the graph. 2009 continue; 2010 2011 // If we see an already-selected machine node, then we've gone beyond the 2012 // pattern that we're selecting down into the already selected chunk of the 2013 // DAG. 2014 unsigned UserOpcode = User->getOpcode(); 2015 if (User->isMachineOpcode() || 2016 UserOpcode == ISD::CopyToReg || 2017 UserOpcode == ISD::CopyFromReg || 2018 UserOpcode == ISD::INLINEASM || 2019 UserOpcode == ISD::EH_LABEL || 2020 UserOpcode == ISD::LIFETIME_START || 2021 UserOpcode == ISD::LIFETIME_END) { 2022 // If their node ID got reset to -1 then they've already been selected. 2023 // Treat them like a MachineOpcode. 2024 if (User->getNodeId() == -1) 2025 continue; 2026 } 2027 2028 // If we have a TokenFactor, we handle it specially. 2029 if (User->getOpcode() != ISD::TokenFactor) { 2030 // If the node isn't a token factor and isn't part of our pattern, then it 2031 // must be a random chained node in between two nodes we're selecting. 2032 // This happens when we have something like: 2033 // x = load ptr 2034 // call 2035 // y = x+4 2036 // store y -> ptr 2037 // Because we structurally match the load/store as a read/modify/write, 2038 // but the call is chained between them. We cannot fold in this case 2039 // because it would induce a cycle in the graph. 2040 if (!std::count(ChainedNodesInPattern.begin(), 2041 ChainedNodesInPattern.end(), User)) 2042 return CR_InducesCycle; 2043 2044 // Otherwise we found a node that is part of our pattern. For example in: 2045 // x = load ptr 2046 // y = x+4 2047 // store y -> ptr 2048 // This would happen when we're scanning down from the load and see the 2049 // store as a user. Record that there is a use of ChainedNode that is 2050 // part of the pattern and keep scanning uses. 2051 Result = CR_LeadsToInteriorNode; 2052 InteriorChainedNodes.push_back(User); 2053 continue; 2054 } 2055 2056 // If we found a TokenFactor, there are two cases to consider: first if the 2057 // TokenFactor is just hanging "below" the pattern we're matching (i.e. no 2058 // uses of the TF are in our pattern) we just want to ignore it. Second, 2059 // the TokenFactor can be sandwiched in between two chained nodes, like so: 2060 // [Load chain] 2061 // ^ 2062 // | 2063 // [Load] 2064 // ^ ^ 2065 // | \ DAG's like cheese 2066 // / \ do you? 2067 // / | 2068 // [TokenFactor] [Op] 2069 // ^ ^ 2070 // | | 2071 // \ / 2072 // \ / 2073 // [Store] 2074 // 2075 // In this case, the TokenFactor becomes part of our match and we rewrite it 2076 // as a new TokenFactor. 2077 // 2078 // To distinguish these two cases, do a recursive walk down the uses. 2079 switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) { 2080 case CR_Simple: 2081 // If the uses of the TokenFactor are just already-selected nodes, ignore 2082 // it, it is "below" our pattern. 2083 continue; 2084 case CR_InducesCycle: 2085 // If the uses of the TokenFactor lead to nodes that are not part of our 2086 // pattern that are not selected, folding would turn this into a cycle, 2087 // bail out now. 2088 return CR_InducesCycle; 2089 case CR_LeadsToInteriorNode: 2090 break; // Otherwise, keep processing. 2091 } 2092 2093 // Okay, we know we're in the interesting interior case. The TokenFactor 2094 // is now going to be considered part of the pattern so that we rewrite its 2095 // uses (it may have uses that are not part of the pattern) with the 2096 // ultimate chain result of the generated code. We will also add its chain 2097 // inputs as inputs to the ultimate TokenFactor we create. 2098 Result = CR_LeadsToInteriorNode; 2099 ChainedNodesInPattern.push_back(User); 2100 InteriorChainedNodes.push_back(User); 2101 continue; 2102 } 2103 2104 return Result; 2105 } 2106 2107 /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains 2108 /// operation for when the pattern matched at least one node with a chains. The 2109 /// input vector contains a list of all of the chained nodes that we match. We 2110 /// must determine if this is a valid thing to cover (i.e. matching it won't 2111 /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will 2112 /// be used as the input node chain for the generated nodes. 2113 static SDValue 2114 HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched, 2115 SelectionDAG *CurDAG) { 2116 // Walk all of the chained nodes we've matched, recursively scanning down the 2117 // users of the chain result. This adds any TokenFactor nodes that are caught 2118 // in between chained nodes to the chained and interior nodes list. 2119 SmallVector<SDNode*, 3> InteriorChainedNodes; 2120 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { 2121 if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched, 2122 InteriorChainedNodes) == CR_InducesCycle) 2123 return SDValue(); // Would induce a cycle. 2124 } 2125 2126 // Okay, we have walked all the matched nodes and collected TokenFactor nodes 2127 // that we are interested in. Form our input TokenFactor node. 2128 SmallVector<SDValue, 3> InputChains; 2129 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { 2130 // Add the input chain of this node to the InputChains list (which will be 2131 // the operands of the generated TokenFactor) if it's not an interior node. 2132 SDNode *N = ChainNodesMatched[i]; 2133 if (N->getOpcode() != ISD::TokenFactor) { 2134 if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N)) 2135 continue; 2136 2137 // Otherwise, add the input chain. 2138 SDValue InChain = ChainNodesMatched[i]->getOperand(0); 2139 assert(InChain.getValueType() == MVT::Other && "Not a chain"); 2140 InputChains.push_back(InChain); 2141 continue; 2142 } 2143 2144 // If we have a token factor, we want to add all inputs of the token factor 2145 // that are not part of the pattern we're matching. 2146 for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) { 2147 if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(), 2148 N->getOperand(op).getNode())) 2149 InputChains.push_back(N->getOperand(op)); 2150 } 2151 } 2152 2153 if (InputChains.size() == 1) 2154 return InputChains[0]; 2155 return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]), 2156 MVT::Other, InputChains); 2157 } 2158 2159 /// MorphNode - Handle morphing a node in place for the selector. 2160 SDNode *SelectionDAGISel:: 2161 MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList, 2162 ArrayRef<SDValue> Ops, unsigned EmitNodeInfo) { 2163 // It is possible we're using MorphNodeTo to replace a node with no 2164 // normal results with one that has a normal result (or we could be 2165 // adding a chain) and the input could have glue and chains as well. 2166 // In this case we need to shift the operands down. 2167 // FIXME: This is a horrible hack and broken in obscure cases, no worse 2168 // than the old isel though. 2169 int OldGlueResultNo = -1, OldChainResultNo = -1; 2170 2171 unsigned NTMNumResults = Node->getNumValues(); 2172 if (Node->getValueType(NTMNumResults-1) == MVT::Glue) { 2173 OldGlueResultNo = NTMNumResults-1; 2174 if (NTMNumResults != 1 && 2175 Node->getValueType(NTMNumResults-2) == MVT::Other) 2176 OldChainResultNo = NTMNumResults-2; 2177 } else if (Node->getValueType(NTMNumResults-1) == MVT::Other) 2178 OldChainResultNo = NTMNumResults-1; 2179 2180 // Call the underlying SelectionDAG routine to do the transmogrification. Note 2181 // that this deletes operands of the old node that become dead. 2182 SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops); 2183 2184 // MorphNodeTo can operate in two ways: if an existing node with the 2185 // specified operands exists, it can just return it. Otherwise, it 2186 // updates the node in place to have the requested operands. 2187 if (Res == Node) { 2188 // If we updated the node in place, reset the node ID. To the isel, 2189 // this should be just like a newly allocated machine node. 2190 Res->setNodeId(-1); 2191 } 2192 2193 unsigned ResNumResults = Res->getNumValues(); 2194 // Move the glue if needed. 2195 if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 && 2196 (unsigned)OldGlueResultNo != ResNumResults-1) 2197 CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo), 2198 SDValue(Res, ResNumResults-1)); 2199 2200 if ((EmitNodeInfo & OPFL_GlueOutput) != 0) 2201 --ResNumResults; 2202 2203 // Move the chain reference if needed. 2204 if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 && 2205 (unsigned)OldChainResultNo != ResNumResults-1) 2206 CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo), 2207 SDValue(Res, ResNumResults-1)); 2208 2209 // Otherwise, no replacement happened because the node already exists. Replace 2210 // Uses of the old node with the new one. 2211 if (Res != Node) 2212 CurDAG->ReplaceAllUsesWith(Node, Res); 2213 2214 return Res; 2215 } 2216 2217 /// CheckSame - Implements OP_CheckSame. 2218 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2219 CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2220 SDValue N, 2221 const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) { 2222 // Accept if it is exactly the same as a previously recorded node. 2223 unsigned RecNo = MatcherTable[MatcherIndex++]; 2224 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); 2225 return N == RecordedNodes[RecNo].first; 2226 } 2227 2228 /// CheckChildSame - Implements OP_CheckChildXSame. 2229 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2230 CheckChildSame(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2231 SDValue N, 2232 const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes, 2233 unsigned ChildNo) { 2234 if (ChildNo >= N.getNumOperands()) 2235 return false; // Match fails if out of range child #. 2236 return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo), 2237 RecordedNodes); 2238 } 2239 2240 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate. 2241 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2242 CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2243 const SelectionDAGISel &SDISel) { 2244 return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]); 2245 } 2246 2247 /// CheckNodePredicate - Implements OP_CheckNodePredicate. 2248 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2249 CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2250 const SelectionDAGISel &SDISel, SDNode *N) { 2251 return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]); 2252 } 2253 2254 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2255 CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2256 SDNode *N) { 2257 uint16_t Opc = MatcherTable[MatcherIndex++]; 2258 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; 2259 return N->getOpcode() == Opc; 2260 } 2261 2262 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2263 CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2264 SDValue N, const TargetLowering *TLI) { 2265 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 2266 if (N.getValueType() == VT) return true; 2267 2268 // Handle the case when VT is iPTR. 2269 return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy(); 2270 } 2271 2272 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2273 CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2274 SDValue N, const TargetLowering *TLI, unsigned ChildNo) { 2275 if (ChildNo >= N.getNumOperands()) 2276 return false; // Match fails if out of range child #. 2277 return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI); 2278 } 2279 2280 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2281 CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2282 SDValue N) { 2283 return cast<CondCodeSDNode>(N)->get() == 2284 (ISD::CondCode)MatcherTable[MatcherIndex++]; 2285 } 2286 2287 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2288 CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2289 SDValue N, const TargetLowering *TLI) { 2290 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 2291 if (cast<VTSDNode>(N)->getVT() == VT) 2292 return true; 2293 2294 // Handle the case when VT is iPTR. 2295 return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy(); 2296 } 2297 2298 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2299 CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2300 SDValue N) { 2301 int64_t Val = MatcherTable[MatcherIndex++]; 2302 if (Val & 128) 2303 Val = GetVBR(Val, MatcherTable, MatcherIndex); 2304 2305 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N); 2306 return C && C->getSExtValue() == Val; 2307 } 2308 2309 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2310 CheckChildInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2311 SDValue N, unsigned ChildNo) { 2312 if (ChildNo >= N.getNumOperands()) 2313 return false; // Match fails if out of range child #. 2314 return ::CheckInteger(MatcherTable, MatcherIndex, N.getOperand(ChildNo)); 2315 } 2316 2317 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2318 CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2319 SDValue N, const SelectionDAGISel &SDISel) { 2320 int64_t Val = MatcherTable[MatcherIndex++]; 2321 if (Val & 128) 2322 Val = GetVBR(Val, MatcherTable, MatcherIndex); 2323 2324 if (N->getOpcode() != ISD::AND) return false; 2325 2326 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2327 return C && SDISel.CheckAndMask(N.getOperand(0), C, Val); 2328 } 2329 2330 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2331 CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2332 SDValue N, const SelectionDAGISel &SDISel) { 2333 int64_t Val = MatcherTable[MatcherIndex++]; 2334 if (Val & 128) 2335 Val = GetVBR(Val, MatcherTable, MatcherIndex); 2336 2337 if (N->getOpcode() != ISD::OR) return false; 2338 2339 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2340 return C && SDISel.CheckOrMask(N.getOperand(0), C, Val); 2341 } 2342 2343 /// IsPredicateKnownToFail - If we know how and can do so without pushing a 2344 /// scope, evaluate the current node. If the current predicate is known to 2345 /// fail, set Result=true and return anything. If the current predicate is 2346 /// known to pass, set Result=false and return the MatcherIndex to continue 2347 /// with. If the current predicate is unknown, set Result=false and return the 2348 /// MatcherIndex to continue with. 2349 static unsigned IsPredicateKnownToFail(const unsigned char *Table, 2350 unsigned Index, SDValue N, 2351 bool &Result, 2352 const SelectionDAGISel &SDISel, 2353 SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) { 2354 switch (Table[Index++]) { 2355 default: 2356 Result = false; 2357 return Index-1; // Could not evaluate this predicate. 2358 case SelectionDAGISel::OPC_CheckSame: 2359 Result = !::CheckSame(Table, Index, N, RecordedNodes); 2360 return Index; 2361 case SelectionDAGISel::OPC_CheckChild0Same: 2362 case SelectionDAGISel::OPC_CheckChild1Same: 2363 case SelectionDAGISel::OPC_CheckChild2Same: 2364 case SelectionDAGISel::OPC_CheckChild3Same: 2365 Result = !::CheckChildSame(Table, Index, N, RecordedNodes, 2366 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same); 2367 return Index; 2368 case SelectionDAGISel::OPC_CheckPatternPredicate: 2369 Result = !::CheckPatternPredicate(Table, Index, SDISel); 2370 return Index; 2371 case SelectionDAGISel::OPC_CheckPredicate: 2372 Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode()); 2373 return Index; 2374 case SelectionDAGISel::OPC_CheckOpcode: 2375 Result = !::CheckOpcode(Table, Index, N.getNode()); 2376 return Index; 2377 case SelectionDAGISel::OPC_CheckType: 2378 Result = !::CheckType(Table, Index, N, SDISel.getTargetLowering()); 2379 return Index; 2380 case SelectionDAGISel::OPC_CheckChild0Type: 2381 case SelectionDAGISel::OPC_CheckChild1Type: 2382 case SelectionDAGISel::OPC_CheckChild2Type: 2383 case SelectionDAGISel::OPC_CheckChild3Type: 2384 case SelectionDAGISel::OPC_CheckChild4Type: 2385 case SelectionDAGISel::OPC_CheckChild5Type: 2386 case SelectionDAGISel::OPC_CheckChild6Type: 2387 case SelectionDAGISel::OPC_CheckChild7Type: 2388 Result = !::CheckChildType(Table, Index, N, SDISel.getTargetLowering(), 2389 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type); 2390 return Index; 2391 case SelectionDAGISel::OPC_CheckCondCode: 2392 Result = !::CheckCondCode(Table, Index, N); 2393 return Index; 2394 case SelectionDAGISel::OPC_CheckValueType: 2395 Result = !::CheckValueType(Table, Index, N, SDISel.getTargetLowering()); 2396 return Index; 2397 case SelectionDAGISel::OPC_CheckInteger: 2398 Result = !::CheckInteger(Table, Index, N); 2399 return Index; 2400 case SelectionDAGISel::OPC_CheckChild0Integer: 2401 case SelectionDAGISel::OPC_CheckChild1Integer: 2402 case SelectionDAGISel::OPC_CheckChild2Integer: 2403 case SelectionDAGISel::OPC_CheckChild3Integer: 2404 case SelectionDAGISel::OPC_CheckChild4Integer: 2405 Result = !::CheckChildInteger(Table, Index, N, 2406 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Integer); 2407 return Index; 2408 case SelectionDAGISel::OPC_CheckAndImm: 2409 Result = !::CheckAndImm(Table, Index, N, SDISel); 2410 return Index; 2411 case SelectionDAGISel::OPC_CheckOrImm: 2412 Result = !::CheckOrImm(Table, Index, N, SDISel); 2413 return Index; 2414 } 2415 } 2416 2417 namespace { 2418 2419 struct MatchScope { 2420 /// FailIndex - If this match fails, this is the index to continue with. 2421 unsigned FailIndex; 2422 2423 /// NodeStack - The node stack when the scope was formed. 2424 SmallVector<SDValue, 4> NodeStack; 2425 2426 /// NumRecordedNodes - The number of recorded nodes when the scope was formed. 2427 unsigned NumRecordedNodes; 2428 2429 /// NumMatchedMemRefs - The number of matched memref entries. 2430 unsigned NumMatchedMemRefs; 2431 2432 /// InputChain/InputGlue - The current chain/glue 2433 SDValue InputChain, InputGlue; 2434 2435 /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty. 2436 bool HasChainNodesMatched, HasGlueResultNodesMatched; 2437 }; 2438 2439 } 2440 2441 SDNode *SelectionDAGISel:: 2442 SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable, 2443 unsigned TableSize) { 2444 // FIXME: Should these even be selected? Handle these cases in the caller? 2445 switch (NodeToMatch->getOpcode()) { 2446 default: 2447 break; 2448 case ISD::EntryToken: // These nodes remain the same. 2449 case ISD::BasicBlock: 2450 case ISD::Register: 2451 case ISD::RegisterMask: 2452 //case ISD::VALUETYPE: 2453 //case ISD::CONDCODE: 2454 case ISD::HANDLENODE: 2455 case ISD::MDNODE_SDNODE: 2456 case ISD::TargetConstant: 2457 case ISD::TargetConstantFP: 2458 case ISD::TargetConstantPool: 2459 case ISD::TargetFrameIndex: 2460 case ISD::TargetExternalSymbol: 2461 case ISD::TargetBlockAddress: 2462 case ISD::TargetJumpTable: 2463 case ISD::TargetGlobalTLSAddress: 2464 case ISD::TargetGlobalAddress: 2465 case ISD::TokenFactor: 2466 case ISD::CopyFromReg: 2467 case ISD::CopyToReg: 2468 case ISD::EH_LABEL: 2469 case ISD::LIFETIME_START: 2470 case ISD::LIFETIME_END: 2471 NodeToMatch->setNodeId(-1); // Mark selected. 2472 return nullptr; 2473 case ISD::AssertSext: 2474 case ISD::AssertZext: 2475 CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0), 2476 NodeToMatch->getOperand(0)); 2477 return nullptr; 2478 case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch); 2479 case ISD::READ_REGISTER: return Select_READ_REGISTER(NodeToMatch); 2480 case ISD::WRITE_REGISTER: return Select_WRITE_REGISTER(NodeToMatch); 2481 case ISD::UNDEF: return Select_UNDEF(NodeToMatch); 2482 } 2483 2484 assert(!NodeToMatch->isMachineOpcode() && "Node already selected!"); 2485 2486 // Set up the node stack with NodeToMatch as the only node on the stack. 2487 SmallVector<SDValue, 8> NodeStack; 2488 SDValue N = SDValue(NodeToMatch, 0); 2489 NodeStack.push_back(N); 2490 2491 // MatchScopes - Scopes used when matching, if a match failure happens, this 2492 // indicates where to continue checking. 2493 SmallVector<MatchScope, 8> MatchScopes; 2494 2495 // RecordedNodes - This is the set of nodes that have been recorded by the 2496 // state machine. The second value is the parent of the node, or null if the 2497 // root is recorded. 2498 SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes; 2499 2500 // MatchedMemRefs - This is the set of MemRef's we've seen in the input 2501 // pattern. 2502 SmallVector<MachineMemOperand*, 2> MatchedMemRefs; 2503 2504 // These are the current input chain and glue for use when generating nodes. 2505 // Various Emit operations change these. For example, emitting a copytoreg 2506 // uses and updates these. 2507 SDValue InputChain, InputGlue; 2508 2509 // ChainNodesMatched - If a pattern matches nodes that have input/output 2510 // chains, the OPC_EmitMergeInputChains operation is emitted which indicates 2511 // which ones they are. The result is captured into this list so that we can 2512 // update the chain results when the pattern is complete. 2513 SmallVector<SDNode*, 3> ChainNodesMatched; 2514 SmallVector<SDNode*, 3> GlueResultNodesMatched; 2515 2516 DEBUG(dbgs() << "ISEL: Starting pattern match on root node: "; 2517 NodeToMatch->dump(CurDAG); 2518 dbgs() << '\n'); 2519 2520 // Determine where to start the interpreter. Normally we start at opcode #0, 2521 // but if the state machine starts with an OPC_SwitchOpcode, then we 2522 // accelerate the first lookup (which is guaranteed to be hot) with the 2523 // OpcodeOffset table. 2524 unsigned MatcherIndex = 0; 2525 2526 if (!OpcodeOffset.empty()) { 2527 // Already computed the OpcodeOffset table, just index into it. 2528 if (N.getOpcode() < OpcodeOffset.size()) 2529 MatcherIndex = OpcodeOffset[N.getOpcode()]; 2530 DEBUG(dbgs() << " Initial Opcode index to " << MatcherIndex << "\n"); 2531 2532 } else if (MatcherTable[0] == OPC_SwitchOpcode) { 2533 // Otherwise, the table isn't computed, but the state machine does start 2534 // with an OPC_SwitchOpcode instruction. Populate the table now, since this 2535 // is the first time we're selecting an instruction. 2536 unsigned Idx = 1; 2537 while (1) { 2538 // Get the size of this case. 2539 unsigned CaseSize = MatcherTable[Idx++]; 2540 if (CaseSize & 128) 2541 CaseSize = GetVBR(CaseSize, MatcherTable, Idx); 2542 if (CaseSize == 0) break; 2543 2544 // Get the opcode, add the index to the table. 2545 uint16_t Opc = MatcherTable[Idx++]; 2546 Opc |= (unsigned short)MatcherTable[Idx++] << 8; 2547 if (Opc >= OpcodeOffset.size()) 2548 OpcodeOffset.resize((Opc+1)*2); 2549 OpcodeOffset[Opc] = Idx; 2550 Idx += CaseSize; 2551 } 2552 2553 // Okay, do the lookup for the first opcode. 2554 if (N.getOpcode() < OpcodeOffset.size()) 2555 MatcherIndex = OpcodeOffset[N.getOpcode()]; 2556 } 2557 2558 while (1) { 2559 assert(MatcherIndex < TableSize && "Invalid index"); 2560 #ifndef NDEBUG 2561 unsigned CurrentOpcodeIndex = MatcherIndex; 2562 #endif 2563 BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++]; 2564 switch (Opcode) { 2565 case OPC_Scope: { 2566 // Okay, the semantics of this operation are that we should push a scope 2567 // then evaluate the first child. However, pushing a scope only to have 2568 // the first check fail (which then pops it) is inefficient. If we can 2569 // determine immediately that the first check (or first several) will 2570 // immediately fail, don't even bother pushing a scope for them. 2571 unsigned FailIndex; 2572 2573 while (1) { 2574 unsigned NumToSkip = MatcherTable[MatcherIndex++]; 2575 if (NumToSkip & 128) 2576 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex); 2577 // Found the end of the scope with no match. 2578 if (NumToSkip == 0) { 2579 FailIndex = 0; 2580 break; 2581 } 2582 2583 FailIndex = MatcherIndex+NumToSkip; 2584 2585 unsigned MatcherIndexOfPredicate = MatcherIndex; 2586 (void)MatcherIndexOfPredicate; // silence warning. 2587 2588 // If we can't evaluate this predicate without pushing a scope (e.g. if 2589 // it is a 'MoveParent') or if the predicate succeeds on this node, we 2590 // push the scope and evaluate the full predicate chain. 2591 bool Result; 2592 MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N, 2593 Result, *this, RecordedNodes); 2594 if (!Result) 2595 break; 2596 2597 DEBUG(dbgs() << " Skipped scope entry (due to false predicate) at " 2598 << "index " << MatcherIndexOfPredicate 2599 << ", continuing at " << FailIndex << "\n"); 2600 ++NumDAGIselRetries; 2601 2602 // Otherwise, we know that this case of the Scope is guaranteed to fail, 2603 // move to the next case. 2604 MatcherIndex = FailIndex; 2605 } 2606 2607 // If the whole scope failed to match, bail. 2608 if (FailIndex == 0) break; 2609 2610 // Push a MatchScope which indicates where to go if the first child fails 2611 // to match. 2612 MatchScope NewEntry; 2613 NewEntry.FailIndex = FailIndex; 2614 NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end()); 2615 NewEntry.NumRecordedNodes = RecordedNodes.size(); 2616 NewEntry.NumMatchedMemRefs = MatchedMemRefs.size(); 2617 NewEntry.InputChain = InputChain; 2618 NewEntry.InputGlue = InputGlue; 2619 NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty(); 2620 NewEntry.HasGlueResultNodesMatched = !GlueResultNodesMatched.empty(); 2621 MatchScopes.push_back(NewEntry); 2622 continue; 2623 } 2624 case OPC_RecordNode: { 2625 // Remember this node, it may end up being an operand in the pattern. 2626 SDNode *Parent = nullptr; 2627 if (NodeStack.size() > 1) 2628 Parent = NodeStack[NodeStack.size()-2].getNode(); 2629 RecordedNodes.push_back(std::make_pair(N, Parent)); 2630 continue; 2631 } 2632 2633 case OPC_RecordChild0: case OPC_RecordChild1: 2634 case OPC_RecordChild2: case OPC_RecordChild3: 2635 case OPC_RecordChild4: case OPC_RecordChild5: 2636 case OPC_RecordChild6: case OPC_RecordChild7: { 2637 unsigned ChildNo = Opcode-OPC_RecordChild0; 2638 if (ChildNo >= N.getNumOperands()) 2639 break; // Match fails if out of range child #. 2640 2641 RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo), 2642 N.getNode())); 2643 continue; 2644 } 2645 case OPC_RecordMemRef: 2646 MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand()); 2647 continue; 2648 2649 case OPC_CaptureGlueInput: 2650 // If the current node has an input glue, capture it in InputGlue. 2651 if (N->getNumOperands() != 0 && 2652 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) 2653 InputGlue = N->getOperand(N->getNumOperands()-1); 2654 continue; 2655 2656 case OPC_MoveChild: { 2657 unsigned ChildNo = MatcherTable[MatcherIndex++]; 2658 if (ChildNo >= N.getNumOperands()) 2659 break; // Match fails if out of range child #. 2660 N = N.getOperand(ChildNo); 2661 NodeStack.push_back(N); 2662 continue; 2663 } 2664 2665 case OPC_MoveParent: 2666 // Pop the current node off the NodeStack. 2667 NodeStack.pop_back(); 2668 assert(!NodeStack.empty() && "Node stack imbalance!"); 2669 N = NodeStack.back(); 2670 continue; 2671 2672 case OPC_CheckSame: 2673 if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break; 2674 continue; 2675 2676 case OPC_CheckChild0Same: case OPC_CheckChild1Same: 2677 case OPC_CheckChild2Same: case OPC_CheckChild3Same: 2678 if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes, 2679 Opcode-OPC_CheckChild0Same)) 2680 break; 2681 continue; 2682 2683 case OPC_CheckPatternPredicate: 2684 if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break; 2685 continue; 2686 case OPC_CheckPredicate: 2687 if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this, 2688 N.getNode())) 2689 break; 2690 continue; 2691 case OPC_CheckComplexPat: { 2692 unsigned CPNum = MatcherTable[MatcherIndex++]; 2693 unsigned RecNo = MatcherTable[MatcherIndex++]; 2694 assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat"); 2695 if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second, 2696 RecordedNodes[RecNo].first, CPNum, 2697 RecordedNodes)) 2698 break; 2699 continue; 2700 } 2701 case OPC_CheckOpcode: 2702 if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break; 2703 continue; 2704 2705 case OPC_CheckType: 2706 if (!::CheckType(MatcherTable, MatcherIndex, N, getTargetLowering())) 2707 break; 2708 continue; 2709 2710 case OPC_SwitchOpcode: { 2711 unsigned CurNodeOpcode = N.getOpcode(); 2712 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart; 2713 unsigned CaseSize; 2714 while (1) { 2715 // Get the size of this case. 2716 CaseSize = MatcherTable[MatcherIndex++]; 2717 if (CaseSize & 128) 2718 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex); 2719 if (CaseSize == 0) break; 2720 2721 uint16_t Opc = MatcherTable[MatcherIndex++]; 2722 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; 2723 2724 // If the opcode matches, then we will execute this case. 2725 if (CurNodeOpcode == Opc) 2726 break; 2727 2728 // Otherwise, skip over this case. 2729 MatcherIndex += CaseSize; 2730 } 2731 2732 // If no cases matched, bail out. 2733 if (CaseSize == 0) break; 2734 2735 // Otherwise, execute the case we found. 2736 DEBUG(dbgs() << " OpcodeSwitch from " << SwitchStart 2737 << " to " << MatcherIndex << "\n"); 2738 continue; 2739 } 2740 2741 case OPC_SwitchType: { 2742 MVT CurNodeVT = N.getSimpleValueType(); 2743 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart; 2744 unsigned CaseSize; 2745 while (1) { 2746 // Get the size of this case. 2747 CaseSize = MatcherTable[MatcherIndex++]; 2748 if (CaseSize & 128) 2749 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex); 2750 if (CaseSize == 0) break; 2751 2752 MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 2753 if (CaseVT == MVT::iPTR) 2754 CaseVT = getTargetLowering()->getPointerTy(); 2755 2756 // If the VT matches, then we will execute this case. 2757 if (CurNodeVT == CaseVT) 2758 break; 2759 2760 // Otherwise, skip over this case. 2761 MatcherIndex += CaseSize; 2762 } 2763 2764 // If no cases matched, bail out. 2765 if (CaseSize == 0) break; 2766 2767 // Otherwise, execute the case we found. 2768 DEBUG(dbgs() << " TypeSwitch[" << EVT(CurNodeVT).getEVTString() 2769 << "] from " << SwitchStart << " to " << MatcherIndex<<'\n'); 2770 continue; 2771 } 2772 case OPC_CheckChild0Type: case OPC_CheckChild1Type: 2773 case OPC_CheckChild2Type: case OPC_CheckChild3Type: 2774 case OPC_CheckChild4Type: case OPC_CheckChild5Type: 2775 case OPC_CheckChild6Type: case OPC_CheckChild7Type: 2776 if (!::CheckChildType(MatcherTable, MatcherIndex, N, getTargetLowering(), 2777 Opcode-OPC_CheckChild0Type)) 2778 break; 2779 continue; 2780 case OPC_CheckCondCode: 2781 if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break; 2782 continue; 2783 case OPC_CheckValueType: 2784 if (!::CheckValueType(MatcherTable, MatcherIndex, N, getTargetLowering())) 2785 break; 2786 continue; 2787 case OPC_CheckInteger: 2788 if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break; 2789 continue; 2790 case OPC_CheckChild0Integer: case OPC_CheckChild1Integer: 2791 case OPC_CheckChild2Integer: case OPC_CheckChild3Integer: 2792 case OPC_CheckChild4Integer: 2793 if (!::CheckChildInteger(MatcherTable, MatcherIndex, N, 2794 Opcode-OPC_CheckChild0Integer)) break; 2795 continue; 2796 case OPC_CheckAndImm: 2797 if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break; 2798 continue; 2799 case OPC_CheckOrImm: 2800 if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break; 2801 continue; 2802 2803 case OPC_CheckFoldableChainNode: { 2804 assert(NodeStack.size() != 1 && "No parent node"); 2805 // Verify that all intermediate nodes between the root and this one have 2806 // a single use. 2807 bool HasMultipleUses = false; 2808 for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i) 2809 if (!NodeStack[i].hasOneUse()) { 2810 HasMultipleUses = true; 2811 break; 2812 } 2813 if (HasMultipleUses) break; 2814 2815 // Check to see that the target thinks this is profitable to fold and that 2816 // we can fold it without inducing cycles in the graph. 2817 if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(), 2818 NodeToMatch) || 2819 !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(), 2820 NodeToMatch, OptLevel, 2821 true/*We validate our own chains*/)) 2822 break; 2823 2824 continue; 2825 } 2826 case OPC_EmitInteger: { 2827 MVT::SimpleValueType VT = 2828 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 2829 int64_t Val = MatcherTable[MatcherIndex++]; 2830 if (Val & 128) 2831 Val = GetVBR(Val, MatcherTable, MatcherIndex); 2832 RecordedNodes.push_back(std::pair<SDValue, SDNode*>( 2833 CurDAG->getTargetConstant(Val, VT), nullptr)); 2834 continue; 2835 } 2836 case OPC_EmitRegister: { 2837 MVT::SimpleValueType VT = 2838 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 2839 unsigned RegNo = MatcherTable[MatcherIndex++]; 2840 RecordedNodes.push_back(std::pair<SDValue, SDNode*>( 2841 CurDAG->getRegister(RegNo, VT), nullptr)); 2842 continue; 2843 } 2844 case OPC_EmitRegister2: { 2845 // For targets w/ more than 256 register names, the register enum 2846 // values are stored in two bytes in the matcher table (just like 2847 // opcodes). 2848 MVT::SimpleValueType VT = 2849 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 2850 unsigned RegNo = MatcherTable[MatcherIndex++]; 2851 RegNo |= MatcherTable[MatcherIndex++] << 8; 2852 RecordedNodes.push_back(std::pair<SDValue, SDNode*>( 2853 CurDAG->getRegister(RegNo, VT), nullptr)); 2854 continue; 2855 } 2856 2857 case OPC_EmitConvertToTarget: { 2858 // Convert from IMM/FPIMM to target version. 2859 unsigned RecNo = MatcherTable[MatcherIndex++]; 2860 assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget"); 2861 SDValue Imm = RecordedNodes[RecNo].first; 2862 2863 if (Imm->getOpcode() == ISD::Constant) { 2864 const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue(); 2865 Imm = CurDAG->getConstant(*Val, Imm.getValueType(), true); 2866 } else if (Imm->getOpcode() == ISD::ConstantFP) { 2867 const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue(); 2868 Imm = CurDAG->getConstantFP(*Val, Imm.getValueType(), true); 2869 } 2870 2871 RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second)); 2872 continue; 2873 } 2874 2875 case OPC_EmitMergeInputChains1_0: // OPC_EmitMergeInputChains, 1, 0 2876 case OPC_EmitMergeInputChains1_1: { // OPC_EmitMergeInputChains, 1, 1 2877 // These are space-optimized forms of OPC_EmitMergeInputChains. 2878 assert(!InputChain.getNode() && 2879 "EmitMergeInputChains should be the first chain producing node"); 2880 assert(ChainNodesMatched.empty() && 2881 "Should only have one EmitMergeInputChains per match"); 2882 2883 // Read all of the chained nodes. 2884 unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1; 2885 assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains"); 2886 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode()); 2887 2888 // FIXME: What if other value results of the node have uses not matched 2889 // by this pattern? 2890 if (ChainNodesMatched.back() != NodeToMatch && 2891 !RecordedNodes[RecNo].first.hasOneUse()) { 2892 ChainNodesMatched.clear(); 2893 break; 2894 } 2895 2896 // Merge the input chains if they are not intra-pattern references. 2897 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG); 2898 2899 if (!InputChain.getNode()) 2900 break; // Failed to merge. 2901 continue; 2902 } 2903 2904 case OPC_EmitMergeInputChains: { 2905 assert(!InputChain.getNode() && 2906 "EmitMergeInputChains should be the first chain producing node"); 2907 // This node gets a list of nodes we matched in the input that have 2908 // chains. We want to token factor all of the input chains to these nodes 2909 // together. However, if any of the input chains is actually one of the 2910 // nodes matched in this pattern, then we have an intra-match reference. 2911 // Ignore these because the newly token factored chain should not refer to 2912 // the old nodes. 2913 unsigned NumChains = MatcherTable[MatcherIndex++]; 2914 assert(NumChains != 0 && "Can't TF zero chains"); 2915 2916 assert(ChainNodesMatched.empty() && 2917 "Should only have one EmitMergeInputChains per match"); 2918 2919 // Read all of the chained nodes. 2920 for (unsigned i = 0; i != NumChains; ++i) { 2921 unsigned RecNo = MatcherTable[MatcherIndex++]; 2922 assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains"); 2923 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode()); 2924 2925 // FIXME: What if other value results of the node have uses not matched 2926 // by this pattern? 2927 if (ChainNodesMatched.back() != NodeToMatch && 2928 !RecordedNodes[RecNo].first.hasOneUse()) { 2929 ChainNodesMatched.clear(); 2930 break; 2931 } 2932 } 2933 2934 // If the inner loop broke out, the match fails. 2935 if (ChainNodesMatched.empty()) 2936 break; 2937 2938 // Merge the input chains if they are not intra-pattern references. 2939 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG); 2940 2941 if (!InputChain.getNode()) 2942 break; // Failed to merge. 2943 2944 continue; 2945 } 2946 2947 case OPC_EmitCopyToReg: { 2948 unsigned RecNo = MatcherTable[MatcherIndex++]; 2949 assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg"); 2950 unsigned DestPhysReg = MatcherTable[MatcherIndex++]; 2951 2952 if (!InputChain.getNode()) 2953 InputChain = CurDAG->getEntryNode(); 2954 2955 InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch), 2956 DestPhysReg, RecordedNodes[RecNo].first, 2957 InputGlue); 2958 2959 InputGlue = InputChain.getValue(1); 2960 continue; 2961 } 2962 2963 case OPC_EmitNodeXForm: { 2964 unsigned XFormNo = MatcherTable[MatcherIndex++]; 2965 unsigned RecNo = MatcherTable[MatcherIndex++]; 2966 assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm"); 2967 SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo); 2968 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, nullptr)); 2969 continue; 2970 } 2971 2972 case OPC_EmitNode: 2973 case OPC_MorphNodeTo: { 2974 uint16_t TargetOpc = MatcherTable[MatcherIndex++]; 2975 TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; 2976 unsigned EmitNodeInfo = MatcherTable[MatcherIndex++]; 2977 // Get the result VT list. 2978 unsigned NumVTs = MatcherTable[MatcherIndex++]; 2979 SmallVector<EVT, 4> VTs; 2980 for (unsigned i = 0; i != NumVTs; ++i) { 2981 MVT::SimpleValueType VT = 2982 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 2983 if (VT == MVT::iPTR) VT = getTargetLowering()->getPointerTy().SimpleTy; 2984 VTs.push_back(VT); 2985 } 2986 2987 if (EmitNodeInfo & OPFL_Chain) 2988 VTs.push_back(MVT::Other); 2989 if (EmitNodeInfo & OPFL_GlueOutput) 2990 VTs.push_back(MVT::Glue); 2991 2992 // This is hot code, so optimize the two most common cases of 1 and 2 2993 // results. 2994 SDVTList VTList; 2995 if (VTs.size() == 1) 2996 VTList = CurDAG->getVTList(VTs[0]); 2997 else if (VTs.size() == 2) 2998 VTList = CurDAG->getVTList(VTs[0], VTs[1]); 2999 else 3000 VTList = CurDAG->getVTList(VTs); 3001 3002 // Get the operand list. 3003 unsigned NumOps = MatcherTable[MatcherIndex++]; 3004 SmallVector<SDValue, 8> Ops; 3005 for (unsigned i = 0; i != NumOps; ++i) { 3006 unsigned RecNo = MatcherTable[MatcherIndex++]; 3007 if (RecNo & 128) 3008 RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex); 3009 3010 assert(RecNo < RecordedNodes.size() && "Invalid EmitNode"); 3011 Ops.push_back(RecordedNodes[RecNo].first); 3012 } 3013 3014 // If there are variadic operands to add, handle them now. 3015 if (EmitNodeInfo & OPFL_VariadicInfo) { 3016 // Determine the start index to copy from. 3017 unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo); 3018 FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0; 3019 assert(NodeToMatch->getNumOperands() >= FirstOpToCopy && 3020 "Invalid variadic node"); 3021 // Copy all of the variadic operands, not including a potential glue 3022 // input. 3023 for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands(); 3024 i != e; ++i) { 3025 SDValue V = NodeToMatch->getOperand(i); 3026 if (V.getValueType() == MVT::Glue) break; 3027 Ops.push_back(V); 3028 } 3029 } 3030 3031 // If this has chain/glue inputs, add them. 3032 if (EmitNodeInfo & OPFL_Chain) 3033 Ops.push_back(InputChain); 3034 if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != nullptr) 3035 Ops.push_back(InputGlue); 3036 3037 // Create the node. 3038 SDNode *Res = nullptr; 3039 if (Opcode != OPC_MorphNodeTo) { 3040 // If this is a normal EmitNode command, just create the new node and 3041 // add the results to the RecordedNodes list. 3042 Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch), 3043 VTList, Ops); 3044 3045 // Add all the non-glue/non-chain results to the RecordedNodes list. 3046 for (unsigned i = 0, e = VTs.size(); i != e; ++i) { 3047 if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break; 3048 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i), 3049 nullptr)); 3050 } 3051 3052 } else if (NodeToMatch->getOpcode() != ISD::DELETED_NODE) { 3053 Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops, EmitNodeInfo); 3054 } else { 3055 // NodeToMatch was eliminated by CSE when the target changed the DAG. 3056 // We will visit the equivalent node later. 3057 DEBUG(dbgs() << "Node was eliminated by CSE\n"); 3058 return nullptr; 3059 } 3060 3061 // If the node had chain/glue results, update our notion of the current 3062 // chain and glue. 3063 if (EmitNodeInfo & OPFL_GlueOutput) { 3064 InputGlue = SDValue(Res, VTs.size()-1); 3065 if (EmitNodeInfo & OPFL_Chain) 3066 InputChain = SDValue(Res, VTs.size()-2); 3067 } else if (EmitNodeInfo & OPFL_Chain) 3068 InputChain = SDValue(Res, VTs.size()-1); 3069 3070 // If the OPFL_MemRefs glue is set on this node, slap all of the 3071 // accumulated memrefs onto it. 3072 // 3073 // FIXME: This is vastly incorrect for patterns with multiple outputs 3074 // instructions that access memory and for ComplexPatterns that match 3075 // loads. 3076 if (EmitNodeInfo & OPFL_MemRefs) { 3077 // Only attach load or store memory operands if the generated 3078 // instruction may load or store. 3079 const MCInstrDesc &MCID = TM.getInstrInfo()->get(TargetOpc); 3080 bool mayLoad = MCID.mayLoad(); 3081 bool mayStore = MCID.mayStore(); 3082 3083 unsigned NumMemRefs = 0; 3084 for (SmallVectorImpl<MachineMemOperand *>::const_iterator I = 3085 MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) { 3086 if ((*I)->isLoad()) { 3087 if (mayLoad) 3088 ++NumMemRefs; 3089 } else if ((*I)->isStore()) { 3090 if (mayStore) 3091 ++NumMemRefs; 3092 } else { 3093 ++NumMemRefs; 3094 } 3095 } 3096 3097 MachineSDNode::mmo_iterator MemRefs = 3098 MF->allocateMemRefsArray(NumMemRefs); 3099 3100 MachineSDNode::mmo_iterator MemRefsPos = MemRefs; 3101 for (SmallVectorImpl<MachineMemOperand *>::const_iterator I = 3102 MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) { 3103 if ((*I)->isLoad()) { 3104 if (mayLoad) 3105 *MemRefsPos++ = *I; 3106 } else if ((*I)->isStore()) { 3107 if (mayStore) 3108 *MemRefsPos++ = *I; 3109 } else { 3110 *MemRefsPos++ = *I; 3111 } 3112 } 3113 3114 cast<MachineSDNode>(Res) 3115 ->setMemRefs(MemRefs, MemRefs + NumMemRefs); 3116 } 3117 3118 DEBUG(dbgs() << " " 3119 << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created") 3120 << " node: "; Res->dump(CurDAG); dbgs() << "\n"); 3121 3122 // If this was a MorphNodeTo then we're completely done! 3123 if (Opcode == OPC_MorphNodeTo) { 3124 // Update chain and glue uses. 3125 UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched, 3126 InputGlue, GlueResultNodesMatched, true); 3127 return Res; 3128 } 3129 3130 continue; 3131 } 3132 3133 case OPC_MarkGlueResults: { 3134 unsigned NumNodes = MatcherTable[MatcherIndex++]; 3135 3136 // Read and remember all the glue-result nodes. 3137 for (unsigned i = 0; i != NumNodes; ++i) { 3138 unsigned RecNo = MatcherTable[MatcherIndex++]; 3139 if (RecNo & 128) 3140 RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex); 3141 3142 assert(RecNo < RecordedNodes.size() && "Invalid MarkGlueResults"); 3143 GlueResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode()); 3144 } 3145 continue; 3146 } 3147 3148 case OPC_CompleteMatch: { 3149 // The match has been completed, and any new nodes (if any) have been 3150 // created. Patch up references to the matched dag to use the newly 3151 // created nodes. 3152 unsigned NumResults = MatcherTable[MatcherIndex++]; 3153 3154 for (unsigned i = 0; i != NumResults; ++i) { 3155 unsigned ResSlot = MatcherTable[MatcherIndex++]; 3156 if (ResSlot & 128) 3157 ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex); 3158 3159 assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch"); 3160 SDValue Res = RecordedNodes[ResSlot].first; 3161 3162 assert(i < NodeToMatch->getNumValues() && 3163 NodeToMatch->getValueType(i) != MVT::Other && 3164 NodeToMatch->getValueType(i) != MVT::Glue && 3165 "Invalid number of results to complete!"); 3166 assert((NodeToMatch->getValueType(i) == Res.getValueType() || 3167 NodeToMatch->getValueType(i) == MVT::iPTR || 3168 Res.getValueType() == MVT::iPTR || 3169 NodeToMatch->getValueType(i).getSizeInBits() == 3170 Res.getValueType().getSizeInBits()) && 3171 "invalid replacement"); 3172 CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res); 3173 } 3174 3175 // If the root node defines glue, add it to the glue nodes to update list. 3176 if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Glue) 3177 GlueResultNodesMatched.push_back(NodeToMatch); 3178 3179 // Update chain and glue uses. 3180 UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched, 3181 InputGlue, GlueResultNodesMatched, false); 3182 3183 assert(NodeToMatch->use_empty() && 3184 "Didn't replace all uses of the node?"); 3185 3186 // FIXME: We just return here, which interacts correctly with SelectRoot 3187 // above. We should fix this to not return an SDNode* anymore. 3188 return nullptr; 3189 } 3190 } 3191 3192 // If the code reached this point, then the match failed. See if there is 3193 // another child to try in the current 'Scope', otherwise pop it until we 3194 // find a case to check. 3195 DEBUG(dbgs() << " Match failed at index " << CurrentOpcodeIndex << "\n"); 3196 ++NumDAGIselRetries; 3197 while (1) { 3198 if (MatchScopes.empty()) { 3199 CannotYetSelect(NodeToMatch); 3200 return nullptr; 3201 } 3202 3203 // Restore the interpreter state back to the point where the scope was 3204 // formed. 3205 MatchScope &LastScope = MatchScopes.back(); 3206 RecordedNodes.resize(LastScope.NumRecordedNodes); 3207 NodeStack.clear(); 3208 NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end()); 3209 N = NodeStack.back(); 3210 3211 if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size()) 3212 MatchedMemRefs.resize(LastScope.NumMatchedMemRefs); 3213 MatcherIndex = LastScope.FailIndex; 3214 3215 DEBUG(dbgs() << " Continuing at " << MatcherIndex << "\n"); 3216 3217 InputChain = LastScope.InputChain; 3218 InputGlue = LastScope.InputGlue; 3219 if (!LastScope.HasChainNodesMatched) 3220 ChainNodesMatched.clear(); 3221 if (!LastScope.HasGlueResultNodesMatched) 3222 GlueResultNodesMatched.clear(); 3223 3224 // Check to see what the offset is at the new MatcherIndex. If it is zero 3225 // we have reached the end of this scope, otherwise we have another child 3226 // in the current scope to try. 3227 unsigned NumToSkip = MatcherTable[MatcherIndex++]; 3228 if (NumToSkip & 128) 3229 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex); 3230 3231 // If we have another child in this scope to match, update FailIndex and 3232 // try it. 3233 if (NumToSkip != 0) { 3234 LastScope.FailIndex = MatcherIndex+NumToSkip; 3235 break; 3236 } 3237 3238 // End of this scope, pop it and try the next child in the containing 3239 // scope. 3240 MatchScopes.pop_back(); 3241 } 3242 } 3243 } 3244 3245 3246 3247 void SelectionDAGISel::CannotYetSelect(SDNode *N) { 3248 std::string msg; 3249 raw_string_ostream Msg(msg); 3250 Msg << "Cannot select: "; 3251 3252 if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN && 3253 N->getOpcode() != ISD::INTRINSIC_WO_CHAIN && 3254 N->getOpcode() != ISD::INTRINSIC_VOID) { 3255 N->printrFull(Msg, CurDAG); 3256 Msg << "\nIn function: " << MF->getName(); 3257 } else { 3258 bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other; 3259 unsigned iid = 3260 cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue(); 3261 if (iid < Intrinsic::num_intrinsics) 3262 Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid); 3263 else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo()) 3264 Msg << "target intrinsic %" << TII->getName(iid); 3265 else 3266 Msg << "unknown intrinsic #" << iid; 3267 } 3268 report_fatal_error(Msg.str()); 3269 } 3270 3271 char SelectionDAGISel::ID = 0; 3272