1 //===-- Instructions.cpp - Implement the LLVM instructions ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements all of the non-inline methods for the LLVM instruction 11 // classes. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/IR/Instructions.h" 16 #include "LLVMContextImpl.h" 17 #include "llvm/IR/CallSite.h" 18 #include "llvm/IR/ConstantRange.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/DataLayout.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/Function.h" 23 #include "llvm/IR/Module.h" 24 #include "llvm/IR/Operator.h" 25 #include "llvm/Support/ErrorHandling.h" 26 #include "llvm/Support/MathExtras.h" 27 using namespace llvm; 28 29 //===----------------------------------------------------------------------===// 30 // CallSite Class 31 //===----------------------------------------------------------------------===// 32 33 User::op_iterator CallSite::getCallee() const { 34 Instruction *II(getInstruction()); 35 return isCall() 36 ? cast<CallInst>(II)->op_end() - 1 // Skip Callee 37 : cast<InvokeInst>(II)->op_end() - 3; // Skip BB, BB, Callee 38 } 39 40 //===----------------------------------------------------------------------===// 41 // TerminatorInst Class 42 //===----------------------------------------------------------------------===// 43 44 // Out of line virtual method, so the vtable, etc has a home. 45 TerminatorInst::~TerminatorInst() { 46 } 47 48 //===----------------------------------------------------------------------===// 49 // UnaryInstruction Class 50 //===----------------------------------------------------------------------===// 51 52 // Out of line virtual method, so the vtable, etc has a home. 53 UnaryInstruction::~UnaryInstruction() { 54 } 55 56 //===----------------------------------------------------------------------===// 57 // SelectInst Class 58 //===----------------------------------------------------------------------===// 59 60 /// areInvalidOperands - Return a string if the specified operands are invalid 61 /// for a select operation, otherwise return null. 62 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) { 63 if (Op1->getType() != Op2->getType()) 64 return "both values to select must have same type"; 65 66 if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) { 67 // Vector select. 68 if (VT->getElementType() != Type::getInt1Ty(Op0->getContext())) 69 return "vector select condition element type must be i1"; 70 VectorType *ET = dyn_cast<VectorType>(Op1->getType()); 71 if (!ET) 72 return "selected values for vector select must be vectors"; 73 if (ET->getNumElements() != VT->getNumElements()) 74 return "vector select requires selected vectors to have " 75 "the same vector length as select condition"; 76 } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) { 77 return "select condition must be i1 or <n x i1>"; 78 } 79 return nullptr; 80 } 81 82 83 //===----------------------------------------------------------------------===// 84 // PHINode Class 85 //===----------------------------------------------------------------------===// 86 87 PHINode::PHINode(const PHINode &PN) 88 : Instruction(PN.getType(), Instruction::PHI, 89 allocHungoffUses(PN.getNumOperands()), PN.getNumOperands()), 90 ReservedSpace(PN.getNumOperands()) { 91 std::copy(PN.op_begin(), PN.op_end(), op_begin()); 92 std::copy(PN.block_begin(), PN.block_end(), block_begin()); 93 SubclassOptionalData = PN.SubclassOptionalData; 94 } 95 96 PHINode::~PHINode() { 97 dropHungoffUses(); 98 } 99 100 Use *PHINode::allocHungoffUses(unsigned N) const { 101 // Allocate the array of Uses of the incoming values, followed by a pointer 102 // (with bottom bit set) to the User, followed by the array of pointers to 103 // the incoming basic blocks. 104 size_t size = N * sizeof(Use) + sizeof(Use::UserRef) 105 + N * sizeof(BasicBlock*); 106 Use *Begin = static_cast<Use*>(::operator new(size)); 107 Use *End = Begin + N; 108 (void) new(End) Use::UserRef(const_cast<PHINode*>(this), 1); 109 return Use::initTags(Begin, End); 110 } 111 112 // removeIncomingValue - Remove an incoming value. This is useful if a 113 // predecessor basic block is deleted. 114 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) { 115 Value *Removed = getIncomingValue(Idx); 116 117 // Move everything after this operand down. 118 // 119 // FIXME: we could just swap with the end of the list, then erase. However, 120 // clients might not expect this to happen. The code as it is thrashes the 121 // use/def lists, which is kinda lame. 122 std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx); 123 std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx); 124 125 // Nuke the last value. 126 Op<-1>().set(nullptr); 127 --NumOperands; 128 129 // If the PHI node is dead, because it has zero entries, nuke it now. 130 if (getNumOperands() == 0 && DeletePHIIfEmpty) { 131 // If anyone is using this PHI, make them use a dummy value instead... 132 replaceAllUsesWith(UndefValue::get(getType())); 133 eraseFromParent(); 134 } 135 return Removed; 136 } 137 138 /// growOperands - grow operands - This grows the operand list in response 139 /// to a push_back style of operation. This grows the number of ops by 1.5 140 /// times. 141 /// 142 void PHINode::growOperands() { 143 unsigned e = getNumOperands(); 144 unsigned NumOps = e + e / 2; 145 if (NumOps < 2) NumOps = 2; // 2 op PHI nodes are VERY common. 146 147 Use *OldOps = op_begin(); 148 BasicBlock **OldBlocks = block_begin(); 149 150 ReservedSpace = NumOps; 151 OperandList = allocHungoffUses(ReservedSpace); 152 153 std::copy(OldOps, OldOps + e, op_begin()); 154 std::copy(OldBlocks, OldBlocks + e, block_begin()); 155 156 Use::zap(OldOps, OldOps + e, true); 157 } 158 159 /// hasConstantValue - If the specified PHI node always merges together the same 160 /// value, return the value, otherwise return null. 161 Value *PHINode::hasConstantValue() const { 162 // Exploit the fact that phi nodes always have at least one entry. 163 Value *ConstantValue = getIncomingValue(0); 164 for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i) 165 if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) { 166 if (ConstantValue != this) 167 return nullptr; // Incoming values not all the same. 168 // The case where the first value is this PHI. 169 ConstantValue = getIncomingValue(i); 170 } 171 if (ConstantValue == this) 172 return UndefValue::get(getType()); 173 return ConstantValue; 174 } 175 176 //===----------------------------------------------------------------------===// 177 // LandingPadInst Implementation 178 //===----------------------------------------------------------------------===// 179 180 LandingPadInst::LandingPadInst(Type *RetTy, Value *PersonalityFn, 181 unsigned NumReservedValues, const Twine &NameStr, 182 Instruction *InsertBefore) 183 : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) { 184 init(PersonalityFn, 1 + NumReservedValues, NameStr); 185 } 186 187 LandingPadInst::LandingPadInst(Type *RetTy, Value *PersonalityFn, 188 unsigned NumReservedValues, const Twine &NameStr, 189 BasicBlock *InsertAtEnd) 190 : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) { 191 init(PersonalityFn, 1 + NumReservedValues, NameStr); 192 } 193 194 LandingPadInst::LandingPadInst(const LandingPadInst &LP) 195 : Instruction(LP.getType(), Instruction::LandingPad, 196 allocHungoffUses(LP.getNumOperands()), LP.getNumOperands()), 197 ReservedSpace(LP.getNumOperands()) { 198 Use *OL = OperandList, *InOL = LP.OperandList; 199 for (unsigned I = 0, E = ReservedSpace; I != E; ++I) 200 OL[I] = InOL[I]; 201 202 setCleanup(LP.isCleanup()); 203 } 204 205 LandingPadInst::~LandingPadInst() { 206 dropHungoffUses(); 207 } 208 209 LandingPadInst *LandingPadInst::Create(Type *RetTy, Value *PersonalityFn, 210 unsigned NumReservedClauses, 211 const Twine &NameStr, 212 Instruction *InsertBefore) { 213 return new LandingPadInst(RetTy, PersonalityFn, NumReservedClauses, NameStr, 214 InsertBefore); 215 } 216 217 LandingPadInst *LandingPadInst::Create(Type *RetTy, Value *PersonalityFn, 218 unsigned NumReservedClauses, 219 const Twine &NameStr, 220 BasicBlock *InsertAtEnd) { 221 return new LandingPadInst(RetTy, PersonalityFn, NumReservedClauses, NameStr, 222 InsertAtEnd); 223 } 224 225 void LandingPadInst::init(Value *PersFn, unsigned NumReservedValues, 226 const Twine &NameStr) { 227 ReservedSpace = NumReservedValues; 228 NumOperands = 1; 229 OperandList = allocHungoffUses(ReservedSpace); 230 OperandList[0] = PersFn; 231 setName(NameStr); 232 setCleanup(false); 233 } 234 235 /// growOperands - grow operands - This grows the operand list in response to a 236 /// push_back style of operation. This grows the number of ops by 2 times. 237 void LandingPadInst::growOperands(unsigned Size) { 238 unsigned e = getNumOperands(); 239 if (ReservedSpace >= e + Size) return; 240 ReservedSpace = (e + Size / 2) * 2; 241 242 Use *NewOps = allocHungoffUses(ReservedSpace); 243 Use *OldOps = OperandList; 244 for (unsigned i = 0; i != e; ++i) 245 NewOps[i] = OldOps[i]; 246 247 OperandList = NewOps; 248 Use::zap(OldOps, OldOps + e, true); 249 } 250 251 void LandingPadInst::addClause(Constant *Val) { 252 unsigned OpNo = getNumOperands(); 253 growOperands(1); 254 assert(OpNo < ReservedSpace && "Growing didn't work!"); 255 ++NumOperands; 256 OperandList[OpNo] = Val; 257 } 258 259 //===----------------------------------------------------------------------===// 260 // CallInst Implementation 261 //===----------------------------------------------------------------------===// 262 263 CallInst::~CallInst() { 264 } 265 266 void CallInst::init(Value *Func, ArrayRef<Value *> Args, const Twine &NameStr) { 267 assert(NumOperands == Args.size() + 1 && "NumOperands not set up?"); 268 Op<-1>() = Func; 269 270 #ifndef NDEBUG 271 FunctionType *FTy = 272 cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType()); 273 274 assert((Args.size() == FTy->getNumParams() || 275 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) && 276 "Calling a function with bad signature!"); 277 278 for (unsigned i = 0; i != Args.size(); ++i) 279 assert((i >= FTy->getNumParams() || 280 FTy->getParamType(i) == Args[i]->getType()) && 281 "Calling a function with a bad signature!"); 282 #endif 283 284 std::copy(Args.begin(), Args.end(), op_begin()); 285 setName(NameStr); 286 } 287 288 void CallInst::init(Value *Func, const Twine &NameStr) { 289 assert(NumOperands == 1 && "NumOperands not set up?"); 290 Op<-1>() = Func; 291 292 #ifndef NDEBUG 293 FunctionType *FTy = 294 cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType()); 295 296 assert(FTy->getNumParams() == 0 && "Calling a function with bad signature"); 297 #endif 298 299 setName(NameStr); 300 } 301 302 CallInst::CallInst(Value *Func, const Twine &Name, 303 Instruction *InsertBefore) 304 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType()) 305 ->getElementType())->getReturnType(), 306 Instruction::Call, 307 OperandTraits<CallInst>::op_end(this) - 1, 308 1, InsertBefore) { 309 init(Func, Name); 310 } 311 312 CallInst::CallInst(Value *Func, const Twine &Name, 313 BasicBlock *InsertAtEnd) 314 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType()) 315 ->getElementType())->getReturnType(), 316 Instruction::Call, 317 OperandTraits<CallInst>::op_end(this) - 1, 318 1, InsertAtEnd) { 319 init(Func, Name); 320 } 321 322 CallInst::CallInst(const CallInst &CI) 323 : Instruction(CI.getType(), Instruction::Call, 324 OperandTraits<CallInst>::op_end(this) - CI.getNumOperands(), 325 CI.getNumOperands()) { 326 setAttributes(CI.getAttributes()); 327 setTailCallKind(CI.getTailCallKind()); 328 setCallingConv(CI.getCallingConv()); 329 330 std::copy(CI.op_begin(), CI.op_end(), op_begin()); 331 SubclassOptionalData = CI.SubclassOptionalData; 332 } 333 334 void CallInst::addAttribute(unsigned i, Attribute::AttrKind attr) { 335 AttributeSet PAL = getAttributes(); 336 PAL = PAL.addAttribute(getContext(), i, attr); 337 setAttributes(PAL); 338 } 339 340 void CallInst::removeAttribute(unsigned i, Attribute attr) { 341 AttributeSet PAL = getAttributes(); 342 AttrBuilder B(attr); 343 LLVMContext &Context = getContext(); 344 PAL = PAL.removeAttributes(Context, i, 345 AttributeSet::get(Context, i, B)); 346 setAttributes(PAL); 347 } 348 349 bool CallInst::hasFnAttrImpl(Attribute::AttrKind A) const { 350 if (AttributeList.hasAttribute(AttributeSet::FunctionIndex, A)) 351 return true; 352 if (const Function *F = getCalledFunction()) 353 return F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, A); 354 return false; 355 } 356 357 bool CallInst::paramHasAttr(unsigned i, Attribute::AttrKind A) const { 358 if (AttributeList.hasAttribute(i, A)) 359 return true; 360 if (const Function *F = getCalledFunction()) 361 return F->getAttributes().hasAttribute(i, A); 362 return false; 363 } 364 365 /// IsConstantOne - Return true only if val is constant int 1 366 static bool IsConstantOne(Value *val) { 367 assert(val && "IsConstantOne does not work with NULL val"); 368 return isa<ConstantInt>(val) && cast<ConstantInt>(val)->isOne(); 369 } 370 371 static Instruction *createMalloc(Instruction *InsertBefore, 372 BasicBlock *InsertAtEnd, Type *IntPtrTy, 373 Type *AllocTy, Value *AllocSize, 374 Value *ArraySize, Function *MallocF, 375 const Twine &Name) { 376 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) && 377 "createMalloc needs either InsertBefore or InsertAtEnd"); 378 379 // malloc(type) becomes: 380 // bitcast (i8* malloc(typeSize)) to type* 381 // malloc(type, arraySize) becomes: 382 // bitcast (i8 *malloc(typeSize*arraySize)) to type* 383 if (!ArraySize) 384 ArraySize = ConstantInt::get(IntPtrTy, 1); 385 else if (ArraySize->getType() != IntPtrTy) { 386 if (InsertBefore) 387 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false, 388 "", InsertBefore); 389 else 390 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false, 391 "", InsertAtEnd); 392 } 393 394 if (!IsConstantOne(ArraySize)) { 395 if (IsConstantOne(AllocSize)) { 396 AllocSize = ArraySize; // Operand * 1 = Operand 397 } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) { 398 Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy, 399 false /*ZExt*/); 400 // Malloc arg is constant product of type size and array size 401 AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize)); 402 } else { 403 // Multiply type size by the array size... 404 if (InsertBefore) 405 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize, 406 "mallocsize", InsertBefore); 407 else 408 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize, 409 "mallocsize", InsertAtEnd); 410 } 411 } 412 413 assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size"); 414 // Create the call to Malloc. 415 BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd; 416 Module* M = BB->getParent()->getParent(); 417 Type *BPTy = Type::getInt8PtrTy(BB->getContext()); 418 Value *MallocFunc = MallocF; 419 if (!MallocFunc) 420 // prototype malloc as "void *malloc(size_t)" 421 MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy, NULL); 422 PointerType *AllocPtrType = PointerType::getUnqual(AllocTy); 423 CallInst *MCall = nullptr; 424 Instruction *Result = nullptr; 425 if (InsertBefore) { 426 MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall", InsertBefore); 427 Result = MCall; 428 if (Result->getType() != AllocPtrType) 429 // Create a cast instruction to convert to the right type... 430 Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore); 431 } else { 432 MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall"); 433 Result = MCall; 434 if (Result->getType() != AllocPtrType) { 435 InsertAtEnd->getInstList().push_back(MCall); 436 // Create a cast instruction to convert to the right type... 437 Result = new BitCastInst(MCall, AllocPtrType, Name); 438 } 439 } 440 MCall->setTailCall(); 441 if (Function *F = dyn_cast<Function>(MallocFunc)) { 442 MCall->setCallingConv(F->getCallingConv()); 443 if (!F->doesNotAlias(0)) F->setDoesNotAlias(0); 444 } 445 assert(!MCall->getType()->isVoidTy() && "Malloc has void return type"); 446 447 return Result; 448 } 449 450 /// CreateMalloc - Generate the IR for a call to malloc: 451 /// 1. Compute the malloc call's argument as the specified type's size, 452 /// possibly multiplied by the array size if the array size is not 453 /// constant 1. 454 /// 2. Call malloc with that argument. 455 /// 3. Bitcast the result of the malloc call to the specified type. 456 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore, 457 Type *IntPtrTy, Type *AllocTy, 458 Value *AllocSize, Value *ArraySize, 459 Function * MallocF, 460 const Twine &Name) { 461 return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize, 462 ArraySize, MallocF, Name); 463 } 464 465 /// CreateMalloc - Generate the IR for a call to malloc: 466 /// 1. Compute the malloc call's argument as the specified type's size, 467 /// possibly multiplied by the array size if the array size is not 468 /// constant 1. 469 /// 2. Call malloc with that argument. 470 /// 3. Bitcast the result of the malloc call to the specified type. 471 /// Note: This function does not add the bitcast to the basic block, that is the 472 /// responsibility of the caller. 473 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd, 474 Type *IntPtrTy, Type *AllocTy, 475 Value *AllocSize, Value *ArraySize, 476 Function *MallocF, const Twine &Name) { 477 return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize, 478 ArraySize, MallocF, Name); 479 } 480 481 static Instruction* createFree(Value* Source, Instruction *InsertBefore, 482 BasicBlock *InsertAtEnd) { 483 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) && 484 "createFree needs either InsertBefore or InsertAtEnd"); 485 assert(Source->getType()->isPointerTy() && 486 "Can not free something of nonpointer type!"); 487 488 BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd; 489 Module* M = BB->getParent()->getParent(); 490 491 Type *VoidTy = Type::getVoidTy(M->getContext()); 492 Type *IntPtrTy = Type::getInt8PtrTy(M->getContext()); 493 // prototype free as "void free(void*)" 494 Value *FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy, NULL); 495 CallInst* Result = nullptr; 496 Value *PtrCast = Source; 497 if (InsertBefore) { 498 if (Source->getType() != IntPtrTy) 499 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore); 500 Result = CallInst::Create(FreeFunc, PtrCast, "", InsertBefore); 501 } else { 502 if (Source->getType() != IntPtrTy) 503 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd); 504 Result = CallInst::Create(FreeFunc, PtrCast, ""); 505 } 506 Result->setTailCall(); 507 if (Function *F = dyn_cast<Function>(FreeFunc)) 508 Result->setCallingConv(F->getCallingConv()); 509 510 return Result; 511 } 512 513 /// CreateFree - Generate the IR for a call to the builtin free function. 514 Instruction * CallInst::CreateFree(Value* Source, Instruction *InsertBefore) { 515 return createFree(Source, InsertBefore, nullptr); 516 } 517 518 /// CreateFree - Generate the IR for a call to the builtin free function. 519 /// Note: This function does not add the call to the basic block, that is the 520 /// responsibility of the caller. 521 Instruction* CallInst::CreateFree(Value* Source, BasicBlock *InsertAtEnd) { 522 Instruction* FreeCall = createFree(Source, nullptr, InsertAtEnd); 523 assert(FreeCall && "CreateFree did not create a CallInst"); 524 return FreeCall; 525 } 526 527 //===----------------------------------------------------------------------===// 528 // InvokeInst Implementation 529 //===----------------------------------------------------------------------===// 530 531 void InvokeInst::init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException, 532 ArrayRef<Value *> Args, const Twine &NameStr) { 533 assert(NumOperands == 3 + Args.size() && "NumOperands not set up?"); 534 Op<-3>() = Fn; 535 Op<-2>() = IfNormal; 536 Op<-1>() = IfException; 537 538 #ifndef NDEBUG 539 FunctionType *FTy = 540 cast<FunctionType>(cast<PointerType>(Fn->getType())->getElementType()); 541 542 assert(((Args.size() == FTy->getNumParams()) || 543 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) && 544 "Invoking a function with bad signature"); 545 546 for (unsigned i = 0, e = Args.size(); i != e; i++) 547 assert((i >= FTy->getNumParams() || 548 FTy->getParamType(i) == Args[i]->getType()) && 549 "Invoking a function with a bad signature!"); 550 #endif 551 552 std::copy(Args.begin(), Args.end(), op_begin()); 553 setName(NameStr); 554 } 555 556 InvokeInst::InvokeInst(const InvokeInst &II) 557 : TerminatorInst(II.getType(), Instruction::Invoke, 558 OperandTraits<InvokeInst>::op_end(this) 559 - II.getNumOperands(), 560 II.getNumOperands()) { 561 setAttributes(II.getAttributes()); 562 setCallingConv(II.getCallingConv()); 563 std::copy(II.op_begin(), II.op_end(), op_begin()); 564 SubclassOptionalData = II.SubclassOptionalData; 565 } 566 567 BasicBlock *InvokeInst::getSuccessorV(unsigned idx) const { 568 return getSuccessor(idx); 569 } 570 unsigned InvokeInst::getNumSuccessorsV() const { 571 return getNumSuccessors(); 572 } 573 void InvokeInst::setSuccessorV(unsigned idx, BasicBlock *B) { 574 return setSuccessor(idx, B); 575 } 576 577 bool InvokeInst::hasFnAttrImpl(Attribute::AttrKind A) const { 578 if (AttributeList.hasAttribute(AttributeSet::FunctionIndex, A)) 579 return true; 580 if (const Function *F = getCalledFunction()) 581 return F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, A); 582 return false; 583 } 584 585 bool InvokeInst::paramHasAttr(unsigned i, Attribute::AttrKind A) const { 586 if (AttributeList.hasAttribute(i, A)) 587 return true; 588 if (const Function *F = getCalledFunction()) 589 return F->getAttributes().hasAttribute(i, A); 590 return false; 591 } 592 593 void InvokeInst::addAttribute(unsigned i, Attribute::AttrKind attr) { 594 AttributeSet PAL = getAttributes(); 595 PAL = PAL.addAttribute(getContext(), i, attr); 596 setAttributes(PAL); 597 } 598 599 void InvokeInst::removeAttribute(unsigned i, Attribute attr) { 600 AttributeSet PAL = getAttributes(); 601 AttrBuilder B(attr); 602 PAL = PAL.removeAttributes(getContext(), i, 603 AttributeSet::get(getContext(), i, B)); 604 setAttributes(PAL); 605 } 606 607 LandingPadInst *InvokeInst::getLandingPadInst() const { 608 return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI()); 609 } 610 611 //===----------------------------------------------------------------------===// 612 // ReturnInst Implementation 613 //===----------------------------------------------------------------------===// 614 615 ReturnInst::ReturnInst(const ReturnInst &RI) 616 : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Ret, 617 OperandTraits<ReturnInst>::op_end(this) - 618 RI.getNumOperands(), 619 RI.getNumOperands()) { 620 if (RI.getNumOperands()) 621 Op<0>() = RI.Op<0>(); 622 SubclassOptionalData = RI.SubclassOptionalData; 623 } 624 625 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore) 626 : TerminatorInst(Type::getVoidTy(C), Instruction::Ret, 627 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal, 628 InsertBefore) { 629 if (retVal) 630 Op<0>() = retVal; 631 } 632 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd) 633 : TerminatorInst(Type::getVoidTy(C), Instruction::Ret, 634 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal, 635 InsertAtEnd) { 636 if (retVal) 637 Op<0>() = retVal; 638 } 639 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd) 640 : TerminatorInst(Type::getVoidTy(Context), Instruction::Ret, 641 OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) { 642 } 643 644 unsigned ReturnInst::getNumSuccessorsV() const { 645 return getNumSuccessors(); 646 } 647 648 /// Out-of-line ReturnInst method, put here so the C++ compiler can choose to 649 /// emit the vtable for the class in this translation unit. 650 void ReturnInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) { 651 llvm_unreachable("ReturnInst has no successors!"); 652 } 653 654 BasicBlock *ReturnInst::getSuccessorV(unsigned idx) const { 655 llvm_unreachable("ReturnInst has no successors!"); 656 } 657 658 ReturnInst::~ReturnInst() { 659 } 660 661 //===----------------------------------------------------------------------===// 662 // ResumeInst Implementation 663 //===----------------------------------------------------------------------===// 664 665 ResumeInst::ResumeInst(const ResumeInst &RI) 666 : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Resume, 667 OperandTraits<ResumeInst>::op_begin(this), 1) { 668 Op<0>() = RI.Op<0>(); 669 } 670 671 ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore) 672 : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume, 673 OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) { 674 Op<0>() = Exn; 675 } 676 677 ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd) 678 : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume, 679 OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) { 680 Op<0>() = Exn; 681 } 682 683 unsigned ResumeInst::getNumSuccessorsV() const { 684 return getNumSuccessors(); 685 } 686 687 void ResumeInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) { 688 llvm_unreachable("ResumeInst has no successors!"); 689 } 690 691 BasicBlock *ResumeInst::getSuccessorV(unsigned idx) const { 692 llvm_unreachable("ResumeInst has no successors!"); 693 } 694 695 //===----------------------------------------------------------------------===// 696 // UnreachableInst Implementation 697 //===----------------------------------------------------------------------===// 698 699 UnreachableInst::UnreachableInst(LLVMContext &Context, 700 Instruction *InsertBefore) 701 : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable, 702 nullptr, 0, InsertBefore) { 703 } 704 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd) 705 : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable, 706 nullptr, 0, InsertAtEnd) { 707 } 708 709 unsigned UnreachableInst::getNumSuccessorsV() const { 710 return getNumSuccessors(); 711 } 712 713 void UnreachableInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) { 714 llvm_unreachable("UnreachableInst has no successors!"); 715 } 716 717 BasicBlock *UnreachableInst::getSuccessorV(unsigned idx) const { 718 llvm_unreachable("UnreachableInst has no successors!"); 719 } 720 721 //===----------------------------------------------------------------------===// 722 // BranchInst Implementation 723 //===----------------------------------------------------------------------===// 724 725 void BranchInst::AssertOK() { 726 if (isConditional()) 727 assert(getCondition()->getType()->isIntegerTy(1) && 728 "May only branch on boolean predicates!"); 729 } 730 731 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore) 732 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, 733 OperandTraits<BranchInst>::op_end(this) - 1, 734 1, InsertBefore) { 735 assert(IfTrue && "Branch destination may not be null!"); 736 Op<-1>() = IfTrue; 737 } 738 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, 739 Instruction *InsertBefore) 740 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, 741 OperandTraits<BranchInst>::op_end(this) - 3, 742 3, InsertBefore) { 743 Op<-1>() = IfTrue; 744 Op<-2>() = IfFalse; 745 Op<-3>() = Cond; 746 #ifndef NDEBUG 747 AssertOK(); 748 #endif 749 } 750 751 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) 752 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, 753 OperandTraits<BranchInst>::op_end(this) - 1, 754 1, InsertAtEnd) { 755 assert(IfTrue && "Branch destination may not be null!"); 756 Op<-1>() = IfTrue; 757 } 758 759 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, 760 BasicBlock *InsertAtEnd) 761 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, 762 OperandTraits<BranchInst>::op_end(this) - 3, 763 3, InsertAtEnd) { 764 Op<-1>() = IfTrue; 765 Op<-2>() = IfFalse; 766 Op<-3>() = Cond; 767 #ifndef NDEBUG 768 AssertOK(); 769 #endif 770 } 771 772 773 BranchInst::BranchInst(const BranchInst &BI) : 774 TerminatorInst(Type::getVoidTy(BI.getContext()), Instruction::Br, 775 OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(), 776 BI.getNumOperands()) { 777 Op<-1>() = BI.Op<-1>(); 778 if (BI.getNumOperands() != 1) { 779 assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!"); 780 Op<-3>() = BI.Op<-3>(); 781 Op<-2>() = BI.Op<-2>(); 782 } 783 SubclassOptionalData = BI.SubclassOptionalData; 784 } 785 786 void BranchInst::swapSuccessors() { 787 assert(isConditional() && 788 "Cannot swap successors of an unconditional branch"); 789 Op<-1>().swap(Op<-2>()); 790 791 // Update profile metadata if present and it matches our structural 792 // expectations. 793 MDNode *ProfileData = getMetadata(LLVMContext::MD_prof); 794 if (!ProfileData || ProfileData->getNumOperands() != 3) 795 return; 796 797 // The first operand is the name. Fetch them backwards and build a new one. 798 Value *Ops[] = { 799 ProfileData->getOperand(0), 800 ProfileData->getOperand(2), 801 ProfileData->getOperand(1) 802 }; 803 setMetadata(LLVMContext::MD_prof, 804 MDNode::get(ProfileData->getContext(), Ops)); 805 } 806 807 BasicBlock *BranchInst::getSuccessorV(unsigned idx) const { 808 return getSuccessor(idx); 809 } 810 unsigned BranchInst::getNumSuccessorsV() const { 811 return getNumSuccessors(); 812 } 813 void BranchInst::setSuccessorV(unsigned idx, BasicBlock *B) { 814 setSuccessor(idx, B); 815 } 816 817 818 //===----------------------------------------------------------------------===// 819 // AllocaInst Implementation 820 //===----------------------------------------------------------------------===// 821 822 static Value *getAISize(LLVMContext &Context, Value *Amt) { 823 if (!Amt) 824 Amt = ConstantInt::get(Type::getInt32Ty(Context), 1); 825 else { 826 assert(!isa<BasicBlock>(Amt) && 827 "Passed basic block into allocation size parameter! Use other ctor"); 828 assert(Amt->getType()->isIntegerTy() && 829 "Allocation array size is not an integer!"); 830 } 831 return Amt; 832 } 833 834 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, 835 const Twine &Name, Instruction *InsertBefore) 836 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca, 837 getAISize(Ty->getContext(), ArraySize), InsertBefore) { 838 setAlignment(0); 839 assert(!Ty->isVoidTy() && "Cannot allocate void!"); 840 setName(Name); 841 } 842 843 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, 844 const Twine &Name, BasicBlock *InsertAtEnd) 845 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca, 846 getAISize(Ty->getContext(), ArraySize), InsertAtEnd) { 847 setAlignment(0); 848 assert(!Ty->isVoidTy() && "Cannot allocate void!"); 849 setName(Name); 850 } 851 852 AllocaInst::AllocaInst(Type *Ty, const Twine &Name, 853 Instruction *InsertBefore) 854 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca, 855 getAISize(Ty->getContext(), nullptr), InsertBefore) { 856 setAlignment(0); 857 assert(!Ty->isVoidTy() && "Cannot allocate void!"); 858 setName(Name); 859 } 860 861 AllocaInst::AllocaInst(Type *Ty, const Twine &Name, 862 BasicBlock *InsertAtEnd) 863 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca, 864 getAISize(Ty->getContext(), nullptr), InsertAtEnd) { 865 setAlignment(0); 866 assert(!Ty->isVoidTy() && "Cannot allocate void!"); 867 setName(Name); 868 } 869 870 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align, 871 const Twine &Name, Instruction *InsertBefore) 872 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca, 873 getAISize(Ty->getContext(), ArraySize), InsertBefore) { 874 setAlignment(Align); 875 assert(!Ty->isVoidTy() && "Cannot allocate void!"); 876 setName(Name); 877 } 878 879 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align, 880 const Twine &Name, BasicBlock *InsertAtEnd) 881 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca, 882 getAISize(Ty->getContext(), ArraySize), InsertAtEnd) { 883 setAlignment(Align); 884 assert(!Ty->isVoidTy() && "Cannot allocate void!"); 885 setName(Name); 886 } 887 888 // Out of line virtual method, so the vtable, etc has a home. 889 AllocaInst::~AllocaInst() { 890 } 891 892 void AllocaInst::setAlignment(unsigned Align) { 893 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!"); 894 assert(Align <= MaximumAlignment && 895 "Alignment is greater than MaximumAlignment!"); 896 setInstructionSubclassData((getSubclassDataFromInstruction() & ~31) | 897 (Log2_32(Align) + 1)); 898 assert(getAlignment() == Align && "Alignment representation error!"); 899 } 900 901 bool AllocaInst::isArrayAllocation() const { 902 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0))) 903 return !CI->isOne(); 904 return true; 905 } 906 907 Type *AllocaInst::getAllocatedType() const { 908 return getType()->getElementType(); 909 } 910 911 /// isStaticAlloca - Return true if this alloca is in the entry block of the 912 /// function and is a constant size. If so, the code generator will fold it 913 /// into the prolog/epilog code, so it is basically free. 914 bool AllocaInst::isStaticAlloca() const { 915 // Must be constant size. 916 if (!isa<ConstantInt>(getArraySize())) return false; 917 918 // Must be in the entry block. 919 const BasicBlock *Parent = getParent(); 920 return Parent == &Parent->getParent()->front() && !isUsedWithInAlloca(); 921 } 922 923 //===----------------------------------------------------------------------===// 924 // LoadInst Implementation 925 //===----------------------------------------------------------------------===// 926 927 void LoadInst::AssertOK() { 928 assert(getOperand(0)->getType()->isPointerTy() && 929 "Ptr must have pointer type."); 930 assert(!(isAtomic() && getAlignment() == 0) && 931 "Alignment required for atomic load"); 932 } 933 934 LoadInst::LoadInst(Value *Ptr, const Twine &Name, Instruction *InsertBef) 935 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), 936 Load, Ptr, InsertBef) { 937 setVolatile(false); 938 setAlignment(0); 939 setAtomic(NotAtomic); 940 AssertOK(); 941 setName(Name); 942 } 943 944 LoadInst::LoadInst(Value *Ptr, const Twine &Name, BasicBlock *InsertAE) 945 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), 946 Load, Ptr, InsertAE) { 947 setVolatile(false); 948 setAlignment(0); 949 setAtomic(NotAtomic); 950 AssertOK(); 951 setName(Name); 952 } 953 954 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, 955 Instruction *InsertBef) 956 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), 957 Load, Ptr, InsertBef) { 958 setVolatile(isVolatile); 959 setAlignment(0); 960 setAtomic(NotAtomic); 961 AssertOK(); 962 setName(Name); 963 } 964 965 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, 966 BasicBlock *InsertAE) 967 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), 968 Load, Ptr, InsertAE) { 969 setVolatile(isVolatile); 970 setAlignment(0); 971 setAtomic(NotAtomic); 972 AssertOK(); 973 setName(Name); 974 } 975 976 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, 977 unsigned Align, Instruction *InsertBef) 978 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), 979 Load, Ptr, InsertBef) { 980 setVolatile(isVolatile); 981 setAlignment(Align); 982 setAtomic(NotAtomic); 983 AssertOK(); 984 setName(Name); 985 } 986 987 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, 988 unsigned Align, BasicBlock *InsertAE) 989 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), 990 Load, Ptr, InsertAE) { 991 setVolatile(isVolatile); 992 setAlignment(Align); 993 setAtomic(NotAtomic); 994 AssertOK(); 995 setName(Name); 996 } 997 998 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, 999 unsigned Align, AtomicOrdering Order, 1000 SynchronizationScope SynchScope, 1001 Instruction *InsertBef) 1002 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), 1003 Load, Ptr, InsertBef) { 1004 setVolatile(isVolatile); 1005 setAlignment(Align); 1006 setAtomic(Order, SynchScope); 1007 AssertOK(); 1008 setName(Name); 1009 } 1010 1011 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, 1012 unsigned Align, AtomicOrdering Order, 1013 SynchronizationScope SynchScope, 1014 BasicBlock *InsertAE) 1015 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), 1016 Load, Ptr, InsertAE) { 1017 setVolatile(isVolatile); 1018 setAlignment(Align); 1019 setAtomic(Order, SynchScope); 1020 AssertOK(); 1021 setName(Name); 1022 } 1023 1024 LoadInst::LoadInst(Value *Ptr, const char *Name, Instruction *InsertBef) 1025 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), 1026 Load, Ptr, InsertBef) { 1027 setVolatile(false); 1028 setAlignment(0); 1029 setAtomic(NotAtomic); 1030 AssertOK(); 1031 if (Name && Name[0]) setName(Name); 1032 } 1033 1034 LoadInst::LoadInst(Value *Ptr, const char *Name, BasicBlock *InsertAE) 1035 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), 1036 Load, Ptr, InsertAE) { 1037 setVolatile(false); 1038 setAlignment(0); 1039 setAtomic(NotAtomic); 1040 AssertOK(); 1041 if (Name && Name[0]) setName(Name); 1042 } 1043 1044 LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile, 1045 Instruction *InsertBef) 1046 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), 1047 Load, Ptr, InsertBef) { 1048 setVolatile(isVolatile); 1049 setAlignment(0); 1050 setAtomic(NotAtomic); 1051 AssertOK(); 1052 if (Name && Name[0]) setName(Name); 1053 } 1054 1055 LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile, 1056 BasicBlock *InsertAE) 1057 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), 1058 Load, Ptr, InsertAE) { 1059 setVolatile(isVolatile); 1060 setAlignment(0); 1061 setAtomic(NotAtomic); 1062 AssertOK(); 1063 if (Name && Name[0]) setName(Name); 1064 } 1065 1066 void LoadInst::setAlignment(unsigned Align) { 1067 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!"); 1068 assert(Align <= MaximumAlignment && 1069 "Alignment is greater than MaximumAlignment!"); 1070 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) | 1071 ((Log2_32(Align)+1)<<1)); 1072 assert(getAlignment() == Align && "Alignment representation error!"); 1073 } 1074 1075 //===----------------------------------------------------------------------===// 1076 // StoreInst Implementation 1077 //===----------------------------------------------------------------------===// 1078 1079 void StoreInst::AssertOK() { 1080 assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!"); 1081 assert(getOperand(1)->getType()->isPointerTy() && 1082 "Ptr must have pointer type!"); 1083 assert(getOperand(0)->getType() == 1084 cast<PointerType>(getOperand(1)->getType())->getElementType() 1085 && "Ptr must be a pointer to Val type!"); 1086 assert(!(isAtomic() && getAlignment() == 0) && 1087 "Alignment required for atomic store"); 1088 } 1089 1090 1091 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore) 1092 : Instruction(Type::getVoidTy(val->getContext()), Store, 1093 OperandTraits<StoreInst>::op_begin(this), 1094 OperandTraits<StoreInst>::operands(this), 1095 InsertBefore) { 1096 Op<0>() = val; 1097 Op<1>() = addr; 1098 setVolatile(false); 1099 setAlignment(0); 1100 setAtomic(NotAtomic); 1101 AssertOK(); 1102 } 1103 1104 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd) 1105 : Instruction(Type::getVoidTy(val->getContext()), Store, 1106 OperandTraits<StoreInst>::op_begin(this), 1107 OperandTraits<StoreInst>::operands(this), 1108 InsertAtEnd) { 1109 Op<0>() = val; 1110 Op<1>() = addr; 1111 setVolatile(false); 1112 setAlignment(0); 1113 setAtomic(NotAtomic); 1114 AssertOK(); 1115 } 1116 1117 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, 1118 Instruction *InsertBefore) 1119 : Instruction(Type::getVoidTy(val->getContext()), Store, 1120 OperandTraits<StoreInst>::op_begin(this), 1121 OperandTraits<StoreInst>::operands(this), 1122 InsertBefore) { 1123 Op<0>() = val; 1124 Op<1>() = addr; 1125 setVolatile(isVolatile); 1126 setAlignment(0); 1127 setAtomic(NotAtomic); 1128 AssertOK(); 1129 } 1130 1131 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, 1132 unsigned Align, Instruction *InsertBefore) 1133 : Instruction(Type::getVoidTy(val->getContext()), Store, 1134 OperandTraits<StoreInst>::op_begin(this), 1135 OperandTraits<StoreInst>::operands(this), 1136 InsertBefore) { 1137 Op<0>() = val; 1138 Op<1>() = addr; 1139 setVolatile(isVolatile); 1140 setAlignment(Align); 1141 setAtomic(NotAtomic); 1142 AssertOK(); 1143 } 1144 1145 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, 1146 unsigned Align, AtomicOrdering Order, 1147 SynchronizationScope SynchScope, 1148 Instruction *InsertBefore) 1149 : Instruction(Type::getVoidTy(val->getContext()), Store, 1150 OperandTraits<StoreInst>::op_begin(this), 1151 OperandTraits<StoreInst>::operands(this), 1152 InsertBefore) { 1153 Op<0>() = val; 1154 Op<1>() = addr; 1155 setVolatile(isVolatile); 1156 setAlignment(Align); 1157 setAtomic(Order, SynchScope); 1158 AssertOK(); 1159 } 1160 1161 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, 1162 BasicBlock *InsertAtEnd) 1163 : Instruction(Type::getVoidTy(val->getContext()), Store, 1164 OperandTraits<StoreInst>::op_begin(this), 1165 OperandTraits<StoreInst>::operands(this), 1166 InsertAtEnd) { 1167 Op<0>() = val; 1168 Op<1>() = addr; 1169 setVolatile(isVolatile); 1170 setAlignment(0); 1171 setAtomic(NotAtomic); 1172 AssertOK(); 1173 } 1174 1175 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, 1176 unsigned Align, BasicBlock *InsertAtEnd) 1177 : Instruction(Type::getVoidTy(val->getContext()), Store, 1178 OperandTraits<StoreInst>::op_begin(this), 1179 OperandTraits<StoreInst>::operands(this), 1180 InsertAtEnd) { 1181 Op<0>() = val; 1182 Op<1>() = addr; 1183 setVolatile(isVolatile); 1184 setAlignment(Align); 1185 setAtomic(NotAtomic); 1186 AssertOK(); 1187 } 1188 1189 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, 1190 unsigned Align, AtomicOrdering Order, 1191 SynchronizationScope SynchScope, 1192 BasicBlock *InsertAtEnd) 1193 : Instruction(Type::getVoidTy(val->getContext()), Store, 1194 OperandTraits<StoreInst>::op_begin(this), 1195 OperandTraits<StoreInst>::operands(this), 1196 InsertAtEnd) { 1197 Op<0>() = val; 1198 Op<1>() = addr; 1199 setVolatile(isVolatile); 1200 setAlignment(Align); 1201 setAtomic(Order, SynchScope); 1202 AssertOK(); 1203 } 1204 1205 void StoreInst::setAlignment(unsigned Align) { 1206 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!"); 1207 assert(Align <= MaximumAlignment && 1208 "Alignment is greater than MaximumAlignment!"); 1209 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) | 1210 ((Log2_32(Align)+1) << 1)); 1211 assert(getAlignment() == Align && "Alignment representation error!"); 1212 } 1213 1214 //===----------------------------------------------------------------------===// 1215 // AtomicCmpXchgInst Implementation 1216 //===----------------------------------------------------------------------===// 1217 1218 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal, 1219 AtomicOrdering SuccessOrdering, 1220 AtomicOrdering FailureOrdering, 1221 SynchronizationScope SynchScope) { 1222 Op<0>() = Ptr; 1223 Op<1>() = Cmp; 1224 Op<2>() = NewVal; 1225 setSuccessOrdering(SuccessOrdering); 1226 setFailureOrdering(FailureOrdering); 1227 setSynchScope(SynchScope); 1228 1229 assert(getOperand(0) && getOperand(1) && getOperand(2) && 1230 "All operands must be non-null!"); 1231 assert(getOperand(0)->getType()->isPointerTy() && 1232 "Ptr must have pointer type!"); 1233 assert(getOperand(1)->getType() == 1234 cast<PointerType>(getOperand(0)->getType())->getElementType() 1235 && "Ptr must be a pointer to Cmp type!"); 1236 assert(getOperand(2)->getType() == 1237 cast<PointerType>(getOperand(0)->getType())->getElementType() 1238 && "Ptr must be a pointer to NewVal type!"); 1239 assert(SuccessOrdering != NotAtomic && 1240 "AtomicCmpXchg instructions must be atomic!"); 1241 assert(FailureOrdering != NotAtomic && 1242 "AtomicCmpXchg instructions must be atomic!"); 1243 assert(SuccessOrdering >= FailureOrdering && 1244 "AtomicCmpXchg success ordering must be at least as strong as fail"); 1245 assert(FailureOrdering != Release && FailureOrdering != AcquireRelease && 1246 "AtomicCmpXchg failure ordering cannot include release semantics"); 1247 } 1248 1249 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, 1250 AtomicOrdering SuccessOrdering, 1251 AtomicOrdering FailureOrdering, 1252 SynchronizationScope SynchScope, 1253 Instruction *InsertBefore) 1254 : Instruction( 1255 StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext()), 1256 nullptr), 1257 AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this), 1258 OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) { 1259 Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SynchScope); 1260 } 1261 1262 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, 1263 AtomicOrdering SuccessOrdering, 1264 AtomicOrdering FailureOrdering, 1265 SynchronizationScope SynchScope, 1266 BasicBlock *InsertAtEnd) 1267 : Instruction( 1268 StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext()), 1269 nullptr), 1270 AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this), 1271 OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) { 1272 Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SynchScope); 1273 } 1274 1275 //===----------------------------------------------------------------------===// 1276 // AtomicRMWInst Implementation 1277 //===----------------------------------------------------------------------===// 1278 1279 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val, 1280 AtomicOrdering Ordering, 1281 SynchronizationScope SynchScope) { 1282 Op<0>() = Ptr; 1283 Op<1>() = Val; 1284 setOperation(Operation); 1285 setOrdering(Ordering); 1286 setSynchScope(SynchScope); 1287 1288 assert(getOperand(0) && getOperand(1) && 1289 "All operands must be non-null!"); 1290 assert(getOperand(0)->getType()->isPointerTy() && 1291 "Ptr must have pointer type!"); 1292 assert(getOperand(1)->getType() == 1293 cast<PointerType>(getOperand(0)->getType())->getElementType() 1294 && "Ptr must be a pointer to Val type!"); 1295 assert(Ordering != NotAtomic && 1296 "AtomicRMW instructions must be atomic!"); 1297 } 1298 1299 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, 1300 AtomicOrdering Ordering, 1301 SynchronizationScope SynchScope, 1302 Instruction *InsertBefore) 1303 : Instruction(Val->getType(), AtomicRMW, 1304 OperandTraits<AtomicRMWInst>::op_begin(this), 1305 OperandTraits<AtomicRMWInst>::operands(this), 1306 InsertBefore) { 1307 Init(Operation, Ptr, Val, Ordering, SynchScope); 1308 } 1309 1310 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, 1311 AtomicOrdering Ordering, 1312 SynchronizationScope SynchScope, 1313 BasicBlock *InsertAtEnd) 1314 : Instruction(Val->getType(), AtomicRMW, 1315 OperandTraits<AtomicRMWInst>::op_begin(this), 1316 OperandTraits<AtomicRMWInst>::operands(this), 1317 InsertAtEnd) { 1318 Init(Operation, Ptr, Val, Ordering, SynchScope); 1319 } 1320 1321 //===----------------------------------------------------------------------===// 1322 // FenceInst Implementation 1323 //===----------------------------------------------------------------------===// 1324 1325 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering, 1326 SynchronizationScope SynchScope, 1327 Instruction *InsertBefore) 1328 : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) { 1329 setOrdering(Ordering); 1330 setSynchScope(SynchScope); 1331 } 1332 1333 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering, 1334 SynchronizationScope SynchScope, 1335 BasicBlock *InsertAtEnd) 1336 : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) { 1337 setOrdering(Ordering); 1338 setSynchScope(SynchScope); 1339 } 1340 1341 //===----------------------------------------------------------------------===// 1342 // GetElementPtrInst Implementation 1343 //===----------------------------------------------------------------------===// 1344 1345 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList, 1346 const Twine &Name) { 1347 assert(NumOperands == 1 + IdxList.size() && "NumOperands not initialized?"); 1348 OperandList[0] = Ptr; 1349 std::copy(IdxList.begin(), IdxList.end(), op_begin() + 1); 1350 setName(Name); 1351 } 1352 1353 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI) 1354 : Instruction(GEPI.getType(), GetElementPtr, 1355 OperandTraits<GetElementPtrInst>::op_end(this) 1356 - GEPI.getNumOperands(), 1357 GEPI.getNumOperands()) { 1358 std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin()); 1359 SubclassOptionalData = GEPI.SubclassOptionalData; 1360 } 1361 1362 /// getIndexedType - Returns the type of the element that would be accessed with 1363 /// a gep instruction with the specified parameters. 1364 /// 1365 /// The Idxs pointer should point to a continuous piece of memory containing the 1366 /// indices, either as Value* or uint64_t. 1367 /// 1368 /// A null type is returned if the indices are invalid for the specified 1369 /// pointer type. 1370 /// 1371 template <typename IndexTy> 1372 static Type *getIndexedTypeInternal(Type *Ptr, ArrayRef<IndexTy> IdxList) { 1373 PointerType *PTy = dyn_cast<PointerType>(Ptr->getScalarType()); 1374 if (!PTy) return nullptr; // Type isn't a pointer type! 1375 Type *Agg = PTy->getElementType(); 1376 1377 // Handle the special case of the empty set index set, which is always valid. 1378 if (IdxList.empty()) 1379 return Agg; 1380 1381 // If there is at least one index, the top level type must be sized, otherwise 1382 // it cannot be 'stepped over'. 1383 if (!Agg->isSized()) 1384 return nullptr; 1385 1386 unsigned CurIdx = 1; 1387 for (; CurIdx != IdxList.size(); ++CurIdx) { 1388 CompositeType *CT = dyn_cast<CompositeType>(Agg); 1389 if (!CT || CT->isPointerTy()) return nullptr; 1390 IndexTy Index = IdxList[CurIdx]; 1391 if (!CT->indexValid(Index)) return nullptr; 1392 Agg = CT->getTypeAtIndex(Index); 1393 } 1394 return CurIdx == IdxList.size() ? Agg : nullptr; 1395 } 1396 1397 Type *GetElementPtrInst::getIndexedType(Type *Ptr, ArrayRef<Value *> IdxList) { 1398 return getIndexedTypeInternal(Ptr, IdxList); 1399 } 1400 1401 Type *GetElementPtrInst::getIndexedType(Type *Ptr, 1402 ArrayRef<Constant *> IdxList) { 1403 return getIndexedTypeInternal(Ptr, IdxList); 1404 } 1405 1406 Type *GetElementPtrInst::getIndexedType(Type *Ptr, ArrayRef<uint64_t> IdxList) { 1407 return getIndexedTypeInternal(Ptr, IdxList); 1408 } 1409 1410 /// hasAllZeroIndices - Return true if all of the indices of this GEP are 1411 /// zeros. If so, the result pointer and the first operand have the same 1412 /// value, just potentially different types. 1413 bool GetElementPtrInst::hasAllZeroIndices() const { 1414 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1415 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) { 1416 if (!CI->isZero()) return false; 1417 } else { 1418 return false; 1419 } 1420 } 1421 return true; 1422 } 1423 1424 /// hasAllConstantIndices - Return true if all of the indices of this GEP are 1425 /// constant integers. If so, the result pointer and the first operand have 1426 /// a constant offset between them. 1427 bool GetElementPtrInst::hasAllConstantIndices() const { 1428 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1429 if (!isa<ConstantInt>(getOperand(i))) 1430 return false; 1431 } 1432 return true; 1433 } 1434 1435 void GetElementPtrInst::setIsInBounds(bool B) { 1436 cast<GEPOperator>(this)->setIsInBounds(B); 1437 } 1438 1439 bool GetElementPtrInst::isInBounds() const { 1440 return cast<GEPOperator>(this)->isInBounds(); 1441 } 1442 1443 bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL, 1444 APInt &Offset) const { 1445 // Delegate to the generic GEPOperator implementation. 1446 return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset); 1447 } 1448 1449 //===----------------------------------------------------------------------===// 1450 // ExtractElementInst Implementation 1451 //===----------------------------------------------------------------------===// 1452 1453 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index, 1454 const Twine &Name, 1455 Instruction *InsertBef) 1456 : Instruction(cast<VectorType>(Val->getType())->getElementType(), 1457 ExtractElement, 1458 OperandTraits<ExtractElementInst>::op_begin(this), 1459 2, InsertBef) { 1460 assert(isValidOperands(Val, Index) && 1461 "Invalid extractelement instruction operands!"); 1462 Op<0>() = Val; 1463 Op<1>() = Index; 1464 setName(Name); 1465 } 1466 1467 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index, 1468 const Twine &Name, 1469 BasicBlock *InsertAE) 1470 : Instruction(cast<VectorType>(Val->getType())->getElementType(), 1471 ExtractElement, 1472 OperandTraits<ExtractElementInst>::op_begin(this), 1473 2, InsertAE) { 1474 assert(isValidOperands(Val, Index) && 1475 "Invalid extractelement instruction operands!"); 1476 1477 Op<0>() = Val; 1478 Op<1>() = Index; 1479 setName(Name); 1480 } 1481 1482 1483 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) { 1484 if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy()) 1485 return false; 1486 return true; 1487 } 1488 1489 1490 //===----------------------------------------------------------------------===// 1491 // InsertElementInst Implementation 1492 //===----------------------------------------------------------------------===// 1493 1494 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index, 1495 const Twine &Name, 1496 Instruction *InsertBef) 1497 : Instruction(Vec->getType(), InsertElement, 1498 OperandTraits<InsertElementInst>::op_begin(this), 1499 3, InsertBef) { 1500 assert(isValidOperands(Vec, Elt, Index) && 1501 "Invalid insertelement instruction operands!"); 1502 Op<0>() = Vec; 1503 Op<1>() = Elt; 1504 Op<2>() = Index; 1505 setName(Name); 1506 } 1507 1508 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index, 1509 const Twine &Name, 1510 BasicBlock *InsertAE) 1511 : Instruction(Vec->getType(), InsertElement, 1512 OperandTraits<InsertElementInst>::op_begin(this), 1513 3, InsertAE) { 1514 assert(isValidOperands(Vec, Elt, Index) && 1515 "Invalid insertelement instruction operands!"); 1516 1517 Op<0>() = Vec; 1518 Op<1>() = Elt; 1519 Op<2>() = Index; 1520 setName(Name); 1521 } 1522 1523 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt, 1524 const Value *Index) { 1525 if (!Vec->getType()->isVectorTy()) 1526 return false; // First operand of insertelement must be vector type. 1527 1528 if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType()) 1529 return false;// Second operand of insertelement must be vector element type. 1530 1531 if (!Index->getType()->isIntegerTy()) 1532 return false; // Third operand of insertelement must be i32. 1533 return true; 1534 } 1535 1536 1537 //===----------------------------------------------------------------------===// 1538 // ShuffleVectorInst Implementation 1539 //===----------------------------------------------------------------------===// 1540 1541 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, 1542 const Twine &Name, 1543 Instruction *InsertBefore) 1544 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(), 1545 cast<VectorType>(Mask->getType())->getNumElements()), 1546 ShuffleVector, 1547 OperandTraits<ShuffleVectorInst>::op_begin(this), 1548 OperandTraits<ShuffleVectorInst>::operands(this), 1549 InsertBefore) { 1550 assert(isValidOperands(V1, V2, Mask) && 1551 "Invalid shuffle vector instruction operands!"); 1552 Op<0>() = V1; 1553 Op<1>() = V2; 1554 Op<2>() = Mask; 1555 setName(Name); 1556 } 1557 1558 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, 1559 const Twine &Name, 1560 BasicBlock *InsertAtEnd) 1561 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(), 1562 cast<VectorType>(Mask->getType())->getNumElements()), 1563 ShuffleVector, 1564 OperandTraits<ShuffleVectorInst>::op_begin(this), 1565 OperandTraits<ShuffleVectorInst>::operands(this), 1566 InsertAtEnd) { 1567 assert(isValidOperands(V1, V2, Mask) && 1568 "Invalid shuffle vector instruction operands!"); 1569 1570 Op<0>() = V1; 1571 Op<1>() = V2; 1572 Op<2>() = Mask; 1573 setName(Name); 1574 } 1575 1576 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2, 1577 const Value *Mask) { 1578 // V1 and V2 must be vectors of the same type. 1579 if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType()) 1580 return false; 1581 1582 // Mask must be vector of i32. 1583 VectorType *MaskTy = dyn_cast<VectorType>(Mask->getType()); 1584 if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32)) 1585 return false; 1586 1587 // Check to see if Mask is valid. 1588 if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask)) 1589 return true; 1590 1591 if (const ConstantVector *MV = dyn_cast<ConstantVector>(Mask)) { 1592 unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements(); 1593 for (Value *Op : MV->operands()) { 1594 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 1595 if (CI->uge(V1Size*2)) 1596 return false; 1597 } else if (!isa<UndefValue>(Op)) { 1598 return false; 1599 } 1600 } 1601 return true; 1602 } 1603 1604 if (const ConstantDataSequential *CDS = 1605 dyn_cast<ConstantDataSequential>(Mask)) { 1606 unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements(); 1607 for (unsigned i = 0, e = MaskTy->getNumElements(); i != e; ++i) 1608 if (CDS->getElementAsInteger(i) >= V1Size*2) 1609 return false; 1610 return true; 1611 } 1612 1613 // The bitcode reader can create a place holder for a forward reference 1614 // used as the shuffle mask. When this occurs, the shuffle mask will 1615 // fall into this case and fail. To avoid this error, do this bit of 1616 // ugliness to allow such a mask pass. 1617 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(Mask)) 1618 if (CE->getOpcode() == Instruction::UserOp1) 1619 return true; 1620 1621 return false; 1622 } 1623 1624 /// getMaskValue - Return the index from the shuffle mask for the specified 1625 /// output result. This is either -1 if the element is undef or a number less 1626 /// than 2*numelements. 1627 int ShuffleVectorInst::getMaskValue(Constant *Mask, unsigned i) { 1628 assert(i < Mask->getType()->getVectorNumElements() && "Index out of range"); 1629 if (ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(Mask)) 1630 return CDS->getElementAsInteger(i); 1631 Constant *C = Mask->getAggregateElement(i); 1632 if (isa<UndefValue>(C)) 1633 return -1; 1634 return cast<ConstantInt>(C)->getZExtValue(); 1635 } 1636 1637 /// getShuffleMask - Return the full mask for this instruction, where each 1638 /// element is the element number and undef's are returned as -1. 1639 void ShuffleVectorInst::getShuffleMask(Constant *Mask, 1640 SmallVectorImpl<int> &Result) { 1641 unsigned NumElts = Mask->getType()->getVectorNumElements(); 1642 1643 if (ConstantDataSequential *CDS=dyn_cast<ConstantDataSequential>(Mask)) { 1644 for (unsigned i = 0; i != NumElts; ++i) 1645 Result.push_back(CDS->getElementAsInteger(i)); 1646 return; 1647 } 1648 for (unsigned i = 0; i != NumElts; ++i) { 1649 Constant *C = Mask->getAggregateElement(i); 1650 Result.push_back(isa<UndefValue>(C) ? -1 : 1651 cast<ConstantInt>(C)->getZExtValue()); 1652 } 1653 } 1654 1655 1656 //===----------------------------------------------------------------------===// 1657 // InsertValueInst Class 1658 //===----------------------------------------------------------------------===// 1659 1660 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, 1661 const Twine &Name) { 1662 assert(NumOperands == 2 && "NumOperands not initialized?"); 1663 1664 // There's no fundamental reason why we require at least one index 1665 // (other than weirdness with &*IdxBegin being invalid; see 1666 // getelementptr's init routine for example). But there's no 1667 // present need to support it. 1668 assert(Idxs.size() > 0 && "InsertValueInst must have at least one index"); 1669 1670 assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) == 1671 Val->getType() && "Inserted value must match indexed type!"); 1672 Op<0>() = Agg; 1673 Op<1>() = Val; 1674 1675 Indices.append(Idxs.begin(), Idxs.end()); 1676 setName(Name); 1677 } 1678 1679 InsertValueInst::InsertValueInst(const InsertValueInst &IVI) 1680 : Instruction(IVI.getType(), InsertValue, 1681 OperandTraits<InsertValueInst>::op_begin(this), 2), 1682 Indices(IVI.Indices) { 1683 Op<0>() = IVI.getOperand(0); 1684 Op<1>() = IVI.getOperand(1); 1685 SubclassOptionalData = IVI.SubclassOptionalData; 1686 } 1687 1688 //===----------------------------------------------------------------------===// 1689 // ExtractValueInst Class 1690 //===----------------------------------------------------------------------===// 1691 1692 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) { 1693 assert(NumOperands == 1 && "NumOperands not initialized?"); 1694 1695 // There's no fundamental reason why we require at least one index. 1696 // But there's no present need to support it. 1697 assert(Idxs.size() > 0 && "ExtractValueInst must have at least one index"); 1698 1699 Indices.append(Idxs.begin(), Idxs.end()); 1700 setName(Name); 1701 } 1702 1703 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI) 1704 : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)), 1705 Indices(EVI.Indices) { 1706 SubclassOptionalData = EVI.SubclassOptionalData; 1707 } 1708 1709 // getIndexedType - Returns the type of the element that would be extracted 1710 // with an extractvalue instruction with the specified parameters. 1711 // 1712 // A null type is returned if the indices are invalid for the specified 1713 // pointer type. 1714 // 1715 Type *ExtractValueInst::getIndexedType(Type *Agg, 1716 ArrayRef<unsigned> Idxs) { 1717 for (unsigned Index : Idxs) { 1718 // We can't use CompositeType::indexValid(Index) here. 1719 // indexValid() always returns true for arrays because getelementptr allows 1720 // out-of-bounds indices. Since we don't allow those for extractvalue and 1721 // insertvalue we need to check array indexing manually. 1722 // Since the only other types we can index into are struct types it's just 1723 // as easy to check those manually as well. 1724 if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) { 1725 if (Index >= AT->getNumElements()) 1726 return nullptr; 1727 } else if (StructType *ST = dyn_cast<StructType>(Agg)) { 1728 if (Index >= ST->getNumElements()) 1729 return nullptr; 1730 } else { 1731 // Not a valid type to index into. 1732 return nullptr; 1733 } 1734 1735 Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index); 1736 } 1737 return const_cast<Type*>(Agg); 1738 } 1739 1740 //===----------------------------------------------------------------------===// 1741 // BinaryOperator Class 1742 //===----------------------------------------------------------------------===// 1743 1744 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2, 1745 Type *Ty, const Twine &Name, 1746 Instruction *InsertBefore) 1747 : Instruction(Ty, iType, 1748 OperandTraits<BinaryOperator>::op_begin(this), 1749 OperandTraits<BinaryOperator>::operands(this), 1750 InsertBefore) { 1751 Op<0>() = S1; 1752 Op<1>() = S2; 1753 init(iType); 1754 setName(Name); 1755 } 1756 1757 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2, 1758 Type *Ty, const Twine &Name, 1759 BasicBlock *InsertAtEnd) 1760 : Instruction(Ty, iType, 1761 OperandTraits<BinaryOperator>::op_begin(this), 1762 OperandTraits<BinaryOperator>::operands(this), 1763 InsertAtEnd) { 1764 Op<0>() = S1; 1765 Op<1>() = S2; 1766 init(iType); 1767 setName(Name); 1768 } 1769 1770 1771 void BinaryOperator::init(BinaryOps iType) { 1772 Value *LHS = getOperand(0), *RHS = getOperand(1); 1773 (void)LHS; (void)RHS; // Silence warnings. 1774 assert(LHS->getType() == RHS->getType() && 1775 "Binary operator operand types must match!"); 1776 #ifndef NDEBUG 1777 switch (iType) { 1778 case Add: case Sub: 1779 case Mul: 1780 assert(getType() == LHS->getType() && 1781 "Arithmetic operation should return same type as operands!"); 1782 assert(getType()->isIntOrIntVectorTy() && 1783 "Tried to create an integer operation on a non-integer type!"); 1784 break; 1785 case FAdd: case FSub: 1786 case FMul: 1787 assert(getType() == LHS->getType() && 1788 "Arithmetic operation should return same type as operands!"); 1789 assert(getType()->isFPOrFPVectorTy() && 1790 "Tried to create a floating-point operation on a " 1791 "non-floating-point type!"); 1792 break; 1793 case UDiv: 1794 case SDiv: 1795 assert(getType() == LHS->getType() && 1796 "Arithmetic operation should return same type as operands!"); 1797 assert((getType()->isIntegerTy() || (getType()->isVectorTy() && 1798 cast<VectorType>(getType())->getElementType()->isIntegerTy())) && 1799 "Incorrect operand type (not integer) for S/UDIV"); 1800 break; 1801 case FDiv: 1802 assert(getType() == LHS->getType() && 1803 "Arithmetic operation should return same type as operands!"); 1804 assert(getType()->isFPOrFPVectorTy() && 1805 "Incorrect operand type (not floating point) for FDIV"); 1806 break; 1807 case URem: 1808 case SRem: 1809 assert(getType() == LHS->getType() && 1810 "Arithmetic operation should return same type as operands!"); 1811 assert((getType()->isIntegerTy() || (getType()->isVectorTy() && 1812 cast<VectorType>(getType())->getElementType()->isIntegerTy())) && 1813 "Incorrect operand type (not integer) for S/UREM"); 1814 break; 1815 case FRem: 1816 assert(getType() == LHS->getType() && 1817 "Arithmetic operation should return same type as operands!"); 1818 assert(getType()->isFPOrFPVectorTy() && 1819 "Incorrect operand type (not floating point) for FREM"); 1820 break; 1821 case Shl: 1822 case LShr: 1823 case AShr: 1824 assert(getType() == LHS->getType() && 1825 "Shift operation should return same type as operands!"); 1826 assert((getType()->isIntegerTy() || 1827 (getType()->isVectorTy() && 1828 cast<VectorType>(getType())->getElementType()->isIntegerTy())) && 1829 "Tried to create a shift operation on a non-integral type!"); 1830 break; 1831 case And: case Or: 1832 case Xor: 1833 assert(getType() == LHS->getType() && 1834 "Logical operation should return same type as operands!"); 1835 assert((getType()->isIntegerTy() || 1836 (getType()->isVectorTy() && 1837 cast<VectorType>(getType())->getElementType()->isIntegerTy())) && 1838 "Tried to create a logical operation on a non-integral type!"); 1839 break; 1840 default: 1841 break; 1842 } 1843 #endif 1844 } 1845 1846 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2, 1847 const Twine &Name, 1848 Instruction *InsertBefore) { 1849 assert(S1->getType() == S2->getType() && 1850 "Cannot create binary operator with two operands of differing type!"); 1851 return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore); 1852 } 1853 1854 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2, 1855 const Twine &Name, 1856 BasicBlock *InsertAtEnd) { 1857 BinaryOperator *Res = Create(Op, S1, S2, Name); 1858 InsertAtEnd->getInstList().push_back(Res); 1859 return Res; 1860 } 1861 1862 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name, 1863 Instruction *InsertBefore) { 1864 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 1865 return new BinaryOperator(Instruction::Sub, 1866 zero, Op, 1867 Op->getType(), Name, InsertBefore); 1868 } 1869 1870 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name, 1871 BasicBlock *InsertAtEnd) { 1872 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 1873 return new BinaryOperator(Instruction::Sub, 1874 zero, Op, 1875 Op->getType(), Name, InsertAtEnd); 1876 } 1877 1878 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name, 1879 Instruction *InsertBefore) { 1880 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 1881 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore); 1882 } 1883 1884 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name, 1885 BasicBlock *InsertAtEnd) { 1886 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 1887 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd); 1888 } 1889 1890 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name, 1891 Instruction *InsertBefore) { 1892 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 1893 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore); 1894 } 1895 1896 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name, 1897 BasicBlock *InsertAtEnd) { 1898 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 1899 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd); 1900 } 1901 1902 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name, 1903 Instruction *InsertBefore) { 1904 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 1905 return new BinaryOperator(Instruction::FSub, zero, Op, 1906 Op->getType(), Name, InsertBefore); 1907 } 1908 1909 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name, 1910 BasicBlock *InsertAtEnd) { 1911 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); 1912 return new BinaryOperator(Instruction::FSub, zero, Op, 1913 Op->getType(), Name, InsertAtEnd); 1914 } 1915 1916 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name, 1917 Instruction *InsertBefore) { 1918 Constant *C = Constant::getAllOnesValue(Op->getType()); 1919 return new BinaryOperator(Instruction::Xor, Op, C, 1920 Op->getType(), Name, InsertBefore); 1921 } 1922 1923 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name, 1924 BasicBlock *InsertAtEnd) { 1925 Constant *AllOnes = Constant::getAllOnesValue(Op->getType()); 1926 return new BinaryOperator(Instruction::Xor, Op, AllOnes, 1927 Op->getType(), Name, InsertAtEnd); 1928 } 1929 1930 1931 // isConstantAllOnes - Helper function for several functions below 1932 static inline bool isConstantAllOnes(const Value *V) { 1933 if (const Constant *C = dyn_cast<Constant>(V)) 1934 return C->isAllOnesValue(); 1935 return false; 1936 } 1937 1938 bool BinaryOperator::isNeg(const Value *V) { 1939 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V)) 1940 if (Bop->getOpcode() == Instruction::Sub) 1941 if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0))) 1942 return C->isNegativeZeroValue(); 1943 return false; 1944 } 1945 1946 bool BinaryOperator::isFNeg(const Value *V, bool IgnoreZeroSign) { 1947 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V)) 1948 if (Bop->getOpcode() == Instruction::FSub) 1949 if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0))) { 1950 if (!IgnoreZeroSign) 1951 IgnoreZeroSign = cast<Instruction>(V)->hasNoSignedZeros(); 1952 return !IgnoreZeroSign ? C->isNegativeZeroValue() : C->isZeroValue(); 1953 } 1954 return false; 1955 } 1956 1957 bool BinaryOperator::isNot(const Value *V) { 1958 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V)) 1959 return (Bop->getOpcode() == Instruction::Xor && 1960 (isConstantAllOnes(Bop->getOperand(1)) || 1961 isConstantAllOnes(Bop->getOperand(0)))); 1962 return false; 1963 } 1964 1965 Value *BinaryOperator::getNegArgument(Value *BinOp) { 1966 return cast<BinaryOperator>(BinOp)->getOperand(1); 1967 } 1968 1969 const Value *BinaryOperator::getNegArgument(const Value *BinOp) { 1970 return getNegArgument(const_cast<Value*>(BinOp)); 1971 } 1972 1973 Value *BinaryOperator::getFNegArgument(Value *BinOp) { 1974 return cast<BinaryOperator>(BinOp)->getOperand(1); 1975 } 1976 1977 const Value *BinaryOperator::getFNegArgument(const Value *BinOp) { 1978 return getFNegArgument(const_cast<Value*>(BinOp)); 1979 } 1980 1981 Value *BinaryOperator::getNotArgument(Value *BinOp) { 1982 assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!"); 1983 BinaryOperator *BO = cast<BinaryOperator>(BinOp); 1984 Value *Op0 = BO->getOperand(0); 1985 Value *Op1 = BO->getOperand(1); 1986 if (isConstantAllOnes(Op0)) return Op1; 1987 1988 assert(isConstantAllOnes(Op1)); 1989 return Op0; 1990 } 1991 1992 const Value *BinaryOperator::getNotArgument(const Value *BinOp) { 1993 return getNotArgument(const_cast<Value*>(BinOp)); 1994 } 1995 1996 1997 // swapOperands - Exchange the two operands to this instruction. This 1998 // instruction is safe to use on any binary instruction and does not 1999 // modify the semantics of the instruction. If the instruction is 2000 // order dependent (SetLT f.e.) the opcode is changed. 2001 // 2002 bool BinaryOperator::swapOperands() { 2003 if (!isCommutative()) 2004 return true; // Can't commute operands 2005 Op<0>().swap(Op<1>()); 2006 return false; 2007 } 2008 2009 void BinaryOperator::setHasNoUnsignedWrap(bool b) { 2010 cast<OverflowingBinaryOperator>(this)->setHasNoUnsignedWrap(b); 2011 } 2012 2013 void BinaryOperator::setHasNoSignedWrap(bool b) { 2014 cast<OverflowingBinaryOperator>(this)->setHasNoSignedWrap(b); 2015 } 2016 2017 void BinaryOperator::setIsExact(bool b) { 2018 cast<PossiblyExactOperator>(this)->setIsExact(b); 2019 } 2020 2021 bool BinaryOperator::hasNoUnsignedWrap() const { 2022 return cast<OverflowingBinaryOperator>(this)->hasNoUnsignedWrap(); 2023 } 2024 2025 bool BinaryOperator::hasNoSignedWrap() const { 2026 return cast<OverflowingBinaryOperator>(this)->hasNoSignedWrap(); 2027 } 2028 2029 bool BinaryOperator::isExact() const { 2030 return cast<PossiblyExactOperator>(this)->isExact(); 2031 } 2032 2033 //===----------------------------------------------------------------------===// 2034 // FPMathOperator Class 2035 //===----------------------------------------------------------------------===// 2036 2037 /// getFPAccuracy - Get the maximum error permitted by this operation in ULPs. 2038 /// An accuracy of 0.0 means that the operation should be performed with the 2039 /// default precision. 2040 float FPMathOperator::getFPAccuracy() const { 2041 const MDNode *MD = 2042 cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath); 2043 if (!MD) 2044 return 0.0; 2045 ConstantFP *Accuracy = cast<ConstantFP>(MD->getOperand(0)); 2046 return Accuracy->getValueAPF().convertToFloat(); 2047 } 2048 2049 2050 //===----------------------------------------------------------------------===// 2051 // CastInst Class 2052 //===----------------------------------------------------------------------===// 2053 2054 void CastInst::anchor() {} 2055 2056 // Just determine if this cast only deals with integral->integral conversion. 2057 bool CastInst::isIntegerCast() const { 2058 switch (getOpcode()) { 2059 default: return false; 2060 case Instruction::ZExt: 2061 case Instruction::SExt: 2062 case Instruction::Trunc: 2063 return true; 2064 case Instruction::BitCast: 2065 return getOperand(0)->getType()->isIntegerTy() && 2066 getType()->isIntegerTy(); 2067 } 2068 } 2069 2070 bool CastInst::isLosslessCast() const { 2071 // Only BitCast can be lossless, exit fast if we're not BitCast 2072 if (getOpcode() != Instruction::BitCast) 2073 return false; 2074 2075 // Identity cast is always lossless 2076 Type* SrcTy = getOperand(0)->getType(); 2077 Type* DstTy = getType(); 2078 if (SrcTy == DstTy) 2079 return true; 2080 2081 // Pointer to pointer is always lossless. 2082 if (SrcTy->isPointerTy()) 2083 return DstTy->isPointerTy(); 2084 return false; // Other types have no identity values 2085 } 2086 2087 /// This function determines if the CastInst does not require any bits to be 2088 /// changed in order to effect the cast. Essentially, it identifies cases where 2089 /// no code gen is necessary for the cast, hence the name no-op cast. For 2090 /// example, the following are all no-op casts: 2091 /// # bitcast i32* %x to i8* 2092 /// # bitcast <2 x i32> %x to <4 x i16> 2093 /// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only 2094 /// @brief Determine if the described cast is a no-op. 2095 bool CastInst::isNoopCast(Instruction::CastOps Opcode, 2096 Type *SrcTy, 2097 Type *DestTy, 2098 Type *IntPtrTy) { 2099 switch (Opcode) { 2100 default: llvm_unreachable("Invalid CastOp"); 2101 case Instruction::Trunc: 2102 case Instruction::ZExt: 2103 case Instruction::SExt: 2104 case Instruction::FPTrunc: 2105 case Instruction::FPExt: 2106 case Instruction::UIToFP: 2107 case Instruction::SIToFP: 2108 case Instruction::FPToUI: 2109 case Instruction::FPToSI: 2110 case Instruction::AddrSpaceCast: 2111 // TODO: Target informations may give a more accurate answer here. 2112 return false; 2113 case Instruction::BitCast: 2114 return true; // BitCast never modifies bits. 2115 case Instruction::PtrToInt: 2116 return IntPtrTy->getScalarSizeInBits() == 2117 DestTy->getScalarSizeInBits(); 2118 case Instruction::IntToPtr: 2119 return IntPtrTy->getScalarSizeInBits() == 2120 SrcTy->getScalarSizeInBits(); 2121 } 2122 } 2123 2124 /// @brief Determine if a cast is a no-op. 2125 bool CastInst::isNoopCast(Type *IntPtrTy) const { 2126 return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy); 2127 } 2128 2129 bool CastInst::isNoopCast(const DataLayout *DL) const { 2130 if (!DL) { 2131 // Assume maximum pointer size. 2132 return isNoopCast(Type::getInt64Ty(getContext())); 2133 } 2134 2135 Type *PtrOpTy = nullptr; 2136 if (getOpcode() == Instruction::PtrToInt) 2137 PtrOpTy = getOperand(0)->getType(); 2138 else if (getOpcode() == Instruction::IntToPtr) 2139 PtrOpTy = getType(); 2140 2141 Type *IntPtrTy = PtrOpTy 2142 ? DL->getIntPtrType(PtrOpTy) 2143 : DL->getIntPtrType(getContext(), 0); 2144 2145 return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy); 2146 } 2147 2148 /// This function determines if a pair of casts can be eliminated and what 2149 /// opcode should be used in the elimination. This assumes that there are two 2150 /// instructions like this: 2151 /// * %F = firstOpcode SrcTy %x to MidTy 2152 /// * %S = secondOpcode MidTy %F to DstTy 2153 /// The function returns a resultOpcode so these two casts can be replaced with: 2154 /// * %Replacement = resultOpcode %SrcTy %x to DstTy 2155 /// If no such cast is permited, the function returns 0. 2156 unsigned CastInst::isEliminableCastPair( 2157 Instruction::CastOps firstOp, Instruction::CastOps secondOp, 2158 Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy, 2159 Type *DstIntPtrTy) { 2160 // Define the 144 possibilities for these two cast instructions. The values 2161 // in this matrix determine what to do in a given situation and select the 2162 // case in the switch below. The rows correspond to firstOp, the columns 2163 // correspond to secondOp. In looking at the table below, keep in mind 2164 // the following cast properties: 2165 // 2166 // Size Compare Source Destination 2167 // Operator Src ? Size Type Sign Type Sign 2168 // -------- ------------ ------------------- --------------------- 2169 // TRUNC > Integer Any Integral Any 2170 // ZEXT < Integral Unsigned Integer Any 2171 // SEXT < Integral Signed Integer Any 2172 // FPTOUI n/a FloatPt n/a Integral Unsigned 2173 // FPTOSI n/a FloatPt n/a Integral Signed 2174 // UITOFP n/a Integral Unsigned FloatPt n/a 2175 // SITOFP n/a Integral Signed FloatPt n/a 2176 // FPTRUNC > FloatPt n/a FloatPt n/a 2177 // FPEXT < FloatPt n/a FloatPt n/a 2178 // PTRTOINT n/a Pointer n/a Integral Unsigned 2179 // INTTOPTR n/a Integral Unsigned Pointer n/a 2180 // BITCAST = FirstClass n/a FirstClass n/a 2181 // ADDRSPCST n/a Pointer n/a Pointer n/a 2182 // 2183 // NOTE: some transforms are safe, but we consider them to be non-profitable. 2184 // For example, we could merge "fptoui double to i32" + "zext i32 to i64", 2185 // into "fptoui double to i64", but this loses information about the range 2186 // of the produced value (we no longer know the top-part is all zeros). 2187 // Further this conversion is often much more expensive for typical hardware, 2188 // and causes issues when building libgcc. We disallow fptosi+sext for the 2189 // same reason. 2190 const unsigned numCastOps = 2191 Instruction::CastOpsEnd - Instruction::CastOpsBegin; 2192 static const uint8_t CastResults[numCastOps][numCastOps] = { 2193 // T F F U S F F P I B A -+ 2194 // R Z S P P I I T P 2 N T S | 2195 // U E E 2 2 2 2 R E I T C C +- secondOp 2196 // N X X U S F F N X N 2 V V | 2197 // C T T I I P P C T T P T T -+ 2198 { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc -+ 2199 { 8, 1, 9,99,99, 2, 0,99,99,99, 2, 3, 0}, // ZExt | 2200 { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt | 2201 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI | 2202 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI | 2203 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP +- firstOp 2204 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP | 2205 { 99,99,99, 0, 0,99,99, 1, 0,99,99, 4, 0}, // FPTrunc | 2206 { 99,99,99, 2, 2,99,99,10, 2,99,99, 4, 0}, // FPExt | 2207 { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt | 2208 { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr | 2209 { 5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast | 2210 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+ 2211 }; 2212 2213 // If either of the casts are a bitcast from scalar to vector, disallow the 2214 // merging. However, bitcast of A->B->A are allowed. 2215 bool isFirstBitcast = (firstOp == Instruction::BitCast); 2216 bool isSecondBitcast = (secondOp == Instruction::BitCast); 2217 bool chainedBitcast = (SrcTy == DstTy && isFirstBitcast && isSecondBitcast); 2218 2219 // Check if any of the bitcasts convert scalars<->vectors. 2220 if ((isFirstBitcast && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) || 2221 (isSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy))) 2222 // Unless we are bitcasing to the original type, disallow optimizations. 2223 if (!chainedBitcast) return 0; 2224 2225 int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin] 2226 [secondOp-Instruction::CastOpsBegin]; 2227 switch (ElimCase) { 2228 case 0: 2229 // Categorically disallowed. 2230 return 0; 2231 case 1: 2232 // Allowed, use first cast's opcode. 2233 return firstOp; 2234 case 2: 2235 // Allowed, use second cast's opcode. 2236 return secondOp; 2237 case 3: 2238 // No-op cast in second op implies firstOp as long as the DestTy 2239 // is integer and we are not converting between a vector and a 2240 // non-vector type. 2241 if (!SrcTy->isVectorTy() && DstTy->isIntegerTy()) 2242 return firstOp; 2243 return 0; 2244 case 4: 2245 // No-op cast in second op implies firstOp as long as the DestTy 2246 // is floating point. 2247 if (DstTy->isFloatingPointTy()) 2248 return firstOp; 2249 return 0; 2250 case 5: 2251 // No-op cast in first op implies secondOp as long as the SrcTy 2252 // is an integer. 2253 if (SrcTy->isIntegerTy()) 2254 return secondOp; 2255 return 0; 2256 case 6: 2257 // No-op cast in first op implies secondOp as long as the SrcTy 2258 // is a floating point. 2259 if (SrcTy->isFloatingPointTy()) 2260 return secondOp; 2261 return 0; 2262 case 7: { 2263 // Cannot simplify if address spaces are different! 2264 if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) 2265 return 0; 2266 2267 unsigned MidSize = MidTy->getScalarSizeInBits(); 2268 // We can still fold this without knowing the actual sizes as long we 2269 // know that the intermediate pointer is the largest possible 2270 // pointer size. 2271 // FIXME: Is this always true? 2272 if (MidSize == 64) 2273 return Instruction::BitCast; 2274 2275 // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size. 2276 if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy) 2277 return 0; 2278 unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits(); 2279 if (MidSize >= PtrSize) 2280 return Instruction::BitCast; 2281 return 0; 2282 } 2283 case 8: { 2284 // ext, trunc -> bitcast, if the SrcTy and DstTy are same size 2285 // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy) 2286 // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy) 2287 unsigned SrcSize = SrcTy->getScalarSizeInBits(); 2288 unsigned DstSize = DstTy->getScalarSizeInBits(); 2289 if (SrcSize == DstSize) 2290 return Instruction::BitCast; 2291 else if (SrcSize < DstSize) 2292 return firstOp; 2293 return secondOp; 2294 } 2295 case 9: 2296 // zext, sext -> zext, because sext can't sign extend after zext 2297 return Instruction::ZExt; 2298 case 10: 2299 // fpext followed by ftrunc is allowed if the bit size returned to is 2300 // the same as the original, in which case its just a bitcast 2301 if (SrcTy == DstTy) 2302 return Instruction::BitCast; 2303 return 0; // If the types are not the same we can't eliminate it. 2304 case 11: { 2305 // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize 2306 if (!MidIntPtrTy) 2307 return 0; 2308 unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits(); 2309 unsigned SrcSize = SrcTy->getScalarSizeInBits(); 2310 unsigned DstSize = DstTy->getScalarSizeInBits(); 2311 if (SrcSize <= PtrSize && SrcSize == DstSize) 2312 return Instruction::BitCast; 2313 return 0; 2314 } 2315 case 12: { 2316 // addrspacecast, addrspacecast -> bitcast, if SrcAS == DstAS 2317 // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS 2318 if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) 2319 return Instruction::AddrSpaceCast; 2320 return Instruction::BitCast; 2321 } 2322 case 13: 2323 // FIXME: this state can be merged with (1), but the following assert 2324 // is useful to check the correcteness of the sequence due to semantic 2325 // change of bitcast. 2326 assert( 2327 SrcTy->isPtrOrPtrVectorTy() && 2328 MidTy->isPtrOrPtrVectorTy() && 2329 DstTy->isPtrOrPtrVectorTy() && 2330 SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() && 2331 MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() && 2332 "Illegal addrspacecast, bitcast sequence!"); 2333 // Allowed, use first cast's opcode 2334 return firstOp; 2335 case 14: 2336 // bitcast, addrspacecast -> addrspacecast if the element type of 2337 // bitcast's source is the same as that of addrspacecast's destination. 2338 if (SrcTy->getPointerElementType() == DstTy->getPointerElementType()) 2339 return Instruction::AddrSpaceCast; 2340 return 0; 2341 2342 case 15: 2343 // FIXME: this state can be merged with (1), but the following assert 2344 // is useful to check the correcteness of the sequence due to semantic 2345 // change of bitcast. 2346 assert( 2347 SrcTy->isIntOrIntVectorTy() && 2348 MidTy->isPtrOrPtrVectorTy() && 2349 DstTy->isPtrOrPtrVectorTy() && 2350 MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() && 2351 "Illegal inttoptr, bitcast sequence!"); 2352 // Allowed, use first cast's opcode 2353 return firstOp; 2354 case 16: 2355 // FIXME: this state can be merged with (2), but the following assert 2356 // is useful to check the correcteness of the sequence due to semantic 2357 // change of bitcast. 2358 assert( 2359 SrcTy->isPtrOrPtrVectorTy() && 2360 MidTy->isPtrOrPtrVectorTy() && 2361 DstTy->isIntOrIntVectorTy() && 2362 SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() && 2363 "Illegal bitcast, ptrtoint sequence!"); 2364 // Allowed, use second cast's opcode 2365 return secondOp; 2366 case 99: 2367 // Cast combination can't happen (error in input). This is for all cases 2368 // where the MidTy is not the same for the two cast instructions. 2369 llvm_unreachable("Invalid Cast Combination"); 2370 default: 2371 llvm_unreachable("Error in CastResults table!!!"); 2372 } 2373 } 2374 2375 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty, 2376 const Twine &Name, Instruction *InsertBefore) { 2377 assert(castIsValid(op, S, Ty) && "Invalid cast!"); 2378 // Construct and return the appropriate CastInst subclass 2379 switch (op) { 2380 case Trunc: return new TruncInst (S, Ty, Name, InsertBefore); 2381 case ZExt: return new ZExtInst (S, Ty, Name, InsertBefore); 2382 case SExt: return new SExtInst (S, Ty, Name, InsertBefore); 2383 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertBefore); 2384 case FPExt: return new FPExtInst (S, Ty, Name, InsertBefore); 2385 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertBefore); 2386 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertBefore); 2387 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertBefore); 2388 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertBefore); 2389 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore); 2390 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore); 2391 case BitCast: return new BitCastInst (S, Ty, Name, InsertBefore); 2392 case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore); 2393 default: llvm_unreachable("Invalid opcode provided"); 2394 } 2395 } 2396 2397 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty, 2398 const Twine &Name, BasicBlock *InsertAtEnd) { 2399 assert(castIsValid(op, S, Ty) && "Invalid cast!"); 2400 // Construct and return the appropriate CastInst subclass 2401 switch (op) { 2402 case Trunc: return new TruncInst (S, Ty, Name, InsertAtEnd); 2403 case ZExt: return new ZExtInst (S, Ty, Name, InsertAtEnd); 2404 case SExt: return new SExtInst (S, Ty, Name, InsertAtEnd); 2405 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertAtEnd); 2406 case FPExt: return new FPExtInst (S, Ty, Name, InsertAtEnd); 2407 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertAtEnd); 2408 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertAtEnd); 2409 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertAtEnd); 2410 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertAtEnd); 2411 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd); 2412 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd); 2413 case BitCast: return new BitCastInst (S, Ty, Name, InsertAtEnd); 2414 case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd); 2415 default: llvm_unreachable("Invalid opcode provided"); 2416 } 2417 } 2418 2419 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty, 2420 const Twine &Name, 2421 Instruction *InsertBefore) { 2422 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2423 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 2424 return Create(Instruction::ZExt, S, Ty, Name, InsertBefore); 2425 } 2426 2427 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty, 2428 const Twine &Name, 2429 BasicBlock *InsertAtEnd) { 2430 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2431 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); 2432 return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd); 2433 } 2434 2435 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty, 2436 const Twine &Name, 2437 Instruction *InsertBefore) { 2438 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2439 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 2440 return Create(Instruction::SExt, S, Ty, Name, InsertBefore); 2441 } 2442 2443 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty, 2444 const Twine &Name, 2445 BasicBlock *InsertAtEnd) { 2446 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2447 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); 2448 return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd); 2449 } 2450 2451 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty, 2452 const Twine &Name, 2453 Instruction *InsertBefore) { 2454 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2455 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 2456 return Create(Instruction::Trunc, S, Ty, Name, InsertBefore); 2457 } 2458 2459 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty, 2460 const Twine &Name, 2461 BasicBlock *InsertAtEnd) { 2462 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2463 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); 2464 return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd); 2465 } 2466 2467 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty, 2468 const Twine &Name, 2469 BasicBlock *InsertAtEnd) { 2470 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 2471 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) && 2472 "Invalid cast"); 2473 assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast"); 2474 assert((!Ty->isVectorTy() || 2475 Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) && 2476 "Invalid cast"); 2477 2478 if (Ty->isIntOrIntVectorTy()) 2479 return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd); 2480 2481 Type *STy = S->getType(); 2482 if (STy->getPointerAddressSpace() != Ty->getPointerAddressSpace()) 2483 return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd); 2484 2485 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); 2486 } 2487 2488 /// @brief Create a BitCast or a PtrToInt cast instruction 2489 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty, 2490 const Twine &Name, 2491 Instruction *InsertBefore) { 2492 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 2493 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) && 2494 "Invalid cast"); 2495 assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast"); 2496 assert((!Ty->isVectorTy() || 2497 Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) && 2498 "Invalid cast"); 2499 2500 if (Ty->isIntOrIntVectorTy()) 2501 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore); 2502 2503 Type *STy = S->getType(); 2504 if (STy->getPointerAddressSpace() != Ty->getPointerAddressSpace()) 2505 return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore); 2506 2507 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); 2508 } 2509 2510 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty, 2511 bool isSigned, const Twine &Name, 2512 Instruction *InsertBefore) { 2513 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() && 2514 "Invalid integer cast"); 2515 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 2516 unsigned DstBits = Ty->getScalarSizeInBits(); 2517 Instruction::CastOps opcode = 2518 (SrcBits == DstBits ? Instruction::BitCast : 2519 (SrcBits > DstBits ? Instruction::Trunc : 2520 (isSigned ? Instruction::SExt : Instruction::ZExt))); 2521 return Create(opcode, C, Ty, Name, InsertBefore); 2522 } 2523 2524 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty, 2525 bool isSigned, const Twine &Name, 2526 BasicBlock *InsertAtEnd) { 2527 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() && 2528 "Invalid cast"); 2529 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 2530 unsigned DstBits = Ty->getScalarSizeInBits(); 2531 Instruction::CastOps opcode = 2532 (SrcBits == DstBits ? Instruction::BitCast : 2533 (SrcBits > DstBits ? Instruction::Trunc : 2534 (isSigned ? Instruction::SExt : Instruction::ZExt))); 2535 return Create(opcode, C, Ty, Name, InsertAtEnd); 2536 } 2537 2538 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty, 2539 const Twine &Name, 2540 Instruction *InsertBefore) { 2541 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && 2542 "Invalid cast"); 2543 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 2544 unsigned DstBits = Ty->getScalarSizeInBits(); 2545 Instruction::CastOps opcode = 2546 (SrcBits == DstBits ? Instruction::BitCast : 2547 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt)); 2548 return Create(opcode, C, Ty, Name, InsertBefore); 2549 } 2550 2551 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty, 2552 const Twine &Name, 2553 BasicBlock *InsertAtEnd) { 2554 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && 2555 "Invalid cast"); 2556 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 2557 unsigned DstBits = Ty->getScalarSizeInBits(); 2558 Instruction::CastOps opcode = 2559 (SrcBits == DstBits ? Instruction::BitCast : 2560 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt)); 2561 return Create(opcode, C, Ty, Name, InsertAtEnd); 2562 } 2563 2564 // Check whether it is valid to call getCastOpcode for these types. 2565 // This routine must be kept in sync with getCastOpcode. 2566 bool CastInst::isCastable(Type *SrcTy, Type *DestTy) { 2567 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType()) 2568 return false; 2569 2570 if (SrcTy == DestTy) 2571 return true; 2572 2573 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) 2574 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) 2575 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) { 2576 // An element by element cast. Valid if casting the elements is valid. 2577 SrcTy = SrcVecTy->getElementType(); 2578 DestTy = DestVecTy->getElementType(); 2579 } 2580 2581 // Get the bit sizes, we'll need these 2582 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr 2583 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr 2584 2585 // Run through the possibilities ... 2586 if (DestTy->isIntegerTy()) { // Casting to integral 2587 if (SrcTy->isIntegerTy()) { // Casting from integral 2588 return true; 2589 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt 2590 return true; 2591 } else if (SrcTy->isVectorTy()) { // Casting from vector 2592 return DestBits == SrcBits; 2593 } else { // Casting from something else 2594 return SrcTy->isPointerTy(); 2595 } 2596 } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt 2597 if (SrcTy->isIntegerTy()) { // Casting from integral 2598 return true; 2599 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt 2600 return true; 2601 } else if (SrcTy->isVectorTy()) { // Casting from vector 2602 return DestBits == SrcBits; 2603 } else { // Casting from something else 2604 return false; 2605 } 2606 } else if (DestTy->isVectorTy()) { // Casting to vector 2607 return DestBits == SrcBits; 2608 } else if (DestTy->isPointerTy()) { // Casting to pointer 2609 if (SrcTy->isPointerTy()) { // Casting from pointer 2610 return true; 2611 } else if (SrcTy->isIntegerTy()) { // Casting from integral 2612 return true; 2613 } else { // Casting from something else 2614 return false; 2615 } 2616 } else if (DestTy->isX86_MMXTy()) { 2617 if (SrcTy->isVectorTy()) { 2618 return DestBits == SrcBits; // 64-bit vector to MMX 2619 } else { 2620 return false; 2621 } 2622 } else { // Casting to something else 2623 return false; 2624 } 2625 } 2626 2627 bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) { 2628 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType()) 2629 return false; 2630 2631 if (SrcTy == DestTy) 2632 return true; 2633 2634 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) { 2635 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) { 2636 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) { 2637 // An element by element cast. Valid if casting the elements is valid. 2638 SrcTy = SrcVecTy->getElementType(); 2639 DestTy = DestVecTy->getElementType(); 2640 } 2641 } 2642 } 2643 2644 if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) { 2645 if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) { 2646 return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace(); 2647 } 2648 } 2649 2650 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr 2651 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr 2652 2653 // Could still have vectors of pointers if the number of elements doesn't 2654 // match 2655 if (SrcBits == 0 || DestBits == 0) 2656 return false; 2657 2658 if (SrcBits != DestBits) 2659 return false; 2660 2661 if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy()) 2662 return false; 2663 2664 return true; 2665 } 2666 2667 // Provide a way to get a "cast" where the cast opcode is inferred from the 2668 // types and size of the operand. This, basically, is a parallel of the 2669 // logic in the castIsValid function below. This axiom should hold: 2670 // castIsValid( getCastOpcode(Val, Ty), Val, Ty) 2671 // should not assert in castIsValid. In other words, this produces a "correct" 2672 // casting opcode for the arguments passed to it. 2673 // This routine must be kept in sync with isCastable. 2674 Instruction::CastOps 2675 CastInst::getCastOpcode( 2676 const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) { 2677 Type *SrcTy = Src->getType(); 2678 2679 assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() && 2680 "Only first class types are castable!"); 2681 2682 if (SrcTy == DestTy) 2683 return BitCast; 2684 2685 // FIXME: Check address space sizes here 2686 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) 2687 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) 2688 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) { 2689 // An element by element cast. Find the appropriate opcode based on the 2690 // element types. 2691 SrcTy = SrcVecTy->getElementType(); 2692 DestTy = DestVecTy->getElementType(); 2693 } 2694 2695 // Get the bit sizes, we'll need these 2696 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr 2697 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr 2698 2699 // Run through the possibilities ... 2700 if (DestTy->isIntegerTy()) { // Casting to integral 2701 if (SrcTy->isIntegerTy()) { // Casting from integral 2702 if (DestBits < SrcBits) 2703 return Trunc; // int -> smaller int 2704 else if (DestBits > SrcBits) { // its an extension 2705 if (SrcIsSigned) 2706 return SExt; // signed -> SEXT 2707 else 2708 return ZExt; // unsigned -> ZEXT 2709 } else { 2710 return BitCast; // Same size, No-op cast 2711 } 2712 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt 2713 if (DestIsSigned) 2714 return FPToSI; // FP -> sint 2715 else 2716 return FPToUI; // FP -> uint 2717 } else if (SrcTy->isVectorTy()) { 2718 assert(DestBits == SrcBits && 2719 "Casting vector to integer of different width"); 2720 return BitCast; // Same size, no-op cast 2721 } else { 2722 assert(SrcTy->isPointerTy() && 2723 "Casting from a value that is not first-class type"); 2724 return PtrToInt; // ptr -> int 2725 } 2726 } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt 2727 if (SrcTy->isIntegerTy()) { // Casting from integral 2728 if (SrcIsSigned) 2729 return SIToFP; // sint -> FP 2730 else 2731 return UIToFP; // uint -> FP 2732 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt 2733 if (DestBits < SrcBits) { 2734 return FPTrunc; // FP -> smaller FP 2735 } else if (DestBits > SrcBits) { 2736 return FPExt; // FP -> larger FP 2737 } else { 2738 return BitCast; // same size, no-op cast 2739 } 2740 } else if (SrcTy->isVectorTy()) { 2741 assert(DestBits == SrcBits && 2742 "Casting vector to floating point of different width"); 2743 return BitCast; // same size, no-op cast 2744 } 2745 llvm_unreachable("Casting pointer or non-first class to float"); 2746 } else if (DestTy->isVectorTy()) { 2747 assert(DestBits == SrcBits && 2748 "Illegal cast to vector (wrong type or size)"); 2749 return BitCast; 2750 } else if (DestTy->isPointerTy()) { 2751 if (SrcTy->isPointerTy()) { 2752 if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace()) 2753 return AddrSpaceCast; 2754 return BitCast; // ptr -> ptr 2755 } else if (SrcTy->isIntegerTy()) { 2756 return IntToPtr; // int -> ptr 2757 } 2758 llvm_unreachable("Casting pointer to other than pointer or int"); 2759 } else if (DestTy->isX86_MMXTy()) { 2760 if (SrcTy->isVectorTy()) { 2761 assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX"); 2762 return BitCast; // 64-bit vector to MMX 2763 } 2764 llvm_unreachable("Illegal cast to X86_MMX"); 2765 } 2766 llvm_unreachable("Casting to type that is not first-class"); 2767 } 2768 2769 //===----------------------------------------------------------------------===// 2770 // CastInst SubClass Constructors 2771 //===----------------------------------------------------------------------===// 2772 2773 /// Check that the construction parameters for a CastInst are correct. This 2774 /// could be broken out into the separate constructors but it is useful to have 2775 /// it in one place and to eliminate the redundant code for getting the sizes 2776 /// of the types involved. 2777 bool 2778 CastInst::castIsValid(Instruction::CastOps op, Value *S, Type *DstTy) { 2779 2780 // Check for type sanity on the arguments 2781 Type *SrcTy = S->getType(); 2782 2783 // If this is a cast to the same type then it's trivially true. 2784 if (SrcTy == DstTy) 2785 return true; 2786 2787 if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() || 2788 SrcTy->isAggregateType() || DstTy->isAggregateType()) 2789 return false; 2790 2791 // Get the size of the types in bits, we'll need this later 2792 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2793 unsigned DstBitSize = DstTy->getScalarSizeInBits(); 2794 2795 // If these are vector types, get the lengths of the vectors (using zero for 2796 // scalar types means that checking that vector lengths match also checks that 2797 // scalars are not being converted to vectors or vectors to scalars). 2798 unsigned SrcLength = SrcTy->isVectorTy() ? 2799 cast<VectorType>(SrcTy)->getNumElements() : 0; 2800 unsigned DstLength = DstTy->isVectorTy() ? 2801 cast<VectorType>(DstTy)->getNumElements() : 0; 2802 2803 // Switch on the opcode provided 2804 switch (op) { 2805 default: return false; // This is an input error 2806 case Instruction::Trunc: 2807 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && 2808 SrcLength == DstLength && SrcBitSize > DstBitSize; 2809 case Instruction::ZExt: 2810 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && 2811 SrcLength == DstLength && SrcBitSize < DstBitSize; 2812 case Instruction::SExt: 2813 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && 2814 SrcLength == DstLength && SrcBitSize < DstBitSize; 2815 case Instruction::FPTrunc: 2816 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() && 2817 SrcLength == DstLength && SrcBitSize > DstBitSize; 2818 case Instruction::FPExt: 2819 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() && 2820 SrcLength == DstLength && SrcBitSize < DstBitSize; 2821 case Instruction::UIToFP: 2822 case Instruction::SIToFP: 2823 return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() && 2824 SrcLength == DstLength; 2825 case Instruction::FPToUI: 2826 case Instruction::FPToSI: 2827 return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() && 2828 SrcLength == DstLength; 2829 case Instruction::PtrToInt: 2830 if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy)) 2831 return false; 2832 if (VectorType *VT = dyn_cast<VectorType>(SrcTy)) 2833 if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements()) 2834 return false; 2835 return SrcTy->getScalarType()->isPointerTy() && 2836 DstTy->getScalarType()->isIntegerTy(); 2837 case Instruction::IntToPtr: 2838 if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy)) 2839 return false; 2840 if (VectorType *VT = dyn_cast<VectorType>(SrcTy)) 2841 if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements()) 2842 return false; 2843 return SrcTy->getScalarType()->isIntegerTy() && 2844 DstTy->getScalarType()->isPointerTy(); 2845 case Instruction::BitCast: { 2846 PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType()); 2847 PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType()); 2848 2849 // BitCast implies a no-op cast of type only. No bits change. 2850 // However, you can't cast pointers to anything but pointers. 2851 if (!SrcPtrTy != !DstPtrTy) 2852 return false; 2853 2854 // For non-pointer cases, the cast is okay if the source and destination bit 2855 // widths are identical. 2856 if (!SrcPtrTy) 2857 return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits(); 2858 2859 // If both are pointers then the address spaces must match. 2860 if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) 2861 return false; 2862 2863 // A vector of pointers must have the same number of elements. 2864 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) { 2865 if (VectorType *DstVecTy = dyn_cast<VectorType>(DstTy)) 2866 return (SrcVecTy->getNumElements() == DstVecTy->getNumElements()); 2867 2868 return false; 2869 } 2870 2871 return true; 2872 } 2873 case Instruction::AddrSpaceCast: { 2874 PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType()); 2875 if (!SrcPtrTy) 2876 return false; 2877 2878 PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType()); 2879 if (!DstPtrTy) 2880 return false; 2881 2882 if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace()) 2883 return false; 2884 2885 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) { 2886 if (VectorType *DstVecTy = dyn_cast<VectorType>(DstTy)) 2887 return (SrcVecTy->getNumElements() == DstVecTy->getNumElements()); 2888 2889 return false; 2890 } 2891 2892 return true; 2893 } 2894 } 2895 } 2896 2897 TruncInst::TruncInst( 2898 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 2899 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) { 2900 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc"); 2901 } 2902 2903 TruncInst::TruncInst( 2904 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 2905 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) { 2906 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc"); 2907 } 2908 2909 ZExtInst::ZExtInst( 2910 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 2911 ) : CastInst(Ty, ZExt, S, Name, InsertBefore) { 2912 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt"); 2913 } 2914 2915 ZExtInst::ZExtInst( 2916 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 2917 ) : CastInst(Ty, ZExt, S, Name, InsertAtEnd) { 2918 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt"); 2919 } 2920 SExtInst::SExtInst( 2921 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 2922 ) : CastInst(Ty, SExt, S, Name, InsertBefore) { 2923 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt"); 2924 } 2925 2926 SExtInst::SExtInst( 2927 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 2928 ) : CastInst(Ty, SExt, S, Name, InsertAtEnd) { 2929 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt"); 2930 } 2931 2932 FPTruncInst::FPTruncInst( 2933 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 2934 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) { 2935 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc"); 2936 } 2937 2938 FPTruncInst::FPTruncInst( 2939 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 2940 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) { 2941 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc"); 2942 } 2943 2944 FPExtInst::FPExtInst( 2945 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 2946 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) { 2947 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt"); 2948 } 2949 2950 FPExtInst::FPExtInst( 2951 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 2952 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) { 2953 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt"); 2954 } 2955 2956 UIToFPInst::UIToFPInst( 2957 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 2958 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) { 2959 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP"); 2960 } 2961 2962 UIToFPInst::UIToFPInst( 2963 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 2964 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) { 2965 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP"); 2966 } 2967 2968 SIToFPInst::SIToFPInst( 2969 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 2970 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) { 2971 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP"); 2972 } 2973 2974 SIToFPInst::SIToFPInst( 2975 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 2976 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) { 2977 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP"); 2978 } 2979 2980 FPToUIInst::FPToUIInst( 2981 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 2982 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) { 2983 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI"); 2984 } 2985 2986 FPToUIInst::FPToUIInst( 2987 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 2988 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) { 2989 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI"); 2990 } 2991 2992 FPToSIInst::FPToSIInst( 2993 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 2994 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) { 2995 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI"); 2996 } 2997 2998 FPToSIInst::FPToSIInst( 2999 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3000 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) { 3001 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI"); 3002 } 3003 3004 PtrToIntInst::PtrToIntInst( 3005 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3006 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) { 3007 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt"); 3008 } 3009 3010 PtrToIntInst::PtrToIntInst( 3011 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3012 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) { 3013 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt"); 3014 } 3015 3016 IntToPtrInst::IntToPtrInst( 3017 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3018 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) { 3019 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr"); 3020 } 3021 3022 IntToPtrInst::IntToPtrInst( 3023 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3024 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) { 3025 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr"); 3026 } 3027 3028 BitCastInst::BitCastInst( 3029 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3030 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) { 3031 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast"); 3032 } 3033 3034 BitCastInst::BitCastInst( 3035 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3036 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) { 3037 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast"); 3038 } 3039 3040 AddrSpaceCastInst::AddrSpaceCastInst( 3041 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore 3042 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) { 3043 assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast"); 3044 } 3045 3046 AddrSpaceCastInst::AddrSpaceCastInst( 3047 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd 3048 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) { 3049 assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast"); 3050 } 3051 3052 //===----------------------------------------------------------------------===// 3053 // CmpInst Classes 3054 //===----------------------------------------------------------------------===// 3055 3056 void CmpInst::anchor() {} 3057 3058 CmpInst::CmpInst(Type *ty, OtherOps op, unsigned short predicate, 3059 Value *LHS, Value *RHS, const Twine &Name, 3060 Instruction *InsertBefore) 3061 : Instruction(ty, op, 3062 OperandTraits<CmpInst>::op_begin(this), 3063 OperandTraits<CmpInst>::operands(this), 3064 InsertBefore) { 3065 Op<0>() = LHS; 3066 Op<1>() = RHS; 3067 setPredicate((Predicate)predicate); 3068 setName(Name); 3069 } 3070 3071 CmpInst::CmpInst(Type *ty, OtherOps op, unsigned short predicate, 3072 Value *LHS, Value *RHS, const Twine &Name, 3073 BasicBlock *InsertAtEnd) 3074 : Instruction(ty, op, 3075 OperandTraits<CmpInst>::op_begin(this), 3076 OperandTraits<CmpInst>::operands(this), 3077 InsertAtEnd) { 3078 Op<0>() = LHS; 3079 Op<1>() = RHS; 3080 setPredicate((Predicate)predicate); 3081 setName(Name); 3082 } 3083 3084 CmpInst * 3085 CmpInst::Create(OtherOps Op, unsigned short predicate, 3086 Value *S1, Value *S2, 3087 const Twine &Name, Instruction *InsertBefore) { 3088 if (Op == Instruction::ICmp) { 3089 if (InsertBefore) 3090 return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate), 3091 S1, S2, Name); 3092 else 3093 return new ICmpInst(CmpInst::Predicate(predicate), 3094 S1, S2, Name); 3095 } 3096 3097 if (InsertBefore) 3098 return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate), 3099 S1, S2, Name); 3100 else 3101 return new FCmpInst(CmpInst::Predicate(predicate), 3102 S1, S2, Name); 3103 } 3104 3105 CmpInst * 3106 CmpInst::Create(OtherOps Op, unsigned short predicate, Value *S1, Value *S2, 3107 const Twine &Name, BasicBlock *InsertAtEnd) { 3108 if (Op == Instruction::ICmp) { 3109 return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate), 3110 S1, S2, Name); 3111 } 3112 return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate), 3113 S1, S2, Name); 3114 } 3115 3116 void CmpInst::swapOperands() { 3117 if (ICmpInst *IC = dyn_cast<ICmpInst>(this)) 3118 IC->swapOperands(); 3119 else 3120 cast<FCmpInst>(this)->swapOperands(); 3121 } 3122 3123 bool CmpInst::isCommutative() const { 3124 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this)) 3125 return IC->isCommutative(); 3126 return cast<FCmpInst>(this)->isCommutative(); 3127 } 3128 3129 bool CmpInst::isEquality() const { 3130 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this)) 3131 return IC->isEquality(); 3132 return cast<FCmpInst>(this)->isEquality(); 3133 } 3134 3135 3136 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) { 3137 switch (pred) { 3138 default: llvm_unreachable("Unknown cmp predicate!"); 3139 case ICMP_EQ: return ICMP_NE; 3140 case ICMP_NE: return ICMP_EQ; 3141 case ICMP_UGT: return ICMP_ULE; 3142 case ICMP_ULT: return ICMP_UGE; 3143 case ICMP_UGE: return ICMP_ULT; 3144 case ICMP_ULE: return ICMP_UGT; 3145 case ICMP_SGT: return ICMP_SLE; 3146 case ICMP_SLT: return ICMP_SGE; 3147 case ICMP_SGE: return ICMP_SLT; 3148 case ICMP_SLE: return ICMP_SGT; 3149 3150 case FCMP_OEQ: return FCMP_UNE; 3151 case FCMP_ONE: return FCMP_UEQ; 3152 case FCMP_OGT: return FCMP_ULE; 3153 case FCMP_OLT: return FCMP_UGE; 3154 case FCMP_OGE: return FCMP_ULT; 3155 case FCMP_OLE: return FCMP_UGT; 3156 case FCMP_UEQ: return FCMP_ONE; 3157 case FCMP_UNE: return FCMP_OEQ; 3158 case FCMP_UGT: return FCMP_OLE; 3159 case FCMP_ULT: return FCMP_OGE; 3160 case FCMP_UGE: return FCMP_OLT; 3161 case FCMP_ULE: return FCMP_OGT; 3162 case FCMP_ORD: return FCMP_UNO; 3163 case FCMP_UNO: return FCMP_ORD; 3164 case FCMP_TRUE: return FCMP_FALSE; 3165 case FCMP_FALSE: return FCMP_TRUE; 3166 } 3167 } 3168 3169 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) { 3170 switch (pred) { 3171 default: llvm_unreachable("Unknown icmp predicate!"); 3172 case ICMP_EQ: case ICMP_NE: 3173 case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE: 3174 return pred; 3175 case ICMP_UGT: return ICMP_SGT; 3176 case ICMP_ULT: return ICMP_SLT; 3177 case ICMP_UGE: return ICMP_SGE; 3178 case ICMP_ULE: return ICMP_SLE; 3179 } 3180 } 3181 3182 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) { 3183 switch (pred) { 3184 default: llvm_unreachable("Unknown icmp predicate!"); 3185 case ICMP_EQ: case ICMP_NE: 3186 case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE: 3187 return pred; 3188 case ICMP_SGT: return ICMP_UGT; 3189 case ICMP_SLT: return ICMP_ULT; 3190 case ICMP_SGE: return ICMP_UGE; 3191 case ICMP_SLE: return ICMP_ULE; 3192 } 3193 } 3194 3195 /// Initialize a set of values that all satisfy the condition with C. 3196 /// 3197 ConstantRange 3198 ICmpInst::makeConstantRange(Predicate pred, const APInt &C) { 3199 APInt Lower(C); 3200 APInt Upper(C); 3201 uint32_t BitWidth = C.getBitWidth(); 3202 switch (pred) { 3203 default: llvm_unreachable("Invalid ICmp opcode to ConstantRange ctor!"); 3204 case ICmpInst::ICMP_EQ: ++Upper; break; 3205 case ICmpInst::ICMP_NE: ++Lower; break; 3206 case ICmpInst::ICMP_ULT: 3207 Lower = APInt::getMinValue(BitWidth); 3208 // Check for an empty-set condition. 3209 if (Lower == Upper) 3210 return ConstantRange(BitWidth, /*isFullSet=*/false); 3211 break; 3212 case ICmpInst::ICMP_SLT: 3213 Lower = APInt::getSignedMinValue(BitWidth); 3214 // Check for an empty-set condition. 3215 if (Lower == Upper) 3216 return ConstantRange(BitWidth, /*isFullSet=*/false); 3217 break; 3218 case ICmpInst::ICMP_UGT: 3219 ++Lower; Upper = APInt::getMinValue(BitWidth); // Min = Next(Max) 3220 // Check for an empty-set condition. 3221 if (Lower == Upper) 3222 return ConstantRange(BitWidth, /*isFullSet=*/false); 3223 break; 3224 case ICmpInst::ICMP_SGT: 3225 ++Lower; Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max) 3226 // Check for an empty-set condition. 3227 if (Lower == Upper) 3228 return ConstantRange(BitWidth, /*isFullSet=*/false); 3229 break; 3230 case ICmpInst::ICMP_ULE: 3231 Lower = APInt::getMinValue(BitWidth); ++Upper; 3232 // Check for a full-set condition. 3233 if (Lower == Upper) 3234 return ConstantRange(BitWidth, /*isFullSet=*/true); 3235 break; 3236 case ICmpInst::ICMP_SLE: 3237 Lower = APInt::getSignedMinValue(BitWidth); ++Upper; 3238 // Check for a full-set condition. 3239 if (Lower == Upper) 3240 return ConstantRange(BitWidth, /*isFullSet=*/true); 3241 break; 3242 case ICmpInst::ICMP_UGE: 3243 Upper = APInt::getMinValue(BitWidth); // Min = Next(Max) 3244 // Check for a full-set condition. 3245 if (Lower == Upper) 3246 return ConstantRange(BitWidth, /*isFullSet=*/true); 3247 break; 3248 case ICmpInst::ICMP_SGE: 3249 Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max) 3250 // Check for a full-set condition. 3251 if (Lower == Upper) 3252 return ConstantRange(BitWidth, /*isFullSet=*/true); 3253 break; 3254 } 3255 return ConstantRange(Lower, Upper); 3256 } 3257 3258 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) { 3259 switch (pred) { 3260 default: llvm_unreachable("Unknown cmp predicate!"); 3261 case ICMP_EQ: case ICMP_NE: 3262 return pred; 3263 case ICMP_SGT: return ICMP_SLT; 3264 case ICMP_SLT: return ICMP_SGT; 3265 case ICMP_SGE: return ICMP_SLE; 3266 case ICMP_SLE: return ICMP_SGE; 3267 case ICMP_UGT: return ICMP_ULT; 3268 case ICMP_ULT: return ICMP_UGT; 3269 case ICMP_UGE: return ICMP_ULE; 3270 case ICMP_ULE: return ICMP_UGE; 3271 3272 case FCMP_FALSE: case FCMP_TRUE: 3273 case FCMP_OEQ: case FCMP_ONE: 3274 case FCMP_UEQ: case FCMP_UNE: 3275 case FCMP_ORD: case FCMP_UNO: 3276 return pred; 3277 case FCMP_OGT: return FCMP_OLT; 3278 case FCMP_OLT: return FCMP_OGT; 3279 case FCMP_OGE: return FCMP_OLE; 3280 case FCMP_OLE: return FCMP_OGE; 3281 case FCMP_UGT: return FCMP_ULT; 3282 case FCMP_ULT: return FCMP_UGT; 3283 case FCMP_UGE: return FCMP_ULE; 3284 case FCMP_ULE: return FCMP_UGE; 3285 } 3286 } 3287 3288 bool CmpInst::isUnsigned(unsigned short predicate) { 3289 switch (predicate) { 3290 default: return false; 3291 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT: 3292 case ICmpInst::ICMP_UGE: return true; 3293 } 3294 } 3295 3296 bool CmpInst::isSigned(unsigned short predicate) { 3297 switch (predicate) { 3298 default: return false; 3299 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT: 3300 case ICmpInst::ICMP_SGE: return true; 3301 } 3302 } 3303 3304 bool CmpInst::isOrdered(unsigned short predicate) { 3305 switch (predicate) { 3306 default: return false; 3307 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT: 3308 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE: 3309 case FCmpInst::FCMP_ORD: return true; 3310 } 3311 } 3312 3313 bool CmpInst::isUnordered(unsigned short predicate) { 3314 switch (predicate) { 3315 default: return false; 3316 case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT: 3317 case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE: 3318 case FCmpInst::FCMP_UNO: return true; 3319 } 3320 } 3321 3322 bool CmpInst::isTrueWhenEqual(unsigned short predicate) { 3323 switch(predicate) { 3324 default: return false; 3325 case ICMP_EQ: case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE: 3326 case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true; 3327 } 3328 } 3329 3330 bool CmpInst::isFalseWhenEqual(unsigned short predicate) { 3331 switch(predicate) { 3332 case ICMP_NE: case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT: 3333 case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true; 3334 default: return false; 3335 } 3336 } 3337 3338 3339 //===----------------------------------------------------------------------===// 3340 // SwitchInst Implementation 3341 //===----------------------------------------------------------------------===// 3342 3343 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) { 3344 assert(Value && Default && NumReserved); 3345 ReservedSpace = NumReserved; 3346 NumOperands = 2; 3347 OperandList = allocHungoffUses(ReservedSpace); 3348 3349 OperandList[0] = Value; 3350 OperandList[1] = Default; 3351 } 3352 3353 /// SwitchInst ctor - Create a new switch instruction, specifying a value to 3354 /// switch on and a default destination. The number of additional cases can 3355 /// be specified here to make memory allocation more efficient. This 3356 /// constructor can also autoinsert before another instruction. 3357 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, 3358 Instruction *InsertBefore) 3359 : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch, 3360 nullptr, 0, InsertBefore) { 3361 init(Value, Default, 2+NumCases*2); 3362 } 3363 3364 /// SwitchInst ctor - Create a new switch instruction, specifying a value to 3365 /// switch on and a default destination. The number of additional cases can 3366 /// be specified here to make memory allocation more efficient. This 3367 /// constructor also autoinserts at the end of the specified BasicBlock. 3368 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, 3369 BasicBlock *InsertAtEnd) 3370 : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch, 3371 nullptr, 0, InsertAtEnd) { 3372 init(Value, Default, 2+NumCases*2); 3373 } 3374 3375 SwitchInst::SwitchInst(const SwitchInst &SI) 3376 : TerminatorInst(SI.getType(), Instruction::Switch, nullptr, 0) { 3377 init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands()); 3378 NumOperands = SI.getNumOperands(); 3379 Use *OL = OperandList, *InOL = SI.OperandList; 3380 for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) { 3381 OL[i] = InOL[i]; 3382 OL[i+1] = InOL[i+1]; 3383 } 3384 SubclassOptionalData = SI.SubclassOptionalData; 3385 } 3386 3387 SwitchInst::~SwitchInst() { 3388 dropHungoffUses(); 3389 } 3390 3391 3392 /// addCase - Add an entry to the switch instruction... 3393 /// 3394 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) { 3395 unsigned NewCaseIdx = getNumCases(); 3396 unsigned OpNo = NumOperands; 3397 if (OpNo+2 > ReservedSpace) 3398 growOperands(); // Get more space! 3399 // Initialize some new operands. 3400 assert(OpNo+1 < ReservedSpace && "Growing didn't work!"); 3401 NumOperands = OpNo+2; 3402 CaseIt Case(this, NewCaseIdx); 3403 Case.setValue(OnVal); 3404 Case.setSuccessor(Dest); 3405 } 3406 3407 /// removeCase - This method removes the specified case and its successor 3408 /// from the switch instruction. 3409 void SwitchInst::removeCase(CaseIt i) { 3410 unsigned idx = i.getCaseIndex(); 3411 3412 assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!"); 3413 3414 unsigned NumOps = getNumOperands(); 3415 Use *OL = OperandList; 3416 3417 // Overwrite this case with the end of the list. 3418 if (2 + (idx + 1) * 2 != NumOps) { 3419 OL[2 + idx * 2] = OL[NumOps - 2]; 3420 OL[2 + idx * 2 + 1] = OL[NumOps - 1]; 3421 } 3422 3423 // Nuke the last value. 3424 OL[NumOps-2].set(nullptr); 3425 OL[NumOps-2+1].set(nullptr); 3426 NumOperands = NumOps-2; 3427 } 3428 3429 /// growOperands - grow operands - This grows the operand list in response 3430 /// to a push_back style of operation. This grows the number of ops by 3 times. 3431 /// 3432 void SwitchInst::growOperands() { 3433 unsigned e = getNumOperands(); 3434 unsigned NumOps = e*3; 3435 3436 ReservedSpace = NumOps; 3437 Use *NewOps = allocHungoffUses(NumOps); 3438 Use *OldOps = OperandList; 3439 for (unsigned i = 0; i != e; ++i) { 3440 NewOps[i] = OldOps[i]; 3441 } 3442 OperandList = NewOps; 3443 Use::zap(OldOps, OldOps + e, true); 3444 } 3445 3446 3447 BasicBlock *SwitchInst::getSuccessorV(unsigned idx) const { 3448 return getSuccessor(idx); 3449 } 3450 unsigned SwitchInst::getNumSuccessorsV() const { 3451 return getNumSuccessors(); 3452 } 3453 void SwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) { 3454 setSuccessor(idx, B); 3455 } 3456 3457 //===----------------------------------------------------------------------===// 3458 // IndirectBrInst Implementation 3459 //===----------------------------------------------------------------------===// 3460 3461 void IndirectBrInst::init(Value *Address, unsigned NumDests) { 3462 assert(Address && Address->getType()->isPointerTy() && 3463 "Address of indirectbr must be a pointer"); 3464 ReservedSpace = 1+NumDests; 3465 NumOperands = 1; 3466 OperandList = allocHungoffUses(ReservedSpace); 3467 3468 OperandList[0] = Address; 3469 } 3470 3471 3472 /// growOperands - grow operands - This grows the operand list in response 3473 /// to a push_back style of operation. This grows the number of ops by 2 times. 3474 /// 3475 void IndirectBrInst::growOperands() { 3476 unsigned e = getNumOperands(); 3477 unsigned NumOps = e*2; 3478 3479 ReservedSpace = NumOps; 3480 Use *NewOps = allocHungoffUses(NumOps); 3481 Use *OldOps = OperandList; 3482 for (unsigned i = 0; i != e; ++i) 3483 NewOps[i] = OldOps[i]; 3484 OperandList = NewOps; 3485 Use::zap(OldOps, OldOps + e, true); 3486 } 3487 3488 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases, 3489 Instruction *InsertBefore) 3490 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr, 3491 nullptr, 0, InsertBefore) { 3492 init(Address, NumCases); 3493 } 3494 3495 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases, 3496 BasicBlock *InsertAtEnd) 3497 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr, 3498 nullptr, 0, InsertAtEnd) { 3499 init(Address, NumCases); 3500 } 3501 3502 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI) 3503 : TerminatorInst(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr, 3504 allocHungoffUses(IBI.getNumOperands()), 3505 IBI.getNumOperands()) { 3506 Use *OL = OperandList, *InOL = IBI.OperandList; 3507 for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i) 3508 OL[i] = InOL[i]; 3509 SubclassOptionalData = IBI.SubclassOptionalData; 3510 } 3511 3512 IndirectBrInst::~IndirectBrInst() { 3513 dropHungoffUses(); 3514 } 3515 3516 /// addDestination - Add a destination. 3517 /// 3518 void IndirectBrInst::addDestination(BasicBlock *DestBB) { 3519 unsigned OpNo = NumOperands; 3520 if (OpNo+1 > ReservedSpace) 3521 growOperands(); // Get more space! 3522 // Initialize some new operands. 3523 assert(OpNo < ReservedSpace && "Growing didn't work!"); 3524 NumOperands = OpNo+1; 3525 OperandList[OpNo] = DestBB; 3526 } 3527 3528 /// removeDestination - This method removes the specified successor from the 3529 /// indirectbr instruction. 3530 void IndirectBrInst::removeDestination(unsigned idx) { 3531 assert(idx < getNumOperands()-1 && "Successor index out of range!"); 3532 3533 unsigned NumOps = getNumOperands(); 3534 Use *OL = OperandList; 3535 3536 // Replace this value with the last one. 3537 OL[idx+1] = OL[NumOps-1]; 3538 3539 // Nuke the last value. 3540 OL[NumOps-1].set(nullptr); 3541 NumOperands = NumOps-1; 3542 } 3543 3544 BasicBlock *IndirectBrInst::getSuccessorV(unsigned idx) const { 3545 return getSuccessor(idx); 3546 } 3547 unsigned IndirectBrInst::getNumSuccessorsV() const { 3548 return getNumSuccessors(); 3549 } 3550 void IndirectBrInst::setSuccessorV(unsigned idx, BasicBlock *B) { 3551 setSuccessor(idx, B); 3552 } 3553 3554 //===----------------------------------------------------------------------===// 3555 // clone_impl() implementations 3556 //===----------------------------------------------------------------------===// 3557 3558 // Define these methods here so vtables don't get emitted into every translation 3559 // unit that uses these classes. 3560 3561 GetElementPtrInst *GetElementPtrInst::clone_impl() const { 3562 return new (getNumOperands()) GetElementPtrInst(*this); 3563 } 3564 3565 BinaryOperator *BinaryOperator::clone_impl() const { 3566 return Create(getOpcode(), Op<0>(), Op<1>()); 3567 } 3568 3569 FCmpInst* FCmpInst::clone_impl() const { 3570 return new FCmpInst(getPredicate(), Op<0>(), Op<1>()); 3571 } 3572 3573 ICmpInst* ICmpInst::clone_impl() const { 3574 return new ICmpInst(getPredicate(), Op<0>(), Op<1>()); 3575 } 3576 3577 ExtractValueInst *ExtractValueInst::clone_impl() const { 3578 return new ExtractValueInst(*this); 3579 } 3580 3581 InsertValueInst *InsertValueInst::clone_impl() const { 3582 return new InsertValueInst(*this); 3583 } 3584 3585 AllocaInst *AllocaInst::clone_impl() const { 3586 AllocaInst *Result = new AllocaInst(getAllocatedType(), 3587 (Value *)getOperand(0), getAlignment()); 3588 Result->setUsedWithInAlloca(isUsedWithInAlloca()); 3589 return Result; 3590 } 3591 3592 LoadInst *LoadInst::clone_impl() const { 3593 return new LoadInst(getOperand(0), Twine(), isVolatile(), 3594 getAlignment(), getOrdering(), getSynchScope()); 3595 } 3596 3597 StoreInst *StoreInst::clone_impl() const { 3598 return new StoreInst(getOperand(0), getOperand(1), isVolatile(), 3599 getAlignment(), getOrdering(), getSynchScope()); 3600 3601 } 3602 3603 AtomicCmpXchgInst *AtomicCmpXchgInst::clone_impl() const { 3604 AtomicCmpXchgInst *Result = 3605 new AtomicCmpXchgInst(getOperand(0), getOperand(1), getOperand(2), 3606 getSuccessOrdering(), getFailureOrdering(), 3607 getSynchScope()); 3608 Result->setVolatile(isVolatile()); 3609 Result->setWeak(isWeak()); 3610 return Result; 3611 } 3612 3613 AtomicRMWInst *AtomicRMWInst::clone_impl() const { 3614 AtomicRMWInst *Result = 3615 new AtomicRMWInst(getOperation(),getOperand(0), getOperand(1), 3616 getOrdering(), getSynchScope()); 3617 Result->setVolatile(isVolatile()); 3618 return Result; 3619 } 3620 3621 FenceInst *FenceInst::clone_impl() const { 3622 return new FenceInst(getContext(), getOrdering(), getSynchScope()); 3623 } 3624 3625 TruncInst *TruncInst::clone_impl() const { 3626 return new TruncInst(getOperand(0), getType()); 3627 } 3628 3629 ZExtInst *ZExtInst::clone_impl() const { 3630 return new ZExtInst(getOperand(0), getType()); 3631 } 3632 3633 SExtInst *SExtInst::clone_impl() const { 3634 return new SExtInst(getOperand(0), getType()); 3635 } 3636 3637 FPTruncInst *FPTruncInst::clone_impl() const { 3638 return new FPTruncInst(getOperand(0), getType()); 3639 } 3640 3641 FPExtInst *FPExtInst::clone_impl() const { 3642 return new FPExtInst(getOperand(0), getType()); 3643 } 3644 3645 UIToFPInst *UIToFPInst::clone_impl() const { 3646 return new UIToFPInst(getOperand(0), getType()); 3647 } 3648 3649 SIToFPInst *SIToFPInst::clone_impl() const { 3650 return new SIToFPInst(getOperand(0), getType()); 3651 } 3652 3653 FPToUIInst *FPToUIInst::clone_impl() const { 3654 return new FPToUIInst(getOperand(0), getType()); 3655 } 3656 3657 FPToSIInst *FPToSIInst::clone_impl() const { 3658 return new FPToSIInst(getOperand(0), getType()); 3659 } 3660 3661 PtrToIntInst *PtrToIntInst::clone_impl() const { 3662 return new PtrToIntInst(getOperand(0), getType()); 3663 } 3664 3665 IntToPtrInst *IntToPtrInst::clone_impl() const { 3666 return new IntToPtrInst(getOperand(0), getType()); 3667 } 3668 3669 BitCastInst *BitCastInst::clone_impl() const { 3670 return new BitCastInst(getOperand(0), getType()); 3671 } 3672 3673 AddrSpaceCastInst *AddrSpaceCastInst::clone_impl() const { 3674 return new AddrSpaceCastInst(getOperand(0), getType()); 3675 } 3676 3677 CallInst *CallInst::clone_impl() const { 3678 return new(getNumOperands()) CallInst(*this); 3679 } 3680 3681 SelectInst *SelectInst::clone_impl() const { 3682 return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2)); 3683 } 3684 3685 VAArgInst *VAArgInst::clone_impl() const { 3686 return new VAArgInst(getOperand(0), getType()); 3687 } 3688 3689 ExtractElementInst *ExtractElementInst::clone_impl() const { 3690 return ExtractElementInst::Create(getOperand(0), getOperand(1)); 3691 } 3692 3693 InsertElementInst *InsertElementInst::clone_impl() const { 3694 return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2)); 3695 } 3696 3697 ShuffleVectorInst *ShuffleVectorInst::clone_impl() const { 3698 return new ShuffleVectorInst(getOperand(0), getOperand(1), getOperand(2)); 3699 } 3700 3701 PHINode *PHINode::clone_impl() const { 3702 return new PHINode(*this); 3703 } 3704 3705 LandingPadInst *LandingPadInst::clone_impl() const { 3706 return new LandingPadInst(*this); 3707 } 3708 3709 ReturnInst *ReturnInst::clone_impl() const { 3710 return new(getNumOperands()) ReturnInst(*this); 3711 } 3712 3713 BranchInst *BranchInst::clone_impl() const { 3714 return new(getNumOperands()) BranchInst(*this); 3715 } 3716 3717 SwitchInst *SwitchInst::clone_impl() const { 3718 return new SwitchInst(*this); 3719 } 3720 3721 IndirectBrInst *IndirectBrInst::clone_impl() const { 3722 return new IndirectBrInst(*this); 3723 } 3724 3725 3726 InvokeInst *InvokeInst::clone_impl() const { 3727 return new(getNumOperands()) InvokeInst(*this); 3728 } 3729 3730 ResumeInst *ResumeInst::clone_impl() const { 3731 return new(1) ResumeInst(*this); 3732 } 3733 3734 UnreachableInst *UnreachableInst::clone_impl() const { 3735 LLVMContext &Context = getContext(); 3736 return new UnreachableInst(Context); 3737 } 3738